WO2012157466A1 - X-ray inspection apparatus - Google Patents

X-ray inspection apparatus Download PDF

Info

Publication number
WO2012157466A1
WO2012157466A1 PCT/JP2012/061740 JP2012061740W WO2012157466A1 WO 2012157466 A1 WO2012157466 A1 WO 2012157466A1 JP 2012061740 W JP2012061740 W JP 2012061740W WO 2012157466 A1 WO2012157466 A1 WO 2012157466A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ray
inspection apparatus
inspection
clamp
Prior art date
Application number
PCT/JP2012/061740
Other languages
French (fr)
Japanese (ja)
Inventor
佳秀 太田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012157466A1 publication Critical patent/WO2012157466A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor

Definitions

  • the present invention relates to an X-ray inspection apparatus, and more particularly to an X-ray inspection apparatus that inspects an inspection object by generating an X-ray tomographic image.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-160070 discloses an X-ray inspection apparatus including a fixed focus type X-ray source, a detector, and an object moving mechanism.
  • the positions of the object and the detector are changed with respect to the X-ray source.
  • a detector receives the X-ray which permeate
  • an X-ray CT (Computed Tomography) image of the object is generated by reconstructing images at a plurality of irradiation angles received by the detector.
  • X-ray CT Computer Tomography
  • the present invention has been conceived in view of such circumstances, and an object of the present invention is to make it possible to reliably hold an object while widening an inspection object region in an X-ray inspection apparatus.
  • An X-ray inspection apparatus includes an X-ray source, an X-ray detection unit, and a holding mechanism that holds an inspection target, and irradiates the inspection target held by the holding mechanism from a plurality of directions.
  • This is an X-ray inspection apparatus for imaging with the emitted X-rays.
  • the holding mechanism is configured so that the X-ray source is irradiated with X-rays from one side in the first direction with respect to the inspection target, and an X-ray fluoroscopic image of the inspection target is captured by the X-ray detection unit from the other side. It includes a first member that holds the inspection object and supports the inspection object from one side, and a second member that supports the inspection object from the other side. The first member in the second direction intersecting the first direction and the end surface on the inspection object side of the second member are inspected in the second direction as they are separated from the inspection object in the first direction. It has a slope away from.
  • the second member supports the inspection object continuously or at a plurality of locations in the third direction intersecting with the second direction, and at least a part of the second member supports the inspection object in the third direction. Notches are provided so that the area to be supported is reduced.
  • the second member is fixed to the supporting member extending in the third direction intersecting with the second direction and the supporting member so that the position of the second member can be changed in the third direction.
  • a pressing member for supporting the object by pressing, and the pressing member is located on the other side in the first direction.
  • the inspection object of a member that supports the inspection object The shape of the end face on the object side is devised. Specifically, the end face is inclined so as to move away from the inspection object in the second direction as the distance from the inspection object in the first direction increases.
  • the X-ray detection unit further supports the X-ray transmitted through the end side of the inspection object in the X-ray detection unit while supporting the inspection object over a long distance by the supporting member in the second direction. Detection is possible without being blocked by the end face. Therefore, in the X-ray inspection apparatus, the inspection object can be reliably held while widening the inspection object region.
  • FIG. 5 It is a figure which shows typically the structure of a part of board
  • FIG. 10 is a side view of FIG. 9.
  • FIG. 1 is a diagram schematically showing a partial configuration of a substrate production line including the inspection apparatus according to the present embodiment.
  • a substrate manufactured by the manufacturing line shown in FIG. 1 As an example of the inspection object, a substrate manufactured by the manufacturing line shown in FIG.
  • a production line includes an X-ray inspection apparatus 100 according to an embodiment of the present invention, and an apparatus (adjacent to the upstream side in the production line with respect to X-ray inspection apparatus 100 ( An upstream device 1000) and a device (downstream device 2000) installed adjacent to the downstream side.
  • the X-ray inspection apparatus 100 includes a conveyor base 90 for transporting a substrate (such as a substrate 10 described later) in the X-ray inspection apparatus 100 and a base plate 91 placed on the conveyor base 90.
  • the base plate 91 includes a belt 92 for feeding the substrate.
  • the X-ray inspection apparatus 100 also includes a clamp 50 that supports the substrate on the belt 92 from above.
  • the substrate conveyed on the conveyor base 90 moves in the X-ray inspection apparatus 100.
  • FIG. 1 three different positions of the conveyor base 90 are shown as a conveyor base 90, a conveyor base 90A, and a conveyor base 90B.
  • the base plate 91, the belt 92, and the clamp 50 also move.
  • base plates 91, 91A, 91B, belts 92, 92A, 92B, and clamps 50, 50A, 50B are shown in correspondence with the positions of the conveyor bases 90, 90A, 90B.
  • the conveyor base is disposed at the position indicated by the conveyor base 90 at the time of activation, and is disposed at the position indicated by the conveyor base 90A when receiving the substrate conveyed from the upstream apparatus 1000, and the received substrate is inspected.
  • Is disposed at the position indicated by the conveyor base 90B is disposed at the position indicated by the conveyor base 90B when the substrate after inspection is transferred to the downstream apparatus 2000, and is again conveyed when the next substrate is received from the upstream apparatus 1000. It arrange
  • the production line includes a transport rail 1001 for transporting a substrate, which is provided between the upstream apparatus 1000 and a conveyor base 90A at a position indicated by reference numeral 90A.
  • the production line also includes a transport rail 2001 for transporting a substrate, which is provided between the conveyor base 90B at the position indicated by reference numeral 90B and the downstream apparatus 2000.
  • the substrate 10A is a substrate sent from the upstream device 1000 to the conveyor base 90A in the direction of the arrow R11, and the substrate 10B is disposed on the belt 92A and supported by the clamp 50A from above.
  • the board 10C is a board sent from the belt 92B to the downstream apparatus 2000 through the transport rail 2001 in the direction of the arrow R12.
  • the X-ray inspection apparatus 100 of the present embodiment is intended for places where appearance inspection is difficult, such as pack fillets formed on IC (Integrated Circuit) leads and solder electrodes constituting a BGA (Ball Grid Array). An X-ray tomographic image is reconstructed and an inspection is performed using the generated tomographic image.
  • the inspection apparatus according to the present embodiment has a function of generating an X-ray CT image as a tomographic image and a function of generating a tomographic image by tomosynthesis.
  • FIG. 2 and 3 are diagrams for explaining a schematic configuration of the X-ray inspection apparatus 100.
  • an X-ray inspection apparatus 100 is provided above a substrate stage 1 that supports a substrate 10 that is an inspection object, an X-ray source 2 disposed below the substrate stage 1, and the substrate stage 1.
  • movement of the said inspection apparatus are included.
  • FIG. 2 shows a state in which the component 11 is mounted on the substrate 10.
  • some of the components of the transport mechanism for the substrate 10 are omitted.
  • the control device 7 is omitted.
  • the substrate stage 1 has a pair of conveyors 15A, 15B and conveyors 15A, 15B that support the substrate 10 at each edge along the length direction (left-right direction in FIG. 2; hereinafter, this is referred to as the X direction). Is provided with a pair of conveyor support portions 16A and 16B.
  • the conveyors 15A and 15B receive the board 10 from an upstream mechanism (not shown), carry the board 10 to a position supported by a stopper (clamp 50) provided on the conveyor 15A or the conveyor 15B, and stop.
  • the conveyors 15A and 15B carry out the substrate 10 to the outside (downstream apparatus 2000) after the support by the stopper is completed.
  • the conveyor support portions 16A and 16B are supported so as to be movable in the X and Y directions in FIG. 2 by being driven and controlled by the substrate control mechanism 78 in a state where the conveyors 15A and 15B are supported.
  • the substrate 10 moves horizontally (moves on a horizontal virtual plane) by the movement of the conveyor support portions 16A and 16B.
  • the clamp 50 is displaced by the substrate control mechanism 78, thereby taking a state of supporting the substrate 20 and a state of releasing the support.
  • the X-ray inspection apparatus 100 is provided with a slide rail 61 along the X-axis direction and a slide rail 66 along the Y-axis direction as a mechanism for moving the conveyor support portions 16A and 16B in the X and Y directions in FIG. It has been.
  • the slide rail 61 is connected to the conveyor support portions 16A and 16B via the slider 62.
  • the X-ray inspection apparatus 100 is provided with a slide rail (not shown) along the X-axis direction that makes a pair with the slide rail 61.
  • the slide rail is connected to the conveyor support portions 16 ⁇ / b> A and 16 ⁇ / b> B via the slider 63.
  • the slide rail 66 is connected to the support portions 64 and 65 via a slider 67.
  • the support parts 64 and 65 are connected to the sliders 62 and 63.
  • the slide rail 66 is connected to the conveyor support portions 16A and 16B via the slider 67, the support portions 64 and 65, and the sliders 62 and 63.
  • the X-ray inspection apparatus 100 is provided with a slide rail (not shown) that is paired with the slide rail 66 along the Y-axis direction and a support portion that connects the slide rail to the support portions 64 and 65.
  • the substrate control mechanism 78 makes a pair with the slider 62, the slider 63, the slider 67, and the slider 67 in order to drive the conveyor support portions 16A and 16B in the X-axis direction and the Y-axis direction.
  • a slider (not shown) is driven and controlled.
  • the conveyor support portions 16A and 16B and the support portions 64 and 65 in FIG. 2 correspond to the conveyor base 90 in FIG. Further, the conveyors 15A and 15B in FIG. 2 correspond to the base plate 91 in FIG. Although the shape of the corresponding member is different between FIG. 1 and FIG. 2, these functions are the same.
  • the detector stage 4 includes a pair of slide rails 41A and 41B (hereinafter referred to as “Y-axis rails 41A and 41B”) along the Y-axis direction, and a slide rail 42 along the X-axis direction (hereinafter referred to as “X-axis rail”). 42 ").
  • Each Y-axis rail 41A, 41B is provided with a pair of sliders 43. Both ends of the X-axis rail 42 are supported by sliders 43 and 43 of the Y-axis rails 41A and 41B.
  • a large slider 45 is provided on the X-axis rail 42.
  • a flat panel detector 3 (hereinafter abbreviated as “FPD3”) is attached to the slider 45 as a two-dimensional X-ray detector via a connecting member 46.
  • the large slider 45 is moved in the directions of arrows R3 and R4, and the slider 43 is moved in the directions of arrows R1 and R2.
  • the X-ray inspection apparatus 100 is further provided with a CCD camera 5 and a displacement sensor 6 for detecting the position of the substrate 10 in the XY plane and the position in the height direction perpendicular to the plane.
  • the detection output of the CCD (Charge Coupled Device) camera 5 is processed by the image processing mechanism 77B, and the detection output of the displacement sensor 6 is processed by the displacement meter control mechanism 77A.
  • the sliders 43 and 45 move the FPD 3 when a drive motor (not shown) is driven and controlled by the detector control mechanism 75. Specifically, the FPD 3 moves along the X-axis direction according to the movement of the slider 45 and also moves along the Y-axis direction according to the movement of the slider 43 of the Y-axis rails 41A and 41B.
  • the FPD 3 is connected to the control device 7 via a cable (not shown). Similarly, the X-ray source 2, the CCD camera 5, the displacement sensor 6, and the driving units of the stages 1 and 4 are also cable-connected to the control device 7.
  • the CCD camera 5 and the displacement sensor 6 are used for the purpose of checking the state of the substrate 10 before inspection. Specifically, the CCD camera 5 images the fiducial mark 19 on the substrate 10 in order to align the substrate 10 at an accurate position.
  • the image generated by this imaging is input to the image processing mechanism 77B of the control device 7, used for measuring the amount of positional deviation of the substrate 10, and the positional relationship between the stages 1 and 4 is adjusted based on the measured value.
  • the displacement sensor 6 measures the distance to the upper surface of the substrate 10.
  • the measured distance data is input to the displacement meter control mechanism 77A of the control device 7, and is used for the purpose of adjusting the height of a reference plane T, which will be described later, at the time of X-ray fluoroscopic imaging.
  • FIG. 2 also shows a block diagram of the main part of the control device 7 of the X-ray inspection apparatus 100 of the present embodiment.
  • the control device 7 executes control relating to X-ray fluoroscopic imaging, and also executes tomographic image reconstruction processing and inspection.
  • the control device 7 is configured by, for example, a personal computer in which a dedicated program is installed.
  • the program may be installed in the main storage unit 71 of the control device 7 at the time of shipment, or may be recorded on a recording medium detachable from the control device 7 and installed in the control device 7 as appropriate. Alternatively, it may be downloaded from the server on the network to the control device 7 through the network.
  • the control device 7 includes a calculation unit 70 including a CPU (Central Processing Unit), an auxiliary storage unit 72 including an auxiliary storage device, an input unit 73 configured to accept input of information from the outside, such as a keyboard and operation buttons, and image information and audio. And an X-ray source control mechanism 79 for controlling the X-ray output operation of the X-ray source 2 and the like.
  • a calculation unit 70 including a CPU (Central Processing Unit)
  • an auxiliary storage unit 72 including an auxiliary storage device including an auxiliary storage device
  • an input unit 73 configured to accept input of information from the outside, such as a keyboard and operation buttons, and image information and audio.
  • an X-ray source control mechanism 79 for controlling the X-ray output operation of the X-ray source 2 and the like.
  • the arithmetic unit 70 controls the operation of each mechanism such as the detector control mechanism 75, thereby performing X-ray fluoroscopic imaging (projection) on the substrate 10 while variously changing the positional relationship between the X-ray source 2, the FPD 3, and the substrate 10. Execute.
  • the calculation unit 70 also functions to control the operation of the CCD camera 5, the displacement sensor 6, and the conveyors 15 ⁇ / b> A and 15 ⁇ / b> B, the function to adjust the position of the substrate 10 based on the input from the CCD camera 5, and the displacement sensor 6. It also has a function of changing the set value of the height of the reference plane T at the time of photographing based on the input from and adjusting the movement amount of the substrate 10 and FPD 3 in accordance with the change.
  • a plurality of X-ray fluoroscopic imaging is performed for a plurality of inspection regions of the substrate 10 by changing the position of the FPD 3 for each inspection region.
  • the fluoroscopic images generated by the hourly fluoroscopic imaging are stored in the auxiliary storage unit 72.
  • the calculation unit 70 sets information for identifying the corresponding examination region and the position of the FPD 3 at the time of photographing as additional information in these images, and stores these additional information in the auxiliary storage unit 72 in association with the images.
  • the calculation unit 70 determines the suitability of the part to be inspected of the substrate 10 based on the data obtained by the reconstruction.
  • the determination result is output to an output unit 74 such as a monitor or an external device, for example.
  • all or at least a part of the detector control mechanism 75, the image acquisition mechanism 76, the displacement meter control mechanism 77A, the image processing mechanism 77B, the substrate control mechanism 78, and the X-ray source control mechanism 79 are dedicated.
  • Hardware resources LSI (Large Scale Integration) or the like
  • FIG. 3 schematically shows the positional relationship between the X-ray source 2, the FPD 3, and the substrate 10 when imaging for tomosynthesis is performed.
  • FIG. 3 shows a plurality of positions of the FPD 3 where X-ray images are taken when the image acquisition mechanism 76 turns the FPD 3 in the direction of the arrow R0 on the XY plane where the FPD 3 exists.
  • the plurality of positions include FPDs 3, 3A, 3B, 3C.
  • the position of the FPD 3 sequentially moves along a virtual circle centered on the optical axis of the X-ray source 2.
  • the spherical shape shown in each of the FPDs 3, 3A, 3B, and 3C in FIG. 3 schematically shows an image of the member mounted on the substrate 10.
  • the turning of the FPD 3 is realized by appropriately moving the large slider 45 in the directions of arrows R3 and R4 and moving the slider 43 in the directions of arrows R1 and R2.
  • the substrate 10 on the substrate stage 1 is supported from above by the clamp 50 and is supported from below by the base plate 91.
  • the structure of the member that supports the substrate 10 in the substrate stage 1 will be described.
  • a belt 92 is provided at the end of the base plate 91 on the side in contact with the substrate 10.
  • the belt 92 conveys the substrate 10 by rotating in the conveyance direction of the substrate 10 (left-right direction in FIG. 4).
  • the clamp 50 is connected to the guide 51.
  • the guide 51 is pivotally supported by a spring shaft 53.
  • a roller 52 is positioned above the guide 51.
  • An air slide table 81 is connected to the roller 52 via a shaft 82.
  • the roller 52 changes its rotational position around the shaft 82 in accordance with the amount of air supplied to the air slide table 81, thereby causing the roller 52 to move in the directions indicated by arrows R21 and R22 in FIG. The position changes.
  • a spring shaft 83 is connected to the spring shaft 53.
  • a spring 84 is fixed to the spring shaft 83.
  • the spring shaft 83 is urged by a spring 84 in a predetermined rotation direction as will be described later, and the spring shaft 53 connected to the spring shaft 83 and the guide connected to the spring shaft 53. 51 is similarly energized.
  • the guide 51 is fixed to the position which supports the board
  • FIG. 5 is a diagram showing a state in which each element shown in FIG. 4 is viewed from the side.
  • an arrow R ⁇ b> 24 indicates the biasing direction as described above with respect to the spring shaft 53.
  • the roller 52X is rotated in the direction of the arrow R21 and moved to the position indicated by the roller 52.
  • the shaft moves from the position indicated by the guide 51 to the position indicated by the guide 51.
  • the clamp fixed to the shaft also moves from the position indicated by the clamp 50X to the position indicated by the clamp 50.
  • the clamp 50 fixes the board
  • the upper surface of the guide 51 is configured not to be horizontal but to be inclined with respect to the horizontal direction. Accordingly, the guide 51 rotates and moves as described with reference to FIG. 5 due to the displacement caused by the rotation of the roller 52, and thereby the clamp 50 moves up and down.
  • the method of moving the clamp 50 up and down is not limited to a method using an air syringe that changes the amount of air supplied to the air slide table 81.
  • the motor may be directly moved in the vertical direction.
  • the substrate 10 is fixed to the substrate stage 1, the substrate 10 is supported so as to be pressed by the clamp 50 from above, and is instructed by the base plate 91 from below.
  • the belt 92 is mainly in contact with the substrate 10.
  • the conveyor base 90 turns as described with reference to FIG. 1, so that the substrate 10 is X-rayed while being fixed to the conveyor base 90.
  • the inside of the inspection apparatus 100 is turned.
  • FIG. 6 is a view for explaining the characteristics of the structure of the clamp 50 and the base plate 91.
  • FIG. 6 shows a state where the substrate 10 is fixed by the clamp 50 and the base plate 91.
  • the X-ray source 2 irradiates the substrate 10 (inspection object) from the lower side in the vertical direction. Then, an X-ray fluoroscopic image of the inspection object is captured from above by the FPD 3 (X-ray detection unit).
  • the inspection object is supported by the clamp 50 from above and supported by the base plate 91 (belt 92) from below.
  • the base plate 91 (belt 92) constitutes a first member that supports the inspection object from one side, and the clamp 50 supports the second object that supports the inspection object from the other side. Is configured.
  • the horizontal end surfaces of the base plate 91 and the clamp 50 are each inclined with respect to the vertical direction. Specifically, as mainly shown in FIG. 6, the end surface of the base plate 91 has an angle of ⁇ 2 with respect to the vertical direction, and the end surface of the clamp 50 has an angle of ⁇ 1 with respect to the vertical direction. Have an angle. By having such an inclination, the end surface of the base plate 91 is shaped so as to move away from the inspection object in the left-right direction toward the lower side. Moreover, the said end surface of the clamp 50 becomes a shape which leaves
  • an angle ⁇ 3 in FIG. 6 is an X-ray irradiation angle of the X-ray source 2.
  • the end surface of the base plate 91 has the inclination as described above, so that the base plate 91 is emitted from the X-ray source 2 while extending the base plate 91 farther in the left-right direction toward the substrate 10 side. That the X-rays are shielded by the base plate 91 can be avoided as much as possible.
  • the transmitted light that has passed through the end portion of the substrate 10 on the clamp 50 side can be sent to the FPD 3, and the region to be inspected in the substrate 10 can be widened. it can.
  • tilt angle (theta) 1 is more than the angle of the half of (theta) 3, for example.
  • the upper limit is not particularly limited, it is preferable that the upper limit is ensured so that the clamp 50 can sufficiently support (press) the substrate 10.
  • inclination angle ⁇ 2 of the end surface of the base plate 91 is increased, X-rays can be transmitted to the end portion of the substrate 10 on the base plate 91 side, and a region to be inspected in the substrate 10 is widened. can do.
  • tilt angle (theta) 2 is more than the angle of the half of (theta) 3, for example.
  • the upper limit is not particularly limited, it is preferable that the upper limit is ensured so as to guarantee the strength enough to support the substrate 10.
  • FIG. 8 is a diagram for explaining the shape of the clamp in the X-ray inspection apparatus 100 of the present embodiment.
  • the clamp 50 and the base plate 91 have dimensions in the transport direction of the substrate 10 and are surfaces including the transport direction, that is, the Inclination as described with reference to FIG. 6 and FIG. 7 is provided on the end face in the direction intersecting the transport direction. And by providing the said inclination, the board
  • the clamp 50 is formed with a partially cutout 501 in the transport direction of the substrate 10.
  • the X direction and Y direction in FIG. 8 are the same as the X direction in FIG. 2. That is, the X direction indicates the transport direction of the substrate 10, and the Y direction indicates a direction orthogonal to the transport direction.
  • the portion where the notch 501 is formed has a smaller area for supporting the substrate 10 in the Y direction than in other portions in the transport direction (X direction). Thereby, there are fewer regions that block the light irradiated from the X-ray source 2 and transmitted through the substrate 10.
  • the inspection target area of the substrate 10 can be further expanded by cutting out a part thereof as in the clamp 50 of the present embodiment.
  • the ratio at which the notch is formed in the clamp 50 can be appropriately determined within a range in which the clamp 50 can support the substrate 10 with sufficient strength.
  • FIG. 9 is a diagram for explaining the shape of the clamp in the X-ray inspection apparatus 100 of the present embodiment.
  • the arrow X indicates the transport direction of the substrate 10 as in the X direction of FIG.
  • FIG. 10 is a side view of FIG.
  • the clamp of the present embodiment includes a rail portion 510, claw portions 511 to 513, and fixing members 511A to 513A instead of the clamp 50 of the first embodiment.
  • the rail portion 510 includes a pair of upper and lower elongated members that extend in the X direction. By fixing the fixing members 511A to 513A to the members, the claw portions 511 to 513 are fixed to the rail portion 510, respectively. In the present embodiment, the claw portions 511 to 513 support the substrate 10 from above.
  • the fixing position of the claw portions 511 to 513 in the X direction can be changed. That is, by changing the fixing positions of the fixing members 511A to 513A in the respective rail portions 510, the fixing positions of the claw parts 511 to 513 in the X direction can be changed.
  • the fixing position from above the board 10 can be changed according to the arrangement of components mounted on the board 10.
  • the fixing positions of the claw portions 511 to 513 can be changed according to the type of inspection object. Thereby, the X-ray inspection apparatus 100 of this Embodiment can respond to various test objects.
  • the claw portions 511 to 513 constitute a pressing member
  • the rail portion 510 constitutes a supporting member
  • the number of claw portions that support the substrate 10 from above is “3”, but this is an example. As long as the substrate 10 can be supported with sufficient force, the number thereof is changed as appropriate.
  • each claw portion (particularly, the dimension in the X direction which is the conveyance direction of the substrate 10) are appropriately set as long as the substrate 10 can be supported with sufficient force.
  • an inspection apparatus used for so-called in-line inspection that inspects an inspection object (substrate 10) in a production line is exemplified. Therefore, it is required to transport the inspection object safely and at high speed during the inspection.
  • the inspection object can be more stably fixed while ensuring a wider inspection area in the inspection object.
  • the X-ray inspection apparatus according to the present invention is not limited to the one used for in-line inspection.
  • the present invention is also intended to be implemented in an X-ray inspection apparatus used independently for a production line.
  • the holding / release of the substrate 10 is changed by moving the clamp 50 that supports the substrate 10 from above as described with reference to FIG.
  • the substrate 10 is held between the clamp 50 and the base plate 91 (belt 92) by being pressed downward from above by the clamp 50.
  • maintenance aspect of the test target object in the inspection apparatus is not limited to such an aspect. That is, for example, the inspection object may be pressed and held from below to above. However, when holding the inspection object by pressing the inspection object from the bottom to the top and pressing the inspection object against the lower surface of a separately provided member, the member is damaged by being constantly pushed up from below. It is predicted that In the present embodiment, by pressing and holding the inspection object downward, it is possible to avoid as much as possible the risk of damage to the member as described above.
  • a mechanism for changing holding / release of the substrate 10 is provided above the substrate 10 and irradiates the substrate 10 with X-rays.
  • the apparatus (X-ray source 2) which performs is provided in the downward side of the board
  • FIG. That is, a mechanism for changing holding / release and an X-ray irradiation apparatus are provided on the opposite side with the substrate 10 interposed therebetween. By arranging in this way, the X-ray irradiation apparatus can be brought closer to a position closer to the substrate 10 than when both are provided on the same side with respect to the substrate 10.
  • the X-ray inspection apparatus 100 can capture an image with a higher magnification on the substrate 10. Further, when the mechanism is placed with the X-ray irradiation apparatus and the substrate 10 sandwiched therebetween, that is, both are separated as much as possible, the mechanism becomes an X-ray interference material output by the X-ray irradiation apparatus. Can be avoided without fail.
  • the first direction corresponds to the vertical direction
  • the second direction corresponds to the Y direction
  • the third direction corresponds to the X direction
  • the first to third directions intersect with each other, the X-ray irradiation may be performed from the top to the bottom, for example, or may be performed in the horizontal direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An X-ray inspection apparatus (100) is provided with an X-ray source (2), an X-ray detection unit (3), and a holding mechanism that holds a subject to be inspected, and the X-ray inspection apparatus performs image pickup by applying X-rays to the subject from a plurality of directions, said subject being held by means of the holding mechanism. In the X-ray inspection apparatus (100), a clamp (50) supports a substrate (10) from above. The clamp (50) has the end surface thereof sloped, thereby reliably supporting the substrate (10), and being capable of retracting from an optical path of transmitting light of the X-rays radiated from the X-ray source (2), said optical path being formed due to the substrate (10).

Description

X線検査装置X-ray inspection equipment
 本発明は、X線検査装置に関し、特に、X線断層画像を生成することにより検査対象物に関する検査を行なうX線検査装置に関する。 The present invention relates to an X-ray inspection apparatus, and more particularly to an X-ray inspection apparatus that inspects an inspection object by generating an X-ray tomographic image.
 従来から、基板などの工業製品をX線を用いて検査をする検査装置が知られている。
 たとえば、特許文献1(特開2010-160070号公報)には、焦点固定型のX線源と、検出器と、対象物移動機構とを備えたX線検査装置が開示されている。当該X線検査装置では、X線源に対して、対象物と検出器の位置が変更される。これにより、検出器は、対象物を複数の照射角度で透過したX線を受光する。そして、検出器が受光した、複数の照射角度での画像を再構成することにより、対象物のX線CT(Computed Tomography)画像が生成される。
2. Description of the Related Art Conventionally, inspection apparatuses that inspect industrial products such as substrates using X-rays are known.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-160070) discloses an X-ray inspection apparatus including a fixed focus type X-ray source, a detector, and an object moving mechanism. In the X-ray inspection apparatus, the positions of the object and the detector are changed with respect to the X-ray source. Thereby, a detector receives the X-ray which permeate | transmitted the target object with the several irradiation angle. Then, an X-ray CT (Computed Tomography) image of the object is generated by reconstructing images at a plurality of irradiation angles received by the detector.
特開2010-160070号公報JP 2010-160070 A
 しかしながら、このような検査装置では、上記のように検査の際に対象物の位置を変更する必要があり、このため、検査対象物をより確実に保持する必要がある。したがって、対象物を保持するための領域をより大きく確保する必要が生じる。 However, in such an inspection apparatus, it is necessary to change the position of the object during the inspection as described above, and therefore it is necessary to hold the inspection object more reliably. Therefore, it is necessary to secure a larger area for holding the object.
 その一方で、このような検査装置において、検査対象領域をより広くすることが求められている。特に、装置の小型化が進む現代では、基板上の、より広範囲に部品が実装されることが想定される。このため、基板における検査対象領域を広くすることについての要求も高まっている。 On the other hand, in such an inspection apparatus, it is required to make the inspection target area wider. In particular, in the present day when the miniaturization of the device advances, it is assumed that components are mounted on a board in a wider range. For this reason, the request | requirement about expanding the inspection object area | region in a board | substrate is also increasing.
 本発明は、かかる実情に鑑み考え出されたものであり、その目的は、X線検査装置において、検査対象領域を広くしつつ、対象物を確実に保持できるようにすることである。 The present invention has been conceived in view of such circumstances, and an object of the present invention is to make it possible to reliably hold an object while widening an inspection object region in an X-ray inspection apparatus.
 本発明に従ったX線検査装置は、X線源と、X線検出部と、検査対象物を保持する保持機構とを備え、保持機構によって保持された検査対象物に対して複数方向から照射されたX線によって撮像するX線検査装置である。保持機構は、検査対象物に対して第1の方向の一方側からX線源によりX線が照射され、他方側からX線検出部により検査対象物のX線透視画像を撮像させるように、検査対象物を保持し、一方側から検査対象物を支持する第1の部材と、他方側から検査対象物を支持する第2の部材とを含む。第1の方向と交わる第2の方向についての第1の部材および第2の部材の検査対象物側の端面は、第1の方向について検査対象物から離れるほど、第2の方向について検査対象物から離れるような傾斜を有する。 An X-ray inspection apparatus according to the present invention includes an X-ray source, an X-ray detection unit, and a holding mechanism that holds an inspection target, and irradiates the inspection target held by the holding mechanism from a plurality of directions. This is an X-ray inspection apparatus for imaging with the emitted X-rays. The holding mechanism is configured so that the X-ray source is irradiated with X-rays from one side in the first direction with respect to the inspection target, and an X-ray fluoroscopic image of the inspection target is captured by the X-ray detection unit from the other side. It includes a first member that holds the inspection object and supports the inspection object from one side, and a second member that supports the inspection object from the other side. The first member in the second direction intersecting the first direction and the end surface on the inspection object side of the second member are inspected in the second direction as they are separated from the inspection object in the first direction. It has a slope away from.
 好ましくは、第2の部材は、第2の方向に交わる第3の方向について、連続してまたは複数の箇所で、検査対象物を支持し、第3の方向において少なくとも一部が検査対象物を支持する領域が少なくなるように切り欠きを設けられている。 Preferably, the second member supports the inspection object continuously or at a plurality of locations in the third direction intersecting with the second direction, and at least a part of the second member supports the inspection object in the third direction. Notches are provided so that the area to be supported is reduced.
 好ましくは、第2の部材は、第2の方向に交わる第3の方向に延設される支持用部材と、支持用部材に対して、第3の方向について位置を変更可能に固定され、検査対象物を押圧することにより支持するための押圧用部材とを含み、押圧用部材は、第1の方向の他方側に位置する。 Preferably, the second member is fixed to the supporting member extending in the third direction intersecting with the second direction and the supporting member so that the position of the second member can be changed in the third direction. A pressing member for supporting the object by pressing, and the pressing member is located on the other side in the first direction.
 本発明によれば、検査対象物に対して、第1の方向の一方側からX線が照射し他方側からX線を検出するX線検査装置において、検査対象物を支持する部材の検査対象物側の端面の形状が工夫されている。具体的には、当該端面は、第1の方向について検査対象物から離れるほど、第2の方向について検査対象物から離れるように傾斜している。 According to the present invention, in an X-ray inspection apparatus that irradiates an inspection object with X-rays from one side in the first direction and detects X-rays from the other side, the inspection object of a member that supports the inspection object The shape of the end face on the object side is devised. Specifically, the end face is inclined so as to move away from the inspection object in the second direction as the distance from the inspection object in the first direction increases.
 これにより、第2の方向について上記支持する部材によって長い距離にわたって検査対象物を支持しながら、X線検出部において、より検査対象物の端部側を透過したX線を、支持する部材の上記端面によって遮られることなく、検出することができる。したがって、X線検査装置において、検査対象領域を広くしつつ、検査対象物を確実に保持できる。 As a result, the X-ray detection unit further supports the X-ray transmitted through the end side of the inspection object in the X-ray detection unit while supporting the inspection object over a long distance by the supporting member in the second direction. Detection is possible without being blocked by the end face. Therefore, in the X-ray inspection apparatus, the inspection object can be reliably held while widening the inspection object region.
本発明の第1の実施の形態であるX線検査装置を含む、基板の製造ラインの一部の構成を模式的に示す図である。It is a figure which shows typically the structure of a part of board | substrate manufacturing line containing the X-ray inspection apparatus which is the 1st Embodiment of this invention. 図1のX線検査装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the X-ray inspection apparatus of FIG. 図1のX線検査装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the X-ray inspection apparatus of FIG. 基板ステージにおいて基板を支持する部材の構造を説明するための図である。It is a figure for demonstrating the structure of the member which supports a board | substrate in a substrate stage. 基板ステージにおいて基板を支持する部材の構造を説明するための図である。It is a figure for demonstrating the structure of the member which supports a board | substrate in a substrate stage. 図5のクランプとベースプレートの構造の特徴を説明するための図である。It is a figure for demonstrating the characteristic of the structure of the clamp of FIG. 5, and a baseplate. 図5のクランプとベースプレートの構造の特徴を説明するための図である。It is a figure for demonstrating the characteristic of the structure of the clamp of FIG. 5, and a baseplate. 本発明の第2の実施の形態のX線検査装置におけるクランプの形状を説明するための図である。It is a figure for demonstrating the shape of the clamp in the X-ray inspection apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のX線検査装置におけるクランプの形状を説明するための図である。It is a figure for demonstrating the shape of the clamp in the X-ray inspection apparatus of the 3rd Embodiment of this invention. 図9の側面図である。FIG. 10 is a side view of FIG. 9.
 以下、本発明の検査装置の一実施の形態について、図面を参照しつつ説明する。なお、同一の構成要素には各図において同一の符号を付し、詳細な説明は繰返さない。 Hereinafter, an embodiment of an inspection apparatus of the present invention will be described with reference to the drawings. It should be noted that the same components are denoted by the same reference symbols in the respective drawings, and detailed description thereof will not be repeated.
 [第1の実施の形態]
 <製造ラインの概略構成>
 図1は、本実施の形態の検査装置を含む、基板の製造ラインの一部の構成を模式的に示す図である。本実施の形態では、検査対象物の一例として、図1に示される製造ラインで製造される基板が挙げられる。
[First Embodiment]
<Schematic configuration of production line>
FIG. 1 is a diagram schematically showing a partial configuration of a substrate production line including the inspection apparatus according to the present embodiment. In the present embodiment, as an example of the inspection object, a substrate manufactured by the manufacturing line shown in FIG.
 図1を参照して、製造ラインは、本発明の一実施の形態であるX線検査装置100と、X線検査装置100に対して製造ライン中の上流側に隣接して設置された装置(上流側装置1000)と、下流側に隣接して設置された装置(下流側装置2000)とを含む。 Referring to FIG. 1, a production line includes an X-ray inspection apparatus 100 according to an embodiment of the present invention, and an apparatus (adjacent to the upstream side in the production line with respect to X-ray inspection apparatus 100 ( An upstream device 1000) and a device (downstream device 2000) installed adjacent to the downstream side.
 X線検査装置100は、基板(後述する基板10等)をX線検査装置100内で搬送するためのコンベアベース90、および、コンベアベース90上に載置されているベースプレート91を含む。ベースプレート91は、基板を送るためのベルト92を含む。また、X線検査装置100は、ベルト92上の基板を上方から支持するクランプ50を含む。 The X-ray inspection apparatus 100 includes a conveyor base 90 for transporting a substrate (such as a substrate 10 described later) in the X-ray inspection apparatus 100 and a base plate 91 placed on the conveyor base 90. The base plate 91 includes a belt 92 for feeding the substrate. The X-ray inspection apparatus 100 also includes a clamp 50 that supports the substrate on the belt 92 from above.
 X線検査装置100では、コンベアベース90が移動することにより、当該コンベアベース90上に搬送された基板が、X線検査装置100内を移動する。図1では、コンベアベース90の3つの異なる位置が、コンベアベース90、コンベアベース90A、および、コンベアベース90Bとして示されている。コンベアベース90の移動に伴い、ベースプレート91、ベルト92、および、クランプ50も移動する。図1では、コンベアベース90,90A,90Bのそれぞれに位置に対応させて、ベースプレート91,91A,91B、ベルト92,92A,92B、および、クランプ50,50A,50Bが示されている。 In the X-ray inspection apparatus 100, when the conveyor base 90 moves, the substrate conveyed on the conveyor base 90 moves in the X-ray inspection apparatus 100. In FIG. 1, three different positions of the conveyor base 90 are shown as a conveyor base 90, a conveyor base 90A, and a conveyor base 90B. As the conveyor base 90 moves, the base plate 91, the belt 92, and the clamp 50 also move. In FIG. 1, base plates 91, 91A, 91B, belts 92, 92A, 92B, and clamps 50, 50A, 50B are shown in correspondence with the positions of the conveyor bases 90, 90A, 90B.
 X線検査装置100では、コンベアベースは、起動時にはコンベアベース90で示す位置に配置され、上流側装置1000から搬送される基板を受ける時にはコンベアベース90Aで示す位置に配置され、受け取った基板を検査する時にはコンベアベース90Bで示す位置に配置され、検査後の基板を下流側装置2000に受け渡す時にはコンベアベース90Bで示す位置に配置され、そして、次の基板を上流側装置1000から受ける時には再度コンベアベース90Aで示す位置に配置され、以降、同様の配置の変更が繰り返される。 In the X-ray inspection apparatus 100, the conveyor base is disposed at the position indicated by the conveyor base 90 at the time of activation, and is disposed at the position indicated by the conveyor base 90A when receiving the substrate conveyed from the upstream apparatus 1000, and the received substrate is inspected. Is disposed at the position indicated by the conveyor base 90B, is disposed at the position indicated by the conveyor base 90B when the substrate after inspection is transferred to the downstream apparatus 2000, and is again conveyed when the next substrate is received from the upstream apparatus 1000. It arrange | positions in the position shown by the base 90A, and the change of the same arrangement | positioning is repeated after that.
 製造ラインは、上流側装置1000と、符号90Aで示された位置にあるコンベアベース90Aとの間に設けられた、基板を搬送するための搬送レール1001を含む。また、製造ラインは、符号90Bで示された位置にあるコンベアベース90Bと、下流側装置2000との間に設けられた、基板を搬送するための搬送レール2001を含む。また、図1では、基板10Aは、上流側装置1000から矢印R11の向きにコンベアベース90Aへと送られる基板を示し、基板10Bは、ベルト92A上に配置されクランプ50Aに上方から支持される基板を示し、そして、基板10Cは、ベルト92Bから、矢印R12の向きに、搬送レール2001を通って下流側装置2000へと送られる基板を示している。 The production line includes a transport rail 1001 for transporting a substrate, which is provided between the upstream apparatus 1000 and a conveyor base 90A at a position indicated by reference numeral 90A. The production line also includes a transport rail 2001 for transporting a substrate, which is provided between the conveyor base 90B at the position indicated by reference numeral 90B and the downstream apparatus 2000. In FIG. 1, the substrate 10A is a substrate sent from the upstream device 1000 to the conveyor base 90A in the direction of the arrow R11, and the substrate 10B is disposed on the belt 92A and supported by the clamp 50A from above. The board 10C is a board sent from the belt 92B to the downstream apparatus 2000 through the transport rail 2001 in the direction of the arrow R12.
 <検査装置の構成>
 本実施の形態のX線検査装置100は、IC(Integrated Circuit)のリードに形成されたパックフィレットや、BGA(Ball Grid Array)を構成するはんだ電極など、外観検査が困難な箇所を対象に、X線による断層画像を再構成し、生成された断層画像を用いて検査を行なうものである。また、本実施の形態の検査装置は、断層画像として、X線CT画像を生成する機能とトモシンセシスによる断層画像を生成する機能を具備する。
<Configuration of inspection device>
The X-ray inspection apparatus 100 of the present embodiment is intended for places where appearance inspection is difficult, such as pack fillets formed on IC (Integrated Circuit) leads and solder electrodes constituting a BGA (Ball Grid Array). An X-ray tomographic image is reconstructed and an inspection is performed using the generated tomographic image. In addition, the inspection apparatus according to the present embodiment has a function of generating an X-ray CT image as a tomographic image and a function of generating a tomographic image by tomosynthesis.
 図2および図3は、X線検査装置100の概略構成を説明するための図である。
 図2を参照して、X線検査装置100は、検査対象物である基板10を支持する基板ステージ1と、その下方に配置されたX線源2と、基板ステージ1の上方に設けられたディテクタステージ4と、当該検査装置の動作を全体的に制御する制御装置7とを含む。
2 and 3 are diagrams for explaining a schematic configuration of the X-ray inspection apparatus 100. FIG.
Referring to FIG. 2, an X-ray inspection apparatus 100 is provided above a substrate stage 1 that supports a substrate 10 that is an inspection object, an X-ray source 2 disposed below the substrate stage 1, and the substrate stage 1. The detector stage 4 and the control apparatus 7 which controls operation | movement of the said inspection apparatus are included.
 図2では、基板10に部品11が実装された状態が示されている。なお、図2では、基板10の搬送機構の構成要素の一部が省略されて記載されている。一方、図3では、制御装置7が省略されている。 FIG. 2 shows a state in which the component 11 is mounted on the substrate 10. In FIG. 2, some of the components of the transport mechanism for the substrate 10 are omitted. On the other hand, in FIG. 3, the control device 7 is omitted.
 基板ステージ1は、基板10を長さ方向(図2中の左右方向。以下、これをX方向とする)に沿う各端縁部で支持する1対のコンベア15A,15B、各コンベア15A,15Bを固定支持する1対のコンベア支持部16A,16Bを具備する。コンベア15A,15Bは、図示しない上流機構から基板10の搬入を受付けて、この基板10をコンベア15Aまたはコンベア15Bに設けられたストッパ(クランプ50)によって支持される位置まで搬入して停止する。コンベア15A,15Bは、ストッパによる支持の終了後、基板10を外部(下流側装置2000)に搬出する。 The substrate stage 1 has a pair of conveyors 15A, 15B and conveyors 15A, 15B that support the substrate 10 at each edge along the length direction (left-right direction in FIG. 2; hereinafter, this is referred to as the X direction). Is provided with a pair of conveyor support portions 16A and 16B. The conveyors 15A and 15B receive the board 10 from an upstream mechanism (not shown), carry the board 10 to a position supported by a stopper (clamp 50) provided on the conveyor 15A or the conveyor 15B, and stop. The conveyors 15A and 15B carry out the substrate 10 to the outside (downstream apparatus 2000) after the support by the stopper is completed.
 コンベア支持部16A,16Bは、各コンベア15A,15Bを支持した状態で、基板制御機構78によって駆動制御されることにより、図2中のX方向およびY方向に移動可能に支持されている。コンベア支持部16A,16Bの動きによって、基板10が水平移動する(水平な仮想平面上を移動する)ことになる。 The conveyor support portions 16A and 16B are supported so as to be movable in the X and Y directions in FIG. 2 by being driven and controlled by the substrate control mechanism 78 in a state where the conveyors 15A and 15B are supported. The substrate 10 moves horizontally (moves on a horizontal virtual plane) by the movement of the conveyor support portions 16A and 16B.
 X線検査装置100では、クランプ50は、基板制御機構78によって変位されることにより、基板20を支持する状態と、支持を解除する状態とをとる。 In the X-ray inspection apparatus 100, the clamp 50 is displaced by the substrate control mechanism 78, thereby taking a state of supporting the substrate 20 and a state of releasing the support.
 X線検査装置100には、コンベア支持部16A,16Bを図2のX方向およびY方向に移動させる機構として、X軸方向に沿うスライドレール61、および、Y軸方向に沿うスライドレール66が設けられている。 The X-ray inspection apparatus 100 is provided with a slide rail 61 along the X-axis direction and a slide rail 66 along the Y-axis direction as a mechanism for moving the conveyor support portions 16A and 16B in the X and Y directions in FIG. It has been.
 スライドレール61は、スライダ62を介してコンベア支持部16A,16Bに連結されている。なお、X線検査装置100には、スライドレール61と対をなすX軸方向に沿うスライドレール(図示略)が設けられている。当該スライドレールは、スライダ63を介して、コンベア支持部16A,16Bに連結されている。 The slide rail 61 is connected to the conveyor support portions 16A and 16B via the slider 62. The X-ray inspection apparatus 100 is provided with a slide rail (not shown) along the X-axis direction that makes a pair with the slide rail 61. The slide rail is connected to the conveyor support portions 16 </ b> A and 16 </ b> B via the slider 63.
 スライドレール66は、スライダ67を介して支持部64,65に連結されている。支持部64,65は、スライダ62,63に連結されている。これにより、スライドレール66は、スライダ67、支持部64,65、スライダ62,63を介して、コンベア支持部16A,16Bに連結されている。また、X線検査装置100には、スライドレール66と対をなすY軸方向に沿うスライドレール(図示略)および当該スライドレールを支持部64,65に連結させる支持部が設けられている。 The slide rail 66 is connected to the support portions 64 and 65 via a slider 67. The support parts 64 and 65 are connected to the sliders 62 and 63. Thereby, the slide rail 66 is connected to the conveyor support portions 16A and 16B via the slider 67, the support portions 64 and 65, and the sliders 62 and 63. Further, the X-ray inspection apparatus 100 is provided with a slide rail (not shown) that is paired with the slide rail 66 along the Y-axis direction and a support portion that connects the slide rail to the support portions 64 and 65.
 X線検査装置100では、コンベア支持部16A,16BをX軸方向およびY軸方向に駆動させるために、基板制御機構78によって、スライダ62、スライダ63、スライダ67、および、スライダ67と対をなすスライダ(図示略)が駆動制御される。 In the X-ray inspection apparatus 100, the substrate control mechanism 78 makes a pair with the slider 62, the slider 63, the slider 67, and the slider 67 in order to drive the conveyor support portions 16A and 16B in the X-axis direction and the Y-axis direction. A slider (not shown) is driven and controlled.
 図2のコンベア支持部16A,16Bおよび支持部64,65は、図1のコンベアベース90に対応する。また、図2のコンベア15A,15Bは、図1のベースプレート91に対応する。図1と図2では、対応する部材の形状が異なっているが、これらの機能としては同様である。 The conveyor support portions 16A and 16B and the support portions 64 and 65 in FIG. 2 correspond to the conveyor base 90 in FIG. Further, the conveyors 15A and 15B in FIG. 2 correspond to the base plate 91 in FIG. Although the shape of the corresponding member is different between FIG. 1 and FIG. 2, these functions are the same.
 ディテクタステージ4には、Y軸方向に沿う1対のスライドレール41A,41B(以下、「Y軸レール41A,41B」という。)と、X軸方向に沿うスライドレール42(以下、「X軸レール42」という。)とが設けられる。各Y軸レール41A,41Bには、1対のスライダ43が設けられる。X軸レール42は、各Y軸レール41A,41Bのスライダ43,43により両端部が連結されて支持される。 The detector stage 4 includes a pair of slide rails 41A and 41B (hereinafter referred to as “Y- axis rails 41A and 41B”) along the Y-axis direction, and a slide rail 42 along the X-axis direction (hereinafter referred to as “X-axis rail”). 42 "). Each Y- axis rail 41A, 41B is provided with a pair of sliders 43. Both ends of the X-axis rail 42 are supported by sliders 43 and 43 of the Y- axis rails 41A and 41B.
 X軸レール42には、大型のスライダ45が設けられる。スライダ45には、接続部材46を介して、二次元X線検出器としてフラットパネルディテクタ3(以下、「FPD3」と略す。)が取付けられている。 A large slider 45 is provided on the X-axis rail 42. A flat panel detector 3 (hereinafter abbreviated as “FPD3”) is attached to the slider 45 as a two-dimensional X-ray detector via a connecting member 46.
 X線検査装置100では、大型スライダ45は矢印R3および矢印R4の向きに移動され、また、スライダ43は、矢印R1および矢印R2の向きに移動される。 In the X-ray inspection apparatus 100, the large slider 45 is moved in the directions of arrows R3 and R4, and the slider 43 is moved in the directions of arrows R1 and R2.
 X線検査装置100には、さらに、基板10のXY平面内の位置およびこの平面に垂直な高さ方向の位置を検出するためのCCDカメラ5および変位センサ6が設けられている。CCD(Charge Coupled Device)カメラ5の検出出力は、画像処理機構77Bによって処理され、また、変位センサ6の検出出力は、変位計制御機構77Aによって処理される。 The X-ray inspection apparatus 100 is further provided with a CCD camera 5 and a displacement sensor 6 for detecting the position of the substrate 10 in the XY plane and the position in the height direction perpendicular to the plane. The detection output of the CCD (Charge Coupled Device) camera 5 is processed by the image processing mechanism 77B, and the detection output of the displacement sensor 6 is processed by the displacement meter control mechanism 77A.
 スライダ43,45は、図示しない駆動モータをディテクタ制御機構75によって駆動制御されることにより、FPD3を移動させる。具体的には、FPD3は、スライダ45の動きに従ってX軸方向に沿って移動するとともに、Y軸レール41A,41Bのスライダ43の動きに従ってY軸方向に沿って移動する。 The sliders 43 and 45 move the FPD 3 when a drive motor (not shown) is driven and controlled by the detector control mechanism 75. Specifically, the FPD 3 moves along the X-axis direction according to the movement of the slider 45 and also moves along the Y-axis direction according to the movement of the slider 43 of the Y- axis rails 41A and 41B.
 FPD3は、図示せぬケーブルを介して、制御装置7に接続される。また、X線源2、CCDカメラ5、変位センサ6、および各ステージ1,4の駆動部も同様に、制御装置7にケーブル接続される。 The FPD 3 is connected to the control device 7 via a cable (not shown). Similarly, the X-ray source 2, the CCD camera 5, the displacement sensor 6, and the driving units of the stages 1 and 4 are also cable-connected to the control device 7.
 CCDカメラ5および変位センサ6は、検査前に基板10の状態をチェックする目的で使用される。具体的には、CCDカメラ5は、基板10を正確な位置に位置合わせするために基板10のフィデューシャルマーク19を撮像する。この撮像により生成された画像は、制御装置7の画像処理機構77Bに入力されて、基板10の位置ずれ量の計測に用いられ、その計測値に基づき各ステージ1,4の位置関係が調整される。 The CCD camera 5 and the displacement sensor 6 are used for the purpose of checking the state of the substrate 10 before inspection. Specifically, the CCD camera 5 images the fiducial mark 19 on the substrate 10 in order to align the substrate 10 at an accurate position. The image generated by this imaging is input to the image processing mechanism 77B of the control device 7, used for measuring the amount of positional deviation of the substrate 10, and the positional relationship between the stages 1 and 4 is adjusted based on the measured value. The
 変位センサ6は、基板10の上面までの距離を測定する。測定された距離データは、制御装置7の変位計制御機構77Aに入力され、X線透視撮影の際に、後述する基準平面Tの高さを調整する目的に使用される。 The displacement sensor 6 measures the distance to the upper surface of the substrate 10. The measured distance data is input to the displacement meter control mechanism 77A of the control device 7, and is used for the purpose of adjusting the height of a reference plane T, which will be described later, at the time of X-ray fluoroscopic imaging.
 図2には、また、本実施の形態のX線検査装置100の制御装置7の主要部分のブロック図が示されている。 FIG. 2 also shows a block diagram of the main part of the control device 7 of the X-ray inspection apparatus 100 of the present embodiment.
 制御装置7は、X線透視撮影に関する制御を実行し、また、断層画像の再構成処理や検査を実行する。制御装置7は、たとえば、専用のプログラムがインストールされたパーソナルコンピュータにより構成される。当該プログラムは、その出荷時に、制御装置7の主記憶部71にインストールされていてもよいし、制御装置7に対して着脱可能な記録媒体に記録されていて適宜制御装置7にインストールされてもよいし、ネットワーク上のサーバからネットワークを通じて制御装置7にダウンロードされてもよい。 The control device 7 executes control relating to X-ray fluoroscopic imaging, and also executes tomographic image reconstruction processing and inspection. The control device 7 is configured by, for example, a personal computer in which a dedicated program is installed. The program may be installed in the main storage unit 71 of the control device 7 at the time of shipment, or may be recorded on a recording medium detachable from the control device 7 and installed in the control device 7 as appropriate. Alternatively, it may be downloaded from the server on the network to the control device 7 through the network.
 制御装置7は、CPU(Central Processing Unit)を含む演算部70、補助記憶装置からなる補助記憶部72、キーボードや操作ボタンなどからなり外部からの情報の入力を受付ける入力部73、画像情報や音声などを出力する出力部74、およびX線源2のX線出力動作などを制御するX線源制御機構79を含む。 The control device 7 includes a calculation unit 70 including a CPU (Central Processing Unit), an auxiliary storage unit 72 including an auxiliary storage device, an input unit 73 configured to accept input of information from the outside, such as a keyboard and operation buttons, and image information and audio. And an X-ray source control mechanism 79 for controlling the X-ray output operation of the X-ray source 2 and the like.
 演算部70は、ディテクタ制御機構75等の各機構の動作を制御することにより、X線源2およびFPD3ならびに基板10の位置関係を種々に変更しながら基板10に対するX線透視撮影(プロジェクション)を実行する。また、演算部70は、CCDカメラ5、変位センサ6、コンベア15A,15Bの動作を制御する機能や、CCDカメラ5からの入力に基づき上記した基板10の位置調整を行なう機能や、変位センサ6からの入力に基づいて撮影時の基準平面Tの高さの設定値を変更し、その変更に併せて基板10やFPD3の移動量を調整する機能も有する。 The arithmetic unit 70 controls the operation of each mechanism such as the detector control mechanism 75, thereby performing X-ray fluoroscopic imaging (projection) on the substrate 10 while variously changing the positional relationship between the X-ray source 2, the FPD 3, and the substrate 10. Execute. The calculation unit 70 also functions to control the operation of the CCD camera 5, the displacement sensor 6, and the conveyors 15 </ b> A and 15 </ b> B, the function to adjust the position of the substrate 10 based on the input from the CCD camera 5, and the displacement sensor 6. It also has a function of changing the set value of the height of the reference plane T at the time of photographing based on the input from and adjusting the movement amount of the substrate 10 and FPD 3 in accordance with the change.
 X線検査装置100では、後述するように、基板10の複数の検査領域について、検査領域ごとに、FPD3の位置を変えて、複数回のX線透視撮影が行なわれる。毎時のX線透視撮影により生成されたX線透視画像は、補助記憶部72に蓄積される。演算部70は、これらの画像に付加情報として、対応する検査領域や撮影時のFPD3の位置を識別す
る情報を設定し、これらの付加情報を画像に対応付けて補助記憶部72に保存する。演算部70は、再構成によって得られたデータに基づいて、基板10の被検査部位の適否を判定する。判定結果は、たとえばモニタなどの出力部74や外部機器などに出力される。
In the X-ray inspection apparatus 100, as will be described later, a plurality of X-ray fluoroscopic imaging is performed for a plurality of inspection regions of the substrate 10 by changing the position of the FPD 3 for each inspection region. The fluoroscopic images generated by the hourly fluoroscopic imaging are stored in the auxiliary storage unit 72. The calculation unit 70 sets information for identifying the corresponding examination region and the position of the FPD 3 at the time of photographing as additional information in these images, and stores these additional information in the auxiliary storage unit 72 in association with the images. The calculation unit 70 determines the suitability of the part to be inspected of the substrate 10 based on the data obtained by the reconstruction. The determination result is output to an output unit 74 such as a monitor or an external device, for example.
 X線検査装置100において、ディテクタ制御機構75、画像取得機構76、変位計制御機構77A、画像処理機構77B、基板制御機構78、および、X線源制御機構79のすべてまたは少なくとも一部は、専用のハードウェア資源(LSI(Large Scale Integration)等)によって実現されても良いし、演算部70が主記憶部71に記憶されるプログラムを実行することによってソフトウェア的に実現されても良い。 In the X-ray inspection apparatus 100, all or at least a part of the detector control mechanism 75, the image acquisition mechanism 76, the displacement meter control mechanism 77A, the image processing mechanism 77B, the substrate control mechanism 78, and the X-ray source control mechanism 79 are dedicated. Hardware resources (LSI (Large Scale Integration) or the like), or may be realized in software by the arithmetic unit 70 executing a program stored in the main storage unit 71.
 図3では、トモシンセシス用の撮影を行なう場合のX線源2、FPD3、および、基板10の位置関係が模式的に示されている。 FIG. 3 schematically shows the positional relationship between the X-ray source 2, the FPD 3, and the substrate 10 when imaging for tomosynthesis is performed.
 図3では、画像取得機構76が、FPD3を、当該FPD3が存在するXY平面上で矢印R0方向に旋回させたときの、X線画像の撮影が行なわれるFPD3の複数の位置が示されている。当該複数の位置は、FPD3,3A,3B,3Cを含む。基板10のX線画像の撮影の際には、FPD3の位置は、X線源2の光軸を中心とする仮想円に沿って順に移動する。図3のFPD3,3A,3B,3Cのそれぞれの内部に示された球形状は、基板10上に実装された部材の画像を模式的に示している。なお、FPD3の旋回は、大型スライダ45が矢印R3,R4の向きに適宜移動され、また、スライダ43が矢印R1,R2の向きに適宜移動されることにより、実現される。 FIG. 3 shows a plurality of positions of the FPD 3 where X-ray images are taken when the image acquisition mechanism 76 turns the FPD 3 in the direction of the arrow R0 on the XY plane where the FPD 3 exists. . The plurality of positions include FPDs 3, 3A, 3B, 3C. When taking an X-ray image of the substrate 10, the position of the FPD 3 sequentially moves along a virtual circle centered on the optical axis of the X-ray source 2. The spherical shape shown in each of the FPDs 3, 3A, 3B, and 3C in FIG. 3 schematically shows an image of the member mounted on the substrate 10. The turning of the FPD 3 is realized by appropriately moving the large slider 45 in the directions of arrows R3 and R4 and moving the slider 43 in the directions of arrows R1 and R2.
 X線検査装置100では、FPD3,3A,3B,3Cを含む複数の位置で撮影された画像が適宜再構成されて、基板10の検査(実装されるべき部品が実装されているか否か、等)が行なわれる。なお、撮影されたX線画像の再構成や当該再構成画像を用いた基板10の検査については、公知の技術(たとえば、特許文献1(特開2010-160070号公報))を採用することができるため、ここでは説明を繰り返さない。 In the X-ray inspection apparatus 100, images taken at a plurality of positions including the FPDs 3, 3A, 3B, and 3C are appropriately reconstructed to inspect the substrate 10 (whether or not components to be mounted are mounted, etc.) ) Is performed. It should be noted that a known technique (for example, Patent Document 1 (Japanese Patent Laid-Open No. 2010-160070)) may be employed for reconstructing a photographed X-ray image and inspecting the substrate 10 using the reconstructed image. The description is not repeated here because it is possible.
 <保持機構の構成>
 上記したように、X線検査装置100では、基板ステージ1上の基板10は、クランプ50によって上方から支持され、また、ベースプレート91によって下方から支持されている。以下、図4および図5を参照して、基板ステージ1における、基板10を支持する部材の構造を説明する。
<Configuration of holding mechanism>
As described above, in the X-ray inspection apparatus 100, the substrate 10 on the substrate stage 1 is supported from above by the clamp 50 and is supported from below by the base plate 91. Hereinafter, with reference to FIG. 4 and FIG. 5, the structure of the member that supports the substrate 10 in the substrate stage 1 will be described.
 まず、図4を参照して、ベースプレート91の、基板10と当接する側の端部には、ベルト92が設けられている。ベルト92は、基板10の搬送方向(図4の左右方向)に回転することにより基板10を搬送する。 First, referring to FIG. 4, a belt 92 is provided at the end of the base plate 91 on the side in contact with the substrate 10. The belt 92 conveys the substrate 10 by rotating in the conveyance direction of the substrate 10 (left-right direction in FIG. 4).
 クランプ50は、ガイド51に連結されている。ガイド51は、スプリング用シャフト53によって軸支されている。ガイド51の上方にはローラ52が位置している。ローラ52には、シャフト82を介して、エアスライドテーブル81が連結されている。ローラ52は、エアスライドテーブル81に供給される空気量に応じて、シャフト82を軸とした回転位置が変化し、これにより、ローラ52の、図4における、矢印R21,R22で示される方向の位置が変化する。 The clamp 50 is connected to the guide 51. The guide 51 is pivotally supported by a spring shaft 53. A roller 52 is positioned above the guide 51. An air slide table 81 is connected to the roller 52 via a shaft 82. The roller 52 changes its rotational position around the shaft 82 in accordance with the amount of air supplied to the air slide table 81, thereby causing the roller 52 to move in the directions indicated by arrows R21 and R22 in FIG. The position changes.
 スプリング用シャフト53には、スプリング用シャフト83が連結されている。スプリング用シャフト83には、スプリング84が固定されている。スプリング用シャフト83は、スプリング84によって、後述するように所定の回動方向に付勢され、また、スプリング用シャフト83に連結されるスプリング用シャフト53、および、スプリング用シャフト53に連結されたガイド51も同様に付勢される。そして、ガイド51は、その上方
からローラ52によって押圧されることにより、基板10を上方から下方に向けて押圧するように支持する位置に固定される。
A spring shaft 83 is connected to the spring shaft 53. A spring 84 is fixed to the spring shaft 83. The spring shaft 83 is urged by a spring 84 in a predetermined rotation direction as will be described later, and the spring shaft 53 connected to the spring shaft 83 and the guide connected to the spring shaft 53. 51 is similarly energized. And the guide 51 is fixed to the position which supports the board | substrate 10 so that it may press toward the downward direction from the upper direction by being pressed by the roller 52 from the upper direction.
 図5は、図4に示された各要素を側方から見た状態を示す図である。
 図5において、矢印R24は、スプリング用シャフト53に対する、上記したような付勢方向を示している。図5において実線で示された状態から、エアスライドテーブル81に供給される空気量が変更されることにより、ローラ52が矢印R22の向きに回転してローラ52Xで示される位置まで移動すると、スプリング用シャフト53に対する矢印R24の向きの付勢によって、クランプ50およびガイド51が矢印R23の向きに回転する。クランプ50Xおよびガイド51Xは、ローラ52Xに対応するクランプとガイドの位置を示している。
FIG. 5 is a diagram showing a state in which each element shown in FIG. 4 is viewed from the side.
In FIG. 5, an arrow R <b> 24 indicates the biasing direction as described above with respect to the spring shaft 53. When the amount of air supplied to the air slide table 81 is changed from the state indicated by the solid line in FIG. 5, the roller 52 rotates in the direction of the arrow R22 and moves to the position indicated by the roller 52X. The clamp 50 and the guide 51 rotate in the direction of the arrow R23 by the biasing of the direction of the arrow R24 with respect to the shaft 53 for use. The clamp 50X and the guide 51X indicate the positions of the clamp and the guide corresponding to the roller 52X.
 なお、エアスライドテーブル81に対する供給量が調整されることにより、ローラ52Xが矢印R21の向きに回転移動されて、ローラ52で示される位置に移動すると、ローラ52に押圧されることにより、ガイド51Xで示される位置からガイド51で示される位置に、シャフトが移動する。また、シャフトに固定されているクランプも、同様に、クランプ50Xで示される位置からクランプ50で示される位置に、移動する。これにより、クランプ50は、基板10を、上方から押圧するように固定する。本実施の形態では、ガイド51の上面が、水平ではなく、水平方向に対して傾斜を有するように構成されている。これにより、ローラ52の回転による変位によって、ガイド51は図5を参照して説明したように回転移動し、これにより、クランプ50が上下に移動する。 When the supply amount to the air slide table 81 is adjusted, the roller 52X is rotated in the direction of the arrow R21 and moved to the position indicated by the roller 52. The shaft moves from the position indicated by the guide 51 to the position indicated by the guide 51. Similarly, the clamp fixed to the shaft also moves from the position indicated by the clamp 50X to the position indicated by the clamp 50. Thereby, the clamp 50 fixes the board | substrate 10 so that it may press from upper direction. In the present embodiment, the upper surface of the guide 51 is configured not to be horizontal but to be inclined with respect to the horizontal direction. Accordingly, the guide 51 rotates and moves as described with reference to FIG. 5 due to the displacement caused by the rotation of the roller 52, and thereby the clamp 50 moves up and down.
 なお、クランプ50を上下移動させる方法としては、エアスライドテーブル81に供給される空気量を変更されるような、エアシリンジを用いたものに限定されない。たとえば、モータで、直接的に、上下方向に移動されても良い。ただし、本実施の形態のように、モータではなくエアシリンジによって上下方向に移動されることにより、モータの駆動により生じると考えられるノイズの発生を抑制(回避)でき、これにより、撮影されるX線画像が当該ノイズの影響を受けることを極力回避できる。 It should be noted that the method of moving the clamp 50 up and down is not limited to a method using an air syringe that changes the amount of air supplied to the air slide table 81. For example, the motor may be directly moved in the vertical direction. However, as in the present embodiment, it is possible to suppress (avoid) the generation of noise that is considered to be caused by driving the motor by being moved up and down by the air syringe instead of the motor, and thus X It is possible to avoid the line image from being affected by the noise as much as possible.
 X線検査装置100では、基板10が基板ステージ1に固定される場合、上方からクランプ50によって押圧されるうように支持され、また、下方からは、ベースプレート91によって指示される。なお、ベースプレート91では、主にベルト92が、基板10に当接している。そして、基板ステージ1に基板10が固定された状態で、図1を参照して説明したようにコンベアベース90が旋回等することにより、コンベアベース90に固定された状態で、基板10がX線検査装置100内を旋回等する。 In the X-ray inspection apparatus 100, when the substrate 10 is fixed to the substrate stage 1, the substrate 10 is supported so as to be pressed by the clamp 50 from above, and is instructed by the base plate 91 from below. In the base plate 91, the belt 92 is mainly in contact with the substrate 10. Then, with the substrate 10 fixed to the substrate stage 1, the conveyor base 90 turns as described with reference to FIG. 1, so that the substrate 10 is X-rayed while being fixed to the conveyor base 90. The inside of the inspection apparatus 100 is turned.
 図6は、クランプ50とベースプレート91の構造の特徴を説明するための図である。
 図6には、クランプ50とベースプレート91によって基板10が固定されている状態が示されている。
FIG. 6 is a view for explaining the characteristics of the structure of the clamp 50 and the base plate 91.
FIG. 6 shows a state where the substrate 10 is fixed by the clamp 50 and the base plate 91.
 本実施の形態では、基板10(検査対象物)に対して、上下方向の下側から、X線源2によりX線が照射される。そして、上側からFPD3(X線検出部)により検査対象物のX線透視画像が撮像される。そして、検査対象物は、上方からはクランプ50により支持され、下方からはベースプレート91(ベルト92)により支持されることにより、保持される。本実施の形態では、ベースプレート91(ベルト92)により、一方側から検査対象物を支持する第1の部材が構成され、そして、クランプ50により、他方側から検査対象物を支持する第2の部材が構成される。 In the present embodiment, the X-ray source 2 irradiates the substrate 10 (inspection object) from the lower side in the vertical direction. Then, an X-ray fluoroscopic image of the inspection object is captured from above by the FPD 3 (X-ray detection unit). The inspection object is supported by the clamp 50 from above and supported by the base plate 91 (belt 92) from below. In the present embodiment, the base plate 91 (belt 92) constitutes a first member that supports the inspection object from one side, and the clamp 50 supports the second object that supports the inspection object from the other side. Is configured.
 そして、ベースプレート91とクランプ50の水平方向の端面は、それぞれ、垂直方向に対して傾斜を有している。具体的には、図6に主に示されるように、ベースプレート91の上記端面は、垂直方向に対してθ2の角度を有し、また、クランプ50の上記端面は、垂直方向に対してθ1の角度を有する。このような傾斜を有することにより、ベースプレート91の上記端面は、下側ほど、左右方向について検査対象物から離れるような形状となっている。また、クランプ50の上記端面は、上側ほど、左右方向について検査対象物から離れるような形状となっている。 The horizontal end surfaces of the base plate 91 and the clamp 50 are each inclined with respect to the vertical direction. Specifically, as mainly shown in FIG. 6, the end surface of the base plate 91 has an angle of θ2 with respect to the vertical direction, and the end surface of the clamp 50 has an angle of θ1 with respect to the vertical direction. Have an angle. By having such an inclination, the end surface of the base plate 91 is shaped so as to move away from the inspection object in the left-right direction toward the lower side. Moreover, the said end surface of the clamp 50 becomes a shape which leaves | separates from a test target object about the left-right direction, so that an upper side is.
 クランプ50の上記端面が上記したような傾斜を有することにより、クランプ50に確実に基板10を支持させつつ、X線源2から放射されるX線(符号XRで示されている)の基板10による透過光がクランプ50によって遮蔽されることを極力回避できる。なお、図6中の角度θ3は、X線源2のX線の照射角度である。 Since the end surface of the clamp 50 has the inclination as described above, the substrate 10 of X-rays (indicated by the symbol XR) emitted from the X-ray source 2 while the clamp 50 reliably supports the substrate 10. It is possible to avoid as much as possible that the transmitted light by is blocked by the clamp 50. Note that an angle θ3 in FIG. 6 is an X-ray irradiation angle of the X-ray source 2.
 また、図7に示されるように、ベースプレート91の上記端面が上記したような傾斜を有することにより、ベースプレート91を左右方向により遠くまで基板10側に延在させつつ、X線源2から放射されるX線がベースプレート91によって遮蔽されることを極力回避できる。 Further, as shown in FIG. 7, the end surface of the base plate 91 has the inclination as described above, so that the base plate 91 is emitted from the X-ray source 2 while extending the base plate 91 farther in the left-right direction toward the substrate 10 side. That the X-rays are shielded by the base plate 91 can be avoided as much as possible.
 クランプ50の端面の傾斜角度θ1は、大きくなるほど、より基板10のクランプ50側の端部を通過した透過光をFPD3へ送ることができ、基板10において検査対象領域となる領域を広くすることができる。なお、傾斜角度θ1は、たとえばθ3の半分の角度以上であることが好ましい。上限としては特に制限されないものと考えられるが、クランプ50が基板10を十分に支持(押圧)できる程度の強度が保証される程度にとどめられることが好ましい。 As the inclination angle θ1 of the end surface of the clamp 50 increases, the transmitted light that has passed through the end portion of the substrate 10 on the clamp 50 side can be sent to the FPD 3, and the region to be inspected in the substrate 10 can be widened. it can. In addition, it is preferable that inclination | tilt angle (theta) 1 is more than the angle of the half of (theta) 3, for example. Although it is considered that the upper limit is not particularly limited, it is preferable that the upper limit is ensured so that the clamp 50 can sufficiently support (press) the substrate 10.
 また、ベースプレート91に端面の傾斜角度θ2についても、同様に、大きくなるほど、より基板10のベースプレート91側の端部までX線を透過させることができ、基板10において検査対象領域となる領域を広くすることができる。なお、傾斜角度θ2は、たとえばθ3の半分の角度以上であることが好ましい。上限としては特に制限されないものと考えられるが、基板10を十分に支持できる程度の強度が保証される程度にとどめられることが好ましい。 Similarly, as the inclination angle θ2 of the end surface of the base plate 91 is increased, X-rays can be transmitted to the end portion of the substrate 10 on the base plate 91 side, and a region to be inspected in the substrate 10 is widened. can do. In addition, it is preferable that inclination | tilt angle (theta) 2 is more than the angle of the half of (theta) 3, for example. Although it is considered that the upper limit is not particularly limited, it is preferable that the upper limit is ensured so as to guarantee the strength enough to support the substrate 10.
 [第2の実施の形態]
 以下、本実施の形態のX線検査装置100における、第1の実施のX線検査装置100に対する変更点について、主に説明する。
[Second Embodiment]
Hereinafter, changes in the X-ray inspection apparatus 100 of the present embodiment with respect to the X-ray inspection apparatus 100 of the first embodiment will be mainly described.
 図8は、本実施の形態のX線検査装置100におけるクランプの形状を説明するための図である。 FIG. 8 is a diagram for explaining the shape of the clamp in the X-ray inspection apparatus 100 of the present embodiment.
 上記したように、第1の実施の形態に係るX線検査装置100では、クランプ50およびベースプレート91は、基板10の搬送方向に寸法を有し、そして、当該搬送方向を含む面、つまり、当該搬送方向に交わる方向についての端面に、図6および図7を参照して説明したような傾斜が設けられている。そして、上記傾斜が設けられることにより、より確実に基板10が保持(支持)されるとともに検査対象領域が広げられている。 As described above, in the X-ray inspection apparatus 100 according to the first embodiment, the clamp 50 and the base plate 91 have dimensions in the transport direction of the substrate 10 and are surfaces including the transport direction, that is, the Inclination as described with reference to FIG. 6 and FIG. 7 is provided on the end face in the direction intersecting the transport direction. And by providing the said inclination, the board | substrate 10 is hold | maintained (supported) more reliably, and the area | region to be examined is expanded.
 本実施の形態のX線検査装置100では、図8に示されるように、クランプ50には、基板10の搬送方向において一部切り欠き501が形成されている。なお、図8のX方向およびY方向は、図2のX方向と同様である。つまり、X方向は、基板10の搬送方向を示し、Y方向は、当該搬送方向に直行する方向を示している。そして、本実施の形態のクランプ50において、切り欠き501が形成された部分は、搬送方向(X方向)の他の部分と比較して、Y方向について、基板10を支持する領域が少なくなる。これにより、X線源2から照射され、基板10を透過した光を遮る領域がより少なくなる。 In the X-ray inspection apparatus 100 of the present embodiment, as shown in FIG. 8, the clamp 50 is formed with a partially cutout 501 in the transport direction of the substrate 10. Note that the X direction and Y direction in FIG. 8 are the same as the X direction in FIG. 2. That is, the X direction indicates the transport direction of the substrate 10, and the Y direction indicates a direction orthogonal to the transport direction. In the clamp 50 according to the present embodiment, the portion where the notch 501 is formed has a smaller area for supporting the substrate 10 in the Y direction than in other portions in the transport direction (X direction). Thereby, there are fewer regions that block the light irradiated from the X-ray source 2 and transmitted through the substrate 10.
 以上説明したように、本実施の形態のクランプ50のように、一部が切り欠かれることにより、より基板10の検査対象領域を広げることができる。 As described above, the inspection target area of the substrate 10 can be further expanded by cutting out a part thereof as in the clamp 50 of the present embodiment.
 なお、クランプ50において切り欠きを形成する割合としては、クランプ50が基板10を十分な強度で支持できる範囲内で適宜決定することができる。 It should be noted that the ratio at which the notch is formed in the clamp 50 can be appropriately determined within a range in which the clamp 50 can support the substrate 10 with sufficient strength.
 [第3の実施の形態]
 以下、本実施の形態のX線検査装置100における、第1の実施のX線検査装置100に対する変更点について、主に説明する。
[Third Embodiment]
Hereinafter, changes in the X-ray inspection apparatus 100 of the present embodiment with respect to the X-ray inspection apparatus 100 of the first embodiment will be mainly described.
 図9は、本実施の形態のX線検査装置100におけるクランプの形状を説明するための図である。図9では、矢印Xは、図2のX方向と同様に、基板10の搬送方向を示している。図10は、図9の側面図である。 FIG. 9 is a diagram for explaining the shape of the clamp in the X-ray inspection apparatus 100 of the present embodiment. In FIG. 9, the arrow X indicates the transport direction of the substrate 10 as in the X direction of FIG. FIG. 10 is a side view of FIG.
 本実施の形態のクランプは、第1の実施の形態のクランプ50の代わりに、レール部510、爪部511~513、および、固定部材511A~513Aを含む。レール部510は、X方向に延設される、上下一対の長細い部材を含む。固定部材511A~513Aを当該部材にねじ止めされることにより、爪部511~513は、それぞれ、レール部510に固定される。本実施の形態では、爪部511~513が、基板10を上方から支持する。 The clamp of the present embodiment includes a rail portion 510, claw portions 511 to 513, and fixing members 511A to 513A instead of the clamp 50 of the first embodiment. The rail portion 510 includes a pair of upper and lower elongated members that extend in the X direction. By fixing the fixing members 511A to 513A to the members, the claw portions 511 to 513 are fixed to the rail portion 510, respectively. In the present embodiment, the claw portions 511 to 513 support the substrate 10 from above.
 爪部511~513のX方向における固定位置は、変更可能である。つまり、固定部材511A~513Aのそれぞれのレール部510における固定位置を変更することにより、X方向における爪部511~513の固定位置を変更することができる。 The fixing position of the claw portions 511 to 513 in the X direction can be changed. That is, by changing the fixing positions of the fixing members 511A to 513A in the respective rail portions 510, the fixing positions of the claw parts 511 to 513 in the X direction can be changed.
 X方向における爪部511~513の固定位置を変更することにより、基板10上に実装される部品の配置に応じて、基板10の上方からの固定位置を変更することができる。 By changing the fixing position of the claw portions 511 to 513 in the X direction, the fixing position from above the board 10 can be changed according to the arrangement of components mounted on the board 10.
 近年、市場変化に対応できる柔軟性のある多品種少量生産を実現するためには、検査対象物の多様化が想定される。本実施の形態のX線検査装置100では、検査対象物の種類に応じて、爪部511~513の固定位置を変更できる。これにより、本実施の形態のX線検査装置100は、多様な検査対象物に対応できる。 In recent years, in order to realize flexible, high-mix low-volume production that can respond to changes in the market, diversification of inspection objects is expected. In the X-ray inspection apparatus 100 of the present embodiment, the fixing positions of the claw portions 511 to 513 can be changed according to the type of inspection object. Thereby, the X-ray inspection apparatus 100 of this Embodiment can respond to various test objects.
 本実施の形態では、爪部511~513により押圧用部材が構成され、レール部510により支持用部材が構成されている。 In this embodiment, the claw portions 511 to 513 constitute a pressing member, and the rail portion 510 constitutes a supporting member.
 なお、図9では、基板10を上方から支持する爪部の数が「3」とされているが、これは例示である。基板10を十分な力で支持できる範囲であれば、その本数は、適宜変更される。 In FIG. 9, the number of claw portions that support the substrate 10 from above is “3”, but this is an example. As long as the substrate 10 can be supported with sufficient force, the number thereof is changed as appropriate.
 また、各爪部の寸法(特に、基板10の搬送方向であるX方向についての寸法)についても、基板10を十分な力で支持できる寸法であれば、適宜設定される。 Further, the dimensions of each claw portion (particularly, the dimension in the X direction which is the conveyance direction of the substrate 10) are appropriately set as long as the substrate 10 can be supported with sufficient force.
 [その他の変形例等]
 以上説明した各実施の形態では、X線検査装置の一例として、製造ライン中で検査対象物(基板10)の検査を行なう、いわゆるインライン検査に利用される検査装置が例示された。したがって、当該検査の際の、検査対象物の搬送を、安全にかつ高速に行なうことが求められる。各実施の形態のX線検査装置では、検査対象物においてより広い被検査領域を確保しつつ、より安定して検査対象物を固定することができる。ただし、本発明に従うX線検査装置は、インライン検査に用いられるものに限定されない。本発明は、製造ラインに対して独立して利用されるX線検査装置においても、実施されることが意図される。
[Other variations]
In each of the embodiments described above, as an example of an X-ray inspection apparatus, an inspection apparatus used for so-called in-line inspection that inspects an inspection object (substrate 10) in a production line is exemplified. Therefore, it is required to transport the inspection object safely and at high speed during the inspection. In the X-ray inspection apparatus of each embodiment, the inspection object can be more stably fixed while ensuring a wider inspection area in the inspection object. However, the X-ray inspection apparatus according to the present invention is not limited to the one used for in-line inspection. The present invention is also intended to be implemented in an X-ray inspection apparatus used independently for a production line.
 また、以上説明した各実施の形態では、基板10の保持/解除の変更が、図5を参照して説明したように、基板10を上方から支持するクランプ50を移動させることによって行なわれる。基板10は、クランプ50に上方から下方に押圧されることにより、クランプ50とベースプレート91(ベルト92)の間で保持される。 In each of the embodiments described above, the holding / release of the substrate 10 is changed by moving the clamp 50 that supports the substrate 10 from above as described with reference to FIG. The substrate 10 is held between the clamp 50 and the base plate 91 (belt 92) by being pressed downward from above by the clamp 50.
 なお、本発明に従った検査装置における検査対象物の保持態様は、このような態様に限定されない。つまり、たとえば、下方から上方に検査対象物を押圧して保持されても良い。ただし、下方から上方に検査対象物を押圧し、別途設けられている部材の下面に検査対象物を押し当てて検査対象物を保持する場合、当該部材が定常的に下方から突き上げられることにより破損するおそれが予測される。本実施の形態では、検査対象物を下方に向けて押圧して保持することにより、上記のような部材の破損のおそれを極力回避できる。 In addition, the holding | maintenance aspect of the test target object in the inspection apparatus according to this invention is not limited to such an aspect. That is, for example, the inspection object may be pressed and held from below to above. However, when holding the inspection object by pressing the inspection object from the bottom to the top and pressing the inspection object against the lower surface of a separately provided member, the member is damaged by being constantly pushed up from below. It is predicted that In the present embodiment, by pressing and holding the inspection object downward, it is possible to avoid as much as possible the risk of damage to the member as described above.
 また、以上説明した各実施の形態では、基板10の保持/解除を変更する機構(エアスライドテーブル81、ローラ52等)が基板10の上方側に設けられ、基板10に対してX線を照射する装置(X線源2)が基板10の下方側に設けられている。つまり、保持/解除を変更する機構とX線照射装置が、基板10を挟んで反対側に設けられている。このように配置されることにより、両者が基板10に対して同じ側に設けられる場合と比較して、X線照射装置をより基板10に近い位置まで接近させることができる。これにより、X線検査装置100では、基板10について、より拡大倍率の高い画像を撮影できる。また、上記機構がX線照射装置と基板10を挟んで、つまり、両者が極力離されて、設置されることにより、上記機構がX線照射装置によって出力されるX線の干渉材料となることを寄り確実に回避することができる。 Further, in each of the embodiments described above, a mechanism (air slide table 81, roller 52, etc.) for changing holding / release of the substrate 10 is provided above the substrate 10 and irradiates the substrate 10 with X-rays. The apparatus (X-ray source 2) which performs is provided in the downward side of the board | substrate 10. FIG. That is, a mechanism for changing holding / release and an X-ray irradiation apparatus are provided on the opposite side with the substrate 10 interposed therebetween. By arranging in this way, the X-ray irradiation apparatus can be brought closer to a position closer to the substrate 10 than when both are provided on the same side with respect to the substrate 10. Thereby, the X-ray inspection apparatus 100 can capture an image with a higher magnification on the substrate 10. Further, when the mechanism is placed with the X-ray irradiation apparatus and the substrate 10 sandwiched therebetween, that is, both are separated as much as possible, the mechanism becomes an X-ray interference material output by the X-ray irradiation apparatus. Can be avoided without fail.
 なお、各実施の形態において、第1の方向は上下方向に対応し、第2の方向はY方向、第3の方向はX方向に対応するが、これは単なる一例である。第1~第3の方向が互いに交わっていれば、X線の照射は、たとえば上方から下方に向けて行なわれても良いし、また、水平方向に行なわれても良い。 In each embodiment, the first direction corresponds to the vertical direction, the second direction corresponds to the Y direction, and the third direction corresponds to the X direction, but this is merely an example. If the first to third directions intersect with each other, the X-ray irradiation may be performed from the top to the bottom, for example, or may be performed in the horizontal direction.
 今回開示された各実施の形態およびその変形例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that each embodiment and its modifications disclosed this time are illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 また、各実施の形態およびその変形例は、単独でも、また必要に応じて適宜組み合わされて、実施されることが意図される。 In addition, each embodiment and its modified examples are intended to be implemented alone or in combination as appropriate.
 1 基板ステージ、2 X線源、3 フラットパネルディテクタ、4 ディテクタステージ、5 カメラ、6 変位センサ、7 制御装置、10 基板、50 クランプ、70 演算部、71 主記憶部、72 補助記憶部、73 入力部、74 出力部、75 ディテクタ制御機構、76 画像取得機構、77A 制御機構、77B 画像処理機構、78 基板制御機構、79 X線源制御機構、81 エアスライドテーブル、82 シャフト、84 スプリング、90 コンベアベース、92 ベルト、100 X線検査装置、510 レール部、511~513 爪部、511A~513A 固定部材、1000 上流側装置、2000 下流側装置。 1 substrate stage, 2 X-ray source, 3 flat panel detector, 4 detector stage, 5 camera, 6 displacement sensor, 7 control device, 10 substrate, 50 clamp, 70 arithmetic unit, 71 main storage unit, 72 auxiliary storage unit, 73 Input unit, 74 output unit, 75 detector control mechanism, 76 image acquisition mechanism, 77A control mechanism, 77B image processing mechanism, 78 substrate control mechanism, 79 X-ray source control mechanism, 81 air slide table, 82 shaft, 84 spring, 90 Conveyor base, 92 belt, 100 X-ray inspection apparatus, 510 rail section, 511 to 513 claw section, 511A to 513A fixing member, 1000 upstream apparatus, 2000 downstream apparatus.

Claims (3)

  1.  X線源(2)と、X線検出部(3)と、検査対象物を保持する保持機構とを備え、前記保持機構によって保持された検査対象物に対して複数方向から照射されたX線によって撮像するX線検査装置(100)であって、
     前記保持機構は、
      検査対象物に対して第1の方向の一方側からX線源(2)によりX線が照射され、他方側から前記X線検出部(3)により前記検査対象物のX線透視画像を撮像させるように、検査対象物を保持し、
      前記一方側から前記検査対象物を支持する第1の部材(91,92)と、前記他方側から前記検査対象物を支持する第2の部材(50)とを含み、
     前記第1の方向と交わる第2の方向についての前記第1の部材(91,92)および前記第2の部材(50)の前記検査対象物側の端面は、前記第1の方向について前記検査対象物から離れるほど、前記第2の方向について前記検査対象物から離れるような傾斜を有する、X線検査装置(100)。
    An X-ray source (2), an X-ray detector (3), and a holding mechanism that holds an inspection object, and X-rays irradiated from a plurality of directions onto the inspection object held by the holding mechanism An X-ray inspection apparatus (100) for imaging by:
    The holding mechanism is
    An X-ray is irradiated from the one side in the first direction to the inspection object by the X-ray source (2), and an X-ray fluoroscopic image of the inspection object is taken by the X-ray detection unit (3) from the other side. Hold the object to be inspected,
    A first member (91, 92) for supporting the inspection object from the one side, and a second member (50) for supporting the inspection object from the other side,
    The end surface on the inspection object side of the first member (91, 92) and the second member (50) in the second direction intersecting with the first direction is the inspection in the first direction. The X-ray inspection apparatus (100) having an inclination such that the further away from the object, the further away from the inspection object in the second direction.
  2.  前記第2の部材(50)は、
      前記第2の方向に交わる第3の方向について、連続してまたは複数の箇所で、前記検査対象物を支持し、
      前記第3の方向において少なくとも一部が前記検査対象物を支持する領域が少なくなるように切り欠きを設けられている、請求項1に記載のX線検査装置(100)。
    The second member (50) is
    For the third direction intersecting the second direction, support the inspection object continuously or at a plurality of locations,
    The X-ray inspection apparatus (100) according to claim 1, wherein a cutout is provided so that at least a part of the third direction supports a region to be inspected in the third direction.
  3.  前記第2の部材(50)は、
      前記第2の方向に交わる第3の方向に延設される支持用部材(510)と、
      前記支持用部材に対して、前記第3の方向について位置を変更可能に固定され、前記検査対象物を押圧することにより支持するための押圧用部材(511~513)とを含み、
     前記押圧用部材(511~513)は、前記第1の方向の前記他方側に位置する、請求項1に記載のX線検査装置(100)。
    The second member (50) is
    A support member (510) extending in a third direction intersecting the second direction;
    A pressing member (511 to 513) fixed to the supporting member so that the position thereof can be changed in the third direction and supporting the inspection object by pressing,
    The X-ray inspection apparatus (100) according to claim 1, wherein the pressing members (511 to 513) are located on the other side in the first direction.
PCT/JP2012/061740 2011-05-13 2012-05-08 X-ray inspection apparatus WO2012157466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011108166A JP2012237708A (en) 2011-05-13 2011-05-13 X-ray inspection device
JP2011-108166 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157466A1 true WO2012157466A1 (en) 2012-11-22

Family

ID=47176799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061740 WO2012157466A1 (en) 2011-05-13 2012-05-08 X-ray inspection apparatus

Country Status (2)

Country Link
JP (1) JP2012237708A (en)
WO (1) WO2012157466A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185987A (en) * 2013-03-25 2014-10-02 Howa Mach Ltd X-ray inspection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125870A (en) * 2004-10-26 2006-05-18 Omron Corp Substrate inspection apparatus
JP2008091372A (en) * 2006-09-29 2008-04-17 Omron Corp Substrate supporter
JP4105730B2 (en) * 2005-05-16 2008-06-25 エバーテクノ・カンパニー・リミテッド Polarized film carrier
JP2009092657A (en) * 2007-10-04 2009-04-30 3B System Corp Optical film inspection device
JP2010145359A (en) * 2008-12-22 2010-07-01 Omron Corp X-ray inspection device, method of x-ray inspection, and x-ray inspection program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125870A (en) * 2004-10-26 2006-05-18 Omron Corp Substrate inspection apparatus
JP4105730B2 (en) * 2005-05-16 2008-06-25 エバーテクノ・カンパニー・リミテッド Polarized film carrier
JP2008091372A (en) * 2006-09-29 2008-04-17 Omron Corp Substrate supporter
JP2009092657A (en) * 2007-10-04 2009-04-30 3B System Corp Optical film inspection device
JP2010145359A (en) * 2008-12-22 2010-07-01 Omron Corp X-ray inspection device, method of x-ray inspection, and x-ray inspection program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185987A (en) * 2013-03-25 2014-10-02 Howa Mach Ltd X-ray inspection apparatus

Also Published As

Publication number Publication date
JP2012237708A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
TWI428603B (en) Probe devices, detection methods and memory media
JP5444718B2 (en) Inspection method, inspection device, and inspection program
TWI495866B (en) Appearance inspection device
TW201712325A (en) Electronic component transfer device and electronic component inspection device
TWI673502B (en) Electronic component transport apparatus and electronic component inspection apparatus
JP6164603B2 (en) Nondestructive inspection equipment
CN111247424A (en) Inspection position specifying method, three-dimensional image generating method, and inspection device
WO2009121051A2 (en) X-ray inspection systems and methods
JP2006162335A (en) X-ray inspection device, x-ray inspection method and x-ray inspection program
JP2006184267A (en) System, method and program for x-ray inspection
JP2017015483A (en) Electronic component conveyance device and electronic component inspection device
WO2012157466A1 (en) X-ray inspection apparatus
CN112649448B (en) Nondestructive inspection device
KR101967372B1 (en) Inspection apparatus, and inspection method using the same apparatus
KR20110088139A (en) Inline computed tomography inspection system and method using the same
TW202012947A (en) Electronic component handler and electronic component tester
KR20160066741A (en) apparatus for examining edge of flat panel display panel and method of using the same
KR20130022126A (en) Probe unit and apparatus for testing electrical characteristics of an object including the same
KR20180018468A (en) An X-ray Apparatus for Detecting a Flaw of an Object with a Structure of Multi-Investigating Point and Multi-Exit Passage
JP2019060808A (en) Method for specifying inspection position and inspection device
JP6805200B2 (en) Movement control device, movement control method and movement control program
TW201732304A (en) Apparatus for inspecting loaded status of electronic components can accurately handle the loaded status of a plurality of electronic components since positons of the plurality of reflection points can be confirmed
JP2017015479A (en) Electronic component conveyance device and electronic component inspection device
US11009541B2 (en) Electronic component handler and electronic component tester
WO2013108475A1 (en) Inspection device, inspection method and inspection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785886

Country of ref document: EP

Kind code of ref document: A1