WO2012157274A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2012157274A1
WO2012157274A1 PCT/JP2012/003213 JP2012003213W WO2012157274A1 WO 2012157274 A1 WO2012157274 A1 WO 2012157274A1 JP 2012003213 W JP2012003213 W JP 2012003213W WO 2012157274 A1 WO2012157274 A1 WO 2012157274A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
antenna
inductor
branch
circuit
Prior art date
Application number
PCT/JP2012/003213
Other languages
English (en)
French (fr)
Inventor
佐藤 浩
小柳 芳雄
貴紀 廣部
上島 博幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/821,368 priority Critical patent/US9001000B2/en
Publication of WO2012157274A1 publication Critical patent/WO2012157274A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/22RF wavebands combined with non-RF wavebands, e.g. infrared or optical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the present invention relates to an antenna device suitable for use in a multiband portable terminal.
  • Patent Document 1 discloses a technique for reducing the coupling by inserting a joining element such as a filter between two antenna elements.
  • Non-Patent Document 1 discloses a technique in which two lumped constants are provided in a two-element monopole antenna having one resonance frequency to achieve low coupling at a maximum of two frequencies.
  • the coupling can be reduced only at one frequency, and if it is adapted to multiple frequencies, (1) increase in circuit scale due to addition of switches and filters, (2) In the switching method, there is a problem that simultaneous use of multiple frequencies is not possible, and the influence on the antenna efficiency when there is an obstacle around the antenna at the time of low coupling such as a hand holding state is considered. It has not been.
  • Non-Patent Document 1 Although the technique disclosed in Non-Patent Document 1 described above can reduce the coupling at two frequencies, it is necessary to switch the low coupling circuit by a switching means such as a switch in order to deal with the three frequencies. There is a problem that increases.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an antenna device that can cope with three frequencies without increasing the circuit scale and that has little deterioration in antenna efficiency due to obstacles.
  • the antenna device of the present invention includes a circuit board having a ground pattern, a conductive metal, a first branch element, and a first branch element having an electrical length shorter than that of the first branch element.
  • the antenna element and the second antenna element are arranged close to each other with a predetermined distance from the ground pattern of the circuit board, and the first feeding unit and the second feeding unit arranged on the circuit board. Part of the first antenna element and part of the second antenna element, or the first matching part.
  • the second matching section or A low coupling circuit corresponding to a plurality of desired frequencies that electrically connects one power supply unit and the second power supply unit, wherein the plurality of desired frequencies are changed from a low frequency to a high frequency;
  • the third frequency, the first antenna element and the second antenna element are between the first frequency and the second frequency, and between the second frequency and the third frequency.
  • there is resonance of the Y12 component of the admittance matrix and the first branch element and the third branch element have resonance of the Y12 component of the admittance matrix between the first frequency and the second frequency.
  • the second branch element and the fourth branch element are approximately a quarter of the electrical length, and the second branch element and the fourth branch element have resonance electric power of a Y12 component of the admittance matrix between the second frequency and the third frequency. About a quarter of the length.
  • each of the first and second antenna elements has a branched shape, and the first and second antenna elements are arranged close to each other, and the frequency between the antenna elements or between the feeding points is reduced. Since the low coupling circuit having a configuration in which the susceptance increases with respect to the increase, the low coupling frequency can be expanded to three frequencies with a small number of components. In the conventional one-resonance antenna element without branching, two frequencies are limited by one lumped constant, but in the present invention, three frequencies can be handled.
  • the circuit constants are not switched by a switch or the like, all frequencies can be used simultaneously.
  • the current peaks in the first and second power feeding units are dispersed in the low coupling circuit portion, the peak SAR (Specific Absorption Rate) can be reduced.
  • the said structure it can make it hard to receive the influence of circumference
  • the real part of the Y12 component of the admittance matrix is in the range of ⁇ 30 mS or more and +30 mS or less at the first frequency, the second frequency, and the third frequency, and the admittance matrix
  • the imaginary part of the Y12 component increases in the order of the first frequency, the second frequency, and the third frequency.
  • the low coupling circuit has a susceptance value that is equivalent to an imaginary part of a Y12 component of the admittance matrix at the first frequency, the second frequency, and the third frequency, and A function of reducing electromagnetic coupling between the first power feeding unit and the second power feeding unit;
  • At least one of loading a dielectric or magnetic material, inserting an inductor at an element end or inside, or making a meander shape in the first antenna element and the second antenna element is used.
  • the first and second antenna elements can be reduced in size.
  • the low coupling circuit includes a single inductor, a single capacitor, a parallel circuit of an inductor and a capacitor, an inductor in series with a parallel circuit of an inductor and a capacitor, a capacitor in series with a parallel circuit of an inductor and a capacitor, and a parallel of an inductor and a capacitor. This is realized by any one circuit configuration of two circuits connected in series.
  • the susceptance can be increased with respect to the frequency. Further, since the low coupling circuit can be composed of at least one component, the cost increase due to the provision of the low coupling circuit can be minimized.
  • the portable wireless device of the present invention is equipped with the antenna device.
  • a portable wireless device that can support three frequencies can be realized.
  • the present invention it is possible to cope with three frequencies without increasing the circuit scale, and it is possible to reduce deterioration of antenna efficiency due to obstacles.
  • FIG. 1 is a schematic configuration diagram showing an antenna device according to an embodiment of the present invention.
  • unit inductor used for the antenna apparatus of FIG. The figure which shows the frequency characteristic of the susceptance of the low coupling circuit made into the capacitor single-piece
  • the figure which shows the frequency characteristic of the susceptance of the low coupling circuit made into the serial connection of two parallel circuits of the inductor and capacitor used for the antenna apparatus of FIG. 1 is a diagram illustrating frequency characteristics of an admittance of a single antenna element and a susceptance of a low coupling circuit when the low coupling circuit of FIG. 4 is used in the antenna apparatus of FIG.
  • the figure which shows the specific example of the low coupling circuit made into the equivalent circuit of the 1st, 2nd antenna element of the antenna apparatus of FIG. 1, and the parallel circuit of the inductor and the capacitor The figure which shows the frequency characteristic of S parameter in the specific example of FIG.
  • FIG. 17 is a development view showing the first and second antenna elements of the modification (1) of FIG.
  • FIG. 21 is a development view showing the first and second antenna elements of the modification (2) of FIG.
  • FIG. 1 is a schematic configuration diagram showing an antenna device according to an embodiment of the present invention.
  • an antenna device 1 of the present embodiment has a ground pattern (not shown), a circuit board 10 provided with first and second radio circuit units 11 and 12, and a first branch structure.
  • the first antenna element 15 is made of a conductive metal, and includes a first branch element 15A and a second branch element 15B having an electrical length shorter than that of the first branch element 15A.
  • the second antenna element 16 is made of a conductive metal, and includes a third branch element 16A and a fourth branch element 16B having an electrical length shorter than that of the third branch element 16A.
  • the first antenna element 15 and the second antenna element 16 are arranged close to each other at a predetermined interval from a ground pattern (not shown) of the circuit board 10 and are also arranged on the circuit board 10. Are electrically connected to the power feeding unit 20 and the second power feeding unit 21 via the first matching unit 18 and the second matching unit 19, respectively.
  • the low coupling circuit 17 corresponds to a plurality of desired frequencies, and electrically connects the base end part (part) of the first antenna element 15 and the base end part (part) of the second antenna element 16.
  • the first antenna element 15 and the second antenna element 16 have the first frequency when the plurality of desired frequencies are changed from the low frequency to the high frequency, the first frequency, the second frequency, and the third frequency. There is a resonance of the Y12 component of the admittance matrix between the second frequencies and between the second frequency and the third frequency.
  • the first branch element 15A and the third branch element 16A are approximately a quarter of the resonance electrical length of the Y12 component of the admittance matrix between the first frequency and the second frequency
  • the second The branching element 15B and the fourth branching element 16B are approximately a quarter of the resonance electrical length of the Y12 component of the admittance matrix between the second frequency and the third frequency.
  • the low coupling circuit 17 is a circuit whose susceptance increases as the frequency increases.
  • the low coupling circuit 17 includes, for example, an inductor alone, a capacitor alone, a parallel circuit of an inductor and a capacitor, an inductor in series with a parallel circuit of an inductor and a capacitor, a capacitor in series with a parallel circuit of an inductor and a capacitor, and a parallel circuit 2 of an inductor and a capacitor. This is realized by any one circuit configuration of the two serial connections.
  • FIG. 2 to 7 are diagrams showing the frequency characteristics of the susceptance of the low coupling circuit 17 in each circuit configuration.
  • 2 is a frequency characteristic of susceptance when an inductor is used alone
  • FIG. 3 is a frequency characteristic of susceptance when a capacitor is used alone
  • FIG. 4 is a frequency characteristic of susceptance when a parallel circuit of an inductor and a capacitor is used
  • FIG. I is a frequency characteristic of susceptance when an inductor is in series with a parallel circuit of an inductor and a capacitor
  • FIG. 6 is a frequency characteristic of susceptance when a capacitor is in series with a parallel circuit of an inductor and a capacitor
  • FIG. This is a frequency characteristic of susceptance when two circuits are connected in series.
  • the low coupling circuit 17 can be composed of at least one component (inductor alone or capacitor alone), an increase in cost due to the provision thereof can be minimized.
  • the low coupling circuit 17 is configured to electrically connect between the first matching unit 18 and the second matching unit 19 or between the first feeding unit 20 and the second feeding unit 21. It doesn't matter.
  • FIG. 8 is a diagram showing the frequency characteristics of the admittance of the antenna element alone and the susceptance of the low coupling circuit 17 when the low coupling circuit 17 having the circuit configuration shown in FIG. 4 is used.
  • the frequency characteristic of the real part (Re (Y12)) of the Y12 component of the admittance matrix of the antenna element alone is indicated by a one-dot chain line
  • the imaginary part (Im (Y12) of the Y12 component of the admittance matrix of the antenna element alone is shown.
  • Frequency characteristics are indicated by a two-dot chain line.
  • the frequency characteristics of the susceptance of the low coupling circuit 17 are indicated by solid lines. In this case, the same characteristics as in FIG. 4 described above are obtained.
  • FIG. 9 is a diagram showing frequency characteristics in which the admittance in FIG. 8 is represented by S parameters.
  • the frequency characteristic of the S parameter (S11) representing matching is indicated by a one-dot chain line
  • the frequency characteristic of the S parameter (S12) representing coupling is indicated by a two-dot chain line. It can be seen that low coupling is achieved for each of the three frequencies of 900 MHz, 1700 MHz, and 2600 MHz.
  • each of the first antenna element 15 and the second antenna element 16 has a branch structure. In the antenna device 1 of the present embodiment, the following is performed in order to achieve low coupling at three frequencies.
  • the first frequency, the second frequency, and the third frequency are set as the desired frequencies to be reduced from the low frequency, and the Y12th frequency is between the first frequency and the second frequency by the antenna element alone. And a second resonance of Y12 between the second frequency and the third frequency.
  • two branch elements are provided for each of the first antenna element 15 and the second antenna element 16, and the first branch element 15A and the third branch element 16A are In order to obtain resonance on the low frequency side, the wavelength is approximately 1 ⁇ 4 of the electrical length of resonance, and the second branch element 15B and the fourth branch element 16B obtain resonance on the high frequency side, so that the electrical length of resonance is approximately 1 / 4 wavelength.
  • the real part Re (Y12) of the Y12 component of the admittance matrix of the single antenna element at the first to third frequencies is ⁇ 30 mS ⁇ Re (Y12) ⁇ + 30 mS.
  • the imaginary part Im (Y12) of the Y12 component of the admittance matrix increases in order from the low frequency of the first to third frequencies.
  • a low coupling circuit 17 using an inductor, a capacitor, and a combination thereof is disposed between the first antenna element 15 and the second antenna element 16, and the admittance of the antenna element alone at the first to third frequencies.
  • the susceptance value of the low coupling circuit that is the same value as the imaginary part Im (Y12) of the Y12 component of the matrix is obtained.
  • FIG. 10 is a diagram showing a specific example of an equivalent circuit of the first and second antenna elements 15 and 16 and a low coupling circuit 17 which is a parallel circuit of an inductor and a capacitor.
  • each of the first and second antenna elements 15 and 16 includes two inductors (5.6 nH, 5.1 nH) and one capacitor (2.4 pF) connected in series, A capacitor (0.6 pF) is connected between the common connection part of the two inductors connected in series and the ground, and an inductor (8. 2nH) is connected.
  • the inductor of the low coupling circuit 17 in which the inductor and the capacitor are connected in parallel is 22 nH, and the capacitor is 0.5 pF.
  • FIG. 11 is a diagram showing the frequency characteristics of the S parameter in the specific example of FIG.
  • the frequency characteristic of the S parameter (S11) representing matching is indicated by a one-dot chain line
  • the frequency characteristic of the S parameter (S12) representing coupling is indicated by a two-dot chain line.
  • FIG. 12 is a diagram showing frequency characteristics of antenna efficiency in the specific example of FIG.
  • the antenna efficiency when the low coupling circuit 17 and the first and second matching portions 18 and 19 are used is indicated by a solid line, and the antenna when only the first and second matching portions 18 and 19 are used. Efficiency is indicated by a dotted line. It can be seen that the antenna efficiency is improved at three frequencies of 900 MHz, 1700 MHz, and 2600 MHz as compared with the case where only the first and second matching units 18 and 19 are used without using the low coupling circuit 17. That is, it is improved by 3.9 dB at 900 MHz, 0.7 dB at 1700 MHz, and 1.8 dB at 2600 MHz.
  • FIGS. 13A and 13B are diagrams showing the current distribution of the antenna device 1 of the present embodiment.
  • (A) of the figure is a current distribution when the low coupling circuit 17 is provided, and (b) of the figure is a current distribution when the low coupling circuit 17 is not provided.
  • a current also flows through the low coupling circuit 17.
  • current concentrates on the first and second power feeding units 20 and 21, but when the low coupling circuit 17 is present, current also flows through the low coupling circuit 17. That is, since the current concentrated on the first and second power supply units 20 and 21 is distributed to the first and second power supply units 20 and 21 and the low coupling circuit 17, the current also flows in the low coupling circuit 17. Flowing.
  • the SAR peak value is reduced, and deterioration of the antenna efficiency when the portable terminal (not shown) using the antenna device 1 is held by hand can be suppressed to a low level. Further, as shown in FIG. 13 (a), even if the obstacle 30 is close to the vicinity of the first and second antenna elements 15 and 16, the current peak is also in the central low coupling circuit 17, There is less misalignment and deterioration in antenna efficiency than when low-coupling measures are not taken.
  • FIG. 14 to FIG. 16 are diagrams showing a method for miniaturizing the antenna element of the antenna device 1 of the present embodiment.
  • FIG. 14 is a diagram illustrating an example in which a dielectric (or magnetic body) 40 is disposed on the first and second antenna elements 15 and 16. By disposing the dielectric (or magnetic body) 40, the physical lengths of the first and second antenna elements 15 and 16 can be shortened. Note that the electrical length remains unchanged and remains approximately 1 / 4 ⁇ .
  • FIG. 15 is a diagram illustrating an example in which an inductor 41 is interposed in each of the first and third branch elements 15A and 16A of the first and second antenna elements 15 and 16.
  • FIG. 16 is a diagram illustrating an example in which each of the first and third branch elements 15A and 16A of the first and second antenna elements 15 and 16 has a meander shape.
  • the methods shown in FIGS. 14 to 16 can be combined.
  • each of the first and second antenna elements 15 and 16 has a branch structure, and the first and second antenna elements 15 and 16 are arranged close to each other.
  • a low coupling circuit 17 having a configuration in which the susceptance increases with an increase in frequency is provided between the antenna elements 15 and 16, and the first antenna element 15 and the second antenna element 16 include Between the second frequency and the second frequency, and between the second frequency and the third frequency, the Y12 component of the admittance matrix has resonance, and the first branch element 15A and the third branch element 16A have the first The resonance electrical length of the Y12 component of the admittance matrix between the second frequency and the second frequency is approximately 1 ⁇ 4, and the second branch element 15B and the fourth branch element 16B have the second frequency and the third frequency. Admittance between different frequencies Since the first substantially quarter relative to the resonant electrical length of Y12 components of the scan matrix, it can be extended to 3 frequencies lower coupling frequency with a small number of components.
  • the antenna device 1 of the present embodiment since the circuit constants are not switched by a switch or the like, all frequencies can be used simultaneously. In addition, since the current peaks in the first and second power feeding units 20 and 21 can be dispersed in the low coupling circuit 17 portion, the peak SAR can be reduced. Further, since the low coupling circuit 17 is arranged at the center of the antenna system, it can be hardly affected by the surroundings.
  • FIG. 17 is a perspective view showing an overview of the antenna device 2 of the modification (1) of the antenna device 1 of FIG.
  • FIG. 18 is a developed view showing the first and second antenna elements of the antenna device 2 of the modification (1) of FIG.
  • FIG. 19 is a perspective view showing the first and second antenna elements of the antenna device 2 of the modification (1) of FIG.
  • the antenna device 2 of the modified example (1) has a folded structure in which each of the first and second antenna elements 15 and 16 has a substantially L-shaped cross section.
  • Slits 15C and 16C are formed in the folded first and second antenna elements 15 and 16, respectively, to make it equivalent to a two-branch element.
  • slits 15D and 16D shorter than the slits 15C and 16C are formed on one side which is equivalent to a two-branch element to increase the electrical length. That is, the slit 15D shorter than the slit 15C is formed in the portion corresponding to the first branch element 15A to increase the electrical length.
  • a slit 16D shorter than the slit 16C is formed in a portion corresponding to the third branch element 16A to increase the electrical length.
  • FIG. 20 is a diagram illustrating frequency characteristics of the admittance of the antenna element alone and the susceptance of the low coupling circuit 17 in the antenna device 2 of the modification (1).
  • the low coupling circuit 17 has a circuit configuration in which an inductor and a capacitor shown in FIG. 4 are connected in parallel.
  • the frequency characteristic of the real part (Re (Y12)) of the Y12 component of the admittance matrix of the antenna element alone is indicated by a one-dot chain line
  • the imaginary part (Im) of the Y12 component of the admittance matrix of the antenna element alone is shown.
  • (Y12)) frequency characteristics are indicated by a two-dot chain line.
  • the frequency characteristics of the susceptance of the low coupling circuit 17 are indicated by solid lines.
  • the above condition is satisfied at 824 MHz, 1460 MHz, and 2100 MHz.
  • FIG. 21 is a perspective view showing an overview of the antenna device 3 of the modification (2) of the antenna device 1 of FIG.
  • FIG. 22 is a development view showing the first and second antenna elements of the antenna device 3 of the modification (2) of FIG.
  • FIG. 23 is a perspective view showing the first and second antenna elements of the antenna device 3 of the modification (2) of FIG. 21 to 23, the parts having the same functions as those of the antenna device 1 of FIG. 1 are denoted by the same reference numerals although the shapes are different.
  • each of the first and second antenna elements 15 and 16 has a folded structure with a substantially U-shaped cross section, and the monopole element 15B serves as the second and fourth branch elements. , 16B is added to make it equivalent to a two-branch element.
  • the monopole elements 15B and 16B which are the second and fourth branch elements, are formed at positions separated from the first and third branch elements 15A and 16A. The separation distance in this case is approximately the same as the slits 15C and 16C in the antenna device 2 of the modified example (1).
  • the first and third branch elements 15A and 16A are formed with slits 15D and 16D that are the same as those of the antenna device 2 of the modified example (1), and the electrical length is increased.
  • FIG. 24 is a diagram showing the frequency characteristics of the admittance of the antenna element alone and the susceptance of the low coupling circuit 17 in the antenna device 3 of the modification (2).
  • the low coupling circuit 17 has a circuit configuration in which an inductor is connected in series to a parallel circuit of an inductor and a capacitor shown in FIG.
  • the frequency characteristic of the real part (Re (Y12)) of the Y12 component of the admittance matrix of the antenna element alone is indicated by a one-dot chain line
  • the imaginary part (Im) of the Y12 component of the admittance matrix of the antenna element alone is shown. (Y12)) frequency characteristics are indicated by a two-dot chain line.
  • the frequency characteristics of the susceptance of the low coupling circuit 17 are indicated by solid lines.
  • the above condition is satisfied at 840 MHz, 1550 MHz, and 2100 MHz.
  • the present invention can deal with three frequencies without increasing the circuit scale, and has an effect that there is little deterioration in antenna efficiency due to an obstacle, and can be applied to a portable terminal or the like.
  • Circuit board 11 First radio circuit unit 12 Second radio circuit unit 15 First antenna element 15A First branch element 15B Second branch element (monopole element) 15C, 15D Slit 16 Second antenna element 16A Third branch element 16B Fourth branch element (monopole element) 16C, 16D Slit 17 Low coupling circuit 18 First matching section 19 Second matching section 20 First feeding section 21 Second feeding section 30 Obstacle 40 Dielectric 41 Inductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

 第1のアンテナ素子15を第1,第2の分岐素子15A,15Bの分岐構造とし、第2のアンテナ素子16を第3,第4の分岐素子16A,16Bの分岐構造とし、第1,2のアンテナ素子15,16の間に周波数の増加に対してサセプタンスが増加する低結合回路17を設ける。また、第1,2のアンテナ素子15,16は、第1,2の周波数間と、第2,3の周波数間にアドミタンス行列のY12成分の共振を有し、第1,3の分岐素子15A,16Aは、第1,2の周波数間のアドミタンス行列のY12成分の共振電気長に対して略4分の1であり、第2,4の分岐素子15B,16Bは、第2,3の周波数間のアドミタンス行列のY12成分の共振電気長に対して略4分の1とする。

Description

アンテナ装置
 本発明は、マルチバンド対応の携帯端末に用いて好適なアンテナ装置に関する。
 近年の携帯端末では、大容量のデータ伝送方式に対応するため、複数のアンテナ素子の使用が検討されている。現セルラ方式のみでも、800MHz、1.5GHz、1.7GHz、2.0GHzが使用されていることもあって、マルチバンドに対応できるアンテナの開発が望まれている。小型の携帯端末に複数のアンテナ素子を搭載する場合、アンテナ素子間の結合劣化が生じないように、アンテナ素子間で高いアイソレーションを確保する必要がある。特に、アンテナ素子間の結合劣化が生じないような対策を施しても、携帯端末を手で保持したときに(すなわち手保持状態にあるときに)アンテナ効率が劣化するようでは意味を成さないため、そのような場合でもアンテナ効率の劣化が少ない低結合方式が求められる。
 特許文献1には、2つのアンテナ素子の間にフィルタ等の接合素子を介挿して低結合化する技術が開示されている。また、非特許文献1には、1つの共振周波数を持つ2素子モノポールアンテナに2個の集中定数を設けて、最大2周波数で低結合化する技術が開示されている。
米国特許出願公開第2010/0265146号明細書
信学技報,vol.110, no.347, AP2010-118, pp.1-5 「近接配置した2素子低結合アンテナのアンテナ効率改善」
 しかしながら、上述した特許文献1で開示された技術では、1周波数でしか低結合化することができず、多周波数に対応させるようにすると、(1)スイッチやフィルタの追加による回路規模の増大、(2)切替方式の場合、多周波数の同時使用ができない、という課題があり、さらに、手保持状態など、低結合化時にアンテナの周辺に障害物があった場合のアンテナ効率への影響が考慮されていない。
 また、上述した非特許文献1で開示された技術では、2周波数で低結合化ができるものの、3周波数に対応させる場合、スイッチ等の切替手段で低結合化回路を切替える必要があり、回路規模が増大するという課題がある。
 本発明は、係る事情に鑑みてなされたものであり、回路規模が増大することなく3周波数に対応でき、しかも障害物によるアンテナ効率劣化の少ないアンテナ装置を提供することを目的とする。
 本発明のアンテナ装置は、グランドパターンを有する回路基板と、導電性金属で構成され、第1の分岐素子と、前記第1の分岐素子より電気長の短い第2の分岐素子を有する第1のアンテナ素子と、導電性金属で構成され、第3の分岐素子と、前記第3の分岐素子より電気長の短い第4の分岐素子を有する第2のアンテナ素子と、を備え、前記第1のアンテナ素子及び前記第2のアンテナ素子は、前記回路基板のグランドパターンと所定の間隔を隔てて互いに近接して配置されるとともに、前記回路基板に配置される第1の給電部及び第2の給電部に第1の整合部及び第2の整合部を介してそれぞれ電気的に接続され、前記第1のアンテナ素子の一部と前記第2のアンテナ素子の一部、又は前記第1の整合部と前記第2の整合部、又は前記第1の給電部と前記第2の給電部を電気的に接続する複数の所望周波数に対応した低結合回路を有し、前記複数の所望周波数を低周波から高周波へ、第1の周波数、第2の周波数、第3の周波数とした場合、前記第1のアンテナ素子及び第2のアンテナ素子は、前記第1の周波数と前記第2の周波数間と、前記第2の周波数と前記第3の周波数間に、アドミタンス行列のY12成分の共振を有し、前記第1の分岐素子と前記第3の分岐素子は、前記第1の周波数と前記第2の周波数間の前記アドミタンス行列のY12成分の共振電気長に対して略4分の1であり、前記第2の分岐素子と前記第4の分岐素子は、前記第2の周波数と前記第3の周波数間の前記アドミタンス行列のY12成分の共振電気長に対して略4分の1である。
 上記構成によれば、第1,第2のアンテナ素子のそれぞれを分岐形状とするとともに、第1,第2のアンテナ素子を近接配置して、これらのアンテナ素子間又は給電点間に、周波数の増加に対してサセプタンスが増加する構成の低結合回路を設けたので、少ない部品数で低結合周波数を3周波数に拡張させることができる。従来の分岐のない1共振アンテナ素子では、1個の集中定数で2周波数が限界であったが、本発明では3周波数に対応させることができる。
 また、上記構成によれば、スイッチ等で回路定数を切替えることがないので、全周波数の同時使用が可能である。
 また、上記構成によれば、第1,第2の給電部における電流ピークが低結合回路部分に分散するので、ピークSAR(Specific Absorption Rate、比吸収率)を低減できる。
 また、上記構成によれば、低結合回路をアンテナ系中心に配置することで、周囲の影響を受け難くできる。
 上記構成において、前記第1の周波数、前記第2の周波数、前記第3の周波数で、前記アドミタンス行列のY12成分の実部が-30mS以上、+30mS以下の範囲にあり、かつ、前記アドミタンス行列のY12成分の虚部が、前記第1の周波数、前記第2の周波数、前記第3の周波数の順に増加する。
 上記構成によれば、3周波数で低結合化することができる。
 上記構成において、前記低結合回路は、前記第1の周波数、前記第2の周波数、前記第3の周波数で、前記アドミタンス行列のY12成分の虚部と同値となるサセプタンス値を有し、前記第1の給電部と前記第2の給電部間での電磁的結合を低減する機能を有する。
 上記構成によれば、3周波数で低結合化することができる。
 上記構成において、前記第1のアンテナ素子及び前記第2のアンテナ素子において、誘電体又は磁性体を装荷すること、素子端部又は内部にインダクタを挿入すること、メアンダ形状にすることのうち少なくともいずれか一手法を用いる。
 上記構成によれば、第1,第2のアンテナ素子の小型化を図ることができる。
 上記構成において、前記低結合回路は、インダクタ単体、キャパシタ単体、インダクタとキャパシタの並列回路、インダクタとキャパシタの並列回路と直列のインダクタ、インダクタとキャパシタの並列回路と直列のキャパシタ、インダクタとキャパシタの並列回路2つの直列接続のうちいずれか一回路構成により実現する。
 上記構成によれば、周波数に対してサセプタンスを増加させることができる。また、低結合回路は最低1個の部品で構成できるので、低結合回路を設けることによるコスト上昇を最小限に抑えることができる。
 本発明の携帯無線機は、前記アンテナ装置を搭載した。
 上記構成によれば、3周波数に対応できる携帯無線機を実現できる。
 本発明によれば、回路規模が増大することなく3周波数に対応でき、しかも障害物によるアンテナ効率劣化を少なくできる。
本発明の一実施の形態に係るアンテナ装置を示す概略構成図 図1のアンテナ装置に用いられるインダクタ単体とした低結合化回路のサセプタンスの周波数特性を示す図 図1のアンテナ装置に用いられるキャパシタ単体とした低結合化回路のサセプタンスの周波数特性を示す図 図1のアンテナ装置に用いられるインダクタとキャパシタの並列回路とした低結合化回路のサセプタンスの周波数特性を示す図 図1のアンテナ装置に用いられるインダクタとキャパシタの並列回路と直列のインダクタとした低結合化回路のサセプタンスの周波数特性を示す図 図1のアンテナ装置に用いられるインダクタとキャパシタの並列回路と直列のキャパシタとした低結合化回路のサセプタンスの周波数特性を示す図 図1のアンテナ装置に用いられるインダクタとキャパシタの並列回路2つの直列接続とした低結合化回路のサセプタンスの周波数特性を示す図 図1のアンテナ装置において、図4の低結合回路を用いた場合のアンテナ素子単体のアドミタンスと低結合回路のサセプタンスそれぞれの周波数特性を示す図 図8におけるアドミタンスをSパラメータで表した周波数特性を示す図 図1のアンテナ装置の第1,第2のアンテナ素子の等価回路及びインダクタとキャパシタの並列回路とした低結合回路の具体例を示す図 図10の具体例におけるSパラメータの周波数特性を示す図 図10の具体例におけるアンテナ効率の周波数特性を示す図 (a),(b)図1のアンテナ装置の電流分布を示す図 図1のアンテナ装置の第1,第2のアンテナ素子に誘電体(又は磁性体)を配置した例を示す図 図1のアンテナ装置の第1,第2のアンテナ素子の第1,第3の分岐素子のそれぞれの素子中にインダクタを介在させた例を示す図 図1のアンテナ装置の第1,第2のアンテナ素子の第1,第3の分岐素子のそれぞれをメアンダ形状にした例を示す図 図1のアンテナ装置の変形例(1)の概観を示す斜視図 図17の変形例(1)の第1,第2のアンテナ素子を示す展開図 図17の変形例(1)の第1,第2のアンテナ素子を示す斜視図 図17の変形例(1)におけるアンテナ素子単体のアドミタンスと低結合回路のサセプタンスそれぞれの周波数特性を示す図 図1のアンテナ装置の変形例(2)の概観を示す斜視図 図21の変形例(2)の第1,第2のアンテナ素子を示す展開図 図21の変形例(2)の第1,第2のアンテナ素子を示す斜視図 図21の変形例(2)におけるアンテナ素子単体のアドミタンスと低結合回路のサセプタンスそれぞれの周波数特性を示す図
 以下、本発明を実施するための好適な実施の形態について、図面を参照して詳細に説明する。
 図1は、本発明の一実施の形態に係るアンテナ装置を示す概略構成図である。同図において、本実施の形態のアンテナ装置1は、グランドパターン(図示略)を有し、第1,第2の無線回路部11,12が設けられた回路基板10と、分岐構造の第1のアンテナ素子15と、分岐構造の第2のアンテナ素子16と、第1のアンテナ素子15と第2のアンテナ素子16との間に設けられた低結合回路17と、第1,第2の整合部18,19と、第1,2の給電部20,21とを備える。
 第1のアンテナ素子15は、導電性金属で構成され、第1の分岐素子15Aと第1の分岐素子15Aより電気長の短い第2の分岐素子15Bとを有する。第2のアンテナ素子16は、導電性金属で構成され、第3の分岐素子16Aと、第3の分岐素子16Aより電気長の短い第4の分岐素子16Bとを有する。第1のアンテナ素子15及び第2のアンテナ素子16は、回路基板10のグランドパターン(図示略)と所定の間隔を隔てて互いに近接して配置されるとともに、回路基板10に配置された第1の給電部20及び第2の給電部21に第1の整合部18及び第2の整合部19を介してそれぞれ電気的に接続される。低結合回路17は、複数の所望周波数に対応し、第1のアンテナ素子15の基端部(一部)と第2のアンテナ素子16の基端部(一部)を電気的に接続する。
 第1のアンテナ素子15及び第2のアンテナ素子16は、複数の所望周波数を低周波から高周波へ、第1の周波数、第2の周波数、第3の周波数とした場合に、第1の周波数と第2の周波数間と、第2の周波数と第3の周波数間に、アドミタンス行列のY12成分の共振を有する。第1の分岐素子15Aと第3の分岐素子16Aは、第1の周波数と第2の周波数間のアドミタンス行列のY12成分の共振電気長に対して略4分の1となっており、第2の分岐素子15Bと第4の分岐素子16Bは、第2の周波数と第3の周波数間のアドミタンス行列のY12成分の共振電気長に対して略4分の1となっている。
 低結合回路17は、周波数増加に対しサセプタンスが増加する回路である。低結合回路17は、例えば、インダクタ単体、キャパシタ単体、インダクタとキャパシタの並列回路、インダクタとキャパシタの並列回路と直列のインダクタ、インダクタとキャパシタの並列回路と直列のキャパシタ、インダクタとキャパシタの並列回路2つの直列接続のうちいずれか一回路構成により実現される。
 図2~図7は、前記各回路構成における低結合回路17のサセプタンスの周波数特性を示す図である。すなわち、図2はインダクタ単体としたときのサセプタンスの周波数特性、図3はキャパシタ単体としたときのサセプタンスの周波数特性、図4はインダクタとキャパシタの並列回路としたときのサセプタンスの周波数特性、図5はインダクタとキャパシタの並列回路と直列のインダクタとしたときのサセプタンスの周波数特性、図6はインダクタとキャパシタの並列回路と直列のキャパシタとしたときのサセプタンスの周波数特性、図7はインダクタとキャパシタの並列回路2つの直列接続としたときのサセプタンスの周波数特性である。低結合回路17は、最低1個の部品(インダクタ単体又はキャパシタ単体)で構成できるので、これを設けることによるコスト上昇を最小限に抑えることができる。なお、低結合回路17は、第1の整合部18と第2の整合部19の間、又は、第1の給電部20と第2の給電部21の間を電気的に接続するようにしても構わない。
 図8は、図4に示す回路構成の低結合回路17を用いた場合のアンテナ素子単体のアドミタンスと低結合回路17のサセプタンスそれぞれの周波数特性を示す図である。同図において、アンテナ素子単体のアドミタンス行列のY12成分の実部(Re(Y12))の周波数特性を1点鎖線で示しており、アンテナ素子単体のアドミタンス行列のY12成分の虚部(Im(Y12))の周波数特性を2点鎖線で示している。また、低結合回路17のサセプタンスの周波数特性を実線で示している。この場合、前述した図4と同じ特性となる。所望の周波数において、アドミタンス行列のY12成分の実部Re(Y12)≒0、且つアドミタンス行列のY12成分の虚部Im(Y12)=低結合回路17のサセプタンス値と同じになる値を満たす条件のときに低結合化が可能となる。図8に示す例では、900MHz、1700MHz、2600MHzのときに前記条件を満たす。
 図9は、図8におけるアドミタンスをSパラメータで表した周波数特性を示す図である。同図において、整合を表すSパラメータ(S11)の周波数特性を1点鎖線で示しており、結合を表すSパラメータ(S12)の周波数特性を2点鎖線で示している。900MHz、1700MHz、2600MHzの3周波数のそれぞれに対して低結合がなされているのが分かる。
 アドミタンス行列のY12の2共振以上を発生させるためにはアンテナ素子単体では実現できないが、アンテナ素子を分岐構造とすることで、Y12の2共振以上を発生させることが可能となる。そのようなことから、本実施の形態のアンテナ装置1では、第1のアンテナ素子15及び第2のアンテナ素子16のそれぞれを分岐構造としている。本実施の形態のアンテナ装置1では、3周波数で低結合化するために以下のようにしている。
(1)低周波数から、低結合化する所望の周波数を第1の周波数、第2の周波数、第3の周波数とし、アンテナ素子単体で、第1の周波数と第2の周波数間にY12の第1の共振を有し、また第2の周波数と第3の周波数間にY12の第2の共振を有する。
(2)(1)の2共振を得るため、第1のアンテナ素子15と第2のアンテナ素子16のそれぞれに2つの分岐素子を設け、第1の分岐素子15Aと第3の分岐素子16Aは低周波側の共振を得るため、共振の電気長の略1/4波長とし、第2の分岐素子15Bと第4の分岐素子16Bは高周波側の共振を得るため、共振の電気長の略1/4波長とする。
(3)第1~第3の周波数で、アンテナ素子単体のアドミタンス行列のY12成分の実部Re(Y12)が、-30mS<Re(Y12)<+30mSであること。
(4)第1~第3の周波数の低周波から順に、アドミタンス行列のY12成分の虚部Im(Y12)が増加すること。
(5)インダクタ、キャパシタ、その組合せを用いた低結合回路17を、第1のアンテナ素子15と第2のアンテナ素子16の間に配置し、第1~第3の周波数でアンテナ素子単体のアドミタンス行列のY12成分の虚部Im(Y12)と同値となる低結合回路のサセプタンス値を得る。
 図10は、第1,第2のアンテナ素子15,16の等価回路及びインダクタとキャパシタの並列回路とした低結合回路17の具体例を示す図である。同図に示すように、第1,第2のアンテナ素子15,16の各々は、2つのインダクタ(5.6nH,5.1nH)と1つのキャパシタ(2.4pF)が直列接続されるとともに、直列接続された2つのインダクタの共通接続部分とグランドとの間にキャパシタ(0.6pF)が接続され、さらに、直列接続されたインダクタとキャパシタの共通接続部分とグランドとの間にインダクタ(8.2nH)が接続された構成となっている。インダクタとキャパシタが並列接続された構成の低結合回路17のインダクタは22nH、キャパシタは0.5pFである。
 図11は、図10の具体例におけるSパラメータの周波数特性を示す図である。同図において、整合を表すSパラメータ(S11)の周波数特性を1点鎖線で示しており、結合を表すSパラメータ(S12)の周波数特性を2点鎖線で示している。低結合回路17と第1,第2の整合部18,19の使用により、900MHz、1700MHz、2600MHzの3周波数でS11及びS12を-10dB以下にすることが可能となる。
 図12は、図10の具体例におけるアンテナ効率の周波数特性を示す図である。同図において、低結合回路17と第1,第2の整合部18,19を使用したときのアンテナ効率を実線で示しており、第1,第2の整合部18,19のみのときのアンテナ効率を点線で示している。低結合回路17を使用せず、第1,第2の整合部18,19のみを使用した場合と比較して、900MHz、1700MHz、2600MHzの3周波数においてアンテナ効率が向上しているのが分かる。すなわち、900MHzでは3.9dB、1700MHzでは0.7dB、2600MHzでは1.8dB向上している。
 図13(a),(b)は、本実施の形態のアンテナ装置1の電流分布を示す図である。同図の(a)は低結合回路17が有る場合の電流分布、同図の(b)は低結合回路17が無い場合の電流分布である。低結合回路17が有る場合、低結合回路17にも電流が流れる。低結合回路17が無い場合、第1,第2の給電部20,21に電流が集中するが、低結合回路17が有ると低結合回路17にも電流が流れる。すなわち、第1,第2の給電部20,21に集中していた電流が第1,第2の給電部20,21と低結合回路17に分散されるので、低結合回路17にも電流が流れる。低結合回路17にも電流が流れることでSARピーク値が低減し、アンテナ装置1を用いた携帯端末(図示略)を手で保持したときのアンテナ効率劣化を低く抑えることができるようになる。また、図13(a)に示すように、第1,第2のアンテナ素子15,16の近傍に障害物30が近接しても、電流のピークが中央の低結合回路17にもあるため、低結合対策を行っていない場合より、整合のずれ、アンテナ効率劣化が少ない。
 図14~図16は、本実施の形態のアンテナ装置1のアンテナ素子の小型化手法を示す図である。図14は、第1,第2のアンテナ素子15,16に誘電体(又は磁性体)40を配置した例を示す図である。誘電体(又は磁性体)40を配置することで、第1,第2のアンテナ素子15,16の物理長を短くできる。なお、電気長は変わらず略1/4λのままである。図15は、第1,第2のアンテナ素子15,16の第1,第3の分岐素子15A、16Aのそれぞれの素子中にインダクタ41を介在させた例を示す図である。図16は、第1,第2のアンテナ素子15,16の第1,第3の分岐素子15A、16Aのそれぞれをメアンダ形状にした例を示す図である。なお、図14~図16に示す各手法を組み合わせることも勿論可能である。
 このように本実施の形態のアンテナ装置1によれば、第1,第2のアンテナ素子15,16のそれぞれを分岐構造とするとともに、第1,第2のアンテナ素子15,16を近接配置して、これらのアンテナ素子15,16間に、周波数の増加に対してサセプタンスが増加する構成の低結合回路17を設け、さらに、第1のアンテナ素子15及び第2のアンテナ素子16は、第1の周波数と第2の周波数間と、第2の周波数と第3の周波数間に、アドミタンス行列のY12成分の共振を有し、第1の分岐素子15Aと第3の分岐素子16Aは、第1の周波数と第2の周波数間のアドミタンス行列のY12成分の共振電気長に対して略4分の1とし、第2の分岐素子15Bと第4の分岐素子16Bは、第2の周波数と第3の周波数間のアドミタンス行列のY12成分の共振電気長に対して略4分の1としたので、少ない部品数で低結合周波数を3周波数に拡張させることができる。
 また、本実施の形態のアンテナ装置1によれば、スイッチ等で回路定数を切替えることがないので、全周波数の同時使用が可能である。また、第1,第2の給電部20,21における電流ピークを低結合回路17部分に分散させることができるので、ピークSARを低減できる。また、低結合回路17をアンテナ系中心に配置したので、周囲の影響を受け難くできる。
 次に、本実施の形態のアンテナ装置1の変形例を挙げる。
 (変形例1)
 図17は、図1のアンテナ装置1の変形例(1)のアンテナ装置2の概観を示す斜視図である。また、図18は、図17の変形例(1)のアンテナ装置2の第1,第2のアンテナ素子を示す展開図である。また、図19は、図17の変形例(1)のアンテナ装置2の第1,第2のアンテナ素子を示す斜視図である。なお、図17~図19において、形状が異なるものの、図1のアンテナ装置1と共通する働きを持つ部分には同一の符号を付けている。
 変形例(1)のアンテナ装置2は、第1,第2のアンテナ素子15,16のそれぞれを断面略L字状の折返し構造としたしたものである。折返し構造の第1,第2のアンテナ素子15,16のそれぞれにスリット15C,16Cを形成して2分岐素子と等価にしている。また、2分岐素子と等価とした一方にスリット15C,16Cよりも短いスリット15D,16Dを形成して電気長を長くしている。すなわち、第1の分岐素子15Aに対応する部分に、スリット15Cよりも短いスリット15Dを形成して電気長を長くしている。同様に、第3の分岐素子16Aに対応する部分に、スリット16Cよりも短いスリット16Dを形成して電気長を長くしている。
 図20は、変形例(1)のアンテナ装置2におけるアンテナ素子単体のアドミタンスと低結合回路17のサセプタンスそれぞれの周波数特性を示す図である。同図において、低結合回路17には、図4に示すインダクタとキャパシタを並列接続した回路構成のものを用いている。図8と同様に、アンテナ素子単体のアドミタンス行列のY12成分の実部(Re(Y12))の周波数特性を1点鎖線で示しており、アンテナ素子単体のアドミタンス行列のY12成分の虚部(Im(Y12))の周波数特性を2点鎖線で示している。また、低結合回路17のサセプタンスの周波数特性を実線で示している。所望の周波数において、アドミタンス行列のY12成分の実部Re(Y12)≒0、且つアドミタンス行列のY12成分の虚部Im(Y12)=低結合回路17のサセプタンス値と同じになる値を満たす条件のときに低結合化が可能となる。変形例(1)のアンテナ装置2では、824MHz、1460MHz、2100MHzのときに前記条件を満たしている。
 (変形例2)
 図21は、図1のアンテナ装置1の変形例(2)のアンテナ装置3の概観を示す斜視図である。また、図22は、図21の変形例(2)のアンテナ装置3の第1,第2のアンテナ素子を示す展開図である。また、図23は、図21の変形例(2)のアンテナ装置3の第1,第2のアンテナ素子を示す斜視図である。なお、図21~図23において、形状が異なるものの、図1のアンテナ装置1と共通する働きを持つ部分には同一の符号を付けている。
 変形例(2)のアンテナ装置3は、第1,第2のアンテナ素子15,16のそれぞれを断面略コ字状の折返し構造とするとともに、第2,第4の分岐素子としてモノポール素子15B,16Bを追加することで、2分岐素子と等価にしている。第2,第4の分岐素子であるモノポール素子15B,16Bは、第1,第3の分岐素子15A,16Aから離間した位置に形成される。この場合の離間距離は、変形例(1)のアンテナ装置2におけるスリット15C,16Cと同程度である。第1,第3の分岐素子15A,16Aには、変形例(1)のアンテナ装置2と同程度のスリット15D,16Dが形成されており、電気長を長くしている。
 図24は、変形例(2)のアンテナ装置3におけるアンテナ素子単体のアドミタンスと低結合回路17のサセプタンスそれぞれの周波数特性を示す図である。同図において、低結合回路17には、図5に示すインダクタとキャパシタの並列回路にインダクタを直列接続した回路構成のものを用いている。図8と同様に、アンテナ素子単体のアドミタンス行列のY12成分の実部(Re(Y12))の周波数特性を1点鎖線で示しており、アンテナ素子単体のアドミタンス行列のY12成分の虚部(Im(Y12))の周波数特性を2点鎖線で示している。また、低結合回路17のサセプタンスの周波数特性を実線で示している。所望の周波数において、アドミタンス行列のY12成分の実部Re(Y12)≒0、且つアドミタンス行列のY12成分の虚部Im(Y12)=低結合回路17のサセプタンス値と同じになる値を満たす条件のときに低結合化が可能となる。変形例(2)のアンテナ装置3では、840MHz、1550MHz、2100MHzのときに前記条件を満たしている。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年5月19日出願の日本特許出願(特願2011-112274)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、回路規模が増大することなく3周波数に対応でき、しかも障害物によるアンテナ効率劣化が少ないといった効果を有し、携帯端末などへの適用が可能である。
 1,2,3 アンテナ装置
 10 回路基板
 11 第1無線回路部
 12 第2無線回路部
 15 第1のアンテナ素子
 15A 第1の分岐素子
 15B 第2の分岐素子(モノポール素子)
 15C,15D スリット
 16 第2のアンテナ素子
 16A 第3の分岐素子
 16B 第4の分岐素子(モノポール素子)
 16C,16D スリット
 17 低結合回路
 18 第1の整合部
 19 第2の整合部
 20 第1の給電部
 21 第2の給電部
 30 障害物
 40 誘電体
 41 インダクタ

Claims (6)

  1.  グランドパターンを有する回路基板と、
     導電性金属で構成され、第1の分岐素子と、前記第1の分岐素子より電気長の短い第2の分岐素子を有する第1のアンテナ素子と、
     導電性金属で構成され、第3の分岐素子と、前記第3の分岐素子より電気長の短い第4の分岐素子を有する第2のアンテナ素子と、を備え、
     前記第1のアンテナ素子及び前記第2のアンテナ素子は、前記回路基板のグランドパターンと所定の間隔を隔てて互いに近接して配置されるとともに、前記回路基板に配置される第1の給電部及び第2の給電部に第1の整合部及び第2の整合部を介してそれぞれ電気的に接続され、
     前記第1のアンテナ素子の一部と前記第2のアンテナ素子の一部、又は前記第1の整合部と前記第2の整合部、又は前記第1の給電部と前記第2の給電部を電気的に接続する複数の所望周波数に対応した低結合回路を有し、
     前記複数の所望周波数を低周波から高周波へ、第1の周波数、第2の周波数、第3の周波数とした場合、
     前記第1のアンテナ素子及び第2のアンテナ素子は、前記第1の周波数と前記第2の周波数間と、前記第2の周波数と前記第3の周波数間に、アドミタンス行列のY12成分の共振を有し、
     前記第1の分岐素子と前記第3の分岐素子は、前記第1の周波数と前記第2の周波数間の前記アドミタンス行列のY12成分の共振電気長に対して略4分の1であり、
     前記第2の分岐素子と前記第4の分岐素子は、前記第2の周波数と前記第3の周波数間の前記アドミタンス行列のY12成分の共振電気長に対して略4分の1であることを特徴とするアンテナ装置。
  2.  前記第1の周波数、前記第2の周波数、前記第3の周波数で、前記アドミタンス行列のY12成分の実部が-30mS以上、+30mS以下の範囲にあり、
     かつ、前記アドミタンス行列のY12成分の虚部が、前記第1の周波数、前記第2の周波数、前記第3の周波数の順に増加することを特徴とする請求項1に記載のアンテナ装置。
  3.  前記低結合回路は、前記第1の周波数、前記第2の周波数、前記第3の周波数で、前記アドミタンス行列のY12成分の虚部と同値となるサセプタンス値を有し、
     前記第1の給電部と前記第2の給電部間での電磁的結合を低減する機能を有することを特徴とする請求項1又は請求項2に記載のアンテナ装置。
  4.  前記第1のアンテナ素子及び前記第2のアンテナ素子において、誘電体又は磁性体を装荷すること、素子端部又は内部にインダクタを挿入すること、メアンダ形状にすることのうち少なくともいずれか一手法を用いることを特徴とする請求項1乃至請求項3のいずれか一項に記載のアンテナ装置。
  5.  前記低結合回路は、インダクタ単体、キャパシタ単体、インダクタとキャパシタの並列回路、インダクタとキャパシタの並列回路と直列のインダクタ、インダクタとキャパシタの並列回路と直列のキャパシタ、インダクタとキャパシタの並列回路2つの直列接続のうちいずれか一回路構成により実現することを特徴とする請求項1乃至請求項4のいずれか一項に記載のアンテナ装置。
  6.  請求項1乃至請求項5のいずれか一項に記載のアンテナ装置を搭載した携帯無線機。
PCT/JP2012/003213 2011-05-19 2012-05-16 アンテナ装置 WO2012157274A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/821,368 US9001000B2 (en) 2011-05-19 2012-05-16 Antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011112274A JP5511089B2 (ja) 2011-05-19 2011-05-19 アンテナ装置
JP2011-112274 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012157274A1 true WO2012157274A1 (ja) 2012-11-22

Family

ID=47176623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003213 WO2012157274A1 (ja) 2011-05-19 2012-05-16 アンテナ装置

Country Status (3)

Country Link
US (1) US9001000B2 (ja)
JP (1) JP5511089B2 (ja)
WO (1) WO2012157274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103371A (zh) * 2012-12-06 2015-11-25 微软技术许可有限责任公司 可重新配置多带天线解耦网络
CN106129627A (zh) * 2016-08-15 2016-11-16 广东欧珀移动通信有限公司 天线装置和电子终端
WO2020178897A1 (ja) * 2019-03-01 2020-09-10 三菱電機株式会社 アンテナ装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042525A1 (en) * 2012-03-15 2015-02-12 Ntt Docomo, Inc. Antenna device and wireless communication terminal
JP5983769B2 (ja) * 2012-12-20 2016-09-06 株式会社村田製作所 マルチバンド用アンテナ
JPWO2014125832A1 (ja) * 2013-02-18 2017-02-02 日本電気株式会社 デュアルバンドアンテナ装置
US9893427B2 (en) * 2013-03-14 2018-02-13 Ethertronics, Inc. Antenna-like matching component
CN104300211B (zh) * 2013-07-17 2019-08-30 中兴通讯股份有限公司 一种mimo天线、终端及其提高隔离度的方法
TW201511407A (zh) * 2013-09-05 2015-03-16 Quanta Comp Inc 天線模組
US10205244B2 (en) 2013-12-19 2019-02-12 Intel IP Corporation Platform independent antenna
JP5965036B1 (ja) * 2015-07-17 2016-08-03 Necプラットフォームズ株式会社 アンテナ、無線機、装着装置、および充電装置
KR102506711B1 (ko) 2015-11-02 2023-03-08 삼성전자주식회사 안테나 구조 및 이를 포함하는 전자 장치
US10431891B2 (en) * 2015-12-24 2019-10-01 Intel IP Corporation Antenna arrangement
US10615486B2 (en) 2017-06-28 2020-04-07 Intel IP Corporation Antenna system
CN115117599B (zh) * 2021-03-19 2023-11-28 北京小米移动软件有限公司 天线结构和电子设备
JP7184152B1 (ja) 2021-12-23 2022-12-06 栗田工業株式会社 混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102143A1 (ja) * 2010-02-19 2011-08-25 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末
WO2011142135A1 (ja) * 2010-05-13 2011-11-17 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043196B1 (en) * 2006-07-13 2011-11-16 Murata Manufacturing Co. Ltd. Wireless communication apparatus
US8866691B2 (en) 2007-04-20 2014-10-21 Skycross, Inc. Multimode antenna structure
US7688273B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
JP2012513731A (ja) * 2008-12-23 2012-06-14 スカイクロス, インク. マルチポートアンテナ構造
US8055216B2 (en) * 2009-03-27 2011-11-08 Sony Ericsson Mobile Communications Ab Antenna matching for MIMO transceivers
JP2012109875A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd アンテナ装置及び無線通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102143A1 (ja) * 2010-02-19 2011-08-25 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末
WO2011142135A1 (ja) * 2010-05-13 2011-11-17 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOYUKI ENDO ET AL.: "An Array Antenna for MIMO System with a Decoupling Network Using Bridge Susceptances", IEICE TECHNICAL REPORT, vol. 110, no. 446, 24 February 2011 (2011-02-24), pages 43 - 48 *
SHIN-CHANG CHEN ET AL.: "A Decoupling Technique for Increasing the Port Isolation Between Two Strongly Coupled Antennas", IEEE TRANS. ANTENNAS AND PROPAGATION, vol. 56, no. 12, December 2008 (2008-12-01), pages 3650 - 3658 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103371A (zh) * 2012-12-06 2015-11-25 微软技术许可有限责任公司 可重新配置多带天线解耦网络
CN105103371B (zh) * 2012-12-06 2018-11-09 微软技术许可有限责任公司 可重新配置多带天线解耦网络
CN106129627A (zh) * 2016-08-15 2016-11-16 广东欧珀移动通信有限公司 天线装置和电子终端
CN106129627B (zh) * 2016-08-15 2018-06-19 广东欧珀移动通信有限公司 天线装置和电子终端
WO2020178897A1 (ja) * 2019-03-01 2020-09-10 三菱電機株式会社 アンテナ装置
JPWO2020178897A1 (ja) * 2019-03-01 2021-06-10 三菱電機株式会社 アンテナ装置

Also Published As

Publication number Publication date
US20130162497A1 (en) 2013-06-27
JP5511089B2 (ja) 2014-06-04
JP2012244390A (ja) 2012-12-10
US9001000B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
JP5511089B2 (ja) アンテナ装置
JP6015830B2 (ja) アンテナ装置および電子機器
JP4414437B2 (ja) 給電結合部と接地面結合部との間に電流値ゼロの部分を含む平面逆f字型アンテナおよび関連する通信装置
US7274340B2 (en) Quad-band coupling element antenna structure
CN102684719B (zh) 手持式装置
US7804457B2 (en) Multi-band antenna with inductor and/or capacitor
CN111029729A (zh) 天线组件及电子设备
JP2007081712A (ja) 携帯無線機およびアンテナ装置
CN101779332A (zh) 天线装置及便携式无线设备
CN102318138A (zh) 天线装置、印刷电路板、便携式电子设备和变换工具包
US20230216196A1 (en) Multi-band antenna and mobile terminal
US9385425B2 (en) Antenna device
US20130285875A1 (en) Frequency-variable circuit and multi-band antenna device
US9054426B2 (en) Radio apparatus and antenna device
WO2016186091A1 (ja) アンテナ装置および電子機器
US10374311B2 (en) Antenna for a portable communication device
JPWO2005004276A1 (ja) 携帯無線機
CN103155275A (zh) 天线装置和方法
JP3981678B2 (ja) 自己補対アンテナ装置
FI114260B (fi) Radiolaitteen modulaarinen kytkentärakenne ja kannettava radiolaite
Yamaura et al. A Quad-Band Branched Monopole Antenna with Filters Suppressing Higher-Order Modes
JP2014072874A (ja) アンテナおよび携帯通信装置
JP6048265B2 (ja) アンテナ装置
Kashiwagi et al. Dual-band bent-folded-monopole antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786291

Country of ref document: EP

Kind code of ref document: A1