JPS62278208A - Ring nozzle for producing metallic powder - Google Patents

Ring nozzle for producing metallic powder

Info

Publication number
JPS62278208A
JPS62278208A JP12316386A JP12316386A JPS62278208A JP S62278208 A JPS62278208 A JP S62278208A JP 12316386 A JP12316386 A JP 12316386A JP 12316386 A JP12316386 A JP 12316386A JP S62278208 A JPS62278208 A JP S62278208A
Authority
JP
Japan
Prior art keywords
ring
nozzle
holes
molten metal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12316386A
Other languages
Japanese (ja)
Other versions
JPH0582441B2 (en
Inventor
Shinri Kikukawa
真利 菊川
Kota Inaba
稲葉 恒太
Osamu Iwazu
岩津 修
Hiroshi Korekawa
是川 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP12316386A priority Critical patent/JPS62278208A/en
Publication of JPS62278208A publication Critical patent/JPS62278208A/en
Publication of JPH0582441B2 publication Critical patent/JPH0582441B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To reduce energy loss and to stably atomize a molten metal by incorporating a prescribed flow uniformizing ring and a prescribed flow regulating ring into a ring nozzle so as to form a uniform film of the molten metal. CONSTITUTION:A molten metal introduced 12 into a ring nozzle from the introducing holes 5 under high pressure flows into four or more dividing holes 1 pierced in a flow uniformizing ring 3. The molten metal is then introduced into divided chambers 7 and flows into flow regulating holes 2, where the flow directions of the molten metal are changed and the flows are finely divided and regulated. The number of the flow regulating holes 2 is >=2 times the number of the dividing holes 1. The flows are made uniform through a flow regulating zone 11 between a flow regulating ring 4 and the body of the nozzle and jets out of jet holes 13. A jet film having the shape of an inverted cone is formed with high uniformity over the whole circumference, so the molten metal is stably atomized with a reduced energy loss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属から粉末を製造するための噴霧装置
、特に噴霧ノズルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a spraying device, in particular a spray nozzle, for producing powder from molten metal.

〔従来の技術〕[Conventional technology]

リングノズルにより、溶融金属を噴霧する場合、そのノ
ズルから噴出した水ジェツトにより構成されろ水膜が最
も重要であり、この水膜の特性により、得られる金属粉
末の特性が左右される。特に見掛密度の低い粉末を得よ
うとする場合には、リングノズルの全周方向において、
できるだけ均一な水膜が要求される。従来、種々の金属
粉末製造用噴霧ノズルが提案されているが、なかでも均
一な水膜を得るものとしては、動圧制御環と調整ガイド
を備えた噴霧装置が提案されている(特公昭43−63
89)。またこの噴霧装置の他にも、複数のペンシル型
噴霧ノズルより出た噴射液体の衝流を、沿面ガイドによ
って逆円錐状水膜とするもの(特公昭52−19540
)等が提案されている。しかしながら、動圧制御環と調
整ガイドを備えた噴霧装置にあっては、高圧水が一本ま
たは二本の高圧パイプから導入された場合、この高圧水
は動圧制御環によって一度減速され、均一な圧力とされ
た後、噴出口より噴出させようとするものであるが、こ
の場合、噴出口側の室での水流の均一性は得られない。
When molten metal is sprayed using a ring nozzle, the most important thing is the water film formed by the water jet ejected from the nozzle, and the properties of the resulting metal powder are influenced by the properties of this water film. Especially when trying to obtain powder with low apparent density, in the entire circumferential direction of the ring nozzle,
A water film as uniform as possible is required. In the past, various spray nozzles for producing metal powder have been proposed, but among them, a spray device equipped with a dynamic pressure control ring and an adjustment guide has been proposed to obtain a uniform water film (Japanese Patent Publication No. 43 -63
89). In addition to this spray device, there is also a device that converts the jet liquid emitted from a plurality of pencil-type spray nozzles into an inverted conical water film using a creeping guide (Japanese Patent Publication No. 52-19540).
) etc. have been proposed. However, in a spray device equipped with a dynamic pressure control ring and an adjustment guide, when high-pressure water is introduced from one or two high-pressure pipes, this high-pressure water is decelerated once by the dynamic pressure control ring and uniformly After the water has been brought to a certain pressure, the water is ejected from the spout, but in this case, a uniform water flow cannot be achieved in the chamber on the spout side.

そして、この不均一性は噴出口より噴出した高速ジェッ
トにまで残存する。すなわち動圧制御環とリングノズル
本体とのすきまの幅が0.2+ns+以上では、一方向
または二方向から導入された高圧水の、その導入方向の
みの水流が強く、最終的に得られる水膜の焦点が点とは
ならず、導入方向と直角に長い8字のような形となる。
This non-uniformity remains even in the high-speed jet ejected from the jet nozzle. In other words, when the width of the gap between the dynamic pressure control ring and the ring nozzle body is 0.2+ns+ or more, the water flow of high-pressure water introduced from one or two directions is strong only in the direction of introduction, and the resulting water film is The focal point is not a point, but a long figure 8-like shape perpendicular to the direction of introduction.

動圧制御環による方法では、水流の均一性を求めるとそ
のすきまの幅を0.2mm以下にする必要があり、0.
21以下にすると動圧制御環による抵抗が増大し、その
圧力損失が太き(、動圧制御環がない場合に比べて約6
0kg/crII以上の損失となる。また圧力損失のみ
ならず動圧制御環の前後での圧力差によって動圧制御環
の変形が起こり、リング内部が閉塞し、ノズルまたはポ
ンプを破…する場合も考えられる。
In the method using a dynamic pressure control ring, in order to obtain uniformity of water flow, the width of the gap must be 0.2 mm or less;
If it is less than 21, the resistance due to the dynamic pressure control ring will increase, and the pressure loss will be large (approx.
This results in a loss of 0 kg/crII or more. In addition, the dynamic pressure control ring may be deformed due to not only the pressure loss but also the pressure difference before and after the dynamic pressure control ring, causing the inside of the ring to become clogged and possibly breaking the nozzle or pump.

このような、高圧水導入方向からくる水流の不均一性は
、高圧水の導入口の断面積と噴出口の断面積との比を大
きくすれば改善されるが、噴出゛日新面積が一定の場合
、導入口断面積はノズルの大きさなどから限界があり、
実用上問題が多い。他方、噴霧ノズル内部で整流するの
ではなく、噴射された衝流を沿面ガイドによって逆円錐
型水膜とする噴霧ノズルにおいては、高速ジェットを沿
面ガイドにより方向変化するためにエネルギー1員失が
大きく、溶湯を粉化する能力が低下するなど問題点があ
る。
Such non-uniformity of the water flow coming from the high-pressure water introduction direction can be improved by increasing the ratio of the cross-sectional area of the high-pressure water inlet to the cross-sectional area of the spout, but if the daily new area of the jet is constant. In this case, there is a limit to the inlet cross-sectional area due to the size of the nozzle, etc.
There are many practical problems. On the other hand, in a spray nozzle that does not rectify the flow inside the spray nozzle, but uses a creeping guide to turn the injected impulse into an inverted cone-shaped water film, the energy loss is large because the direction of the high-speed jet is changed by the creeping guide. , there are problems such as a decrease in the ability to powder the molten metal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、前記従来リングノズルにおける技術上の
諸問題点を解決すべく、できるだけ均一で、しかもエネ
ルギー損失の少ない噴霧ノズルを種々検討した結果、リ
ングノズルの内部に向流リングと整流リングを設置する
ことにより、その目的が達成できることを見出し、本発
明を完成したものである。
In order to solve the technical problems with the conventional ring nozzles, the present inventors investigated various spray nozzles that were as uniform as possible and had less energy loss. The present invention was completed based on the discovery that the objective could be achieved by installing the following.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は噴霧媒体が噴霧ノズル内へ導入されてから噴出
口に至までの間に、4個以上の分割孔と分割孔より流出
する噴霧媒体の流れ方向を変更させる方向に、分割孔の
数の2倍以上の数の整流孔を設けた向流リングならびに
整流リングを設けたことを特徴とする、金属粉末製造用
リングノズルである。
The present invention provides four or more dividing holes and a number of dividing holes in the direction of changing the flow direction of the spray medium flowing out from the dividing holes, from the time the spray medium is introduced into the spray nozzle until the spray medium reaches the jet nozzle. This is a ring nozzle for producing metal powder, characterized in that it is provided with a countercurrent ring and a rectifier ring, each having at least twice the number of rectifying holes.

〔作用〕[Effect]

第1図により、本発明をさらに詳述すれば次の通りであ
る。なお、ノズル内部には、本発明を特徴づける向流リ
ング■と整流リング■とを有するが、これらによってノ
ズル内部は4室に分けられる。説明上、この室を高圧水
の流れる順に高圧水導入口■、高圧水導室■、分割室■
、整流室■、噴出前室■と称する。
Referring to FIG. 1, the present invention will be described in further detail as follows. The inside of the nozzle has a countercurrent ring (2) and a rectification ring (2) which characterize the present invention, and these allow the inside of the nozzle to be divided into four chambers. For purposes of explanation, the order in which high-pressure water flows through this chamber is high-pressure water inlet ■, high-pressure water guide chamber ■, and divided chamber ■
, rectification chamber (■), and pre-ejection chamber (■).

まず、高圧水導入口■からノズル内部へ導かれた高圧水
は、高圧水導入室■へ入り全周へと導かれる。そして向
流リング■に設けられた分割孔■を通り、分割室■へと
導かれる。この場合分割孔は、高圧水導入方向と、その
直角方向とは異なる位置に同一平面内で等間隔に4〜1
2個設けることが望ましく、このように、最適な位置と
数を選ぶことで、高王水は初期の導入方向における強い
方向性を打ち消され、分割室■へ導入される。分割室■
へ導かれた高圧水の流速は低下するが、流れの均一性は
向上する。さらに高圧水は分割室■から出て分割孔[1
]と同様の役割しする整流孔■により細かく分割され、
整流される。この場合、整流孔■は分割孔[1]と直角
方向でしかも同一軸上とは異なる位置で、その数を分割
孔■の2倍以上とすることが望ましい。
First, the high-pressure water introduced into the nozzle from the high-pressure water inlet (2) enters the high-pressure water introduction chamber (2) and is guided around the entire circumference. Then, it passes through the dividing hole (■) provided in the countercurrent ring (■) and is led to the dividing chamber (■). In this case, there are 4 to 1 dividing holes at equal intervals in the same plane at positions different from the high-pressure water introduction direction and the perpendicular direction.
It is desirable to provide two. By selecting the optimal position and number in this way, the strong directional nature of the high aqua regia in the initial introduction direction is canceled out, and the high aqua regia is introduced into the divided chamber (2). Split room■
Although the flow velocity of the high-pressure water introduced into the tank decreases, the uniformity of the flow improves. Furthermore, the high pressure water comes out from the dividing chamber ■ and the dividing hole [1
] is finely divided by rectifying holes ■ that play the same role as
rectified. In this case, it is desirable that the rectifying holes (2) be located in a direction perpendicular to the dividing hole [1] and at a different position from the same axis, and that the number of rectifying holes (2) be at least twice the number of dividing holes (2).

これら高圧水導入口■と分割孔■及び整流孔■の膜面積
のそれぞれの総和は概ね等しく設計することが必要であ
り、これにより圧力損失が少なく水膜への均一化効果の
大きい構造を有するリングノズルが得られる。
It is necessary to design the total membrane area of these high-pressure water inlet (■), dividing hole (■), and rectification hole (■) to be approximately equal, thereby creating a structure with less pressure loss and a greater uniformity effect on the water film. A ring nozzle is obtained.

次に、この整流孔■により細かく分割された高圧水は、
整流室■へ導かれ、再び速度を低下し整流リング■とノ
ズル本体とのすきま整流帯0から噴出前室■へと導かれ
る。この整流帯■の断面積は圧力[置火を少な(するこ
とと、整流効果を向上させるため、高圧水導入と概ね等
しくすきまの幅を0.5〜1mmとすることが良い。
Next, the high-pressure water that is finely divided by this rectifying hole ■ is
The liquid is guided to the rectifying chamber (2), the speed is reduced again, and the liquid is guided from the rectifying band (0) between the rectifying ring (2) and the nozzle body to the ejection front chamber (2). The cross-sectional area of this rectifying zone (2) should be approximately equal to the introduction of high-pressure water, and the width of the gap should be 0.5 to 1 mm in order to reduce the pressure and improve the rectifying effect.

上述のように、高圧水導入口■より高圧水導入室■に導
入され、向流リング■、整流リング[4]を経て噴出前
室■へと導かれた高圧水は、高圧水導入室■における初
期の強い方向性が打ち消され、全周方向において均一な
水流となる。このようにして噴出口0より手前で均一化
された水流は、噴出口0より噴出し、全周で均一性の高
い逆円錐状水膜水ジェツトを形成する。このことにより
、水膜は安定し、水ジェツトの集中度が上がり、ノズル
のエネルギー効率が上昇する。すなわち、水ジェツトの
エネルギーが溶湯の変形、冷却に有効に利用され、この
水膜を用いて得た粉末を細かくイレギラーにするもので
ある。
As mentioned above, the high-pressure water introduced into the high-pressure water introduction chamber ■ from the high-pressure water inlet ■, passed through the countercurrent ring ■, the rectification ring [4], and led to the pre-jet chamber ■. The initial strong directionality in the water is canceled out, resulting in a uniform water flow in the entire circumferential direction. The water flow that has been made uniform before the spout 0 in this manner is ejected from the spout 0, forming an inverted conical water film water jet that is highly uniform around the entire circumference. This stabilizes the water film, increases the concentration of the water jet, and increases the energy efficiency of the nozzle. That is, the energy of the water jet is effectively used to deform and cool the molten metal, and the powder obtained using this water film is made into fine particles.

〔実施例、比較例〕[Example, comparative example]

第1図に示した本発明のリングノズルを用い均一性確認
のため、噴霧口[相]の断面積を、高圧水導入口■の断
面積と等しく、整流帯すきま0を0.5…mにして高圧
水導入口■より高圧水を4人した。
To confirm uniformity using the ring nozzle of the present invention shown in Fig. 1, the cross-sectional area of the spray port [phase] was made equal to the cross-sectional area of the high-pressure water inlet (■), and the rectification zone gap 0 was set to 0.5...m. 4 people poured high-pressure water from the high-pressure water inlet ■.

この時、噴出口0と高圧水導入口■との断面積を等しく
しているので、高圧水導入口■に接続した圧力計に現れ
る圧力はほとんど配管の抵抗とノズル内部の抵抗、すな
わち整流リング■と整流リング■による抵抗によるもの
と見てよい。テストの結果、この圧力は21kgf/−
であった。またリングノズルの噴出口より噴出した水流
は均一で安定したものであった。
At this time, since the cross-sectional area of the jet nozzle 0 and the high-pressure water inlet ■ are made equal, the pressure appearing on the pressure gauge connected to the high-pressure water inlet ■ is mostly due to the resistance of the piping and the resistance inside the nozzle, that is, the rectifier ring. This can be considered to be due to the resistance caused by ■ and the rectifier ring ■. As a result of the test, this pressure was 21kgf/-
Met. In addition, the water flow ejected from the ring nozzle was uniform and stable.

これに対し、比較例として特公昭43−6389と同一
方式のリングノズルを用いて本発明の整流帯すきまに相
当する動圧制御環すきまを0.5〜0.31に設定して
、本発明と同じく圧力と噴出した水流の均−性及び安定
性を観察した。その結果を第1表に比較して示°す。
In contrast, as a comparative example, a ring nozzle of the same type as in Japanese Patent Publication No. 43-6389 was used, and the dynamic pressure control ring clearance, which corresponds to the rectifying band clearance of the present invention, was set to 0.5 to 0.31. Similarly, the pressure and the uniformity and stability of the ejected water stream were observed. The results are shown in Table 1 for comparison.

第1表 さらに、本発明のリングノズルと比較例のリングノズル
とを用いて、共に噴出圧力150kgf/cnlとしC
u−10XSn合金の溶湯を溶湯径8mmφでアトマイ
ズを行った。
Table 1 Furthermore, using the ring nozzle of the present invention and the ring nozzle of the comparative example, the ejection pressure was set to 150 kgf/cnl, and C
A molten metal of u-10XSn alloy was atomized with a molten metal diameter of 8 mmφ.

このアトマイズによって得られた粉末の特性を比較して
第2表に示す。
Table 2 shows a comparison of the characteristics of the powder obtained by this atomization.

第2表 このように本発明のリングノズルを用いた場合には比較
例の場合に比べ、粒度分布が細かい側へ移り、見掛密度
も各粒度とともに低下しており、本発明の有効性が示さ
れている。
Table 2 As shown in Table 2, when the ring nozzle of the present invention was used, the particle size distribution shifted to the finer side compared to the comparative example, and the apparent density decreased with each particle size, indicating the effectiveness of the present invention. It is shown.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の向流リングと整流リング
を組み込んだリングノズルは均一な水膜が得られ、エネ
ルギー損失も少なく安定したアトマイズを行うことがで
き産業上有用な発明である。
As described in detail above, the ring nozzle incorporating the countercurrent ring and the rectifying ring of the present invention is an industrially useful invention as it can provide a uniform water film and perform stable atomization with little energy loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の向流リングと整流リングを組み込んだ
、リングノズルの断面である。 第2図は向流リングの平面図である。 ■分割孔  ■整流孔  ■向流すング■整流リング 
 ■高圧水導入口 ■高水圧導入室  ■分割室  ■整流室■噴出前室 
 @l調整ガイド・  0整流帯0高圧水導入方向  
0噴出口
FIG. 1 is a cross-section of a ring nozzle incorporating the counterflow ring and rectifier ring of the present invention. FIG. 2 is a plan view of the countercurrent ring. ■Divided hole ■Rectification hole ■Counterflow ring ■Rectification ring
■High pressure water inlet ■High water pressure introduction chamber ■Divided chamber ■Rectification chamber ■Pre-spout chamber
@Adjustment guide・0 rectification zone 0 high pressure water introduction direction
0 spout

Claims (2)

【特許請求の範囲】[Claims] (1)噴霧媒体が噴霧ノズル内へ導入されてから噴出口
に致るまでの間に4個以上の分割孔[1]と分割孔[1
]より流出する噴霧媒体の流れ方向を変更させる方向に
、分割孔の数の2倍以上の数の整流孔[2]を設けた均
流リング[3]ならびに整流リング[4]を設けたこと
を特徴とする金属粉末製造用リングノズル。
(1) After the spray medium is introduced into the spray nozzle until it reaches the spout, there are four or more dividing holes [1] and dividing holes [1].
] A flow equalizing ring [3] and a flow straightening ring [4] are provided in which the number of straightening holes [2] is twice or more the number of dividing holes, and the straightening ring [4] is provided in a direction that changes the flow direction of the spray medium flowing out from the A ring nozzle for metal powder production featuring:
(2)均流リング[3]と調整リング[4]が一体に構
成されたことを特徴とする特許請求の範囲第1項に記載
された金属粉末製造用リングノズル。
(2) The ring nozzle for producing metal powder as set forth in claim 1, wherein the flow equalizing ring [3] and the adjusting ring [4] are integrally constructed.
JP12316386A 1986-05-27 1986-05-27 Ring nozzle for producing metallic powder Granted JPS62278208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12316386A JPS62278208A (en) 1986-05-27 1986-05-27 Ring nozzle for producing metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12316386A JPS62278208A (en) 1986-05-27 1986-05-27 Ring nozzle for producing metallic powder

Publications (2)

Publication Number Publication Date
JPS62278208A true JPS62278208A (en) 1987-12-03
JPH0582441B2 JPH0582441B2 (en) 1993-11-19

Family

ID=14853741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12316386A Granted JPS62278208A (en) 1986-05-27 1986-05-27 Ring nozzle for producing metallic powder

Country Status (1)

Country Link
JP (1) JPS62278208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364700C (en) * 1998-12-24 2008-01-30 福田金属箔粉工业株式会社 Method of manufacturing metal powder
JP2012097323A (en) * 2010-11-02 2012-05-24 Fukuda Metal Foil & Powder Co Ltd Copper-based alloy powder for powder metallurgy
CN103635273A (en) * 2011-05-18 2014-03-12 东北泰克诺亚奇股份有限公司 Metallic powder production method and metallic powder production device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE417642T1 (en) 2005-02-28 2009-01-15 Novo Nordisk As DOSE SETTING MECHANISM FOR AN INJECTION DEVICE WHICH CAN PRESET A MAXIMUM DOSE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364700C (en) * 1998-12-24 2008-01-30 福田金属箔粉工业株式会社 Method of manufacturing metal powder
JP2012097323A (en) * 2010-11-02 2012-05-24 Fukuda Metal Foil & Powder Co Ltd Copper-based alloy powder for powder metallurgy
CN103635273A (en) * 2011-05-18 2014-03-12 东北泰克诺亚奇股份有限公司 Metallic powder production method and metallic powder production device

Also Published As

Publication number Publication date
JPH0582441B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US5845846A (en) Spraying nozzle and method for ejecting liquid as fine particles
CA2018017C (en) Method for producing powder by gas atomization
CN201900264U (en) Unrestricted high-pressure gas atomizing nozzle
US11298746B2 (en) Metal powder producing apparatus and gas jet device for same
KR20010030664A (en) Method for preparing metal powder
EP3085475B1 (en) Powder manufacturing apparatus and powder forming method
CN210875853U (en) Nozzle combining pneumatic atomization and bubble atomization
JPS62278208A (en) Ring nozzle for producing metallic powder
JPS6227058A (en) Molten metal atomizer
JP2580616B2 (en) Method for producing spherical metal powder
CN107983964A (en) A kind of close coupling ring rectangular opening gas nozzle atomizer for improving nebulization efficiency
CN210304177U (en) Jet swirl nozzle structure and spraying device
JPS6350404A (en) Spray nozzle for producing metallic powder
CN207606258U (en) A kind of acceleration loop device for internal-mixing nozzle for atomizing water with air efficient over long distances
CN220050045U (en) Atomizing spray disc with two air current structures of different directions
CN100544860C (en) Water atomization is produced the injection apparatus of global type metal dust
JPH0445218B2 (en)
CN2915327Y (en) Water-atomization jet device for whole-sphere shape metal powder production
JP2606318Y2 (en) Two-fluid spray nozzle
JP2834348B2 (en) Manufacturing method of metal powder
CN213772182U (en) Novel aqueous vapor combination atomizing spouts chamber
CN218611694U (en) Circular seam adjustable air-water combined atomizing spray disk
JPH02198620A (en) Production of fine powder and melting nozzle therefor
SU1433640A1 (en) Injector for atomizing melt
JPS63262405A (en) Production of metal powder