JP2006241562A - Continuous atomization device for molten metal - Google Patents

Continuous atomization device for molten metal Download PDF

Info

Publication number
JP2006241562A
JP2006241562A JP2005061826A JP2005061826A JP2006241562A JP 2006241562 A JP2006241562 A JP 2006241562A JP 2005061826 A JP2005061826 A JP 2005061826A JP 2005061826 A JP2005061826 A JP 2005061826A JP 2006241562 A JP2006241562 A JP 2006241562A
Authority
JP
Japan
Prior art keywords
molten metal
chamber
furnace
nozzle
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005061826A
Other languages
Japanese (ja)
Other versions
JP4462072B2 (en
Inventor
Teppei Okumura
鉄平 奥村
Tetsuo Akiyoshi
哲男 秋吉
Yoshimi Murase
好美 村瀬
Takao Yuto
隆夫 湯藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005061826A priority Critical patent/JP4462072B2/en
Publication of JP2006241562A publication Critical patent/JP2006241562A/en
Application granted granted Critical
Publication of JP4462072B2 publication Critical patent/JP4462072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous atomization device for molten metal where molten metal made to flow down from a melting furnace is not swung or does not flow backward, and powdering can be securely performed at the stable flow of the molten metal. <P>SOLUTION: The continuous atomization device 1 for molten metal comprises: a semilevitation melting furnace 1 where the inside is sealable, and also, has an electromagnetic tapping nozzle 10 on the furnace bottom; a plurality of atomization nozzles 30 arranged at intervals each other to molten metal M vertically flowing down from a tapping port 14 in the tapping nozzle 10, and further spraying inert gas (atomization medium) G to a powdering position F obliquely downward and also in the same position; a chamber 40 where the atomization nozzles 30 are arranged on the upper part at the inside; and a pressure tuning tube 44 of allowing the melting furnace 2 to communicate with the chamber 40. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、細径で流下する金属溶湯を噴霧して金属粉末を安定して製造するための金属溶湯の連続噴霧方法およびこれに用いる連続噴霧装置に関する。   The present invention relates to a molten metal continuous spraying method for stably producing a metal powder by spraying a molten metal flowing down with a small diameter, and a continuous spraying apparatus used therefor.

タンディシュの底から流下する金属溶湯にアトマイズガスを吹き付けて金属粉末を製造するに際し、粉化点付近における金属粉末の吹き上げを防ぐため、金属溶湯に対しアトマイズノズルのリング(円環)状で且つスリットを呈する噴射口から噴霧媒体の不活性ガスを噴射するアトマイズ開始初期に、アトマイズガスの吹き付け圧力を低くするガスアトマイズによる金属粉末の製造方法が提案されている(例えば、特許文献1参照)。これにより得られる金属粉末は、上記ノズルの下側に位置するチャンバ内に収容される。   In order to prevent metal powder from being blown up near the pulverization point when atomizing gas is blown into the molten metal flowing down from the bottom of the tundish, it is shaped like a ring (ring) of the atomizing nozzle and slits against the molten metal. There has been proposed a method for producing metal powder by gas atomization that lowers the atomizing gas spray pressure at the beginning of atomization in which the inert gas of the atomizing medium is ejected from an injection port exhibiting (see, for example, Patent Document 1). The metal powder obtained by this is accommodated in the chamber located under the nozzle.

特開平3−140402号公報 (第1〜3頁、第1図)Japanese Patent Laid-Open No. 3-140402 (pages 1 to 3, FIG. 1)

しかし、前記金属粉末の製造方法では、リング形状の噴射口から斜め下向きで且つ粉化点に向かって噴霧媒体のアトマイズガスを円錐形状に噴射した場合、係るアトマイズガスに囲まれた噴射口から粉化点までの円錐形状の空間は、減圧状態となる。このため、たとえアトマイズ開始初期にアトマイズガスの吹き付け圧力を低くしても、粉化点で形成された金属粉末の一部は、新たなアトマイズガスと衝突して、上記減圧空間に吹き上がることがある。その結果、当該減圧空間に不用意な流れを生じるため、係る減圧空間の中心部を垂直に流下する金属溶湯と干渉し、当該金属溶湯の流れに振れが発生する。   However, in the metal powder manufacturing method, when atomizing gas of the spray medium is sprayed in a conical shape obliquely downward from the ring-shaped injection port toward the pulverization point, the powder is discharged from the injection port surrounded by the atomizing gas. The conical space up to the turning point is in a reduced pressure state. For this reason, even if the atomizing gas spraying pressure is lowered at the beginning of atomization, a part of the metal powder formed at the pulverization point may collide with new atomizing gas and blow up into the decompression space. is there. As a result, an inadvertent flow is generated in the decompression space, so that it interferes with the molten metal flowing vertically through the central portion of the decompression space, and the flow of the molten metal occurs.

しかも、前記タンディシュ内または炉底出湯が可能な溶解炉内は常圧、前記アトマイズガスに囲まれた噴射口から粉化点(噴霧焦点)までの円錐形状の空間は減圧状態、および、得られた金属粉末を収容するチャンバ内は加圧状態、という3種類の圧力差が存在する。このため、何らかの原因で急激な圧力変化が生じた場合、流下する金属溶湯の流れに逆流や乱流を招くおそれがある。
これらに起因して、前記金属粉末の製造方法では、安定したアトマイズ(噴霧)を連続して行うことが困難になる場合があった。
Moreover, the inside of the tundish or the melting furnace that can discharge the bottom of the furnace is at normal pressure, and the conical space from the injection port surrounded by the atomizing gas to the pulverization point (spraying focal point) is in a depressurized state. There are three types of pressure differences in the chamber containing the metal powder, ie, a pressurized state. For this reason, when an abrupt pressure change occurs for some reason, there is a possibility of causing a backflow or a turbulent flow in the flowing metal melt.
For these reasons, in the method for producing the metal powder, it may be difficult to continuously perform stable atomization (spraying).

本発明は、前記背景技術において説明した問題点を解決し、溶解炉から流下する金属溶湯が振れたり、逆流することなく、安定した金属溶湯の流れで確実に粉化することができる金属溶湯の連続噴霧装置を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and the molten metal flowing down from the melting furnace does not shake or backflow, and can be reliably pulverized with a stable molten metal flow. It is an object to provide a continuous spray device.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、密閉可能な溶解炉の炉底から流下する金属溶湯に噴霧媒体を噴霧するため、互いに間隔を置いた複数個の噴霧ノズルをチャンバ側に備えると共に、上記溶解炉の炉内とチャンバ内とを同圧化する、ことに着想して成されたものである。
即ち、本発明における金属溶湯の連続噴霧装置(請求項1)は、炉内が密閉可能で且つ炉底に出湯ノズルを有する溶解炉と、前記出湯ノズルの出湯口から垂直に流下する金属溶湯に対し、互いに間隔を置いて配置されると共に、噴霧媒体を斜め下向きで且つほぼ同じ位置に噴射する複数の噴霧ノズルと、係る複数の噴霧ノズルを内側の上部に配置するチャンバと、係るチャンバ内と上記溶解炉の炉内との間を連通する圧力同調管と、を含む、ことを特徴とする。
In order to solve the above-mentioned problem, the present invention includes a plurality of spray nozzles spaced from each other on the chamber side in order to spray the spray medium onto the molten metal flowing down from the bottom of the sealable melting furnace, The idea is to create the same pressure in the melting furnace and in the chamber.
That is, the molten metal continuous spraying apparatus according to the present invention (Claim 1) includes a melting furnace in which the inside of the furnace can be hermetically sealed and having a tapping nozzle at the bottom of the furnace, and a molten metal that flows vertically from a tapping outlet of the tapping nozzle. On the other hand, a plurality of spray nozzles that are spaced apart from each other and spray the spray medium obliquely downward and at substantially the same position, a chamber in which the plurality of spray nozzles are disposed in the upper part on the inside, and in the chamber A pressure tuning tube communicating with the inside of the melting furnace.

これによれば、複数の噴霧ノズルは、互いに間隔を置いて配置されているため、これらから噴霧された複数の噴霧媒体の内側空間とチャンバ内とを同圧化できる。このため、前述した金属粉末の吹き上げ、金属溶湯の振れが生じなくなる。更に、溶解炉の炉内とチャンバ内も圧力同調管を介して同圧化されるため、チャンバ内および複数の噴霧媒体に囲まれた内側空間の圧力上昇による流下する金属溶湯の逆流や乱流を防止できる。同時に、前述したリング状で且つスリット状の噴射口から噴霧媒体を噴霧する場合に生じる出湯速度の増大を防止できるため、一定の出湯速度に保つことも可能となる。従って、複数の噴霧媒体が形成する内側空間の中心部を流下する金属溶湯を、確実に微細な粒径を含む金属粉末とする安定した連続噴霧が可能となる。   According to this, since the plurality of spray nozzles are arranged at intervals, the inner space of the plurality of spray media sprayed therefrom and the inside of the chamber can be made to have the same pressure. For this reason, the above-described metal powder blowing and molten metal shake do not occur. Furthermore, since the pressure in the melting furnace and the chamber are equalized via the pressure tuning tube, the molten metal flows backward or turbulently due to pressure increase in the chamber and the inner space surrounded by the plurality of spraying media. Can be prevented. At the same time, since it is possible to prevent an increase in the hot water discharge speed that occurs when the spray medium is sprayed from the ring-shaped and slit-shaped injection port, it is possible to maintain a constant hot water discharge speed. Therefore, stable continuous spraying can be performed in which the molten metal flowing down the central portion of the inner space formed by the plurality of spray media is reliably made into a metal powder having a fine particle size.

尚、前記噴霧媒体には、アルゴン、窒素、ヘリウムなど不活性ガス(アトマイズガス)のほか、水(アトマイズ水)も含まれる。また、前記溶解炉には、後述するセミレビテーション溶解炉の他、炉内が密閉可能で且つ炉底出湯が可能な各種の溶解炉が含まれると共に、更には、内部が密閉可能で且つ底部に電磁出湯ノズルが装着可能であれば、例えば取鍋やタンディシュも含まれる。   The spray medium includes water (atomized water) in addition to an inert gas (atomized gas) such as argon, nitrogen, and helium. In addition to the semi-levitation melting furnace described later, the melting furnace includes various melting furnaces that can be hermetically sealed and can be discharged from the bottom of the furnace. For example, a ladle or a tundish is also included if an electromagnetic hot water nozzle can be attached.

また、本発明には、前記溶解炉の出湯ノズルは、金属からなり全体がほぼ円錐形で水冷可能な本体と、係る本体の外周に沿って巻き付けた高周波誘導コイルと、を備えた電磁出湯ノズルである、金属溶湯の連続噴霧装置(請求項2)も含まれる。
これによれば、金属溶湯は、溶解炉から電磁出湯ノズルを介して連続して流下するため、比較的小径で且つ清浄となって連続して出湯できる。しかも、前述したように、噴射口から粉化点まで複数の噴霧媒体に囲まれた内側空間の圧力が減圧状態とならないため、従来のリング状で且つスリット状の噴射口から噴霧する場合に生じる出湯速度の増大を確実に防止でき、一定の出湯速度に保つことが一層可能となる。従って、金属溶湯を連続且つ安定して自然流下(フリーフォール)できるため、連続噴霧を一層確実且つ安定して行うことができる。
Further, according to the present invention, the hot water discharge nozzle of the melting furnace is an electromagnetic hot water nozzle comprising a main body made of metal and having a substantially conical shape that can be cooled with water, and a high frequency induction coil wound around the outer periphery of the main body. The continuous metal spraying device (Claim 2) is also included.
According to this, since the molten metal flows down continuously from the melting furnace through the electromagnetic hot water nozzle, the molten metal can be discharged continuously with a relatively small diameter and cleanliness. Moreover, as described above, since the pressure in the inner space surrounded by a plurality of spraying media from the spray port to the pulverization point is not reduced, it occurs when spraying from a conventional ring-shaped and slit-shaped spray port. It is possible to reliably prevent an increase in the temperature of the hot water, and it is possible to maintain a constant hot water speed. Therefore, since the molten metal can flow continuously and stably (free fall), continuous spraying can be performed more reliably and stably.

更に、本発明には、前記複数の噴霧ノズルは、前記金属溶湯が流下する軌跡に対し、互いに間隔を置いた3本以上が斜め下向きで且つ対称に配置される、金属溶湯の連続噴霧装置(請求項3)も含まれる。これによれば、3本以上の噴霧ノズルが、互いに間隔を置いて配置されるため、これらから噴霧された複数の噴霧媒体における内側空間と、その外側空間(チャンバ内)と、を確実に同圧化できる。この結果、前記金属溶湯の振れ、逆流、あるいは、乱流を確実に解消することが可能となる。
尚、複数の噴霧ノズルは、同一平面に位置する円形の円周方向に沿って等間隔にして、例えば3本、4本、6本、8本、12本、または16本を斜め下向きで且つ求心状に配置される。
Further, in the present invention, the plurality of spray nozzles are arranged in a continuous metal melt spraying apparatus (three or more spaced apart from each other with respect to the trajectory of the molten metal flowing downward and symmetrically arranged). Claim 3) is also included. According to this, since the three or more spray nozzles are arranged at intervals from each other, the inner space and the outer space (in the chamber) of the plurality of spray media sprayed from these nozzles are surely the same. Can be compressed. As a result, it is possible to reliably eliminate the fluctuation, backflow, or turbulent flow of the molten metal.
The plurality of spray nozzles are equally spaced along a circular circumferential direction located on the same plane, for example, 3, 4, 6, 8, 12, or 16 diagonally downward and Arranged in a centripetal manner.

加えて、本発明には、前記複数の噴霧ノズルは、前記チャンバ内の上側に配置される円環状の媒体供給体に内蔵される円環状の媒体供給室にそれらの基端が連通し、且つチャンバの上部を貫通している、金属溶湯の連続噴霧装置(請求項4)も含まれる。
これによれば、上記媒体供給体に内蔵される円環状の媒体供給室に供給された噴霧媒体を、当該媒体供給体の底面から、複数のノズルに分流させて全体を円錐形状にして噴射できると共に、上記ノズル本体の底面寄りでは流下する複数の噴霧媒体間に間隔を確実に形成することができる。
In addition, according to the present invention, the plurality of spray nozzles have their proximal ends communicating with an annular medium supply chamber built in an annular medium supply body disposed on the upper side in the chamber, and A continuous molten metal spraying device (Claim 4) penetrating the upper part of the chamber is also included.
According to this, the spray medium supplied to the annular medium supply chamber built in the medium supply body can be ejected from the bottom surface of the medium supply body into a plurality of nozzles in a conical shape as a whole. At the same time, an interval can be reliably formed between the plurality of spray media flowing down near the bottom surface of the nozzle body.

付言すれば、本発明には、前記溶解炉は、前記炉内を内設する水冷式の銅製ルツボを有するセミレビテーション溶解炉(コールドクルーシブル溶解装置)である、金属溶湯の連続噴霧装置も含まれ得る。
これによる場合、例えばTi合金の原料を銅製ルツボに装入し、当該ルツボの外周に位置する高周波誘導コイルに通電することで、上記原料を、上記ルツボの内壁面に接触せず、半球形状に立ち上がる清浄なTi合金の溶湯に溶解することが可能となる。しかも、係る溶湯は、前記電磁出湯ノズルを介して、前記複数の噴霧ノズルに囲まれた空間の中心部に細径で且つ清浄にして流下されるため、所望の粒径および合金組成の金属粉末を確実に得ることが可能となる。
In other words, the present invention also includes a continuous molten metal spraying device in which the melting furnace is a semi-levitation melting furnace (cold crucible melting apparatus) having a water-cooled copper crucible inside the furnace. Can be.
In this case, for example, a raw material of Ti alloy is charged into a copper crucible, and the high frequency induction coil located on the outer periphery of the crucible is energized, so that the raw material does not contact the inner wall surface of the crucible and becomes hemispherical. It is possible to dissolve in a rising molten Ti alloy. In addition, since the molten metal flows through the electromagnetic hot water nozzle, the metal powder having a desired particle size and alloy composition, since it has a small diameter and flows down to the center of the space surrounded by the plurality of spray nozzles. Can be obtained reliably.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明の金属溶湯の連続噴霧装置(以下、単に連続噴霧装置と称する)1を示す垂直断面図である。
連続噴霧装置1は、図1に示すように、炉内が密閉可能なセミレビテーション溶解炉2と、その炉底に装着した電磁出湯ノズル(出湯ノズル)10と、係るノズル10の下方に位置するチャンバ40と、係るチャンバ40の上部に取り付けられ且つ斜め下向きで全体がほぼ円錐状に取付られた複数の噴霧ノズル30と、上記溶解炉2とチャンバ40との間に配管した圧力同調管44と、を備えている。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a vertical sectional view showing a molten metal continuous spraying apparatus (hereinafter simply referred to as a continuous spraying apparatus) 1 according to the present invention.
As shown in FIG. 1, the continuous spraying apparatus 1 includes a semi-levitation melting furnace 2 in which the inside of the furnace can be sealed, an electromagnetic hot water nozzle (hot water nozzle) 10 attached to the bottom of the furnace, and a position below the nozzle 10. Chamber 40, a plurality of spray nozzles 30 which are attached to the upper part of the chamber 40 and are obliquely downward and attached in a substantially conical shape, and a pressure tuning pipe 44 which is piped between the melting furnace 2 and the chamber 40. And.

セミレビテーション(半磁気浮揚)溶解炉2は、図1に示すように、銅からなり全体が円筒形で且つ中空部4を内蔵する炉体(ルツボ)3と、係る炉体3の外周面に沿って螺旋状の巻き付けた高周波誘導コイル8と、を備えている。上記炉体3は、その円周方向に配置される図示しない複数の垂直な絶縁スリットにより、複数のセグメントに分割されていると共に、上端部の給水孔6、中空部4、および排水孔7の順路で、冷却水wが循環して供給される。また、炉体3の上側には、天板5aを含む上部炉体5が着脱可能に取り付けられ、その側壁には、チャンバ40と連通する圧力同調管44の上端47が開口している。   As shown in FIG. 1, the semi-levitation (semi-magnetic levitation) melting furnace 2 includes a furnace body (crucible) 3 made of copper and having a hollow cylindrical portion 4 and an outer peripheral surface of the furnace body 3. And a high-frequency induction coil 8 spirally wound along. The furnace body 3 is divided into a plurality of segments by a plurality of vertical insulating slits (not shown) arranged in the circumferential direction, and the water supply holes 6, the hollow portions 4, and the drain holes 7 at the upper end are formed. The cooling water w is circulated and supplied in the normal route. Further, the upper furnace body 5 including the top plate 5a is detachably attached to the upper side of the furnace body 3, and an upper end 47 of a pressure tuning tube 44 communicating with the chamber 40 is opened on the side wall thereof.

図1に示すように、前記セミレビテーション溶解炉2の炉体3の炉底には、電磁出湯ノズル(出湯ノズル)10の水平部12が装着されている。係る電磁出湯ノズル10は、円環状の水平部12、その下側に連なるコーン部13、およびその下側に連なる出湯口14を有する本体11と、係る本体11の外周面に沿って螺旋状で且つ円錐形状に巻き付けた高周波誘導コイル16と、を備えている。上記本体11に内蔵される中空部15には、前記同様に冷却水が循環して供給される。   As shown in FIG. 1, a horizontal portion 12 of an electromagnetic hot water nozzle (a hot water nozzle) 10 is attached to the furnace bottom of the furnace body 3 of the semi-levitation melting furnace 2. The electromagnetic hot water nozzle 10 has a main body 11 having an annular horizontal portion 12, a cone portion 13 connected to the lower side thereof, and a hot water outlet 14 connected to the lower side thereof, and a spiral shape along the outer peripheral surface of the main body 11. And a high-frequency induction coil 16 wound in a conical shape. The cooling water is circulated and supplied to the hollow portion 15 built in the main body 11 as described above.

上記電磁出湯ノズル10は、上記誘導コイル16に通電して形成される磁界により、金属製の本体11に誘導電流が流れ且つこれが加熱される。この際、本体11は、その発熱により前回の溶解時にコーン部13および出湯口14の内側で、前回の溶解後に凝固したほぼ逆円錐形の凝固シェルを溶解すると共に、図1に示すように、出湯口14から細径の金属溶湯Mを垂直に流下させる。即ち、誘導コイル16への通電および停止により、金属溶湯Mの連続出湯と出湯停止とを容易に制御することができる。
図1に示すように、前記電磁出湯ノズル10の下方には、公知の耐火材からなる耐熱パイプ18を介して、アトマイズガス(噴霧媒体)供給装置20が配置されている。係るアトマイズガス供給装置20は、その下方に位置するチャンバ40の天板41の上側に取り付けられる円環状の媒体供給体21と、これに内蔵される円環形の媒体供給室22と、上記耐熱パイプ18に連通する中心部の垂直孔24と、対称な一対の給気管26,28と、を備えている。
In the electromagnetic hot water nozzle 10, an induction current flows through the metal main body 11 and is heated by a magnetic field formed by energizing the induction coil 16. At this time, the main body 11 dissolves the substantially inverted conical solidified shell solidified after the previous dissolution inside the cone portion 13 and the outlet 14 at the previous melting due to the heat generation, as shown in FIG. A small diameter molten metal M is caused to flow vertically from the hot water outlet 14. That is, by continuously energizing and stopping the induction coil 16, it is possible to easily control the continuous discharge of the molten metal M and the stop of the discharge.
As shown in FIG. 1, an atomizing gas (spraying medium) supply device 20 is disposed below the electromagnetic hot water nozzle 10 via a heat resistant pipe 18 made of a known refractory material. The atomizing gas supply device 20 includes an annular medium supply body 21 attached to the upper side of the top plate 41 of the chamber 40 positioned below, an annular medium supply chamber 22 built in the medium supply body 22, and the heat-resistant pipe. 18 is provided with a central vertical hole 24 communicating with 18 and a pair of symmetrical supply pipes 26 and 28.

図1および図3の水平断面図に示すように、一対の給気管26,28における媒体供給室22への開口位置は、媒体供給体21の中心を通過する径線に対して、約20度の角度θで傾いた位置にあり、係る位置において当該給気管26,28の軸線が互いに平行になるように、ほぼ接線状とされている。
給気管26,28を上記のように配管することで、媒体供給室22内に対し、それぞれから不活性ガス(噴霧媒体であるアトマイズガス)Gを均一な圧力で導入でき、次述する複数のノズル32のノズル孔34から均一な流量および圧力にして、アルゴンなどの不活性ガスGを噴射できる。
As shown in the horizontal sectional views of FIGS. 1 and 3, the opening position of the pair of supply pipes 26 and 28 to the medium supply chamber 22 is about 20 degrees with respect to the radial line passing through the center of the medium supply body 21. The air supply pipes 26 and 28 are substantially tangential so that the axes of the supply pipes 26 and 28 are parallel to each other.
By piping the air supply pipes 26 and 28 as described above, an inert gas (atomizing gas as a spraying medium) G can be introduced into the medium supply chamber 22 from each with a uniform pressure. An inert gas G such as argon can be injected from the nozzle hole 34 of the nozzle 32 at a uniform flow rate and pressure.

図1,図2,図3に示すように、複数の噴霧ノズル30は、8本の細長いノズル(単位ノズル)32からなる。各ノズル32には、それらの軸心に沿って中間位置で細径となるノズル孔34が貫通している。係る8本のノズル32は、各ノズル孔34が媒体供給室22の底面の内周端側に連通するように、各基端36を媒体供給体21の底面にシールを介して、互いに間隔を置き斜め下向きで且つ対称に取り付けられる。尚、各ノズル32の垂直線に対する傾斜角度は、2〜20度の範囲で適宜選定される。   As shown in FIGS. 1, 2, and 3, the plurality of spray nozzles 30 include eight elongated nozzles (unit nozzles) 32. Each nozzle 32 has a nozzle hole 34 having a small diameter at an intermediate position along the axial center thereof. The eight nozzles 32 are spaced from each other through the seals of the base ends 36 on the bottom surface of the medium supply body 21 so that the nozzle holes 34 communicate with the inner peripheral end of the bottom surface of the medium supply chamber 22. It is mounted diagonally downward and symmetrically. The inclination angle of each nozzle 32 with respect to the vertical line is appropriately selected within a range of 2 to 20 degrees.

また、図1に示すように、チャンバ40の内部と前記溶解炉2の炉内とは、当該チャンバ40の側壁42に下端46が開口する圧力同調管44により連通されている。このため、チャンバ40内の圧力が上昇しなくなるので、流下する金属溶湯Mの逆流や乱流が生じにくくなる。しかも、図1中の一点鎖線の矢印で示す8つの不活性ガスGに囲まれた円錐形の内側空間とも同圧化されることと相まって、前記溶解炉2から流下する金属溶湯Mの出湯速度も一定化する。尚、上記圧力同調管44の中間には、開閉弁48が取り付けてある。   Further, as shown in FIG. 1, the inside of the chamber 40 and the inside of the melting furnace 2 are communicated with each other by a pressure tuning tube 44 having a lower end 46 opened on a side wall 42 of the chamber 40. For this reason, since the pressure in the chamber 40 does not increase, it is difficult for backflow or turbulent flow of the molten metal M flowing down. In addition, the discharge speed of the molten metal M flowing down from the melting furnace 2 in combination with the conical inner space surrounded by the eight inert gases G indicated by the dashed-dotted arrows in FIG. Is also constant. An on-off valve 48 is attached in the middle of the pressure tuning tube 44.

以上のような連続噴霧装置1の作用を、以下において説明する。
先ず、前記溶解炉2の炉体3の炉内に原料である例えばTi合金を装入した後、上部炉体5を取り付けて炉内を密閉する。次に、高周波誘導コイル8に所要の高周波電流を通電すると、係るコイル8の周囲に形成される磁界が炉体3を透過し、内側の上記Ti合金に浸透し、その表面に誘導される表皮電流により生じるジュール熱によって、当該Ti合金を加熱し且つ溶融する。係るTi合金からなる溶融金属Mには、上記コイル8により誘導されて誘導電流が流れると共に、これらの電流間に生じる反発力(ローレンツ斥力)によって、図1に示すように、係る溶融金属Mは、炉体3の内側において側壁から離れ且つ半球形状に立ち上がった半浮揚状態となる。尚、溶融金属Mは、炉体3における側壁の下部および電磁ノズル10の水平部12に接触して冷却されるため、側壁の内側面の下部および前記出湯ノズル10の水平部12上に、図示しない凝固シェルが形成される。
The effect | action of the above continuous spraying apparatuses 1 is demonstrated below.
First, after charging, for example, a Ti alloy as a raw material into the furnace 3 of the melting furnace 2, the upper furnace body 5 is attached and the inside of the furnace is sealed. Next, when a required high-frequency current is passed through the high-frequency induction coil 8, a magnetic field formed around the coil 8 passes through the furnace body 3, penetrates the inner Ti alloy, and is induced on the surface of the skin. The Ti alloy is heated and melted by Joule heat generated by electric current. In the molten metal M made of the Ti alloy, an induced current flows induced by the coil 8 and, as shown in FIG. 1, due to a repulsive force (Lorentz repulsive force) generated between these currents, the molten metal M is Then, the inside of the furnace body 3 is separated from the side wall and is in a semi-levitation state rising in a hemispherical shape. In addition, since the molten metal M is cooled in contact with the lower part of the side wall of the furnace body 3 and the horizontal part 12 of the electromagnetic nozzle 10, the molten metal M is illustrated on the lower part of the inner side surface of the side wall and the horizontal part 12 of the tapping nozzle 10. A solidified shell is formed.

次いで、前記電磁出湯ノズル10の前記誘導コイル16に通電し、形成される磁界により、金属製の本体11に誘導電流を流し且つこれが加熱する。この際、本体11は、その発熱により前回の溶解時にコーン部13および出湯口14の内側で凝固したほぼ逆円錐形の凝固シェルを溶解すると共に、図1に示すように、係る溶湯と新たに溶解される金属溶湯Mとを一緒にし、出湯口14から細径の金属溶湯Mとして垂直に流下させる。
上記金属溶湯Mは、図1に示すように、耐熱パイプ18と媒体供給体21の垂直孔24の中心部を流下した後、チャンバ40内の粉化点Fに向けて流下する。
Next, the induction coil 16 of the electromagnetic hot water nozzle 10 is energized, and an induced current is passed through the metal main body 11 by the magnetic field formed, which heats the induction coil 16. At this time, the main body 11 melts the substantially inverted conical solidified shell solidified inside the cone portion 13 and the outlet 14 at the time of the previous melting due to the heat generation, and as shown in FIG. Together with the molten metal M to be melted, the molten metal M is made to flow vertically from the outlet 14 as a thin metal melt M.
As shown in FIG. 1, the molten metal M flows down toward the powdering point F in the chamber 40 after flowing down the central portion of the heat-resistant pipe 18 and the vertical hole 24 of the medium supply body 21.

上記金属溶湯Mに対し、図1および図4に示すように、前記媒体供給室22を介して、各ノズル32におけるノズル孔34のノズル口38から噴霧された8つの不活性ガス(噴霧媒体)Gが、粉化点Fに向けて円錐形状に噴霧される。この結果、金属溶湯Mは、上記不活性ガスGと衝突して、金属粉末Pに粉化される。係る金属粉末Pは、チャンバ40の底板上に堆積した後、適宜取り出される。
上記噴霧の際、8つの不活性ガスGは、各ノズル32寄りでは、互いに間隔を置いて斜め下向きで且つ同じ粉化点Fに向けて流下する。このため、8つの不活性ガスGに囲まれた円錐形の内側空間は、チャンバ40の内部と同圧とされる。
As shown in FIGS. 1 and 4, eight inert gases (atomizing medium) sprayed from the nozzle port 38 of the nozzle hole 34 in each nozzle 32 through the medium supply chamber 22 with respect to the molten metal M. G is sprayed in a conical shape toward the powdering point F. As a result, the molten metal M collides with the inert gas G and is pulverized into the metal powder P. The metal powder P is appropriately taken out after being deposited on the bottom plate of the chamber 40.
At the time of the spraying, the eight inert gases G flow obliquely downward toward the same pulverization point F at intervals near each nozzle 32. For this reason, the conical inner space surrounded by the eight inert gases G has the same pressure as the inside of the chamber 40.

上記同圧化により、流下する金属溶湯Mは、振れを生じなくなるため、同じ粉化点Fにおいて8つの不活性ガスGと正確に衝突する。この結果、所望の粒径を有する金属粉末Pを連続して製造することができる。
同時に、チャンバ40の内部と前記溶解炉2の炉内とは、圧力同調管44を介して連通していため、これらも同圧化されている。このため、溶解炉2から流下する金属溶湯Mは、出湯速度が一定化すると共に、逆流や乱流を生じなくなる。この結果、電磁出湯ノズル10から所定の位置に金属溶湯Mを自然流下(フリーフォール)させることができるため、前記8つの不活性ガスGにより連続且つ安定した噴霧を行うことが可能となる。
The molten metal M that flows down due to the same pressure does not cause fluctuations, and thus collides with eight inert gases G at the same pulverization point F accurately. As a result, the metal powder P having a desired particle size can be continuously produced.
At the same time, since the inside of the chamber 40 and the inside of the melting furnace 2 communicate with each other via the pressure tuning pipe 44, they are also made the same pressure. For this reason, the molten metal M flowing down from the melting furnace 2 has a constant hot-water speed and does not generate backflow or turbulent flow. As a result, since the molten metal M can be allowed to flow naturally (free fall) from the electromagnetic hot water nozzle 10 to a predetermined position, it becomes possible to perform continuous and stable spraying with the eight inert gases G.

尚、圧力同調管44は、電磁出湯ノズル10から金属溶湯Mが流下しない状態、例えば前記溶解炉2の炉内への原料の装入時、あるいはチャンバ40内から得られた金属粉末Pを外部に排出する際には、前記開閉弁48を閉じて閉鎖される。
以上のように、本連続噴霧装置1によれば、前記金属粉末Pの吹き上げや、流下する金属溶湯Mの振れ、逆流、および乱流が生じず、細径で且つ清浄にして所定の位置に流下する金属溶湯Mを、所望の粒径および合金組成にして、連続して安定したガス噴霧を行うことが可能となる。
Note that the pressure tuning pipe 44 externally transfers the metal powder P obtained from the electromagnetic hot water nozzle 10 in a state where the molten metal M does not flow, for example, when the raw material is charged into the furnace of the melting furnace 2 or from the chamber 40. When discharging, the on-off valve 48 is closed.
As described above, according to the present continuous spraying apparatus 1, the metal powder P is not blown up, and the molten metal M flowing down, the backflow, and the turbulent flow do not occur. It is possible to perform continuous and stable gas spraying with the metal melt M flowing down to a desired particle size and alloy composition.

本発明は、以上において説明した形態に限定されるものではない。
図5,図6に示す媒体供給装置20a,20bは、前記同様の媒体供給体21の底面に、6本または12本のノズル32を等間隔で且つ対称に取り付けた複数の噴霧ノズル30a,30bを有する。即ち、噴霧ノズル32は、少なくとも3本以上を等間隔で且つ対称に配置することで、本発明における複数の噴霧ノズルとなる。
また、噴霧媒体には、前記不活性ガスに替えて、水(アトマイズ水)を適用しても良い。
更に、前記溶解炉2に替えて、炉内が密閉可能で且つ炉底の出湯ノズルが可能な別タイプの溶解炉や、あるいはタンディッシュにしても良い。
加えて、前記電磁出湯ノズル10に替えて、水平方向のに耐火製の弁がスライドするスライディングゲートを内設する出湯ノズルを用いても良い。
The present invention is not limited to the embodiment described above.
5 and 6 includes a plurality of spray nozzles 30a and 30b in which six or twelve nozzles 32 are attached to the bottom surface of the same medium supply body 21 at equal intervals and symmetrically. Have That is, at least three spray nozzles 32 are arranged at equal intervals and symmetrically to form a plurality of spray nozzles in the present invention.
Moreover, instead of the inert gas, water (atomized water) may be applied to the spray medium.
Further, instead of the melting furnace 2, another type of melting furnace in which the inside of the furnace can be sealed and a hot water discharge nozzle at the bottom of the furnace can be used, or a tundish.
In addition, instead of the electromagnetic hot water nozzle 10, a hot water nozzle having a sliding gate in which a refractory valve slides in the horizontal direction may be used.

本発明の連続噴霧装置を示す垂直断面図。The vertical sectional view which shows the continuous spraying apparatus of this invention. 上記連続噴霧装置における複数の噴霧ノズル付近を示す底面図。The bottom view which shows the several spray nozzle vicinity in the said continuous spray apparatus. 上記連続噴霧装置における媒体供給体の水平断面図。The horizontal sectional view of the medium supply body in the above-mentioned continuous spraying device. 上記連続噴霧装置の作用の概略を示す斜視図。The perspective view which shows the outline of an effect | action of the said continuous spraying apparatus. 異なる形態の複数の噴霧ノズル付近を示す底面図。The bottom view which shows the some spray nozzle vicinity of a different form. 更に異なる形態の複数の噴霧ノズル付近を示す底面図。Furthermore, the bottom view which shows the some spray nozzle vicinity of a different form.

符号の説明Explanation of symbols

1…………………………連続噴霧装置
2…………………………セミレビテーション溶解炉(溶解炉)
10………………………電磁出湯ノズル(出湯ノズル)
11………………………本体
14………………………出湯口
16………………………高周波誘導コイル
21………………………媒体供給体
22………………………媒体供給室
30,30a,30b…複数の噴霧ノズル
32………………………噴霧ノズル
40………………………チャンバ
44………………………圧力同調管
M…………………………金属溶湯
G…………………………不活性ガス(噴霧媒体)
1 ………………………… Continuous spraying device 2 ………………………… Semi levitation melting furnace (melting furnace)
10 ……………………… Electromagnetic hot water nozzle (hot water nozzle)
11 …………………… Main body 14 ………………………… Outlet 16 ………………………… High-frequency induction coil 21 ………………………… Medium supply body 22 ……………………… Medium supply chamber 30, 30a, 30b… Multiple spray nozzles 32 ……………………… Spray nozzle 40 ……………………… Chamber 44 ………… …………… Pressure tuning tube M ………………………… Molten metal G ………………………… Inert gas (spray medium)

Claims (4)

炉内が密閉可能で且つ炉底に出湯ノズルを有する溶解炉と、
上記出湯ノズルの出湯口から垂直に流下する金属溶湯に対し、互いに間隔を置いて配置されると共に、噴霧媒体を斜め下向きで且つほぼ同じ位置に噴射する複数の噴霧ノズルと、
上記複数の噴霧ノズルを内側の上部に配置するチャンバと、
上記チャンバ内と上記溶解炉の炉内との間を連通する圧力同調管と、を含む、
ことを特徴とする金属溶湯の連続噴霧装置。
A melting furnace in which the inside of the furnace can be sealed and has a hot water nozzle at the bottom of the furnace;
A plurality of spray nozzles that are arranged at intervals from each other and are sprayed obliquely downward and substantially at the same position with respect to the molten metal that flows vertically from the hot water outlet of the hot water nozzle;
A chamber in which the plurality of spray nozzles are arranged in an upper part inside;
A pressure tuning tube communicating between the chamber and the furnace of the melting furnace,
A continuous spray device for molten metal characterized by the above.
前記溶解炉の出湯ノズルは、金属からなり全体がほぼ円錐形で水冷可能な本体と、係る本体の外周に沿って巻き付けた高周波誘導コイルと、を備えた電磁出湯ノズルである、
ことを特徴とする請求項1に記載の金属溶湯の連続噴霧装置。
The melting nozzle of the melting furnace is an electromagnetic hot water nozzle comprising a metal-made main body that is substantially conical and water-cooled, and a high-frequency induction coil wound around the outer periphery of the main body.
The continuous spraying apparatus for molten metal according to claim 1.
前記複数の噴霧ノズルは、前記金属溶湯が流下する軌跡に対し、互いに間隔を置いた3本以上が斜め下向きで且つ対称に配置される、
ことを特徴とする請求項1または2に記載の金属溶湯の連続噴霧装置。
The plurality of spray nozzles are arranged obliquely downward and symmetrically with respect to a trajectory in which the molten metal flows down, with three or more spaced apart from each other.
The continuous spraying apparatus for molten metal according to claim 1 or 2, characterized in that:
前記複数の噴霧ノズルは、前記チャンバの上側に配置される円環状の媒体供給体に内蔵される円環状の媒体供給室にそれらの基端が連通し、且つチャンバの上部を貫通している、
ことを特徴とする請求項1乃至3の何れか一項に記載の金属溶湯の連続噴霧装置。
The plurality of spray nozzles communicate with an annular medium supply chamber incorporated in an annular medium supply body disposed on the upper side of the chamber, and pass through the upper part of the chamber.
The continuous spraying apparatus for molten metal according to any one of claims 1 to 3.
JP2005061826A 2005-03-07 2005-03-07 Continuous spray equipment for molten metal Expired - Fee Related JP4462072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061826A JP4462072B2 (en) 2005-03-07 2005-03-07 Continuous spray equipment for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061826A JP4462072B2 (en) 2005-03-07 2005-03-07 Continuous spray equipment for molten metal

Publications (2)

Publication Number Publication Date
JP2006241562A true JP2006241562A (en) 2006-09-14
JP4462072B2 JP4462072B2 (en) 2010-05-12

Family

ID=37048254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061826A Expired - Fee Related JP4462072B2 (en) 2005-03-07 2005-03-07 Continuous spray equipment for molten metal

Country Status (1)

Country Link
JP (1) JP4462072B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578961B2 (en) 2006-02-16 2009-08-25 Seiko Epson Corporation Metal powder production apparatus and metal powder
WO2012157733A1 (en) * 2011-05-18 2012-11-22 株式会社東北テクノアーチ Metallic powder production method and metallic powder production device
CN109277579A (en) * 2018-11-09 2019-01-29 安徽中体新材料科技有限公司 A kind of low cost 3D printing Al alloy powder aerosolization preparation method
JP2019184191A (en) * 2018-04-13 2019-10-24 シンフォニアテクノロジー株式会社 Tapping method in induction heating melting device and induction heating melting device
CN114054241A (en) * 2022-01-11 2022-02-18 南通佳恒线缆材料有限公司 Continuous coating device for cable material protective layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578961B2 (en) 2006-02-16 2009-08-25 Seiko Epson Corporation Metal powder production apparatus and metal powder
US7846380B2 (en) 2006-02-16 2010-12-07 Seiko Epson Corporation Metal powder production apparatus and metal powder
US7988759B2 (en) 2006-02-16 2011-08-02 Seiko Epson Corporation Method of producing metal powder
WO2012157733A1 (en) * 2011-05-18 2012-11-22 株式会社東北テクノアーチ Metallic powder production method and metallic powder production device
JP2019184191A (en) * 2018-04-13 2019-10-24 シンフォニアテクノロジー株式会社 Tapping method in induction heating melting device and induction heating melting device
JP7313122B2 (en) 2018-04-13 2023-07-24 シンフォニアテクノロジー株式会社 Hot water tapping method in induction heating melting device and induction heating melting device
CN109277579A (en) * 2018-11-09 2019-01-29 安徽中体新材料科技有限公司 A kind of low cost 3D printing Al alloy powder aerosolization preparation method
CN114054241A (en) * 2022-01-11 2022-02-18 南通佳恒线缆材料有限公司 Continuous coating device for cable material protective layer

Also Published As

Publication number Publication date
JP4462072B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
KR20160131060A (en) Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US10654106B2 (en) Process for producing metals and metal alloys using mixing cold hearth
US20160318105A1 (en) Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
JP4462072B2 (en) Continuous spray equipment for molten metal
KR101426008B1 (en) Multiplex atomization nozzle and manufacturing apparatus of powder for the same
JP3691859B2 (en) An apparatus for dissolving a solid film made of a conductive material
JP2015511537A (en) Continuous casting equipment
JP2017075386A (en) Manufacturing apparatus of metal powder and manufacturing method thereof
JPH03177508A (en) Device and method for pulverizing titanium material
JP2005139471A (en) Gas atomizing nozzle, and metal melting/atomizing apparatus using the same
KR100800505B1 (en) Fabricating apparatus for metal powder
US20220339701A1 (en) Device for atomizing a melt stream by means of a gas
JP2006241490A (en) Continuous atomization method for molten metal and continuous atomization device used therefor
JP2019098396A (en) Jet rotation type degasification device and gas nozzle
WO2009153865A1 (en) Micropowder producing apparatus and process
JPH03107404A (en) Method and apparatus for manufacturing metal powder
JP4496791B2 (en) Electromagnetic hot water nozzle and metal melting / hot water device using the same
JP2001241858A (en) Guide tube structure for electromagnetic flux concentration
JP7313122B2 (en) Hot water tapping method in induction heating melting device and induction heating melting device
JP2006283065A (en) Gas-blowing tuyere
JP2008180471A (en) Tapping electromagnetic nozzle device for cold crucible melting furnace and tapping method
JP2006153362A (en) Metal melting and tapping device, and its casting device
JP5893796B2 (en) Metal continuous casting process
JP2007084905A (en) Device and method for producing metal powder
JPH03281709A (en) Apparatus for manufacturing metal powder and gas atomizing nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A977 Report on retrieval

Effective date: 20091125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees