JP2015000997A - Soft magnetic metal powder production device - Google Patents

Soft magnetic metal powder production device Download PDF

Info

Publication number
JP2015000997A
JP2015000997A JP2013125174A JP2013125174A JP2015000997A JP 2015000997 A JP2015000997 A JP 2015000997A JP 2013125174 A JP2013125174 A JP 2013125174A JP 2013125174 A JP2013125174 A JP 2013125174A JP 2015000997 A JP2015000997 A JP 2015000997A
Authority
JP
Japan
Prior art keywords
metal powder
cylindrical body
water flow
soft magnetic
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013125174A
Other languages
Japanese (ja)
Inventor
裕之 松元
Hiroyuki Matsumoto
裕之 松元
美津也 長岡
Mitsuya Nagaoka
美津也 長岡
吉宏 比佐
Yoshihiro Hisa
吉宏 比佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Giken Co Ltd
Original Assignee
Nissin Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Giken Co Ltd filed Critical Nissin Giken Co Ltd
Priority to JP2013125174A priority Critical patent/JP2015000997A/en
Publication of JP2015000997A publication Critical patent/JP2015000997A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for obtaining a soft magnetic metal powder which is sufficiently fine and is an amorphous state while reducing nozzle jet pressure of high pressure cooling water and gas jet pressure in gas atomization, in which the particle shape of the soft magnetic metal powder is a sphere satisfying an aspect ratio and a slender spheroid, the soft magnetic metal powder has preferable shape distribution, size ratio distribution, and aspect ratio distribution.SOLUTION: Provided is a method for obtaining high speed revolving water flow 18 for quick cooling and pulverization in a cylindrical body 21 while maintaining a method used in a gas atomization method. In the method, a cooling liquid which is jetted by high pressure jet by using an oval hole stenographic nozzle revolves by drawing an arc following to an inner wall curve surface of the cylindrical body 21 and then flows to downstream. Belt-shaped flow whose flow turbulence is suppressed to minimum level is provided, for obtaining preferable distribution of the soft magnetic metal powders.

Description

本発明は、金属粉末の製造方法及び製造装置に係り、特に軟質磁性金属粉末のアトマイズ法による粉砕における円筒体旋回水流の冷却技術に関するものである。   The present invention relates to a method and an apparatus for producing metal powder, and more particularly to a cooling technique for a cylindrical swirling water flow in pulverization of a soft magnetic metal powder by an atomizing method.

高周波磁気回路等で使用される磁性体のコア(以下、「磁芯」という。)には高透磁率が要求されるため軟質磁性金属粉末による高磁束密度化を図った高密度磁心とする必要がある。このための軟質磁性金属粉末を得ることが本技術である。また高透磁率を得るため磁性体粉末単体としては反磁界係数を小さくすることが必要である。   Magnetic cores (hereinafter referred to as “magnetic cores”) used in high-frequency magnetic circuits and the like require high magnetic permeability, so it is necessary to use a high-density magnetic core with a high magnetic flux density using soft magnetic metal powder. There is. This technique is to obtain a soft magnetic metal powder for this purpose. In order to obtain high magnetic permeability, it is necessary to reduce the demagnetizing factor of the magnetic powder alone.

従来の方法では金属材料を溶融滴下させ、不活性ガスのジェット噴射によるガスアトマイズ法によって微粉砕させた溶融金属粉末を円筒旋回水流に衝突浸漬させ急激に冷却させることにより生成していた。通常の気体アトマイズ法によるジェット噴射粉砕技術だけでは、微粉砕された溶融金属粉末を急激に冷却できないため、溶融金属粉末自身の表面張力により十分な時間とともにきれいな球状粉末に凝固し生成されてしまう。   In the conventional method, a metal material is melted and dropped, and a molten metal powder finely pulverized by a gas atomizing method using an inert gas jet is collided and immersed in a cylindrical swirling water flow, and is rapidly cooled. Since the finely pulverized molten metal powder cannot be cooled rapidly only by the ordinary jet atomization technique based on the gas atomization method, the molten metal powder is solidified into a fine spherical powder over a sufficient time due to the surface tension of the molten metal powder.

反磁界係数の小さい磁性体を成形するためには、その材料となる軟質磁性金属粉末が微小でありかつ成形密度を高めるために、球状ではなく不定形な細長回転楕円体形状等である必要があり、圧縮成形される際に間隙率を低減できる形状であることを要する。そのため旋回水流への衝突による衝撃力と交流速水の急激な冷却を利用している。(特許文献1)   In order to mold a magnetic body having a small demagnetizing factor, the soft magnetic metal powder used as the material must be fine, and in order to increase the molding density, it is necessary to have an irregular elongated spheroid shape instead of a spherical shape. There is a need for a shape that can reduce the porosity when compression molding. For this reason, the impact force caused by the collision with the swirling water flow and the rapid cooling of AC speed water are utilized. (Patent Document 1)

また圧粉磁心を製造する際、密度を最大限大きくするためには間隙率を低減させる必要があるが、これは軟質磁性金属粉末の大きさと形状に大きく左右される。粒子径は概略3μm〜300μmまでの範囲であり、粒子径が小さな軟磁性金属粉末の平均アスペクト比は3.0以上、粒子径が大きな軟磁性粉末の平均アスペクト比は3.0未満が好ましいとされている。アスペクト比は粒子の長軸長さLと短軸長さDとの比L/Dで表される。   Further, when producing a dust core, it is necessary to reduce the porosity in order to maximize the density, but this greatly depends on the size and shape of the soft magnetic metal powder. The particle diameter is in the range of approximately 3 μm to 300 μm, the average aspect ratio of the soft magnetic metal powder having a small particle diameter is preferably 3.0 or more, and the average aspect ratio of the soft magnetic powder having a large particle diameter is preferably less than 3.0. Has been. The aspect ratio is represented by the ratio L / D between the major axis length L and the minor axis length D of the particles.

粒子径の大きな粉末を圧縮成形した際にできる空間を粒子径の小さな粉末が埋めることによって間隙率を減少させ密度を上げるのであるが、その場合空間を埋める働きをする粒子径の小さい軟質磁性金属粉末の形状はアスペクト比の大きい偏平形状の方が理論的に好ましいためである。(図2参照)   A powder with a small particle diameter fills the space created when compression molding a powder with a large particle diameter, thereby reducing the porosity and increasing the density. In that case, a soft magnetic metal with a small particle diameter that works to fill the space. This is because a flat shape having a large aspect ratio is theoretically preferable. (See Figure 2)

ガスアトマイズ法によって粉砕された溶融金属粒子は、その直後旋回水流に衝突し急激な冷却を受けることにより結晶化する前に上記粒子径及び粒子形状に凝固し微細な軟質磁性金属粉末となる。この旋回水流は円筒体内壁を旋回(回転)する高速ジェット水流であり、一定の水流層の厚さと、溶融金属粒子との一定衝突角度を要するため、円筒体は一定の角度の傾斜をもった状態で設定されている。   The molten metal particles pulverized by the gas atomization method immediately collide with the swirling water flow and undergo rapid cooling to solidify into the above particle diameter and particle shape before being crystallized to become a fine soft magnetic metal powder. This swirling water flow is a high-speed jet water swirling (rotating) on the wall of the cylindrical body, and requires a constant thickness of the water flow layer and a constant collision angle with the molten metal particles. Therefore, the cylindrical body has a certain angle of inclination. Is set in the state.

特開平5−43920号公報JP-A-5-43920 特開2001−64704号公報JP 2001-64704 A

ガスアトマイズ法においては、水アトマイズ法と違い比較的球状の微粉末が生成できる。水アトマイズ法を用いた場合は、溶融金属は微細粉砕と同時に急冷されるため微粒子の形状が凸部凹部を含む不規則形状になる。高透磁率を必要とする磁心の成形の際このような凸部凹部のある不規則形状の微粒子では間隙率が増し密度の高い磁心を得ることができない。   In the gas atomization method, unlike the water atomization method, a relatively spherical fine powder can be generated. When the water atomization method is used, the molten metal is rapidly cooled at the same time as the fine pulverization, so that the shape of the fine particles becomes an irregular shape including convex concave portions. When forming a magnetic core that requires a high magnetic permeability, such irregularly shaped fine particles having convex and concave portions increase the porosity and cannot provide a high-density magnetic core.

ガスアトマイズ法を用いた場合は、同時急冷となる液体ではなく気体(不活性ガス等)によるジェット噴射粉砕であるため、粉砕された溶融金属微粒子はその表面張力の働きで比較的に球状の微粒子になって凝固し易い。つまりガスアトマイズ法によって微粉砕された溶融金属粒子は、その後外力のない状態でゆっくり冷却された場合は、きれいな球形の微粉末として結晶化して生成される。   When the gas atomization method is used, since it is jet jet pulverization with gas (inert gas etc.) instead of liquid that is rapidly cooled, the pulverized molten metal fine particles become relatively spherical fine particles by the action of their surface tension. It is easy to solidify. That is, the molten metal particles finely pulverized by the gas atomization method are crystallized and produced as fine spherical fine powders when cooled slowly without any external force.

軟質磁性金属粉末の形状が球体を主体としたものであると反磁界係数は0.33と大きくなってしまい磁心としての実効透磁率が低下してしまう。磁性材料の場合は結晶化することによって極性が定まった微粒子となり透磁率も低下してしまう。高透磁率を有する磁心はこのような分極結晶化された軟質磁性金属粉末ではなく、分極性をもたない非晶質アモルファス状態であることが好ましい。アモルファス状態の粉末粒子であれば構成原子配列が不規則であるため結晶磁気異方性がなく高い透磁率を示すからである。   If the shape of the soft magnetic metal powder is mainly composed of a sphere, the demagnetizing field coefficient becomes as large as 0.33 and the effective permeability as a magnetic core is lowered. In the case of a magnetic material, by crystallization, the polarity becomes fine particles and the magnetic permeability is also lowered. The magnetic core having a high magnetic permeability is preferably not an amorphous amorphous state having no polarizability, rather than such a soft magnetic metal powder crystallized by polarization. This is because, in the case of powder particles in an amorphous state, the constituent atomic arrangement is irregular, so that there is no crystal magnetic anisotropy and high magnetic permeability is exhibited.

よって凸凹状態ではない略球形であって、大きな粒子はアスペクト比3以下であり、アスペクト比3以上の小さな粒子は好ましくは細長回転楕円形状であってかつ非晶質アモルファス状態の軟質磁性金属粉末を得るために、ガスアトマイズ粉砕された微粉末を球形結晶化する前に高速旋回水流に突入させて衝突破砕及び急激冷却をする技術を採用している。   Therefore, a soft magnetic metal powder having a substantially spherical shape that is not uneven and having a large particle having an aspect ratio of 3 or less, and a small particle having an aspect ratio of 3 or more is preferably an elongated spheroid and is in an amorphous amorphous state. In order to obtain this, a technique is adopted in which a fine powder pulverized by gas atomization is rushed into a high-speed swirling water flow before it is spherically crystallized for collision crushing and rapid cooling.

ガスアトマイズ粉砕に於けるガス噴射圧力は15〜70kg/cmと大きく、旋回水流の流速も30m/secから100m/secと極めて速い流速が必要とされる。 The gas injection pressure in the gas atomization pulverization is as large as 15 to 70 kg / cm 2, and the flow rate of the swirling water flow is required to be as high as 30 m / sec to 100 m / sec.

このような手法においては、ガスアトマイズ法でのガスジェット圧力を下げ、かつ高速回転水流の流速を下げて好ましい軟質磁性金属粉末を得る方法が製造エネルギーの節減及びコスト低減の面からも必要であり大きな課題である。高速旋回水流による粉砕急冷においては、高速水流を得るための冷却液高圧ノズル噴射による飛散水などがガスアトマイズによる破砕粉砕点に悪影響を及ぼし、温度、圧力などの一定の粉砕条件に不必要なバラツキを発生させる要因となる。   In such a method, a method for obtaining a preferable soft magnetic metal powder by lowering the gas jet pressure in the gas atomization method and lowering the flow velocity of the high-speed rotating water flow is necessary from the viewpoint of saving production energy and cost. It is a problem. In pulverization and rapid cooling by high-speed swirling water flow, splashed water from the high-pressure nozzle jet of coolant for obtaining high-speed water flow has an adverse effect on the crushing and pulverization point by gas atomization, and there is unnecessary variation in certain pulverization conditions such as temperature and pressure It becomes a factor to generate.

同様に冷却水の高圧ノズル噴射は、円筒内の旋回水流に渦流、波流、発砲等の影響を発生しやすく、一定の旋回水流層の厚さや均一な液面状態を得ることがむずかしく、ガスアトマイズ法によって微粉砕された溶融金属粒子の冷却液への衝突急冷条件を大きく変化させてしまう。よって好ましい粒子径、粒子形状及びその分布として均一な軟質磁性金属粉末を適時生成することは非常にむずかしかった。   Similarly, high-pressure nozzle injection of cooling water tends to easily generate vortex flow, wave flow, firing, etc. in the swirling water flow in the cylinder, and it is difficult to obtain a constant swirling water flow layer thickness and uniform liquid level. This greatly changes the conditions for rapidly cooling the molten metal particles pulverized by the method into the cooling liquid. Therefore, it was very difficult to produce a soft magnetic metal powder having a uniform particle diameter, particle shape and distribution thereof in a timely manner.

つまりガスアトマイズでのガスジェット圧力や高圧冷却水のノズル噴射圧力を低減させつつ十分に微細なアモルファス状態の軟質磁性金属粉末を得ることができ、粒子形状はアスペクト比を満たす球体及び細長回転楕円体であって好ましい形状分布、サイズ比分布及びアスペクト比分布の軟質磁性金属粉末をコンスタントに得ることが課題であった。特に高速旋回水流であって必要な流速や均質な液面状態そして必要量を満たした水量を確保した上で噴射圧力エネルギーを節減できる技術が望まれており、製造コスト低減を図る上でも大きな課題であった。   In other words, a sufficiently fine amorphous soft magnetic metal powder can be obtained while reducing the gas jet pressure in gas atomization and the nozzle injection pressure of high-pressure cooling water, and the particle shape is a sphere and an elongated spheroid satisfying the aspect ratio. Thus, it has been a problem to constantly obtain soft magnetic metal powder having a preferable shape distribution, size ratio distribution and aspect ratio distribution. In particular, there is a demand for technology that can reduce the injection pressure energy after securing the required flow rate, uniform liquid level, and the amount of water that meets the required volume, which is a high-speed swirling water flow. Met.

上記課題を解決するため本発明にかかる金属粉末製造装置は、ガスアトマイズ法における手法を維持しつつ、円筒体内の好ましい高速旋回水流を得る手法において、噴射ノズルに着目し、ノズル噴出口を円筒体内壁面の筒軸方向に平行する平型噴射ノズルを用いることに特徴を有する。   In order to solve the above problems, a metal powder production apparatus according to the present invention is a method for obtaining a preferable high-speed swirling water flow in a cylindrical body while maintaining the technique in the gas atomization method. It is characterized by using a flat type injection nozzle parallel to the cylinder axis direction.

本発明は、溶融金属粉末を供給して冷却させる円筒体内周面の旋回水流発生構造であって、円筒体内壁の円周面接線方向から内壁に向って貫通された旋回水流の噴射ノズル先端を有し、前記噴射ノズル先端の形状が、円筒体軸方向に平行な平噴射形状を有し、噴射ノズルの先端方向角度が、円筒体内壁の円周面接線方向に対して可変である旋回水流発生構造を有する金属粉末製造装置である。   The present invention is a structure for generating a swirling water flow on the circumferential surface of a cylindrical body that is cooled by supplying molten metal powder, the tip of the jet nozzle of the swirling water flow penetrating from the circumferential surface tangential direction of the cylindrical body wall toward the inner wall. And the shape of the tip of the spray nozzle has a flat spray shape parallel to the axial direction of the cylinder, and the angle of the tip of the spray nozzle is variable with respect to the tangential direction of the circumferential surface of the cylindrical body wall It is a metal powder manufacturing apparatus having a generating structure.

高圧噴射された冷却液は円筒体の内壁曲面に従い弧を描きながら旋回して下流へと流れるため、その圧力損失を最も軽減したかたちで流れ、流速を失わない。平型噴射ノズルの一種である楕円穴平射ノズルであれば、両端部の開口形状は細長い略楕円形となるため、流体噴出に於ける抵抗が小さく、流れの乱れを最小限にした帯状流を供給できる。   The coolant sprayed with high pressure swirls while drawing an arc in accordance with the curved inner wall surface of the cylinder, and flows downstream, so that the pressure loss is reduced most and the flow velocity is not lost. In the case of an elliptical hole flat spray nozzle, which is a kind of flat jet nozzle, the opening shape at both ends is a long and narrow elliptical shape. Can supply.

特に平型噴射ノズルから噴射される水流は一定の幅を持つため円筒体内壁に回転遠心力を最も利用できる状態で壁面に沿って均一に帯状の旋回する水流を作るため、一定の旋回流水の厚さ、速さ、均一水面を生成しやすい。空気を巻き込んだ渦流、波流、発砲、飛散を最小限におさえることができる。平型噴射ノズルの上下方向噴射角度は任意設定可能な構造とする。   In particular, since the water flow injected from the flat injection nozzle has a certain width, a uniform swirling water flow is created on the wall of the cylindrical body in order to create a uniform swirling water flow along the wall surface in a state where the rotational centrifugal force can be most utilized. Thickness, speed, and easy to generate uniform water surface. It can minimize vortex, wave, firing, and scattering involving air. The vertical injection angle of the flat injection nozzle can be arbitrarily set.

流速を減ずることなく十分な旋回流水量を得るために、噴射ノズルは複数設定する必要がある。従来は十分な旋回水流量を得るために複数の噴射口を用いる場合は、円筒体内壁の同一円周面の180度対角線上に2箇所設定するか又は同一円周面の均等角度間隔に複数の噴射ノズルを設定していたが、噴出口が増えることにより安定した液面を得ることが非常にむずかしかった。   In order to obtain a sufficient amount of swirling water without reducing the flow velocity, it is necessary to set a plurality of injection nozzles. Conventionally, when a plurality of injection ports are used to obtain a sufficient swirling water flow rate, two locations are set on a 180-degree diagonal line on the same circumferential surface of the cylindrical body wall, or plural at equal angular intervals on the same circumferential surface. However, it was very difficult to obtain a stable liquid level by increasing the number of jet nozzles.

本発明の次の特徴は、複数の平型噴射ノズルの位置を円筒体内壁の同一部に重ね合わせた状態で並列に設定することにある。2以上の噴射ノズルを用いる場合も一箇所に複数集合設置することに特徴を有する。平型噴射ノズルから噴出される冷却水は、噴出口角度が可変であるように重ね合わせたノズルから噴出される冷却水によって上側が重畳されることによって、渦流や乱流、飛散の発生を抑えることができる。これによって十分な水量と流水速度とを有する高速旋回水流を得ることができ、かつ均一な流水層厚(液層深さ)と均一水面を維持することができる。   The next feature of the present invention resides in that the positions of a plurality of flat injection nozzles are set in parallel in a state where they are overlapped on the same part of the cylindrical body wall. Also in the case of using two or more spray nozzles, a plurality of sets are installed at one place. Cooling water ejected from the flat injection nozzle suppresses the occurrence of vortex flow, turbulence, and splashing by being superposed on the upper side by cooling water ejected from nozzles that are overlapped so that the jet outlet angle is variable. be able to. Accordingly, a high-speed swirling water flow having a sufficient amount of water and a flowing water speed can be obtained, and a uniform flowing water layer thickness (liquid layer depth) and a uniform water surface can be maintained.

上記構成を有する本発明に係る軟質磁性金属粉末製造装置によれば、略均一化された液面状態をもつ円筒体内旋回水流が得られることにより、アトマイズ粉砕後の溶融金属微粒子が逐次一定の条件で旋回水流に突入することになる。つまり溶融金属微粒子が受ける衝突粉砕力と急冷効果が一定条件に保たれることになるため、従来との比較において粒子径分布、粒子形状分布及びアスペクト分布が安定した軟質磁性金属粉末を得ることができる。   According to the soft magnetic metal powder manufacturing apparatus according to the present invention having the above-described configuration, a swirling water flow in a cylindrical body having a substantially uniform liquid surface state is obtained, so that the molten metal fine particles after atomization pulverization are sequentially constant. It will rush into the swirling water flow. In other words, the impact crushing force received by the molten metal fine particles and the rapid cooling effect are maintained at a constant condition, so that it is possible to obtain a soft magnetic metal powder having a stable particle size distribution, particle shape distribution, and aspect distribution in comparison with the prior art. it can.

また、高圧冷却液の噴射圧力も低減でき、同様にガスアトマイズ噴射圧も半減させることが可能になる。粒子径分布においては略40μmの分布を得ることができる。ガスアトマイズ粉砕に於けるガスジェット圧力は従来の約60kgf/cmから約30kgf/cmへと半減できる。これにより磁芯構成材料として良質な軟質磁性金属粉末による高密度化が図れるばかりでなく、透磁率の高い磁芯が低コストで製造可能となる。 In addition, the injection pressure of the high-pressure coolant can be reduced, and the gas atomization injection pressure can also be halved. In the particle size distribution, a distribution of about 40 μm can be obtained. The gas jet pressure in gas atomization pulverization can be halved from about 60 kgf / cm 2 to about 30 kgf / cm 2 . As a result, not only high-density soft magnetic metal powder can be used as a magnetic core constituent material, but also a magnetic core with high magnetic permeability can be manufactured at low cost.

本発明の一実施形態に係る軟質磁性金属粉末製造装置における断面概略構造を示す図である。It is a figure which shows the cross-sectional schematic structure in the soft magnetic metal powder manufacturing apparatus which concerns on one Embodiment of this invention. 成形された圧粉磁芯の間隙率の低い状態を示す図である。It is a figure which shows the state with the low porosity of the shape | molded powder magnetic core. 本発明の一実施形態に係る軟質磁性金属粉末製造装置の円筒体内の旋回水流噴射ノズルを設置した断面概略構造を示す図である。It is a figure which shows the cross-sectional schematic structure which installed the turning water flow injection nozzle in the cylindrical body of the soft magnetic metal powder manufacturing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る軟質磁性金属粉末製造装置の円筒体内の旋回水流噴射ノズルを複数設置した断面概略構造を示す図である。It is a figure which shows the cross-sectional schematic structure which installed multiple swirling water flow injection nozzles in the cylindrical body of the soft magnetic metal powder manufacturing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る軟質磁性金属粉末製造装置の旋回水流の楕円穴平射射ノズル外観を示す図である。It is a figure which shows the elliptical hole spray nozzle appearance of the swirling water flow of the soft magnetic metal powder manufacturing apparatus which concerns on one Embodiment of this invention.

以下、図面を参照して本発明を実施するための形態について説明する。なお、以下では本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the following, the range necessary for the description for achieving the object of the present invention is schematically shown, and the range necessary for the description of the relevant part of the present invention will be mainly described. According to a known technique.

図1は、本発明の一実施形態に係る軟質磁性金属粉末製造装置における断面概略構造を示す図である。同図に示すように、本発明の一実施形態に係る軟質磁性金属粉末製造装置1は、ガスアトマイザー13とそれに一定の傾斜角をもって設置された円筒体21を備えて構成されている。ガスアトマイザー13は内部容器に投入された金属を加熱ヒーター24により溶融させ、内部容器の底面にある溶湯孔11から滴下させる構造を有している。不活性ガス32は外部高圧ボンベよりガスアトマイザー最下部の噴射室に供給され、ガスジェットノズル14から噴射されて収束位置P15で滴下した溶融金属を粉砕させる機構である。   FIG. 1 is a diagram showing a schematic cross-sectional structure of a soft magnetic metal powder manufacturing apparatus according to an embodiment of the present invention. As shown in the figure, a soft magnetic metal powder manufacturing apparatus 1 according to an embodiment of the present invention includes a gas atomizer 13 and a cylindrical body 21 installed at a certain inclination angle thereto. The gas atomizer 13 has a structure in which the metal charged in the inner container is melted by the heater 24 and dropped from the molten metal hole 11 on the bottom surface of the inner container. The inert gas 32 is supplied from an external high-pressure cylinder to the lowermost injection chamber of the gas atomizer, and is a mechanism for pulverizing the molten metal injected from the gas jet nozzle 14 and dropped at the convergence position P15.

ガスジェットノズル14の先端形状は、円形の細いリング形状であり、噴射された不活性ガスが収束位置P15に逆円錐形状に収束する噴射方向である構造を有している。収束位置Pに収束した不活性ガスはその後円錐状ガスジェット16として拡散し円筒体21の内壁に衝突する構造をとる。以上がガスアトマイズ機能を有するガスアトマイザー13の構造である。   The tip shape of the gas jet nozzle 14 is a circular thin ring shape, and has a structure in which the injected inert gas is in the injection direction in which it converges in an inverted conical shape at the convergence position P15. The inert gas converged at the convergence position P is then diffused as a conical gas jet 16 and collides with the inner wall of the cylindrical body 21. The above is the structure of the gas atomizer 13 having the gas atomizing function.

円筒体21は、上流部内壁に冷却水噴射ノズル20を有し、冷却水噴射ノズル20の先端部は円筒体内壁面の円周方向に向かい設置されている。外部から高圧供給された冷却水33は、冷却水噴射ノズル20から噴射され円筒体内壁22を旋回しながら冷却水旋回水流層17を形成し、螺旋状に下流へと流れ回収工程19へと流れ出る構造を備えている。   The cylindrical body 21 has a cooling water injection nozzle 20 on the inner wall of the upstream portion, and the tip of the cooling water injection nozzle 20 is installed facing the circumferential direction of the cylindrical body wall surface. Cooling water 33 supplied with high pressure from the outside is injected from the cooling water injection nozzle 20 to form the cooling water swirling water flow layer 17 while swirling the cylindrical body wall 22, and spirally flows downstream to the recovery step 19. It has a structure.

図2は成形された圧粉磁芯の間隙率の低い状態を示す図である。粒子径の大きい軟質磁性金属粉末はアスペクト比が略3以下であり、粒子径の小さいものがアスペクト比略3以上の扁平であるために隙間を最小にするように埋め込まれて密度を最大にできる様子を概略図として示している。   FIG. 2 is a diagram showing a state in which the porosity of the molded dust core is low. The soft magnetic metal powder having a large particle diameter has an aspect ratio of about 3 or less, and the one with a small particle diameter is a flat having an aspect ratio of about 3 or more, so that the gap can be embedded to maximize the density. The situation is shown as a schematic diagram.

図3は、本発明の一実施形態に係る軟質磁性金属粉末製造装置の円筒体内の旋回水流噴射ノズルを設置した断面概略構造を示す図である。図3は、図1においては円筒体21を冷却水噴射ノズル20の部分で切断した断面を示しており、冷却水噴射ノズルを詳しく説明するために示した概略図である。冷却水噴射ノズル20は円筒体21の内壁円周方向に向かって先端を突出させ、噴射した冷却水を噴射して円筒体21内を旋回させるための構造をとる。先端角度は円筒体21の内壁円周の接線方向に対して略±20度で噴射角度を可変できる構造をとる。角度変更のための機構詳細は省略する。   FIG. 3 is a diagram showing a schematic cross-sectional structure in which a swirling water jet nozzle is installed in a cylindrical body of a soft magnetic metal powder manufacturing apparatus according to an embodiment of the present invention. FIG. 3 shows a cross section of the cylindrical body 21 cut at a portion of the cooling water injection nozzle 20 in FIG. 1, and is a schematic diagram for explaining the cooling water injection nozzle in detail. The cooling water injection nozzle 20 has a structure for causing the tip to protrude in the circumferential direction of the inner wall of the cylindrical body 21 and for injecting the injected cooling water to turn the inside of the cylindrical body 21. The tip angle has a structure in which the injection angle can be varied by approximately ± 20 degrees with respect to the tangential direction of the inner wall circumference of the cylindrical body 21. Details of the mechanism for changing the angle are omitted.

図4は、本発明の一実施形態に係る軟質磁性金属粉末製造装置の円筒体内の旋回水流噴射ノズルを複数設置した断面概略構造を示す図である。図4においては一例として噴射ノズル20を2個有する場合を示している。両噴射ノズル20の先端は円筒体21の内壁の同一円周面に近接して並列設置される構造をとる。外部から供給された高圧冷却水33は噴射ノズル20内を通って円筒体21内部に噴射され、螺旋状に円筒体21内を旋回して旋回水流層18を形成する。   FIG. 4 is a diagram showing a schematic cross-sectional structure in which a plurality of swirling water jet nozzles are installed in the cylindrical body of the soft magnetic metal powder manufacturing apparatus according to an embodiment of the present invention. FIG. 4 shows a case where two injection nozzles 20 are provided as an example. The tip ends of both injection nozzles 20 have a structure in which they are installed in parallel close to the same circumferential surface of the inner wall of the cylindrical body 21. The high-pressure cooling water 33 supplied from the outside passes through the injection nozzle 20 and is injected into the cylindrical body 21 and swirls in the cylindrical body 21 to form the swirling water flow layer 18.

図5は、本発明の一実施形態に係る軟質磁性金属粉末製造装置の旋回水流の楕円穴平射ノズルの外観を示す図である。ノズル開口部31の形状は楕円穴で両端部に向って狭くなる平型形状を有する。   FIG. 5 is a view showing the appearance of an elliptical hole spray nozzle for swirling water flow in the soft magnetic metal powder manufacturing apparatus according to an embodiment of the present invention. The shape of the nozzle opening 31 is a flat shape that narrows toward both ends with an elliptical hole.

次に本発明の一実施形態に係る軟質磁性金属粉末製造装置の作用・動作について図1を用いて説明する。溶湯孔11から細流状に流下した溶融金属12は、ガスアトマイザー13のガスジェットノズル14から噴射された不活性ガスジェットと交差する一点位置(収束位置P)15に達した時点で微細な溶融液滴へと分断破砕される。この溶融液滴は、その後下側へ円錐状に広がるガスジェット16に乗って運ばれ冷却水旋回水流層17に突入し更に破壊分断を伴いながら急激に冷却され凝固する。その後、円筒体内21を旋回水流18と共に螺旋旋回して下流の円筒体末部で回収工程19に入ることになる。   Next, the operation and operation of the soft magnetic metal powder manufacturing apparatus according to an embodiment of the present invention will be described with reference to FIG. When the molten metal 12 flowing down from the molten metal hole 11 reaches a single point position (convergence position P) 15 intersecting with the inert gas jet injected from the gas jet nozzle 14 of the gas atomizer 13, the molten metal 12 is fine. It breaks up into droplets. The molten droplets are then carried on a gas jet 16 that spreads downward in a conical shape, enter the cooling water swirling water flow layer 17, and are rapidly cooled and solidified with fracture breaking. Thereafter, the cylindrical body 21 is spirally swirled with the swirling water flow 18 and enters the recovery step 19 at the end of the downstream cylindrical body.

冷却水旋回水流18は、円筒体内壁22の上流部に設置された冷却水噴射ノズル20から高圧噴射することによって供給されている。従来は十分な水量及び流速を備える旋回水流18を得るために、冷却水噴射ノズル20は複数箇所設けられておりそれらは円筒体上流部の内壁同一円周面に180度対角であれば2箇所、120度対角であれば3箇所、90度対角配置であれば4箇所のように、水流を均一化すべく均等角に配置されていた。   The cooling water swirling water flow 18 is supplied by high-pressure injection from a cooling water injection nozzle 20 installed upstream of the cylindrical body wall 22. Conventionally, in order to obtain a swirling water flow 18 having a sufficient amount of water and a flow velocity, a plurality of cooling water injection nozzles 20 are provided, and if they are 180 degrees diagonal to the same circumferential surface of the inner wall of the upstream portion of the cylindrical body, 2 In order to make the water flow uniform, it was arranged at three angles, such as three places for a 120 degree diagonal and four places for a 90 degree diagonal arrangement.

しかし、複数の位置に設けられた噴射ノズル20から高速高圧噴射される冷却水を均一な状態で円筒体内壁22を旋回水流18として液層厚、液量、流速を均一に保ちながら渦流、波流、発砲、液しぶき、飛散を起こさずに旋回させることは非常にむずかしかった。溶融金属のガスアトマイザー13でのガスジェット破砕から旋回水流突入までの工程条件を緻密に設定成し得ても、この旋回水流18の状態が不安定であれば微細溶融液滴23の旋回水流への突入抵抗、水流による粉砕条件、急冷条件などが大きくばらつくことになり、これに左右されて良質の冷却凝固生成物を均質に安定的に得ることが非常にむずかしかった。   However, the cooling water sprayed at high speed and high pressure from the spray nozzles 20 provided at a plurality of positions is made uniform with the cylindrical body wall 22 as the swirling water flow 18 while keeping the liquid layer thickness, liquid amount, and flow velocity uniform, whirling, It was very difficult to swivel without causing flow, shooting, splashing or splashing. Even if the process conditions from the gas jet crushing in the molten metal gas atomizer 13 to the entry of the swirling water flow can be precisely set, if the state of the swirling water flow 18 is unstable, the swirl water flow of the fine molten droplet 23 The inrush resistance, the pulverization condition by the water flow, the rapid cooling condition, etc. greatly vary, and depending on this, it is very difficult to obtain a good quality cooled solidified product uniformly and stably.

これらの問題を解決したものが本発明であり、その詳細を以下に記す。本発明は、ガスアトマイズ法における不活性ジェットガスによる溶融金属の粉砕工程を維持しつつ、円筒体21内の高速旋回水流18への微細溶融液滴23の突入粉砕急冷工程において、旋回水流衝突条件をいかに略一定均質に設定維持するかを目的に成されたものである。   The present invention solves these problems, and details thereof will be described below. The present invention maintains the swirling water collision condition in the inrush crushing and quenching step of the fine molten droplet 23 into the high-speed swirling water flow 18 in the cylindrical body 21 while maintaining the molten metal crushing step with the inert jet gas in the gas atomization method. It was made for the purpose of setting and maintaining a substantially constant homogeneity.

本発明は安定した旋回水流18を作るための高圧冷却水の噴射ノズル20の形状、位置等に着目したものであり、まずノズル噴射口形状を円筒体内壁面の筒軸方向に平行する平型噴射ノズルを用いることに特徴を有する。平型噴射ノズルの開口部の形状は旋回水流層の厚さを想定した平型でありかつ両端部は略楕円形状とする。両端部の細長い略楕円形状は、流体噴射に於ける抵抗が小さく、旋回水流の流れの乱れを最小限にした略均一な帯状の水流を供給できる。図5に本発明に係る平型噴射ノズルの概略図を示す。以下楕円穴平射ノズル30と称する。   The present invention focuses on the shape, position, etc. of the injection nozzle 20 of high-pressure cooling water for producing a stable swirling water flow 18. First, the flat injection in which the nozzle injection port shape is parallel to the cylinder axis direction of the cylindrical body wall surface. It is characterized by using a nozzle. The shape of the opening of the flat injection nozzle is a flat shape assuming the thickness of the swirling water flow layer, and both ends are substantially elliptical. The elongated, elliptical shape at both ends has a small resistance in fluid ejection, and can supply a substantially uniform strip-shaped water flow with minimal disturbance of the swirling water flow. FIG. 5 shows a schematic view of a flat injection nozzle according to the present invention. Hereinafter, it is referred to as an elliptical hole spray nozzle 30.

楕円穴平射ノズル30から噴射される水流は一定の幅を持つため円筒体内壁22で回転遠心力を最も利用できる状態で壁面に沿って略均一に帯状の旋回する水流を作る。そのため、一定の旋回水流層17の厚さ、速さ、略均一水面を生成しやすい。渦流、波流、空気を巻き込んだ発砲や飛散を最小限におさえることができる。   Since the water flow ejected from the elliptical hole spray nozzle 30 has a certain width, a swirling water flow is formed substantially uniformly along the wall surface in a state where the rotational centrifugal force can be most utilized at the cylindrical body wall 22. Therefore, the thickness and speed of the constant swirling water flow layer 17 and a substantially uniform water surface are easily generated. It can minimize eddy currents, wave currents, air entrainment, and scattering.

次に楕円穴平射ノズル30は、円筒体内壁22の円弧面接線方向から貫通してノズル先端部のみを内壁面に付き出す状態で設定される。図3に円筒体内壁に設定された楕円穴平射ノズル30の状態を円筒体の横方向断面図で示す。楕円穴平射ノズル30の冷却水噴射方向は、円筒体内壁円弧面の接線に対して上下方向へ約20度ずつ向きを変更できる構造をとる。噴射された冷却液は円筒体の内壁曲面に従い弧を描きながら帯状に旋回して下流へと流れるため、圧力損失が少なく流速も減少が少ない。   Next, the elliptical hole spray nozzle 30 is set in a state of penetrating from the arc surface tangent direction of the cylindrical body wall 22 and attaching only the nozzle tip to the inner wall surface. FIG. 3 shows a state of the elliptical hole spray nozzle 30 set on the wall of the cylindrical body in a cross-sectional view in the lateral direction of the cylindrical body. The cooling water injection direction of the elliptical hole spray nozzle 30 has a structure in which the direction can be changed by about 20 degrees in the vertical direction with respect to the tangent to the circular arc surface of the cylindrical body wall. The injected coolant is swirled in a belt-like shape while drawing an arc in accordance with the curved inner wall surface of the cylindrical body and flows downstream.

旋回水流18の流速を減ずることなく十分な流水量を得るためには、高圧冷却水を供給する噴射ノズル20が複数必要になる。従来は十分な旋回水流量を得るために2個の噴射ノズルを必要とする場合は、円筒体の同一円弧の内壁面の180度対角線上に2箇所設置していた。また3個以上必要とする場合は、同一円弧面120度間隔で設置するというように均等角位置に均等角度分布によって複数の噴射ノズルを設定していた。これは円筒体内壁全体で旋回水流を均一にするためによい方法であると考えられていたからである。しかし実際は噴射ノズルの数が多くなればなるほど旋回水流18の渦流、波流、空気巻き込み発砲、飛散が発生しやすくなり水流が乱れて、安定した旋回水流の水流厚さ(液層厚さ)や均一な液面を得ることがむずかしかった。   In order to obtain a sufficient amount of flowing water without reducing the flow velocity of the swirling water flow 18, a plurality of injection nozzles 20 for supplying high-pressure cooling water are required. Conventionally, when two injection nozzles are necessary to obtain a sufficient swirling water flow rate, two injection nozzles have been installed on the 180 ° diagonal line on the inner wall surface of the same circular arc of the cylindrical body. Further, when three or more nozzles are required, a plurality of injection nozzles are set with uniform angular distribution at uniform angular positions, such as being installed at intervals of 120 degrees on the same circular arc surface. This is because it was considered to be a good method for making the swirling water flow uniform over the entire cylindrical body wall. However, in reality, the more the number of injection nozzles, the more easily the swirling water flow 18 is swirled, waved, air entrained, and scattered, and the water flow is disturbed, and the stable swirling water flow thickness (liquid layer thickness) It was difficult to obtain a uniform liquid level.

本発明の楕円穴平射ノズル30の複数設置においては、上記従来の考え方と対照的に、設置位置を同一の位置に集約設定することに特徴がある。複数の楕円穴平射ノズルを同一の位置に設定するということは、例えば直線状に並べて設置するか又は並列に重ねて設置する等の略同一位置に設定することを意味している。図4に楕円穴平射ノズル開口部の重ね合わせ並列設置の概要図を示す。   The installation of a plurality of elliptical hole spray nozzles 30 of the present invention is characterized in that the installation positions are collectively set at the same position, in contrast to the above-described conventional concept. Setting the plurality of elliptical hole spray nozzles at the same position means setting them at substantially the same position, for example, by arranging them in a straight line or by placing them in parallel. FIG. 4 shows a schematic diagram of the overlapping parallel installation of the elliptical hole spray nozzle openings.

本発明の特徴である楕円穴平射ノズル30は、ノズル開口形状が平型で略楕円形状であるため噴射された水流は平行につながり易くまた並列に重なりやすいため乱流を作らずに一定水流となりやすくかつ流量を増加させることができる。特に並列に重ねた場合は、図3で示したようにノズル噴射角を操作することにより上部噴射水流が下部噴射水流の乱れを上から押さえる構造をとることができ、全体として均一な旋回水流を得ることができる。   The elliptical hole spray nozzle 30, which is a feature of the present invention, has a flat and substantially elliptical nozzle opening shape, so that the jetted water flow is easily connected in parallel and easily overlapped in parallel. It is easy and the flow rate can be increased. In particular, when stacked in parallel, as shown in FIG. 3, by operating the nozzle injection angle, it is possible to adopt a structure in which the upper jet water flow suppresses the turbulence of the lower jet water flow from above, and a uniform swirling water flow is obtained as a whole. Can be obtained.

その他の水量調整においては、各噴射開口部の両端部が略楕円形状であるためその高さ寸法を調節するなどの技術的対応が可能であるが、これらは従来の慣用技術の範囲内で様々考え得る。   In other water volume adjustments, both ends of each injection opening are substantially elliptical, so technical measures such as adjusting the height are possible, but these are various within the range of conventional techniques. I can think.

本発明によればこのように十分な水量及び流水速度を有する高速旋回水流を得ることができ、かつ略均一な流水層厚(液層深さ)と略均一水面とを維持することができる。これにより最も適した筒体内壁22の旋回水流位置にガスアトマイズ粉砕後の微細溶融液滴23を突入させることができる。   According to the present invention, a high-speed swirling water flow having a sufficient amount of water and flowing water can be obtained as described above, and a substantially uniform flowing water layer thickness (liquid layer depth) and a substantially uniform water surface can be maintained. Thereby, the fine molten droplet 23 after gas atomization pulverization can be rushed into the most suitable swirl water flow position of the cylindrical wall 22.

ガスアトマイズ粉砕後の微細溶融液滴23は収束位置Pから円形に拡散されて略円錐状に広がるが、それを受ける旋回水流18は円筒形に回転している曲面であるため、円形に拡散された微細溶融液滴23が旋回水流18に突入する際の接点形状は楕円となり、旋回水流18との接触角はその楕円の位置によって異なる角度になる。また、円筒体21はガスアトマイザー13に対して一定の傾斜角をもって設定されているため、上記のように円錐状に拡散された微細溶融液滴23が旋回水流18に突入する際の接点形状は楕円のうえに、円筒体の下部方向に従い扇状に広がり、いわゆる涙(雫)形状になる。   The fine molten droplets 23 after the gas atomization pulverization are diffused in a circular shape from the convergence position P and spread in a substantially conical shape, but the swirling water flow 18 that receives it is a curved surface rotating in a cylindrical shape. The contact shape when the fine molten droplet 23 enters the swirling water stream 18 is an ellipse, and the contact angle with the swirling water stream 18 varies depending on the position of the ellipse. Further, since the cylindrical body 21 is set with a certain inclination angle with respect to the gas atomizer 13, the contact shape when the fine molten droplet 23 diffused conically as described above enters the swirling water flow 18 is as follows. On top of the ellipse, it spreads in a fan shape along the lower direction of the cylindrical body, forming a so-called tear (s) shape.

このことは、上記の旋回水流18に突入する微細溶融液滴23の位置によって滞空時間、角度、衝撃力、衝撃方向、冷却速度等の要因が微妙に異なる条件になるため、微細溶融液滴23が急冷されて生成される軟質磁性金属粉末の最終形状がそれぞれ異なる形状となり均一性を排除することができる。   This is because the factors such as the dwell time, angle, impact force, impact direction, and cooling rate are slightly different depending on the position of the fine molten droplet 23 that enters the swirling water flow 18. The final shapes of the soft magnetic metal powders produced by quenching are changed to different shapes, and uniformity can be eliminated.

つまり球状に近いものから細長回転楕円体形状など粒子径やサイズなどの形状が異なる粒子がバランスよく一定の割合で生成されることになる。平均アスペクト比も小さな粒子が3.0以上、粒子径が大きな粒子は3.0未満という好ましい軟質磁性金属粉末粒子を一定の割合及び分布で生成することになる。また、微小粒子であってアモルファス状態の軟質磁性金属粉末粒子を生成することを維持することにつながる。   That is, particles having different shapes such as particle diameter and size, such as a shape close to a spherical shape and an elongated spheroid, are generated at a constant ratio in a balanced manner. Preferred soft magnetic metal powder particles having a small average aspect ratio of 3.0 or more and particles having a large particle diameter of less than 3.0 are produced in a certain ratio and distribution. Moreover, it leads to maintaining generation | occurrence | production of the soft magnetic metal powder particle which is a microparticle and an amorphous state.

これらの諸要因を一定に維持するためには、いかに旋回水流の状態を略均一に保つかが最も重要になることがわかる。つまり旋回水流の水面高さ、流速、温度、水面状態の略均一性などが最も重要となる。高圧冷却水の噴射水流によって作る水の旋回水流の上記略均一性を保つのは難しく、水しぶき、渦流、気泡散乱、波流などの乱れは、ガスアトマイズ粉砕からの旋回水流突入までの、噴射圧、噴射速度、温度、噴射角度、時間、滞空距離、筒体角度、接触角度、円錐状拡散距離、旋回水流接触までの距離などの微妙でベストな条件設定およびそれらのバランスを大きく狂わせてしまう。   In order to keep these factors constant, it can be seen that how to keep the state of the swirling water flow substantially uniform is the most important. That is, the water surface height of the swirling water flow, the flow velocity, the temperature, the substantially uniform surface state, etc. are the most important. It is difficult to maintain the above-mentioned uniformity of the swirling water flow created by the jet flow of the high-pressure cooling water. Subtle and best condition settings such as the injection speed, temperature, injection angle, time, hover distance, cylinder angle, contact angle, conical diffusion distance, and distance to the swirling water flow contact and their balance are greatly upset.

本発明による冷却水旋回水流の噴射ノズル形状及び位置設定によれば、旋回水流の渦流、波流、気泡散乱、飛散などの乱れを防止し、水面高さ、流速、温度、水面状態を均一状態に保つことができるため、上記のようなガスアトマイズ粉砕後の条件を一定に維持することができ、これにより好ましい粒子径、粒子形状、アスペクト比の分布をもつ軟質磁性金属粉末の生成が均質にできることにつながる。   According to the jet nozzle shape and position setting of the cooling water swirling water flow according to the present invention, the swirling water flow is prevented from being disturbed such as vortex flow, wave flow, bubble scattering and scattering, and the water surface height, flow velocity, temperature and water surface state are uniform. Therefore, it is possible to maintain the conditions after the gas atomization pulverization as described above, and to generate a homogeneous soft magnetic metal powder having a preferable particle size, particle shape, and aspect ratio distribution. Leads to.

つまり、軟質磁性金属粉末の製造において最も変動要因の大きかった冷却旋回水流条件を均一な安定状態に設定できるようになったことにより、生成物である軟質磁性金属粉末の粒子径、粒子形状、アスペクト比の分布変動に対する他の変動要因の関与の度合いを確かめることができる。ガスアトマイズ粉砕での不活性ガスジェット噴射圧やガスアトマイザーと円筒体との距離などの条件の最適値を設定しなおすことができる。同様に、ガスアトマイズ噴射圧力や、冷却水流噴射圧力などのエネルギー的に過酷な条件をより平易なレベルまで落とすことができ、製造コスト等の削減に大きく貢献することができる。   In other words, it became possible to set the cooling swirl water flow conditions, which had the largest fluctuation factors in the production of soft magnetic metal powders, to a uniform and stable state. It is possible to confirm the degree of involvement of other fluctuation factors in the ratio distribution fluctuation. It is possible to reset the optimum values of conditions such as the inert gas jet injection pressure in the gas atomization pulverization and the distance between the gas atomizer and the cylindrical body. Similarly, energy-intensive conditions such as gas atomization injection pressure and cooling water flow injection pressure can be reduced to a more simple level, which can greatly contribute to the reduction of manufacturing costs and the like.

本発明による上記検証実験の結果の一例であるが、生成された軟質磁性金属粉末の粒子径は約40μmの分布にまで微小化できることになり、またガスアトマイズでのガスジェット噴射圧は約60kgf/cmから約30kgf/cmまで低減させることができ、製造コストの削減に貢献できた。また好ましい粒子形状や粒子アスペクト比を維持しつつ、粒子径を微細にすることによって間隙率はより減少するため、高透磁率で高密度磁心に相応しい軟質磁性金属粉末を得ることがより簡易になったといえる。 As an example of the result of the verification experiment according to the present invention, the particle diameter of the generated soft magnetic metal powder can be reduced to a distribution of about 40 μm, and the gas jet injection pressure in gas atomization is about 60 kgf / cm. 2 to about 30 kgf / cm 2, which contributed to the reduction of manufacturing costs. In addition, since the porosity is further reduced by reducing the particle diameter while maintaining the preferred particle shape and particle aspect ratio, it is easier to obtain a soft magnetic metal powder suitable for a high-density magnetic core with high permeability. It can be said that.

ここで、上記の実施の形態は一実施例にすぎず、本発明の主旨を逸脱しない範囲内で種々の変形あるいは改良が可能であることは言うまでもない。   Here, it is needless to say that the above-described embodiment is merely an example, and various modifications or improvements can be made without departing from the gist of the present invention.

本発明に係る軟質磁性金属粉末製造装置によれば、高透磁率で高密度磁心に相応しい軟質磁性金属粉末を得ることが容易になるため磁性材料素材産業等で大いなる利用可能性を有する。また、本発明にかかる装置のもたらすコスト低減化の技術的かつ経済的意義は大きく、磁性材料の電磁的性能向上にも寄与するため、産業上利用価値は極めて大きい。   According to the apparatus for producing soft magnetic metal powder according to the present invention, it is easy to obtain a soft magnetic metal powder suitable for a high-density magnetic core with high magnetic permeability, so that it has great applicability in the magnetic material industry. In addition, the technical and economic significance of cost reduction brought about by the apparatus according to the present invention is great, and it contributes to the improvement of the electromagnetic performance of the magnetic material.

1・・・軟質磁性金属粉末製造装置
2・・・金属粉末圧縮成形体
11・・溶湯孔
12・・溶融金属
13・・ガスアトマイザー
14・・ガスジェットノズル
15・・収束位置P
16・・円錐状ガスジェット
17・・冷却水旋回水流層
18・・旋回水流
19・・回収工程
20・・冷却水噴射ノズル
21・・円筒体
22・・円筒体内壁
23・・微細溶融液滴
24・・ヒーター
25・・蓋体
30・・楕円穴平射ノズル
31・・ノズル開口部
32・・不活性ガス
33・・冷却水
34・・軟質磁性金属粉末(粒子径大:アスペクト比3以下)
35・・軟質磁性金属粉末(粒子径小:アスペクト比3以上)
36・・ノズル可変角
DESCRIPTION OF SYMBOLS 1 ... Soft magnetic metal powder manufacturing apparatus 2 ... Metal powder compression molding 11 ... Molten metal hole 12 ... Molten metal 13 ... Gas atomizer 14 ... Gas jet nozzle 15 ... Convergence position P
16. · Conical gas jet 17 ·· Cooling water swirl flow layer 18 · Swirl water flow 19 ·· Recovery process 20 ·· Cooling water injection nozzle 21 ·· Cylinder body 22 ·· Cylinder body wall 23 24. Heater 25. Lid 30. Elliptical injection nozzle 31. Nozzle opening 32. Inert gas 33. Cooling water 34. Soft magnetic metal powder (large particle diameter: aspect ratio 3 or less)
35. ・ Soft magnetic metal powder (small particle diameter: aspect ratio of 3 or more)
36 ・ ・ Nozzle variable angle

Claims (4)

ガスアトマイズ法によって粉砕拡散させた溶融金属粉末を供給して冷却させる円筒体内周面の旋回水流発生構造を生成するための装置であって、前記旋回水流発生構造は、
円筒体内壁の略円周面接線方向から内壁に向って貫通された旋回水流の噴射ノズル先端と、
前記噴射ノズル先端によって形成される円筒体軸方向に平行な楕円穴平射形状と、
前記噴射ノズル先端に係る方向角度であって、円筒体内壁の円周面接線方向に対して略±20度可変である方向角度と
を具備することを特徴とする軟質磁性金属粉末製造装置。
An apparatus for generating a swirling water flow generating structure on a peripheral surface of a cylindrical body for supplying and cooling molten metal powder pulverized and diffused by a gas atomizing method, wherein the swirling water flow generating structure is
A jet nozzle tip of a swirling water flow penetrating from the substantially circumferential surface tangential direction of the cylindrical body wall toward the inner wall;
An elliptical hole flat shape parallel to the axial direction of the cylinder formed by the tip of the injection nozzle;
A soft magnetic metal powder manufacturing apparatus comprising: a directional angle related to a tip of the injection nozzle, and a directional angle that is variable by approximately ± 20 degrees with respect to a tangential direction of a circumferential surface of a cylindrical body wall.
複数の前記旋回水流の噴射ノズルがアトマイズ部に近接する円筒体内壁部一箇所に重ね合わせ集合設置されたことを特徴とする請求項1に記載の軟質磁性金属粉末製造装置。   The soft magnetic metal powder manufacturing apparatus according to claim 1, wherein a plurality of the jet nozzles of the swirling water stream are installed in a superposed manner at one place on a cylindrical body wall part close to the atomizing part. 溶融金属粉末を供給して冷却させる円筒体内周面の旋回水流発生構造を生成するための装置であって、前記旋回水流発生構造は、
円筒体内壁の略円周面接線方向から内壁に向って貫通された旋回水流の噴射ノズル先端と、
前記噴射ノズルの先端によって形成される円筒体軸方向に平行な平噴射形状と、
前記噴射ノズル先端に係る方向角度であって、円筒体内壁の円周面接線方向に対して可変である方向角度と
を具備することを特徴とする金属粉末製造装置。
An apparatus for generating a swirling water flow generating structure on a circumferential surface of a cylindrical body that is cooled by supplying molten metal powder,
A jet nozzle tip of a swirling water flow penetrating from the substantially circumferential surface tangential direction of the cylindrical body wall toward the inner wall;
A flat injection shape parallel to the axial direction of the cylinder formed by the tip of the injection nozzle;
A metal powder manufacturing apparatus comprising: a directional angle related to a tip of the injection nozzle, and a directional angle that is variable with respect to a tangential direction of a circumferential surface of a cylindrical body wall.
複数の前記旋回水流の噴射ノズルが円筒体内壁部一箇所に集合設置されたことを特徴とする請求項3に記載の金属粉末製造装置。   The metal powder manufacturing apparatus according to claim 3, wherein a plurality of jet nozzles of the swirling water flow are collectively installed at one place on a wall of the cylindrical body.
JP2013125174A 2013-06-14 2013-06-14 Soft magnetic metal powder production device Pending JP2015000997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013125174A JP2015000997A (en) 2013-06-14 2013-06-14 Soft magnetic metal powder production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125174A JP2015000997A (en) 2013-06-14 2013-06-14 Soft magnetic metal powder production device

Publications (1)

Publication Number Publication Date
JP2015000997A true JP2015000997A (en) 2015-01-05

Family

ID=52295703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125174A Pending JP2015000997A (en) 2013-06-14 2013-06-14 Soft magnetic metal powder production device

Country Status (1)

Country Link
JP (1) JP2015000997A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315085A (en) * 2019-06-21 2019-10-11 宁夏森源重工设备有限公司 Water impact molten iron granulation device and its granulating method
CN112276105A (en) * 2020-10-29 2021-01-29 佛山市中研非晶科技股份有限公司 Water-gas combined atomization powder making process and water-gas combined atomization powder making system applying same
US11084094B1 (en) * 2017-08-08 2021-08-10 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof
US11826828B2 (en) 2019-12-13 2023-11-28 Mitsubishi Heavy Industries, Ltd. Gas supply device for manufacturing device. atomizing device, 3D additive manufacturing device, additive manufacturing system, and shaped object and gas supply method for manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084094B1 (en) * 2017-08-08 2021-08-10 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof
CN110315085A (en) * 2019-06-21 2019-10-11 宁夏森源重工设备有限公司 Water impact molten iron granulation device and its granulating method
US11826828B2 (en) 2019-12-13 2023-11-28 Mitsubishi Heavy Industries, Ltd. Gas supply device for manufacturing device. atomizing device, 3D additive manufacturing device, additive manufacturing system, and shaped object and gas supply method for manufacturing device
JP7453781B2 (en) 2019-12-13 2024-03-21 三菱重工業株式会社 Gas supply equipment for manufacturing equipment, atomization equipment, 3D additive manufacturing equipment, and additive manufacturing systems
CN112276105A (en) * 2020-10-29 2021-01-29 佛山市中研非晶科技股份有限公司 Water-gas combined atomization powder making process and water-gas combined atomization powder making system applying same

Similar Documents

Publication Publication Date Title
WO2012157733A1 (en) Metallic powder production method and metallic powder production device
US10328492B2 (en) Metal powder production apparatus
CN201913249U (en) Circular seam type supersonic spray nozzle for metal gas atomization
KR102262760B1 (en) Metal powder manufacturing apparatus and its gas injector and crucible
CN112533712B (en) Metal powder manufacturing apparatus and gas injector thereof
CN102581291B (en) Circumferential seam type supersonic nozzle for metal gas atomization
JP2015000997A (en) Soft magnetic metal powder production device
JP2018119200A (en) Nozzle for gas atomization and gas atomization device
CN105436509B (en) A kind of metal atomization bilayer restrictive nozzle with electromagnetic field booster action
US20220080503A1 (en) Metal powder producing apparatus and gas jet device therefor
KR101536454B1 (en) Powder producing device and powder producing method
KR20180046652A (en) Cone-shaped water atomizing variable nozzle for producing metal powder
WO2019160154A1 (en) Metal powder manufacturing device and method for manufacturing metal powder
JP2001131613A (en) Atomizing nozzle device
JPS6350404A (en) Spray nozzle for producing metallic powder
CN111050959B (en) Metal powder manufacturing device and metal powder manufacturing method
JP2017145495A (en) Metal powder production apparatus
CN202786429U (en) Integrated coaxial nozzle for laser cladding
JP7366268B2 (en) Metal powder manufacturing equipment
JPH04173906A (en) Atomizing nozzle device
JPH0649512A (en) Device for producing gas-atomized metal powder
JPH08199207A (en) Production of metallic powder and device therefor
JPH0559411A (en) Production of metal powder
KR20230129084A (en) Gas Spraying Apparatus for Manufacturing Metal and Alloy Powders and Apparatus for Manufacturing Metal Powder Using the Same
JPH01219110A (en) Production of metal powder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150310