JPH01123012A - Nozzle for manufacturing fine powder - Google Patents
Nozzle for manufacturing fine powderInfo
- Publication number
- JPH01123012A JPH01123012A JP28087087A JP28087087A JPH01123012A JP H01123012 A JPH01123012 A JP H01123012A JP 28087087 A JP28087087 A JP 28087087A JP 28087087 A JP28087087 A JP 28087087A JP H01123012 A JPH01123012 A JP H01123012A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- pressure fluid
- annular slit
- fluid
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- 239000012530 fluid Substances 0.000 claims abstract description 51
- 230000014759 maintenance of location Effects 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 239000000919 ceramic Substances 0.000 abstract description 5
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 238000010298 pulverizing process Methods 0.000 abstract description 3
- 229910001111 Fine metal Inorganic materials 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000009692 water atomization Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0884—Spiral fluid
Landscapes
- Nozzles (AREA)
- Glanulating (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、金属(単体金属・複合合金)、セラミックス
の圧縮成形・焼結成形用の微粉を製造する装置に関し、
特にその噴射ノズルに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing fine powder for compression molding and sintering of metals (single metals and composite alloys) and ceramics.
In particular regarding its injection nozzle.
[従来の技術1
単体金属、複合合金、セラミックス等の溶融した原料を
ノズルから円柱状に流出落下させ、この落下流に高圧水
を噴射して溶融原料を粉化する高圧水アトマイズ技術が
知られている。[Conventional technology 1] High-pressure water atomization technology is known, in which molten raw materials such as single metals, composite alloys, and ceramics are made to flow out and fall from a nozzle in a cylindrical shape, and high-pressure water is injected into this falling flow to powderize the molten raw materials. ing.
第5図はこのような技術を模式的に示したものである。FIG. 5 schematically shows such a technique.
溶解るつぼ11から注湯ノズル12を経て溶融原料13
が流下する。一方、通路17を通って半径方向外方18
から高圧水が供給され噴射ノズルI4から噴射される。Molten raw material 13 flows from melting crucible 11 through pouring nozzle 12
flows down. On the other hand, through the passage 17 and radially outward 18
High pressure water is supplied from the jet nozzle I4 and jetted from the jet nozzle I4.
この噴射水が形成する倒立円錐膜状の高圧水15の焦点
(倒立円錐の頂点)において、落下する溶融原料13は
その周辺より高圧水15に削られながら粉末16となっ
て飛敗し微粉となる。At the focal point of the inverted conical film-shaped high-pressure water 15 formed by this jetted water (the apex of the inverted cone), the falling molten raw material 13 is scraped by the high-pressure water 15 from its periphery, becoming powder 16, flying off, and becoming fine powder. Become.
このようにして製造された微粉末の平均粒径は噴射水の
水圧が大になると小さくなるが、限度があった。The average particle size of the fine powder thus produced becomes smaller as the water pressure of the jet water increases, but there is a limit.
本発明者はこのような高圧噴射流体を用いる微粉製造技
術に改善を加え、高圧噴射流体が溶融原料落下流の外周
を少しずつ削るように作用させると、細かい粉を得るこ
とができる技術を開発した。この技術は周囲から鉛直中
心軸上に頂点が集中する倒立円錐膜状の複数の高圧流体
流を形成し、この中心軸に沿って溶融原料を円柱状に流
下供給し、前記複数の高圧流体流によりこの溶融原料の
流下流をその外周から順次少しずつ削りとりながら微粉
化することを特徴としている(特願昭62−81264
)。The present inventor has improved the fine powder production technology using such high-pressure jet fluid, and has developed a technology that allows fine powder to be obtained by allowing the high-pressure jet fluid to gradually scrape the outer periphery of the falling flow of molten material. did. This technology forms a plurality of high-pressure fluid streams from the surroundings in the shape of an inverted conical film whose vertices are concentrated on a vertical central axis, and supplies the molten raw material in a cylindrical shape along this central axis. This method is characterized by pulverizing the downstream part of the molten raw material by gradually scraping it off from its outer periphery (Japanese Patent Application No. 81264/1986).
).
しかして、このように外周から削り取るように作用する
安定したノズルの開発が望まれている。Therefore, there is a demand for the development of a stable nozzle that scrapes away from the outer periphery.
また、従来の円環状水アトマイズ装置ではノズルから噴
出する噴流が局部的に不均一となる問題があり、これは
ノズルの微視的な研磨面の粗度やノズル内表面精度の差
異や流体力学的な高圧流体の粘性に起因する揺動、ある
いは流体の表面張力によるものであって、解決が困難で
あった。In addition, with conventional annular water atomization devices, there is a problem that the jet stream ejected from the nozzle becomes locally non-uniform. This problem was caused by vibrations caused by the viscosity of the high-pressure fluid or by the surface tension of the fluid, and was difficult to solve.
〔発明が解決しようとする問題点)
本発明は外周側から高圧流体を供給して内周の円環状ス
リットから円錐膜状に高圧流体流を噴出させる微粉製造
用ノズルであって、一般的に噴出流の局部的不均一の問
題を強制的に解決することのできる噴射ノズルを開発し
たもので、特に特願昭62−81246の微粉製造技術
に用いる場合にも好適なノズルを提供することを目的と
する。[Problems to be Solved by the Invention] The present invention is a nozzle for producing fine powder that supplies high-pressure fluid from the outer circumferential side and ejects a high-pressure fluid flow in the form of a conical film from an annular slit on the inner circumference. We have developed an injection nozzle that can forcibly solve the problem of local non-uniformity of jet flow, and we aim to provide a nozzle that is particularly suitable for use in the fine powder manufacturing technology of Japanese Patent Application No. 62-81246. purpose.
r問題点を解決する手段]
本発明は外周側から高圧流体を供給して内周の円環状ス
リットから円錐膜状に高圧流体流を噴出させる微粉製造
用ノズルにおいて、該高圧流体流にスリット円周方向に
旋回流を付与する旋回流発生装置を付設したことを特徴
とする微粉製造用ノズルである。この旋回流発生装置の
好ましい具体例を上げると次のようである。Means for Solving Problems] The present invention provides a nozzle for producing fine powder that supplies high-pressure fluid from the outer periphery and jets out a high-pressure fluid flow in a conical film shape from an annular slit on the inner periphery. This is a nozzle for producing fine powder, characterized in that it is equipped with a swirling flow generator that generates a swirling flow in the circumferential direction. Preferred specific examples of this swirl flow generator are as follows.
+l)第2図に示すような、高圧流体供給口9から円環
状スリット14に至る流路17内に設けられ、前記円環
状スリット14を含む平面への投影が半径方向に対して
角度を有する案内羽根30、
(2)第3図に示すような円環状スリット14への複数
の流体流入路32であって、円環状スリット+4を含む
平面への投影が半径方向に対して角度を有する流路32
、
(3)第4図に示すような、高圧流体供給口9から円環
状スリ・ントI4に至る流路壁に設けられ、円環状スリ
ブ1−14を含む平面への投影が半径方向に対して傾き
を有する多数の溝4、
(4)第1図に示すような、円環状スリット14の外周
III jM体流路に円環状スリット14と同心円状の
流体滞留室8を設け、この滞留室に接線方向に高圧流体
を供給する供給口9を備えたもの。+l) As shown in FIG. 2, it is provided in the flow path 17 from the high-pressure fluid supply port 9 to the annular slit 14, and the projection onto the plane containing the annular slit 14 has an angle with respect to the radial direction. Guide vanes 30, (2) A plurality of fluid inflow paths 32 to the annular slit 14 as shown in FIG. Road 32
, (3) As shown in FIG. 4, it is provided on the flow path wall from the high-pressure fluid supply port 9 to the annular slit I4, and the projection on the plane containing the annular slit 1-14 is relative to the radial direction. (4) A fluid retention chamber 8 concentric with the annular slit 14 is provided on the outer periphery of the annular slit 14 as shown in FIG. A supply port 9 for supplying high pressure fluid in the tangential direction.
(5)上記(3)と(4)との併設(第1図)、
以上の(1)から(3)における投影は直線であっても
よく、また曲線であってもよい。(5) Combination of (3) and (4) above (Figure 1) The projections in (1) to (3) above may be straight lines or curves.
本発明の高圧流体流を形成する流体としては水、油、有
機・無機液体、金属液体または気体、特に不活性気体を
用いることができる。The fluid forming the high-pressure fluid stream according to the invention can be water, oil, organic or inorganic liquids, metallic liquids or gases, especially inert gases.
〔作用1
本発明のノズルは、外周側から導入される高圧流体が、
はぼ円錐面状あるいは任意の曲面1例えば回転抛物面的
な曲面状をなす流路を通って内径側の環状スリットから
高圧噴流となって旋回しながら噴出される。[Function 1] The nozzle of the present invention allows high-pressure fluid introduced from the outer circumferential side to
The high-pressure jet is ejected from an annular slit on the inner diameter side while swirling through a flow path having a conical shape or an arbitrary curved surface 1, for example, a rotating rod-like curved surface.
この状態を本発明の一実施例である上記(5)の態様の
ノズルlを示す第1図によって説明すると、滞留室8に
外周側から供給口9によって接線方向に供給された高圧
流体は、滞留室8内を矢印10のように旋回し、次いで
通路17を通って環状スリット14の方向へ、矢印10
aのように流れるので14からの流れは直線求心的でな
く渦状に穴中央付近に旋回集合する。通路17には溝4
を設けたノズルリング2が装着されており、高圧流体は
この満4に案内されることによって旋回しながら環状ス
リット14から噴射される。溝4の内周側端部6からf
i状ススリット14通って噴射される流れを斜視図的に
観察すると、ノズルlから噴出する流体流は下向きに中
央に集まるようになっているので第6図に示すようなつ
づみ形25を形成する。This state will be explained with reference to FIG. 1, which shows the nozzle l of the above-mentioned embodiment (5), which is an embodiment of the present invention. Swirl in the retention chamber 8 according to the arrow 10 and then through the passage 17 in the direction of the annular slit 14 according to the arrow 10
Since the flow is as shown in a, the flow from 14 is not linear and centripetal, but swirls and collects near the center of the hole. The passage 17 has a groove 4
A nozzle ring 2 is installed, and the high-pressure fluid is guided by the nozzle ring 2 and is injected from the annular slit 14 while rotating. f from the inner peripheral end 6 of the groove 4
When observing the flow injected through the I-shaped slit 14 in a perspective view, the fluid flow ejected from the nozzle l gathers downward at the center, forming a cone shape 25 as shown in FIG. do.
すなわち、ノズルlから噴射された高圧噴射流体流22
は、その流れの方向PSが環状スリット14を含む円6
の平面に垂直な中心軸OO′を通る直線PQRと角度7
だけずれているので、−点に集中することなく、前記溝
の傾き等によって定まる直径26の中心円23を中央に
残した回転双曲面を形成してつつみ形となる。That is, the high pressure jet fluid stream 22 jetted from the nozzle l
is a circle 6 whose flow direction PS includes the annular slit 14
The straight line PQR passing through the central axis OO′ perpendicular to the plane of
Since they are shifted by a certain amount, they do not concentrate on the - point, but instead form a hyperboloid of revolution with the center circle 23 of diameter 26 determined by the inclination of the groove remaining in the center, resulting in a wrap-around shape.
従って若し、この高圧流体流の中心に溶融金属等の落下
流を通過させると、高圧流体流は落下流の中心に向って
当り落下流を散乱させることなくその周囲から削りとる
ように作用する。従って、微細な微粉粒を得ることがで
きる。Therefore, if a falling stream of molten metal, etc. is passed through the center of this high-pressure fluid stream, the high-pressure fluid stream will hit the center of the falling stream and act to scrape it off from the surroundings without scattering the falling stream. . Therefore, fine powder particles can be obtained.
またこの場合には次のような長所がある。すなわち、従
来のノズルでの高圧水の導入は第7図の9のように環状
滞留室に真横から入れていたが、この場合流れ9は第1
図(alの壁8aに当り、第7図の20のように左右に
分れ、中央部には22のような渦が生じ環状路内流れ2
0.21は不均等になり14に向う流れ23.24.2
5も不均一となり均一ジェットが得られない。これに対
し実施例では旋回流のため円周上非常に均等な流れの状
態となる。従って14から噴出するまでに流れは渦等の
乱流による損失がなくなり、入射エネルギーをほどんど
そのまま噴出エネルギーに持ち越すことができ、高圧の
本領が発揮され粉体の微細化が図れる。In addition, this case has the following advantages. In other words, when introducing high-pressure water using a conventional nozzle, it was introduced directly into the annular retention chamber from the side as shown in 9 in Fig. 7, but in this case, the flow 9 was in the first
(It hits the wall 8a of the al, and is divided into left and right sides as 20 in Figure 7, and a vortex like 22 is generated in the center of the annular channel flow 2.
0.21 becomes uneven and flows towards 14 23.24.2
5 is also non-uniform and a uniform jet cannot be obtained. On the other hand, in the embodiment, due to the swirling flow, the flow is very uniform on the circumference. Therefore, by the time the powder is ejected from the powder 14, there is no loss in the flow due to turbulence such as vortices, and the incident energy can be carried over to the ejecting energy, allowing the full potential of high pressure to be exerted and making the powder finer.
ノズルから噴出する高圧流体流の形成する前記つづみ形
25の流れは、ノズルの直径、傾き、環状スリットの幅
、スリット上流の流路の形状、溝の傾斜、形状、圧力流
体の圧力、流量などによって左右される。このつづみ形
25の流れの寸法は流体力学計算または実験に基づ(設
計によって定めることができる。またこの高圧流体流が
溶融金属等の落下流を削って生成する微粉の粒度形状、
生産量等とつづみ形の流れの諸元との関係も、規模に応
じて計算や実験によって定めることかできる。The above-mentioned flow of the serpentine shape 25 formed by the high-pressure fluid flow ejected from the nozzle depends on the diameter and inclination of the nozzle, the width of the annular slit, the shape of the flow path upstream of the slit, the inclination and shape of the groove, the pressure of the pressure fluid, and the flow rate. It depends on etc. The dimensions of the flow of this serpentine shape 25 can be determined based on fluid dynamics calculations or experiments (design). Also, the particle size shape of the fine powder generated by this high-pressure fluid flow scraping the falling flow of molten metal, etc.
The relationship between the production volume, etc., and the specifications of the flow of the chain shape can also be determined by calculation or experiment, depending on the scale.
[実施例]
本発明装置の実施例のノズルIを第1図に示す。また、
第4図に実施例のノズルlの流体通路の下側の壁面を形
成するノズルチップ2の斜視図を示した。[Example] FIG. 1 shows a nozzle I of an example of the apparatus of the present invention. Also,
FIG. 4 shows a perspective view of the nozzle chip 2 forming the lower wall surface of the fluid passage of the nozzle 1 of the embodiment.
実施例のノズルは圧力300kg/crrI2の高圧水
を用いる水アトマイズノズルに用いるものでその主なる
諸元は次の通りである。The nozzle of the example is used as a water atomizing nozzle using high-pressure water with a pressure of 300 kg/crrI2, and its main specifications are as follows.
ノズル外径:250mm
ノズル高さ二200mm
ノズル内径: 30mm
環状滞留室外径:200mm
環状滞留室内径:160mm
高圧水流入口=4個所
ノズルチップ2は本発明のノズルlの高圧流体噴出口(
環状スリット14)の下側の部分を形成するもので、流
路17の底部を併せて形成する環状体である。このノズ
ルチップ2は流路壁面3にγI■4を設けてあり、それ
より内周側は円環状スリット14を形成する斜面(曲面
)5となっている。Nozzle outer diameter: 250 mm Nozzle height 2 200 mm Nozzle inner diameter: 30 mm Annular retention chamber outer diameter: 200 mm Annular retention chamber diameter: 160 mm High pressure water inlet = 4 locations Nozzle tip 2 is the high pressure fluid jet outlet (
It forms the lower part of the annular slit 14), and is an annular body that also forms the bottom of the flow path 17. This nozzle chip 2 has a γI 4 formed on a flow path wall surface 3, and an inclined surface (curved surface) 5 forming an annular slit 14 on the inner circumferential side thereof.
iM 4は環状スリット14を含む平面に投射した形状
がスパイラル形をなしており、その円環状スリットを形
成する斜面(曲面)5との境界6の部分における半径方
向との傾き角7は20度となつている、この傾き角7は
、高圧噴出流体の形成する所望のつづみ形の形状に応じ
て、高圧流体の圧力、流量、ノズルの大きさ、形状、寸
法等に対応して定められ10度〜40度程度である。The iM 4 has a spiral shape when projected onto a plane including the annular slit 14, and the inclination angle 7 with respect to the radial direction at the boundary 6 with the slope (curved surface) 5 forming the annular slit is 20 degrees. This inclination angle 7 is determined in accordance with the pressure and flow rate of the high-pressure fluid, the size, shape, and dimensions of the nozzle, etc., depending on the desired shape of the chain formed by the high-pressure ejected fluid. It is about 10 degrees to 40 degrees.
溝4の晴断面形状は第3図(b)に示すようにV字形と
した。この満4の断面形状は矩形、U字形、台形、その
他何れの形状でもよい。The cross-sectional shape of the groove 4 was V-shaped as shown in FIG. 3(b). The cross-sectional shape of this square may be rectangular, U-shaped, trapezoidal, or any other shape.
従来、高圧水アトマイズは噴射流体流が1点に集まるノ
ズルでのみ行っており、生成微粉の粒度分布、生産量の
調整はその圧力と水量を変えることのみで行ったが、こ
れでは自由度が少なく、自由なコントロールができず、
結局得られた微粉の粒径と分布は自由に調整できなかっ
た。Conventionally, high-pressure water atomization has been carried out only with a nozzle where the jetted fluid flow converges at one point, and the particle size distribution and production amount of the fine powder produced can only be adjusted by changing the pressure and water volume, but this has limited flexibility. There are few, and there is no free control,
In the end, the particle size and distribution of the obtained fine powder could not be freely adjusted.
本発明では、流体流によって溶融原料の周囲を削るよう
に粉砕を行うので、得られる微粉は粒径が微細で粒度範
囲が狭く、また平均粒径の選定の自由度が大きく、特に
従来この方法(水圧法)では難しかった小粒径(10u
m以下)の微粉を高能率で製造することができる。In the present invention, since the pulverization is carried out by scraping the periphery of the molten raw material using a fluid stream, the resulting fine powder has a fine particle size and a narrow particle size range, and there is a large degree of freedom in selecting the average particle size. (hydraulic method) has a small particle size (10u
m or less) can be produced with high efficiency.
第1図は本発明の実施例のノズルの(a)縦断面図、(
b)その平面図、第2図、第3図はそれぞれ他の実施例
の要部の一部切欠斜視図、第4図(a)は実施例の要部
であるノズルチップの斜視図、第4図(b)はその溝の
断面図、第5図は従来のノズル、第6図は本発明の作用
を示す説明図で流体流の模式斜視図、第7図は従来のノ
ズル内の流れを示す説明図である。
■・・・ノズル 2・・・ノズルチップ3・・
・流路壁面 4・・・満FIG. 1 shows (a) a vertical sectional view of a nozzle according to an embodiment of the present invention;
b) Its plan view, FIGS. 2 and 3 are partially cutaway perspective views of the main parts of other embodiments, and FIG. 4(a) is a perspective view of the nozzle tip, which is the main part of the embodiment Figure 4(b) is a cross-sectional view of the groove, Figure 5 is a conventional nozzle, Figure 6 is an explanatory diagram showing the action of the present invention and is a schematic perspective view of fluid flow, and Figure 7 is a flow in a conventional nozzle. FIG. ■...Nozzle 2...Nozzle tip 3...
・Channel wall surface 4... full
Claims (1)
トから円錐膜状に高圧流体流を噴出させる微粉製造用ノ
ズルにおいて、該高圧流体流にスリット円周方向に旋回
流を付与する旋回流発生装置を付設したことを特徴とす
る微粉製造用ノズル。 2 前記旋回流発生装置が高圧流体供給口から円環状ス
リットに至る流路内に設けられ前記円環状スリットを含
む平面への投影が半径方向に対して角度を有する案内羽
根である特許請求の範囲第1項に記載の微粉製造用ノズ
ル。 3 前記旋回流発生装置が前記円環状スリットへの複数
の流体流入路であって、前記円環状スリットを含む平面
への投影が半径方向に対して角度を有する流路である特
許請求の範囲第1項に記載の微粉製造用ノズル。 4 前記旋回流発生装置が、高圧流体供給口から円環状
スリットに至る流路壁に設けられ該円環状スリットを含
む平面への投影が半径方向に対して傾きを有する多数の
溝である特許請求の範囲第1項に記載の微粉製造用ノズ
ル。 5 前記旋回流発生装置が、前記円環状スリットの外周
側流体流路に該円環状スリットと同心の流体滞留室と、
該滞留室に接線方向に高圧流体を供給する供給口とから
なる特許請求の範囲第1項〜第4項に記載の微粉製造用
ノズル。[Scope of Claims] 1. In a nozzle for producing fine powder that supplies high-pressure fluid from the outer circumferential side and ejects a high-pressure fluid stream in a conical film shape from an annular slit on the inner circumference, the high-pressure fluid stream is rotated in the circumferential direction of the slit. A nozzle for producing fine powder, characterized in that it is equipped with a swirling flow generating device that provides a flow. 2. Claims in which the swirling flow generating device is a guide vane provided in a flow path from a high-pressure fluid supply port to an annular slit, and whose projection onto a plane including the annular slit has an angle with respect to the radial direction. The nozzle for producing fine powder according to item 1. 3. The swirling flow generating device is a plurality of fluid inflow paths to the annular slit, and the projection onto a plane including the annular slit is at an angle with respect to the radial direction. The nozzle for producing fine powder according to item 1. 4. A patent claim in which the swirling flow generating device is a large number of grooves provided in a flow path wall extending from a high-pressure fluid supply port to an annular slit, and whose projection onto a plane including the annular slit is inclined with respect to the radial direction. A nozzle for producing fine powder according to item 1. 5. The swirling flow generating device includes a fluid retention chamber concentric with the annular slit in an outer peripheral side fluid flow path of the annular slit;
A nozzle for producing fine powder according to claims 1 to 4, comprising a supply port for supplying high-pressure fluid tangentially to the retention chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28087087A JPH01123012A (en) | 1987-11-09 | 1987-11-09 | Nozzle for manufacturing fine powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28087087A JPH01123012A (en) | 1987-11-09 | 1987-11-09 | Nozzle for manufacturing fine powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01123012A true JPH01123012A (en) | 1989-05-16 |
Family
ID=17631106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28087087A Pending JPH01123012A (en) | 1987-11-09 | 1987-11-09 | Nozzle for manufacturing fine powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01123012A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04131451U (en) * | 1991-05-24 | 1992-12-03 | 三井三池化工機株式会社 | nozzle structure |
JPH05192242A (en) * | 1991-03-12 | 1993-08-03 | Matsui Kagaku Kogyo Kk | Decoration stand |
JPH05229338A (en) * | 1992-02-24 | 1993-09-07 | Nippondenso Co Ltd | Car-mounting air cleaner |
JPH0622338U (en) * | 1992-05-29 | 1994-03-22 | 日新技研株式会社 | Powder production equipment |
JPH08199207A (en) * | 1995-01-30 | 1996-08-06 | Sumitomo Sitix Corp | Production of metallic powder and device therefor |
WO1999033598A1 (en) * | 1997-12-25 | 1999-07-08 | Fukuda Metal Foil & Powder Co., Ltd. | Method of producing metal powder |
US6336953B1 (en) * | 1998-12-24 | 2002-01-08 | Fukuda Metal Foil & Powder Co., Ltd. | Method for preparing metal powder |
JP2004097937A (en) * | 2002-09-09 | 2004-04-02 | Shiseido Co Ltd | Spray vessel |
WO2009036947A1 (en) * | 2007-09-17 | 2009-03-26 | Dieter Wurz | Multi-hole or cluster nozzle |
JP2013538116A (en) * | 2010-07-19 | 2013-10-10 | シェブロン ユー.エス.エー. インコーポレイテッド | Multiphase contact and distribution equipment for hydroprocessing. |
JP2017031462A (en) * | 2015-07-31 | 2017-02-09 | Jfeスチール株式会社 | Production method of water atomization metal powder |
WO2018042684A1 (en) * | 2016-08-30 | 2018-03-08 | 大研化学工業株式会社 | Silver powder production method and silver powder production apparatus |
EP3085475B1 (en) * | 2013-12-20 | 2018-09-26 | Posco | Powder manufacturing apparatus and powder forming method |
JP6533352B1 (en) * | 2018-07-27 | 2019-06-19 | 株式会社東北マグネットインスティテュート | High-speed fluid injection device |
JP2020084226A (en) * | 2018-11-16 | 2020-06-04 | 住友金属鉱山株式会社 | Metal powder production method |
JP2020084225A (en) * | 2018-11-16 | 2020-06-04 | 住友金属鉱山株式会社 | Metal powder production apparatus |
KR20230010951A (en) * | 2021-07-13 | 2023-01-20 | 주식회사 이엠엘 | High pressure gas rotating nozzle for powder manufacturing |
-
1987
- 1987-11-09 JP JP28087087A patent/JPH01123012A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05192242A (en) * | 1991-03-12 | 1993-08-03 | Matsui Kagaku Kogyo Kk | Decoration stand |
JPH04131451U (en) * | 1991-05-24 | 1992-12-03 | 三井三池化工機株式会社 | nozzle structure |
JPH05229338A (en) * | 1992-02-24 | 1993-09-07 | Nippondenso Co Ltd | Car-mounting air cleaner |
JPH0622338U (en) * | 1992-05-29 | 1994-03-22 | 日新技研株式会社 | Powder production equipment |
JPH08199207A (en) * | 1995-01-30 | 1996-08-06 | Sumitomo Sitix Corp | Production of metallic powder and device therefor |
WO1999033598A1 (en) * | 1997-12-25 | 1999-07-08 | Fukuda Metal Foil & Powder Co., Ltd. | Method of producing metal powder |
US6336953B1 (en) * | 1998-12-24 | 2002-01-08 | Fukuda Metal Foil & Powder Co., Ltd. | Method for preparing metal powder |
CN100364700C (en) * | 1998-12-24 | 2008-01-30 | 福田金属箔粉工业株式会社 | Method of manufacturing metal powder |
JP2004097937A (en) * | 2002-09-09 | 2004-04-02 | Shiseido Co Ltd | Spray vessel |
US8672241B2 (en) | 2007-09-17 | 2014-03-18 | Dieter Wurz | Multi-hole or cluster nozzle |
WO2009036947A1 (en) * | 2007-09-17 | 2009-03-26 | Dieter Wurz | Multi-hole or cluster nozzle |
JP2013538116A (en) * | 2010-07-19 | 2013-10-10 | シェブロン ユー.エス.エー. インコーポレイテッド | Multiphase contact and distribution equipment for hydroprocessing. |
EP3085475B1 (en) * | 2013-12-20 | 2018-09-26 | Posco | Powder manufacturing apparatus and powder forming method |
US10391558B2 (en) | 2013-12-20 | 2019-08-27 | Posco | Powder manufacturing apparatus and powder forming method |
JP2017031462A (en) * | 2015-07-31 | 2017-02-09 | Jfeスチール株式会社 | Production method of water atomization metal powder |
WO2018042684A1 (en) * | 2016-08-30 | 2018-03-08 | 大研化学工業株式会社 | Silver powder production method and silver powder production apparatus |
JP2018035388A (en) * | 2016-08-30 | 2018-03-08 | 大研化学工業株式会社 | Silver powder production method and silver powder production device |
JP6533352B1 (en) * | 2018-07-27 | 2019-06-19 | 株式会社東北マグネットインスティテュート | High-speed fluid injection device |
JP2020084226A (en) * | 2018-11-16 | 2020-06-04 | 住友金属鉱山株式会社 | Metal powder production method |
JP2020084225A (en) * | 2018-11-16 | 2020-06-04 | 住友金属鉱山株式会社 | Metal powder production apparatus |
KR20230010951A (en) * | 2021-07-13 | 2023-01-20 | 주식회사 이엠엘 | High pressure gas rotating nozzle for powder manufacturing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01123012A (en) | Nozzle for manufacturing fine powder | |
JP5502097B2 (en) | Two-component nozzle and method for atomizing fluid | |
CA1231235A (en) | Method and apparatus for forming a high velocity liquid abrasive jet | |
US7621473B2 (en) | Ring jet nozzle and process of using the same | |
US7694944B2 (en) | Nozzle for atomising a liquid by means of a gas and method of atomising | |
CN102581291A (en) | Circumferential seam type supersonic nozzle for metal gas atomization | |
CN111432963A (en) | Metal powder manufacturing apparatus, gas injector and can device thereof | |
EP3539721B1 (en) | Multi-jet abrasive head | |
EP3085475B1 (en) | Powder manufacturing apparatus and powder forming method | |
JP2004269956A (en) | Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus | |
US20220080503A1 (en) | Metal powder producing apparatus and gas jet device therefor | |
JPS6224481B2 (en) | ||
JP2008526478A (en) | Spike axisymmetric nozzle and method of using the same | |
TWI723596B (en) | Atomizing nozzle, atmizing device, method for metal powder and metal powder prodeced by the same | |
JP2015000997A (en) | Soft magnetic metal powder production device | |
JPS6350404A (en) | Spray nozzle for producing metallic powder | |
JP2001226704A (en) | Manufacturing apparatus and manufacturing method for metallic powder | |
JP2005118725A (en) | Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same | |
JPH04173906A (en) | Atomizing nozzle device | |
RU2778342C1 (en) | Device for obtaining powder of metals and alloys | |
JP2002105514A (en) | Apparatus and method for manufacturing metal powder | |
CS231153B2 (en) | Method of molten metal spraying in making metal powder and device to perform the method | |
TWI522455B (en) | Water distribution system in a gasification reactor | |
JPH0554376B2 (en) | ||
EP0111793A2 (en) | Method and apparatus for atomizing slurry-type fuel |