WO2012156104A1 - Chemise de refroidissement pour moteur électrique - Google Patents

Chemise de refroidissement pour moteur électrique Download PDF

Info

Publication number
WO2012156104A1
WO2012156104A1 PCT/EP2012/051790 EP2012051790W WO2012156104A1 WO 2012156104 A1 WO2012156104 A1 WO 2012156104A1 EP 2012051790 W EP2012051790 W EP 2012051790W WO 2012156104 A1 WO2012156104 A1 WO 2012156104A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
cooling jacket
section
helical line
electric motor
Prior art date
Application number
PCT/EP2012/051790
Other languages
German (de)
English (en)
Inventor
Thorsten SCHUBERT
Thomas Mehlis
Christian Witt
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2012156104A1 publication Critical patent/WO2012156104A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the invention relates to a cooling jacket for cooling an electric motor having a coolant inlet, a coolant outlet and a helical conduit, wherein the helical conduit is provided to at least partially enclose the electric motor to be cooled and to guide a coolant from the coolant inlet to the coolant outlet.
  • the object of the invention is therefore to optimize the cooling capacity of a cooling jacket based on a helical line with regard to the temperature gradient, that is to achieve a required cooling capacity as independently as possible from the heat already absorbed by the coolant.
  • a wheel bearing unit of the type mentioned above in that a flow cross-section of the helical line is variable at least on a portion of the helical line in the flow direction of the coolant.
  • the flow area is the area on which the flow direction is vertical and which is circumferentially bounded by the conduit.
  • a hollow cylindrical cooling jacket with a spiral-shaped line as a special case of a helical line, the flow cross-section of a portion of the line is in the radial plane, in which the helical axis is located, to which the hollow-cylindrical cooling jacket is arranged concentrically in this case.
  • a helical conduit is a waveguide for a fluid that winds around a helix axis.
  • the helical line is formed mainly by a hollow cylindrical cooling jacket having groove-like recesses in the radial direction, at least partially the helical Forming the line.
  • the helical line to the waveguide is completed by the groove-like recesses are covered radially.
  • the electric motor is disposed within the helical line, or is at least partially covered by this. The same applies to the cooling jacket itself.
  • the helical line has a coolant inlet and a coolant outlet, whereby the flow direction of the coolant, namely from the coolant inlet to the coolant outlet, is fixed.
  • a portion of the helical conduit may be selected from any two points in the helical conduit.
  • a meaningful division of the cuts can be selected based on complete circumferential cycles.
  • a section could be defined by exactly one or more circumferential runs of the coolant. In this way, the helical line is subdivided into a certain number of sections.
  • the flow cross-section of the nozzle-like line changes continuously at least within such a section.
  • a change in the flow cross-section can be caused for example by a change in the axial width, wherein the radial thickness of the helical line remains constant. Since the heat flow from the electric motor into the heat conduction-coupled cooling jacket takes place in the radial direction, an axially distributed helical line offers a larger heat absorption area.
  • a temperature gradient is the temperature difference in relation to a corresponding distance.
  • the corresponding distance is understood to be the distance from the heat source to the corresponding section of the helical line, the temperature difference being formed by the temperature of the heat source and the local temperature of the coolant in the section of the helical line.
  • the helical line essentially forms a cooling spiral, which can be arranged concentrically with respect to a helix axis.
  • the base of the cooling jacket, or the helical line must not necessarily be circular, but may also be elliptical or almost square, but offers a circular base, since a helical formation of the helical line is easy to produce due to the high degree of symmetry and saves space.
  • the cooling jacket can be covered by means of a hollow-cylindrical or cup-like cover, the cover at least partially delimiting the helical line, in particular in the radial direction, relative to the turning axis.
  • a shape of the lid allows simple shapes and a low number of components, which in turn allows low production costs. It is particularly advantageous if the lid can equally limit several sections of the helical line.
  • at least the coolant inlet or the coolant outlet is arranged on one axial side of the cooling jacket.
  • the cooling jacket has two axial sides which form an opening in the direction of the helix axis.
  • the coolant inlet and the coolant outlet are arranged on the same axial side, so that a supply of coolant, for example by hose, has to take place only from one side.
  • the section extends from the coolant inlet to the coolant outlet.
  • the changes the flow area in the same manner can change from the coolant inlet to the coolant outlet.
  • the axial width of the helical line per revolution expands by a fixed value.
  • a flow cross section of the coolant outlet remains constant Millimeters in radial thickness and 35 millimeters in axial width.
  • the flow cross-section of the section changes continuously in the flow direction. Since normally the absorption of the amount of heat does not occur abruptly, but continuously precipitates into coolant, it is also useful to continuously design the changes in the flow cross-section corresponding to the heat quantity increase in the coolant. A deviation from the continuous changes is given when the electric motor is not to be regarded as a homogeneous heat source, but has several points that have different temperatures during operation. In this case, the flow cross-section can be adapted according to the temperatures to be expected so that at higher temperatures, a larger amount of coolant is available for heat absorption.
  • the flow cross section of the section in the flow direction changes abruptly, for example, if a better mixing of the coolant is to be achieved, or a particularly hot point of the electric motor must be cooled.
  • the flow cross-section of the section in the flow direction must be made larger or smaller.
  • the helical line has two or more sections with the flow direction variable flow cross-section. It may well be that parts of the helical line have no cooling function, but only forward the coolant to other sections, the a cooling are provided. In the non-cooling sections, flow area changes for cooling optimization are not required, but may still vary to reduce the refrigerant pressure.
  • a cooling jacket according to the invention can be used in a wheel hub motor, since these electric motors have a cylindrical shape due to their symmetry relationships. But also in conjunction with other electric motors whose stator often provide a cylindrical outer shape, the cooling jacket according to the invention can be used.
  • central drives which are intended to drive several vehicles in vehicles, with optionally a transmission between the wheel and the electric motor designed as a central drive is interposed.
  • Fig. 1 shows a first embodiment of a cooling jacket, and n second embodiment of a cooling jacket.
  • Fig. 1 shows a first embodiment of a cooling jacket 20, in which an electric motor or a part thereof can be arranged.
  • a corresponding heat coupling is provided, for example Air gaps or similar poorly conductive zones avoids.
  • the coolant inlet 21 has the smallest flow cross-section of the helical line 23, which ends with the coolant outlet 22 and is formed in this embodiment as a spiral-shaped line 23.
  • the coolant outlet 22 has the largest flow cross-section.
  • the cooling jacket 20 is provided for an electric motor which has a substantially homogeneous heat output in the axial direction along the turning axis S.
  • the temperature of the coolant is lowest at the coolant inlet 21 and increases to the same extent as the width of the flow cross-section increases. Due to the greater axial width, the temperature gradient that is greatest at the coolant inlet 21 and smallest at the coolant outlet 22 can be compensated.
  • the cooling function can be further optimized by the axial distances of the sections of the helical line 23 are selected from each other accordingly. For example, it is conceivable that in the area of the coolant inlet 21 the sections are spaced further apart from each other than in the vicinity of the coolant outlet 22. Thus, the cooling capacity in the vicinity of the coolant inlet 21 is reduced in comparison to the cooling capacity in the vicinity of the coolant outlet 22 and can continue to compensate for the different temperature gradients. The result is uniform cooling of the electric motor over the entire cooling section.
  • the required hydraulic power for the coolant flow can be reduced, since the pressure losses occurring, in particular in the case of an ner continuous change of the flow area, can be minimized.
  • FIG. 2 shows a second exemplary embodiment of a cooling jacket 10.
  • the cooling jacket 10 has a total of five sections, which are fixed by means of a reference cut A through the helical line 13 in a radial plane to the helix axis S.
  • the first section begins at the not shown coolant inlet to the flow cross section A4.
  • the second section begins at the flow cross section A4 and ends after one revolution in the circumferential direction at the flow cross section A3.
  • the third section begins at the flow cross section A3 and also ends after one revolution at the flow cross section A2, etc.
  • the fifth and last section begins at the flow cross section A1 and ends at the coolant outlet, not shown.
  • the transport of the coolant in the axial direction can be regulated by a corresponding pitch (similar to a screw thread) with respect to the radial circumference B, which forms a concentric circle with respect to the helix axis.
  • the axial spacing of the sections with each other is constant in the second embodiment.
  • the invention relates to a cooling jacket for cooling an electric motor with a coolant inlet, a coolant outlet and a helical line, wherein the helical line is provided to at least partially cover the electric motor to be cooled and to direct a coolant from the coolant inlet to the coolant outlet.
  • a disadvantage of such cooling jackets is that the temperature gradient to the electric motor to be cooled decreases continuously along the line, with the result that the cooling power for inlet-near and for off-set components of the electric motor can clearly differ. Therefore, it is proposed to change the flow cross section of the helical line at least on a portion of the helical line in the flow direction of the coolant.
  • a decreasing heat capacity of the coolant can be compensated by a larger amount of coolant.
  • particularly waste heat-rich Parts of the electric motor to be cooled are cooled intensively despite a low temperature gradient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

L'invention concerne une chemise de refroidissement destinée à refroidir un moteur électrique, comprenant une entrée de réfrigérant, une sortie de réfrigérant et une conduite hélicoïdale. Cette conduite hélicoïdale est destinée à entourer au moins en partie le moteur électrique à refroidir et à acheminer un réfrigérant de l'entrée de réfrigérant à la sortie de réfrigérant. L'inconvénient de ce type de chemises de refroidissement réside dans le fait que le gradient de température diminue en continu le long de la conduite en direction du moteur électrique à refroidir, la puissance frigorifique pour les éléments constitutifs du moteur électrique près de l'entrée et éloignés de l'entrée pouvant être nettement différente. En conséquence, l'invention vise à modifier la section transversale d'écoulement de la conduite hélicoïdale au moins sur un tronçon de la conduite hélicoïdale dans la direction d'écoulement du réfrigérant. Une capacité calorifique dégressive du réfrigérant peut donc être compensée par une quantité plus importante de réfrigérant. Des points particulièrement riches en chaleur perdue du moteur électrique à refroidir peuvent donc être refroidis de manière intensive en dépit d'un faible gradient de température.
PCT/EP2012/051790 2011-05-19 2012-02-02 Chemise de refroidissement pour moteur électrique WO2012156104A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076140.3 2011-05-19
DE102011076140A DE102011076140A1 (de) 2011-05-19 2011-05-19 Kühlmantel für Elektromotor

Publications (1)

Publication Number Publication Date
WO2012156104A1 true WO2012156104A1 (fr) 2012-11-22

Family

ID=45592355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051790 WO2012156104A1 (fr) 2011-05-19 2012-02-02 Chemise de refroidissement pour moteur électrique

Country Status (2)

Country Link
DE (1) DE102011076140A1 (fr)
WO (1) WO2012156104A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009562A (zh) * 2013-02-26 2014-08-27 发那科株式会社 冷却套、具备冷却套的定子及具备冷却套的旋转电机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106456A1 (de) 2014-05-08 2015-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine für den Einsatz im KFZ-Bereich mit einer zylinderförmigen Gehäuseanordnung
DE102015101955A1 (de) * 2015-02-11 2016-08-11 Witzenmann Gmbh Vorrichtung und Verfahren zur Temperierung eines Körpers
DE102018109421A1 (de) * 2018-04-19 2019-10-24 Witzenmann Gmbh Temperiervorrichtung und Verfahren zum Temperieren eines Elektromoduls
CN109343603B (zh) * 2018-09-25 2020-11-13 广东天机机器人有限公司 工业机器人的电机温度自动补偿装置
DE102019109751A1 (de) * 2019-04-12 2020-10-15 Witzenmann Gmbh Temperiervorrichtung für ein Elektromodul und Elektromodul mit einer solchen
DE102019220059A1 (de) * 2019-12-18 2021-06-24 Volkswagen Aktiengesellschaft Gehäuse eines fluidgekühlten PKW-Elektromotors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568781A (en) * 1995-02-17 1996-10-29 The United States Of America As Represented By The Secretary Of The Navy Induced flow undersea vehicle motor cooling jacket
DE19950660A1 (de) * 1999-04-19 2000-10-26 Dietz Motoren Gmbh & Co Kg Kühlanordnung für einen Motor
DE102005052364A1 (de) 2005-11-02 2007-05-03 Siemens Ag Elektromotor
US20100085706A1 (en) * 2008-10-07 2010-04-08 Caterpillar Inc. Helical conduit enabled for casting inside a housing
DE102009051881A1 (de) * 2009-11-04 2011-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlvorrichtung für eine Elektromaschinenanordnung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10114321A1 (de) * 2001-03-23 2002-10-24 Siemens Ag Elektrische Maschine
DE10154156A1 (de) * 2001-11-03 2003-05-15 Bosch Gmbh Robert Luftgekühlte elektrische Maschine
DE102005058031A1 (de) * 2005-12-05 2007-06-14 Siemens Ag Elektrische Maschine mit einem Kühlmantel
DE102008043226A1 (de) * 2008-10-28 2010-04-29 Robert Bosch Gmbh Elektrische Maschine
DE102009001387A1 (de) * 2009-03-06 2010-09-09 Robert Bosch Gmbh Elektromaschine
DE102009014961B4 (de) * 2009-03-30 2022-06-15 Sew-Eurodrive Gmbh & Co Kg Elektromaschine, insbesondere fremderregte Synchronmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568781A (en) * 1995-02-17 1996-10-29 The United States Of America As Represented By The Secretary Of The Navy Induced flow undersea vehicle motor cooling jacket
DE19950660A1 (de) * 1999-04-19 2000-10-26 Dietz Motoren Gmbh & Co Kg Kühlanordnung für einen Motor
DE102005052364A1 (de) 2005-11-02 2007-05-03 Siemens Ag Elektromotor
US20100085706A1 (en) * 2008-10-07 2010-04-08 Caterpillar Inc. Helical conduit enabled for casting inside a housing
DE102009051881A1 (de) * 2009-11-04 2011-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlvorrichtung für eine Elektromaschinenanordnung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009562A (zh) * 2013-02-26 2014-08-27 发那科株式会社 冷却套、具备冷却套的定子及具备冷却套的旋转电机
JP2014166067A (ja) * 2013-02-26 2014-09-08 Fanuc Ltd 冷媒を通過させるための溝部を有する冷却ジャケット、冷却ジャケットを備えた固定子、および、冷却ジャケットを備えた回転電機
US9297273B2 (en) 2013-02-26 2016-03-29 Fanuc Corporation Cooling jacket including a groove unit through which cooling medium passes, stator including a cooling jacket, and rotary electric machine including a cooling jacket

Also Published As

Publication number Publication date
DE102011076140A1 (de) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2012156104A1 (fr) Chemise de refroidissement pour moteur électrique
WO2020043602A1 (fr) Dispositif de refroidissement, carter de moteur et unité de moteur
EP2705592B1 (fr) Chemise de refroidissmenet et pièce de déviation pour chemise de refroidissement
DE3403429C2 (fr)
DE19950660B4 (de) Kühlanordnung für einen Motor
DE102010025650A1 (de) Motorkühlvorrichtung
DE19921320C2 (de) Magnetheizgerät
EP1790933B1 (fr) Tubes Coaxiales, en particulier pour un échangeur de chaleur
DE102009044812A1 (de) Hohlkanäle
EP3056847B1 (fr) Dispositif et procede destines a la thermoregulation d'un corps
WO2018087017A1 (fr) Stator pour une machine électrique, en particulier d'un véhicule automobile, ainsi que machine électrique, en particulier pour un véhicule automobile
EP2720351B1 (fr) Dispositif de refroidissement d'une machine électrique au moyen de plusieurs serpentins de refroidissement
WO2013068066A2 (fr) Système d'étanchéité à bague glissante pourvu d'une pompe tesla
WO2021115895A1 (fr) Carter de stator destiné à une machine électrique, machine électrique destinée à un véhicule et véhicule
DE102018130516A1 (de) Rotorwelle
DE102015205141A1 (de) Fluidgekühlte Antriebseinheit für ein Kraftfahrzeug
DE102016218154A1 (de) Elektrische Antriebseinheit mit Kühlhülse
DE102012022024A1 (de) Getriebe mit Gehäuseteil
DE112013005801B4 (de) Kühlstruktur für Schleifringvorrichtung
EP3286824B1 (fr) Dissipateur thermique pour une machine électrique et procédé de fabrication
EP2175168A1 (fr) Convertisseur de couple hydrodynamique
DE102019206170A1 (de) Rotor eines Elektromotors sowie Verfahren zum Kühlen eines Rotors eines Elektromotors
EP3335302B1 (fr) Machine electrique dotee d'un systeme de refroidissement variable
DE102016201691A1 (de) Flüssigkeitsgekühlte elektrische Maschine für ein Kraftfahrzeug
DE102021122359B4 (de) Gehäuseanordnung und elektrische Maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12703754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12703754

Country of ref document: EP

Kind code of ref document: A1