JP2006063357A - Method for manufacturing metallic powder with water atomization method - Google Patents

Method for manufacturing metallic powder with water atomization method Download PDF

Info

Publication number
JP2006063357A
JP2006063357A JP2004244338A JP2004244338A JP2006063357A JP 2006063357 A JP2006063357 A JP 2006063357A JP 2004244338 A JP2004244338 A JP 2004244338A JP 2004244338 A JP2004244338 A JP 2004244338A JP 2006063357 A JP2006063357 A JP 2006063357A
Authority
JP
Japan
Prior art keywords
inert gas
flow rate
molten metal
metal powder
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004244338A
Other languages
Japanese (ja)
Inventor
Shigeto Shimizu
成人 清水
Tatsushi Noda
竜史 野田
Norihiro Ogawa
典宏 小川
Shigeji Ito
茂治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004244338A priority Critical patent/JP2006063357A/en
Publication of JP2006063357A publication Critical patent/JP2006063357A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metallic powder with a water atomization method, which inexpensively manufactures the metallic powder containing little oxygen. <P>SOLUTION: This manufacturing method comprises: making an inert-gas-supplying chamber 16 communicate with a chamber 18 for collecting the metallic powder through a through hole 20; keeping the inside of a chamber 18 into an inert gas atmosphere, by supplying an inert gas to the inert-gas-supplying chamber 16; in the state, making a drooping flow 32 of a molten metal 30 pooled in a tundish 12 flow downward into the chamber 18 through the through hole 20; and jetting high-pressure water to the drooping flow 32 of the molten metal 30. At this time, a ratio of a flow rate (m<SP>3</SP>/min) of the inert gas sent to the inert-gas-supplying chamber 16, to the flow rate (kg/min) of the molten metal 30 sent to the inert-gas-supplying chamber 16 is set so as to satisfy 0.1≤ flow rate of inert gas/flow rate of molten metal 30 ≤0.4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶融金属の垂下流に対して高圧水を噴射することで微細な金属粉末を製造する水アトマイズ法による金属粉末の製造方法に関するものである。   The present invention relates to a method for producing metal powder by a water atomizing method in which fine metal powder is produced by injecting high-pressure water onto the down stream of molten metal.

従来より、金属射出成形、触媒、塗料等に利用される金属粉末の製造方法として、機械的粉砕方法や酸化還元法、電解法等、対象とする金属により様々な方法が提案されているが、工業的に金属粉末を多量に製造する方法として、水アトマイズ法が知られている。この水アトマイズ法は、タンディッシュに貯留した溶融金属をタンディッシュ下部に設けた通孔から流出させ、この溶融金属流に高圧水を噴射することで、溶融金属を飛散させて粉末化する方法である(例えば、特許文献1参照)。この水アトマイズ法により金属粉末を製造することで、微細な金属粉末を多量かつ安価に供給し得る利点がある。
特開昭55−82701号公報
Conventionally, as a method for producing metal powders used for metal injection molding, catalysts, paints, etc., various methods have been proposed depending on the target metal, such as mechanical pulverization method, oxidation reduction method, electrolysis method, etc. As a method for industrially producing a large amount of metal powder, a water atomizing method is known. This water atomization method is a method in which molten metal stored in a tundish is discharged from a through hole provided in the lower part of the tundish, and high-pressure water is injected into the molten metal stream to scatter and melt the molten metal into a powder. Yes (see, for example, Patent Document 1). By producing metal powder by this water atomization method, there is an advantage that a fine metal powder can be supplied in a large amount and at low cost.
Japanese Patent Laid-Open No. 55-82701

前述した水アトマイズ法により溶融金属から金属粉末を製造する場合、高温の溶融金属と水とが接触した際に、水中の溶存酸素や水の分解により生じた酸素と金属とが反応して金属粉末が酸化する欠点が指摘される。すなわち、金属粉末の酸素含有量が多くなると、この金属粉末を用いて製造された金属製品の機械的性質を低下させる原因ともなるため、酸素含有量が少ない金属粉末が求められる。そこで、水アトマイズ法による金属粉末の製造に際して、金属粉末が酸化するのを防止する方法として、使用する水に窒素やアルゴン等の不活性ガスをバブリングして水中の溶存酸素を不活性ガスで除去した水を使用して水アトマイズしたり、減圧処理により水中の溶存酸素濃度を減少させる方法もあるが、金属粉末中の酸素含有量を下げるには十分とは言えなかった。
すなわち、本発明は、前述した従来の技術に内在している前記欠点に鑑み、これを好適に解決するべく提案されたものであって、酸素含有量が少ない金属粉末を低コストで製造可能な水アトマイズ法による金属粉末の製造方法を提供することを目的とする。
When producing metal powder from molten metal by the water atomization method described above, when the high-temperature molten metal comes into contact with water, the metal powder reacts with dissolved oxygen in water or the oxygen generated by the decomposition of water and the metal. It is pointed out that oxidants are oxidized. That is, when the oxygen content of the metal powder increases, it also causes a decrease in the mechanical properties of a metal product produced using this metal powder, and therefore a metal powder with a low oxygen content is required. Therefore, when manufacturing metal powder by the water atomization method, an inert gas such as nitrogen or argon is bubbled into the water to be used to remove the dissolved oxygen in the water as a method to prevent the metal powder from oxidizing. Although there are methods for water atomization using the treated water and a method for reducing the dissolved oxygen concentration in the water by decompression treatment, it has not been sufficient to reduce the oxygen content in the metal powder.
That is, the present invention has been proposed in view of the above-mentioned drawbacks inherent in the prior art described above, and it is proposed to suitably solve this problem, and a metal powder having a low oxygen content can be produced at low cost. It aims at providing the manufacturing method of the metal powder by the water atomization method.

前記課題を克服し、所期の目的を達成するため、本発明に係る水アトマイズ法による金属粉末の製造方法は、
不活性ガス供給室と金属粉末回収用のチャンバとを通孔を介して連通させ、該不活性ガス供給室への不活性ガスの供給によりチャンバ内を不活性ガス雰囲気下に保持した状態で、前記通孔を介してタンディッシュに貯留した溶融金属の垂下流をチャンバ内に流下させると共に、該溶融金属の垂下流に対して高圧水を噴射することにより金属粉末を製造する水アトマイズ法による金属粉末の製造方法であって、
前記不活性ガス供給室への不活性ガスの流量(m3/min)と、該不活性ガス供給室への溶融金属の流量(kg/min)との比が、
0.1≦不活性ガスの流量/溶融金属の流量≦0.4
の範囲となるよう設定したことを特徴とする。
In order to overcome the above problems and achieve the intended purpose, a method for producing metal powder by the water atomization method according to the present invention,
In a state where the inert gas supply chamber communicates with the metal powder recovery chamber through a hole, and the inside of the chamber is maintained in an inert gas atmosphere by supplying the inert gas to the inert gas supply chamber, A metal by a water atomization method for producing metal powder by flowing down the molten metal stored in the tundish through the through hole into the chamber and injecting high-pressure water into the downstream of the molten metal. A method for producing a powder, comprising:
The ratio of the flow rate of inert gas to the inert gas supply chamber (m 3 / min) and the flow rate of molten metal to the inert gas supply chamber (kg / min) is:
0.1 ≦ inert gas flow rate / molten metal flow rate ≦ 0.4
It is set to be in the range of.

本発明の請求項1に係る水アトマイズ法による金属粉末の製造方法よれば、溶融金属の周囲における不活性ガス濃度を高め、該溶融金属の酸化を防止し得るから、酸素含有量の少ない金属粉末を製造し得る。また、本発明を実施するに際して、新たな設備を導入する必要がないから、低コストで金属粉末を製造可能である。   According to the method for producing metal powder by the water atomization method according to claim 1 of the present invention, it is possible to increase the inert gas concentration around the molten metal and prevent oxidation of the molten metal. Can be manufactured. Further, when implementing the present invention, it is not necessary to introduce new equipment, so that metal powder can be produced at low cost.

次に、本発明に係る水アトマイズ法による金属粉末の製造方法につき、好適な実施例を挙げて、添付図面を参照しながら、以下詳細に説明する。   Next, the manufacturing method of the metal powder by the water atomization method according to the present invention will be described in detail below with reference to the accompanying drawings by giving a preferred example.

図1は、本発明に係る水アトマイズ法による金属粉末の製造方法を実施する金属粉末製造装置10を示す概略図である。前記金属粉末製造装置10は、装置上部に溶融金属30を貯留するタンディッシュ12が設けられると共に、該タンディッシュ12の下方にガス管14,14が接続された不活性ガス供給室16が画成されており、該ガス管14,14を介して窒素ガス(N2)やアルゴンガス(Ar)等の不活性ガスを不活性ガス供給室16に供給するよう構成される。また、前記不活性ガス供給室16の下方には、金属粉末回収用のチャンバ18が設けられており、該チャンバ18の天面に形成した通孔20を介して不活性ガス供給室16と連通するようになっている。すなわち、前記不活性ガス供給室16からの不活性ガスをチャンバ18内に流入させることで、不活性ガス供給室16とチャンバ18とを不活性ガス雰囲気下に保持するようになっている。また、前記タンディッシュ12の底面における前記通孔20と上下に整列する位置には、図示しないバルブ等により開閉可能な流出孔22が設けられており、バルブを開放して流出孔22から流出させた溶融金属30(以下溶融金属30の垂下流32という)が通孔20からチャンバ18内に流入するよう構成される。 FIG. 1 is a schematic view showing a metal powder production apparatus 10 for performing a metal powder production method by a water atomization method according to the present invention. The metal powder production apparatus 10 is provided with a tundish 12 for storing molten metal 30 at the upper part of the apparatus, and an inert gas supply chamber 16 to which gas pipes 14 and 14 are connected is defined below the tundish 12. In addition, an inert gas such as nitrogen gas (N 2 ) or argon gas (Ar) is supplied to the inert gas supply chamber 16 through the gas pipes 14 and 14. A chamber 18 for collecting metal powder is provided below the inert gas supply chamber 16 and communicates with the inert gas supply chamber 16 through a through hole 20 formed in the top surface of the chamber 18. It is supposed to be. That is, the inert gas from the inert gas supply chamber 16 is caused to flow into the chamber 18 so that the inert gas supply chamber 16 and the chamber 18 are maintained in an inert gas atmosphere. Further, an outflow hole 22 that can be opened and closed by a valve or the like (not shown) is provided at a position aligned with the through hole 20 on the bottom surface of the tundish 12, and the valve is opened to allow the outflow hole 22 to flow out. The molten metal 30 (hereinafter referred to as a downstream 32 of the molten metal 30) flows into the chamber 18 from the through hole 20.

また、前記不活性ガス供給室16には、外部水源に接続された噴霧ノズル24,24が導入されており、該噴霧ノズル24,24から噴射された高圧水が前記通孔20の下方で収束して逆円錐状のジェット膜25を形成するようになっている。すなわち、前記通孔20からチャンバ18内に流入した溶融金属30の垂下流32に高圧水を噴射することにより、溶融金属30が粉砕されて微細化し、該微細化した溶融金属30が固化することで金属粉末34が製造され、該金属粉末34がチャンバ18内に貯留される。なお、前記チャンバ18には、ガス抜き用の管26が接続されており、該チャンバ18内の圧力調節を行ない得るようになっている。また、前記チャンバ18内に貯留される金属粉末34および水は、前記チャンバ18の下方に設けられた回収装置28により回収するよう構成されている。   In addition, spray nozzles 24 and 24 connected to an external water source are introduced into the inert gas supply chamber 16, and high-pressure water sprayed from the spray nozzles 24 and 24 converges below the through hole 20. Thus, an inverted conical jet film 25 is formed. That is, by injecting high-pressure water into the downstream 32 of the molten metal 30 that has flowed into the chamber 18 from the through hole 20, the molten metal 30 is pulverized and refined, and the refined molten metal 30 is solidified. Thus, the metal powder 34 is manufactured, and the metal powder 34 is stored in the chamber 18. The chamber 18 is connected with a degassing pipe 26 so that the pressure in the chamber 18 can be adjusted. The metal powder 34 and water stored in the chamber 18 are collected by a collection device 28 provided below the chamber 18.

前記金属粉末製造装置10は、金属粉末34を製造しないときには、前記不活性ガス供給室16に対して少量の不活性ガスを供給することで、該不活性ガス供給室16とチャンバ18内を不活性ガス雰囲気下に保持するようになっている。そして、水アトマイズ法により金属粉末34を製造するに場合には、前記不活性ガス供給室16への不活性ガスの供給量(不活性ガスの流量)を増大させた状態で、前記噴霧ノズル24,24から高圧水を噴射すると共に、前記通孔20を介して前記タンディッシュ12の垂下流32をチャンバ18内に流入させて金属粉末34を製造するようにしている。すなわち、前記通孔20を介してチャンバ18に流入する不活性ガス量も増大する。   When the metal powder production apparatus 10 does not produce the metal powder 34, the metal powder production apparatus 10 supplies the inert gas supply chamber 16 with a small amount of inert gas so that the inert gas supply chamber 16 and the chamber 18 are inactivated. It is designed to be kept under an active gas atmosphere. In the case of producing the metal powder 34 by the water atomization method, the spray nozzle 24 in a state where the supply amount of inert gas (flow rate of inert gas) to the inert gas supply chamber 16 is increased. , 24 and high pressure water is injected from the through holes 20 and the downstream 32 of the tundish 12 flows into the chamber 18 to produce the metal powder 34. That is, the amount of inert gas flowing into the chamber 18 through the through hole 20 is also increased.

このように、前記不活性ガスの流量を増大させることで、前記溶融金属30の垂下流32に噴霧ノズル24,24からの高圧水が接触して発生する水蒸気を速やかにチャンバ18内に分散させ得るから、該溶融金属30の周囲における水蒸気濃度を低下させ得る。従って、前記溶融金属30に水蒸気が接触して酸化するのは抑制されるから、金属粉末34の酸素含有量が低減される。また、不活性ガスが前記通孔20を介して不活性ガス供給室16からチャンバ18内に流入すると、該通孔20の出口において不活性ガスの流れに急激な変化(乱流)が引き起こされる。この不活性ガスの流れの急激な変化に伴い、前記チャンバ18内に流入した溶融金属30の垂下流32が拡散され、この拡散された溶融金属30の垂下流32に高圧水を噴射して微細化することで金属粉末34が得られる。すなわち、前記不活性ガスの流量を増大させることで、溶融金属30の垂下流32を拡散させたもとで高圧水を噴射して微細化することにより、より平均粒子径の小さい微細な金属粉末34の製造が可能となる。   In this way, by increasing the flow rate of the inert gas, the water vapor generated when the high pressure water from the spray nozzles 24, 24 contacts the drooping downstream 32 of the molten metal 30 is quickly dispersed in the chamber 18. Thus, the water vapor concentration around the molten metal 30 can be reduced. Therefore, since it is suppressed that water vapor contacts and oxidizes the said molten metal 30, the oxygen content of the metal powder 34 is reduced. Further, when the inert gas flows into the chamber 18 from the inert gas supply chamber 16 through the through hole 20, an abrupt change (turbulent flow) is caused in the flow of the inert gas at the outlet of the through hole 20. . With the rapid change in the flow of the inert gas, the downstream 32 of the molten metal 30 flowing into the chamber 18 is diffused, and high-pressure water is injected into the downstream 32 of the diffused molten metal 30 to finely As a result, the metal powder 34 is obtained. That is, by increasing the flow rate of the inert gas, the fine metal powder 34 having a smaller average particle diameter can be obtained by spraying high pressure water and pulverizing it while diffusing the downstream 32 of the molten metal 30. Manufacture is possible.

ここで、前記不活性ガス供給室16への不活性ガスの流量としては、基準状態換算(0℃、1気圧)において、1.0≦不活性ガスの流量≦5.0の範囲に設定するのが好ましい。不活性ガスの流量<1.0(m3/min)とした場合には、溶融金属30の周囲における水蒸気濃度が高くなるため、該溶融金属30と水蒸気とが容易に接触し、金属粉末34の酸素含有量を低減し得ない虞がある。一方、不活性ガスの流量>5.0(m3/min)とした場合には、前記溶融金属30の垂下流32を拡散して噴霧ノズル24,24からの高圧水に接触させたときに、前記通孔20の出口付近に固着し、次第に通孔20を閉成する虞がある。 Here, the flow rate of the inert gas to the inert gas supply chamber 16 is set in the range of 1.0 ≦ the flow rate of the inert gas ≦ 5.0 in the standard state conversion (0 ° C., 1 atm). Is preferred. When the flow rate of the inert gas is <1.0 (m 3 / min), the water vapor concentration around the molten metal 30 becomes high, so that the molten metal 30 and the water vapor easily come into contact with each other, and the metal powder 34 There is a possibility that the oxygen content of the material cannot be reduced. On the other hand, when the flow rate of the inert gas is> 5.0 (m 3 / min), when the down stream 32 of the molten metal 30 is diffused and brought into contact with the high-pressure water from the spray nozzles 24, 24. There is a risk that the through hole 20 is fixed near the outlet of the through hole 20, and the through hole 20 is gradually closed.

また、基準状態換算での不活性ガス供給室16への不活性ガスの流量(m3/min)と、該不活性ガス供給室16への溶融金属30の流量(kg/min)との比が、0.1≦不活性ガスの流量/溶融金属30の流量≦0.4の範囲となるよう設定するのが好ましい。すなわち、前記不活性ガスの流量/溶融金属30の流量<0.1とした場合には、溶融金属30の周囲における水蒸気濃度が高くなるため、該溶融金属30と水蒸気とが接触して、金属粉末34における酸素含有量が高くなる虞がある。一方、不活性ガスの流量/溶融金属30の流量>0.4とした場合には、溶融金属30と水蒸気との接触による酸化を抑制して金属粉末34の酸素含有量を低減できるが、垂下流32が通孔20の出口付近に付着し、該通孔20を閉塞して金属粉末を製造し得なくなる。また、不活性ガスの消費量の増大によりコスト増を招来する欠点がある。 Further, the ratio between the flow rate of the inert gas (m 3 / min) to the inert gas supply chamber 16 and the flow rate (kg / min) of the molten metal 30 to the inert gas supply chamber 16 in terms of the reference state. However, it is preferable that 0.1 ≦ inert gas flow rate / molten metal 30 flow rate ≦ 0.4. That is, when the flow rate of the inert gas / the flow rate of the molten metal 30 <0.1, the concentration of water vapor around the molten metal 30 increases, so that the molten metal 30 and the water vapor come into contact with each other. There is a possibility that the oxygen content in the powder 34 is increased. On the other hand, when the flow rate of the inert gas / the flow rate of the molten metal 30 is greater than 0.4, the oxygen content of the metal powder 34 can be reduced by suppressing oxidation due to contact between the molten metal 30 and water vapor. The flow 32 adheres to the vicinity of the outlet of the through-hole 20, and the through-hole 20 is blocked to produce metal powder. In addition, there is a drawback that the cost is increased due to an increase in the consumption of inert gas.

また、水アトマイズ法により得られる金属粉末34の平均粒子径をより小さくするには、基準状態換算での不活性ガス供給室16への不活性ガスの流量(m3/min)と、該不活性ガス供給室16への溶融金属30の流量(kg/min)との比が、0.15≦不活性ガスの流量/溶融金属30の流量となるよう設定するのが好ましい。すなわち、前記不活性ガスの流量/溶融金属30の流量<0.15とした場合には、前記通孔20を介してチャンバ18内に流入した溶融金属30の垂下流32を拡散させる効果に乏しく、平均粒子径の小さい金属粉末34を生成し難くなる。 Further, in order to further reduce the average particle size of the metal powder 34 obtained by the water atomization method, the flow rate of the inert gas (m 3 / min) to the inert gas supply chamber 16 in terms of the standard state, It is preferable to set the ratio of the flow rate (kg / min) of the molten metal 30 to the active gas supply chamber 16 to be 0.15 ≦ the flow rate of the inert gas / the flow rate of the molten metal 30. That is, when the flow rate of the inert gas / the flow rate of the molten metal 30 <0.15, the effect of diffusing the downstream 32 of the molten metal 30 flowing into the chamber 18 through the through hole 20 is poor. It becomes difficult to produce the metal powder 34 having a small average particle diameter.

(実験例)
次に、本発明に係る水アトマイズ法による金属粉末の製造方法により製造した金属粉末(実験例A〜F)および、従来の水アトマイズ法による金属粉末の製造方法により製造した金属粉末(比較例G,H,I)の酸素含有量と平均粒径を示す。なお、不活性ガスとして窒素ガス(N2)を不活性ガス供給室16に供給する。そして、実験例A〜Fでは、窒素ガスの流量を2.3〜3.8(m3/min)に設定すると共に、比較例G,Hでは、窒素ガスの流量を0.2(m3/min)に設定している。また、実験例A〜Dおよび比較例G,Iでは、鋼種としてステンレス鋼(JIS SUS 316L)を使用すると共に、実験例E,Fおよび比較例Hでは、鋼種としてステンレス鋼(JIS SUS 630)を使用している。また、表1における窒素ガス流量/溶融金属流量と金属粉末の酸素含有量との関係を図2に示し、窒素ガス流量/溶融金属流量と金属粉末の平均粒径との関係を図3に示してある。
(Experimental example)
Next, metal powders produced by the method for producing metal powders by the water atomization method according to the present invention (Experimental Examples A to F) and metal powders produced by the method for producing metal powders by the conventional water atomization method (Comparative Example G) , H, I) shows the oxygen content and average particle size. Nitrogen gas (N 2 ) is supplied to the inert gas supply chamber 16 as an inert gas. In Experimental Examples A to F, the flow rate of nitrogen gas is set to 2.3 to 3.8 (m 3 / min), and in Comparative Examples G and H, the flow rate of nitrogen gas is set to 0.2 (m 3 / Min). In Experimental Examples A to D and Comparative Examples G and I, stainless steel (JIS SUS 316L) is used as the steel type, and in Experimental Examples E and F and Comparative Example H, stainless steel (JIS SUS 630) is used as the steel type. I use it. 2 shows the relationship between the nitrogen gas flow rate / molten metal flow rate and the oxygen content of the metal powder in Table 1, and FIG. 3 shows the relationship between the nitrogen gas flow rate / molten metal flow rate and the average particle size of the metal powder. It is.

Figure 2006063357
Figure 2006063357

表1または図2に示すように、0.1≦不活性ガスの流量/溶融金属30の流量≦0.4の範囲となる実験例A〜Fでは、金属粉末(ステンレス鋼粉末)の酸素含有量は0.21〜0.32(%)となる。これに対して、不活性ガスの流量/溶融金属30の流量<0.1となる比較例G,Hでは、金属粉末(ステンレス鋼粉末)の酸素含有量は0.42(%)および0.39(%)となっている。すなわち、水アトマイズ法により金属粉末を製造するに際し、0.1≦不活性ガスの流量/溶融金属30の流量≦0.4の範囲となるよう窒素ガスを供給することにより、実験例の金属粉末の酸素含有量を、比較例の金属粉末に較べて23〜50%低減し得ることが確認された。なお、不活性ガスの流量/溶融金属30の流量>0.4の範囲とした比較例Iでは、垂下流32が通孔20の出口付近に付着し、該通孔20を閉塞して金属粉末(ステンレス鋼粉末)は製造されない。また、表1または図2に示すように、0.15≦不活性ガスの流量/溶融金属30の流量の範囲となる実験例B〜D,Fに係る金属粉末(ステンレス鋼粉末)の平均粒径は略17.0(μm)となる。これに対して、(不活性ガスの流量/溶融金属30の流量<0.15の範囲となる比較例G,Hに係る金属粉末(ステンレス鋼粉末)の平均粒径は20.1(μm)および21.2(μm)となっている。すなわち、水アトマイズ法により金属粉末を製造するに際して、0.15≦不活性ガスの流量/溶融金属の流量の範囲となるよう窒素ガスを供給することで、実験例の金属粉末の平均粒径を、比較例の金属粉末に較べて略15%低減し得ることが確認された。   As shown in Table 1 or FIG. 2, in Experimental Examples A to F where 0.1 ≦ the flow rate of the inert gas / the flow rate of the molten metal 30 ≦ 0.4, the oxygen content of the metal powder (stainless steel powder) The amount is 0.21 to 0.32 (%). On the other hand, in Comparative Examples G and H in which the flow rate of the inert gas / the flow rate of the molten metal 30 <0.1, the oxygen content of the metal powder (stainless steel powder) is 0.42 (%) and 0. 39 (%). That is, when producing metal powder by the water atomization method, by supplying nitrogen gas so that 0.1 ≦ the flow rate of inert gas / the flow rate of molten metal 30 ≦ 0.4, the metal powder of the experimental example It was confirmed that the oxygen content of can be reduced by 23 to 50% compared to the metal powder of the comparative example. In Comparative Example I in which the flow rate of the inert gas / the flow rate of the molten metal 30> 0.4, the drooping downstream 32 adheres to the vicinity of the outlet of the through hole 20 and closes the through hole 20 to close the metal powder. (Stainless steel powder) is not manufactured. Moreover, as shown in Table 1 or FIG. 2, the average particle size of the metal powder (stainless steel powder) according to Experimental Examples B to D and F in the range of 0.15 ≦ flow rate of inert gas / flow rate of molten metal 30 The diameter is approximately 17.0 (μm). On the other hand, the average particle size of the metal powder (stainless steel powder) according to Comparative Examples G and H in which the flow rate of the inert gas / the flow rate of the molten metal 30 <0.15 is 20.1 (μm) That is, when producing metal powder by the water atomization method, nitrogen gas is supplied so that 0.15 ≦ the flow rate of the inert gas / the flow rate of the molten metal. Thus, it was confirmed that the average particle diameter of the metal powder of the experimental example can be reduced by about 15% compared to the metal powder of the comparative example.

このように、0.1≦不活性ガスの流量/溶融金属の流量≦0.4の範囲となるよう設定することで、酸素含有量の少ない金属粉末を製造し得るから、金属製品の機械的性質の低下を抑制することができ、金属射出成形や触媒、塗料、その他各種用途に好適に利用可能である。更に、0.15≦不活性ガスの流量/溶融金属の流量となるよう設定することで、製造される金属粉末の平均粒径も小さくし得るから、金属粉末の付加価値をより一層向上し得る利点もある。また、本発明に係る水アトマイズ法による金属粉末の製造方法を実施するに際しては、供給する不活性ガスの流量と、溶融金属の流量とを調整するだけでよく、新たな設備を導入する必要がないから、酸素含有量が少なく、かつ平均粒径の小さな高付加価値金属粉末を低コストで製造することが可能となる。   In this way, metal powder with low oxygen content can be produced by setting so that 0.1 ≦ inert gas flow rate / molten metal flow rate ≦ 0.4. The deterioration of properties can be suppressed, and it can be suitably used for metal injection molding, catalysts, paints, and other various applications. Further, by setting the flow rate to be 0.15 ≦ inert gas flow rate / molten metal flow rate, the average particle size of the metal powder to be produced can be reduced, so that the added value of the metal powder can be further improved. There are also advantages. Further, when carrying out the method for producing metal powder by the water atomization method according to the present invention, it is only necessary to adjust the flow rate of the inert gas to be supplied and the flow rate of the molten metal, and it is necessary to introduce new equipment. Therefore, it is possible to produce a high value-added metal powder having a low oxygen content and a small average particle size at a low cost.

実施例に係る水アトマイズ法による金属粉末の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the metal powder by the water atomizing method which concerns on an Example. 本発明に係る水アトマイズ法による金属粉末の製造方法を実施した実験例の表1における窒素ガス流量/溶融金属流量と金属粉末の酸素含有量との関係を示すグラフ図である。It is a graph which shows the relationship between the nitrogen gas flow rate / molten metal flow rate in Table 1 of the experiment example which implemented the manufacturing method of the metal powder by the water atomization method which concerns on this invention, and the oxygen content of a metal powder. 本発明に係る水アトマイズ法による金属粉末の製造方法を実施した実験例の表1における窒素ガス流量/溶融金属流量と金属粉末の平均粒径との関係を示すグラフ図である。It is a graph which shows the relationship between the nitrogen gas flow rate / molten metal flow rate in Table 1 of the experiment example which implemented the manufacturing method of the metal powder by the water atomization method which concerns on this invention, and the average particle diameter of a metal powder.

符号の説明Explanation of symbols

12 タンディッシュ
16 不活性ガス供給室
18 チャンバ
20 通孔
30 溶融金属
32 垂下流
34 金属粉末
12 Tundish 16 Inert gas supply chamber 18 Chamber 20 Through hole 30 Molten metal 32 Downstream 34 Metal powder

Claims (1)

不活性ガス供給室(16)と金属粉末回収用のチャンバ(18)とを通孔(20)を介して連通させ、該不活性ガス供給室(16)への不活性ガスの供給によりチャンバ(18)内を不活性ガス雰囲気下に保持した状態で、前記通孔(20)を介してタンディッシュ(12)に貯留した溶融金属(30)の垂下流(32)をチャンバ(18)内に流下させると共に、該溶融金属(30)の垂下流(32)に対して高圧水を噴射することにより金属粉末(34)を製造する水アトマイズ法による金属粉末の製造方法であって、
前記不活性ガス供給室(16)への不活性ガスの流量(m3/min)と、該不活性ガス供給室(16)への溶融金属(30)の流量(kg/min)との比が、
0.1≦不活性ガスの流量/溶融金属(30)の流量≦0.4
の範囲となるよう設定した
ことを特徴とする水アトマイズ法による金属粉末の製造方法。
The inert gas supply chamber (16) and the metal powder recovery chamber (18) communicate with each other through the through hole (20), and the inert gas supply chamber (16) supplies the inert gas to the chamber ( 18) With the interior maintained in an inert gas atmosphere, the downstream (32) of the molten metal (30) stored in the tundish (12) through the through hole (20) is placed in the chamber (18). A method for producing metal powder by a water atomization method for producing metal powder (34) by injecting high-pressure water onto the downstream (32) of the molten metal (30) while flowing down,
Ratio of flow rate (m 3 / min) of inert gas to the inert gas supply chamber (16) and flow rate (kg / min) of molten metal (30) to the inert gas supply chamber (16) But,
0.1 ≦ inert gas flow rate / molten metal (30) flow rate ≦ 0.4
A method for producing metal powder by the water atomization method, characterized in that the metal powder is set to fall within the range.
JP2004244338A 2004-08-24 2004-08-24 Method for manufacturing metallic powder with water atomization method Pending JP2006063357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244338A JP2006063357A (en) 2004-08-24 2004-08-24 Method for manufacturing metallic powder with water atomization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244338A JP2006063357A (en) 2004-08-24 2004-08-24 Method for manufacturing metallic powder with water atomization method

Publications (1)

Publication Number Publication Date
JP2006063357A true JP2006063357A (en) 2006-03-09

Family

ID=36110102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244338A Pending JP2006063357A (en) 2004-08-24 2004-08-24 Method for manufacturing metallic powder with water atomization method

Country Status (1)

Country Link
JP (1) JP2006063357A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088496A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
WO2012157733A1 (en) 2011-05-18 2012-11-22 株式会社東北テクノアーチ Metallic powder production method and metallic powder production device
CN105014086A (en) * 2014-04-30 2015-11-04 施立新 Semi-chemical and semi-mechanical sealed ultralow oxygen content atomizing unit
KR20160011737A (en) * 2014-07-22 2016-02-02 주식회사 포스코 Device for manufacturing metal powders
CN106180670A (en) * 2016-06-30 2016-12-07 安泰科技股份有限公司 Fe-Ni soft magnetic alloy powder tundish and manufacture method thereof are prepared in water atomization
JP2017172043A (en) * 2016-03-16 2017-09-28 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
CN111283209A (en) * 2019-12-24 2020-06-16 南京超旭节能科技有限公司 Processing method for catalyst alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088496A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
WO2012157733A1 (en) 2011-05-18 2012-11-22 株式会社東北テクノアーチ Metallic powder production method and metallic powder production device
CN105014086A (en) * 2014-04-30 2015-11-04 施立新 Semi-chemical and semi-mechanical sealed ultralow oxygen content atomizing unit
KR20160011737A (en) * 2014-07-22 2016-02-02 주식회사 포스코 Device for manufacturing metal powders
KR101594599B1 (en) 2014-07-22 2016-02-17 주식회사 포스코 Device for manufacturing metal powders
JP2017172043A (en) * 2016-03-16 2017-09-28 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
JP2021107577A (en) * 2016-03-16 2021-07-29 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
CN106180670A (en) * 2016-06-30 2016-12-07 安泰科技股份有限公司 Fe-Ni soft magnetic alloy powder tundish and manufacture method thereof are prepared in water atomization
CN106180670B (en) * 2016-06-30 2019-11-12 安泰(霸州)特种粉业有限公司 Water atomization prepares fe-Ni soft magnetic alloy powder tundish and its manufacturing method
CN111283209A (en) * 2019-12-24 2020-06-16 南京超旭节能科技有限公司 Processing method for catalyst alloy

Similar Documents

Publication Publication Date Title
JP3858275B2 (en) Metal powder manufacturing method and apparatus by atomizing method
CN104001924B (en) A kind of metal injection moulding ferrous alloy premix
JP4304212B2 (en) Method for producing metal ultrafine powder
JP2005095886A (en) Cold spray nozzle, cold spray film, and production method therefor
JP2006063357A (en) Method for manufacturing metallic powder with water atomization method
US4624409A (en) Apparatus for finely dividing molten metal
CN111500942A (en) High-nitrogen-content non-magnetic stainless steel powder and preparation method thereof
KR101536454B1 (en) Powder producing device and powder producing method
JP2009035770A (en) Atomization nozzle, and metal powder production device using atomization nozzle
KR20180046652A (en) Cone-shaped water atomizing variable nozzle for producing metal powder
TWI315687B (en)
JPS6050841B2 (en) Metal powder manufacturing method and atomization device
JP2004107740A (en) Method and apparatus for producing metal powder by water atomization method, metal powder, and part
JP2007291515A (en) Particulate, and method and apparatus for producing the same
KR100819534B1 (en) High-pressure water spray system and method for fabricating metallic powders having super small particle sizes using the same
JP2000104103A (en) Method and apparatus for manufacturing metal powder
JP7372546B2 (en) Melting furnace refining method
JPH04337012A (en) Apparatus for producing metallic powder
WO2022130646A1 (en) Operational method for pump and device comprising pump
JP6798342B2 (en) Low nitrogen steel melting method and gas spraying equipment
KR100413282B1 (en) Melt reaction spray casting device
JPH03247709A (en) Apparatus for manufacturing metal powder
KR20230107439A (en) Apparatus and Method for Manufacturing Metal Powder Using Non-oxidizing Water Jetting
JPH0774363B2 (en) Low oxygen metal powder production equipment
JP2004018956A (en) Production method for fine metal powder, and nozzle therefor