WO2012155515A1 - 一种gsm系统中的信号校正方法及装置 - Google Patents

一种gsm系统中的信号校正方法及装置 Download PDF

Info

Publication number
WO2012155515A1
WO2012155515A1 PCT/CN2011/084393 CN2011084393W WO2012155515A1 WO 2012155515 A1 WO2012155515 A1 WO 2012155515A1 CN 2011084393 W CN2011084393 W CN 2011084393W WO 2012155515 A1 WO2012155515 A1 WO 2012155515A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
feedback
local minimum
signal
value
Prior art date
Application number
PCT/CN2011/084393
Other languages
English (en)
French (fr)
Inventor
李子荣
岳亮
朱登魁
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155515A1 publication Critical patent/WO2012155515A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2017Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes are non-linear, e.g. generalized and Gaussian minimum shift keying, tamed frequency modulation

Definitions

  • the present invention relates to communication technologies, and in particular, to a signal correction method and apparatus for a Global System of Mobile Communication (GSM) system.
  • GSM Global System of Mobile Communication
  • FIG 1 is a schematic diagram showing the relationship between an input signal and an output signal after nonlinear power amplification in the prior art.
  • DPD Digital Predistortion
  • FIG. 2 is a schematic diagram of prior art correction using DPD in the prior art.
  • the DPD technology is mainly based on the mathematical model.
  • the parameter estimation of the model needs to use the sample data actually extracted from the system. When the sample data distortion is serious, it will affect the performance of the data model. Therefore, it is necessary to select appropriate sample data to determine The operating point of the nonlinear power amplifier and the estimated model parameters.
  • sample data is generally determined based on the amplitude dependence of the signal time domain.
  • the embodiments of the present invention provide a signal correction method and device in a GSM system, which are used to solve the problem that the prior art cannot select better sample data in the GSM system, and the signal correction problem cannot be effectively corrected.
  • the embodiment of the invention provides a signal correction method in a global mobile communication GSM system, and the correction method includes:
  • a sample pair satisfying the set condition among the determined system delay estimates is selected as data for performing digital predistortion processing, and digital predistortion processing is performed based on the selected data, and the signal is corrected based on the result of the digital predistortion processing.
  • An embodiment of the present invention provides a signal correction apparatus in a global mobile communication GSM system, where the apparatus includes: a location determining module, an almost period determining module, a delay determining module, and a calibration module;
  • a position determining module configured to determine a set of sample pairs of the acquired forward digital signal sequence and the feedback digital signal sequence, and determine each local minimum in the set of sample pairs The forward digital signal sequence and the position of the feedback digital signal sequence;
  • An almost period determining module configured to determine, according to the determined position of the forward digital signal sequence and the feedback digital signal sequence of each local minimum in the set, determine a forward digital signal and feedback for each local minimum The almost periodic period of the digital signal;
  • a delay determination module configured to determine, for different delay values of the feedback signals, a sum of approximate period differences of the forward digital signal and the feedback digital signal where each local minimum occurs, and the minimum value of the sum value Corresponding delay value, determined as the system delay estimate of the feedback signal;
  • a correction module configured to select a sample pair that satisfies the set condition in the determined system delay estimation value, as data for performing digital predistortion processing, and performing digital predistortion processing according to the selected data, according to the result of the digital predistortion processing The signal is corrected.
  • Embodiments of the present invention provide a signal correction method and apparatus in a GSM system, which determines the occurrence of a forward digital signal sequence and a feedback digital signal sequence when each local minimum occurs in a set of sample pairs.
  • the approximate period of each local minimum position forward digital signal and the feedback digital signal, and the system delay estimation is selected according to the system delay estimation value corresponding to the sum of the approximate period differences of each forward digital signal and the feedback digital signal.
  • the sample pair whose value satisfies the set condition is corrected as data for performing digital predistortion processing.
  • the selection method of the digital predistortion training sample data based on the embodiment of the present invention can ensure the correctness of the selected sample data, control the error vector amplitude of the feedback signal, avoid phase distortion, and ensure the accuracy of the correction.
  • FIG. 1 shows the relationship between the input signal and the output signal after nonlinear power amplification in the prior art.
  • 2 is a schematic diagram of an advance correction of a signal by using a DPD in the prior art;
  • FIG. 3 is a signal correction process in a GSM system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a DPD processing principle according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a DPD process according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of performing DPD sample data selection according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a signal correction apparatus in a global mobile communication GSM system according to an embodiment of the present invention. detailed description
  • FIG. 3 is a schematic diagram of a signal correction process in a GSM system according to an embodiment of the present invention, where the process includes the following steps:
  • S301 Determine, according to a sample set of the obtained forward digital signal sequence and the model of the feedback digital signal sequence, determine a forward digital signal sequence and a feedback digital signal sequence when each local minimum occurs in the sample pair set. position.
  • the determining the location of the forward digital signal sequence and the feedback digital signal sequence when each local minimum occurs in the set of sample pairs includes: When l di l M + l is satisfied, it is a local maximum
  • J, value, ' is the position of the Z' local minimum in the set of pairs of samples
  • S302 Determine, according to the determined position of the forward digital signal sequence and the feedback digital signal sequence of each local minimum in the set, determine an almost periodic period of the forward digital signal and the feedback digital signal where each local minimum occurs. .
  • the determining an average period of the forward digital signal and the feedback digital signal of each local minimum value includes:
  • Tx fb where is the index of the minimum value and the approximate period of the forward digital signal, which is the approximate period of the feedback digital signal corresponding to the index of the smallest value.
  • S303 determining, according to delay values of different feedback signals, a sum of approximate period differences of the forward digital signal and the feedback digital signal where each local minimum occurs, and a delay value corresponding to the minimum value of the sum value, Determine the system delay estimate for the feedback signal.
  • Determining, by the delay value corresponding to the minimum value of the sum value, a system delay estimation value of the feedback signal comprising: determining, according to the system, a system delay estimation value, where ⁇ is
  • System time delay The value is the sum of the approximate period differences corresponding to each forward digital signal and the feedback digital signal.
  • S304 Select a sample pair that satisfies the set condition in the determined system delay estimation value, as data for performing DPD processing, and perform DPD processing according to the selected data, and correct the signal according to the result of the DPD processing.
  • Selecting the sample pairs of the determined system delay estimates that meet the set conditions, as the data for DPD processing includes: The choice meets _ ⁇ . ⁇ ⁇ sample pairs as DPD data processing, wherein ⁇ is a preset threshold value, ⁇ .
  • the system delay for the feedback signal calculated by other methods.
  • FIG. 4 is a schematic diagram of a DPD processing principle according to an embodiment of the present invention. After acquiring a digital intermediate frequency signal, DPD processing is performed on the digital intermediate frequency signal, and the processed signal is converted into a digital signal, and up-converting processing is performed, and then The converted digital signal is input to a power amplifier, and the output of the power amplifier is connected to a transmitting antenna, and an output signal of the power amplifier is sent to the transmitting antenna for transmission.
  • the power amplifier acquires a signal transmitted by the transmitting antenna, performs a power attenuation coefficient of 1/K, and down-converts the signal, and the processed signal is converted into an analog signal, and is used as a feedback signal of the DPD processing, and passes through the DPD, etc.
  • the correction process output is sent to the transmit antenna. From the forward signal to the feedback signal, the system has a delay, that is: the intermediate frequency signal at time t1, after feedback, at time t2
  • FIG. 5 is a schematic diagram of a DPD processing flow according to an embodiment of the present invention, where the DPD processing process includes: a DPD model, model parameter estimation, and signal error calculation.
  • the digital intermediate frequency signal is acquired, a part of the digital intermediate frequency signal is used as an input signal of the DPD model, and another part is used as an input signal for calculating the signal error, and the feedback signal is used as another input signal for calculating the signal error, and the output of the signal error calculation is output.
  • the signal is taken as the input signal of the analog parameter, and the output signal obtained by the analog parameter is taken as another input signal of the DPD model.
  • the output of the DPD model takes a negative value as an input signal of the adder, and a further part of the digital intermediate frequency signal acts as an adder. Another input signal, the output signal of the adder is sent to the analog to digital converter.
  • the training sample data can be effectively selected to ensure that the GSM system adopting the DPD technology can prevent phase distortion.
  • the baseband signal can be expressed as:
  • WO is an input function of a Gaussian filter, which is defined as follows:
  • the following is an example of a two-way GSM baseband intermediate frequency signal, wherein the intermediate frequency zeros of the two GSM baseband intermediate frequency signals are not necessarily the focus of the two frequency bands.
  • the instantaneous frequency of modulation is: d .5 ⁇ ⁇ X ( -b, (i) + b 2 (i))q(t- iT b ) + 2 ⁇ ⁇ ,
  • is a period envelope function.
  • N p is about:
  • the digital signal period ⁇ refers to: the distance from the valley peak to the valley peak, and accurately, the period should be an almost period.
  • FIG. 6 is a process of selecting DPD sample data according to an embodiment of the present invention, where the process includes the following steps:
  • the forward digital signal sequence includes: a digital intermediate frequency signal sequence, or a DPD processed digital intermediate frequency signal sequence.
  • the feedback signal sequence includes: a sequence of signals from the output of the power amplifier that is closest to the transmit antenna, or a sequence of signals that are processed into the DPD processing module.
  • S602 Determine, for the sample pair s formed by the acquired forward digital signal sequence and the model of the feedback digital signal sequence, determine a forward digital signal and a feedback digital signal when each local minimum occurs in the sample pair s. position.
  • the sample pair set s is ⁇ ("), ⁇ (") ⁇ , determining the position of the forward digital signal and the feedback digital signal when each sample minimum occurs in the sample pair S, ie: An index of each local minimum of the sample pair w' ⁇ ) ⁇ .
  • ⁇ ⁇ is a local minimum, where / ⁇ is The index of the sample to the first local minimum of S;
  • the first value is smaller than the previous first value, and is smaller than the previous value, which is the index of the minimum value.
  • S603 Determine, according to the determined position of the forward digital signal sequence and the feedback digital signal sequence of each local minimum in the set s, determine a forward digital signal and a feedback digital signal where each local minimum occurs. cycle.
  • Tx fb where is the index of the minimum value and the approximate period of the forward digital signal, which is the approximate period of the feedback digital signal corresponding to the index of the smallest value.
  • S604 determining a sum value of an almost periodic difference between a forward digital signal and a feedback digital signal of each local minimum value for a delay value of a different feedback signal, and a delay value corresponding to a minimum value of the sum value, Determine the system delay estimate for the feedback signal.
  • a sample sequence pair consisting of a sequence of forward digital signals and a sequence of feedback digital signals
  • is the estimated value of the system delay
  • P is the number of T occurrences of the local minimum, and the sum of the corresponding periodic difference corresponding to each forward digital signal and the feedback digital signal.
  • S605 Select a sample pair that satisfies the set condition among the determined system delay estimation values, as data for performing DPD processing.
  • the satisfaction setting condition means T. l ⁇ , where is the preset threshold, T . Is using other
  • the systematic delay of the feedback signal calculated by the method that is, the difference between the time delay estimated by the almost periodic period and the time delay calculated by other methods is within a certain range.
  • is the sampling frequency of the IF signal
  • is the frequency center of the two IF signals from the IF signal. the distance.
  • ⁇ , select [l, 3 , 4 , 5 , 7 , 8 , 10] a total of seven training samples; wherein, a training sample contains a sample sequence pair, that is: a training sample contains a sample pair.
  • the amplitude curve of the forward and feedback signals at 10MHz. As can be seen from the figure, the amplitude curve of the forward signal and the amplitude curve of the feedback signal are very close, and the distortion is small.
  • the horizontal axis represents discrete time
  • the vertical axis represents amplitude absolute value (modulo)
  • the forward data is represented by a broken line
  • the feedback data is represented by a solid line.
  • FIG. 8 is a schematic structural diagram of a signal correction apparatus in a global mobile communication GSM system according to an embodiment of the present invention, where the apparatus includes: a position determining module 81, configured to determine a forward digital signal sequence when each local minimum occurs in the set of sample pairs for a set of pairs of samples of the acquired forward digital signal sequence and the modulus of the feedback digital signal sequence Feedback of the position of the digital signal sequence;
  • a position determining module 81 configured to determine a forward digital signal sequence when each local minimum occurs in the set of sample pairs for a set of pairs of samples of the acquired forward digital signal sequence and the modulus of the feedback digital signal sequence Feedback of the position of the digital signal sequence;
  • An almost period determining module 82 configured to determine, according to the determined position of the forward digital signal sequence and the feedback digital signal sequence of each local minimum in the set of samples, determine a forward digital signal and each local minimum value The approximate period of the feedback digital signal;
  • the delay determining module 83 is configured to determine a sum value of an almost periodic difference between the forward digital signal and the feedback digital signal of each local minimum value for the delay values of the different feedback signals, and minimize the sum value The delay value corresponding to the value is determined as the system delay estimate of the feedback signal;
  • the correction module 84 is configured to select a sample pair that satisfies the set condition among the determined system delay estimation values, as data for performing DPD processing, and perform DPD processing according to the selected data, and correct the signal according to the result of the DPD processing.
  • the location determining module 81 is specifically configured to: When i)
  • the approximate period determining module 82 is specifically configured to: determine an average period of the forward digital signal and the feedback digital signal of each local minimum according to the determination, wherein an average period of the forward digital signal corresponding to the index of the minimum value , is the minimum period of the index ⁇ corresponding to the approximate period of the feedback digital signal.
  • the delay determining module 83 is specifically configured to: ,
  • the correction module 84 is specifically configured to: select to satisfy _T . l ⁇ sample pairs, as
  • the data processed by DPD where is the preset threshold, ⁇ .
  • the system delay for the feedback signal calculated by other methods.
  • Embodiments of the present invention provide a signal correction method and apparatus in a GSM system, which determines a position of a forward digital signal sequence and a feedback digital signal sequence when each local minimum occurs in a set of sample pairs, and determines each The minimum period of the forward digital signal and the approximate period of the feedback digital signal, and the determined system delay estimation is selected according to the system delay estimation value corresponding to the sum of the approximate period differences of each forward digital signal and the feedback digital signal.
  • a sample pair that satisfies the set condition among the values is corrected as data for performing DPD processing.
  • the selection method of the DPD training sample data based on the embodiment of the present invention can ensure the correctness of the selected sample data, control the error vector amplitude of the feedback signal, avoid phase distortion, and ensure the accuracy of the correction.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

一种 GSM系统中的信号校正方法及装置 技术领域
本发明涉及通讯技术, 尤其涉及一种全球移动通信 (GSM , Global System of Mobile communication ) 系统的信号校正方法及装置。 背景技术
图 1 为现有技术中经非线性功率放大后, 输入信号与输出信号之间的 关系示意图。 从图 1 中可以看出, 由于非线性功率放大器的非线性, 尤其 当非线性功率放大器的输出接近饱和区时, 信号失真严重, 特别是在信号 幅值较大的部分, 但是, 同时当非线性功率放大器工作在接近输出信号的 饱和区时, 工作效率较高。 因此, 需要减小非线性功率放大器的失真。 数 字预失真(DPD, Digital Predistortion )技术可以提前对信号进行校正, 减 少非线性功率放大器的失真, 从而提高基站的非线性功率放大器的效率。 图 2为现有技术中采用 DPD对信号进行提前校正的示意图, 在该图中, 输 入信号首先经过 DPD处理, 处理后的输出信号作为非线性功率放大器的输 入信号。 由于加入了 DPD处理, 在理想情况下, 输出信号 y为输入信号 X 的线性函数, 即y=kx, 其中 k为常数。
DPD技术主要基于数学模型, 该模型的参数估计需要使用从系统中实 际抽取的样本数据, 当样本数据失真比较严重时, 将会影响数据模型的性 能, 因此, 需要选择适当的样本数据, 从而确定非线性功率放大器的工作 点和估计模型参数。 现有技术中一般基于信号时域的幅度相关性, 确定样 本数据。
但是, 对于 GSM系统, 由于系统的信号具有等幅调制的特性, 仅仅依 靠时域的相关性, 很难辨识失真特别严重的数据, 从而无法选择出较佳的 样本数据, 导致无法有效的对信号提前校正, 非线性功率放大器的输出信 号失真较严重。 发明内容
有鉴于此, 本发明实施例提供一种 GSM 系统中的信号校正方法及装 置, 用以解决现有技术在 GSM系统中无法选择较佳的样本数据, 导致无法 有效对信号提前校正问题。
本发明实施例提供一种全球移动通信 GSM系统中的信号校正方法,该 校正方法包括:
针对获取的前向数字信号序列和反馈数字信号序列的模构成的样本对 集合, 确定所述样本对集合中出现每个局部最小值时的前向数字信号序列 和反馈数字信号序列的位置;
根据确定的所述样本对集合中出现每个局部最小值的前向数字信号序 列和反馈数字信号序列的位置, 确定出现每个局部最小值的前向数字信号 和反馈数字信号的概周期;
针对不同的反馈信号的时延值, 确定出现每个局部最小值的前向数字 信号和反馈数字信号的概周期差的和值, 将所述和值的最小值对应的时延 值, 确定为反馈信号的系统时延估计值;
选择确定的系统时延估计值中满足设定条件的样本对, 作为进行数字 预失真处理的数据, 并根据选择的数据进行数字预失真处理, 根据数字预 失真处理的结果为信号进行校正。
本发明实施例提供一种全球移动通信 GSM系统中的信号校正装置,该 装置包括: 位置确定模块、 概周期确定模块、 时延确定模块、 以及校正模 块; 其中,
位置确定模块, 用于针对获取的前向数字信号序列和反馈数字信号序 列的模构成的样本对集合, 确定所述样本对集合中出现每个局部最小值时 的前向数字信号序列和反馈数字信号序列的位置;
概周期确定模块, 用于根据确定的所述样本对集合中出现每个局部最 小值的前向数字信号序列和反馈数字信号序列的位置, 确定出现每个局部 最小值的前向数字信号和反馈数字信号的概周期;
时延确定模块, 用于针对不同的反馈信号的时延值, 确定出现每个局 部最小值的前向数字信号和反馈数字信号的概周期差的和值, 并将所述和 值的最小值对应的时延值, 确定为反馈信号的系统时延估计值;
校正模块, 用于选择确定的系统时延估计值中满足设定条件的样本对, 作为进行数字预失真处理的数据, 并根据选择的数据进行数字预失真处理, 根据数字预失真处理的结果为信号进行校正。
本发明实施例提供了一种 GSM系统中的信号校正方法及装置,该方法 通过确定样本对集合中出现每个局部最小值时的前向数字信号序列和反馈 数字信号序列的位置, 并确定出现每个局部最小值的位置前向数字信号和 反馈数字信号的概周期, 根据每个前向数字信号和反馈数字信号的概周期 差的和值对应的系统时延估计值, 选择系统时延估计值满足设定条件的样 本对作为进行数字预失真处理的数据, 从而进行校正。 采用基于本发明实 施例的数字预失真训练样本数据的选择方法, 可以保证选择的样本数据的 正确性, 控制反馈信号的误差向量幅度, 避免相位失真, 保证校正的准确 性。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一 部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发 明的不当限定。 在附图中:
图 1 为现有技术中经非线性功率放大后, 输入信号及输出信号间的关 图 2为现有技术中采用 DPD对信号进行提前校正的示意图; 图 3为本发明实施例提供的 GSM系统中的信号校正过程;
图 4为本发明实施例提供的 DPD处理原理示意图;
图 5为本发明实施例提供的 DPD处理流程示意图;
图 6为本发明实施例提供的进行 DPD样本数据选择的过程;
图 7为本发明实施例提供的校正方法, Λ = 184·32ΜΗζ,/。= 10ΜΗζ时, 前 向信号和反馈信号的幅度曲线;
图 8为本发明实施例提供的一种全球移动通信 GSM系统中的信号校正 装置结构示意图。 具体实施方式
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明实施例为了选择较佳的样本数据, 有效地对信号提前进行校正, 减小非线性功率放大器输出信号的失真,提供了一种 GSM系统中的信号校 正方法及装置。 图 3为本发明实施例提供的 GSM系统中的信号校正过程, 该过程包括以下步驟:
S301 : 针对获取的前向数字信号序列和反馈数字信号序列的模所构成 的样本对集合, 确定所述样本对集合中出现每个局部最小值时的前向数字 信号序列和反馈数字信号序列的位置。
这里, 所述确定所述样本对集合中出现每个局部最小值时的前向数字 信号序列和反馈数字信号序列的位置, 包括:
Figure imgf000006_0001
满足 l di l M + l 时, 则 为一个局部最
J、值, '为所述样本对集合中的第 Z '个局部最小值的位置, S302: 根据确定的所述样本对集合中出现每个局部最小值的前向数字 信号序列和反馈数字信号序列的位置, 确定出现每个局部最小值的前向数 字信号和反馈数字信号的概周期。
所述确定出现每个局部最小值的前向数字信号和反馈数字信号的概周 期, 包括:
Figure imgf000007_0001
根据 =κ ' , 确定出现每个局部最小值的前向数字信号和反馈数 字信号的概周期。
tx fb 其中, 为最小值的索引 对应的前向数字信号的概周期, 为最小 值的索引 对应的反馈数字信号的概周期。
S303: 针对不同的反馈信号的时延值, 确定出现每个局部最小值的前 向数字信号和反馈数字信号的概周期差的和值, 将所述和值的最小值对应 的时延值, 确定为反馈信号的系统时延估计值。
所述将所述和值的最小值对应的时延值, 确定为反馈信号的系统时延 估计值, 包括: 根据 , 确定系统时延估计值, 其中, ^为
系统时延估
Figure imgf000007_0002
计值, 为 Τ个出现局部最小值的个数, 对应的每 个前向数字信号和反馈数字信号对应的概周期差的和。
S304: 选择确定的系统时延估计值中满足设定条件的样本对, 作为进 行 DPD处理的数据, 并根据选择的数据进行 DPD处理, 根据 DPD处理的 结果为信号进行校正。
选择确定的系统时延估计值中满足设定条件的样本对, 作为进行 DPD 处理的数据, 包括: 选择满足 。Ι 的样本对, 作为进行 DPD处理的数据, 其中, ^为 预设的阈值, τ。为用其它方法计算的反馈信号的系统时延。
在该 GSM系统中的信号校正过程中, 较重要的是进行 DPD处理。 图 4为本发明实施例提供的 DPD处理原理示意图,当获取了数字中频信号后, 对该数字中频信号进行 DPD处理, 将处理后的信号转换为数字信号, 并进 行上变频处理, 之后将上变频后的数字信号输入到功率放大器, 该功率放 大器的输出与发射天线连接, 该功率放大器的输出信号送入发射天线发送。 同时, 该功率放大器获取该发射天线发射的信号, 对该信号进行 1/K的功 率衰减系数、以及下变频处理,处理后的信号转换为模拟信号,并作为 DPD 处理的反馈信号, 通过 DPD等校正处理输出到发射天线发送。 从前向信号 到反馈信号, 系统存在时延, 即: 时刻 tl的中频信号, 经反馈后在时刻 t2
( t2>tl )到达 DPD模块, 7 = _ 称为中频信号的系统时延。
图 5为本发明实施例提供的 DPD处理流程示意图, 在该 DPD处理流 程中包括: DPD模型、 模型参数求取、 以及信号误差计算。 当获取了数字 中频信号后, 该数字中频信号的一部分作为 DPD模型的一个输入信号, 另 一部分作为信号误差计算的输入信号, 并且反馈信号作为信号误差计算的 另一输入信号, 信号误差计算的输出信号作为模拟参数求取的输入信号, 模拟参数求取的输出信号作为 DPD模型的另一输入信号, DPD模型的输出 取负值作为加法器的一个输入信号, 数字中频信号的再一部分作为加法器 的另一输入信号, 加法器的输出信号发送到模数转换器。
采用本发明实施例中的 DPD技术中的训练样本选择方案, 可以有效地 选择训练样本数据, 保证采用 DPD技术的 GSM系统可以防止相位失真。
对于 GSM系统, 基带信号可以表示为下式:
Figure imgf000009_0001
q(t-iTb) = g(u)du
(1.1) 具体地, 在(i.i ) 式中, =1/2, r-48/(L3*107), ')表示第 '·个发 送的符号, 并且, 其中, g{t) = h{t)®rect (1.2)
@为卷积, 在(1.2) 式中, reciW定义如下:
Figure imgf000009_0002
另外, WO为高斯滤波器的输入函数, 其定义如下:
并且, (1.4) 式中, Δ Q3 (1.5)
Figure imgf000009_0003
下面以两路 GSM基带中频信号为例进行说明, 其中, 所述两路 GSM 基带中频信号的中频零点不一定在两个频段的重点。
所述两路中频信号的和为 ^O), 其中, sIF(t,b) = A-exp FYbx{i)q{t-iTb)-2 f0t
+A - ex π b2{i)q{t - iTb) + Ιπ/
:
从( 1.6
Figure imgf000009_0004
)式可以看出, 相当于:信号 = cos 0.5^F∑ (-^ (i) + b2 (i))q(t - iTb ) + 2π οΙ
调制, 调制的瞬时频率为: d .5πΗΡ X ( -b, (i) + b2(i))q(t- iTb ) + 2π ο,
( 1.7 )
Figure imgf000010_0001
才艮据(1.7 )式, 令 '·=ι , 当 + 全为 2时, 2 )存在最大值, 当 + ('·)全为 -2时, 存在最小值。 并且:
J
Figure imgf000010_0002
其中, erf0是误差函数 ( error function ), 因 it匕可 口,
7j ^ ^ f } f ^ f f
dt ( 1.9 ) 其中, Φ为 W对应的函数, 为两路中频信号距离中频信号频域中心 f 6 KHz
点的距离。 对于 GSM系统, ——― 4 , ^为一个周期的包络函数, 对于一个抽样频率为 的中频信号来说, 一般有 /()远大于 其数字信号 周期 Np约为:
Figure imgf000010_0003
其中, 数字信号周期^是指: 从谷峰到谷峰的距离, 准确来说, 该周 期应该为概周期。例如,在/s =184·32MHZ,/。=1()MHZ的配置下,一般情况下, 数字信号周期 在 18和 19个点之间, 由于是信号的模, 因此, 为 9 10 jOM^b^ + b^qit-iT,) 并且根据( 1.6 )式可知, ' 的相位由 '·=ι 确 定,并且在一个符号内连续变化;若 ^+ ≠(),则长度约 /4,对应 68() 个采样点, 变化緩慢, 若^ + ^^^, 则基本没有变化。
因此, 从上面分析可知, 由于信号的变化周期较短, 对于 GSM系统中 信号进行大幅度的削峰、 或不当的提升功放的工作点, 由于相位变化较緩 慢, 使得容量引入大量的失真, 造成信号性能的恶化。 而经实际数据分析, 信号失真后仍然表现出与原信号相似的波形, 反馈信号的误差向量幅度 ( error vector magnitude, EVM ) =1%, 相位会严重失真。
同时, ( 1.6)式为一个概周期函数,概周期函数经过功率放大的非线性 失真后仍然是概周期函数。 因此, 提出了本发明实施例中的信号校正方法, 在该信号校正方法中, 首先要进行 DPD样本数据的选择。
图 6为本发明实施例提供的进行 DPD样本数据选择的过程, 该过程包 括以下步驟:
S601: 针对前向数字信号序列 和反馈数字信号序列 ^("), 分别 求两个数字信号序列的模。
其中, 前向数字信号序列包括: 数字中频信号序列、 或经 DPD处理后 的数字中频信号序列。 反馈信号序列包括: 来自功率放大器输出端的、 最 接近发射天线的信号序列、 或经处理后接入 DPD处理模块的信号序列。
S602: 针对获取的前向数字信号序列和反馈数字信号序列的模所构成 的样本对集合 s, 确定所述样本对集合 s中出现每个局部最小值时的前向数 字信号和反馈数字信号的位置。 这里, 所述样本对集合 s为 { ("),^(")}, 确定所述样本对集合 S中出 现每个局部最小值时的前向数字信号和反馈数字信号的位置, 即: 确定所 述样本对集合 w'^ )}中每个局部最小值的索引。
Figure imgf000011_0001
满足(1.11)式时, 则 ι ι为一个局部最小值, 其中, / ^为 样本对 S第 个局部最小值的索引;
Figure imgf000012_0001
即: 第 个数值较其前的第 个数值小, 并且较其后的 个数值 也小时, 则 为最小值的索引。
S603 : 根据确定的所述样本对集合 s 中出现每个局部最小值的前向数 字信号序列和反馈数字信号序列的位置, 确定出现每个局部最小值的前向 数字信号和反馈数字信号的概周期。
即. ^ = ¾÷i -¾ ( 1 12 )
d
tx fb 其中, 为最小值的索引 对应的前向数字信号的概周期, 为最小 值的索引 对应的反馈数字信号的概周期。
S604: 针对不同的反馈信号的时延值, 确定出现每个局部最小值的前 向数字信号和反馈数字信号的概周期差的和值, 将所述和值的最小值对应 的时延值, 确定为反馈信号的系统时延估计值。
即: 对于由前向数字信号序列及反馈数字信号序列构成的样本序对
{χ;' (η ) , χ^ (η )} ^ τ是出现局部最小值的个数, 用下式求反馈信号的系统时延 估计值:
Figure imgf000012_0002
d
其中, ^为系统时延估计值, P 为 T个出现局部最小值的 个数, 对应的每个前向数字信号和反馈数字信号对应的概周期差的和。
S605 : 选择确定的系统时延估计值中满足设定条件的样本对, 作为进 行 DPD处理的数据。
该满足设定条件是指, T。l , 其中 是预设的阈值, T。是用其它 方法计算的反馈信号的系统时延, 即: 用概周期估计出来的时延估计与其 它方法计算出来的时延之差在一定范围内。 当确定的系统时延估计值满足 设定条件时, 将确定的系统时延估计值对应的样本序对, 作为确定的处理 的数据, 即作为训练样本。
下面以一个具体的例子进行说明, 中频信号符合 ( 1.6 ) 式, 且 s= 184.32MHz, 0=10MHz. 其中, Λ是中频信号的抽样频率, Λ是两路中频 信号离中频信号频域中心点的距离。 在发射 GSM信号时, 采集 10组前向 数字信号序列和反馈数字信号序列的中频数据, 每个数据为 8192点的数字 信号, 即
Figure imgf000013_0001
s=l, 2, ..., 10, 概周期一般不超过 20。
测定反馈信号时延 τ。=119, 阈值^ =5, 在(1.13)式中, c。=90,C = 50, 按照 ( 1.11 ) ~ ( 1.13 ) 式 , 假设求得 系 统 时延估计值 } = [120,127,116,118,123,113,119,120,110,122] , 根 据 | s- τ。|≤ , 选 出 = [l,34578,10]共七个训练样本; 其中, 一个训练样本包含一个样本序对, 即: 一个训练样本包含一个样本对。
设所有样本个数为 ^, ^内的样本个数为 若謂 < rL , 则射频的 功放工作点下调 IdBm, 务 M I N > rH , 则射频的功放工作点上调 IdBm, 这 里 为预设值。 上述过程可多次执行。
图 7为本发明实施例提供的校正方法, /s=l84.32MHz,/。=10MHz时, 前 向信号和反馈信号的幅度曲线。 从该图中可以看出, 前向信号的幅度曲线 和反馈信号的幅度曲线很接近, 失真较小。
其中, 横轴表示离散时间, 纵轴表示幅度绝对值(模), 前向数据采用 虚线表示, 反馈数据采用实线表示。
图 8为本发明实施例提供的一种全球移动通信 GSM系统中的信号校正 装置结构示意图, 所述装置包括: 位置确定模块 81 , 用于针对获取的前向数字信号序列和反馈数字信号 序列的模所构成的样本对集合, 确定所述样本对集合中出现每个局部最小 值时的前向数字信号序列和反馈数字信号序列的位置;
概周期确定模块 82, 用于根据确定的所述样本对集合中出现每个局部 最小值的前向数字信号序列和反馈数字信号序列的位置, 确定出现每个局 部最小值的前向数字信号和反馈数字信号的概周期;
时延确定模块 83, 用于针对不同的反馈信号的时延值, 确定出现每个 局部最小值的前向数字信号和反馈数字信号的概周期差的和值, 并将所述 和值的最小值对应的时延值, 确定为反馈信号的系统时延估计值;
校正模块 84, 用于选择确定的系统时延估计值中满足设定条件的样本 对, 作为进行 DPD处理的数据, 并根据选择的数据进行 DPD处理, 根据 DPD处理的结果为信号进行校正。 所 述位 置 确 定模块 81 , 具 体 用 于 : 当
Figure imgf000014_0001
满 足 i)|>| ^+^Μ^ 时, 则
Figure imgf000014_0002
为一个局部最小值, ^为所述 样本对集合中的第 个局部最小值的位置。
Figure imgf000014_0003
所述概周期确定模块 82, 具体用于: 根据 确定出现每个 局部最小值的前向数字信号和反馈数字信号的概周期, 其中, 为最小值 的索引 ^对应的前向数字信号的概周期, 为最小值的索引 ^对应的反馈 数字信号的概周期。 所述时延确定模块 83, 具体用于: 根据
Figure imgf000014_0004
T ,
确定系统时延估计值, 其中, ^为系统时延估计值, '=ι | " " 为丁个 出现局部最小值的个数, 对应的每个前向数字信号和反馈数字信号对应的 概周期差的和。
所述校正模块 84, 具体用于: 选择满足 _T。l 的样本对, 作为进行
DPD处理的数据, 其中, 为预设的阈值, τ。为用其它方法计算的反馈信 号的系统时延。
本发明实施例提供了一种 GSM系统中的信号校正方法及装置,该方法 通过确定样本对集合中出现每个局部最小值时的前向数字信号序列和反馈 数字信号序列的位置, 并确定每个最小值的位置前向数字信号和反馈数字 信号的概周期, 根据每个前向数字信号和反馈数字信号的概周期差的和值 对应的系统时延估计值, 选择确定的系统时延估计值中满足设定条件的样 本对, 作为进行 DPD处理的数据, 从而进行校正。 采用基于本发明实施例 的 DPD训练样本数据的选择方法, 可以保证选择的样本数据的正确性, 控 制反馈信号的误差向量幅度, 避免相位失真, 保证校正的准确性。
上述说明示出并描述了本发明的优选实施例, 但如前所述, 应当理解 本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所进行的 改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利要求的 保护范围内。

Claims

权利要求书
1、 一种全球移动通信 GSM系统中的信号校正方法, 其特征在于, 该 方法包括:
针对获取的前向数字信号序列和反馈数字信号序列的模构成的样本对 集合, 确定所述样本对集合中出现每个局部最小值时的前向数字信号序列 和反馈数字信号序列的位置;
根据确定的所述样本对集合中出现每个局部最小值的前向数字信号序 列和反馈数字信号序列的位置, 确定出现每个局部最小值的前向数字信号 和反馈数字信号的概周期;
针对不同的反馈信号的时延值, 确定出现每个局部最小值的前向数字 信号和反馈数字信号的概周期差的和值, 将所述和值的最小值对应的时延 值, 确定为反馈信号的系统时延估计值;
选择确定的系统时延估计值中满足设定条件的样本对, 作为进行数字 预失真处理的数据, 并根据选择的数据进行数字预失真处理, 根据数字预 失真处理的结果为信号进行校正。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定所述样本对集 合中出现每个局部最小值时的前向数字信号序列和反馈数字信号序列的位 置, 包括:
- i)|>| ( ,| ,+i)|>| ,)|时, 则 ( ·)|
Figure imgf000016_0001
为一个局部最 小值, '为所述样本对集合中的第 个局部最小值的位置。
3、 根据权利要求 2所述的方法, 其特征在于, 所述确定出现每个局部 最小值的前向数字信号和反馈数字信号的概周期, 包括:
Figure imgf000016_0002
根据 =k^ , 确定出现每个局部最小值的前向数字信号和反馈数 字信号的概周期; 其中, 为最小值的索引^对应的前向数字信号的概周 期, 为最小值的索引 ^对应的反馈数字信号的概周期。
4、 根据权利要求 1所述的方法, 其特征在于, 所述将和值的最小值对 应的时延值, 确定为反馈信号的系统时延估计值, 包括: 根据 , 确定系统时延估计值; 其中, ^为 系统时延估
Figure imgf000017_0001
计值, ' 为 T个出现局部最小值的个数, 对应的每 个前向数字信号和反馈数字信号对应的概周期差的和。
5、 根据权利要求 1所述的方法, 其特征在于, 所述选择确定的系统时 延估计值中满足设定条件的样本对, 作为进行数字预失真处理的数据, 包 括: 选择满足 _T。l 的样本对,作为进行数字预失真处理的数据; 其中,
^为预设的阈值, τ。为用其它方法计算的反馈信号的系统时延。
6、 一种全球移动通信 GSM系统中的信号校正装置, 其特征在于, 装 置包括: 位置确定模块、 概周期确定模块、 时延确定模块、 以及校正模块; 其中,
位置确定模块, 用于针对获取的前向数字信号序列和反馈数字信号序 列的模构成的样本对集合, 确定所述样本对集合中出现每个局部最小值时 的前向数字信号序列和反馈数字信号序列的位置;
概周期确定模块, 用于根据确定的所述样本对集合中出现每个局部最 小值的前向数字信号序列和反馈数字信号序列的位置, 确定出现每个局部 最小值的前向数字信号和反馈数字信号的概周期;
时延确定模块, 用于针对不同的反馈信号的时延值, 确定出现每个局 部最小值的前向数字信号和反馈数字信号的概周期差的和值, 并将所述和 值的最小值对应的时延值, 确定为反馈信号的系统时延估计值; 校正模块, 用于选择确定的系统时延估计值中满足设定条件的样本对, 作为进行数字预失真处理的数据, 并根据选择的数据进行数字预失真处理, 根据数字预失真处理的结果为信号进行校正。
7、 根据权利要求 6所述的装置, 其特征在于, 所述位置确定模块, 具 体用于: 当 满足 丄)1 ( ,l +1)l ( 时, 则 IUI为—个局 部最小值, ^为所述样本对集合中的第 个局部最小值的位置。
8、 根据权利要求 7所述的装置, 其特征在于, 所述概周期确定模块,
Figure imgf000018_0001
具体用于: 确定出现每个局部最小值的前向数字信号和 反馈数字信号的概周期; 其中, 为最小值的索引^对应的前向数字信号
fb ;
的概周期, 为最小值的索引 对应的反馈数字信号的概周期。
9、 根据权利要求 6所述的装置, 其特征在于, 所述时延确定模块, 具 体用于: 根据 确定系统时延估计值; 其中,
^为系统时延估
Figure imgf000018_0002
计值, 为 T个出现局部最小值的个数, 对应 的每个前向数字信号和反馈数字信号对应的概周期差的和。
10、 根据权利要求 6所述的装置, 其特征在于, 所述校正模块, 具体 用于: 选择满足 _T。l 的样本对, 作为进行数字预失真处理的数据; 其 中, 为预设的阈值, τ。为用其它方法计算的反馈信号的系统时延。
PCT/CN2011/084393 2011-05-17 2011-12-21 一种gsm系统中的信号校正方法及装置 WO2012155515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110127775.1 2011-05-17
CN201110127775.1A CN102790978B (zh) 2011-05-17 2011-05-17 一种gsm系统中的信号校正方法及装置

Publications (1)

Publication Number Publication Date
WO2012155515A1 true WO2012155515A1 (zh) 2012-11-22

Family

ID=47156258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084393 WO2012155515A1 (zh) 2011-05-17 2011-12-21 一种gsm系统中的信号校正方法及装置

Country Status (2)

Country Link
CN (1) CN102790978B (zh)
WO (1) WO2012155515A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888394A (zh) * 2012-12-20 2014-06-25 京信通信系统(中国)有限公司 数字预失真处理方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453450B (zh) * 2014-05-23 2019-05-10 华为技术有限公司 一种时延校正方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175061A (zh) * 2007-11-30 2008-05-07 北京北方烽火科技有限公司 一种ofdm发射机的自适应数字预失真方法和装置
CN101478514A (zh) * 2009-01-08 2009-07-08 福建邮科通信技术有限公司 一种实现数字功率预失真的方法
US20100254299A1 (en) * 2009-04-01 2010-10-07 Peter Kenington Radio system and a method for relaying packetized radio signals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662435A (zh) * 2009-09-24 2010-03-03 中兴通讯股份有限公司 数字预失真参数的获取、调整装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175061A (zh) * 2007-11-30 2008-05-07 北京北方烽火科技有限公司 一种ofdm发射机的自适应数字预失真方法和装置
CN101478514A (zh) * 2009-01-08 2009-07-08 福建邮科通信技术有限公司 一种实现数字功率预失真的方法
US20100254299A1 (en) * 2009-04-01 2010-10-07 Peter Kenington Radio system and a method for relaying packetized radio signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888394A (zh) * 2012-12-20 2014-06-25 京信通信系统(中国)有限公司 数字预失真处理方法和装置

Also Published As

Publication number Publication date
CN102790978A (zh) 2012-11-21
CN102790978B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
TWI516019B (zh) 通訊裝置及提高數位預失真線性化的方法
EP2947833B1 (en) Digital predistortion processing method and system
JP6542120B2 (ja) ワイヤレス通信システムにおける広帯域デジタルプリディストーションのために周波数が広く離間している信号を整合させるための方法及びシステム
CN104521203B (zh) 用于高频谱效率的通信的自适应非线性模型
US20060078065A1 (en) Digital pre-distortion technique using nonlinear filters
US8391808B2 (en) Method and system for estimating and compensating non-linear distortion in a transmitter using calibration
WO2016106719A1 (zh) 一种信号的削波处理方法和设备
WO2012163054A1 (zh) 一种微波预失真信号生成方法和装置
CN103856429A (zh) 基于混合间接学习算法的自适应预失真系统及方法
JP5707202B2 (ja) 受信装置
CN110752870B (zh) 滚降系数可变宽带卫星传输系统的定时恢复方法及装置
WO2015165087A1 (zh) 一种预失真系统和方法
US9178825B2 (en) Data processing method and apparatus
JP2012209736A5 (zh)
US20090147895A1 (en) Efficient channel estimate based timing recovery
CN101969423A (zh) 一种峰值因子消减方法和装置以及一种射频拉远系统
WO2012155515A1 (zh) 一种gsm系统中的信号校正方法及装置
US9203449B2 (en) Delay quantity estimation apparatus and delay quantity estimation method
CN201947373U (zh) 一种高效率数字电视发射装置
JP5599353B2 (ja) 送受信装置
US8094756B2 (en) Portable communications device with demodulation correction and related methods
JP2006295766A (ja) 非線形歪等化システム
US8879676B2 (en) Channel response noise reduction at digital receivers
JP5182699B2 (ja) 受信装置、無線信号の受信方法および無線通信システムならびにプログラム
Santucci et al. A block adaptive predistortion algorithm for transceivers with long transmit-receive latency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865653

Country of ref document: EP

Kind code of ref document: A1