JP2019098396A - Jet rotation type degasification device and gas nozzle - Google Patents

Jet rotation type degasification device and gas nozzle Download PDF

Info

Publication number
JP2019098396A
JP2019098396A JP2017243216A JP2017243216A JP2019098396A JP 2019098396 A JP2019098396 A JP 2019098396A JP 2017243216 A JP2017243216 A JP 2017243216A JP 2017243216 A JP2017243216 A JP 2017243216A JP 2019098396 A JP2019098396 A JP 2019098396A
Authority
JP
Japan
Prior art keywords
jet
gas
gas nozzle
inert gas
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017243216A
Other languages
Japanese (ja)
Other versions
JP7078923B2 (en
Inventor
青沼 三郎
Saburo Aonuma
三郎 青沼
大二 後藤
Daiji Goto
大二 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKO KK
JAPAN FOUNDRY SERVICE CO Ltd
Original Assignee
SATAKO KK
JAPAN FOUNDRY SERVICE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKO KK, JAPAN FOUNDRY SERVICE CO Ltd filed Critical SATAKO KK
Priority to JP2017243216A priority Critical patent/JP7078923B2/en
Publication of JP2019098396A publication Critical patent/JP2019098396A/en
Application granted granted Critical
Publication of JP7078923B2 publication Critical patent/JP7078923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To solve the problems that the ascent and descent operation of heavy articles in a rotation drive unit is caused every time, the operation is troublesome, a rotation shaft made of carbon is weak against shock and easily broken, the whole device is expensive and an operation using the rotation drive unit and the rotation shaft cannot be performed according to the installation state of a molten metal furnace in a conventional rotation agitation type degasification device.SOLUTION: In a jet rotation type degasification device: a jet gas nozzle 6 is disposed apart from a prescribed distance from the bottom surface of an aluminum melting furnace 5; nitrogen gas is supplied from a nitrogen gas supply pipe 7 to the jet gas nozzle 6; convection is generated in the aluminum melting furnace 5 by forming nitrogen gas bubbles 9 in a molten metal; and hydrogen gas and removed slag 10 are floated at the upper part of the molten metal and removed.SELECTED DRAWING: Figure 2

Description

この発明は、アルミニウム溶湯中内に発生する水素ガスや脱滓を簡単な装置で除去できる脱ガス装置及びガスノズルに関する。  The present invention relates to a degassing apparatus and a gas nozzle capable of removing hydrogen gas and deasphalt generated in molten aluminum with a simple apparatus.

アルミニウム鋳造工場で品質劣化の原因となっている脱滓(懸濁物、酸化物)や水素ガスを除去する必要がある。すなわち、溶解終了後に溶湯中の酸化物や水素ガスを除去するために溶湯処理が行われる。この溶湯処理には酸化物の除去を行う脱滓処理と水素ガスの除去を行う脱ガス処理がある。  It is necessary to remove the deasphalt (suspension, oxide) and hydrogen gas which are the causes of quality deterioration in the aluminum foundry. That is, after the completion of melting, molten metal treatment is performed to remove oxides and hydrogen gas in the molten metal. The molten metal treatment includes degassing treatment for removing oxides and degassing treatment for removing hydrogen gas.

溶湯中には、種々の酸化物や介在物が存在しており、これらが製品内に巻き込まれると、製品の機械的性質を阻害する。これらを取り除くために脱滓処理が行われる。脱滓には、塩化物系、フッ化物系のフラックスが用いられ、これらを溶湯表面に散布して攪拌する。フラックスは、溶湯中で分解して細かなガス気泡を発生し、酸化物がこのガス気泡に吸着され、浮上して分離される。
また、溶湯中には大気中の水素分圧に応じて水素ガスが吸収される。液相への水素溶解度は高いが、固相での水素溶解度は極めて低い。このため、溶湯中に吸収された水素のうちで凝固時に溶解限度を超えた水素は、分子状の水素ガスとして溶湯中に放出されて気泡となる。その結果、鋳造した製品内にピンホールが発生して機械的性質や耐圧性を阻害する。
In the molten metal, various oxides and inclusions exist, and when they are caught in the product, they interfere with the mechanical properties of the product. A removal process is performed to remove these. Chloride-based and fluoride-based fluxes are used for deasphalting, and these are dispersed and stirred on the surface of the molten metal. The flux is decomposed in the molten metal to generate fine gas bubbles, and the oxide is adsorbed to the gas bubbles and floats up and separated.
Further, in the molten metal, hydrogen gas is absorbed according to the hydrogen partial pressure in the atmosphere. Although the hydrogen solubility in the liquid phase is high, the hydrogen solubility in the solid phase is extremely low. For this reason, among the hydrogen absorbed in the molten metal, the hydrogen exceeding the solubility limit at the time of solidification is released into the molten metal as molecular hydrogen gas and becomes bubbles. As a result, pinholes are generated in the cast product and the mechanical properties and pressure resistance are impaired.

これらの対策として、従来は、図9に示すような回転攪拌式脱ガス装置が使用されている。図9(a)はこの回転攪拌式脱ガス装置の構成を概略的に示す図で、図9(a)において、101は溶湯炉、102は溶湯炉101内のアルミニウム溶湯、103は回転機構・制御機構104、回転シャフト105、回転子106を備えた回転・攪拌装置を示す。回転子106は図9(b)に示すように、車輪形状で、回転機構・制御機構104から送り込まれる不活性ガスを、その周囲あるいは上面から気泡107として噴出させるよう小さな孔が形成されている。図9に於いては、不活性ガスの例として窒素N2を例示しているが、アルゴンなどの他の不活性ガスでも同様である。  Conventionally, a rotary stirring type degassing apparatus as shown in FIG. 9 is used as a countermeasure against these problems. FIG. 9 (a) is a view schematically showing the configuration of this rotation stirring type degassing apparatus, in FIG. 9 (a), 101 is a molten metal furnace, 102 is a molten aluminum in the molten metal furnace 101, and 103 is a rotating mechanism. The rotation and stirring apparatus provided with the control mechanism 104, the rotating shaft 105, and the rotor 106 is shown. As shown in FIG. 9 (b), the rotor 106 is in the shape of a wheel, and small holes are formed so that the inert gas fed from the rotation mechanism / control mechanism 104 can be ejected as bubbles 107 from the periphery or the top. . In FIG. 9, nitrogen N 2 is illustrated as an example of the inert gas, but the same applies to other inert gases such as argon.

なお、この回転子106の下部には開放式の溝が切ってあり、三面が囲われたガス通路と溶湯の圧力に囲われたガス通路であるため、無回転の場合は、ある程度大きな泡となってしまう。
泡のサイズを小さくするためには、回転数を速めてガス泡を裁断する必要があるが、回転を速めると、水素ガスの除去には貢献するが、溶湯上部面に必要以上の渦ができ、溶湯炉壁面から空気を取り込んでしまい、正常なアルミまでも酸化を増やし、アルミ縣濁物が増え、撤去しなければならず、歩留りが悪くなるという懸念がある。
In the lower part of the rotor 106, an open type groove is cut, and since there are a gas passage surrounded by three faces and a gas passage surrounded by the pressure of the molten metal, in the case of no rotation, the bubbles are somewhat large. turn into.
In order to reduce the size of the bubbles, it is necessary to speed up the rotation speed and cut the gas bubbles. However, if the rotation is accelerated, it contributes to the removal of hydrogen gas, but more vortices are generated on the upper surface of the molten metal. There is a concern that the air will be taken in from the wall of the melt furnace, oxidation to even normal aluminum will be increased, aluminum suspended matter will increase, it must be removed, and the yield will deteriorate.

ここで、回転式脱ガス装置によって水素ガスが除去されるメカニズムについて説明する。アルミニウム合金中に不活性ガスを吹き込むと、溶湯中の水素ガスが不活性ガス気泡へ拡散し、浮上除去される。これは、雰囲気中の水素ガス分圧と、溶湯中の水素溶度の関係によるとされている。また、溶湯中に懸濁する非金属介在物の粒子は、多くの微細な不活性ガスの気泡に取り込まれ、浮上除去される。  Here, the mechanism by which hydrogen gas is removed by the rotary degassing apparatus will be described. When inert gas is blown into the aluminum alloy, hydrogen gas in the molten metal diffuses into inert gas bubbles and floats up. This is considered to be due to the relationship between the hydrogen gas partial pressure in the atmosphere and the hydrogen solubility in the molten metal. Also, particles of nonmetallic inclusions suspended in the molten metal are taken into bubbles of many fine inert gases and floated away.

しかし、従来の回転攪拌式脱ガス装置では、回転駆動装置の重量物の上昇・下降作業がその都度発生し、作業が大変であること、回転シャフトが炭素製のため、衝撃に弱く破損しやすいこと、装置全体が高価であること、溶湯炉の設置状態によっては回転駆動装置・回転シャフトを使った作業ができない等の問題点があった。  However, in the conventional rotary stirring type degassing apparatus, lifting and lowering work of the weight of the rotary drive occurs each time, and the work is difficult, and the rotating shaft is made of carbon, so it is weak to shock and easily broken. In addition, the entire apparatus is expensive, and depending on the installation condition of the molten metal furnace, there are problems such as that the work using the rotary drive device and the rotary shaft can not be performed.

特開平05−312485号公報(特許文献1)は、金属溶湯中に攪拌用ガスを導入する装置に関するもので、図1には炉底の中央に渦巻き状のガス吹き込み管が配置されたものが記載されているが、炉底板の直上に設置されており、形状は渦巻き状と言うよりは、円形に近い形状となっている。  Japanese Patent Application Laid-Open No. 05-312485 (Patent Document 1) relates to an apparatus for introducing a gas for stirring into molten metal, and in FIG. 1, a spiral gas blowing pipe is disposed at the center of the furnace bottom. Although described, it is installed directly above the furnace bottom plate, and the shape is a near circular shape rather than a spiral shape.

特開平05−312485号公報(図1)JP 05-312485 A (FIG. 1)

上述のように、従来の回転攪拌式脱ガス装置では、回転駆動装置の重量物の上昇・下降作業がその都度発生し、作業が大変であること、回転シャフトが炭素製のため、衝撃に弱く破損しやすいこと、装置全体が高価であること、溶湯炉の設置状態によっては回転駆動装置・回転シャフトを使った作業ができない等の問題点があった。この発明では、回転部分がなく簡単な装置で、溶湯炉内の脱滓を除去できる噴流旋回方式脱ガス装置を得ることを目的としている。
また、特許文献1に示された装置よりも、気泡サイズ・気泡発生数の制御が容易、短時間に気泡と溶湯を接触可能、溶湯表面に乱流を発生させないという効果をそなえた装置を得ることを目的としている。
As described above, in the conventional rotary stirring type degassing apparatus, lifting and lowering work of the weight of the rotary drive device occurs each time, and the work is heavy, and the rotating shaft is made of carbon, so it is weak against impact. There are problems such as easy breakage, high price of the whole apparatus, and inability to work using a rotary drive and a rotary shaft depending on the installation condition of the melt furnace. It is an object of the present invention to obtain a jet swirling degassing apparatus capable of removing swarf in a molten metal furnace with a simple apparatus having no rotating part.
In addition, it is easier to control the bubble size and the number of bubbles generated than the device shown in Patent Document 1, obtain a device having the effect of being able to contact bubbles and molten metal in a short time and not generating turbulent flow on the molten metal surface. The purpose is that.

請求項1に記載の発明は、アルミニウム溶湯炉内に発生する水素ガスや脱滓を除去する装置において、前記アルミニウム溶湯炉の底面から所定距離を隔てて設置した噴流式ガスノズルと、この噴流式ガスノズルに不活性ガスを供給する供給管と、この供給管に不活性ガスを送出する不活性ガス発生装置とを備え、前記噴流式ガスノズルから不活性ガスを噴出させて前記溶湯内に対流を起こさせ前記水素ガスや脱滓を溶湯上部に浮上させて除去するようにしたものである。
この請求項1の発明によれば、回転部分がなく簡単な装置で、溶湯炉内の水素ガスや脱滓を除去できる。また、従来の回転攪拌式脱ガス装置に比べ、設置が容易で、作業性が良いという効果がある。
The invention according to claim 1 is an apparatus for removing hydrogen gas and deasphalting generated in a molten aluminum furnace, the jet-type gas nozzle installed at a predetermined distance from the bottom surface of the molten aluminum furnace, and the jet-type gas nozzle And an inert gas generator for delivering the inert gas to the supply pipe, the inert gas is ejected from the jet gas nozzle to cause convection in the molten metal. The hydrogen gas and the deasphalted carbon are floated to the upper part of the molten metal to be removed.
According to the invention of claim 1, it is possible to remove hydrogen gas and swarf in the melt furnace with a simple device without a rotating part. Moreover, compared with the conventional rotation stirring type degassing apparatus, there exists an effect that installation is easy and workability | operativity is good.

請求項2に記載の発明は、噴流式ガスノズルの形状を渦巻き形状などの一筆書き状にして、ガスノズル両端がガスの入口であり、出口でもあるようにしたことに特徴がある。このようにすることで、万遍なく気泡を生成でき、効率よく水素ガスや脱滓を除去できる。
請求項3に記載の発明は、噴流式ガスノズルの両端から不活性ガスを供給するようにしたことに特徴がある。このようにすることで、請求項2に記載のものよりもさらに万遍なく気泡を生成でき、効率よく水素ガスや脱滓を除去できる。
請求項4に記載の発明は、アルミニウム溶湯炉の底面から50〜150mmを隔てて噴流式ガスノズルを設置するようにしたことに特徴がある。このようにすることで、溶湯炉内で窒素ガスの対流が効率よく行われ、水素ガスや脱滓を確実に除去できる。
請求項5に記載の発明は、噴流式ガスノズルに設けた不活性ガス噴出口の大きさは、0.2mm程度としたことに特徴がある。このようにすることで、溶湯炉内で不活性ガスの対流が効率よく行われ、水素ガスや脱滓を確実に除去できる。
請求項6に記載の発明は、不活性ガスの発生制御は、パルス制御装置によりパルス方式で制御するようにしたことに特徴がある。このようにすることで、ガスの発生・制御が容易で、調整の自由度がある。また、ガスの導入圧力とパルス幅とスピードの調整で不活性ガス気泡の粒径が自由に変えられるという効果がある。
請求項7に記載の発明は、溶湯中の不活性ガス供給管の途中に、溶湯の熱を利用して不活性ガスを温める熱吸収装置を設けたことに特徴がある。このようにすることで、溶湯の熱を利用して不活性ガスを温めることができ、別に不活性ガスを温める装置を設けずに済む。不活性ガスを温めることで、不活性ガスの純度が高くなり、溶湯の酸化を抑え、水素ガスや脱滓を確実に除去できる。
請求項8に記載の発明は、不活性ガスとして、窒素あるいはアルゴンを用いることを特徴とするものである。不活性ガスとして、窒素あるいはアルゴンを用いることで、非常に効率よく水素ガスや脱滓を除去できる。
The second aspect of the present invention is characterized in that the shape of the jet-type gas nozzle is a single stroke such as a spiral shape so that both ends of the gas nozzle are the inlet and the outlet of the gas. By so doing, air bubbles can be generated uniformly, and hydrogen gas and deasphalt can be removed efficiently.
The invention according to claim 3 is characterized in that the inert gas is supplied from both ends of the jet gas nozzle. By doing so, bubbles can be generated more evenly than in the second aspect, and hydrogen gas and deasphalting can be efficiently removed.
The invention according to claim 4 is characterized in that the jet gas nozzle is installed at a distance of 50 to 150 mm from the bottom surface of the molten aluminum furnace. By so doing, convection of nitrogen gas can be efficiently performed in the melt furnace, and hydrogen gas and swarf can be reliably removed.
The invention according to claim 5 is characterized in that the size of the inert gas jet port provided in the jet flow type gas nozzle is about 0.2 mm. By so doing, convection of the inert gas can be efficiently performed in the melt furnace, and hydrogen gas and swarf can be reliably removed.
The invention according to claim 6 is characterized in that generation control of the inert gas is controlled by a pulse control device by a pulse control device. By doing this, gas generation and control are easy, and there is a degree of freedom in adjustment. In addition, the particle diameter of the inert gas bubble can be freely changed by adjusting the introduction pressure of the gas, the pulse width and the speed.
The invention according to claim 7 is characterized in that a heat absorbing device for warming the inert gas using heat of the molten metal is provided in the middle of the inert gas supply pipe in the molten metal. By so doing, the heat of the molten metal can be used to warm the inert gas, and it is not necessary to provide a separate device for heating the inert gas. By warming the inert gas, the purity of the inert gas can be increased, the oxidation of the molten metal can be suppressed, and the hydrogen gas and the deasphalting can be reliably removed.
The invention according to claim 8 is characterized in that nitrogen or argon is used as the inert gas. By using nitrogen or argon as the inert gas, it is possible to remove hydrogen gas and deasphalt very efficiently.

請求項9に記載の発明は、本発明の噴流旋回方式脱ガス装置に使用されるガスノズルの構造に関するもので、このガスノズルの形状が一筆書き状で、その両端はガスの入口あるいは出口となるように構成されているものである。
請求項10に記載の発明は、請求項9の記載に加え、ガスノズルは、アルミニウム溶湯炉の底面から所定距離を隔てて設置されるようにしたものである。
The invention according to claim 9 relates to the structure of the gas nozzle used in the jet swirl system degassing apparatus of the present invention, wherein the shape of the gas nozzle is a single stroke and the both ends thereof are the inlet or outlet of the gas. Is configured.
According to a tenth aspect of the present invention, in addition to the ninth aspect, the gas nozzle is installed at a predetermined distance from the bottom surface of the molten aluminum furnace.

本発明の噴流旋回方式脱ガス装置によれば、回転部分がなく簡単な装置で、溶湯炉内の水素ガスや脱滓を除去できる。また、従来の回転攪拌式脱ガス装置に比べ、設置が容易で、作業性が良い。
また、効率の良い噴流式ガスノズルを得ることができる。
According to the jet swirl system degassing apparatus of the present invention, it is possible to remove hydrogen gas and swarf in the molten metal furnace with a simple apparatus having no rotating part. Moreover, compared with the conventional rotation stirring type degassing apparatus, installation is easy and workability | operativity is good.
In addition, an efficient jet gas nozzle can be obtained.

本発明の噴流旋回方式脱ガス装置全体の構成を示す概略構成図  The schematic block diagram which shows the structure of the whole jet flow whirl system degassing apparatus of this invention 本発明の実施の形態1の溶湯炉及び脱ガス装置の側面図  The melt furnace and the side view of the degassing apparatus according to the first embodiment of the present invention 本発明の実施の形態1に示す脱ガス装置の平面図  Plan view of the degassing apparatus shown in Embodiment 1 of the present invention 溶湯内水素ガス除去の原理を説明する図  Diagram to explain the principle of hydrogen gas removal in molten metal 本発明の実施の形態2に示す脱ガス装置の平面図  The top view of the degassing apparatus shown in Embodiment 2 of this invention 本発明の実施の形態2の変形例1の脱ガス装置の平面図  Top view of the degassing apparatus of the first modification of the second embodiment of the present invention 本発明の実施の形態2の変形例2の脱ガス装置の平面図  Top view of the degassing apparatus according to the second modification of the second embodiment of the present invention 本発明の実施の形態3の溶湯炉及び脱ガス装置の側面図  The melt furnace and the side view of the degassing apparatus of the embodiment 3 of the present invention 従来の溶湯炉及び回転攪拌式脱ガス装置の側面図  Side view of conventional molten metal furnace and rotational stirring degassing apparatus

実施の形態1.
図1は本発明の噴流旋回方式脱ガス装置全体の構成を示す概略構成図で、1は電源、2はコンプレッサー内蔵の窒素ガス発生装置、3は酸素除去触媒、4はタッチパネル4a、高速電磁弁4bを備えたパルス制御装置、5はアルミニウム溶湯炉、6は噴流式ガスノズル、7は窒素供給管、8はアルミニウム溶湯、9は窒素ガス気泡である。
窒素ガス発生装置2で発生した窒素は、改質装置である酸素除去触媒3を経由して、パルス制御装置4からパルス状に窒素ガスが放出され、窒素供給管7を経由して溶湯炉5の底部付近に設置された噴流式ガスノズル6から噴出し、水素ガスや脱滓を溶湯炉5上部へ移動させ除去する。
なお、実施の形態1の装置は、ガス供給がパルス方式であり、ガス供給時に瞬時に供給口から各ノズル口に伝達される。また、ガス圧縮量を最小限に抑えることにより、順次送られるパルス供給ガスが正確にノズル部より排出され、細かい泡とその泡の量を間欠的に発生させ続けることが可能となっている。
Embodiment 1
FIG. 1 is a schematic block diagram showing the entire configuration of the jet swirl system degassing apparatus according to the present invention, wherein 1 is a power source, 2 is a nitrogen gas generator with a built-in compressor, 3 is an oxygen removing catalyst, 4 is a touch panel 4a, high speed solenoid valve A pulse control device 4b is provided, 5 is a molten aluminum furnace, 6 is a jet gas nozzle, 7 is a nitrogen supply pipe, 8 is a molten aluminum, and 9 is a nitrogen gas bubble.
The nitrogen gas generated in the nitrogen gas generator 2 is pulsated from the pulse controller 4 through the oxygen removing catalyst 3 which is a reformer, and the molten metal furnace 5 is discharged through the nitrogen supply pipe 7. The hydrogen gas and the deasphalt are moved to the upper part of the melt furnace 5 and removed by squirting from a jet-type gas nozzle 6 installed in the vicinity of the bottom of the furnace.
In the apparatus of the first embodiment, the gas supply is a pulse system, and the gas is instantaneously transmitted from the supply port to each nozzle port at the time of gas supply. Further, by minimizing the amount of gas compression, it is possible to accurately discharge the pulse supply gas sequentially sent from the nozzle portion, and to continuously generate the fine bubbles and the amount of the bubbles intermittently.

以下、この噴流旋回方式脱ガス装置の主要部である噴流式ガスノズル6について、図2を用いて詳細に説明する。噴流式ガスノズル6は、アルミニウム溶湯炉5の底部に配置されるが、溶湯炉5の底面との間に一定の距離hを保って配置される。この距離は、噴流式ガスノズル6から放出される窒素ガスが溶湯炉5内で対流し、攪拌効果が充分発揮できるように、50〜150mmに選択される。なかでも、100mm程度が最も効率よく対流が得られる。
また、噴流式ガスノズル6の形状の平面図を示す図3に示すが、この噴流式ガスノズル6に設けるガス噴出口6aの大きさは、0.2mm程度が望ましい。
Hereinafter, the jet gas nozzle 6 which is a main part of the jet swirling degassing apparatus will be described in detail with reference to FIG. The jet gas nozzle 6 is disposed at the bottom of the molten aluminum furnace 5 and is disposed at a constant distance h from the bottom of the molten iron furnace 5. This distance is selected to be 50 to 150 mm so that the nitrogen gas released from the jet gas nozzle 6 can be convected in the molten metal furnace 5 and the stirring effect can be sufficiently exhibited. Among these, convection is obtained most efficiently at about 100 mm.
Further, although a plan view of the shape of the jet gas nozzle 6 is shown in FIG. 3, the size of the gas jet nozzle 6 a provided to the jet gas nozzle 6 is desirably about 0.2 mm.

窒素供給管7から注入された窒素ガスは、噴流式ガスノズル6から細かな気泡9となって上部に向けて放出される。この気泡9は図中矢印のように、噴流式ガスノズル6から上昇し、溶湯上面で外側に向かって回り込み、溶湯炉5の内面に沿って下降し、対流する。その際に、水素ガスや脱滓10を溶湯上面に移動させ、除去する。  The nitrogen gas injected from the nitrogen supply pipe 7 is released from the jet gas nozzle 6 as fine bubbles 9 toward the top. The bubbles 9 ascend from the jet gas nozzle 6 as shown by arrows in the figure, move outward on the upper surface of the molten metal and descend along the inner surface of the molten metal furnace 5 to cause convection. At that time, the hydrogen gas and the degassing vessel 10 are moved to the upper surface of the molten metal and removed.

次に、図4を用いて、溶湯内水素ガス及び脱滓の除去について説明する。溶湯炉5内で加熱されたアルミ溶湯8は固相から液相に変わる時、水素ガスの溶解量が大きくなり気泡が残り、製品の品質を下げてしまう。そのため、窒素などの不活性ガスを吹込み、溶湯内に浮遊している水素ガスを不活性ガス気泡9内に移動させ浮上させて除去する。これは、不活性ガスの泡の水素分圧が低いことにより、浮遊の水素ガスが不活性ガスの泡の中に移動し、不活性ガスとともに浮上するためである。また、同時に不活性ガスの周囲に付着した酸化物などの脱滓10も湯面に浮上し除去される。なお、図4では不活性ガスの一例として、窒素を用いた例を示しているが、アルゴンを用いても同様な効果が得られる。  Next, with reference to FIG. 4, the removal of the molten metal hydrogen gas and the slag removal will be described. When the aluminum melt 8 heated in the melt furnace 5 changes from the solid phase to the liquid phase, the amount of hydrogen gas dissolved increases and bubbles remain, which lowers the quality of the product. Therefore, an inert gas such as nitrogen is blown to move the hydrogen gas suspended in the molten metal into the inert gas bubble 9 to float and be removed. This is because, due to the low hydrogen partial pressure of the inert gas bubble, suspended hydrogen gas moves into the inert gas bubble and floats up with the inert gas. At the same time, the deasphalt 10 such as oxides adhering to the periphery of the inert gas also floats on the surface of the hot water and is removed. In addition, although the example which used nitrogen as an example of an inert gas is shown in FIG. 4, the same effect is acquired even if it uses argon.

実施の形態2.
図5は本発明の実施の形態2に示す噴流式ガスノズル60の平面図である。この噴流式ガスノズル60は、ノズルの1本のパイプが渦巻き状に形成され、渦巻き状パイプの1箇所の窒素供給口60aから窒素ガスが供給され、パイプに形成されたガス噴出口60bから窒素ガスの気泡が放出される。なお、図5では、パイプに形成したガス噴出口60bはその一部を表示している。
この実施の形態2に示す渦巻き状の噴流式ガスノズル60も、溶湯炉5の底面との間に一定の距離50〜150mmを保って配置される。
Second Embodiment
FIG. 5 is a plan view of a jet gas nozzle 60 according to a second embodiment of the present invention. In the jet-type gas nozzle 60, one pipe of the nozzle is formed in a spiral shape, nitrogen gas is supplied from a nitrogen supply port 60a at one position of the spiral pipe, and nitrogen gas is supplied from a gas jet port 60b formed in the pipe Air bubbles are released. In addition, in FIG. 5, the gas jet nozzle 60b formed in the pipe is showing the one part.
The spiral jet-type gas nozzle 60 shown in the second embodiment is also disposed at a constant distance of 50 to 150 mm with the bottom surface of the molten metal furnace 5.

図6は実施の形態2の変形例1で、この噴流式ガスノズル61は、ノズルの1本のパイプが渦巻き状に形成され、外側の窒素供給口61aと、内側の窒素供給口61bの双方から窒素ガスが供給されるように構成される。そのため、ガスノズル61の全体から万遍なく窒素ガスが溶湯内に噴出させることができる。
なお、この図6ではノズルの構成の概略を示しており、パイプの太さを省略し、またパイプに形成するガス噴出口も省略している。
この実施の形態2の変形例1に示す渦巻き状の噴流式ガスノズル61も、溶湯炉5の底面との間に一定の距離50〜150mmを保って配置される。
FIG. 6 shows a modification 1 of the second embodiment. In the jet gas nozzle 61, one pipe of the nozzle is formed in a spiral shape, and both the outer nitrogen supply port 61a and the inner nitrogen supply port 61b are used. It is configured to be supplied with nitrogen gas. Therefore, nitrogen gas can be ejected from the entire gas nozzle 61 uniformly into the molten metal.
6 schematically shows the configuration of the nozzle, the thickness of the pipe is omitted, and the gas jet port formed in the pipe is also omitted.
The spiral jet-type gas nozzle 61 shown in the first modification of the second embodiment is also arranged at a fixed distance of 50 to 150 mm with the bottom surface of the molten metal furnace 5.

図7は実施の形態2の変形例2で、この噴流式ガスノズル62は渦巻き状のパイプが2本ほぼ等間隔で渦巻き状に構成されており、一方のパイプ62cには、外側の供給口62aから、もう一方のパイプ62dには、内側の供給口62bから窒素ガスが供給される構造としている。この場合にも、図6に示す実施の形態2の変形例1と同様にガスノズル62の全体から万遍なく窒素ガスが溶湯内に噴出させることができるという効果がある。
なお、この図6ではノズルの構成の概略を示しており、パイプの太さを省略し、またパイプに形成するガス噴出口も省略している。
この実施の形態2の変形例2に示す渦巻き状の噴流式ガスノズル62も、溶湯炉5の底面との間に一定の距離50〜150mmを保って配置される。
FIG. 7 shows a modification 2 of the second embodiment, in which two jet flow type gas nozzles 62 are formed in a spiral shape with substantially equal intervals, and one pipe 62c is provided with an outer supply port 62a. The nitrogen gas is supplied to the other pipe 62d from the inner supply port 62b. Also in this case, as in the first modification of the second embodiment shown in FIG. 6, there is an effect that nitrogen gas can be ejected from the whole of the gas nozzle 62 uniformly into the molten metal.
6 schematically shows the configuration of the nozzle, the thickness of the pipe is omitted, and the gas jet port formed in the pipe is also omitted.
The spiral jet-type gas nozzle 62 shown in the second modification of the second embodiment is also arranged at a constant distance of 50 to 150 mm with the bottom surface of the molten metal furnace 5.

実施の形態3.
図8は本発明の実施の形態3の溶湯炉及び脱ガス装置を示す側面図であり、図2に示す実施の形態1との違いは、溶湯8中の窒素ガス供給管7の途中に、窒素ガスを温める熱吸収装置11を設けた点である。この熱吸収装置11は約600度の溶湯の熱を利用して効率よく窒素ガスを温めることができる。この熱吸収装置11を設けることにより、供給する窒素の純度をさらに高めることができる。
この熱吸収装置11は、例えば窒素供給管7の一部を複数回屈曲させて表面積を拡げる、あるいは窒素供給管7の一部を複数本に分岐することにより表面積を拡げるなどの構成を取ることにより、効率的に溶湯8中の熱を窒素ガスに伝達することができる。
Third Embodiment
FIG. 8 is a side view showing a molten metal furnace and a degassing apparatus according to Embodiment 3 of the present invention, and the difference from Embodiment 1 shown in FIG. 2 is in the middle of nitrogen gas supply pipe 7 in molten metal 8. It is a point provided with the heat absorption device 11 which warms nitrogen gas. The heat absorbing device 11 can efficiently heat the nitrogen gas by utilizing the heat of the molten metal of about 600 degrees. By providing the heat absorbing device 11, the purity of the supplied nitrogen can be further enhanced.
The heat absorbing device 11 has a configuration in which, for example, a part of the nitrogen supply pipe 7 is bent a plurality of times to expand the surface area, or a part of the nitrogen supply pipe 7 is branched to a plurality of parts to expand the surface area. Thus, the heat in the molten metal 8 can be efficiently transferred to the nitrogen gas.

なお、実施の形態1、形態2、形態3では、噴流式ガスノズル6、60、61、62を溶湯炉5内の底部に一段設置しているが、例えば上下二段のように複数段で設置することも可能である。特に、図7に示す実施の形態2の変形例2のような構成の場合、2本のパイプが近接するのを避けることができ、設置がしやすくなるという効果がある。その際でも、下段の噴流式ガスノズル底面と溶湯炉5の底面とは、一定の距離50〜150mmを保って配置される。
また、上記実施の形態1から実施の形態3では、不活性ガスの例として窒素を取り上げて説明しているが、アルゴンを用いても同様な効果を得ることができる。
In the first, second, and third embodiments, the jet-type gas nozzles 6, 60, 61, 62 are installed in one stage at the bottom of the molten metal furnace 5, but for example, installed in multiple stages as in upper and lower two stages. It is also possible. In particular, in the case of the configuration as shown in the second modification of the second embodiment shown in FIG. 7, it is possible to prevent the two pipes from being in proximity to each other, thus providing an effect of facilitating installation. Even in this case, the bottom surface of the lower jet-type gas nozzle and the bottom surface of the molten metal furnace 5 are disposed with a predetermined distance of 50 to 150 mm.
In addition, although nitrogen is taken as an example of the inert gas in the first to third embodiments, the same effect can be obtained by using argon.

以上述べたように、本発明の噴流旋回方式脱ガス装置によれば、設置が簡単、浮遊水素ガスが最短距離で浮上可能、360度噴流攪拌のため万遍ない攪拌が可能、ガスの発生制御がパルス方式のため調整の自由度がある、ガスの導入圧力とパルス幅とスピードの変化によりバブル(泡)の粒径の可変が可能といった数々のメリット、特徴がある。  As described above, according to the jet swirl system degassing apparatus of the present invention, installation is easy, floating hydrogen gas can float at the shortest distance, 360 ° jet agitation enables uniform agitation, and gas generation control There are many merits and characteristics such as that the particle size of the bubble (bubble) can be changed by the change of the introduction pressure of the gas, the pulse width and the speed, which has the freedom of adjustment for the pulse system.

1:電源
2:窒素ガス発生装置
3:酸素除去触媒
4:パルス制御装置、4a:タッチパネル、4b:高速電磁弁
5:アルミニウム溶湯炉
6:噴流式ガスノズル、6a:ガス噴出口
7:窒素ガス供給管
8:溶湯
9:窒素ガス気泡
10:脱滓
11:熱吸収装置
60:噴流式ガスノズル、60a:窒素供給口、60b:ガス噴出口
61:噴流式ガスノズル、61a:外側の窒素供給口、61b:内側の窒素供給口
62:噴流式ガスノズル、62a:外側の供給口、62b:内側の供給口、62c:一方のパイプ62c、62d:もう一方のパイプ
1: Power supply 2: Nitrogen gas generator 3: Oxygen removal catalyst 4: Pulse controller, 4a: Touch panel, 4b: High speed solenoid valve 5: Molten aluminum furnace 6: Jet gas nozzle, 6a: Gas jet port 7: Nitrogen gas supply Tube 8: Molten metal 9: Nitrogen gas bubble 10: Decarburization 11: Heat absorption device 60: Jet type gas nozzle, 60a: Nitrogen supply port, 60b: Gas jet port 61: Jet type gas nozzle, 61a: Outer nitrogen supply port, 61b Inside nitrogen supply port 62: jet gas nozzle 62a: outside supply port 62b: inside supply port 62c: one pipe 62c, 62d: the other pipe

Claims (10)

アルミニウム溶湯炉内に発生する水素ガスや脱滓を除去する装置において、前記アルミニウム溶湯炉の底面から所定距離を隔てて設置した噴流式ガスノズルと、この噴流式ガスノズルに不活性ガスを供給する不活性ガス供給管と、この不活性ガス供給管に不活性ガスを送出する不活性ガス発生装置とを備え、前記噴流式ガスノズルから不活性ガスを噴出させて、前記溶湯炉内の溶融アルミニウム及びバブル状の不活性ガスの対流を起こさせ前記水素ガスや脱滓を溶湯上部に浮上させて除去するようにしたことを特徴とする噴流旋回方式脱ガス装置。  In an apparatus for removing hydrogen gas and deasphalting generated in a molten aluminum furnace, a jet-type gas nozzle installed at a predetermined distance from the bottom surface of the molten aluminum furnace and an inert gas supplying inert gas to the jet-type gas nozzle A gas supply pipe and an inert gas generator for delivering an inert gas to the inert gas supply pipe are provided, and the inert gas is ejected from the jet gas nozzle to form molten aluminum and bubbles in the melt furnace. A jet swirl system degassing apparatus characterized in that convection of inert gas is caused to float the hydrogen gas and the deasphalt above the molten metal for removal. 前記噴流式ガスノズルの形状は、一筆書き状で、その両端はガスの入口あるいは出口となるように構成されていることを特徴とする請求項1に記載の噴流旋回方式脱ガス装置。  The jet swirl type degassing apparatus according to claim 1, wherein the shape of the jet type gas nozzle is a single stroke, and both ends thereof are an inlet or an outlet of the gas. 前記噴流式ガスノズルの両端から不活性ガスを供給するようにしたことを特徴とする請求項1または請求項2に記載の噴流旋回方式脱ガス装置。  The jet swirl system degassing apparatus according to claim 1 or 2, wherein the inert gas is supplied from both ends of the jet gas nozzle. アルミニウム溶湯炉の底面から50〜150mmを隔てて噴流式ガスノズルを設置するようにしたことを特徴とする請求項1に記載の噴流旋回方式脱ガス装置。  2. The jet swirling degassing apparatus according to claim 1, wherein the jet gas nozzle is installed at a distance of 50 to 150 mm from the bottom surface of the molten aluminum furnace. 噴流式ガスノズルに設けた不活性ガス噴出口の大きさは、0.2mm程度としたことを特徴とする請求項1に記載の噴流旋回方式脱ガス装置。  2. The jet swirl system degassing apparatus according to claim 1, wherein the size of the inert gas jet port provided in the jet gas nozzle is about 0.2 mm. 前記噴流式ガスノズルへの不活性ガスの供給は、パルス制御装置によるパルス制御された不活性ガスであることを特徴とする請求項1に記載の噴流旋回方式脱ガス装置。  The jet swirl system degassing apparatus according to claim 1, wherein the supply of the inert gas to the jet gas nozzle is a pulse-controlled inert gas by a pulse control device. 前記溶湯中の前記不活性ガス供給管の途中に、前記溶湯の熱を利用して不活性ガスを温める熱吸収装置を設けたことを特徴とする請求項1に記載の噴流旋回方式脱ガス装置。  2. The jet swirling degassing apparatus according to claim 1, further comprising a heat absorbing device for warming the inert gas using heat of the molten metal in the middle of the inert gas supply pipe in the molten metal. . 前記不活性ガスは、窒素あるいはアルゴンであることを特徴とする請求項1〜請求項7のいずれかに記載の噴流旋回方式脱ガス装置。  The jet swirl system degassing apparatus according to any one of claims 1 to 7, wherein the inert gas is nitrogen or argon. アルミニウム溶湯炉内に発生する水素ガスや脱滓を除去する装置に使用される噴流式ガスノズルであって、前記噴流式ガスノズルは、一筆書き状で、その両端はガスの入口あるいは出口となるように構成されていることを特徴とする噴流式ガスノズル。  It is a jet-type gas nozzle used for an apparatus for removing hydrogen gas and degassing generated in a molten aluminum furnace, wherein the jet-type gas nozzle has a single-stroke shape, and both ends thereof are gas inlet or outlet. A jet gas nozzle characterized in that it is configured. アルミニウム溶湯炉内に発生する水素ガスや脱滓を除去する装置に使用される噴流式ガスノズルであって、前記噴流式ガスノズルは、アルミニウム溶湯炉の底面から所定距離を隔てて設置されていることを特徴とする請求項9に記載の噴流式ガスノズル。  It is a jet-type gas nozzle used for an apparatus for removing hydrogen gas and degassing generated in a molten aluminum furnace, wherein the jet-type gas nozzle is installed at a predetermined distance from the bottom of the molten aluminum furnace. The jet gas nozzle according to claim 9, characterized in that:
JP2017243216A 2017-12-01 2017-12-01 Jet swirl type degassing device and gas nozzle Active JP7078923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017243216A JP7078923B2 (en) 2017-12-01 2017-12-01 Jet swirl type degassing device and gas nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017243216A JP7078923B2 (en) 2017-12-01 2017-12-01 Jet swirl type degassing device and gas nozzle

Publications (2)

Publication Number Publication Date
JP2019098396A true JP2019098396A (en) 2019-06-24
JP7078923B2 JP7078923B2 (en) 2022-06-01

Family

ID=66975124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017243216A Active JP7078923B2 (en) 2017-12-01 2017-12-01 Jet swirl type degassing device and gas nozzle

Country Status (1)

Country Link
JP (1) JP7078923B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850283A (en) * 2020-07-23 2020-10-30 艾亦特工业炉(太仓)有限公司 Horizontal jet flow type cylindrical furnace
WO2021112267A1 (en) * 2019-12-02 2021-06-10 주식회사 포스코 Molten material mixing apparatus and method
CN114340816A (en) * 2019-11-15 2022-04-12 株式会社东热 Metal melting device, sieve plate for metal melting, and metal melting method
CN115958170A (en) * 2022-05-24 2023-04-14 宣城建永精密金属有限公司 Molten aluminum degassing device and degassing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205237A (en) * 1986-03-05 1987-09-09 Showa Alum Corp Treatment of molten aluminum
JPS62297422A (en) * 1986-06-18 1987-12-24 Kobe Steel Ltd Method and apparatus for degassing of molten al or al alloy
JPS63100142A (en) * 1986-10-14 1988-05-02 Kobe Steel Ltd Rotor for degassing treatment
JPH05312485A (en) * 1992-05-06 1993-11-22 Shinagawa Refract Co Ltd Metallurgical vessel bottom gas blowing device
JPH06158192A (en) * 1992-09-11 1994-06-07 Daihatsu Motor Co Ltd Purified magnesium material and its production
JP2000129365A (en) * 1998-10-26 2000-05-09 Tokyo Yogyo Co Ltd Shaft for degassing device
JP2013063472A (en) * 2013-01-18 2013-04-11 Showa Denko Kk Molten aluminum treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205237A (en) * 1986-03-05 1987-09-09 Showa Alum Corp Treatment of molten aluminum
JPS62297422A (en) * 1986-06-18 1987-12-24 Kobe Steel Ltd Method and apparatus for degassing of molten al or al alloy
JPS63100142A (en) * 1986-10-14 1988-05-02 Kobe Steel Ltd Rotor for degassing treatment
JPH05312485A (en) * 1992-05-06 1993-11-22 Shinagawa Refract Co Ltd Metallurgical vessel bottom gas blowing device
JPH06158192A (en) * 1992-09-11 1994-06-07 Daihatsu Motor Co Ltd Purified magnesium material and its production
JP2000129365A (en) * 1998-10-26 2000-05-09 Tokyo Yogyo Co Ltd Shaft for degassing device
JP2013063472A (en) * 2013-01-18 2013-04-11 Showa Denko Kk Molten aluminum treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340816A (en) * 2019-11-15 2022-04-12 株式会社东热 Metal melting device, sieve plate for metal melting, and metal melting method
EP4006471A4 (en) * 2019-11-15 2023-03-08 Tounetsu Co., Ltd. Metal melting device, screen plate for melting metal, and method for melting metal
CN114340816B (en) * 2019-11-15 2024-04-05 株式会社东热 Metal melting device, screen plate for metal melting, and metal melting method
WO2021112267A1 (en) * 2019-12-02 2021-06-10 주식회사 포스코 Molten material mixing apparatus and method
CN111850283A (en) * 2020-07-23 2020-10-30 艾亦特工业炉(太仓)有限公司 Horizontal jet flow type cylindrical furnace
CN115958170A (en) * 2022-05-24 2023-04-14 宣城建永精密金属有限公司 Molten aluminum degassing device and degassing method

Also Published As

Publication number Publication date
JP7078923B2 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP2019098396A (en) Jet rotation type degasification device and gas nozzle
JP2008534895A (en) Multifunctional injector and associated combustion process for metallurgical processing in arc furnaces
JP6161533B2 (en) Titanium continuous casting machine
CN102037146B (en) Burner/injector panel apparatus
Gushchin et al. Improved tundish refining of steel in continuous-casting machines
JP2007537355A (en) Molten metal refining
US9181602B2 (en) Device for degassing molten steel with an improved discharge nozzle
WO1992017295A1 (en) System for removing non-metallic inclusions in molten metal
JP2006241562A (en) Continuous atomization device for molten metal
CN110373553B (en) Device and method for preventing consumable electrode of electroslag furnace from oxidation
JP5047185B2 (en) Improved lance for LD steelmaking
JP5438768B2 (en) Silicon purification method and silicon purification apparatus
JPH0563529B2 (en)
KR101024248B1 (en) Gas supply system for a metallurgical furnace and operating method for said system
KR101804670B1 (en) Electro-slag remelting furance
CN207975992U (en) side-blown spray gun
JP6293233B2 (en) Refining apparatus and refining method
KR100213326B1 (en) Refining method of r.h vacuum degasing and the same device
JP2008214655A (en) Upleg snorkel of rh vacuum degassing apparatus
JPH1072615A (en) Method for refining molten metal in ladle and apparatus therefor
JP2011194420A (en) Method of producing high cleanliness steel
JP3427055B2 (en) Degassing method and molten steel stirrer in simple degassing equipment for molten steel
CN110331256B (en) Vacuum circulation degassing refining device capable of improving decarburization rate
JP2006241490A (en) Continuous atomization method for molten metal and continuous atomization device used therefor
RU2706911C1 (en) Device for bottom blowing of metal by gas in ladle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220215

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7078923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150