JPS6350404A - Spray nozzle for producing metallic powder - Google Patents

Spray nozzle for producing metallic powder

Info

Publication number
JPS6350404A
JPS6350404A JP19635786A JP19635786A JPS6350404A JP S6350404 A JPS6350404 A JP S6350404A JP 19635786 A JP19635786 A JP 19635786A JP 19635786 A JP19635786 A JP 19635786A JP S6350404 A JPS6350404 A JP S6350404A
Authority
JP
Japan
Prior art keywords
fluid
molten metal
nozzle
spray
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19635786A
Other languages
Japanese (ja)
Inventor
Hiroshi Hamamoto
弘 浜本
Takeshi Kameoka
亀岡 猛
Kazuhiko Ito
一彦 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP19635786A priority Critical patent/JPS6350404A/en
Publication of JPS6350404A publication Critical patent/JPS6350404A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0884Spiral fluid

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To improve the fining and pulverizing efficiency of metallic powder and to uniformize the grain size distribution thereof by disposing twisted guide vanes into a fluid to the passage in such a manner that the high-velocity fluid to be blown to molten metal flow forms an approximately circular conical undivided fluid film. CONSTITUTION:A stopper 27 is pulled up to discharge the molten metal 28 in a tundish 26 down to a spraying nozzle 20 via an outflow nozzle 30. On the other hand, fluid flow 44 is pressfed from a fluid introducing pipe 40 into a storage chamber 38 of the nozzle 30. The fluid flow 44 is given an adequate helix angle alpha by the guide vanes 42 and the fluid flows 44 divided by the guide vanes 42 near the ejection port 34 are joined again by the guide vanes 42 to form the approximately circular conical liquid film which is sprayed in the form of the uniform fluid flow 44 at the spraying angle theta toward the molten metal flow 29. The fining and pulverizing efficiency of the metallic powder is thereby improved and the pulverized grain size distribution is uniformized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属流へ周囲から例えばガス等の気体もし
くは液体の高速流体を吹きつけて金属粉末を得るための
金属粉末製造用噴霧ノズルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spray nozzle for producing metal powder, which sprays a high-speed fluid such as gas or liquid onto a molten metal stream from the surroundings to obtain metal powder. .

〔背景技術〕[Background technology]

流下する溶融金属流の周囲からこの溶融金属流へ高速流
体を噴出させて金属粉末を連続的に製造する装置がある
。この製造装置では高速流体を噴出する噴霧ノズルの性
能が金属粉末の微細化、粉化効率及び金属粉末の粒度分
布を著しく変化させるため、極めて重要な要因となる。
There is an apparatus that continuously produces metal powder by jetting a high-speed fluid into the molten metal stream from around the flowing molten metal stream. In this manufacturing equipment, the performance of the spray nozzle that ejects high-speed fluid is an extremely important factor because it significantly changes the fineness of the metal powder, the pulverization efficiency, and the particle size distribution of the metal powder.

この噴霧ノズルには、ペンシル型、V型、円錐型等の各
種のノズル形状があるが、第7図には円錐型ノズルによ
る噴射パターンが示されている。
This spray nozzle has various shapes such as a pencil shape, a V shape, and a conical shape, and FIG. 7 shows a spray pattern by a conical nozzle.

この円錐型ノズルによる噴射パターンは、軸心部を溶融
金属が流下し、この周囲に配置された環帯状の噴出口か
ら高速流体1oが矢印方向に、すなわち円錐外形線に沿
ってその頂点方向の上記溶融金属流へ噴出される。この
ため高速流体1oが溶融金属流と激しく衝突し、溶融金
属流を剪断粉砕して粉化する。溶融・金属流の粉化効率
を向上するためには、単位時間当りの溶融金属の流量と
高速流体の流量との比を小さくしたり、高速流体1゜が
形成する円錐角を大きくすることが効果的である。
The injection pattern of this conical nozzle is such that molten metal flows down the axial center, and high-speed fluid 1o flows in the direction of the arrow from the annular jet nozzle arranged around the axis, that is, along the conical outline, toward the apex. is ejected into the molten metal stream. Therefore, the high-speed fluid 1o violently collides with the molten metal flow, shearing and crushing the molten metal flow into powder. In order to improve the powdering efficiency of molten metal flow, it is possible to reduce the ratio between the flow rate of molten metal and the flow rate of high-speed fluid per unit time, or to increase the cone angle formed by 1° of high-speed fluid. Effective.

しかし高速流体が流下している溶融金属流へ衝突するの
で、高速流体の一部は噴霧ノズルに設けた溶融金属流の
導入開口部側に逆流し易く、スプレーフオームの形成も
不安定となって、溶融金属の噴霧時に溶融金属の吹き上
げや滞留現象が生じ易く、溶融金属流の導入口が閉塞さ
れる原因となる。
However, since the high-speed fluid collides with the flowing molten metal flow, a portion of the high-speed fluid tends to flow back toward the molten metal flow introduction opening provided in the spray nozzle, making the spray form unstable. When the molten metal is sprayed, the molten metal tends to blow up or accumulate, which causes the inlet for the molten metal flow to become clogged.

特に高速流体がガスである場合には、液体と異なり噴霧
焦点近くでの高速流体の拡がりが大きくなり、吹き上げ
現象を生じ易くなり、噴霧角を大きくするのが難しい。
In particular, when the high-speed fluid is a gas, unlike a liquid, the high-speed fluid spreads widely near the spray focal point, making it easy to cause a blow-up phenomenon and making it difficult to increase the spray angle.

このため噴霧ガス圧力を下げたり、溶融金属の流下量を
少なくする等の手段がとられているが、それらの噴霧条
件の制限のために金属粉末の微細化効果や粉化効率が低
下する。
For this reason, measures such as lowering the atomizing gas pressure and reducing the amount of molten metal flowing down have been taken, but these restrictions on the atomizing conditions reduce the effect of making the metal powder fine and the pulverization efficiency.

これを改善するために、第8図にその噴射パターンが示
される如く高速流体10に接線方向の速度成分を与え、
高速流体10の形成する流体膜を溶融金属流の回りにね
じれを生じさせ、噴霧焦点での高速流体10の衝突を緩
和させて安定したスプレーフオームを形成するように配
慮したものもある。
In order to improve this, a tangential velocity component is given to the high-speed fluid 10 as shown in the jetting pattern in FIG.
There is also a method in which the fluid film formed by the high-speed fluid 10 is twisted around the molten metal flow to alleviate the collision of the high-speed fluid 10 at the spray focal point and form a stable spray form.

これによれば噴霧焦点において高速流体10の逆流が防
止でき、しかも噴霧焦点近くには吸引力が生じて溶融金
属の吹き上げを生しない安定した噴霧状態が得られ、そ
のため、高速流体10が形成する円錐角を大きくするこ
とができ、金属粉末の微細化の向上が達成される。
According to this, backflow of the high-speed fluid 10 can be prevented at the spray focal point, and a stable spray state is obtained in which suction force is generated near the spray focal point and the molten metal does not blow up, so that the high-speed fluid 10 is formed. The cone angle can be increased, and the refinement of the metal powder can be improved.

このようにねじれを付与する手段として、特開昭48−
20752号及び特開昭50−67769号に記載され
たものがある。これらには環状型ノズル内部に高圧流体
を導入する際に、導入口を噴霧ノズルの外周上の接線方
向に設けて導入流体に方向性を与えたり、噴霧ノズル内
部に旋回傾斜板を設けたりする手段が示されているが、
噴霧ノズルの噴出口先端部が細く絞られているので流出
抵抗が高く、噴出流体に充分な旋回成分を与えることが
できない。さらに上記の場合は噴出口を通過する流体の
流量や圧力変動に対して常に一定な旋回成分が与えられ
ないので、噴出流体が形成するスプレーフオームは第7
図の状態に近づいたり、また形状が大きく変化する欠点
がある。
As a means for imparting twist in this way, Japanese Patent Application Laid-open No. 48-
There are those described in No. 20752 and Japanese Patent Application Laid-Open No. 50-67769. When high-pressure fluid is introduced into the annular nozzle, an inlet is provided in the tangential direction on the outer circumference of the spray nozzle to give directionality to the introduced fluid, and a rotating inclined plate is provided inside the spray nozzle. Although the means are shown,
Since the tip of the spray nozzle is narrowly constricted, outflow resistance is high and a sufficient swirling component cannot be imparted to the jetted fluid. Furthermore, in the above case, a constant swirling component is not always given to the flow rate and pressure fluctuations of the fluid passing through the jetting port, so the spray form formed by the jetting fluid is
There is a drawback that the shape approaches the state shown in the figure or changes greatly.

またこの公報に示されたノズル本体に条溝を複数個設け
る手段では、ノズル本体に設けた複数個の条溝を噴出口
とするので、噴出口の周上において噴出流体が分断され
、形成されるスプレーフオーム上においても分断流相互
の衝突が生しる。さらに流体流量や圧力変動によっても
スプレーフオームが安定して形成されない、また噴出流
体が分断されているので噴霧焦点近傍に発生する吸引作
用が低下し、噴霧角を大きくとった噴霧ノズルの製作が
困難であり、安定した噴霧状態が得られない。
Furthermore, in the method of providing a plurality of grooves on the nozzle body disclosed in this publication, the plurality of grooves provided on the nozzle body are used as jet ports, so the ejected fluid is divided and formed on the circumference of the jet port. Collision between divided flows also occurs on the spray form. Furthermore, the spray form is not formed stably due to fluid flow rate or pressure fluctuations, and since the ejected fluid is divided, the suction effect that occurs near the spray focal point is reduced, making it difficult to manufacture a spray nozzle with a large spray angle. Therefore, a stable spray condition cannot be obtained.

本発明は上記事実を考慮し、金属粉末の微細化、粉化効
率及び粉化粒度の分布を著しく向上することができる金
属粉末製造用噴霧ノズルを得ることが目的である。
In consideration of the above facts, the present invention aims to provide a spray nozzle for producing metal powder that can significantly improve the fineness of metal powder, the pulverization efficiency, and the distribution of pulverized particle size.

〔発明の概要及び作用〕[Summary and operation of the invention]

本発明は、流下する溶融金属流の周囲からこの溶融金属
流へ高速流体を吹きつけて金属粉末を得る金属粉末製造
用噴霧ノズルであって、前記金属流の軸心回りにねじれ
た案内羽根を流体通路内に配置し、この流体通路から噴
出される高速流体に接線方向の速度成分を与えて分断の
ない略円錐形の流体膜を形成させることを特徴としてい
る。
The present invention provides a spray nozzle for producing metal powder that obtains metal powder by spraying a high-speed fluid onto the molten metal stream from around the molten metal stream flowing down, the spray nozzle having guide vanes twisted around the axis of the metal stream. It is characterized in that it is disposed within a fluid passage and imparts a tangential velocity component to the high-speed fluid ejected from the fluid passage to form an unbroken, substantially conical fluid film.

このため本発明では、噴霧ノズルの環状の噴出口から噴
出された噴出流体に接線方向の速度成分を、噴霧ノズル
内部の噴出口直前の流体通路中に設けた案内羽根によっ
て確実に伝達させ、しかも、噴出流体流を分断すること
なく均一な環状の流れとすることにより、形成されたス
プレーフオーム全体が、常に−様にねじれた流れとする
ようにした。
For this reason, in the present invention, the velocity component in the tangential direction to the jetted fluid jetted from the annular jetting port of the spray nozzle is reliably transmitted by the guide vane provided in the fluid passage immediately before the jetting port inside the spraying nozzle. By making the ejected fluid flow into a uniform annular flow without dividing it, the entire spray form formed always has a twisted flow.

その結果、噴霧ノズルの噴霧角を大きくとることができ
、しかも、安定した噴霧状態が得られるようになった。
As a result, the spray angle of the spray nozzle can be increased, and a stable spray state can be obtained.

更に、適性なねじれ角を案内羽根に付けることによって
、噴出流体に接線方向の速度成分が確実に与えられ、噴
出流体全体が−様なねじれた流れとなって、溶融金属流
を分断する剪断力が増加し、その上、溶融金属流に対し
て均一に作用するように働くため、粉化効率及び粉末の
微細化の向上を達成することができた。
Furthermore, by providing an appropriate twist angle to the guide vanes, a tangential velocity component is reliably imparted to the ejected fluid, and the entire ejected fluid becomes a twisted flow, creating a shearing force that breaks up the molten metal flow. In addition, since it acted uniformly on the molten metal flow, it was possible to achieve improvements in powdering efficiency and fineness of the powder.

噴出した高速流体流を分断することなく均一な環状の流
れとするためには、案内羽根の先端を流体通路の流体噴
出口から後退して配置したり、金属流の軸心回りに等間
隔で複数個配置したり、案内羽根の先端を先細状とする
ことによっても効果を有する。
In order to make the ejected high-speed fluid flow into a uniform annular flow without breaking up, the tip of the guide vane may be set back from the fluid jet port of the fluid passage, or the tip of the guide vane may be placed at equal intervals around the axis of the metal flow. Effects can also be obtained by arranging a plurality of guide vanes or by tapering the tips of the guide vanes.

〔発明の実施例〕[Embodiments of the invention]

第1図には本実施例に係る噴霧ノズル2oが示されてい
る。この噴霧ノズル20では、ノズル本体22の軸心に
溶融金属流導入口24が軸心を垂直として形成されてい
る。この溶融金属流導入口24の上方には同軸的にタン
ディツシュ26が設置され、内部に溶融した金属である
金属溶湯28が収容されている。このタンディツシュ2
6の軸心部には溶湯流出ノズル30が形成され溶融金属
流導入口24と同軸的に配置されている。従ってタンデ
ィツシュ26内の金属溶湯28はストッパ27を持上げ
れば溶融金属流導入口24を通って噴霧ノズル20内へ
流下する構成である。
FIG. 1 shows a spray nozzle 2o according to this embodiment. In this spray nozzle 20, a molten metal flow introduction port 24 is formed at the axis of a nozzle body 22 with the axis perpendicular to the axis. A tundish 26 is installed coaxially above the molten metal flow introduction port 24, and a molten metal 28, which is molten metal, is accommodated therein. This Tanditshu 2
A molten metal outflow nozzle 30 is formed at the axial center of the molten metal 6 and is arranged coaxially with the molten metal flow introduction port 24 . Therefore, the molten metal 28 in the tundish 26 is configured to flow down into the spray nozzle 20 through the molten metal flow inlet 24 when the stopper 27 is lifted.

この実施例におけるノズル本体22は中央部が、すなわ
ち溶融金属流導入口24が形成された部分がノズルダイ
32とされている。このノズルダイ32内には一端が溶
融金属流導入口24に向けて開口した噴出口34(第2
図)とされる高速流体の流体通路36が半径方向に形成
され、これによってノズルダイ32をノズルダイ上部3
2Aとノズルダイ下部32Bとに分割している。
In this embodiment, the nozzle body 22 has a central portion, that is, a portion where the molten metal flow introduction port 24 is formed, serving as a nozzle die 32. Inside this nozzle die 32 is a spout 34 (a second
A fluid passage 36 for high-velocity fluid is formed in the radial direction, thereby moving the nozzle die 32 to the nozzle die upper part 3.
2A and a nozzle die lower part 32B.

流体通路36は噴出口34の反対側端部に貯留体室38
を形成しており、この貯留体室38は金属溶湯流29の
軸心を中心とする円筒形状とされ、この貯留体室38へ
流体導入管40が連通されている。この流体導入管40
はこの実施例においては一対設けられ、貯留体室38の
接線方向にノズル本体22を貫通し、図示しない他端部
が高圧力の流体供給源に接続されている。
The fluid passageway 36 has a reservoir chamber 38 at the opposite end of the spout 34 .
The reservoir chamber 38 has a cylindrical shape centered on the axis of the molten metal flow 29, and a fluid introduction pipe 40 is communicated with the reservoir chamber 38. This fluid introduction pipe 40
In this embodiment, a pair of nozzle nozzles are provided, which pass through the nozzle body 22 in the tangential direction of the reservoir chamber 38, and the other end (not shown) is connected to a high pressure fluid supply source.

第2.3図に詳細に示される如くノズルダイ上部32A
とノズルダイ下部32Bで狭い間隙に形成した流体通路
36は複数個の案内羽根42で連通されている。これら
の案内羽根42は第3図に示される如く金属溶湯流29
の軸心回りに等間隔で配置されており、その先端部42
Aは第2図に示される如く噴出口34から後退した状態
となっている。またこの案内羽根42が設けられた部分
の流体通路36は噴出口34が金属溶湯流29の流下方
向に対して第1図に示される角度θの挟角をもって流体
流44を噴出できるようになっている。このため流体流
44と金属溶湯流29との交点が噴霧焦点46となって
いる。
Nozzle die upper part 32A as shown in detail in Figure 2.3.
A fluid passage 36 formed in a narrow gap between the nozzle die lower part 32B and the nozzle die lower part 32B is communicated with each other by a plurality of guide vanes 42. These guide vanes 42 guide the molten metal flow 29 as shown in FIG.
are arranged at equal intervals around the axis of the
A is in a retracted state from the spout 34 as shown in FIG. Further, the fluid passage 36 in the portion where the guide vane 42 is provided is configured so that the jet port 34 can jet the fluid flow 44 at an angle θ shown in FIG. ing. Therefore, the intersection of the fluid flow 44 and the molten metal flow 29 serves as a spray focal point 46.

第3図に示される如く案内羽根42は金属溶湯流29に
向けて先端部が先細形状にされると共に、金属溶湯流2
9の軸心から延びる放射線に対して角度αのねじれ角を
有している。また案内胴t142と隣接した案内羽根4
2との間の流体通路幅は噴出口34に向かって先細にな
っている。また、この幅は噴出口34に向かって同等の
幅としてもよい、ねじれ角αは溶融金属流導入口24の
口径りと噴霧角θの大きさによって変化し、これらの変
化に対して適性な値をとることができる。また案内羽根
42の敗は溶融金属流導入口24の口径りによって変化
する。
As shown in FIG. 3, the guide vane 42 has a tapered tip toward the molten metal flow 29, and has a tapered tip toward the molten metal flow 29.
It has a torsion angle of angle α with respect to a ray extending from the axis of 9. In addition, the guide vane 4 adjacent to the guide cylinder t142
The width of the fluid passage between the outlet 2 and the outlet 2 is tapered toward the ejection port 34. Further, this width may be the same width toward the spout 34. The helix angle α changes depending on the diameter of the molten metal flow introduction port 24 and the size of the spray angle θ. Can take a value. Further, the failure of the guide vane 42 changes depending on the diameter of the molten metal flow introduction port 24.

本実施例における案内羽根42の先端部の噴出口34か
らの後退量Cは案内羽根42間を通過して分断された高
速流体が噴出口34の直前の噴出口34で再び充満して
均一な流動の流体となってしかも噴出された流体流が案
内羽根42を通過するときに得た規定のねしれ角を確実
に確保できる適性な長さCの値とし、その円周上に案内
羽根42の先端を揃えて配列されるものとする。この実
施例の場合寸法CはAと同等以上でありBの1/2以下
となっている。
In this embodiment, the retreat amount C of the tip of the guide vane 42 from the jet nozzle 34 is due to the high-speed fluid that has passed between the guide vanes 42 and been divided, refilling the jet nozzle 34 just before the jet nozzle 34, and creating a uniform flow. The length C is set to an appropriate value to ensure that the specified helix angle obtained when the fluid stream that has become a flowing fluid and is ejected passes through the guide vane 42, and the guide vane 42 is placed on the circumference thereof. shall be arranged with their tips aligned. In this embodiment, dimension C is equal to or greater than A and less than 1/2 of B.

第4回は第2図のrV−IV線断面図であり、案内羽根
42が金属溶湯2*29の軸心回りに12個形成されて
いる状態が示されている。しかし第5図に示される如く
第2図のV−V線断面図では噴出口34を通過する流体
流44が既に合流されて均一な流体流となるのに充分な
形状、すなわちこの部分には流体通路36はなく再び流
体流44が合流するようになっている。
The fourth time is a sectional view taken along the line rV-IV in FIG. 2, and shows a state in which 12 guide vanes 42 are formed around the axis of the molten metal 2*29. However, as shown in FIG. 5, in the cross-sectional view taken along line V-V in FIG. There is no fluid passageway 36, allowing fluid streams 44 to merge again.

このように形成される本実施例の作用時には、ストッパ
27を引き上げることでタンディツシュ26内の金属溶
湯28が溶湯流出ノズル30を通って流下する。
When the present embodiment formed in this manner operates, the molten metal 28 in the tundish 26 flows down through the molten metal outflow nozzle 30 by pulling up the stopper 27.

一方貯留体室38へ流体導入管40から圧送された流体
流44は案内羽根42によって適切なねじれ角αが付与
されると共に、噴出口34付近では案内羽根42によっ
て分断されていた流体流44が再び合流し、第5図に示
される隔壁のない状態で均一な流体流44となって噴霧
角θのもとに金属溶湯流29へ噴出される。
On the other hand, the fluid flow 44 pressure-fed from the fluid introduction pipe 40 to the reservoir chamber 38 is given an appropriate twist angle α by the guide vanes 42, and the fluid flow 44 that had been divided by the guide vanes 42 near the spout 34 is The liquids merge again and become a uniform fluid stream 44 in the absence of partition walls as shown in FIG. 5, which is ejected into the molten metal stream 29 under the spray angle θ.

このため金属溶湯a 29は微細に粉末化され、しかも
所望の平均的な粒度を有した粉末となる。
Therefore, the molten metal a 29 is finely powdered and has a desired average particle size.

この流体流44は金属溶湯流29に対して吸引力を付与
できるため、金属溶湯流29を安定させて吹き上げをな
くすこともできる。
Since this fluid flow 44 can apply a suction force to the molten metal flow 29, it is possible to stabilize the molten metal flow 29 and eliminate blowing up.

〔実験例1〕 第1表は、第1図に示す噴霧ノズル20及び従来の噴霧
ノズルを使用して得られた、Cu合金粉末の粒度分布を
示す。本実験例の噴霧ノズルの噴霧角(θ)は700と
90″で、ねじれ角(α)はそれぞれ15′″〜45″
′と25@〜50″まで変えた。従来の噴霧ノズルの噴
霧角(θ)は50″と60@の2種類とした。
[Experimental Example 1] Table 1 shows the particle size distribution of Cu alloy powder obtained using the spray nozzle 20 shown in FIG. 1 and a conventional spray nozzle. The spray angles (θ) of the spray nozzles in this experimental example were 700 and 90″, and the torsion angles (α) were 15′″ to 45″, respectively.
' and 25@~50''.The spray angle (θ) of the conventional spray nozzle was set to two types: 50'' and 60@.

いずれの場合も、高周波溶解炉(図示せず)を用いて約
1250℃で5 kgのCu合金を溶解し、あらかじめ
1100℃に加熱保持しであるタンディシュ26内に注
湯した。注湯した溶湯は、タンディシュ底部に設けた直
径Φ5朋(d)の溶湯流出ノズル30から細流にして、
噴霧ノズル2oの中心に設けた溶融金属流導入口24に
連続して流下させた。そして、流下する溶湯流29に、
噴霧ガス圧力9 kg / cnlのNtガス流体流4
4を噴出して噴霧を行った。
In either case, 5 kg of Cu alloy was melted at about 1250° C. using a high frequency melting furnace (not shown) and poured into a tundish 26 which had been heated and maintained at 1100° C. in advance. The poured molten metal is made into a trickle from a molten metal outflow nozzle 30 with a diameter of Φ5 (d) provided at the bottom of the tundish.
The molten metal flow was continuously flowed down into the molten metal flow inlet 24 provided at the center of the spray nozzle 2o. Then, in the molten metal flow 29 flowing down,
Nt gas fluid flow 4 with atomizing gas pressure 9 kg/cnl
4 was ejected and sprayed.

噴霧状*(F−N)を観察すと、本発明の噴霧ノズル(
F〜し)では、(1)の場合に、溶融金、減流導入口2
4壁面への溶湯の付着があり、若干吹き上げを生じる傾
向がL2められたが、その他の場合は良好であった。
When observing the spray shape* (F-N), it was found that the spray nozzle of the present invention (
In case of (1), molten gold, reduced flow inlet 2
4 There was adhesion of molten metal to the wall surface, and there was a tendency for L2 to slightly blow up, but otherwise it was good.

従来型ノズル<M、N)では、(M)の噴霧角θ−60
″で若干の吹き上げを生じる傾向が認められたが、(N
)は良好であった。
For conventional nozzles <M, N), the spray angle θ-60 of (M)
'', there was a tendency for some blow-up to occur, but (N
) were in good condition.

本実験例の噴霧ノズルは、噴霧角(θ)を従来ノズルの
60″よりも太き(採った70″、906においても良
好な噴霧状態が得られることが分った。
It was found that the spray nozzle of this experimental example could obtain a good spray condition even when the spray angle (θ) was wider than the conventional nozzle's 60 inches (70 inches, 906 mm).

従来ノズル(M、N)では、噴霧角(θ)を(N)50
°からCM)60’にすると、微粉末の生成量は増加し
たが、まだ80メツシュ以上の粗粉が多い粒度分布であ
った。
In the conventional nozzle (M, N), the spray angle (θ) was set to (N)50
CM)60', the amount of fine powder produced increased, but the particle size distribution still consisted of many coarse powders of 80 mesh or more.

一方、本実験例ノズル(F−L)は、従来ノズ/l/(
MSN)と比較して80メツシュ以上の粗粉が著しく少
なくて、逆に微粉末の多い粒度分布を示した。さらに、
噴霧角θを(1−L)70”から(F−H)90°と大
きくすると、微粉末の多い粒度分布を示した。また、本
実験例の噴霧角(1−L)70”と(F−H) 90 
”ノズルにおいても、ねじれ角αの値によって粉末の粒
度分布が異なった。本実験例ノズルは、従来ノズルと比
較して80メツシュ以上の粗粉末が著しく少なくて、微
粉末の多い粒度分布を示し、微細化効率が従来ノズルよ
りも高いことが分った。
On the other hand, the nozzle (F-L) of this experimental example is similar to the conventional nozzle /l/(
Compared to MSN), there was significantly less coarse powder with a mesh size of 80 mesh or more, and on the contrary, it showed a particle size distribution with more fine powder. moreover,
When the spray angle θ was increased from (1-L) 70" to (F-H) 90°, a particle size distribution with a large amount of fine powder was exhibited. In addition, the spray angle (1-L) 70" and ( F-H) 90
``Even in the nozzle, the particle size distribution of the powder differed depending on the value of the twist angle α.Compared to the conventional nozzle, the nozzle of this experiment showed a particle size distribution with significantly less coarse powder of 80 mesh or more and more fine powder. It was found that the miniaturization efficiency was higher than that of conventional nozzles.

本実験例ノズル(F −L )で得られた粉末の平均粒
子径(累積重量が50%となる粒径値)を求めた結果を
第6図に示す。
FIG. 6 shows the results of determining the average particle size (particle size value at which the cumulative weight is 50%) of the powder obtained with the nozzle (F-L) of this experimental example.

平均粒子径が最小となるねしれ角(α)は噴霧角θによ
って異なった。溶湯流導入口径(D)がΦ20鵬■の噴
霧ノズルにおいて、噴霧角θ悶70″′では、ねじれ角
(α)が306〜356で最小の粒子径を示し、噴霧角
θ=90@では、ねじれ角(α)が25″で最小の平均
粒子径となった。
The helix angle (α) at which the average particle diameter was minimum differed depending on the spray angle θ. In a spray nozzle with a molten metal flow inlet diameter (D) of Φ20, when the spray angle θ is 70'', the minimum particle size is shown when the torsion angle (α) is 306 to 356, and when the spray angle θ is 90, The minimum average particle diameter was obtained when the twist angle (α) was 25″.

また、第1表に示す如く、両噴霧角ともねじれ角が大き
くなると、すなわちθ=70”の(L)及びθ=90°
の(H)では、高速流体が溶湯流に衝突して粉化する作
用が低下するために、粗机が多くなり平均粒子径が大き
くなった。
In addition, as shown in Table 1, when the twist angle becomes large for both spray angles, that is, (L) of θ=70” and θ=90°.
In (H), the effect of the high-speed fluid colliding with the molten metal flow and pulverizing it was reduced, so there were more coarse grains and the average particle diameter became larger.

本実験例の噴霧ノズルにおいて、噴霧角(θ)が大きく
なると、粉末の平均粒子径を最小とするねじれ角(α)
は小さくなり、しかも、粉末の微細化が著しく向上する
ことが分った。
In the spray nozzle of this experimental example, as the spray angle (θ) increases, the twist angle (α) that minimizes the average particle diameter of the powder
was found to be smaller, and furthermore, it was found that the fineness of the powder was significantly improved.

〔実験例2〕 第2表は本発明の最良の特性を示した、噴霧角θ−90
″′でねじれ角α−25°の噴霧ノズル20を用い、1
250℃で溶解したCIJ合金の金属ン容ン易28を、
ノズル径(d)Φ3.4.5■−の溶湯流出ノズル30
から流出させ、噴霧ガス圧力9kg / clllのN
2ガス流体流44により噴霧して、得られた粉末の粒度
分布を示す。表に示す如く、溶湯流出ノズル径を小さく
ると、80メツシュ以上の粗粉が減少し、逆に微粉末が
多くなる粒度分布を示した。
[Experimental Example 2] Table 2 shows the spray angle θ-90 which showed the best characteristics of the present invention.
Using a spray nozzle 20 with a helix angle of α-25° at
CIJ alloy metal easily 28 melted at 250℃,
Molten metal outflow nozzle 30 with nozzle diameter (d) Φ3.4.5■-
The atomizing gas pressure is 9 kg/clll N.
The particle size distribution of the resulting powder is shown after atomization with two gas fluid streams 44. As shown in the table, when the diameter of the molten metal outflow nozzle was decreased, coarse particles of 80 mesh or more decreased, and conversely, the particle size distribution showed an increase in fine particles.

本実験例の噴霧ノズルでは、噴霧ガス圧力9 kg /
 c+4一定とする場合、溶湯流出ノズル30の径(d
)をΦ411以下(0、P)にして溶湯流出量を調整し
、流量比(#−位待時間りの溶湯流出量/噴霧ガス流量
)を7以下にすることによって、さらに、微細化が向上
することが分った。
In the spray nozzle of this experimental example, the spray gas pressure was 9 kg/
When c+4 is constant, the diameter of the molten metal outflow nozzle 30 (d
) is Φ411 or less (0, P) to adjust the flow rate of the molten metal, and the flow rate ratio (# - flow rate of molten metal during waiting time/spray gas flow rate) is 7 or less, further improving refinement. I found out that I can.

本実験例の噴霧ノズルの設定条件を示す。環帯の流体通
路間隙Aは0.5〜0.75mm、流体通路長さBは4
.9〜5.7mm、案内羽根は先端位置Cが0.7〜1
mとなる同周上に12個等間隔で配列した。ノズル口径
りはΦ20 璽m、噴出口42下面からノズル先端まで
の長さEはQ、4mm以上としたが、噴霧角が大きくな
るとEはさらに大きく取った方が良好となった。
The setting conditions of the spray nozzle in this experimental example are shown below. The fluid passage gap A of the annular zone is 0.5 to 0.75 mm, and the fluid passage length B is 4
.. 9 to 5.7 mm, guide vane tip position C is 0.7 to 1
12 pieces were arranged at equal intervals on the same circumference. The diameter of the nozzle was Φ20 m, and the length E from the bottom surface of the jet nozzle 42 to the tip of the nozzle was Q, 4 mm or more, but as the spray angle became larger, it was better to make E larger.

なお本発明は溶融金属へ噴出する高速流体はガス流に限
らず、液体でもよい。
Note that in the present invention, the high-speed fluid jetted to the molten metal is not limited to a gas flow, but may be a liquid.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明は、流下する溶融金属流の周囲
からこの溶融金属流へ高速流体を吹きつけて金属粉末を
得る金属粉末製造用噴霧ノズルであって、前記金属流の
軸心回りにねじれた案内羽根を流体通路内に配置し、こ
の流体通路から噴出される高速流体に接線方向の速度成
分を与えて分断のない略円錐形の流体膜を形成させるこ
とを特徴としているので、金属粉末の微細化、粉化効率
の向上及び所望の粉化粒度分布の均一化を達成すること
ができる優れた効果を有する。
As described above, the present invention provides a spray nozzle for producing metal powder that sprays a high-speed fluid onto the molten metal stream from around the molten metal stream flowing down, the spray nozzle being twisted around the axis of the metal stream. This method is characterized by disposing guide vanes in the fluid passage and imparting a tangential velocity component to the high-speed fluid ejected from the fluid passage to form an unbroken approximately conical fluid film. It has the excellent effect of achieving finer grain size, improved powdering efficiency, and uniformity of the desired powdered particle size distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す噴霧ノズルの縦断面図、
第2図は第1図の一部分拡大図、第3図は第2図のm−
m線断面図、第4図は第2図の■−■線断面図、第5図
は第2図のV−V線断面図、第6図は噴霧ノズルにおけ
るねじれ角度と粉末の平均粒子径の関係を示す線図、第
7図及び第8図は従来の噴霧ノズルにおける高速流体の
ねじれを説明する平面図及び斜視図である。 20・・・噴霧ノズル、 22・・・ノズル本体、 2B・・・金属溶湯、 29・・・金属溶湯流、 34・・・噴出口、 42・・・案内羽根、 44・・・流体流。
FIG. 1 is a longitudinal sectional view of a spray nozzle showing an embodiment of the present invention;
Figure 2 is a partially enlarged view of Figure 1, and Figure 3 is a partial enlarged view of Figure 2.
Fig. 4 is a sectional view taken along the line ■-■ in Fig. 2, Fig. 5 is a sectional view taken along the V-V line in Fig. 2, and Fig. 6 shows the twist angle of the spray nozzle and the average particle diameter of the powder. 7 and 8 are a plan view and a perspective view illustrating the twisting of high-speed fluid in a conventional spray nozzle. 20... Spray nozzle, 22... Nozzle body, 2B... Metal molten metal, 29... Metal molten metal flow, 34... Spout nozzle, 42... Guide vane, 44... Fluid flow.

Claims (5)

【特許請求の範囲】[Claims] (1)溶融金属流の周囲からこの溶融金属流へ高速流体
を吹きつけて金属粉末を得る金属粉末製造用噴霧ノズル
であって、前記溶融金属流の軸心回りにねじれた案内羽
根を流体通路内に配置し、この流体通路から噴出される
高速流体に接線方向の速度成分を与えて分断のない略円
錐形の流体膜を形成させることを特徴とした金属粉末製
造用噴霧。 ノズル。
(1) A spray nozzle for producing metal powder that obtains metal powder by spraying a high-speed fluid onto the molten metal stream from around the molten metal stream, the fluid path being a guide vane twisted around the axis of the molten metal stream. 1. A spray for producing metal powder, characterized in that the spray is disposed within the fluid passageway and imparts a velocity component in a tangential direction to a high-speed fluid ejected from the fluid passage to form an unbroken, substantially conical fluid film. nozzle.
(2)前記案内羽根の先端は前記流体通路の流体噴出口
から後退して配置されることを特徴とした前記特許請求
の範囲第(1)項記載の金属粉末製造用噴霧ノズル。
(2) The spray nozzle for producing metal powder as set forth in claim (1), wherein the tip of the guide vane is arranged to be retreated from the fluid jet port of the fluid passage.
(3)前記案内羽根は溶融金属流の軸心回りに等間隔で
複数個配置されることを特徴とした前記特許請求の範囲
第(1)項記載の金属粉末製造用噴霧ノズル。
(3) The spray nozzle for producing metal powder according to claim (1), wherein a plurality of the guide vanes are arranged at equal intervals around the axis of the molten metal flow.
(4)前記案内羽根の先端は先細状とされることを特徴
した前記特許請求の範囲第(1)項記載の金属粉末製造
用噴霧ノズル。
(4) The spray nozzle for manufacturing metal powder according to claim (1), wherein the guide vane has a tapered tip.
(5)前記複数個の案内羽根の隣接した案内羽根間の流
体通路幅は噴出口に向って先細に又は噴出口に向って同
等の幅としたことを特徴とした前記特許請求の範囲第(
3)項記載の金属粉末製造用噴霧ノズル。
(5) The width of the fluid passage between adjacent guide vanes of the plurality of guide vanes is tapered toward the jet nozzle or has an equal width toward the jet nozzle.
3) The spray nozzle for producing metal powder as described in item 3).
JP19635786A 1986-08-21 1986-08-21 Spray nozzle for producing metallic powder Pending JPS6350404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19635786A JPS6350404A (en) 1986-08-21 1986-08-21 Spray nozzle for producing metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19635786A JPS6350404A (en) 1986-08-21 1986-08-21 Spray nozzle for producing metallic powder

Publications (1)

Publication Number Publication Date
JPS6350404A true JPS6350404A (en) 1988-03-03

Family

ID=16356493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19635786A Pending JPS6350404A (en) 1986-08-21 1986-08-21 Spray nozzle for producing metallic powder

Country Status (1)

Country Link
JP (1) JPS6350404A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229338A (en) * 1992-02-24 1993-09-07 Nippondenso Co Ltd Car-mounting air cleaner
JPH0622338U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment
WO2000038865A1 (en) * 1998-12-24 2000-07-06 Fukuda Metal Foil & Powder Co., Ltd. Method of manufacturing metal powder
CN104985186A (en) * 2015-07-07 2015-10-21 中国船舶重工集团公司第七二五研究所 Gas atomizing nozzle for preparing metal powder
EP3085475A4 (en) * 2013-12-20 2017-01-04 Posco Powder manufacturing apparatus and powder forming method
JP2019014917A (en) * 2017-07-03 2019-01-31 株式会社 東北テクノアーチ Manufacturing device of metal powder and manufacturing method of the same
JP2021079393A (en) * 2019-11-15 2021-05-27 トヨタ自動車株式会社 Casting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229338A (en) * 1992-02-24 1993-09-07 Nippondenso Co Ltd Car-mounting air cleaner
JPH0622338U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment
WO2000038865A1 (en) * 1998-12-24 2000-07-06 Fukuda Metal Foil & Powder Co., Ltd. Method of manufacturing metal powder
US6336953B1 (en) * 1998-12-24 2002-01-08 Fukuda Metal Foil & Powder Co., Ltd. Method for preparing metal powder
EP3085475A4 (en) * 2013-12-20 2017-01-04 Posco Powder manufacturing apparatus and powder forming method
US10391558B2 (en) 2013-12-20 2019-08-27 Posco Powder manufacturing apparatus and powder forming method
CN104985186A (en) * 2015-07-07 2015-10-21 中国船舶重工集团公司第七二五研究所 Gas atomizing nozzle for preparing metal powder
JP2019014917A (en) * 2017-07-03 2019-01-31 株式会社 東北テクノアーチ Manufacturing device of metal powder and manufacturing method of the same
JP2021079393A (en) * 2019-11-15 2021-05-27 トヨタ自動車株式会社 Casting device

Similar Documents

Publication Publication Date Title
JPH0994494A (en) Atomizer nozzle for internal mixed gas
EP0650766A2 (en) Suction feed nozzle assembly for HVLP spray gun
US11298746B2 (en) Metal powder producing apparatus and gas jet device for same
CN111182986B (en) High-speed fluid ejection device
CN111432963A (en) Metal powder manufacturing apparatus, gas injector and can device thereof
JP7231159B2 (en) METAL POWDER MANUFACTURING DEVICE AND METHOD FOR MANUFACTURING METAL POWDER
US6923385B2 (en) Nozzle for coating surfaces
EP3085475B1 (en) Powder manufacturing apparatus and powder forming method
JPH01123012A (en) Nozzle for manufacturing fine powder
JPS6350404A (en) Spray nozzle for producing metallic powder
CN117380963B (en) Metal powder gas atomization device
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
JPH06340904A (en) Preparation of metal particle from molten metal
JP2015000997A (en) Soft magnetic metal powder production device
EP0419479B1 (en) A method and equipment for microatomizing liquids, preferably melts
JP2816110B2 (en) Method and apparatus for producing metal powder
JP2969754B2 (en) Metal powder production equipment
JPH05148514A (en) Spraying device for molten metal
JP2001226704A (en) Manufacturing apparatus and manufacturing method for metallic powder
JP2001137747A (en) Atomizing nozzle
JPH0445218B2 (en)
US5595765A (en) Apparatus and method for converting axisymmetric gas flow plenums into non-axisymmetric gas flow plenums
JP2834348B2 (en) Manufacturing method of metal powder
JPH04173906A (en) Atomizing nozzle device
JP2606318Y2 (en) Two-fluid spray nozzle