WO2012154015A2 - 액화천연가스 저장용기의 구조 및 제작방법 - Google Patents

액화천연가스 저장용기의 구조 및 제작방법 Download PDF

Info

Publication number
WO2012154015A2
WO2012154015A2 PCT/KR2012/003767 KR2012003767W WO2012154015A2 WO 2012154015 A2 WO2012154015 A2 WO 2012154015A2 KR 2012003767 W KR2012003767 W KR 2012003767W WO 2012154015 A2 WO2012154015 A2 WO 2012154015A2
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
inner shell
liquefied natural
storage container
shell
Prior art date
Application number
PCT/KR2012/003767
Other languages
English (en)
French (fr)
Other versions
WO2012154015A3 (ko
Inventor
김용태
김유일
강중규
이정한
박성우
권영빈
신정섭
김광석
허행성
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20120045979A external-priority patent/KR101485110B1/ko
Priority claimed from KR1020120045978A external-priority patent/KR101403621B1/ko
Priority claimed from KR1020120048232A external-priority patent/KR101350804B1/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US13/810,885 priority Critical patent/US9360160B2/en
Priority to AU2012254258A priority patent/AU2012254258B2/en
Publication of WO2012154015A2 publication Critical patent/WO2012154015A2/ko
Publication of WO2012154015A3 publication Critical patent/WO2012154015A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • F25J1/0272Multiple identical heat exchangers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0123Shape cylindrical with variable thickness or diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/015Bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/018Suspension means by attachment at the neck
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0192Details of mounting arrangements with external bearing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0383Localisation of heat exchange in or on a vessel in wall contact outside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/84Processes or apparatus using other separation and/or other processing means using filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a storage container and a manufacturing method of liquefied natural gas, can be stored in the liquefied natural gas as well as pressurized liquefied natural gas efficiently to supply to the consumer, and to minimize the use of metal having excellent low temperature characteristics
  • the present invention relates to a liquefied natural gas storage container and a manufacturing method which can reduce manufacturing costs and have an inner shell having high efficiency of thermal insulation.
  • liquefied natural gas is a colorless transparent cryogenic liquid whose natural gas containing methane as its main component is cooled to cryogenic condition at -162 °C at atmospheric pressure, and its volume is reduced to one hundredth. It is known that it is economical for long distance transportation because it has better transport efficiency than gas state.
  • Such liquefied natural gas has been applied to large-scale and long-distance transportation in order to satisfy economic feasibility due to the high cost of construction of the production plant and the construction of carriers, whereas pipelines or compressed natural gas (CNG) for small- and short-haul transportation have been applied.
  • CNG compressed natural gas
  • natural gas has a liquefaction point of -163 °C at atmospheric pressure, when a certain pressure is applied has a characteristic that the liquefaction point rises under atmospheric pressure.
  • This characteristic can reduce the processing steps such as removal of acid gas and fractionation of natural gas liquid (NGL) during the liquefaction process, which leads to a reduction in equipment and equipment capacity. It has the advantage of reducing the production cost of.
  • the liquefied natural gas storage tank provided in a conventional liquefied natural gas terminal or a vessel equipped with a gasification facility is not only limited to a certain size, but also liquefied natural gas which has economical characteristics by reflecting the characteristics of the natural gas as described above. It is difficult to transport liquefied natural gas to the consumer, which is inadequate for the storage, and to meet the needs of various consumers.
  • a container in order to store not only general liquefied natural gas but also liquefied natural gas pressurized at a constant pressure, a container is made to withstand cryogenic and high pressure of -120 ° C or more by using a metal material having excellent low temperature characteristics. This is possible, but for this purpose, the wall thickness of the container is inevitably increased, and there is another problem of difficulty in securing economic feasibility due to the use of expensive metal having excellent low temperature characteristics.
  • the present invention is to solve the conventional problems as described above, liquefied natural gas as well as liquefied natural gas pressurized at a constant pressure can be efficiently stored and supplied to the consumer, and minimize the use of metal with excellent low-temperature characteristics
  • the purpose of the present invention is to provide a structure of a liquefied natural gas storage container to reduce the production cost, to easily satisfy the needs of various purposes and users, and to secure a variety of types and sizes of transport vessels.
  • an object of the present invention is to provide a structure of a liquefied natural gas storage container that can reduce the material cost of the insulating material while maintaining the insulating performance even if the liquefied natural gas leaks into the insulating layer.
  • the inner shell 910 is the liquefied natural gas is stored inside;
  • An outer shell 920 surrounding an outer side of the inner shell 910 to form a space between the inner shell 910;
  • a support 930 installed in a space between the inner shell 910 and the outer shell 920 to support the inner shell 910 and the outer shell 920;
  • a heat insulation layer part 940 installed in a space between the inner shell 910 and the outer shell 920 to reduce heat transfer.
  • the inner shell 910 is to form a corrugated structure (950);
  • the inner shell 910 has a cylindrical structure; characterized in that.
  • the pleat structure 950 is composed of one or more pleats (951), the pleats (951) is formed to have one or more bent portion (952);
  • the curved portion 952 is formed to have at least one of an angled corner curved portion 9521, a rounded corner curved portion 9522, and a wavy curved portion 9523.
  • the support 1030 is composed of an inner support 1031 connected to the inner shell 1010 side and an outer support 1032 connected to the outer shell 1020 side, the inner support 1031 and the outer support
  • the sliding bar 10315 is formed in any one of the 1032, and the sliding bar 10315 is inserted and connected to the other to form a sliding hole 10325 for sliding.
  • the sliding bar 10315 is formed to protrude outwardly from any one of the inner support 1031 and the outer support 1032, and the sliding hole 10325 is formed of the inner support 1031 and the outer support 1032. It is formed on the other, so that the sliding bar 10315 is inserted to be able to slide in the left and right directions;
  • the support 1030 is composed of one or more inner support 1031 and the outer support 1032, are alternately arranged; Characterized by the lowest outer support 1032 is located at the bottom side.
  • the inner support 1031 and the outer support 1032, the upper flange (10311, 10321) and lower flanges (10312, 10322) formed on both ends, and the upper and lower flanges (10311, 10321, 10312, 10322) It characterized in that it comprises a; Web (10313, 10323) for connecting.
  • a sliding hole 10325 is formed in the upper flange 10321 of the lower outer support 1032, and a lower flange 10312 of the lower inner support 1031 positioned above the lower outer support 1032.
  • the sliding bar 10315 is formed; characterized in that.
  • the inner support 1031 is made of a metal that withstands low temperatures
  • the outer support 1032 is made of a reinforced plastic material
  • the outer support 1032 is made of a metal to withstand low temperatures by the fastening portion 10227 It is coupled to the connection plate 10326, the connection plate 10326 is welded to the outer shell 1020 is the outer support 1032 is connected to the outer shell 1020;
  • the support 1030 is provided in plurality along the circumference of the inner shell 1010 and the outer shell 1020;
  • the support 1030 is provided with a plurality of spaced apart in the vertical direction of the inner shell (1010);
  • a lower support 1033 installed in a lower space between the inner shell 1010 and the outer shell 1020 so that the inner shell 1010 can be supported by the outer shell 1020.
  • the equalizing line 1090 protrudes from the inner space of the inner shell 1010 to the outside of the storage container 1000 and is then connected to the space between the inner shell 1010 and the outer shell 1020; It features.
  • One end of the equalizing line communicates with the inner side of the inner shell, the other end communicates with the space between the inner shell and the outer shell, and the other end is located at a half point of the interval h of the space. It is characterized by;
  • the equalizing line is made of a metal that withstands the low temperature of the liquefied natural gas
  • An equalizing line flange 519 is formed on the outer shell side in contact with an equalizing line portion protruding to the outside of the storage container so that the equalizing line flange 519 is connected to the equalizing line, but the equalizing line flange 519 is It is made of a metal that withstands low temperatures.
  • a first exhaust line 1085 connected to an upper portion of the inner space of the inner shell 1010 and extending to the outside and having a first exhaust valve 1086 installed therein.
  • First and second connection portions 1080 and 1081 connected to upper and lower ends of the inner space of the inner shell 1010 to protrude to the outside and to which the docking line 7 and the unloading line 8 are respectively connected; It is characterized by including.
  • the equalizing line 1090 is provided with an on-off valve (1091) for opening and closing the flow of the fluid;
  • the equalizing line 1090 is connected to the second exhaust line 1095, the second exhaust valve 1096 is installed.
  • a first heat insulating layer 1041 formed of an open cell heat insulating material is formed on the inner shell 1010 side of the heat insulating layer part 1040, and a closed cell heat insulating material is formed on the outer shell 1020 side. 2 to form a heat insulating layer (1042).
  • the inner shell 1010 side of the heat insulating layer portion 1040 is formed with a passage 1043 configured to flow the fluid along the wall surface of the inner shell 1010, the heat insulating layer 1044 is formed on the outer shell 1020 side. It is characterized by.
  • the inner shell is made of a metal to withstand low temperatures of liquefied natural gas
  • the outer shell is made of a steel (steel) material to withstand the internal pressure
  • the inner shell withstands a temperature of -120 ⁇ -95 °C, the outer shell withstands a pressure of 13 ⁇ 25bar;
  • the inner shell withstands a pressure of 0.5 bar.
  • the liquefied natural gas is stored inside the inner shell 1010, the outer shell of the inner shell 1010 of the inner shell 1010
  • the outer shell 1020 surrounding the outside is installed to form a space between the inner shell 1010
  • the support 1030 is installed in the space to support the inner shell 1010, the inner shell ( 1010) and a heat insulation layer portion 1040 having at least two heat insulation layers stacked to reduce heat transfer in the space between the outer shell 1020; and installed on the contact surface with the outer shell 1020 of the at least two heat insulation layers
  • the heat insulation layer is denser than the heat insulation layer installed on the inner shell 1010 side; provides a structure of the liquefied natural gas storage container.
  • the heat insulation layer installed on the contact surface with the outer shell 1020 of the two or more heat insulation layers is composed of a closed cell heat insulating material, the heat insulation layer provided on the inner shell 1010 side is an open cell heat insulating material. It is characterized by.
  • a closed cell (closed cell) is installed inside the outer shell (1020)
  • the inner shell 1010 of the storage container forms a corrugation structure 1050 to be inserted into the outer shell 1020, and supports the inner shell 1010 to be supported by the outer shell 1020 ( 1030 is installed in the space between the inner shell 1010 and the outer shell 1020, and filling an open cell heat insulating material in the space between the inner shell 1010 and the outer shell 1020; It provides a method for manufacturing a storage container for liquefied natural gas characterized in that.
  • the liquefied natural gas is stored inside the inner shell 1010, the inner shell 1010 outside the inner shell 1010.
  • It provides a structure of the liquefied natural gas storage container, characterized in that consisting of a passage 1043 and a heat insulating layer 1044 composed of a heat insulating material.
  • the heat insulation layer 1044 is formed of two or more heat insulation blocks (10441) are installed at regular intervals in the vertical direction; Between each of the insulation block (10441) is provided with a reinforcing insulation (10442); characterized in that.
  • the reinforcement insulating material 10442 is filled between each of the insulating block (10441) by injection molding; characterized in that.
  • the insulation block 10441 is laminated with two or more insulation materials.
  • the heat insulating material installed on the contact surface with the outer shell 1020 has a greater density than the heat insulating material installed on the inner shell 1010 side.
  • the heat insulating material installed on the contact surface with the outer shell 1020 is a closed cell heat insulating material.
  • the liquefied natural gas, as well as the liquefied natural gas pressurized at a constant pressure can be efficiently stored and supplied to the consumer, and the production cost can be reduced by minimizing the use of metal having excellent low temperature characteristics, and various purposes and It is possible to easily meet the needs of the consumer, and to ensure the variety of types and sizes of transport vessels.
  • the internal pressure of the inner shell and the internal pressure of the insulation layer are designed to have a similar value to ensure structural safety, and the outer shell is used as a steel material that can withstand the internal pressure, thereby reducing the use of metal having excellent low-temperature characteristics. You can save money.
  • the structural strength of the inner shell is increased, the buckling strength is also significantly increased, so that the container can be manufactured in a thin plate can reduce the production cost.
  • the inner shell of the corrugated structure can absorb the heat deformation of the inner shell to prevent the occurrence of excessive thermal stress can ensure the structural stability.
  • the outer support as a reinforced plastic material having a low heat transfer coefficient, it is possible to easily connect the outer support to the outer shell by minimizing heat transfer and installing a separate connection plate connecting the outer support to the outer shell.
  • the heat insulating performance can be secured by the closed cell.
  • the proper use of the open cell and the closed cell can achieve a pressure balance inside and outside the shell while minimizing the use of expensive closed cells, simplify the assembly of the storage container, and reduce the production cost of the insulation layer.
  • FIG. 1 is a flow chart showing a pressurized liquefied natural gas production method according to the present invention
  • Figure 2 is a block diagram showing a pressurized liquefied natural gas production system according to the present invention
  • FIG. 3 is a flowchart illustrating a pressurized liquefied natural gas distribution method according to the present invention
  • FIG. 4 is a configuration diagram for explaining a pressurized liquefied natural gas distribution method according to the present invention.
  • Figure 5 is a side view showing a pressure vessel used in the pressurized liquefied natural gas distribution method according to the present invention
  • FIG. 6 is a configuration diagram for explaining another example of the pressurized liquefied natural gas distribution method according to the present invention.
  • FIG. 7 is a perspective view showing a storage tank of liquefied natural gas according to the present invention.
  • FIG. 8 is a perspective view showing various specifications for the storage tank of liquefied natural gas according to the present invention.
  • FIG. 9 is a block diagram showing a storage tank of liquefied natural gas according to the present invention.
  • FIG. 10 is a configuration diagram showing another example of a liquefied natural gas storage tank according to the present invention.
  • FIG. 11 is a cross-sectional view showing a storage container of liquefied natural gas according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing another embodiment of the connecting portion formed in the storage container of liquefied natural gas according to the first embodiment of the present invention
  • FIG. 13 is a cross-sectional view for explaining the operation of the storage container of liquefied natural gas according to the first embodiment of the present invention
  • FIG. 14 is a partial cross-sectional view showing a storage container of liquefied natural gas according to a second embodiment of the present invention.
  • 15 is a partial cross-sectional view showing a storage container of liquefied natural gas according to a third embodiment of the present invention.
  • 16 is a cross-sectional view showing a storage container of liquefied natural gas according to a fourth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view taken along the line AA ′ of FIG. 16;
  • 19 is a cross-sectional view showing a storage container of liquefied natural gas according to a fifth embodiment of the present invention.
  • 20 is a cross-sectional view showing a storage container of liquefied natural gas according to a sixth embodiment of the present invention.
  • FIG. 21 is a cross-sectional view taken along the line CC ′ of FIG. 20;
  • FIG. 22 is a cross-sectional view showing a storage container of liquefied natural gas according to a seventh embodiment of the present invention.
  • FIG. 23 is a block diagram showing a storage container of liquefied natural gas according to an eighth embodiment of the present invention.
  • FIG. 24 is a configuration diagram showing a storage container of liquefied natural gas according to a ninth embodiment of the present invention.
  • 25 is a configuration diagram showing a storage container of liquefied natural gas according to a tenth embodiment of the present invention.
  • 26 is a cross-sectional view showing a storage container of liquefied natural gas according to an eleventh embodiment of the present invention.
  • FIG. 27 is a cross-sectional view showing another example of a connection portion of a storage container of liquefied natural gas according to an eleventh embodiment of the present invention.
  • FIG. 28 is a cross-sectional view showing still another example of a connection portion of a storage container of liquefied natural gas according to an eleventh embodiment of the present invention.
  • 29 is a cross-sectional view showing another example of a connection portion of a storage container of liquefied natural gas according to an eleventh embodiment of the present invention.
  • FIG. 30 is an enlarged view illustrating main parts of a storage container of liquefied natural gas according to a twelfth embodiment of the present invention.
  • FIG. 31 is a perspective view illustrating a buffer unit provided in a storage container of liquefied natural gas according to a twelfth embodiment of the present invention.
  • FIG. 32 is a perspective view illustrating another example of a buffer unit provided in a storage container of liquefied natural gas according to a twelfth embodiment of the present invention.
  • 33 is a block diagram showing an apparatus for producing liquefied natural gas according to the present invention.
  • 34 is a side view showing a floating structure having a storage tank conveying device according to the present invention.
  • 35 is a front view showing a floating structure having a storage tank conveying device according to the present invention.
  • 36 is a side view for explaining the operation of the floating structure having a storage tank transport apparatus according to the present invention.
  • FIG. 37 is a block diagram showing a high pressure maintaining system of the pressurized liquefied natural gas storage container according to the present invention.
  • FIG. 38 is a block diagram showing a heat exchanger separate type liquefaction apparatus according to a first embodiment of the present invention.
  • 39 is a block diagram showing a separate heat exchanger type liquefaction apparatus according to a second embodiment of the present invention.
  • FIG. 40 is a sectional front view showing a liquefied natural gas storage container carrier according to the present invention.
  • 41 is a side sectional view showing a LNG storage container carrier in accordance with the present invention.
  • FIG. 42 is a plan view showing a main portion of a LNG storage container carrier according to the present invention.
  • FIG. 43 is a block diagram showing a carbon dioxide solidification removal system according to the present invention.
  • 45 is a cross-sectional view showing a connection structure of a liquefied natural gas storage container according to the present invention.
  • 46 is a perspective view showing a connection structure of a liquefied natural gas storage container according to the present invention.
  • FIG. 48 is a view schematically showing a storage container of liquefied natural gas according to the present invention.
  • 49 is a view schematically showing the structure of a storage vessel inner shell of liquefied natural gas according to the present invention.
  • 50 is a view showing the various forms of the structure of the inner shell of the storage vessel of the liquefied natural gas according to the present invention.
  • 51 is a view showing the various forms of the structure of the inner shell of the storage vessel of the liquefied natural gas according to the present invention.
  • FIG. 52 is a view schematically showing the structure of an inner shell of a storage container of liquefied natural gas according to the present invention.
  • 53 is a view schematically showing a storage container of liquefied natural gas according to the present invention.
  • FIG. 54 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • FIG. 55 is an enlarged view of a portion A of FIG. 54, illustrating various types of supports.
  • FIG. 55 is an enlarged view of a portion A of FIG. 54, illustrating various types of supports.
  • FIG. 56 is an enlarged view of FIG. 55, (a) is an enlarged view of B, and (b) is an enlarged view of C; FIG.
  • Fig. 57 is a view of the outer support, (a) is a view of the outer support in the radial direction of the storage container, (b) is a side view of (a).
  • 58 is a diagram illustrating a portion of a storage container of liquefied natural gas according to an embodiment of the present invention
  • 59 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 60 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 61 is a longitudinal sectional view schematically showing the structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • FIG. 62 is a longitudinal cross-sectional view schematically showing the structure of a storage vessel of liquefied natural gas according to an embodiment of the present invention.
  • FIG. 63 is an enlarged view of FIG. 62D; FIG.
  • 64 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 65 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 66 is a longitudinal sectional view schematically showing the structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 67 is a longitudinal cross-sectional view schematically showing the structure of a storage vessel of liquefied natural gas according to an embodiment of the present invention.
  • 68 is a longitudinal cross-sectional view schematically showing the structure of a storage vessel of liquefied natural gas according to an embodiment of the present invention.
  • FIG. 69 is an enlarged view of A of FIG. 68; FIG.
  • FIG. 70 is a sectional view taken along the line B-B in FIG. 68;
  • 71 is a view of the case of thermal expansion and thermal contraction of the insulation block and reinforcing insulation according to the present invention.
  • 72 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention
  • 73 is a longitudinal sectional view schematically showing a structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 74 is a longitudinal sectional view schematically showing the structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • 75 is a longitudinal sectional view schematically showing the structure of a storage container of liquefied natural gas according to an embodiment of the present invention.
  • valve 8 unloading line
  • valve 9a external inlet
  • container assembly 22a integrated nozzle
  • regasification system 30 storage tank of liquefied natural gas
  • connection path 55 connection part
  • first flange 63b second flange
  • first web 64 heat insulation layer portion
  • extension 144,174 second flange
  • refrigerant line 220 supply line
  • first branch line 230 heat exchanger
  • regeneration unit 241 regeneration fluid supply unit
  • hinge coupling portion 311d auxiliary rail
  • first connection part 516b second connection part
  • extension portion 523 heat insulation layer portion
  • connection 525,526,527 buffer
  • 620,650 liquefied heat exchanger 621: first flow path
  • separator 636a first J-T valve
  • refrigerant supply line 638 refrigerant circulation line
  • connection line 665 inflator
  • first upper support 740 second upper support
  • support block 761 support surface
  • first on-off valve 815 second on-off valve
  • heating part 816a heating line
  • insulating layer 840 external injection portion
  • bend portion 9521 angled corner bend
  • fastening portion 1033 lower support
  • insulation layer 10441 insulation block
  • FIG. 1 is a flow chart illustrating a pressurized liquefied natural gas production method according to the present invention.
  • the pressurized liquefied natural gas production method according to the present invention is dehydrated without removing the acid gas from the natural gas supplied from the natural gas field (1), the natural gas is NGL (Natural Gas Liquid) Liquefaction is produced by pressure and cooling without fractionation to produce a pressurized liquefied natural gas, which may include a dehydration step (S11) and a liquefaction step (S12).
  • NGL Natural Gas Liquid
  • the natural gas is supplied from the natural gas field 1 to remove moisture such as steam by dehydration without the process of removing the acid gas. Therefore, natural gas may be dehydrated without undergoing acid gas removal, thereby simplifying the process and reducing investment and maintenance costs by eliminating acid gas removal. In addition, by sufficiently removing the water from the natural gas by the dehydration step (S11) to prevent the water freezing of the natural gas at the operating temperature and pressure of the production system.
  • the natural gas after the dehydration step (S11) is liquefied to a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C without the process of fractionating the Natural Gas Liquid (NGL)
  • NGL Natural Gas Liquid
  • the condition of the natural gas field 1 may be such that the calculated natural gas has carbon dioxide (CO 2 ) of 10% or less.
  • the carbon dioxide when the carbon dioxide is present in less than 10% in the natural gas after the dehydration step (S11) may further include a carbon dioxide removal step (S13) to freeze and remove the carbon dioxide in the liquefaction step.
  • Carbon dioxide removal step (S13) may be carried out when the carbon dioxide in the natural gas after the dehydration step (S11) is more than 2% or less than 10%.
  • natural gas exists in a liquid state at the temperature and pressure conditions of the pressurized liquefied natural gas which will be described later when carbon dioxide is 2% or less, the production and transportation of the pressurized liquefied natural gas are not affected even if the carbon dioxide removal step (S13) is not performed. If the carbon dioxide is more than 2% and less than 10% is frozen as a solid, the carbon dioxide is removed (S13) for liquefaction.
  • the storage step (S14) for storing the pressurized liquefied natural gas produced by the liquefaction step (S12) in a storage container of a dual structure can be carried out, whereby the pressurized liquefied natural gas is a desired position
  • the transfer step (S15) may be carried out to transport through the vessel to the individual or packaged storage containers for this purpose.
  • the strength of the tank may be transported through the vessel in a separate or packaged storage container for LNG transport.
  • Storage container used in the transfer step (S15) may have a material and structure to withstand the pressure of 13 ⁇ 25bar and the temperature of -120 ⁇ -95 °C.
  • a vessel for transporting a storage container may reduce a cost required for transporting a storage container by using a barge or a container ship without using a separate ship, such as a LNG carrier.
  • a barge or a container ship may be loaded and transported as it is or with minimal modification.
  • the storage vessels carried by the vessel may be transported in individual storage vessel units as required by the consumer.
  • the pressurized liquefied natural gas stored in the storage container supplied to the demand by completing the transfer step (S15) is to be supplied to the natural gas in the gas state through the regasification step (S16) at the final consumer.
  • the regasification facility for performing the regasification step (S16) may be composed of a high-pressure pump and a carburetor, in the case of individual unit consumption, such as power plants or factories may be provided with their own regasification facilities.
  • FIG. 2 is a configuration diagram showing a pressurized liquefied natural gas production system according to the present invention.
  • the pressurized liquefied natural gas production system 10 is a natural dehydration equipment (11) for receiving and dehydrating natural gas supplied from the natural gas field (1), and natural through the dehydration equipment (11) It may include a liquefaction facility 12 for producing a pressurized liquefied natural gas by liquefying the gas at a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C.
  • the dehydration facility 11 receives natural gas from the natural gas field 1 to remove moisture such as water vapor by a dehydration process, thereby preventing freezing of natural gas at the operating temperature and pressure of the production system. At this time, the natural gas supplied from the natural gas field 1 to the dehydration facility 11 does not go through the process of removing acid gas, thereby simplifying the liquefied natural gas production process and investing and maintaining it. Help reduce costs
  • the liquefaction facility 12 is to liquefy the natural gas passed through the dehydration facility 11 at a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C to produce a pressurized liquefied natural gas, for example a pressure of 17bar and -115 It may be to produce a pressurized liquefied natural gas having a temperature of °C, it may include a compressor and a cooler required for the compression and cooling of low temperature fluid.
  • the natural gas that has passed through the dehydration facility (11) is supplied to the liquefaction facility (12) without the process of fractionating the NGL (Natural Gas Liquid) is passed through the liquefaction step, which is due to the fractionation process for NGL, ie liquefied hydrocarbons This reduces the cost of manufacturing and maintaining the system, thereby lowering the cost of liquefied natural gas.
  • NGL Natural Gas Liquid
  • the pressurized liquefied natural gas production system 10 removes carbon dioxide provided to freeze and remove carbon dioxide from natural gas when carbon dioxide is less than 10% in natural gas that has passed through the dehydration facility 11. It may further comprise a facility (13).
  • the carbon dioxide removal system 13 may perform removal of carbon dioxide from natural gas only when carbon dioxide exceeds 2% or 10% or less in the natural gas that has passed through the dehydration facility 11.
  • natural gas exists in a liquid state at the temperature and pressure conditions of pressurized liquefied natural gas when carbon dioxide is 2% or less, so it is unnecessary to remove carbon dioxide, and carbon dioxide is frozen as a solid when carbon dioxide is more than 2% and 10% or less. It is necessary to remove carbon dioxide by the removal facility 13.
  • the pressurized liquefied natural gas produced from the liquefaction facility 12 is stored in a storage container of a dual structure in the storage facility 14 and transferred to a desired consumer by transport of the storage container.
  • FIG. 3 is a flowchart illustrating a pressurized liquefied natural gas distribution method according to the present invention.
  • the method for distributing a pressurized liquefied natural gas loads a storage container in which a pressurized liquefied natural gas liquefied by applying pressure to a natural gas and cools it, and transports the vessel to a consumer.
  • the container is unloaded to the consumer and then the storage container is connected to the consumer regasification system.
  • the pressurized liquefied natural gas distribution method according to the present invention may include a transfer step (S21), an unloading step (S22), and a connection step (S23).
  • the pressurized liquefied natural gas liquefied natural gas at a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C is stored and transportable container ( 21) is loaded on the vessel (2) to be transported to the consumer (3).
  • the pressurized liquefied natural gas may be produced by the above-described method of producing the pressurized liquefied natural gas, and the storage container 21 storing the same may use a natural gas at a pressure of 13 to 25 bar and a temperature of -120 to -95 ° C.
  • the storage container 21 storing the same may use a natural gas at a pressure of 13 to 25 bar and a temperature of -120 to -95 ° C.
  • the transfer step S21 may transfer the storage container 21 by land transportation means such as a trailer or a train when the consumption place 3 is located inland.
  • Unloading step (S22) is a step of loading and unloading the storage container 21 filled with pressurized liquefied natural gas by the loading facility to the consumer when the vessel (2) arrives at the consumer 3, the individual storage container 21 unit Can be unloaded.
  • the connecting step S23 is a step of connecting the storage container 21 to the regasification system 23 of the consumer paper 3 so that the pressurized liquefied natural gas stored in the storage container 21 is vaporized.
  • the natural gas generated by vaporizing the pressurized liquefied natural gas can be supplied to the consumer 3a.
  • the storage container 21 is provided with a nozzle 21a for connecting to the vaporization line of the pressurized liquefied natural gas and the regasification system 23.
  • the nozzle 21a may be provided in various structures at various positions according to the posture in which the storage container 21 is loaded on the vessel 2 and the posture connected to the regasification system 23. It may have a connector that may be connected to the connector of the storage facility and the regasification system 23.
  • the distribution method of pressurized liquefied natural gas according to the present invention may further include a recovery step (S24) for recovering the empty storage container 21 from the consumption place (3).
  • Recovery step (S24) is to save the logistics cost by allowing the empty storage container 21 to be recovered to the place where the pressurized liquefied natural gas production system 10 is located by using the land transport means or the vessel (2), thereby natural gas May contribute to lowering the supply cost of
  • the container assembly 22 having a plurality of storage containers 21 packaged together may be transferred.
  • the container assembly 22 may be provided with an integrated nozzle 22a connected to each of the storage containers 21 to unify the nozzle 21a (shown in FIG. 5) provided for access of the pressurized liquefied natural gas. Therefore, the storage container 21 is configured by the container assembly 22 in a bundle unit, and the loading and unloading step S22 in the transfer step S21 by using the integrated nozzle 22a as a single container. It can reduce the time and effort required for unloading in the connection, connection with the regasification system 23 in the connection step (S23), and recovery in the recovery step (S24).
  • the storage container 21 is made up of a large number, so that it is efficient to be unloaded and used where a large amount of natural gas is required as a single consumption place, such as a power plant or an industrial complex.
  • the distribution method of the pressurized liquefied natural gas according to the present invention there is an advantage that a separate storage tank is not required at the consumption place.
  • the container 21 or the storage vessel 21 is circulated from the place where the pressurized liquefied natural gas production system 10 is located to each individual consumption place 3 by the vessel or the land transportation means in parallel with the vessel.
  • the business of unloading the container assembly 22 and recovering the empty storage container 21 or the container assembly 22 is enabled.
  • a large number of small and medium-sized consumers are distributed on a large number of islands, such as Southeast Asia, it is possible to minimize the construction of infrastructure such as separate storage facilities and pipelines.
  • FIG. 7 is a perspective view showing a storage tank of liquefied natural gas according to the present invention.
  • the storage tank 30 of the liquefied natural gas according to the present invention is provided with a plurality of storage containers 32 for storing the liquefied natural gas, respectively, inside the main body 31, the storage container (32)
  • the loading and unloading of the liquefied natural gas to the storage container 32 is made possible through the loading and unloading line 33 which is connected to each and is provided with the loading and unloading valves 33a and 33b.
  • the main body 31 is provided so that a plurality of storage containers 32 are arranged inside, and the spacers 31a are installed between the storage containers 32 so that the storage containers 32 maintain the arrangement state while maintaining a space therebetween. ) May be included.
  • the main body 31 may have a heat insulating layer for blocking the entry and exit of temperature, or may have a double structure for heat insulation, may be made of a hexahedral structure, or in various other structures as in the present embodiment.
  • the main body 31 may be provided with a plurality of support (31b) on the bottom in order to block the heat transfer of the ground by being spaced apart from the ground and to be installed in a stable posture on the ground.
  • the main body 31 has a large, medium and small size standard as in (a), (b), (c) to standardize the number and size of the storage containers 32.
  • the present invention is not limited thereto, and may accommodate various numbers of storage containers 32 and may be manufactured in various standards.
  • Storage container 32 may be made of a structure or material that withstands a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C with a loading and unloading line 33 to be described later to be stored liquefied natural gas, respectively. Therefore, the storage container 32 and the unloading line 33 has a double structure, such as a heat insulating material is installed to withstand such pressure and temperature conditions, the pressure of 13 ⁇ 25bar and the temperature of -120 ⁇ -95 °C, For example, it enables the storage and transportation of pressurized liquefied natural gas having a pressure of 17 bar and a temperature of -115 ° C.
  • the loading and unloading line 33 is connected to each of the storage containers 32 and extends to the outside of the main body 31, so that the loading and unloading of the liquefied natural gas to the storage container 32 is performed.
  • Unloading valves 33a and 33b for opening and closing are provided. Therefore, after the main body 31 is installed in the consumer place, when the loading and unloading line 33 is connected to the regasification system, supply line, etc. of the consumer place, supply of liquefied natural gas or natural gas is immediately possible.
  • the unloading valves 33a and 33b are provided to the first individual valve 33a and the storage container 32 all individually installed to open and close the loading and unloading of the liquefied natural gas to each of the storage containers 32. It may include a first integrated valve 33b which is installed to open and close the unloading and unloading of the natural liquefied natural gas, each storage container is one if the first individual valve 33a is opened as the unloading valve It can also be packaged into a single tank. Moreover, only the 1st individual valve 33a may be provided, or only the 1st integrated valve 33b may be provided and used.
  • the storage tank 30 of the liquefied natural gas according to the present invention is connected to some or all of the storage container 32 to the outside of the main body 31 for the discharge of naturally occurring boil-off gas from the storage container 32.
  • it may further include an evaporation gas line 34 is provided with the evaporation gas valve (34a, 34b) for opening and closing the discharge of the boil-off gas (BOG) generated in the storage container (32).
  • the boil-off gas line 34 may be made of a structure or material that withstands a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C.
  • the boil-off gas valves 34a and 34b are second individual valves 34a that are individually installed to open and close the discharge of the boil-off gas to each of the storage containers 32 and the boil-off gas to all the storage containers 32. It may include a second integrated valve 34b which is installed to open and close the discharge of the integrated, only the second individual valve 34a, or only the second integrated valve 34b may be installed as the boil-off gas valve. .
  • each storage container may be packaged as one and may be used as one tank.
  • only the second individual valve 34a may be installed, or only the first integrated valve 34b may be installed and used.
  • the storage tank 30 of the liquefied natural gas measures the internal pressure for each or all of the storage containers 32 and outputs it from the pressure sensing unit 35 and the pressure sensing unit 35 to output the detection signal.
  • the controller 36 may further include a controller 36 configured to receive the detection signal and to display the internal pressure for each or all of the storage containers 32 to the outside of the main body 31 through the display unit 37.
  • the pressure sensing unit 35 is installed at the front end of the storage container 32 in the loading and unloading line 33, respectively, for example, in order to measure the internal pressure for each or all of the storage containers 32, or the loading and unloading line. In (33) it may be installed on an integrated route which travels for the loading and unloading of liquefied natural gas.
  • control unit 36 is provided on the main body 31 or the unloading valves 33a and 33b and the boil-off gas valves 34a, in accordance with an operation signal output from the operation unit 36a provided for wired and wireless communication at a remote location. 34b) can be controlled respectively.
  • the storage tank 30 of the liquefied natural gas is used to control the heating value required in the vaporization and consumption of the liquefied natural gas discharged from the storage container 32.
  • Heating unit 38 is installed to vaporize the liquefied natural gas unloaded from some or all of the storage container 32
  • the calorific value control unit 39 is installed to adjust the calorific value of the natural gas passing through the heating unit 38 It may include.
  • the heating unit 38 and the calorific value control unit 39 are installed on a line in which any one or many of the storage containers 32 are integrated in the loading and unloading line 33, or the storage container 32 and the loading and unloading unit. Connected to the line 33 may be installed in a separate line to pass the liquefied natural gas by the valve.
  • the heating unit 38 is a plate fin type heat exchanger 38a which is installed to primarily heat the liquefied natural gas by heat exchange with air, and the liquefied natural gas vaporized by passing through the heat exchanger 38a. It may include an electric heater 38b that is installed to heat differentially.
  • the line where the calorific value control unit 39 is installed may further include a bypass line 41 connected to bypass the calorific value control unit 39 by the bypass valve 41a.
  • a bypass line 41 connected to bypass the calorific value control unit 39 by the bypass valve 41a.
  • the storage tank 30 of the liquefied natural gas according to the present invention has a temperature sensing unit 42 for sensing the temperature of the natural gas to be unloaded, so that the natural gas to be unloaded has a temperature required by the consumer, and the temperature
  • the controller 36 may further include a controller 36 that receives the signal from the detector 42 and controls the electric heater 38b to reach the set temperature range.
  • the controller 36 may display the temperature of the natural gas being unloaded to the outside of the main body 31 through the display unit 37.
  • the temperature sensing unit 42 may be installed at the exit side of the loading and unloading line 33.
  • the controller 36 may control the bypass valve 41a described above according to the operation signal of the operation unit 36a.
  • the storage tank 30 of the liquefied natural gas according to the present invention has a storage container 32 capable of storing and treating evaporated gas according to a function, and a storage container capable of controlling evaporation facilities and calorific value as well as storing and treating evaporated gas. It can be divided into (32), allowing easy transport of liquefied natural gas or natural gas to meet the consumer's needs.
  • FIG. 11 is a cross-sectional view showing a storage container of liquefied natural gas according to the first embodiment of the present invention.
  • the storage container 50 of the liquefied natural gas includes an inner shell 51 and an inner shell made of a metal that withstands low temperature of the liquefied natural gas stored therein.
  • a heat insulation layer portion 53 may be installed to reduce heat transfer between the outer shells 52 made of a steel material to withstand the inner pressure by wrapping the outer side of the 51.
  • the inner shell 51 forms a space for storing the liquefied natural gas inside, and the metal having excellent low temperature characteristics such as aluminum, stainless steel, 5-9% nickel steel, etc. It may be made in the form of a tube, as in the present embodiment, or may have various shapes including other polyhedrons.
  • the outer shell 52 surrounds the outside of the inner shell 51 to form a space between the inner shell 51 and is made of a steel material to withstand the internal pressure, and is applied to the inner shell 51.
  • the inner shell 51 is equal to or close to the pressure of the inner shell and the heat insulating layer by the connection flow path to be described later, the pressure of the liquefied natural gas can be supported by the outer shell.
  • the inner shell 51 is manufactured to withstand temperatures of -120 to -95 ° C, the above-described pressure (13-25 bar) and temperature conditions by the inner shell and the outer shell, for example, the pressure of 17 bar and -115 ° C
  • the pressure received by the inner shell and the outer shell can be almost the same by the connecting flow path in the normal state, so there is almost no difference.However, in case of emergency venting of the storage container, the inner shell of the inner shell is full. Since the pressure difference on the outside may be about 0.5 bar, the inner shell may be manufactured to withstand the pressure of about 0.5 bar.
  • the inner shell 51 may be formed to have a small thickness (t1) compared to the thickness (t2) of the outer shell 52, thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing.
  • the heat insulation layer part 53 is installed in the space between the inner shell 51 and the outer shell 52, and consists of a heat insulating material which reduces heat transfer.
  • the structure or material design may be made so that the same pressure as the pressure in the inner shell 51 is applied to the heat insulation layer part 53, where the same pressure as the pressure in the inner shell 51 means the same degree of rigidity. It does not mean to include a similar degree.
  • connection flow passage 54 for the pressure balance between the inner shell 51 and the outside.
  • This connection flow path 54 is the pressure balance in and out of the inner shell 51 (inside the outer shell 52), the outer shell 52 supports a significant portion of the pressure of the inner shell 51 The thickness can be reduced.
  • connection passage 54 may be formed at a side where the heat insulation layer part 53 is in contact with the connection part 55 provided at the entrance and exit 51a of the inner shell 51. Therefore, the pressure in the inner shell 51 moves toward the heat insulation layer part 53 through the connection flow passage 54 so that the pressure is balanced between the inside and the outside of the inner cell 51.
  • an appropriate BOR Bit Off Rate
  • an inner shell 51 made of a metal having excellent low temperature characteristics and an outer shell 52 made of a steel material having excellent strength.
  • a heat insulating layer 53 having a thickness for maintaining a it is possible to store not only liquefied natural gas but also pressurized liquefied natural gas, due to the pressure balance between the inside and the outside of the inner shell 51 inner shell (51) It is possible to reduce the use of expensive metals having excellent low temperature properties by reducing the thickness t1 of. In addition, the occurrence of structural defects due to the internal pressure of the inner shell 51 can be prevented, and the storage container 50 excellent in durability can be provided.
  • connection portion 55 is connected to be integrally formed in the inlet (51a) formed for the supply and discharge of the liquefied natural gas in the inner shell 51 is provided to protrude to the outside of the outer shell 52, such as an external member such as a valve May be connected.
  • an outer insulation layer 56 may be provided on the outside of the outer shell 52 for thermal insulation.
  • the outer insulation layer 56 is attached to the outer shell 52 so as to surround the outer side of the outer shell 52, or to maintain the state surrounding the outer shell 52 by its shape formed or manufactured, and thus To prevent heat transfer from the outside. Therefore, it is possible to reduce BOG generated from liquefied natural gas or pressurized liquefied natural gas stored in a storage container in a high temperature environment such as the tropics.
  • a heating member 57 may be installed outside the outer shell 52 for heating.
  • the heating member 57 is a fruit circulation line for supplying heat to the outer shell 52 by the circulation supply of fruit, or a power source supplied from a battery or a capacitor or an external power supply unit attached to the storage container 50. It may be made of a heater that generates heat, it may be made of a plate-like heating element that can be bent or a heating wire wound along the outer surface of the outer shell 52 as in this embodiment.
  • the outer shell 52 can be manufactured with a general steel sheet, thereby reducing the manufacturing cost. Can be.
  • FIG. 16 is a cross-sectional view showing a storage container of liquefied natural gas according to a fourth embodiment of the present invention.
  • the storage container 60 for liquefied natural gas according to the fourth embodiment of the present invention surrounds the inner shell 61 and the outer shell 61 in which the liquefied natural gas is stored inside.
  • a support 63 for supporting the inner shell 61 and the outer shell 62 and a heat insulating layer portion 64 for reducing heat transfer are provided.
  • connection portion (not shown) is integrally connected to the entrance and exit of the inner shell 61 may protrude to the outside of the outer shell 62, such An external member such as a valve may be connected to the connection portion.
  • the inner shell 61 forms a space for storing the liquefied natural gas therein, and has a low temperature characteristic such as aluminum, stainless steel, 5 to 9% nickel steel, etc. It may be made, as in the present embodiment may be made in the form of a tube, or may have a variety of shapes, including other polyhedra.
  • the outer shell 62 surrounds the outside of the inner shell 61 to form a space between the inner shell 61 and may be made of a steel material to withstand the internal pressure. By sharing the internal pressure to be applied to reduce the amount of material used in the inner shell 61 can reduce the production cost.
  • the inner shell 61 Since the inner shell 61 is equal to or close to the pressure of the inner shell and the heat insulating layer by the connection flow path, the pressure of the liquefied natural gas can be supported by the outer shell. Therefore, even if the inner shell 61 is manufactured to withstand temperatures of -120 to -95 ° C, the above-described pressure (13-25 bar) and temperature conditions by the inner shell and the outer shell, for example, the pressure of 17 bar and -115 ° C It is possible to store the pressurized liquefied natural gas having a temperature of, and may be designed to satisfy the above pressure and temperature conditions in an assembled state of the outer shell 62, the support 63, and the heat insulation layer 64.
  • the pressure received by the inner shell and the outer shell can be almost the same by the connecting flow path in the normal state, so there is almost no difference.However, in case of emergency venting of the storage container, the inner shell of the inner shell is full. Since the pressure difference on the outside may be about 0.5 bar, the inner shell may be manufactured to withstand the pressure of about 0.5 bar.
  • the support 63 is installed in the space between the inner shell 61 and the outer shell 62 to support the inner shell 61 and the outer shell 62 to structurally form the inner shell 61 and the outer shell 62.
  • Reinforcement and may be made of metal (eg, low temperature steel) to withstand the low temperature of liquefied natural gas, and as shown in FIG. 17, a single along the side circumference of the inner shell 61 and the outer shell 62.
  • the inner shell 61 and the outer shell 62 may be installed in a plurality at intervals up and down.
  • the support base 63 includes first and second flanges 63a and 63b supported on the outer surface of the inner shell 61 and the inner surface of the outer shell 62, and the first and second flanges 63a and 63b. It may include a first web (Webc) 63c provided between the second flange (63lang, 63b).
  • Webc first web
  • each of the first and second flanges 63a and 63b may be formed in a ring shape or may be formed of a curvature member in which a plurality of ring shapes are divided.
  • the support 63 may be fixedly supported by welding on the outer surface of the inner shell 61 and the inner surface of the outer shell 62 without using a separate member such as a flange.
  • glass fibers may be inserted into the support to prevent heat from being transferred to the outside through the support.
  • the first web 63c may be formed of a plurality of gratings whose ends are fixed to the first and second flanges 63a and 63b, respectively.
  • the grating may be fixed so that a part is mainly subjected to a compressive force between the first and second flanges 63a and 62b, and the other may be fixed to form a truss structure, and the shape and the fixing position may be changed or adjusted.
  • the web 63c is fixedly supported by welding to the inner and outer shells.
  • An insulation member 65 may be installed between the inner surface of the outer shell 62 and the second flange 63b to block heat transfer.
  • the heat insulating member 65 may be made of glass fiber, and prevents the temperature of the inner shell 61 from being transferred to the outer shell 62 by the support 63.
  • a heat insulating member such as glass fiber is disposed at the end of the support 63 in contact with the outer shell 62 and then fixed by welding, or a separate heat insulating member is provided.
  • the storage container 60 of the liquefied natural gas according to the present invention has a lower support 66 installed in a lower space between the inner shell 61 and the outer shell 62 to support the inner shell 61 and the outer shell 62.
  • the lower support 66 is the third and fourth flanges supported on the outer surface of the inner shell 61 and the inner surface of the outer shell 62 and the second web provided between the third and fourth flanges, respectively.
  • the second web may include a plurality of gratings having both ends fixed to the third and fourth flanges, respectively, and for these components, the support 63 may be different from the specific shape according to the installation position.
  • the contrasting components are the same.
  • a heat insulating member (not shown) may be installed between the inner surface of the outer shell 62 and the fourth flange to block thermal shear.
  • the heat insulating member may be made of glass fiber.
  • the heat insulation layer part 64 is installed in the space between the inner shell 61 and the outer shell 62, and is made of a heat insulating material to reduce heat transfer.
  • the heat insulating layer portion 64 may be designed so that the same pressure as the pressure in the inner shell 61 is applied, where the same pressure as the pressure in the inner shell 61 does not mean exactly the same,
  • the insulation layer 64 and the inside of the inner shell 61 are connected to each other as in the previous embodiment shown in FIG. 12 to balance pressure between the inside and outside of the inner shell 61. (54; shown in FIG. 12), and the connection flow path 54 has been described in detail in the previous embodiment, and thus description thereof will be omitted.
  • the heat insulating layer portion 64 may be made of a heat insulating material (eg, perlite) in the form of grains (eg, perlite) that may pass through the support 63, particularly the web 63 c of the grating structure. Therefore, when filling, the insulating layer 64 in the form of particles may be freely mixed and filled so that a gap does not occur between the inner shell 61 and the outer shell 62 so that the thermal insulation performance may be excellent.
  • a heat insulating material eg, perlite
  • grains eg, perlite
  • the support 63 and the lower support 66 of the grating support structure system is filled, the particle flow of the heat insulating layer 64 is freed, and thus, the heterogeneity of the heat insulating layer 64 may be prevented.
  • the storage vessel 70 of the liquefied natural gas according to the fifth embodiment of the present invention may also be installed in the transverse direction, in which case the lower support 66 in the previous embodiment (Fig. 16). ) Can be omitted.
  • 20 is a cross-sectional view showing a storage container of liquefied natural gas according to a sixth embodiment of the present invention.
  • the storage container 80 for liquefied natural gas surrounds the inner shell 81 and the outer shell 81 in which the liquefied natural gas is stored inside.
  • a heat insulation layer 84 is provided between the outer shells 82 to reduce heat transfer, and the outer surface of the inner shell 81 and the inner surface of the outer shell 82 are connected by the metal core 83.
  • the connection portion (not shown) is integrally connected to the entrance and exit of the inner shell 81 may protrude to the outside of the outer shell 82, such An external member such as a valve may be connected to the connection portion.
  • the inner shell 81 forms a space for storing liquefied natural gas inside, and has a low temperature property such as aluminum, stainless steel, 5-9% nickel steel, etc. It may be made, as in the present embodiment may be made in the form of a tube, or may have a variety of shapes, including other polyhedra.
  • the outer shell 82 surrounds the outer side of the inner shell 81 to form a space between the inner shell 81 and may be made of a steel material to withstand the internal pressure. By sharing the applied internal pressure to reduce the material of the inner shell 81 can reduce the production cost.
  • the inner shell 81 Since the inner shell 81 is equal to or close to the pressure of the inner shell and the heat insulating layer by the connecting flow path, the pressure of the liquefied natural gas can be supported by the outer shell. Therefore, even if the inner shell 81 is manufactured to withstand temperatures of -120 to -95 ° C, the pressure (13-25 bar) and the temperature conditions described above by the inner shell and the outer shell, for example, the pressure of 17 bar and -115 ° C It is possible to store the pressurized liquefied natural gas having a temperature of, and may be designed to satisfy the above pressure and temperature conditions in an assembled state of the outer shell 82, the metal core 83, and the heat insulating layer 84. .
  • the pressure received by the inner shell and the outer shell can be almost the same by the connecting flow path in the normal state, so there is almost no difference.However, in case of emergency venting of the storage container, the inner shell of the inner shell is full. Since the pressure difference on the outside may be about 0.5 bar, the inner shell may be manufactured to withstand the pressure of about 0.5 bar.
  • the metal core 83 is connected to the outer surface of the inner shell 81 and the inner surface of the outer shell 82 so that the inner shell 81 and the outer shell 82 are supported by each other, and the inner shell 81 and the outer shell are supported. It may be installed along the side circumference of the shell 82, as in the present embodiment may be installed in a plurality of spaced up and down at the side of the inner shell 81 and the outer shell 82.
  • the metal core 83 may be made of a wire such as a steel wire.
  • the metal core 83 is connected to, for example, a plurality of rings provided on the outer surface of the inner shell 81 and the inner surface of the outer shell 82, or fastened or welded to the support points 83a provided in the plurality.
  • the inner shell 81 and the outer shell 82 may be connected in various ways.
  • the metal core 83 is connected to two support points 83a of the adjacent outer shell 82 while one support point 83a of the inner shell 81 is connected to the outer shell 82.
  • One support point 83a may be repeatedly installed to be connected to two support points 83a of the adjacent inner shell 81, and may be connected to be arranged in a zigzag along the circumference between the inner shell 81 and the outer shell 82.
  • the number of connections to the number can vary.
  • the storage container 80 of liquefied natural gas according to the present invention has a lower support 86 installed in a lower space between the inner shell 81 and the outer shell 82 to support the inner shell 81 and the outer shell 82.
  • the lower support 86 may include a flange which is respectively supported on the outer surface of the inner shell 81 and the inner surface of the outer shell 82, and a web provided between the flanges, both ends of the web on the flange It may be composed of a plurality of gratings each fixed, these components are the same as the lower support 66 of the storage container 60 of the liquefied natural gas according to the fourth embodiment will be omitted.
  • the heat insulation layer part 84 is installed in the space between the inner shell 81 and the outer shell 82, and is made of a heat insulating material to reduce heat transfer.
  • the structure or material design may be made so that the same pressure as the pressure in the inner shell 81 is applied to the heat insulating layer portion 84, where the same pressure as the pressure in the inner shell 81 is the same in strict meaning. It also includes cases of minor differences.
  • the heat insulating layer 84 and the inner shell 81 are connected to the connecting flow path 54 (shown in FIG. 12) as in the previous embodiment shown in FIG. 12 to balance the pressure between the inner shell 81 and the outer side. It can be connected to each other by, and since the connection flow path 54 has been described in detail in the previous embodiment will not be described.
  • the heat insulation layer part 84 may be made of a heat insulating material having a grain shape that may pass through the metal core 83. Therefore, when filling, the insulating layer 84 in the form of particles can be freely mixed and filled, so that a gap does not occur between the inner shell 81 and the outer shell 82, thereby preventing the heterogeneity of the insulating layer 84 from being excellent. Have insulation performance.
  • the storage vessel 90 of the liquefied natural gas according to the present invention may be installed in the transverse direction, in which case the lower support 86 (FIG. 20) in the previous embodiment may be omitted. have.
  • FIG. 23 is a block diagram showing a storage container of liquefied natural gas according to an eighth embodiment of the present invention.
  • the storage container 510 of the liquefied natural gas surrounds the inner shell 511 and the outer shell of the inner shell 511 in which the liquefied natural gas is stored.
  • the inner space of the inner shell 511 and the space between the inner shell 511 and the outer shell 512 is connected to each other by the equalizing line 514.
  • the insulating layer 513 may be installed between the inner shell 511 and the outer shell 512.
  • the inner shell 511 forms a space for storing the liquefied natural gas therein, and a metal having excellent low temperature characteristics such as aluminum, stainless steel, 5-9% nickel steel, etc. It may be made in the form of a tube, as in the present embodiment, or may have various shapes including other polyhedrons.
  • the inner shell 511 is equal to or close to the pressure of the inner shell and the heat insulating layer by a connection flow path (or an equalizing line to be described later), the pressure of the liquefied natural gas can be supported by the outer shell. Therefore, even when the inner shell 511 is manufactured to withstand temperatures of -120 to -95 ° C, the above-described pressure (13-25 bar) and temperature conditions, for example, a pressure of 17 bar and -115 ° C by the inner shell and the outer shell. It is possible to store the pressurized liquefied natural gas having a temperature of, and may be designed to satisfy the above pressure and temperature conditions in an assembled state of the outer shell 512 and the insulating layer portion 513.
  • the pressure received by the inner shell and the outer shell can be almost the same by the connecting flow path (or equalizing line) in the normal state, so there is almost no difference.
  • the pressure of the storage container is suddenly exhausted (full vent).
  • There may be a pressure difference between the inner and outer pressure of the inner shell may be about 0.5bar, so the inner shell may be manufactured to withstand the pressure of about 0.5bar.
  • a first exhaust line 515 is connected to the upper portion of the inner space of the inner shell 511 and extends to the outside, and a first exhaust valve 515a is installed in the first exhaust line 515 to open and close the flow of gas. . Therefore, the first exhaust line 515 allows the gas to be discharged from the inner space of the inner shell 511 to the outside by opening the first exhaust valve 515a.
  • first and second connection parts 516a and 516b are connected to the upper and lower ends of the inner space of the inner shell 511 to protrude outward through the outer shell 512. Accordingly, the unloading line 8 connected to the second connecting portion 516b allows the liquefied natural gas to be loaded into the inner shell 511 through the loading line 7 connected to the first connecting portion 516a. Through the inner shell 511 to be able to unload the liquefied natural gas inside. Meanwhile, valves 7a and 8a may be installed in the docking line 7 and the unloading line 8, respectively.
  • the outer shell 512 surrounds the outside of the inner shell 511 to form a space between the inner shell 511 and is made of a steel material to withstand the internal pressure, and is applied to the inner shell 511. To reduce the manufacturing cost by reducing the material of the inner shell 511 by sharing the internal pressure.
  • the inner shell 511 may be formed to have a smaller thickness than the thickness of the outer shell 512, thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing the storage container 510.
  • the heat insulation layer part 513 is installed in the space between the inner shell 511 and the outer shell 512, and is made of a heat insulating material to reduce heat transfer.
  • a structure or a material design may be made to apply a pressure equal to the pressure in the inner shell 511 to the heat insulation layer part 513.
  • the equalizing line 514 connects the inner space of the inner shell 511 and the inner space of the inner shell 511 and the outer space by connecting the space between the inner shell 511 and the outer shell 512 to each other. This minimizes the pressure difference between the inner pressure of the inner shell 511 and the inner shell 511 and the outer shell 512 so that these pressures can be balanced. Accordingly, the pressure difference between the inner and outer sides of the inner shell 511 is minimized, thereby reducing the pressure applied to the inner shell 511, thereby reducing the thickness of the inner shell 511, thereby reducing the thickness of the inner shell 511. It is possible to reduce the use of metal, to prevent structural defects caused by the internal pressure of the inner shell 511, and to provide a storage container 510 having excellent durability.
  • Equalizing line 514 may be formed so that a portion is exposed as a bar of the outer shell 512, this configuration is equalized to the liquefied natural gas stored in the storage vessel the equalizing line 514 Since the liquefied natural gas stored inside the inner shell 511 overflows to the outer space of the inner shell 511 because it is formed to be high in the height direction.
  • the LNG when the storage container is loaded on the LNG carrier, the LNG is prevented from overflowing into the heat insulating layer by rolling the carrier or by sloshing the LNG.
  • the equalizing line 514 one end is in communication with the inner side of the inner shell 511 and the other end is in communication with the space between the inner shell 511 and the outer shell 512, the other end is Preferably, the outer shell 512 is positioned at a half point of the space h of the space.
  • Equalizing line 514 may be exposed to the outside of the outer shell 512, the insulation for insulating at least one of the inside or the outside of the equalizing line 514 to prevent heat loss through the equalizing line. It is preferable to perform the treatment. In addition, since low-temperature natural gas may flow inside the equalizing line 514, it is preferable to use a metal having excellent low-temperature characteristics as in the inner shell.
  • equalizing line 514 is exposed to the outside of the outer cell 512 can be fixed by welding between the equalizing line 514 and the outer shell 512, the outer shell 512 side of the welded portion An equalizing line flange 519 is formed to be welded to the equalizing line 514.
  • the equalizing line flange 519 is in contact with the equalizing line 514, it is preferable to use a metal having excellent low-temperature characteristics similar to the equalizing line 514, and is fixed to the outer shell 512 by welding.
  • a support 517 may be installed in a space between the inner shell 511 and the outer shell 512 to support the inner shell 511 and the outer shell 512.
  • the support 517 structurally reinforces the inner shell 511 and the outer shell 512, and may be made of a metal to withstand low temperature of liquefied natural gas, and the inner shell 511 and the outer shell 512 may be formed of a metal.
  • Along the side circumference may be installed as a single, as in the present embodiment may be installed in a plurality of spaced apart up and down at the sides of the inner shell 511 and the outer shell 512.
  • a lower support 518 may be installed in a lower space between the inner shell 511 and the outer shell 512 to support the inner shell 511 and the outer shell 512.
  • the support 517 and the lower support 518 like the support 63 shown in FIG. 18, have flanges supported on the inner surfaces of the inner shell 511 and the outer shell 512, respectively, and webs provided between these flanges. It may include, the web may be made of a plurality of gratings, both ends of which are fixed to each of the flange, a heat insulating member such as glass fiber to block heat transfer between the outer shell 512 and the flange may be installed.
  • the support 517 is connected to the inner surface of the inner shell 511 and the outer surface of the outer shell 512, similar to the metal core 83 shown in FIG. 20, the inner shell 511 and the outer shell 512. ) Can be supported by each other.
  • a fluid such as natural gas or boil-off gas
  • the second exhaust line 514c having the second exhaust valve 514b installed in the equalizing line 514 is provided.
  • the gas inside the inner shell 511 may be discharged to the outside through the equalizing line 514 and the second exhaust line 514c by opening the second exhaust valve 514b. Therefore, it is possible to avoid a complicated process for connecting the exhaust line to the inner shell 511, to maintain structural stability and to easily install the exhaust line.
  • 26 is a cross-sectional view showing a storage container of liquefied natural gas according to an eleventh embodiment of the present invention.
  • the storage container 100 for liquefied natural gas includes an inner shell 110 and an inner shell 110 formed of a metal for enduring low temperature of the liquefied natural gas.
  • Insulation layer portion 130 for reducing heat transfer is installed between the outer shell 120 surrounding the outside, and the connection portion 140 is provided on the inner shell 110 and the outer shell 120, the connection portion 140
  • a first flange 142 is provided at the end of the injection portion 141 extending outward from the inner shell 110 to be flanged in contact with the valve 4, and the injection portion 141 is provided from the outer shell 120.
  • a second flange 144 is formed at the end of the extension 143 extending to surround the valve (4) for flange connection to the valve (4).
  • the inner shell 110 forms a space for storing the liquefied natural gas inside, and has a low temperature characteristic such as aluminum, stainless steel, 5-9% nickel steel, etc. It may be made in the form of a tube, as in the present embodiment, or may have various shapes including other polyhedrons.
  • the outer shell 120 surrounds the outer side of the inner shell 110 to form a space between the inner shell 110 and may be made of a steel material to withstand the internal pressure and applied to the inner shell 110.
  • the paper to reduce the material of the inner shell 110 by sharing the internal pressure to reduce the manufacturing cost.
  • the inner shell 110 Since the inner shell 110 has a pressure equal to or close to that of the inner shell and the insulation layer due to the connection flow path, the pressure of the liquefied natural gas can be supported by the outer shell. Therefore, even if the inner shell 110 is manufactured to withstand temperatures of -120 to -95 ° C, the pressure (13 to 25bar) and temperature conditions described above, for example, the pressure of 17bar and -115 ° C by the inner shell and the outer shell. It is possible to store the pressurized liquefied natural gas having a temperature of, and may be designed to satisfy the above pressure and temperature conditions in an assembled state of the outer shell 120 and the heat insulating layer 130.
  • the inner shell 110 may be formed to have a smaller thickness than the thickness of the outer shell 120, thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing.
  • the heat insulating layer 130 is installed in the space between the inner shell 110 and the outer shell 120, and is made of a heat insulating material to reduce heat transfer.
  • the structure or material design may be made so that the same pressure as the pressure in the inner shell 110 is applied to the heat insulating layer 130, where the same pressure as the pressure in the inner shell 110 is the same in the exact sense. But a bit of pressure is also relevant.
  • connection flow path may include various embodiments capable of providing a flow path such as a hole, a pipe, or the like, and may include, for example, a hole formed in the injection part 141 of the connection part 140. Therefore, the pressure in the inner shell 110 is moved to the heat insulation layer portion 130 side through the connection flow path so that the internal pressure of the inner cell 110 and the internal pressure of the heat insulation layer portion 130 are balanced.
  • the pressure received by the inner shell and the outer shell is almost the same by the connecting flow path in the normal state, so there is almost no difference.However, in case of emergency venting of the storage vessel (full vent), the inner and outer shells of the inner shell are full. Since the pressure difference can be about 0.5 bar, the inner shell may be manufactured to withstand a pressure of about 0.5 bar.
  • connection part 140 is connected to the flow path between the injection part 141 and the valve 4 by the first flange 142 is in direct contact with the valve 4 and flanged by the bolt 181 and the nut 182. Since the injection portion 141 and the first flange 142 directly contact the liquefied natural gas, the same material as that of the inner shell 110, for example, a metal having excellent low temperature characteristics, such as aluminum, stainless steel, 5-9% nickel steel, or the like. Can be done.
  • the connecting portion 140 as in the present embodiment, the extension portion 143 wraps the outside of the injection portion 141 at intervals, the second flange 144 is sandwiched between the first flange 142 valve 4 ) May be flanged to the bolt 181 and the nut 182, and the extension 143 and the second flange 144 may be made of steel.
  • connection part 150 is integrally formed with the injection part 151 by screwing the first flange 152 to the injection part 151.
  • connection part 160 may allow the first flange 162 to be fixed to the injection part 161 with a fastening member 163 such as a bolt or a screw.
  • the fastening member 163 may be fastened in a circumferential direction to the coupling portion 163a formed at the end of the injection portion 161 through the first flange 162.
  • the female thread line is machined on the coupling part 163a and the first flange 162, and the first flange is bolted with a separate male thread line. 162 and the injection section 161a, where the head of the bolt with male thread can accommodate the head of the bolt in the first flange 162 to avoid interference with the surrounding members.
  • the shape of the shape can be processed.
  • the head of the bolt is configured to come out of the first flange as shown in Figure 28 (b) so as to accommodate the head of the bolt on the valve 4 side to avoid interference between the head of the bolt and the surrounding members
  • the bolt head shape should be machined and fastened to the first flange.
  • connection portion 170 is formed by the bolt 181 and the nut 182 with the second flange 174 positioned at the edge of the first flange 172 and in contact with the valve 4.
  • Flange can be connected.
  • the first flanges 172 may be coupled to each other only by bolts 183 to the valve 4.
  • FIG. 30 is an enlarged view illustrating main parts of a storage container of liquefied natural gas according to a twelfth embodiment of the present invention.
  • the storage container 520 of the liquefied natural gas surrounds the inner shell 521 and the outer shell of the inner shell 521 in which the liquefied natural gas is stored.
  • a buffer part 525 is provided to cushion the heat shrink between the inner shell 521 and the connection part 524 that includes an outer shell 522 and is connected to the outer injection part 9a and protrudes into the heat insulating layer part 523. Further, the heat insulation layer part 523 may be installed in the space between the inner shell 521 and the outer shell 522.
  • the inner shell 521 forms a space for storing the liquefied natural gas therein, and has a low temperature characteristic such as aluminum, stainless steel, 5 to 9% nickel steel, etc. It may be made in the form of a tube, as in the present embodiment, or may have various shapes including other polyhedrons.
  • the outer shell 522 surrounds the outer side of the inner shell 521 so as to form a space between the inner shell 521 and is made of a steel material to withstand the internal pressure, and is applied to the inner shell 521.
  • the inner shell 521 is equal to or close to the pressure of the inner shell and the heat insulating layer by the connection flow path, the pressure of the liquefied natural gas can be supported by the outer shell. Therefore, even if the inner shell 521 is manufactured to withstand temperatures of -120 to -95 ° C, the above-described pressure (13-25 bar) and temperature conditions by the inner shell and the outer shell, for example, the pressure of 17 bar and -115 ° C It is possible to store the pressurized liquefied natural gas having a temperature of, and may be designed to satisfy the above pressure and temperature conditions in a state in which the outer shell 522 and the heat insulation layer part 523 are assembled.
  • the pressure received by the inner shell and the outer shell is almost the same by the connecting flow path in the normal state, so there is almost no difference.However, in case of emergency venting of the storage vessel (full vent), the inner and outer shells of the inner shell are full. Since the pressure difference can be about 0.5bar, the inner shell may be manufactured to withstand the pressure of about 0.5bar.
  • the inner shell 521 may be formed to have a smaller thickness than the thickness of the outer shell 522, thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing the storage container 520.
  • the heat insulation layer part 523 is installed in the space between the inner shell 521 and the outer shell 522, and is made of a heat insulating material to reduce heat transfer.
  • a structure or a material design may be made to apply the same pressure as the pressure in the inner shell 521 to the heat insulation layer part 523.
  • connection part 524 is provided to protrude from the inner shell 521, is connected to the injection hole 521a side formed to inject liquefied natural gas from the inner shell 521, protrudes outward, and liquefies to the inner shell 521. It may be connected to the external injection unit 9a for injecting natural gas, and may be connected to the inner shell 521 through the buffer unit 525. At this time, the outer shell 522 is provided with an extension portion 522a on one side to surround the connection portion 524, for example, the end of the extension portion 522a is connected to the external injection portion 9a together with the connection portion 524. Can be.
  • the buffer part 525 is provided to cushion the heat shrink between the inner shell 521 and the connection part 524 to cushion the heat shrinkage generated in the inner shell 521 to prevent concentration of the load in the connection part 524. do.
  • shock absorbing portion 525 may be formed in the form of a pipe forming the joint 525b so that both ends are connected to the inlet 521a and the connecting portion 524 of the inner shell 521 by a flanged joint or the like as in the present embodiment.
  • the buffer part 525 may be formed to be integrated between the inner shell 521 and the connection part 524.
  • the buffer part 525 may have a loop 525a.
  • the loop 525a may be formed in a single shape, and the planar shape may be polygonal, for example, quadrangular.
  • the shock absorbing portion 526 is composed of a single loop 526a, the planar shape of which may be circular, as shown in (b) of FIG. 527 may have a coil shape including a plurality of loops 527a, and the coil may have a rhombic shape in which a width thereof decreases from the center portion to the both ends thereof. Accordingly, the impact due to heat shrinkage of the inner shell 521 by the loops 526a and 527a is alleviated.
  • 33 is a block diagram showing an apparatus for producing liquefied natural gas according to the present invention.
  • a heat exchanger 230 is installed in each of the first branch lines 221 branched from the supply line 220 of natural gas, respectively, and the heat exchanger 230. Cools the natural gas supplied through the first branch line 221 using the refrigerant supplied from the refrigerant supply unit 210 and removes the carbon dioxide condensed on each of the heat exchangers 230 by the regeneration unit 240. Regeneration fluid is supplied in place of natural gas.
  • Apparatus 200 for producing liquefied natural gas according to the present invention is not only liquefied natural gas, but also pressurized liquefied natural gas pressurized at a constant pressure, for example, pressurized liquefied natural cooled to -120 to -95 ° C at a pressure of 13 to 25 bar. It can also be used for the production of gases.
  • the refrigerant supply unit 210 supplies the refrigerant for heat exchange with natural gas to the heat exchanger 230 so that the natural gas is liquefied in the heat exchanger 230.
  • the heat exchanger 230 is installed in each of the first branch line 221 branched from the supply line 220 of the natural gas to a plurality of them are connected in parallel to each other, the refrigerant is supplied to the natural gas supplied from the supply line 220 Cooling by heat exchange with the refrigerant supplied from the supply unit 210, so that the total capacity exceeds the liquefied natural gas production amount it is possible to maintain one or a plurality of atmospheric conditions during the production of the liquefied natural gas.
  • the number and capacity of the heat exchanger 230 may be determined in consideration of the liquefied natural gas production of the entire plant, for example, in the case of the heat exchanger 230 that can cover 20% of the total liquefied natural gas production A stand can be provided, five of them can be operated, and the rest can be kept in a standby state. This configuration allows the carbon dioxide to be shut down for the frozen heat exchanger and the standby heat exchanger can be operated while the frozen carbon dioxide is removed, thereby keeping the total yield of liquefied natural gas in the entire plant constant.
  • the regeneration unit 240 selectively supplies each of the heat exchangers 230 with a regeneration fluid for removing condensed carbon dioxide in place of natural gas.
  • the regeneration unit 240 is a regeneration fluid supply unit 241 for supplying a regeneration fluid and a regeneration fluid connected to the front and rear ends of the heat exchanger 230 in each of the first branch lines 221 from the regeneration fluid supply unit 241.
  • a first valve 243 installed at a front end and a rear end of a fluid line 242 and a portion where the regeneration fluid line 242 is connected at each of the first branch lines 221, and a heat exchanger at the regeneration fluid line 242.
  • the second valve 244 may be installed at the front and rear ends of each of the groups 230.
  • the regeneration fluid supply unit 241 may use, for example, high temperature air as the regeneration fluid, and supply the high temperature air to the heat exchanger 230 using pressure or pumping force to convert the condensed carbon dioxide into a liquid or gas state. It can be removed by changing the phase.
  • the apparatus 200 for producing liquefied natural gas includes a heat exchanger 230 for checking the freezing of carbon dioxide for each of the heat exchangers 230 and controlling supply of regeneration fluid to each of the heat exchangers 230.
  • the control unit 260 may further include a control unit.
  • the control unit 260 checks the heat exchanger 230 in which freezing of carbon dioxide is generated from the detection signal output from the detection unit 250, and in order to supply the regeneration fluid to the heat exchanger 230, first, the first valve ( Blocking the supply of natural gas to the heat exchanger 230 by blocking 243, the regeneration fluid is supplied to the heat exchanger 230 by driving the regeneration fluid supply unit 241 and opening of the second valve 244, Carbon dioxide frozen in the heat exchanger 230 by the regeneration fluid is liquefied or vaporized to be removed. On the other hand, the control unit 260 may count the regeneration fluid by the timer to supply the heat exchanger 230 until the set time is over.
  • the sensing unit 250 may be formed as a flow meter for measuring the flow rate of the liquefied natural gas that is installed at the rear end of the heat exchanger 230 in each of the first branch lines 221 as in this embodiment. Therefore, when the flow rate value measured by the detector 250, which is a flow meter, is lower than or equal to the set value, it may be determined that freezing of carbon dioxide occurs in the corresponding heat exchanger 230.
  • the detection unit 250 may be installed in each of the first branch lines 221, and may be configured as a carbon dioxide measuring device for measuring the content of carbon dioxide contained in the gas at the front and rear ends of the heat exchanger 230.
  • the difference in the amount of carbon dioxide contained in the gas measured at the front and rear of the unit 230 is greater than or equal to the set amount, it may be determined that freezing of the carbon dioxide occurs in the heat exchanger 230.
  • Apparatus 200 for producing liquefied natural gas is a refrigerant line 211 for supplying a refrigerant from the refrigerant supply unit 210 to the heat exchanger 230 in order to stop the operation of the heat exchanger 230 in which freezing of carbon dioxide has occurred.
  • a third valve 270 installed at a front end and a rear end of each of the heat exchangers 230.
  • the third valve 270 may be controlled by the control unit 260, for example, the control unit 260 is the front end and the rear end of the heat exchanger 230, the carbon dioxide is frozen through the detection unit 250 By blocking the third valve 270 positioned in the to stop the operation of the heat exchanger 230 in which carbon dioxide is frozen.
  • 34 and 35 are side and front views of a floating structure having a storage tank carrying device according to the present invention.
  • the floating structure 300 having the storage device carrying device according to the present invention is a storage device carrying device on the floating structure 320 is installed to float on the sea by buoyancy 310 is installed.
  • the floating structure 320 may be a structure made of a barge type, or a vessel capable of sailing using its own thrust.
  • the rail 312 is provided along the moving direction of the storage tank 330 on the mounting table 311a which is lifted by the lifting unit 311, and the storage tank ( The transport cart 313 on which the 330 is loaded is installed to be movable along the rail 312.
  • the storage device 310 of the storage tank according to the present invention has been shown to be installed in the floating structure 320 as in this embodiment, it is not limited thereto, and may be fixed to the ground or installed in various other transportation devices.
  • the storage tank 330 may store liquefied natural gas or liquefied natural gas pressurized at a constant pressure, and various cargoes may be stored.
  • the pressurized liquefied natural gas may be a natural gas liquefied at a pressure of 13 ⁇ 25bar and a temperature of -120 ⁇ -95 °C, for the storage of the pressurized liquefied natural gas storage tank 330 at low temperature and pressure It can be made of a material and a structure to sufficiently endure.
  • the storage tank 330 is manufactured in a dual structure to store the liquefied natural gas or the liquefied natural gas pressurized at a constant pressure, and as described above, the internal pressure of the dual structure and the pressure inside the storage tank 330 are balanced. It is also possible to have a connection channel between the dual structure of the storage tank and the interior of the storage tank to achieve.
  • the pressure received by the inner shell and the outer shell is almost the same due to the connection flow path in the normal state, so there is almost no difference.
  • the pressure difference between the inside and the outside may be about 0.5 bar
  • the inner shell may be manufactured to withstand the pressure of about 0.5 bar.
  • the elevating unit 311 elevates the mounting table 311a up and down.
  • the lifting section 311a may elevate the mounting table 311a from the floating structure 320 to the upper surface of the quay wall 5.
  • the mounting table 311a may be installed by moving downwards on the hinge coupling portion 311c of the lower end on one side or both sides to open the moving platform 311b to provide a movement path of the transport cart 313. .
  • the moving scaffold 311b serves to limit the movement of the conveyance trolley 313 when folded upward, and when the loading table 311a is raised to the same height as the height of the quay wall 5 by the elevating portion 311.
  • the transport cart 313 serves to safely move to the land by helping the connection between the quay wall 5 and the loading table 311a.
  • the movable footrest 311b may be provided with an auxiliary rail 311d connected to the rail 312 on a surface facing upward when unfolded downward.
  • the lifting unit 311 may be used in various structures and actuators for the lifting of the mounting table 311a, for example, a plurality of coupling slidingly coupled to the upper and lower to the lower portion of the mounting table 311a
  • a plurality of coupling slidingly coupled to the upper and lower to the lower portion of the mounting table 311a
  • the link member By connecting to the lower portion of the member or the mounting table 311a to each other by the link member can be installed so that the mounting table 311 is movable up and down by a plurality of link members, such as stretched up and down in the rotational direction, for a linear motion
  • the mounting table 311a may be raised and lowered by using an actuator such as a motor that provides a driving force or a cylinder operated by hydraulic pressure.
  • the rail 312 is installed along the moving direction of the storage tank 330 on the mounting table 311a, and is formed in a pair, and has the same width as the rail (not shown) of the train located on the inner wall 5. It can be arranged side by side to have. Therefore, when the conveyance trolley 313 raised by the elevating part 311 to the upper surface of the quay wall 5 moves along the rail 312 and moves to the rail on the quay wall 5, it is remoted by a land transportation device such as a train. It is possible to move.
  • the transport cart 313 is provided with a plurality of wheels 313a movable along the rails 312 at the lower part, and a storage tank 330 is loaded at the upper part, and one or both sides for connection of other transport carts 313.
  • the connection portion may be provided.
  • the transport cart 313 is equipped with a storage tank 330 may be provided with a tank guard 313b of steel material to protect the storage tank 330 from corrosion and external impact on the upper surface.
  • the feed cart 313 may be moved along the rail 312 by driving the winch, for example, by being connected to the winch through a cable, but not limited thereto, and conveying a rotational force to some or all of the wheels 313a.
  • the driving unit (not shown) may travel along the rail 312 by magnetic force.
  • FIG. 37 is a block diagram showing a high pressure maintaining system of the pressurized liquefied natural gas storage container according to the present invention.
  • the high-pressure holding system 400 of the pressurized liquefied natural gas storage container according to the present invention is connected to the storage tank 6 of the consumer from the storage vessel 411 to enable the unloading of the pressurized liquefied natural gas Including the unloading line 410, the supply of a portion of the pressurized liquefied natural gas to be unloaded through the unloading line 410 to the storage container 411, for this purpose, the pressure supplement line 420 and the evaporator 430 ) May be further included.
  • the unloading line 410 is connected to the storage tank 6 of the consumer from the storage container 411 to enable the unloading of the pressurized liquefied natural gas, and pressurized liquefied natural only by the pressure of the pressurized liquefied natural gas stored in the storage container 411. It is possible to allow the gas to be unloaded into the storage tank 6. It is installed so that the loading line 410 extends from the upper portion to the lower portion of the storage tank 6 so that the pressurized liquefied natural gas can be unloaded to the storage tank 6 only by the pressure of the pressurized liquefied natural gas stored in the storage container 411. In addition, it is possible to minimize the generation of boil-off gas.
  • the unloading line 411 is connected to the lower part of the storage tank 6 to further reduce the amount of boil-off gas generated at the time of unloading, the pressurized liquefied natural gas is loaded from the lower part of the storage tank, thereby reducing the amount of vaporized gas.
  • a pump since only the pressure of the pressurized liquefied natural gas stored in the storage container 411 may be insufficient to reliably unload the pressurized liquefied natural gas to the storage tank 6, a pump must be additionally installed in the unloading line.
  • Pressure supplement line 420 is branched from the unloading line 410 is connected to the storage container 411, the evaporator 430 is installed.
  • the pressure filling line 420 may be connected to the upper portion of the storage container 411, so that the natural gas supplied to the storage container 411 through the pressure filling line 420 is pressurized in the storage container 411.
  • the pressure reduction of the storage container 411 is reduced by minimizing liquefaction by contact with natural gas.
  • the evaporator 430 vaporizes the pressurized liquefied natural gas supplied through the pressure supplement line 420 to be supplied to the storage container 411. Therefore, the natural gas vaporized by the evaporator 430 is supplied to the storage container 411 through the pressure supplement line 420 to increase the pressure in the storage container 411 which is reduced during the initial unloading of the pressurized liquefied natural gas. Therefore, the pressure in the storage container 411 is maintained above the bubble point pressure of the liquefied natural gas.
  • the high pressure maintaining system 400 of the pressurized liquefied natural gas storage container according to the present invention may further include an evaporation gas line 440 and a compressor 450 to recover the boil-off gas generated in the storage tank of the consumption place as the liquefied natural gas. Can be.
  • the boil-off gas line 440 is installed to supply the boil-off gas generated from the storage tank 6 to the storage container 411, and is connected to the lower portion of the storage container 411 to minimize the temperature change to the Increase recovery.
  • the compressor 450 is installed in the boil-off gas line 440 and compresses the boil-off gas supplied along the boil-off gas line 440 to be stored in the storage container 411. Therefore, while unloading the pressurized liquefied natural gas, the evaporated gas generated in the storage tank 6 is pressurized through the compressor 450 through the evaporation gas line 440 and then injected into the lower portion of the storage container 411 to condense. As a result, the transportation efficiency of the pressurized liquefied natural gas can be improved.
  • the evaporator 430 and the compressor 450 can be complemented with each other, the amount of boil-off gas generated in the storage tank 6 is increased. If not enough to maintain the pressure of the storage container 411, the load of the evaporator 430 increases, and if the evaporation gas is sufficient, the load of the evaporator 430 is reduced.
  • 38 is a block diagram showing a separate heat exchanger liquefaction apparatus according to a thirteenth embodiment of the present invention.
  • the heat exchanger separate type natural gas liquefaction apparatus 610 is liquefied by heat exchange with a refrigerant by a liquefaction heat exchanger 620 made of stainless steel.
  • the refrigerant is cooled by the refrigerant heat exchangers 631 and 632 made of aluminum to be supplied to the liquefaction heat exchanger 620.
  • the liquefaction heat exchanger 620 receives the natural gas through the liquefaction line 623 to liquefy by heat exchange with the refrigerant, and for this purpose, the liquefaction line 623 is connected to the first flow path 621 and the refrigerant circulation
  • the line 638 is connected to the second flow path 622 to allow the natural gas and the refrigerant passing through the first and second flow paths 621 and 622 to exchange heat with each other, and the entire portion may be made of stainless steel, but the present invention is not limited thereto.
  • the liquefied natural gas such as the first flow path 621 may be partially made of stainless steel for parts or parts that need to be in contact with or have to withstand cryogenic temperatures.
  • the liquefaction line 623 is provided with an on-off valve 624 at the rear end of the first flow path (621).
  • the refrigerant heat exchangers 631 and 632 may be formed of a plurality of, for example, the first and second refrigerant heat exchangers 631 and 632 as in the present embodiment, but are not limited thereto and may be formed in a single unit, and the whole portion may be made of aluminum. In this case, the contact of the refrigerant and, consequently, the part or part requiring heat transfer may be partially made of aluminum.
  • the refrigerant heat exchangers 631 and 632 may be included in the refrigerant cooling unit 630.
  • the refrigerant cooling unit 630 cools and supplies the refrigerant to the liquefaction heat exchanger 620 by the first and second refrigerant heat exchangers 631 and 632. For this purpose, the refrigerant cooling unit 630 discharges the liquefied heat exchanger 620.
  • the refrigerant is compressed and cooled by a compressor 633 and an after-cooler 634, and the refrigerant passing through the after-cooler 634 is separated by the separator 635 into a gaseous refrigerant and a liquid refrigerant,
  • the refrigerant is supplied to the first flow path 631a of the first refrigerant heat exchanger 631 and the first flow path 632a of the second refrigerant heat exchanger 632 by the gas phase line 638a, and the liquid refrigerant is supplied in the liquid phase.
  • a low pressure is inflated by a first JT (Joule-Thomson) valve 636a along a connecting line 638c via a second flow path 631b of the first refrigerant heat exchanger 631 by a line 638b. 1 is supplied to the compressor 633 via the third flow path 631c of the heat exchanger 631 for the refrigerant to repeat the compression and subsequent processes. .
  • JT Joule-Thomson
  • the refrigerant cooling unit 630 expands the high-pressure refrigerant passing through the first flow path 632a of the second refrigerant heat exchanger 632 to a low pressure by the second JT valve 636b to liquefy the heat exchanger (
  • the second flow path 632b of the second refrigerant heat exchanger 632 and the first refrigerant are expanded to a low pressure by the third JT valve 636c through the refrigerant supply line 637 and to be supplied to the 620.
  • the compressor 633 is supplied to the compressor 633 via the third flow path 631c of the heat exchanger 631.
  • the aftercooler 634 removes the heat of compression of the refrigerant compressed by the compressor 633 and liquefies a part of the refrigerant.
  • the first refrigerant heat exchanger 631 is configured to exchange the high temperature refrigerant before expansion supplied through the first and second flow passages 631a and 631b with the low temperature refrigerant after expansion supplied with the third flow passage 631c. Cool.
  • the second refrigerant heat exchanger 632 cools the high temperature refrigerant before expansion supplied through the first flow passage 632a by heat exchange with the low temperature refrigerant after expansion supplied to the second flow passage 632b.
  • the liquefied heat exchanger 620 cools and liquefies natural gas by supplying the low-temperature refrigerant expanded through the first and second heat exchangers 631 and 632 and the second J-T valve 636b.
  • 39 is a block diagram showing a separate heat exchanger liquefaction apparatus according to a fourteenth embodiment of the present invention.
  • the heat exchanger separated type natural gas liquefaction apparatus 640 according to the fourteenth embodiment of the present invention is similar to the heat exchanger separated type natural gas liquefaction apparatus 610 according to the thirteenth embodiment.
  • the liquefied heat exchanger 650 made of stainless steel and the liquefied heat exchanger 650 are liquefied by heat exchange with the refrigerant, and the refrigerant heat exchanger 661 is made of aluminum. It includes a refrigerant cooling unit 660 for cooling and supplying, the same configuration or parts as the heat exchanger separate type natural gas liquefaction apparatus 610 according to the thirteenth embodiment will be omitted, and the differences will be described.
  • the refrigerant cooling unit 660 compresses and cools the refrigerant discharged from the liquefaction heat exchanger 650 by the compressor 663 and the aftercooler 664 to the first flow path 661a of the refrigerant heat exchanger 661. And expand the refrigerant passing through the first flow path 661a of the refrigerant heat exchanger 661 by the expander 665 and supply the liquid refrigerant to the liquid heat exchanger 650 according to the operation of the flow distribution valve 666.
  • the compressor 633 is supplied to the compressor 663 via the second flow path 661b of the refrigerant heat exchanger 661.
  • the flow distribution valve 666 may be made of a three-way valve as in the present embodiment, alternatively may be made of a plurality of bidirectional valves.
  • the refrigerant heat exchanger 661 allows the high temperature refrigerant before expansion supplied through the first flow path 661a to be cooled by heat exchange with the low temperature refrigerant after expansion supplied through the second flow path 661b.
  • the low temperature refrigerant is distributed to the refrigerant heat exchanger 661 and the liquefaction heat exchanger 650 according to the operation of the flow rate distribution valve 666, and the liquefied heat exchanger 650 is a refrigerant heat exchanger 661.
  • the low temperature refrigerant through the expander 665 to liquefy the natural gas.
  • 40 and 41 are a front and side cross-sectional view showing a liquefied natural gas storage container carrier ship according to the present invention.
  • the liquefied natural gas storage container carrier 700 is a vessel for transporting a storage container in which the liquefied natural gas is stored, the cargo hold 720 provided in the hull 710 A plurality of first and second upper supports 730 and 740 for partitioning the upper portion of the cargo hold 720 into the plurality of openings 721 by being installed in a plurality of width and length directions at an upper portion thereof, and inserted into each opening 721.
  • the storage container 791 is supported by the first and second upper supports 730 and 740.
  • the storage container 791 stores not only general liquefied natural gas but also liquefied natural gas pressurized at a constant pressure, for example, pressurized liquefied natural gas having a pressure of 13 to 25 bar and a temperature of -120 to -95 ° C.
  • a double structure or a heat insulating member may be installed for this purpose, may be formed in a tube form or a cylinder form, and may have various other forms.
  • the cargo hold 720 may be provided so that the upper portion is opened to the hull 710, in which case the hull 710 may be utilized in the hull of the container ship. Therefore, the time required for manufacturing the LNG storage container carrier 700 can be reduced in cost.
  • the first and second upper supports 730 and 740 are installed in the width direction and the length direction in the upper portion of the cargo hold 720 so that the upper portion of the cargo hold 720 can be opened to the plurality of openings 721.
  • the storage container 791 is vertically inserted into and supported by the opening 721. That is, the first upper support 730 is installed in the width direction of the hull 710 on the upper portion of the cargo hold 720, a plurality of spaced apart along the longitudinal direction of the hull 710.
  • the second upper support 740 is installed in the longitudinal direction of the hull 710 on the upper portion of the cargo hold 720, a plurality of spaced apart along the width direction of the hull 710.
  • first and second upper supports 730 and 740 are formed so that a plurality of openings 721 are formed in the transverse direction and the vertical direction on the upper portion of the cargo hold 720, and fixed by welding to the upper end of the cargo hold 720, It may be fixed by a fastening member such as a bolt.
  • a plurality of support blocks 760 for supporting the side of the storage container 791 may be installed on some or all of the inner surfaces of the first and second upper supports 730 and 740 and the cargo hold 720.
  • the support block 760 may be provided to support the front, rear, left, and right sides of the storage container 791, respectively, and has a curvature corresponding to the curvature of the outer surface of the storage container 791 so as to stably support the storage container 791.
  • Surface 761 may be formed.
  • the lower support 750 is installed at the lower portion of the cargo hold 720 and supports the lower portion of the storage container 791 inserted into the opening 721.
  • the lower support 750 is installed at the bottom surface of the cargo hold 720 vertically upwardly.
  • the reinforcing member 751 for maintaining the gap between each may be further installed.
  • the lower support 750 and the reinforcing member 751 may be formed in one pair for each storage container 791, a plurality of storage containers 791 by being installed in a plurality of longitudinal and horizontal directions on the bottom surface of the cargo hold 720. ) To support the lower part.
  • the LNG carrier container ship 700 may use a Stanchion, a lashing bridge, etc. in the case of the container ship as it is, in order to support the storage container 791.
  • the second upper supporters 730 and 740 may be fixedly supported on the stanza and the lashing bridge.
  • the conventional container ship can be modified to enable the transport of the storage container 791 with only a few changes, and the container loading portion on the deck 711 to transport the container box 792 together with the storage container 791. There may be additional 770.
  • FIG. 43 is a block diagram showing a carbon dioxide solidification removal system according to the present invention.
  • the carbon dioxide solidification removal system 810 includes an expansion valve 812 for reducing the high pressure natural gas to a low pressure and a rear end of the expansion valve 812. And a solidification carbon dioxide filter 813 for filtering the frozen and solidified carbon dioxide present in the interior thereof, and a heating unit 816 for vaporizing the solidified carbon dioxide of the expansion valve 812 and the solidification carbon dioxide filter 813.
  • Carbon dioxide solidified from the natural gas liquefied by the filter 813 is filtered, and heat is supplied from the heating unit 816 while the supply of natural gas to the expansion valve 812 and the solidified carbon dioxide filter 813 is stopped. It can be supplied to regenerate and remove solidified carbon dioxide.
  • the expansion valve 812 is installed in the supply line 811 to which the high pressure natural gas is supplied, and liquefies the high pressure natural gas supplied through the supply line 811 to a low pressure.
  • the solidified carbon dioxide filter 813 is installed at the rear end of the expansion valve 812 in the supply line 811 and filters the carbon dioxide solidified by freezing from the liquefied natural gas supplied from the expansion valve 812.
  • a filter member for filtering is installed inside.
  • the expansion valve 812 and the solidified carbon dioxide filter 813 open and close the supply of the high pressure natural gas and the discharge of the low pressure liquefied natural gas by the first and second open / close valves 814 and 815.
  • the open / close valves 814 and 815 are installed at the front end of the expansion valve 812 and the rear end of the solidified carbon dioxide filter 813 in the supply line 811 to open and close the flow of natural gas, respectively.
  • the first on-off valve 814 opens and closes the high pressure natural gas supply to the expansion valve 812
  • the second on-off valve 815 opens and closes the discharge of the low pressure liquefied natural gas discharged from the solidified carbon dioxide filter 813.
  • the heating unit 816 provides heat to vaporize the solidified carbon dioxide of the expansion valve 812 and the solidified carbon dioxide filter 813, for example, the fruit for heat exchange with the expansion valve 812 and the solidified carbon dioxide filter 813.
  • Heat exchanger 816b installed in the heat supply line 816a to which the gas is circulated, and fourth and fifth open / close valves 816c installed at the front and rear ends of the regeneration heat exchanger 816b in the heat line 816a, respectively. 816d).
  • a third opening / closing valve 817 is installed in the discharge line 817a through which carbon dioxide is discharged to discharge carbon dioxide regenerated by the heating unit 816 to the outside.
  • the third open / close valve 817 discharges the carbon dioxide regenerated by the heating unit 816 to the discharge line 817a branching from the supply line 811 between the first open / close valve 814 and the expansion valve 812. It is installed to open and close.
  • the carbon dioxide solidification removal system 810 includes a plurality of first to third open / close valves 814, 815, 817 and a heating unit 816 such that some of the carbon dioxide is regenerated while some of the carbon dioxide is filtered.
  • the carbon dioxide solidification removal system 810 As illustrated in FIG. 44, the carbon dioxide solidification removal system 810 according to the present invention will be described based on any one of them.
  • the high pressure natural gas is supplied to the expansion valve 812 and the low pressure is expanded, the natural gas is cooled and the low pressure liquefied natural gas is supplied to the solidified carbon dioxide filter 813, and the solidified carbon dioxide contained in the liquefied natural gas by cooling is Filtered by a carbon dioxide filter 813.
  • the supply of the high pressure natural gas through the supply line 811 is stopped by closing the first and second open / close valves 814 and 815, and then the fourth and the second By opening and closing the five on / off valves 816c and 816d, the fruit is circulated to the regeneration heat exchanger 816b to supply heat to the expansion valve 812 and the solidified carbon dioxide filter 813 to regenerate the solidified carbon dioxide.
  • the regenerated carbon dioxide is removed by being discharged to the outside along the discharge line 817a by opening the third open / close valve 817.
  • the carbon dioxide solidification removal system 810 when the carbon dioxide solidification removal system 810 according to the present invention is composed of a plurality of, for example, two, the first to fifth open / close valves 814, 815, 817, 816c, and 816d to perform carbon dioxide filtering solidified from natural gas. Is controlled, and the other (II) has the opposite operation so that regeneration through the vaporization of the solidified carbon dioxide is performed.
  • the carbon dioxide solidification removal system 810 applies a low temperature method of freezing and separating carbon dioxide from the carbon dioxide removal method, thereby enabling the combination with the natural gas liquefaction process. In this case, the elimination of pretreatment carbon dioxide is not necessary, and thus a reduction in equipment occurs.
  • the solidified carbon dioxide is filtered with a solidifying carbon dioxide filter 813, which is a mechanical filter, and solidified
  • a plurality of solidified carbon dioxide filters 813 may be alternately used while simultaneously regenerating carbon dioxide.
  • 45 is a cross-sectional view showing a connection structure of a liquefied natural gas storage container according to the present invention.
  • connection structure 820 of the LNG storage container includes an inner shell 831 and an external injection portion 840 of the LNG storage container 830 having a dual structure.
  • the inner shell 831 and the outer injection portion 840 is slidingly coupled, and may include a sliding coupling portion 821 for this purpose.
  • the sliding coupling portion 821 is provided at the connection portion between the inner shell 831 and the outer injection portion 840, and is thermally contracted or thermally expanded to cushion the thermal contraction or thermal expansion of the inner shell 831 or the outer shell 832.
  • a connection portion of the inner shell 831 and the outer injection portion 840 may be provided to be slidable along the direction in which the displacement occurs.
  • the storage container 830 for example, liquefied natural gas is stored inside the inner shell 831, the outer shell 832 wraps the outside of the inner shell 831, the inner shell 831 and the outer shell ( An insulation layer portion 833 may be installed in the space between the 832 to reduce the temperature influence.
  • the inner shell 831 may be made of a metal having excellent low temperature characteristics such as aluminum, stainless steel, 5-9% nickel steel, etc., which can withstand the low temperature of a general liquefied natural gas.
  • the storage container 830 may be made of a steel material for the outer shell 832 to withstand the internal pressure, and the inside of the inner shell 831 and the insulating layer part 833 are located. It may have a structure for applying the same pressure to the space, the pressure of the inside of the inner shell and the heat insulating layer portion can be the same or approximated by the connection flow path connecting the inner shell and the heat insulating layer portion, for example.
  • the pressure of the pressurized liquefied natural gas inside the inner shell is supported by the outer shell, so that the pressure described above by the inner shell and the outer shell even if the inner shell is manufactured to withstand temperatures of -120 to -95 ° C. 25 bar) and temperature conditions, for example pressurized liquefied natural gas having a pressure of 17 bar and a temperature of -115 °C is possible.
  • the pressure received by the inner shell and the outer shell can be almost the same by the above-mentioned connection flow path in a normal state, so there is almost no difference.
  • the inner shell Since the pressure difference between the inside and the outside of the pressure may be about 0.5 bar, the inner shell may be manufactured to withstand the pressure of about 0.5 bar.
  • the storage container 830 may be designed to satisfy the above pressure and temperature conditions in a state where the outer shell and the heat insulating layer are assembled.
  • the sliding coupling portion 821 is a coupling portion 822 extending outward from the injection hole 831a formed for injection and discharge of liquefied natural gas into the inner shell 831 and a coupling portion protruding from the external injection portion 840 ( 823 may be formed by slidingly coupled to each other by the fitting method.
  • connection part 822 and the coupling part 823 are formed in a circular tube, and any one of them may be inserted into the other and slidably coupled thereto, but is not limited thereto.
  • Sliding coupling can be achieved by forming cross-sectional shapes corresponding to each other.
  • Connection structure 820 of the liquefied natural gas storage container according to the present invention may further include an extension portion 824 extending to surround the sliding coupling portion 821 from the outer shell 832. Therefore, the sliding coupling part 821 is exposed to the outside by the extension part 824, thereby preventing it from being affected by the external environment.
  • the extension part 824 may be flange-coupled to the external injection part 840 by forming a flange at an end thereof, thereby allowing the storage container 830 to be stably coupled to the external injection part 840.
  • the coupling portion 823 provided in the external injection portion 840 may be formed to be integral with the external injection portion 840, as in the present embodiment, on the other hand, is made of a separate member from the external injection portion 840 It may be fixed to the extension 824, it may be coupled to the outer injection portion 840 by a flange coupling or a variety of ways.
  • connection structure 820 of the liquefied natural gas storage container according to the present invention even if the load is concentrated on the connection portion between the inner shell 831 and the outer injection portion 840 by thermal contraction or thermal expansion
  • the connection part 822 and the coupling part 823 can be slidably moved to each other to buffer thermal contraction or thermal expansion, thereby preventing the load from being concentrated on the inner shell 831 and the external injection part 840, thereby thermal contraction or thermal expansion. To prevent damage.
  • the pressure of the heat insulation layer portion 833 and the pressure of the inner shell 831 are the same. It can also be approximated, which can also have the effect of replacing an equalizing line for maintaining the equivalent pressure of the inner layer and the inner layer as shown in FIGS. 23 to 25.
  • FIG. 48 is a view schematically showing a storage container of liquefied natural gas according to the present invention
  • FIG. 49 is a view schematically showing the structure of a storage container inner shell of liquefied natural gas according to the present invention
  • FIG. 52 is a view showing the various forms of the structure of the inner shell of the liquefied natural gas storage container according to the invention
  • Figure 51 is a view showing the various forms of the structure of the inner shell of the storage container of the liquefied natural gas according to the present invention
  • the storage container 900 of liquefied natural gas includes an inner shell 910, an outer shell 920, a support 930, and an insulating layer part 940. .
  • the storage container 900 of the present invention has an inner shell 910 and an outer shell 920 between an inner shell 910 in which liquefied natural gas is stored and an outer shell 920 surrounding the outer side of the inner shell 910.
  • the support 930 to support the and the heat insulation layer portion 940 to reduce heat transfer is installed.
  • connection portion (not shown) is integrally connected to the entrance and exit of the inner shell 910 may protrude to the outside of the outer shell 920, such An external member such as a valve may be connected to the connection portion.
  • Inner shell 910 may have a cylindrical (or tubular) shape with a corrugation structure 950, but may have various shapes including other polyhedrons.
  • the corrugation structure 950 formed in the inner shell 910 may have various bent portions 952 according to the cross-sectional shape of the corrugation, and may have one or more corrugations 951 having various bent portions 952.
  • One or more pleats 951 may determine the bend angle 953, pleat depth 954, pleat distance 955 to have the same shape throughout one inner shell 910 (FIG. 50A, 50A) b), (c)), the bending angle 953, the wrinkle depth 954, the wrinkle distance 955 may be determined such that some of them have different shapes or all of them have different shapes.
  • Various curved portions 952 may have various shapes such as an angled corner curved portion 9521, a rounded corner curved portion 9522, and a wavy curved portion 9523.
  • an inner shell 910 is illustrated in which four angled corner curved portions 9521 are formed in one corrugation 951, and a bending angle 953 of the angled corner curved portion 9521 is illustrated. If you configure a variety of will be able to have a wider variety of wrinkles.
  • the inner shell 910 is formed so that one or more wrinkles 951 are different from each other in the wrinkle depth 954 and the wrinkle distance 955.
  • the corner portion was rounded so as not to have an angled edge to have a rounded corner bent portion 9522.
  • the inner shell 910 is formed such that one or more wrinkles 951 are formed to have different wrinkle depths 954 and wrinkle distances 955.
  • 951 shows an inner shell 910 having a wavy bend 9523 with wavy bends formed therein.
  • bent portions 9521 and 9522 having angled or rounded corners and the wavy portions 9523 may be formed in one corrugation. .
  • the corrugation structure 950 is formed on the side surface of the outer surface of the inner shell 910, but the corrugation structure 950 is necessary if necessary for the upper cover 960 or the lower cover 970 as well as the side surface. Will be able to form.
  • the inner shell 910 forms a space for storing the liquefied natural gas therein, and has a low temperature characteristic such as aluminum, stainless steel, 5 to 9% nickel steel, etc., which can withstand the low temperature of the liquefied natural gas. It can be made of an excellent metal.
  • the outer shell 920 wraps the outside of the inner shell 910 to form a space between the inner shell 910 and may be made of a steel material to withstand the internal pressure, and the inner shell 910 By sharing the applied internal pressure, the amount of material used in the inner shell 910 may be reduced, thereby reducing manufacturing costs.
  • the heat insulation layer part 940 is installed in the space between the inner shell 910 and the outer shell 920, and is made of a heat insulating material to reduce heat transfer.
  • the heat insulating layer 940 may be designed to apply the same pressure as the pressure in the inner shell 910, where the same pressure as the pressure in the inner shell 910 does not mean exactly the same, but a similar degree It is also meant to include.
  • the inner insulation layer portion 940 and the inner shell 910 interior are connected to a passage 54 (shown in FIG. 12) or an equalizing line 514 as in the previous embodiment to balance the pressure between the inner shell 910 and the outer shell.
  • the connection path 54 or the equalizing line 514 is described in detail in the previous embodiment, and thus description thereof will be omitted.
  • the inner shell 910 is equal to or close to the pressure of the inner shell and the heat insulating layer by the connection passage 54 or the equalizing line 514, the pressure of the liquefied natural gas can be supported by the outer shell.
  • the inner shell 910 is manufactured to withstand temperatures of -120 to -95 ° C, the above-described pressure (13-25 bar) and temperature conditions by the inner shell and the outer shell, for example, a pressure of 17 bar and -115 ° C
  • the inner shell Since the pressure received by the inner shell and the outer shell is almost the same by the connecting flow path or the equalizing line in the normal state, there is almost no difference.However, in case of emergency venting the pressure of the storage container (full vent), Since the pressure difference between the inside and the outside may be about 0.5 bar, the inner shell may be manufactured to withstand the pressure of about 0.5 bar.
  • the support 930 may be installed to have the same manner and function as described in the above-described other embodiments, a detailed description thereof will be omitted, and the lower portion between the inner shell 910 and the outer shell 920 as in the above-described other embodiments. It can be installed by adding a lower support 931 to the space.
  • the storage container 900 of the liquefied natural gas according to the present invention may be installed in the transverse direction, in which case the lower support 931 may be omitted.
  • the 48 to 52 is a method of manufacturing a storage container 900 of liquefied natural gas of one embodiment of the present invention.
  • the inner shell 910 having a corrugated structure is disposed inside the storage container, and the outer shell 920 is disposed outside the storage container, and the support 930 supporting the inner shell 910 and the outer shell 920.
  • the heat insulating layer portion 940 to reduce heat transfer is installed in the space between the inner shell 910 and the outer shell 920.
  • the corrugated structure of the inner shell 910 can be produced by connecting a plurality of the desired curved surface by using a roller (roller) by welding.
  • Rollers for making corrugated structures include not only ordinary rollers but also all kinds of rollers capable of making corrugated structures (such as corrugated rollers) such as corrugated rollers. After the corrugation is made, the joints are welded to produce a storage container 900 for liquefied natural gas.
  • the structure of the liquefied natural gas storage container stores the liquefied natural gas inside the inner shell 1010 and the inner shell outside the inner shell 1010.
  • the outer shell 1020 surrounding the outside of the 1010 is installed to form a space between the inner shell 1010, and a plurality of supports 1030 in the space between the inner shell 1010 and the outer shell 1020.
  • the inner shell 1010 forms a space for storing the liquefied natural gas therein, and has a low temperature characteristic such as aluminum, stainless steel, 5 to 9% nickel steel, etc. As shown in the drawings illustrating various embodiments of the present invention, it may be made in the form of a tube, or may have various shapes including other polyhedrons.
  • the inner shell 1010 is preferably manufactured to withstand a temperature of -120 ⁇ -95 °C.
  • the outer shell 1020 surrounds the outer side of the inner shell 1010 to form a space between the inner shell 1010 and steel that can withstand the pressure of liquefied natural gas stored in the inner shell 1010.
  • the outer shell 1020 by the equalizing line 1090 to be described later can share the pressure inside the inner shell 1010 to reduce the amount of use of the inner shell 1010 material, the storage container 1000 It will also reduce production costs.
  • the outer shell 1020 is preferably manufactured to withstand the pressure of 13 ⁇ 25bar.
  • the inner shell 1010 is formed by the equalizing line 1090 which will be described later to form an inner pressure of the inner shell 1010 and a space formed by the inner shell 1010 and the outer shell 1020 (that is, the heat insulation layer part 1040).
  • the pressure in the space is the same (here, the same pressure as the inner pressure of the inner shell 1010 does not mean exactly the same, but also includes an approximate degree) so that the outer shell can support the pressure of the liquefied natural gas. Will be.
  • the liquefied natural gas storage container even if manufactured only to withstand temperatures of -120 ⁇ -95 °C 1000 can safely store the liquefied natural gas.
  • the liquefied natural gas produced to have a constant pressure and temperature (for example, 17 bar and -115 ° C.) is stored in the inner shell 1010 of the storage container 1000, the outer shell 1020 and the heat insulating layer part 1040. It is possible to safely store the liquefied natural gas having a constant pressure and temperature in the assembled state.
  • the inner shell 1010 may be formed to have a smaller thickness (t1) than the thickness (t2) of the outer shell (1020), thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing.
  • the support 1030 allows the inner shell 1010 to be supported by the outer cell 1020. If the inner shell 1010 constrains contraction and expansion due to the temperature change of the inner shell 1010, the support 1030 causes stress concentration to cause damage. Since the concern is high, the support 1030 should be manufactured so as not to cause stress concentration.
  • the support 1030 is composed of an inner support 1031 connected to the inner shell 1010 side and an outer support 1032 connected to the outer shell 1020 side, as shown in Figure 54, the inner support It is preferable to connect the 1031 and the external support 1032 to slide between the contact surfaces.
  • the inner support 1031 and the outer support 1032 may form a sliding bar 10315 in any one to enable sliding, and may form a sliding hole 10325 in which the sliding bar 10315 may be inserted and connected to the other. have.
  • the sliding bar 10315 is formed to protrude outward from any one of the inner support 1031 and the outer support 1032, the sliding hole 10325 is formed in the other of the inner support 1031 and the outer support 1032 However, the sliding bar 10315 is inserted to form so as to slide in the left and right directions.
  • FIG. 55 which is an enlarged view of FIG. 54A, various types of supports 1030 are illustrated.
  • the support 1030 is preferably manufactured in a structure in which the cross-sectional area is minimized so that heat transfer through the support 1030 can be minimized from the inner shell 1010 to the outer shell 1020.
  • the lower flange 10312 of the inner support 1031 and the upper flange 1032 of the outer support 1032 to allow the inner support 1031 and the outer support 1032 to be slidable. 10321).
  • the inner support (1031) and the outer support (1032) to form the upper flange (10311, 10321) and the lower flange (10312, 10322) at both ends to increase the structural rigidity, respectively, the upper flange (10311, 10321) And an I-shaped member connected between the lower flanges 10312 and 10322 with the webs 10313 and 10323.
  • the sliding hole 10315 is formed to form a sliding bar 10315 protruding outward from the flange of the inner support 1031, the sliding bar 10315 is inserted into the flange of the outer support 1032 to be slid.
  • the sliding bar 10315 may be formed in the outer support 1032, and the sliding hole 10325 may be formed in the inner support 1031.
  • the sliding bar 10315 preferably protrudes outward from the support in the vertical direction.
  • the inner support 1031 connected to the inner shell 1010 side is brittle fracture is generated by the cryogenic temperature delivered from the cryogenic liquefied natural gas stored inside the inner shell 1010 to withstand low temperature metal (for example , A metal having excellent low-temperature characteristics such as aluminum, stainless steel, 5-9% nickel steel, etc., and the outer support 1032 is not directly connected to the inner shell 1010, so expensive low-temperature metal is It is preferable to save the manufacturing cost of the storage container 1000 by making a non-reinforced plastic material.
  • low temperature metal for example , A metal having excellent low-temperature characteristics such as aluminum, stainless steel, 5-9% nickel steel, etc.
  • the sliding bar 10315 is made of a separate member and convenient to weld to the support, the sliding bar 10315 and the support for connecting the sliding bar 10315 are preferably made of a weldable metal.
  • the sliding bar 10315 is made of metal and then welded to the inner support 1031 made of metal, but the sliding bar 10315 directly connected to the inner support 1031 is inside the inner shell 1010.
  • the metal for low temperature like the inner support 1031.
  • An end of the sliding bar 10315 has a sliding head 10316 formed larger than the width of the sliding hole 10325 so as to prevent the sliding bar 10315 from unexpectedly falling out of the sliding hole 10325, or an inner shell ( The inner support 1031 and the outer support 1032 can restrain the inner shell 1010 even if the 1010 has a heat shrink and thermal expansion in the upward direction.
  • the sliding hole 10325 has a lower flange 10312 of the inner support 1031 in which the sliding bar 10315 is formed, and the upper flange 10311 of the outer support 1031.
  • the upper and lower flanges 10311 of the inner support 1031 formed on the upper flange 10321 of the outer support 1031, or as shown in (b) of FIG. , 10312 may be formed on the lower and upper flanges 10322 and 10321 of the outer support 1031 so as to slide the lower and upper flanges 10322 and 10321 of the outer support 1031.
  • the outer support 1032 is preferably made of a reinforced plastic material, but since the reinforced plastic material cannot be welded, as shown in FIG. 57, the non-weldable outer support 1032 is welded to the outer shell 1020.
  • a coupling part 10327 for attaching a separate connection plate 10326 and a connection plate 10326 to the external support 1032 may be added.
  • the connecting plate 10326 and the fastening portion 10227 are preferably made of a metal that withstands low temperatures.
  • the external support 1032 made of a material that cannot be welded by the fastening part 10227 is fastened to the connection plate 10326 made of a metal that withstands low temperature, and the connection plate 10326 is welded to the outer shell 1020.
  • the outer support 1032 is connected to the outer shell 1020.
  • the fastening part 10227 may be made of a bolt and a nut made of a metal that withstands low temperature to fasten the connecting plate 10326 and the flanges 10321 and 10322.
  • the support 1030 is composed of one or more internal support 1031 and the external support 1032, the internal support 1031 and the external support 1032 ) May be arranged alternately to support the support 1030 so that the heat shrink and thermal expansion of the inner shell 1010 is well absorbed.
  • the outer support 1032 is positioned at the lowermost side of the support 1030. Since the support 1033 is located at the lowermost side, the inner support is made of expensive low-temperature metal. If the 1031 is located at the bottom, the life is shortened due to the large load, so to prevent this is to place the outer support 1032 made of a low-cost material at the bottom.
  • the support 1030 according to the present invention as shown in (b) of FIG. 55, the outer support 1032 is formed on the lower side, and the outer support (1031) alternately so that the inner support 1031 is on it. 1032 and the inner support 1031 may be formed.
  • a sliding bar 10315 is formed on the flange of the inner support 1031 and the flange of the outer support 1032, the sliding hole (10) on the flange of the outer support 1032 that is sliding with the flange of the inner support 1031 10325).
  • the support 1030 may be provided in plural along the side circumference of the inner shell 1010 and the outer shell 1020, and may be provided in plural at intervals in the vertical direction of the inner shell 1010.
  • the thermal contraction and thermal expansion in the radial direction of the inner shell 1010 is freely made while being supported by the outer shell 1020, and the thermal contraction and thermal expansion in the vertical direction is also internal to the sliding hole 10325 of the outer support 1032. Since the sliding head 10316 formed on the support 1031 is caught and restrained, the inner shell 1010 may be better supported.
  • the thermal contraction and thermal expansion in the vertical direction can absorb the heat change due to the shape of the corrugation structure to be described later, so that excessive restraint in the vertical direction does not occur, thereby ensuring structural stability of the sliding head 10316 and the sliding hole 10325 do.
  • the lower support 1033 in the lower space between the inner shell 1010 and the outer shell 1020
  • the storage container 1000 in the transverse direction, such as a storage container of liquefied natural gas according to an embodiment of the present invention shown in Figure 61 in the inner support 1031 and the outer support 1032 Since the formed sliding bar 10315 and the sliding hole 10325 are difficult to stably support the inner shell 1010, it may be desirable to install the lower support 1033.
  • the heat insulation layer portion 1040 is installed in the space between the inner shell 1010 and the outer shell 1020, and is made of a heat insulating material to reduce heat transfer.
  • a structure or a material design may be made to apply the same pressure as the pressure in the inner shell 1010 to the heat insulation layer portion 1040, where the same pressure as the pressure in the inner shell 1010 means the same degree of rigor. It does not mean to include a similar degree.
  • the space between the inner shell 1010 and the outer shell 1020 and the inner shell 1010 where the heat insulation layer part 1040 is provided may be connected to each other by an equalizing line 1090 for pressure balance.
  • the equalization line 1090 allows the pressure inside and outside the inner shell 1010 (outside the outer shell 1020) to be balanced, and the outer shell 1020 supports a substantial portion of the pressure to the inner shell 1010. The thickness of the can be reduced.
  • the equalizing line 1090 may be formed at a side of the first connection portion 1080 provided in the line 7 of the inner shell 1010 and in contact with the inner space of the outer shell 1020.
  • the equalizing line 1090 may be configured as a valve as shown in FIG. 54 or may be configured as a pipe as shown in FIGS. 58 to 60 to be described later. Therefore, the pressure in the inner shell 1010 is moved toward the heat insulation layer portion 1040 through the equalizing line 1090, so that the pressure is balanced between the inside and the outside of the inner shell 1010.
  • the inner shell 1010 is made of a metal having excellent low temperature characteristics, and the outer shell 1020 has high strength. It can be made of excellent steel (steel) material, it is possible to store not only liquefied natural gas but also pressurized liquefied natural gas.
  • the storage container 1000 may be provided.
  • first and second connection parts 1080 and 1081 are installed at upper and lower ends of the inner space of the inner shell 1010 to protrude to the outside through the outer shell 1020, and are connected to the first connecting part 1080.
  • Liquefied natural gas can be preloaded into the inner shell 1010 through the loading line 7 and the liquefaction inside the inner shell 1010 through the unloading line 8 connected to the second connecting portion 1081. Natural gas can be unloaded.
  • valves 7a and 8a may be provided in the cargo line 7 and the cargo line 8, respectively.
  • the storage container 1000 of the liquefied natural gas may include a first exhaust line 1085, a first regeneration valve 1086, and an inner space of the inner shell 1010. It includes an equalizing line 1090 protruding from the storage container 1000 to the space between the inner shell 1010 and the outer shell 1020.
  • the first exhaust line 1085 is connected to the upper portion of the inner space of the inner shell 1010 and extends to the outside, and the first exhaust valve 1086 is installed on the first exhaust line 1085 to open and close the flow of gas.
  • the first exhaust line 1085 allows gas to be discharged from the inner space of the inner shell 1010 to the outside by opening the first exhaust valve 1086.
  • the equalizing line 1090 is formed of a pipe so that the equalizing line 1090 is formed so that the liquefied natural gas stored inside the inner shell 1010 flows through the equalizing line 1090. And it can be prevented to leak into the space between the outer shell 1020.
  • the equalizing line 1090 may be provided with an opening / closing valve 1091 for opening and closing a flow of a fluid such as natural gas or boil-off gas. Therefore, the opening / closing valve 1091 may block the movement of the fluid that may occur through the equalizing line 1090 in the case of changing the position or attitude of the storage container 1000.
  • a fluid such as natural gas or boil-off gas.
  • the storage container 1000 of the liquefied natural gas may include a second exhaust line 1095 and a second exhaust valve 1096. 2 is connected to the second exhaust line (1095) in which the exhaust valve (1096) is installed.
  • the second exhaust valve 1096 may discharge the gas inside the inner shell 1010 to the outside through the equalizing line 1090 and the second exhaust line 1095, and as a result, as illustrated in FIGS. 58 and 59.
  • a complicated process for connecting a separate exhaust line 1085 to the inner shell 1010 can be avoided, and a device installed through the storage container 1000 can be reduced to maintain structural stability of the storage container 1000. Will be.
  • the inner shell 1010 of the storage container 1000 of the various embodiments according to the present invention described above may be manufactured in a pleated structure, as shown in FIGS. same.
  • the inner shell 1010 can be made of a cylindrical (or tubular) having a top cover 1060 at the top, a bottom cover 1070 at the bottom, a pleat structure 1050 at the side. It can also be produced to have a variety of shapes, including other polyhedron.
  • the corrugation structure 1050 formed in the inner shell 1010 may have a variety of bent portions (reference numeral 152 of FIGS. 49 to 52) according to the cross-sectional shape of the corrugation, and a corrugation 1051 having various bent portions 152. You can have more than one).
  • the structure of the liquefied natural gas storage container stores the liquefied natural gas inside the inner shell 1010 and the inner shell outside the inner shell 1010.
  • the outer shell 1020 surrounding the outside of the 1010 is installed to form a space between the inner shell 1010, and the support 1030 and the heat insulating layer in the space between the inner shell 1010 and the outer shell 1020.
  • Install section 1040 is installed to form a space between the inner shell 1010, and the support 1030 and the heat insulating layer in the space between the inner shell 1010 and the outer shell 1020.
  • the support 1030 allows the inner shell 1010 to be supported by the outer cell 1020, and the heat insulation layer part 1040 stacks two or more insulation layers to transfer heat between the inner shell 1010 and the outer shell 1020.
  • the heat insulating layer provided on the contact surface with the outer shell 1020 is installed with a higher density than the heat insulating layer provided on the inner shell 1010 side.
  • the outer shell 1020 directly touches the outer shell. Since the 1020 is highly brittle, the leakage or overflow of the liquefied natural gas flows toward the outer shell 1020 to prevent direct contact with the outer shell 1020 by a denser insulating layer.
  • a heat insulating material having a high density on the contact surface with the outer shell 1020, and a closed cell heat insulating material may be used.
  • a bond is used. It can be adhered to the shell.
  • the closed cell insulation material has a pressure difference inside and outside the insulation material, and is composed of a structure that withstands high pressure to exhibit insulation performance.
  • heat insulating materials for example, open cell heat insulating material or closed cell heat insulating material
  • the outer shell 1020 and the outer shell 1020 may be used.
  • a high density heat insulating material that is, a closed cell heat insulating material
  • a lower density heat insulating material that is, an open cell
  • Insulation can be installed.
  • the open cell insulation is a structure in which air can move freely inside the insulation when used under high pressure, and there is no pressure difference inside and outside the insulation, and the insulation does not have a pressure-bearing structure.
  • the insulation does not have a pressure-bearing structure.
  • the manufacturing cost of the insulation layer part 1040 may be reduced by using the closed cell insulation only in contact with the outer shell 1020. In this case, it is preferable to manufacture the thickness of the closed cell to 20 ⁇ 80mm.
  • the open cell heat insulating material not only facilitates the installation of the heat insulating material, but also facilitates the assembly of the storage container, and thus, if the heat insulating layer part 1040 is manufactured at an appropriate thickness together with the open cell and the closed cell, the insulation performance is secured and the ease of installation is possible. Production cost reduction effect can be achieved.
  • Block cell glass blocks (block type glass bubble), high density polyurethane foam (PUF), etc.
  • the closed cell insulation material is a grain type glass bubble (grain type glass bubble), etc.
  • the glass bubble (glass bubble) in itself can be produced as a closed cell insulation by binding the glass bubble particles to each other using an open cell structure or an inorganic or organic material to form a block.
  • the inner shell 1010 forms a space for storing the liquefied natural gas therein, and has a low temperature characteristic such as aluminum, stainless steel, 5 to 9% nickel steel, etc. As shown in the drawings illustrating various embodiments of the present invention, it may be made in the form of a tube, or may have various shapes including other polyhedrons.
  • the inner shell 1010 can be manufactured to withstand a temperature of -163 ⁇ -95 °C, preferably can be manufactured to withstand a temperature of -120 ⁇ -95 °C.
  • the outer shell 1020 surrounds the outer side of the inner shell 1010 to form a space between the inner shell 1010 and steel that can withstand the pressure of liquefied natural gas stored in the inner shell 1010.
  • the outer shell 1020 by the equalizing line 1090 to be described later can share the pressure inside the inner shell 1010 to reduce the amount of use of the inner shell 1010 material, the storage container 1000 It will also reduce production costs.
  • the outer shell 1020 is preferably manufactured to withstand the pressure of 13 ⁇ 25bar.
  • the inner shell 1010 is formed by the equalizing line 1090 which will be described later to form an inner pressure of the inner shell 1010 and a space formed by the inner shell 1010 and the outer shell 1020 (that is, the heat insulation layer part 1040).
  • the pressure in the space is the same (here, the same pressure as the inner pressure of the inner shell 1010 does not mean exactly the same, but also includes an approximate degree) so that the outer shell can support the pressure of the liquefied natural gas. Will be.
  • the liquefied natural gas storage container even if manufactured only to withstand a temperature of -163 ⁇ -95 °C 1000 can safely store the liquefied natural gas.
  • the liquefied natural gas produced to have a constant pressure and temperature (for example, 17 bar and -115 ° C.) is stored in the inner shell 1010 of the storage container 1000, the outer shell 1020 and the heat insulating layer part 1040. It is possible to safely store the liquefied natural gas having a constant pressure and temperature in the assembled state.
  • the inner shell 1010 may be formed to have a smaller thickness (t1) than the thickness (t2) of the outer shell (1020), thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing.
  • the support 1030 is installed in the space between the inner shell 1010 and the outer shell 1020 so that the inner shell 1010 can be supported by the outer shell 1020, thereby supporting the inner shell 1010 and the outer shell 1020.
  • It is structurally reinforced and can be made of metal or composite material (eg, low temperature steel, glassfiber reinforced epoxy) to withstand the low temperature of liquefied natural gas, and along the circumference of the inner shell 1010 and outer shell 1020. It may be installed as a single, or may be installed in plurality at intervals up and down at the sides of the inner shell 1010 and the outer shell 1020.
  • an insulation member such as glass fiber is disposed inside the end portion of the support 1030 in contact with the outer shell 1020.
  • a separate heat insulating member may be disposed inside the end portion of the support, and then fixed by welding to prevent the temperature of the inner shell 1010 from being transferred to the outer shell 1020 by the support 1030.
  • the lower support 1033 may be further installed in the lower space between the inner shell 1010 and the outer shell 1020 to support the inner shell 1010, and liquefaction according to the embodiment of the present invention shown in FIG.
  • the storage container 1000 in the lateral direction, such as a storage container of natural gas, the lower support 1033 can be omitted.
  • FIG. 62 and 63 are longitudinal cross-sectional views of the structure of the storage vessel of the liquefied natural gas according to an embodiment of the present invention and an enlarged view of FIG.
  • the heat insulation layer part 1040 may include a first heat insulation layer 1041 and a second heat insulation layer 1042.
  • a first heat insulating layer 1041 formed of an open cell heat insulating material is formed on the inner shell 1010 side of the heat insulating layer part 1040, and a second cell made of a closed cell heat insulating material on the outer shell 1020 side. Insulating layer 1042 is formed.
  • the inner space of the inner shell 1010 and the space between the inner shell 1010 and the outer shell 1020 are equalized by the equalizing line 1090 to be described later.
  • the pressure is an advantage that there is no need to provide a separate space for the pressure balance in the insulating layer portion 1040.
  • the space between the inner shell 1010 and the outer shell 1020 and the inner shell 1010 having the heat insulating layer 1040 may be connected to each other by an equalizing line 1090 for pressure balancing.
  • the equalization line 1090 allows the pressure inside and outside the inner shell 1010 (outside the outer shell 1020) to be balanced, and the outer shell 1020 supports a substantial portion of the pressure to the inner shell 1010. The thickness of the can be reduced.
  • the equalizing line 1090 may be formed at a side of the first connection part 1080 provided at the line line 10 of the inner shell 1010 and in contact with the inner space of the outer shell 1020.
  • the equalizing line 1090 may be configured as a valve as shown in FIG. 62 or may be configured as a pipe as shown in FIGS. 64 to 66 to be described later.
  • the pressure in the inner shell 1010 moves toward the heat insulation layer portion 1040 through the equalizing line 1090 so that the pressure is balanced between the inside and the outside of the inner shell 1010.
  • the inner shell 1010 is made of a metal having excellent low temperature characteristics
  • the outer shell 1020 is made of a steel material having excellent strength
  • the insulation layer portion 1040 is formed of the first and second insulation layers 1041 having appropriate thicknesses. , 1042 to enable storage of not only liquefied natural gas but also pressurized liquefied natural gas, and the thickness t1 of the inner shell 1010 is reduced due to the pressure balance between the inside and the outside of the inner shell 1010.
  • the use of expensive metals with excellent properties can be reduced.
  • first and second connection parts 1080 and 1081 are installed at upper and lower ends of the inner space of the inner shell 1010 to protrude to the outside through the outer shell 1020, and are connected to the first connecting part 1080.
  • Liquefied natural gas can be preloaded into the inner shell 1010 through the loading line 7 and the liquefaction inside the inner shell 1010 through the unloading line 8 connected to the second connecting portion 1081. Natural gas can be unloaded.
  • valves 7a and 8a may be provided in the docking line 10 and the unloading line 20, respectively.
  • the storage container 1000 of the liquefied natural gas may include a first exhaust line 1085, a first regeneration valve 1086, and an inner space of the inner shell 1010. It includes an equalizing line 1090 protruding from the storage container 1000 to the space between the inner shell 1010 and the outer shell 1020.
  • the first exhaust line 1085 is connected to the upper portion of the inner space of the inner shell 1010 and extends to the outside, and the first exhaust valve 1086 is installed on the first exhaust line 1085 to open and close the flow of gas.
  • the first exhaust line 1085 allows gas to be discharged from the inner space of the inner shell 1010 to the outside by opening the first exhaust valve 1086.
  • the equalizing line 1090 is configured to be long in a pipe, so that the liquefied natural gas stored inside the inner shell 1010 flows through the equalizing line 1090. And it can be prevented to leak into the space between the outer shell 1020.
  • the equalizing line 1090 may be provided with an opening / closing valve 1091 for opening and closing a flow of a fluid such as natural gas or boil-off gas. Therefore, the opening / closing valve 1091 may block the movement of the fluid that may occur through the equalizing line 1090 in the case of changing the position or attitude of the storage container 1000.
  • a fluid such as natural gas or boil-off gas.
  • the storage container 1000 of the liquefied natural gas may include a second exhaust line 1095 and a second exhaust valve 1096. 2 is connected to the second exhaust line (1095) in which the exhaust valve (1096) is installed.
  • the second exhaust valve 1096 may discharge the gas inside the inner shell 1010 to the outside through the equalizing line 1090 and the second exhaust line 1095, and as a result, as illustrated in FIGS. 64 and 65. As described above, a complicated process for connecting a separate exhaust line 1085 to the inner shell 1010 can be avoided, and a device installed through the storage container 1000 can be reduced to maintain structural stability of the storage container 1000. Will be.
  • the inner shell 1010 of the storage container 1000 of the various embodiments of the present invention described above may be manufactured in a pleated structure, as shown in FIGS. 49 to 52, and the detailed description thereof will be described with reference to FIGS. 49 to 52. same.
  • the inner shell 1010 may have a cylindrical shape (or tubular shape) having an upper cover 1060 at the top, a lower cover 1070 at the bottom, and a corrugation structure 1050 at the side. It can also be produced to have a variety of shapes, including other polyhedron.
  • the corrugation structure 1050 formed in the inner shell 1010 may have various bends (reference numeral 152 of FIGS. 49 to 52) according to the cross-sectional shape of the corrugation, and have a corrugation 1051 having various bends 152. You can have more than one.
  • 62 to 67 is a method for manufacturing a storage container 1000 of liquefied natural gas of the embodiment of the present invention, after the outer shell 1020 is made to install a closed cell insulation to the outer shell 1020 (for example, Bonding to bond) to fabricate the second heat insulating layer 1042. Thereafter, an inner shell (eg, an inner shell 1010 having a corrugated structure) is inserted into the inside of the storage container so that the outer shell 1020 is disposed outside the storage container, and then the inner shell 1010 is placed outside the storage container.
  • a closed cell insulation for example, Bonding to bond
  • a support 1030 supporting the 1020 is installed in a space between the inner shell 1010 and the outer shell 1020, and a low density heat insulating material (eg, an open cell heat insulating material) is provided in the inner shell 1010 and the outer shell 1020.
  • the first insulating layer 1041 is formed by filling in the space therebetween.
  • the corrugated structure of the inner shell 1010 is produced by connecting a plurality of the desired curved surface by using a roller (roller) and then connected by welding.
  • Rollers for making corrugated structures include not only ordinary rollers but also all kinds of rollers capable of making corrugated structures (such as corrugated rollers) such as corrugated rollers. After the corrugation is made, the joints are welded to produce a storage container 1000 for liquefied natural gas.
  • the structure of the liquefied natural gas storage container stores the liquefied natural gas inside the inner shell 1010 and the inner shell outside the inner shell 1010.
  • the outer shell 1020 surrounding the outside of the 1010 is installed to form a space between the inner shell 1010, and the support 1030 and heat transfer in the space between the inner shell 1010 and the outer shell 1020.
  • the support 1030 allows the inner shell 1010 to be supported by the outer cell 1020, and the heat insulating layer portion 1040 includes a passage 1043 and a heat insulating layer 1044 configured to allow fluid to flow.
  • the passage 1043 is formed on the inner shell side so that the fluid can flow along the wall surface of the inner shell 1010, and the heat insulation layer 1044 is preferably formed on the outer shell 1020 side.
  • the outer shell 1020 directly contacts the outer shell. Since the shell 1020 is highly brittle and fractured, the cryogenic liquefied natural gas leaking or overflowing flows in a space between the inner shell 1010 and the outer shell 1020, but does not directly contact the outer shell 1020. This is to ensure the structural stability of the container 1000 and at the same time maintain the thermal insulation performance.
  • the heat insulation layer 1044 may be formed of two or more heat insulation blocks 10441 provided at regular intervals in the vertical direction, and a reinforcement heat insulation 10442 may be provided between each of the heat insulation blocks 10441.
  • insulation block 10441 is made of one piece or made of several large blocks, it is difficult to manufacture the block itself, and it is difficult to handle it during construction, which reduces the workability of the worker. It is preferable to make a block of a suitable size to be laminated, and when stacked, it can be stacked in a masonry (brick) method as shown in Figs.
  • the reinforcing insulation 10442 is provided between each of the insulation blocks 10441 to absorb the thermal expansion or thermal contraction of the insulation block 10441 to prevent the insulation block 10441 from being deformed by thermal expansion or thermal contraction and causing damage. Is installed.
  • the method of installing the reinforcing heat insulating material 10442 between each of the heat insulating material blocks 10441 may be filled between the heat insulating material blocks 10441 by applying pressure, or by injection molding, and filled by applying pressure.
  • the inner shell 1010 side of the reinforcing heat insulating material 10442 may be formed with a reinforcing heat insulating material groove (10443), so that the reinforcing heat insulating material 10442 can better absorb the thermal expansion or thermal contraction of the heat insulating block (10441).
  • the reinforcement insulation grooves 10443 may be formed by filling the reinforcement insulation material 10442 with each other between the insulation block 10441 and in various ways.
  • the insulation block 10441 may be laminated with two or more insulation to efficiently reduce heat transfer between the inner shell 1010 and the outer shell 1020.
  • the heat insulating layer provided on the contact surface with the outer shell 1020 has a greater density than the heat insulating layer provided on the inner shell 1010 side, and the liquefied natural gas stored in the inner shell 1010 is internal.
  • the outer shell 1020 may be brittle and destroyed, and thus the leaked or overflowed liquefied natural gas may be leaked from the outer shell 1020.
  • the leaked or overflowed liquefied natural gas is prevented from directly contacting the outer shell 1020 by the denser insulating layer.
  • a heat insulating material having a high density on the contact surface with the outer shell 1020, and a closed cell heat insulating material may be used.
  • a bond is used. It can be adhered to the shell.
  • the closed cell insulation material has a pressure difference inside and outside the insulation material, and is composed of a structure that withstands high pressure to exhibit insulation performance.
  • High-density insulation materials for example, high-density polyurethane foam (1000-300 kg / m 3 ) is not significantly deformed even under pressure, so the insulation performance is hardly affected by leaked pressurized natural gas It can be effectively maintained also has many advantages.
  • the two or more insulating materials laminated to the insulating block 10441 may use various kinds of insulating materials (for example, open cell insulating materials or closed cell insulating materials), and as described above, the outer shell 1020 may be used.
  • a high density heat insulating material that is, a closed cell heat insulating material, is installed on the contact surface of the inner shell 1010. Insulation can be installed.
  • the open cell insulation is a structure in which air can move freely inside the insulation when used under high pressure, and there is no pressure difference inside and outside the insulation, and the insulation does not have a structure that withstands the pressure.
  • the insulation does not have a structure that withstands the pressure.
  • the manufacturing cost of the insulation layer part 1040 may be reduced by using the closed cell insulation only in contact with the outer shell 1020. In this case, it is preferable to manufacture the thickness of the closed cell to 20 ⁇ 80mm.
  • the open cell heat insulating material not only facilitates the installation of the heat insulating material, but also facilitates the assembly of the storage container, and thus, if the heat insulating block 10441 is manufactured with an appropriate thickness of the open cell and the closed cell, the insulation performance is secured and the ease of installation is at the same time. Production cost reduction effect can be achieved.
  • Block cell glass blocks (block type glass bubble), high density polyurethane foam (PUF), etc.
  • the closed cell insulation material is a grain type glass bubble (grain type glass bubble), etc.
  • the glass bubble (glass bubble) in itself can be produced as a closed cell insulation by binding the glass bubble particles to each other using an open cell structure or an inorganic or organic material to form a block.
  • the inner shell 1010 forms a space for storing the liquefied natural gas therein, and has a low temperature characteristic such as aluminum, stainless steel, 5 to 9% nickel steel, etc. As shown in the drawings illustrating various embodiments of the present invention, it may be made in the form of a tube, or may have various shapes including other polyhedrons.
  • the inner shell 1010 is preferably manufactured to withstand a temperature of -120 ⁇ -95 °C.
  • the outer shell 1020 surrounds the outer side of the inner shell 1010 to form a space between the inner shell 1010 and steel that can withstand the pressure of liquefied natural gas stored in the inner shell 1010.
  • the outer shell 1020 by the equalizing line 1090 to be described later can share the pressure inside the inner shell 1010 to reduce the amount of use of the inner shell 1010 material, the storage container 1000 It will also reduce production costs.
  • the outer shell 1020 is preferably manufactured to withstand the pressure of 13 ⁇ 25bar.
  • the inner shell 1010 is formed by the equalizing line 1090 which will be described later to form an inner pressure of the inner shell 1010 and a space formed by the inner shell 1010 and the outer shell 1020 (that is, the heat insulation layer part 1040).
  • the pressure in the space is the same (here, the same pressure as the inner pressure of the inner shell 1010 does not mean exactly the same, but also includes an approximate degree) so that the outer shell can support the pressure of the liquefied natural gas. Will be.
  • the liquefied natural gas storage container even if manufactured only to withstand temperatures of -120 ⁇ -95 °C 1000 can safely store the liquefied natural gas.
  • the liquefied natural gas produced to have a constant pressure and temperature (for example, 17 bar and -115 ° C.) is stored in the inner shell 1010 of the storage container 1000, the outer shell 1020 and the heat insulating layer part 1040. It is possible to safely store the liquefied natural gas having a constant pressure and temperature in the assembled state.
  • the inner shell 1010 may be formed to have a smaller thickness (t1) than the thickness (t2) of the outer shell (1020), thereby reducing the use of expensive metal having excellent low-temperature characteristics when manufacturing.
  • the support 1030 is installed in the space between the inner shell 1010 and the outer shell 1020 so that the inner shell 1010 can be supported by the outer shell 1020, thereby supporting the inner shell 1010 and the outer shell 1020. It is structurally reinforced and can be made of metal (eg, low temperature steel) to withstand the low temperature of liquefied natural gas, and is installed as a single along the side circumference of the inner shell 1010 and the outer shell 1020, or the inner shell A plurality of 1010 and the outer shell 1020 may be installed in a plurality at intervals up and down.
  • metal eg, low temperature steel
  • an insulation member such as glass fiber is disposed inside the end portion of the support 1030 in contact with the outer shell 1020.
  • a separate heat insulating member may be disposed inside the end portion of the support, and then fixed by welding to prevent the temperature of the inner shell 1010 from being transferred to the outer shell 1020 by the support 1030.
  • the lower support 66 may be additionally installed in the lower space between the inner shell 1010 and the outer shell 1020 so that the inner shell 1010 may be supported by the outer shell 1020.
  • the lower support 1033 may be omitted.
  • FIG. 68 is a longitudinal cross-sectional view schematically illustrating a structure of a storage container of liquefied natural gas according to an embodiment of the present invention
  • FIG. 69 is an enlarged view of E of FIG. 68.
  • the heat insulation layer part 1040 according to the embodiment of the present invention illustrated in FIGS. 68 and 69 includes a passage 1043 and a heat insulation layer 1044.
  • the passage 1043 through which the fluid flows is located at the inner shell 1010 side of the insulating layer part 1040 (ie, the space between the insulating layer 1044 and the inner shell 1010), the pressure inside the inner shell 1010 ( Internal pressure) and the pressure outside the inner shell 1010 (external pressure) can be easily balanced through the equalizing line 1090.
  • the heat insulating layer 1044 is provided with a heat insulating block 10441 stacked with two or more heat insulating materials.
  • the inner shell side of the heat insulating block 10441 is made of an open cell heat insulating material, and the outer shell 1020 side is closed. It can be composed of a closed cell insulation.
  • the passage 1043 is also forced to be made small, so that the passage 1043 shares the internal pressure of the inner shell 1010 by the equalizing line 1090 which will be described later.
  • the open-cell insulator which is not filled with pores by the air gap, is used on the inner shell 1010 side of the insulator block 10441 so as to be possible.
  • the use of low-temperature steel can be reduced when the inner shell 1010 is manufactured, thereby reducing the manufacturing cost of the inner shell 1010.
  • the space between the inner shell 1010 and the outer shell 1020 and the inner shell 1010 where the heat insulation layer part 1040 is provided is connected to each other by an equalizing line 1090 for pressure balancing.
  • the equalization line 1090 allows the pressure inside and outside the inner shell 1010 (outside the outer shell 1020) to be balanced, and the outer shell 1020 supports a substantial portion of the pressure to the inner shell 1010. The thickness of the can be reduced.
  • the equalizing line 1090 may be formed at a side of the first connection part 1080 provided at the line line 10 of the inner shell 1010 and in contact with the inner space of the outer shell 1020.
  • the equalizing line 1090 may be configured as a valve as shown in FIG. 68 or may be configured as a pipe as shown in FIGS. 72 to 74 to be described later. Therefore, the pressure in the inner shell 1010 is moved toward the heat insulation layer portion 1040 through the equalizing line 1090, so that the pressure is balanced between the inside and the outside of the inner shell 1010.
  • the inner shell 1010 is made of a metal having excellent low temperature characteristics
  • the outer shell 1020 is made of a steel material having excellent strength
  • a passage 1043 is formed along the wall surface of the inner shell 1010.
  • the insulating block 10441 with two or more insulating materials having an appropriate thickness, it is possible to store not only liquefied natural gas but also pressurized liquefied natural gas, and due to the pressure balance between the inner and outer sides of the inner shell 1010, the inner shell ( By reducing the thickness t1 of the 1010, it is possible to reduce the use of expensive metal having excellent low temperature characteristics.
  • first and second connection parts 1080 and 1081 are installed at upper and lower ends of the inner space of the inner shell 1010 to protrude to the outside through the outer shell 1020, and are connected to the first connecting part 1080.
  • Liquefied natural gas can be preloaded into the inner shell 1010 through the loading line 7 and the liquefaction inside the inner shell 1010 through the unloading line 8 connected to the second connecting portion 1081. Natural gas can be unloaded.
  • valves 7a and 8a may be provided in the docking line 10 and the unloading line 20, respectively.
  • the storage container 1000 of the liquefied natural gas may include a first exhaust line 1085, a first regeneration valve 1086, and an inner shell 1010. It includes an equalizing line 1090 protruding from the inner space of the storage container 1000 to the space between the inner shell 1010 and the outer shell 1020.
  • the first exhaust line 1085 is connected to the upper portion of the inner space of the inner shell 1010 and extends to the outside, and the first exhaust valve 1086 is installed on the first exhaust line 1085 to open and close the flow of gas.
  • the first exhaust line 1085 allows gas to be discharged from the inner space of the inner shell 1010 to the outside by opening the first exhaust valve 1086.
  • the equalizing line 1090 is configured to be formed to be a long pipe, so that the liquefied natural gas stored inside the inner shell 1010 overflows through the equalizing line 1090. And it can be prevented to leak into the space between the outer shell 1020.
  • the equalizing line 1090 may be provided with an opening / closing valve 1091 for opening and closing a flow of a fluid such as natural gas or boil-off gas. Therefore, the opening / closing valve 1091 may block the movement of the fluid that may occur through the equalizing line 1090 in the case of changing the position or attitude of the storage container 1000.
  • a fluid such as natural gas or boil-off gas.
  • the equalizing line 1090 may include a second container liquefied natural gas according to an exemplary embodiment of the present invention. 2 is connected to the second exhaust line (1095) in which the exhaust valve (1096) is installed.
  • the second exhaust valve 1096 may discharge the gas inside the inner shell 1010 to the outside through the equalizing line 1090 and the second exhaust line 1095, and as a result, as illustrated in FIGS. 72 and 73. As described above, a complicated process for connecting a separate exhaust line 1085 to the inner shell 1010 can be avoided, and a device installed through the storage container 1000 can be reduced to maintain structural stability of the storage container 1000. Will be.
  • the inner shell 1010 of the storage container 1000 of the various embodiments of the present invention described above may be manufactured in a pleated structure, as shown in FIGS. 49 to 52, and the detailed description thereof will be described with reference to FIGS. 49 to 52. same.
  • the inner shell 1010 as shown in FIG.
  • the upper cover 1060, the lower cover 1070, the lower side may be made of a cylindrical (or tubular) having a corrugated structure 1050, it may be made to have a variety of shapes, including other polyhedron.
  • the corrugation structure 1050 formed in the inner shell 1010 may have various bent portions 1052 according to the cross-sectional shape of the corrugation, and may have one or more corrugations 1051 having various bent portions 1052.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 액화천연가스의 저장용기 및 제작방법에 관한 것으로서, 액화천연가스는 물론 일정한 압력으로 가압된 액화천연가스를 효율적으로 저장하여 소비지에 공급할 수 있고, 저온 특성이 우수한 금속의 사용을 최소화하여 제작 비용을 절감할 수 있도록 구성된 내부쉘을 갖는 액화천연가스 저장 용기 및 제작방법에 관한 것이다. 본 발명에 따른 액화천연가스의 저장용기는, 액화천연가스의 저장용기에 있어서, 상기 액화천연가스가 내측에 저장되는 내부쉘(910); 상기 내부쉘(910)과의 사이에 공간을 형성하도록 상기 내부쉘(910)의 외측을 감싸는 외부쉘(920); 상기 내부쉘(910)과 상기 외부쉘(920)을 지지하도록 상기 내부쉘(910)과 상기 외부쉘(920) 사이의 공간에 설치되는 지지대; 상기 내부쉘(910)과 상기 외부쉘(920) 사이의 공간에 설치되며, 열전달을 감소시키는 단열층부;를 포함하는 것을 특징으로 한다.

Description

액화천연가스 저장용기의 구조 및 제작방법
본 발명은 액화천연가스의 저장용기 및 제작방법에 관한 것으로서, 액화천연가스는 물론 일정한 압력으로 가압된 액화천연가스를 효율적으로 저장하여 소비지에 공급할 수 있고, 저온 특성이 우수한 금속의 사용을 최소화하여 제작 비용을 절감할 수 있으며, 효율성 높은 단열성능을 가진 내부쉘을 갖는 액화천연가스 저장 용기 및 제작방법에 관한 것이다.
일반적으로, 액화천연가스(liquefied Natural Gas, LNG)는 메탄(Methane)을 주성분으로 하는 천연가스를 대기압에서 -162℃의 극저온 상태로 냉각시켜 그 부피를 6백분의 1로 줄인 무색 투명한 초저온 액체로서, 기체상태보다 수송 효율이 좋아서 장거리 수송에 경제성이 있는 것으로 알려져 있다.
이와 같은 액화천연가스는 생산 플랜트의 건설 및 운반선의 건조 비용이 많이 소요되어 경제성을 만족시키기 위해서 대규모, 장거리 수송에 적용되어 왔으며, 이에 반하여, 소규모, 단거리 수송에는 파이프라인이나 CNG(Compressed Natural Gas)가 경제성이 있다고 알려져 있으나, 파이프라인을 이용한 수송의 경우 지리적 제약이 따르며, 환경 파괴의 문제 등을 야기할 수 있고, CNG는 수송 효율이 낮은 단점을 가지고 있다.
종래의 액화천연가스를 소비지에 분배하는 방법은 고비용을 요구할 뿐만 아니라, 소비지의 다양한 요구에 유연하게 대처하기 어렵고, 소비지에 별도의 저장 탱크를 필요로 함으로써 인프라 투자에 많은 비용이 소요되며, 액화천연가스의 하역에도 많은 시간과 노력을 필요로 하는 문제점을 가지고 있었다.
또한, 천연가스는 대기압에서 -163℃의 액화점을 가지며, 일정한 압력이 작용할 경우 액화점이 대기압 하에서 보다 상승하는 특성이 있다. 이러한 특성은 액화 공정 중에서 산성 가스(Acid gas)의 제거 및 NGL(Natural Gas Liquid)의 분별(Fractionation) 등과 같은 처리 단계를 축소할 수 있으며, 이에 따른 설비와 설비 용량의 감소로 이어져서 액화천연가스의 생산 단가를 감소시키도록 하는 장점을 가지게 된다.
그러나, 종래의 액화천연가스 터미널이나 가스화 시설을 갖춘 선박에 마련된 액화천연가스 저장 탱크는 일정한 크기로 제한되어 있을 뿐만 아니라, 상기한 바와 같은 천연가스의 특성을 반영하여 경제성을 가지도록 하는 액화천연가스의 저장에 부적합하고, 다양한 수요자의 요구에 맞춰서 손쉽게 소비지로 액화천연가스를 운반하는 것이 어렵다.
상기한 문제를 해결하기 위하여 일반적인 액화천연가스뿐만 아니라 일정한 압력으로 가압된 액화천연가스를 저장하기 위하여, 저온 특성이 우수한 금속 소재를 사용하여, -120℃ 이상의 극저온 및 고압을 견딜 수 있도록 하는 용기 제작이 가능하나, 이를 위해서는 용기의 벽체 두께가 증가할 수밖에 없으며, 저온 특성이 우수한 고가의 금속 사용으로 인해 경제성 확보에 어려움을 가지는 다른 문제점을 가지게 된다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 액화천연가스는 물론 일정한 압력으로 가압된 액화천연가스를 효율적으로 저장하여 소비지에 공급할 수 있도록 하고, 저온 특성이 우수한 금속의 사용을 최소화하여 제작 비용을 절감하도록 하며, 다양한 목적과 수요자의 요구를 쉽게 만족시킬 수 있으며, 운반 선박의 종류 및 크기의 다양성을 확보할 수 있도록 하는 액화천연가스 저장용기의 구조를 제공하고자 하는데 목적이 있다.
또한, 단열층으로 액화천연가스가 누설되더라도 단열성능을 유지할 수 있으면서 단열재의 재료비를 절감할 수 있는 액화천연가스 저장용기의 구조를 제공하고자 하는 데 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 액화천연가스의 저장용기에 있어서, 상기 액화천연가스가 내측에 저장되는 내부쉘(910); 상기 내부쉘(910)과의 사이에 공간을 형성하도록 상기 내부쉘(910)의 외측을 감싸는 외부쉘(920); 상기 내부쉘(910)과 상기 외부쉘(920)을 지지하도록 상기 내부쉘(910)과 상기 외부쉘(920) 사이의 공간에 설치되는 지지대(930); 및 상기 내부쉘(910)과 상기 외부쉘(920) 사이의 공간에 설치되며, 열전달을 감소시키는 단열층부(940);를 포함하는 것을 특징으로 하는 액화천연가스의 저장용기를 제공한다.
상기 내부쉘(910)은 주름구조(950)를 형성하고 있는 것;을 특징으로 한다.
상기 내부쉘(910)은 원통형 구조인 것;을 특징으로 한다.
상기 주름구조(950)는 하나 이상의 주름(951)으로 구성하되, 상기 주름(951)은 하나 이상의 굴곡부(952)를 갖도록 형성되는 것;을 특징으로 한다.
상기 굴곡부(952)는 각진 모서리 굴곡부(9521), 둥근 모서리 굴곡부(9522), 및 물결 모양 굴곡부(9523) 중 어느 하나 이상을 갖도록 형성되는 것;을 특징으로 한다.
상기 지지대(1030)는 상기 내부쉘(1010) 측에 연결되는 내부지지대(1031) 및 상기 외부쉘(1020) 측에 연결되는 외부지지대(1032)로 구성되며, 상기 내부지지대(1031) 및 외부지지대(1032) 중 어느 하나에 슬라이딩 바(10315)를 형성하고, 다른 하나에 상기 슬라이딩 바(10315)가 삽입 연결되어 슬라이딩되는 슬라이딩 홀(10325)을 형성하는 것;을 특징으로 한다.
상기 슬라이딩 바(10315)는 상기 내부지지대(1031) 및 외부지지대(1032) 중 어느 하나로부터 외측으로 돌출되도록 형성되고, 상기 슬라이딩 홀(10325)는 상기 내부지지대(1031) 및 외부지지대(1032) 중 다른 하나에 형성하되, 상기 슬라이딩 바(10315)가 삽입되어 좌우방향으로 슬라이딩 될 수 있도록 하는 것;을 특징으로 한다.
상기 슬라이딩 바(10315)의 단부에는 상기 슬라이딩 홀(10325)의 폭보다 크게 형성되는 슬라이딩 헤드(10316)를 갖는 것;을 특징으로 한다.
상기 지지대(1030)는 하나 이상의 내부지지대(1031) 및 외부지지대(1032)로 구성하되, 교대로 배치되며; 최하측에는 최하측 외부지지대(1032)가 위치하는 것;을 특징으로 한다.
상기 내부지지대(1031) 및 외부지지대(1032)는, 양단부에 형성되는 상부플랜지(10311, 10321) 및 하부플랜지(10312, 10322)와, 상기 상부 및 하부플랜지(10311, 10321, 10312, 10322)를 연결하는 웨브(10313, 10323);를 포함하는 것을 특징으로 한다.
상기 최하측 외부지지대(1032)의 상부플랜지(10321)에는 슬라이딩 홀(10325)이 형성되고, 상기 최하측 외부지지대(1032)의 상측에 위치하는 최하측 내부지지대(1031)의 하부플랜지(10312)에는 슬라이딩 바(10315)가 형성되는 것;을 특징으로 한다.
상기 내부지지대(1031)는 저온에 견디는 금속으로 제작하고, 상기 외부지지대(1032)는 강화 플라스틱 소재로 제작하되, 상기 외부지지대(1032)는 체결부(10327)에 의해 저온에 견디는 금속으로 제작된 연결플레이트(10326)와 체결되고, 상기 연결플레이트(10326)는 상기 외부쉘(1020)과 용접되어 상기 외부지지대(1032)가 상기 외부쉘(1020)과 연결되는 것;을 특징으로 한다.
상기 지지대(1030)는 상기 내부쉘(1010) 및 외부쉘(1020)의 측부 둘레를 따라 복수개 설치되는 것;을 특징으로 한다.
상기 지지대(1030)는 상기 내부쉘(1010)의 상하방향으로 간격을 두고서 복수개 설치되는 것;을 특징으로 한다.
상기 내부쉘(1010)이 외부쉘(1020)에 지지될 수 있도록 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 하부 공간에 설치되는 하부지지대(1033);를 더 포함하는 것을 특징으로 한다.
상기 내부쉘(1010)의 내부 공간과 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간을 연결하는 이퀄라이징 라인(1090);을 더 포함하는 것을 특징으로 한다.
상기 이퀄라이징 라인(1090)은 상기 내부쉘(1010)의 내부 공간으로부터 상기 저장용기(1000)의 외부로 돌출된 후 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 연결되는 것;을 특징으로 한다.
상기 이퀄라이징라인의 일단은 상기 내부 쉘의 내측과 소통하고, 타단은 상기 내부 쉘 및 외부 쉘 사이의 공간과 소통하며, 타단은 상기 공간의 간격(h)의 1/2 지점이 되는 곳에 위치하는 것;을 특징으로 한다.
상기 이퀄라이징라인은 액화천연가스의 저온에 견디는 금속으로 이루어지는 것;을 특징으로 한다.
상기 저장 용기의 외부로 돌출되는 이퀄라이징라인 부분과 접하는 상기 외부 쉘 측에는 이퀄라이징라인 플랜지(519)를 형성하여 상기 이퀄라이징라인 플랜지(519)가 상기 이퀄라이징라인과 연결되도록 하되, 상기 이퀄라이징라인 플랜지(519)는 저온에 견디는 금속으로 이루어지는 것;을 특징으로 한다.
상기 내부쉘(1010)의 내부 공간 상부에 연결되어 외부로 연장되며, 제1 배기밸브(1086)가 설치되는 제1 배기라인(1085);을 더 포함하는 것을 특징으로 한다.
상기 내부쉘(1010)의 내부 공간 상단과 하단에 각각 연결되어 외부로 돌출되며, 선역라인(7)과 하역라인(8)이 각각 연결되는 제1 및 제2 연결부(1080, 1081);를 더 포함하는 것을 특징으로 한다.
상기 이퀄라이징 라인(1090)은 유체의 흐름을 개폐시키기 위한 개폐밸브(1091)가 설치되는 것;을 특징으로 한다.
상기 이퀄라이징 라인(1090)은 제2 배기밸브(1096)가 설치되는 제2 배기라인(1095)이 연결되는 것;을 특징으로 한다.
상기 단열층부(1040)의 내부쉘(1010) 측에는 개방셀(open cell) 단열재로 구성되는 제1 단열층(1041)을 형성하고, 외부쉘(1020) 측에는 닫힘셀(closed cell) 단열재로 구성되는 제2 단열층(1042)을 형성하는 것;을 특징으로 한다.
상기 단열층부(1040)의 내부쉘(1010) 측에는 상기 내부쉘(1010)의 벽면을 따라 유체가 흐를 수 있도록 구성되는 통로(1043)가 형성되고, 외부쉘(1020) 측에는 단열층(1044)이 형성되는 것;을 특징으로 한다.
상기 내부쉘은 액화천연가스의 저온에 견디는 금속으로 이루어지고, 상기 외부쉘은 내부 압력을 견디기 위한 강(steel) 소재로 이루어지는 것;을 특징으로 한다.
상기 내부쉘은 -120 ~ -95℃의 온도를 견디고, 상기 외부쉘은 13 ~ 25bar의 압력을 견디는 것;을 특징으로 한다.
상기 내부쉘은 0.5bar의 압력을 견디는 것;을 특징으로 한다.
본 발명의 다른 측면에 따르면, 액화천연가스 저장용기의 구조에 있어서, 내부쉘(1010)의 내측에는 상기 액화천연가스를 저장하고, 상기 내부쉘(1010)의 외측에는 상기 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 상기 내부쉘(1010)과의 사이에 공간을 형성하고, 상기 공간에는 지지대(1030)를 설치하여 상기 내부쉘(1010)을 지지하고, 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 열전달을 감소시키도록 적층되는 2 이상의 단열층을 갖는 단열층부(1040);를 설치하되, 상기 2 이상의 단열층 중 상기 외부쉘(1020)과의 접촉면에 설치되는 단열층은 상기 내부쉘(1010) 측에 설치되는 단열층보다 밀도가 큰 것;을 특징으로 하는 액화천연가스 저장용기의 구조를 제공한다.
상기 2 이상의 단열층 중 상기 외부쉘(1020)과의 접촉면에 설치되는 단열층은 닫힘셀(closed cell) 단열재로 구성되고, 상기 내부쉘(1010) 측에 설치되는 단열층은 개방셀(open cell) 단열재로 구성되는 것;을 특징으로 한다.
본 발명의 또 다른 측면에 따르면, 액화천연가스의 저장용기 제작방법에 있어서, 상기 저장용기의 외부쉘(1020)을 제작한 후 닫힘셀(closed cell)를 상기 외부쉘(1020)의 내측에 설치하고, 상기 저장용기의 내부쉘(1010)은 주름구조(1050)를 형성하여 상기 외부쉘(1020)의 내측에 삽입하고, 상기 내부쉘(1010)을 외부쉘(1020)에 지지되도록 하는 지지대(1030)는 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에 설치하고, 개방셀(open cell) 단열재를 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에 충진하는 것;을 특징으로 하는 액화천연가스의 저장용기 제작방법을 제공한다.
본 발명의 또 다른 측면에 따르면, 액화천연가스 저장용기의 구조에 있어서, 내부쉘(1010)의 내측에는 상기 액화천연가스를 저장하고, 상기 내부쉘(1010)의 외측에는 상기 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 상기 내부쉘(1010)과의 사이에 공간을 형성하고, 상기 공간에는 지지대(1030)를 설치하여 상기 내부쉘(1010)이 외부쉘(1020)에 지지되도록 하고, 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 열전달을 감소시키도록 단열층을 갖는 단열층부(1040);를 설치하되, 상기 단열층부(1040)는 유체가 흐를 수 있도록 구성되는 통로(1043)와 단열재로 구성되는 단열층(1044)으로 이루어지는 것;을 특징으로 하는 액화천연가스 저장용기의 구조를 제공한다.
상기 단열층(1044)은 상하방향으로 일정한 간격을 두고 설치되는 2 이상의 단열재 블록(10441)으로 형성하되; 상기 단열재 블록(10441) 각각의 사이에는 보강 단열재(10442)가 설치되는 것;을 특징으로 한다.
상기 보강 단열재(10442)는 사출성형(injection molding)에 의해 상기 단열재 블록(10441) 각각의 사이에 채워지는 것;을 특징으로 한다.
상기 보강 단열재(10442)의 내부쉘(1010) 측에는 보강 단열재 홈(10443)을 형성하는 것;을 특징으로 한다.
상기 단열재 블록(10441)은 2 이상의 단열재로 적층되는 것;을 특징으로 한다.
상기 2 이상의 단열재 중 상기 외부쉘(1020)과의 접촉면에 설치되는 단열재는 상기 내부쉘(1010) 측에 설치되는 단열재보다 밀도가 큰 것;을 특징으로 한다.
상기 외부쉘(1020)과의 접촉면에 설치되는 단열재은 닫힘셀(closed cell) 단열재인 것;을 특징으로 한다.
본 발명에 따르면, 액화천연가스는 물론 일정한 압력으로 가압된 액화천연가스를 효율적으로 저장하여 소비지에 공급할 수 있고, 저온 특성이 우수한 금속의 사용을 최소화하여 제작 비용을 절감할 수 있으며, 다양한 목적과 수요자의 요구를 쉽게 만족시킬 수 있고, 운반 선박의 종류 및 크기의 다양성을 확보할 수 있다.
또한, 내부쉘의 내압과 단열층부의 내압이 비슷한 값을 갖도록 설계하여 구조적 안전성을 확보하며, 외부쉘을 내압을 견딜 수 있는 강(steel) 소재로 사용하여 고가의 저온 특성이 우수한 금속 사용을 줄여 제작 비용을 절감할 수 있다.
또한, 주름 구조의 내부쉘로 인해 내부쉘의 구조적 강도가 증가하고, 좌굴강도도 현저히 증가하므로 용기를 박판으로 제작할 수 있어 제작비용을 절감할 수 있다.
또한, 주름 구조의 내부쉘로 인해 내부쉘의 열변형을 흡수할 있으므로 과도한 열응력의 발생을 방지하여 구조적 안정성을 확보할 수 있다.
또한, 간단한 구성으로 내부쉘과 외부쉘을 지지하는 지지구조물에 발생하는 열변형으로 인한 열응력의 집중을 막을 수 있어 내구성이 높으며, 지지구조물의 제작비용을 절감할 수 있다.
또한, 외부지지대를 열전달계수가 낮은 강화플라스틱 소재로 사용하여 열전달을 최소화함과 동시에 외부지지대를 외부쉘에 연결하는 별도의 연결플레이트를 설치하여 외부지지대를 외부쉘에 용이하게 용접연결할 수 있다.
또한, 가압 상태에 있더라도 단열재의 손상으로 인한 외부쉘의 냉각 파손을 방지할 수 있고, 단열층으로 액화천연가스가 누설되더라도 닫힘셀에 의해 단열성능도 확보할 수 있다.
또한, 개방셀과 닫힘셀의 적절한 사용으로 고가의 닫힘셀 사용을 최소화하면서 내부쉘의 내외부의 압력평형을 이룰 수 있으며, 저장용기의 조립을 간편하게 하고, 단열층 제작비용을 절감할 수 있다.
또한, 단열층부를 적절한 크기의 단열재 블록으로 제작하여 시공의 편이성을 높일 수 있다.
또한, 단열재 블록 사이에 단열재의 수축 및 팽창을 흡수할 수 있는 보강 단열재를 설치하여 단열재의 열수축 및 팽창에도 단열재의 내부 및 접착면의 균열을 피할 수 있고, 구조적 안정성을 높임과 동시에 단열성능을 일정하게 유지할 수 있다.
도 1은 본 발명에 따른 가압액화천연가스 생산 방법을 도시한 흐름도,
도 2는 본 발명에 따른 가압액화천연가스 생산 시스템을 도시한 구성도,
도 3은 본 발명에 따른 가압액화천연가스 분배방법을 도시한 흐름도,
도 4는 본 발명에 따른 가압액화천연가스 분배방법을 설명하기 위한 구성도,
도 5는 본 발명에 따른 가압액화천연가스 분배방법에 사용되는 압력 용기를 도시한 측면도,
도 6은 본 발명에 따른 가압액화천연가스 분배방법의 다른 예를 설명하기 위한 구성도,
도 7은 본 발명에 따른 액화천연가스의 저장 탱크를 도시한 사시도,
도 8은 본 발명에 따른 액화천연가스의 저장 탱크에 대한 다양한 규격을 도시한 사시도,
도 9는 본 발명에 따른 액화천연가스의 저장 탱크를 도시한 구성도,
도 10은 본 발명에 따른 액화천연가스 저장 탱크에 대한 다른 예를 도시한 구성도,
도 11은 본 발명의 제 1 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도,
도 12는 본 발명의 제 1 실시예에 따른 액화천연가스의 저장 용기에 형성된 연결부의 다른 실시예를 도시한 단면도,
도 13은 본 발명의 제 1 실시예에 따른 액화천연가스의 저장 용기의 작용을 설명하기 위한 단면도,
도 14는 본 발명의 제 2 실시예에 따른 액화천연가스의 저장 용기를 도시한 부분 단면도,
도 15는 본 발명의 제 3 실시예에 따른 액화천연가스의 저장 용기를 도시한 부분 단면도,
도 16은 본 발명의 제 4 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도,
도 17은 도 16의 A-A'선에 따른 단면도,
도 18은 도 17의 B-B'선에 따른 단면도,
도 19는 본 발명의 제 5 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도,
도 20은 본 발명의 제 6 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도,
도 21은 도 20의 C-C'선에 따른 단면도,
도 22는 본 발명의 제 7 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도,
도 23은 본 발명의 제 8 실시예에 따른 액화천연가스의 저장 용기를 도시한 구성도,
도 24는 본 발명의 제 9 실시예에 따른 액화천연가스의 저장 용기를 도시한 구성도,
도 25는 본 발명의 제 10 실시예에 따른 액화천연가스의 저장 용기를 도시한 구성도,
도 26은 본 발명의 제 11 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도,
도 27은 본 발명의 제 11 실시예에 따른 액화천연가스의 저장 용기의 연결부에 대한 다른 예를 도시한 단면도,
도 28은 본 발명의 제 11 실시예에 따른 액화천연가스의 저장 용기의 연결부에 대한 또 다른 예를 도시한 단면도,
도 29는 본 발명의 제 11 실시예에 따른 액화천연가스의 저장 용기의 연결부에 대한 또 다른 예를 도시한 단면도,
도 30은 본 발명의 제 12 실시예에 따른 액화천연가스의 저장 용기를 도시한 요부 확대도,
도 31은 본 발명의 제 12 실시예에 따른 액화천연가스의 저장 용기에 마련된 완충부를 도시한 사시도,
도 32는 본 발명의 제 12 실시예에 따른 액화천연가스의 저장 용기에 마련된 완충부의 다른 예를 도시한 사시도,
도 33은 본 발명에 따른 액화천연가스의 생산 장치를 도시한 구성도,
도 34는 본 발명에 따른 저장 탱크 운반 장치를 가지는 부유식 구조물을 도시한 측면도,
도 35는 본 발명에 따른 저장 탱크 운반 장치를 가지는 부유식 구조물을 도시한 정면도,
도 36은 본 발명에 따른 저장 탱크 운반 장치를 가지는 부유식 구조물의 동작을 설명하기 위한 측면도,
도 37은 본 발명에 따른 가압액화천연가스 저장 용기의 고압 유지 시스템을 도시한 구성도,
도 38은 본 발명의 제 1 실시예에 따른 열교환기 분리형 액화 장치를 도시한 구성도,
도 39는 본 발명의 제 2 실시예에 따른 열교환기 분리형 액화 장치를 도시한 구성도,
도 40은 본 발명에 따른 액화천연가스 저장 용기 운반선을 도시한 정단면도,
도 41은 본 발명에 따른 액화천연가스 저장 용기 운반선을 도시한 측단면도,
도 42는 본 발명에 따른 액화천연가스 저장 용기 운반선의 요부를 도시한 평면도,
도 43은 본 발명에 따른 이산화탄소 고형화 제거 시스템을 도시한 구성도,
도 44는 본 발명에 따른 이산화탄소 고형화 제거 시스템의 동작을 도시한 도면,
도 45는 본 발명에 따른 액화천연가스 저장 용기의 연결구조를 도시한 단면도,
도 46은 본 발명에 따른 액화천연가스 저장 용기의 연결구조를 도시한 사시도, 그리고,
도 47은 본 발명에 따른 액화천연가스 저장 용기의 연결구조의 작용을 설명하기 위한 단면도이다.
도 48은 본 발명에 따른 액화천연가스의 저장용기를 개략적으로 도시한 도면.
도 49는 본 발명에 따른 액화천연가스의 저장용기 내부쉘의 구조를 개략적으로 도시한 도면.
도 50은 본 발명에 따른 액화천연가스의 저장용기 내부쉘의 구조에 대한 다양한 형태를 나타낸 도면.
도 51은 본 발명에 따른 액화천연가스의 저장용기 내부쉘의 구조에 대한 다양한 형태를 나타낸 도면.
도 52는 본 발명에 따른 액화천연가스의 저장용기의 내부쉘의 구조를 개략적으로 도시한 도면.
도 53는 본 발명에 따른 액화천연가스의 저장용기를 개략적으로 도시한 도면.
도 54는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 55는 도 54의 A를 확대한 도면으로서, 다양한 형태의 지지대를 도시한 도면.
도 56은 도 55를 확대한 도면으로서, (a)는 B를 확대한 도면이고, (b)는 C를 확대한 도면.
도 57은 외부지지대를 도시한 도면으로서, (a)는 외부지지대를 저장용기의 반경방향으로 본 도면이고, (b)는 (a)의 측면도.
도 58은 발명의 실시예에 따른 액화천연가스의 저장용기의 일부를 절단하여 도시한 도면.
도 59는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 60은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 61은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 62는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 63은 도 62의 D를 확대한 도면.
도 64는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 65는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 66은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 67은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 68은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 69는 도 68의 A를 확대한 도면.
도 70은 도 68의 B-B 단면을 도시한 도면.
도 71은 본 발명에 따른 단열재 블록 및 보강 단열재의 열팽창 및 열수축 경우의 도면.
도 72는 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 73은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 74는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
도 75는 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도.
<부호의 설명>
1 : 천연가스전 2 : 선박
3 : 소비지 3a : 소비자
4 : 밸브 5 : 안벽
6 : 저장 탱크 7 : 선역라인
7a : 밸브 8 : 하역라인
8a : 밸브 9a : 외부 주입부
10 : 가압액화천연 가스 생산 시스템
11 : 탈수설비 12 : 액화설비
13 : 이산화탄소 제거설비 14 : 저장설비
21 : 저장 용기 21a : 노즐
22 : 용기 어셈블리 22a : 통합노즐
23 : 재기화 시스템 30 : 액화천연가스의 저장 탱크
31 : 본체 31a : 스페이서
31b : 지지대 32 : 저장 용기
33 : 선하역라인 33a,33b : 선하역밸브
34 : 증발가스라인 34a,34b : 증발가스밸브
35 : 압력감지부 36 : 제어부
36a : 조작부 37 : 디스플레이부
38 : 가열부 38a : 열교환기
38b : 전기 히터 39 : 발열량 조절부
41 : 바이패스라인 41a :바이패스밸브
42 : 온도감지부 50 : 저장 용기
51 : 내부쉘 51a : 출입구
52 : 외부쉘 53 : 단열층부
54 : 연결유로 55 : 연결부
56 : 외부단열층 57 : 히팅부재
60,70 : 저장 용기 61 : 내부쉘
62 : 외부쉘 63 : 지지대
63a : 제 1 플랜지 63b : 제 2 플랜지
63c : 제 1 웨브 64 : 단열층부
65 : 단열부재 66 : 하부지지대
80,90 : 저장 용기 81 : 내부쉘
82 : 외부쉘 83 : 금속심
83a : 지지점 84 : 단열층부
86 : 하부지지대 100 : 저장 용기
95 : 내부쉘 120 : 외부쉘
130 : 단열층부 140,150,160,170 : 연결부
141,151,161, : 주입부 142,152,162,172 : 제 1 플랜지
143 : 연장부 144,174 : 제 2 플랜지
163 : 체결부재 163a : 결합부
181,183 : 볼트 182 : 너트
200 : 가압액화천연가스의 생산 장치 210 : 냉매공급부
211 : 냉매라인 220 : 공급라인
221 : 제 1 분기라인 230 : 열교환기
240 : 재생부 241 : 재생유체공급부
242 : 재생유체라인 243 : 제 1 밸브
244 : 제 2 밸브 250 : 감지부
260 : 제어부 270 : 제 3 밸브
300 : 저장 탱크 운반 장치를 가지는 부유식 구조물
310 : 저장 탱크의 운반 장치 311 : 승강부
311a : 적재대 311b : 이동발판
311c : 힌지 결합부 311d : 보조레일
312 : 레일 313 : 이송대차
313a : 휠 313b : 탱크 보호대
320 : 부유 구조물 330 : 저장 탱크
400 : 가압액화천연가스 저장 용기의 고압 유지 시스템
410 : 하역라인 411 : 저장 용기
420 : 압력보충라인 430 : 증발기
440 : 증발가스라인 450 : 압축기
510 : 저장 용기 511 : 내부쉘
512 : 외부쉘 513 : 단열층부
514 : 이퀄라이징라인 514a : 개폐밸브
514b : 제 2 배기밸브 514c : 제 2 배기라인
515 : 제 1 배기라인 515a : 제 1 배기밸브
516a : 제 1 연결부 516b : 제 2 연결부
517 : 지지대 518 : 하부지지대
519 : 이퀄라이징라인 플랜지
520 : 저장 용기 521 : 내부쉘
521a : 주입구 522 : 외부쉘
522a : 연장부 523 : 단열층부
524 : 연결부 525,526,527 : 완충부
525a,526a,527a : 루프 525b : 이음부
610,640 : 열교환기 분리형 천연가스 액화 장치
620,650 : 액화용 열교환기 621 : 제 1 유로
622 : 제 2 유로 623 : 액화라인
624 : 개폐밸브 630,660 : 냉매 냉각부
631,632,661 : 냉매용 열교환기 631a,632a,661a : 제 1 유로
631b,632b,661b : 제 2 유로 631c : 제 3 유로
633,663 : 압축기 634,664 : 후냉각기
635 : 분리기 636a : 제 1 J-T 밸브
636b : 제 2 J-T 밸브 636c : 제 3 J-T 밸브
637 : 냉매공급라인 638 : 냉매순환라인
638a : 기상라인 638b : 액상라인
638c : 연결라인 665 : 팽창기
666 : 유량배분밸브
700 : 액화천연가스 저장 용기 운반선
710 : 선체 711 : 데크
720 : 화물창 721 : 개구
730 : 제 1 상부지지대 740 : 제 2 상부지지대
750 : 하부지지대 751 : 보강부재
760 : 지지블록 761 : 지지면
770 : 컨테이너적재부 791 : 저장용기
792 : 컨테이너박스
810 : 이산화탄소 고형화 제거 시스템 811 : 공급라인
812 : 팽창 밸브 813 : 고형화 이산화탄소 필터
814 : 제 1 개폐 밸브 815 : 제 2 개폐 밸브
816 : 가열부 816a : 열매라인
816b : 재생 열교환기 816c : 제 4 개폐 밸브
816d : 제 5 개폐 밸브 817 : 제 3 개폐 밸브
817a : 배출라인
820 : 액화천연가스 저장 용기의 연결구조
821 : 슬라이딩 결합부 822 : 연결부
823 : 결합부 824 : 연장부
830 : 액화천연가스 저장 용기 831 : 내부쉘
831a : 주입구 832 : 외부쉘
833 : 단열층부 840 : 외부 주입부
900 : 액화천연가스의 저장용기 910 : 내부쉘
920 : 외부쉘 930 : 지지대
931 : 하부지지대 940 : 단열층부
950 : 주름구조 951 : 주름
952 : 굴곡부 9521 : 각진 모서리 굴곡부
9522 : 둥근 모서리 굴곡부 9523 : 물결모양 굴곡부
953 : 굴곡각도 954 : 주름깊이
955 : 주름거리 960 : 상부덮개
970 : 하부덮개
1000: 저장용기 1010: 내부쉘
1020: 외부쉘 1030 : 지지대
1031: 내부지지대 1032: 외부지지대
10311, 10321: 상부플랜지 10312, 10322: 하부블랜지
10313, 10323: 웨브 10314, 10324: 보강재
10315: 슬라이딩 바 10316: 슬라이딩 헤드
10325: 슬라이딩 홀 10326: 연결플레이트
10327: 체결부 1033: 하부지지대
1040 : 단열층부 1041: 제1 단열층
1042: 제2 단열층 1043: 통로
1044: 단열층 10441: 단열재 블록
10442: 보강 단열재 10443: 보강 단열재 홈
1050: 주름구조 1051 : 주름
1060 : 상부덮개 1070: 하부덮개
1080: 제1 연결부 1081: 제2 연결부
1085: 제1 배기라인 1086: 제1 배기밸브
1090: 이퀄라이징 라인 1091: 개폐밸브
1095: 제2 배기라인 1096: 제2 배기밸브
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
여기서 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어서 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.
도 1은 본 발명에 따른 가압액화천연가스 생산 방법을 도시한 흐름도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 가압액화천연가스 생산 방법은 천연가스전(1)으로부터 공급되는 천연가스로부터 산성가스를 제거하는 과정 없이 탈수하고, 천연가스를 NGL(Natural Gas Liquid)을 분별하는 과정 없이 가압 및 냉각에 의해 액화하여 가압액화천연가스를 생산하는데, 이를 위해 탈수단계(S11)와 액화단계(S12)를 포함할 수 있다.
탈수단계(S11)에 의하면, 천연가스전(1)으로부터 천연가스를 공급받아 산성가스(Acid gas)를 제거하는 과정 없이 탈수(Dehydration) 과정에 의해 수증기 등과 같은 수분을 제거하게 된다. 따라서, 천연가스에 대하여 산성 가스 제거과정을 거치지 않고 탈수과정을 거침으로써 산성 가스 제거과정의 생략에 의해 공정의 단순화 및 이에 소요되는 투자 및 유지 비용을 줄일 수 있도록 한다. 또한, 탈수단계(S11)에 의해 천연가스로부터 수분을 충분히 제거함으로써 생산 시스템의 작동 온도 및 압력에서 천연가스의 수분 동결을 방지하도록 한다.
액화단계(S12)에 의하면, 탈수단계(S11)를 마친 천연가스를 NGL(Natural Gas Liquid)을 분별(Fractionation)하는 과정 없이 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도로 액화하여 가압액화천연가스를 생산하게 되며, 일례로 17bar의 압력과 -115 ℃의 온도를 가지는 가압액화천연가스를 생산할 수 있다. 따라서, 천연가스에 대하여 NGL, 즉 액화 탄화수소에 대한 분별과정을 생략함으로써 액화천연가스의 생산 공정을 단순화시킬 뿐만 아니라, 극저온으로 천연가스를 냉각ㆍ액화시키는 동력소모도 줄일 수 있어, 이에 소요되는 투자 및 유지 비용을 줄이도록 하여 액화천연가스의 단가를 낮출 수 있다.
본 발명에 따른 가압액화천연가스 생산 방법에서 천연가스전(1)의 조건은 산출되는 천연가스가 10%이하의 이산화탄소(CO2)를 가지도록 할 수 있다. 또한, 탈수단계(S11)를 마친 천연가스에서 이산화탄소가 10%이하로 존재하는 경우 상기 액화 단계에서 이산화탄소를 동결(Freezing)시킨 후 제거하는 이산화탄소 제거단계(S13)를 더 포함할 수 있다.
이산화탄소 제거단계(S13)는 탈수단계(S11)를 마친 천연가스에서 이산화탄소가 2%를 초과하거나 10%이하인 경우 실시될 수 있다. 여기서, 천연가스는 이산화탄소가 2%이하인 경우 후술하게 될 가압액화천연가스의 온도 및 압력 조건에서 액체 상태로 존재하므로 이산화탄소 제거단계(S13)를 실시하지 않더라도 가압액화천연가스의 생산 및 운반에 영향을 미치지 않게 되며, 이산화탄소가 2%를 초과하여 10%이하인 경우 고체로 냉동되기 때문에 액화를 위하여 이산화탄소 제거단계(S13)를 거치게 된다.
액화단계(S12)를 마치면, 액화단계(S12)에 의해 생산된 가압액화천연가스를 이중 구조의 저장 용기에 저장하는 저장단계(S14)를 실시할 수 있으며, 이로 인해 가압액화천연가스를 원하는 위치로 이송시키도록 하는데, 이를 위해 저장 용기를 개별 또는 패키지화하여 선박을 통해 이송시키는 이송단계(S15)를 실시할 수 있다. 물론, 탱크의 강도가 강화된 액화천연가스 운반용 저장 용기를 개별 또는 패키지화하여 선박을 통해 이송시킬 수도 있을 것이다.
이송단계(S15)에 사용되는 저장 용기는 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도에 견디도록 하는 재질과 구조를 가질 수 있다. 또한, 저장 용기의 운반을 위한 선박은 액화천연가스 운반선과 같이 별도의 선박을 제조하지 않고, 기존의 바지선 또는 컨테이너선 등이 이용됨으로써 저장 용기의 운반에 소요되는 비용을 줄일 수 있다.
이 경우 바지선이나 컨테이너선 등을 그대로 또는 최소의 개조를 통해서 저장 용기를 적재하여 운송하도록 할 수 있다. 여기서, 선박에 의해 이송된 저장 용기는 소비지의 요구에 따라 개별 저장 용기 단위로 운송될 수 있다.
한편, 이송단계(S15)를 마침으로써 수요처로 공급된 저장 용기에 저장된 가압액화천연가스는 최종 소비지에서 재기화단계(S16)를 거쳐서 기체 상태의 천연가스로 공급되도록 한다. 여기서, 재기화단계(S16)를 실시하기 위한 재기화설비는 고압 펌프와 기화기로 구성될 수 있는데, 발전소나 공장 같은 개별 단위 소비지 같은 경우에는 자체 재기화 설비가 구비될 수 있다.
도 2는 본 발명에 따른 가압액화천연가스 생산 시스템을 도시한 구성도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 가압액화천연가스 생산 시스템(10)은 천연가스전(1)으로부터 천연가스를 공급받아 탈수하는 탈수설비(11)와, 탈수설비(11)를 거친 천연가스를 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도로 액화하여 가압액화천연가스를 생산하는 액화설비(12)를 포함할 수 있다.
탈수설비(11)는 천연가스전(1)으로부터 천연가스를 공급받아 탈수(Dehydration) 과정에 의해 수증기 등과 같은 수분을 제거함으로써 생산 시스템의 작동 온도 및 압력에서 천연가스의 동결을 방지하도록 한다. 이때, 천연가스전(1)으로부터 탈수설비(11)로 공급되는 천연가스는 산성가스(Acid gas)를 제거하는 과정을 거치지 않게 되며, 이로 인해 액화천연가스 생산 공정의 단순화 및 이에 소요되는 투자 및 유지 비용을 줄일 수 있도록 한다.
액화설비(12)는 탈수설비(11)를 거친 천연가스를 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도로 액화하여 가압액화천연가스를 생산하도록 하며, 일례로 17bar의 압력과 -115 ℃의 온도를 가지는 가압액화천연가스를 생산하도록 할 수 있으며, 이를 위해 저온 유체의 압축 및 냉각에 필요한 압축기 및 냉각기를 포함할 수 있다. 여기서, 탈수설비(11)를 거친 천연가스는 NGL(Natural Gas Liquid)을 분별(Fractionation)하는 과정 없이 액화설비(12)로 공급되어 액화단계를 거치게 됨으로써 NGL, 즉 액화 탄화수소에 대한 분별과정으로 인한 시스템의 제작 및 유지에 소요되는 비용을 줄이도록 하며, 이로 인해 액화천연가스의 단가를 낮추도록 한다.
본 발명에 따른 가압액화천연가스 생산 시스템(10)은 탈수설비(11)를 거친 천연가스에서 이산화탄소가 10%이하로 존재하는 경우 천연가스로부터 이산화탄소를 동결(Freezing)시킨 후 제거하도록 마련되는 이산화탄소 제거설비(13)를 더 포함할 수 있다.
이산화탄소 제거설비(13)는 탈수설비(11)를 거친 천연가스에서 이산화탄소가 2%를 초과하거나 10%이하인 경우에 한해서 천연가스로부터 이산화탄소의 제거를 수행하도록 할 수 있다. 즉, 천연가스는 이산화탄소가 2%이하인 경우 가압액화천연가스의 온도 및 압력 조건에서 액체 상태로 존재하므로 이산화탄소의 제거가 불필요하며, 이산화탄소가 2%를 초과하여 10%이하인 경우 고체로 냉동되기 때문에 이산화탄소 제거설비(13)에 의해 이산화탄소를 제거할 필요가 있다.
액화설비(12)로부터 생산되는 가압액화천연가스는 저장설비(14)에서 이중 구조의 저장 용기에 저장되어 저장 용기의 운송에 의해 원하는 소비지로 이송된다.
도 3은 본 발명에 따른 가압액화천연가스 분배방법을 도시한 흐름도이다.
도 3에 도시된 바와 같이, 본 발명에 따른 가압액화천연가스 분배방법은 천연가스에 압력을 가하고, 냉각시킴으로써 액화시킨 가압액화천연가스가 저장되는 저장 용기를 선박에 적재하여 소비지로 이송시키고, 저장 용기를 소비지에 하역시킨 다음, 저장 용기를 소비지의 재기화 시스템에 연결시키도록 한다. 이를 위해 본 발명에 따른 가압액화천연가스 분배방법은 이송단계(S21)와, 하역단계(S22)와, 연결단계(S23)를 포함할 수 있다.
도 4에 도시된 바와 같이, 이송단계(S21)에 의하면, 천연가스를 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도에서 액화시킨 가압액화천연가스가 저장됨과 아울러 운반이 가능한 저장 용기(21)를 선박(2)에 적재하여 소비지(3)로 이송시키게 된다. 여기서, 가압액화천연가스는 상기한 가압액화천연가스의 생산 방법에 의해 생산될 수 있으며, 이를 저장하는 저장 용기(21)는 천연가스를 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도를 견딜 수 있는 재질 및 구조를 가지고, 이중 구조로 이루어질 수 있으며, 선박(2)에 다수로 적재될 수 있다.
이송단계(S21)는 소비지(3)가 내륙에 위치하는 경우 트레일러 또는 열차 등의 육상운반수단에 의해 저장 용기(21)를 이송시킬 수 있다.
하역단계(S22)는 선박(2)이 소비지(3)에 도착하면, 하역시설에 의해 가압액화천연가스가 가득찬 저장 용기(21)를 소비지에 하역시키는 단계로서, 개별 저장 용기(21) 단위로 하역시킬 수 있다.
연결단계(S23)는 저장 용기(21)를 소비지(3)의 재기화 시스템(23)에 연결시켜서 저장 용기(21)에 저장된 가압액화천연가스가 기화되도록 하는 단계로서, 저장 용기(21)의 가압액화천연가스를 기화시킴으로써 발생되는 천연가스를 소비자(3a)에게 공급할 수 있도록 한다. 한편, 저장 용기(21)는 도 5에 도시된 바와 같이, 가압액화천연가스의 출입과 재기화 시스템(23)의 기화라인에 연결되기 위한 노즐(21a)이 마련된다. 여기서, 노즐(21a)은 저장 용기(21)가 선박(2)에 적재되는 자세와 재기화 시스템(23)에 연결되는 자세에 따라 다양한 위치에 다양한 구조로 마련될 수 있으며, 가압액화천연가스의 저장설비와 재기화 시스템(23)의 커넥터에 연결될 수 있는 커넥터를 가질 수 있다.
본 발명에 따른 가압액화천연가스의 분배방법은 소비지(3)로부터 빈 저장 용기(21)를 회수하는 회수단계(S24)를 더 포함할 수 있다.
회수단계(S24)는 육상운반수단이나 선박(2)을 이용하여 빈 저장 용기(21)를 가압액화천연가스 생산 시스템(10)이 위치한 곳으로 회수되도록 함으로써 물류비를 절약하도록 하고, 이로 인해 천연가스의 공급 단가를 낮추도록 하는데 기여할 수 있다.
도 6에 도시된 바와 같이, 이송단계(S21)에서 다수의 저장 용기(21)를 단일로 패키지한 용기 어셈블리(22)를 이송시킬 수 있다. 여기서, 용기 어셈블리(22)는 저장 용기(21) 각각에 가압액화천연가스의 출입을 위해 마련된 노즐(21a; 도 5에 도시)을 단일화시키도록 연결되는 통합노즐(22a)이 마련될 수 있다. 따라서, 용기 어셈블리(22)에 의해 저장 용기(21)를 묶음 단위로 구성함과 아울러 통합노즐(22a)에 의해 단일의 용기처럼 사용되도록 함으로써 이송단계(S21)에서의 적재, 하역단계(S22)에서의 하역, 연결단계(S23)에서의 재기화 시스템(23)과의 연결, 그리고, 회수단계(S24)에서의 회수에 있어서 소요되는 시간과 노력을 줄일 수 있다.
용기 어셈블리(22)의 경우 저장 용기(21)가 다수로 이루어짐으로써 발전소 또는 공단 등과 같이, 단일 소비지로서 많은 천연가스를 필요로 하는 곳에 하역되어 사용되도록 함이 효율적이다.
또한, 본 발명에 따른 가압액화천연가스의 분배방법에 의하면, 소비지에 별도의 저장 탱크가 필요하지 않는 장점이 있다. 또한, 재기화 시스템만 구비하면 되고, 선박 또는 선박과 병행한 육상운반수단에 의해 가압액화천연가스 생산 시스템(10)이 위치하는 곳으로부터 각 개별 소비지(3)까지 순환하면서 저장 용기(21)나 용기 어셈블리(22)를 하역하고, 빈 저장 용기(21)나 용기 어셈블리(22)를 회수하는 비즈니스가 가능하도록 한다. 특히, 동남아시아 등지와 같이 다수의 중소형 소비지가 다수의 섬에 분산되어 있는 경우, 각 소비지에 별도의 저장 시설 및 파이프 라인과 같은 인프라 구축을 최소화하는 비즈니스가 가능해진다.
도 7은 본 발명에 따른 액화천연가스의 저장 탱크를 도시한 사시도이다.
도 7에 도시된 바와 같이, 본 발명에 따른 액화천연가스의 저장 탱크(30)는 본체(31)의 내측에 액화천연가스가 각각 저장되기 위한 다수의 저장 용기(32)가 설치되고, 저장 용기(32) 각각에 연결됨과 아울러 선하역밸브(33a,33b)가 설치되는 선하역라인(33)을 통해서 저장 용기(32)에 대한 액화천연가스의 선ㆍ하역을 가능하도록 한다.
본체(31)는 내측에 다수의 저장 용기(32)가 배열되도록 설치되고, 저장 용기(32)가 서로 간격을 유지하면서 배열 상태를 유지하도록 저장 용기(32) 사이에 설치되는 스페이서(Spacer; 31a)를 포함할 수 있다.
또한, 본체(31)는 온도의 출입을 차단하기 위한 단열층을 가지거나, 단열을 위한 이중 구조로 이루어질 수 있으며, 본 실시예에서처럼 육면체 구조로 이루어지거나, 그 밖의 다양한 구조로 이루어질 수 있다. 또한, 본체(31)는 지면으로부터 이격됨으로써 지면의 열 전달을 차단하도록 함과 아울러 지면에 안정적인 자세로 설치되기 위하여 저면에 다수의 지지대(31b)가 마련될 수 있다.
도 8에 도시된 바와 같이, 본체(31)는 (a),(b),(c)에서와 같은 대.중.소의 규격을 가지도록 함으로써 저장 용기(32)의 수용 개수와 크기를 규격화할 수 있으며, 이에 한하지 않고, 다양한 개수의 저장 용기(32)를 수용할 수 있으며, 다양한 규격으로 제작될 수 있다.
저장 용기(32)는 액화천연가스가 각각 저장되도록 하는 후술하게 될 선하역라인(33)과 함께 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도를 견디는 구조 또는 재질로 이루어질 수 있다. 따라서, 저장용기(32)와 선하역라인(33)은 이러한 압력 및 온도 조건에 견디도록 단열재가 설치됨과 아울러 2중 구조 등을 가짐으로써 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도, 일례로 17bar의 압력과 -115 ℃의 온도를 가지는 가압액화천연가스의 저장 및 운반을 가능하도록 한다.
도 9에 도시된 바와 같이, 선하역라인(33)은 저장 용기(32) 각각에 연결되어 본체(31)의 외측까지 연장 설치되며, 저장 용기(32)에 대한 액화천연가스의 선ㆍ하역을 개폐시키기 위한 선하역밸브(33a,33b)가 설치된다. 따라서, 본체(31)가 소비지에 설치된 후, 선하역라인(33)이 소비지의 재기화 시스템이나 공급 라인 등에 연결되면 액화천연가스 또는 천연가스의 공급이 즉시 가능해진다.
여기서, 선하역밸브(33a,33b)는 저장 용기(32) 각각에 대한 액화천연가스의 선ㆍ하역을 개폐시키도록 개별적으로 설치되는 제 1 개별밸브(33a)와, 저장 용기(32) 전부에 대한 액화천연가스의 선ㆍ하역을 통합적으로 개폐시키도록 설치되는 제 1 통합밸브(33b)를 포함할 수 있는데, 선하역밸브로서 제 1 개별밸브(33a)를 모두 개방시킨다면 각각의 저장용기들이 하나의 패키지화되어 1개의 탱크로 사용할 수도 있다. 또한, 제 1 개별밸브(33a)만 설치하거나, 제 1 통합밸브(33b)만 설치하여 사용할 수도 있다.
본 발명에 따른 액화천연가스의 저장 탱크(30)는 저장 용기(32)로부터 자연적으로 발생되는 증발가스의 배출을 위하여, 저장 용기(32)중 일부 또는 전부에 연결되어 본체(31)의 외측까지 연장 설치됨과 아울러, 저장 용기(32) 내에 발생되는 증발가스(BOG)의 배출을 개폐시키는 증발가스밸브(34a,34b)가 설치되는 증발가스라인(34)을 더 포함할 수 있다. 여기서, 증발가스라인(34)은 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도를 견디는 구조 또는 재질로 이루어질 수 있다.
또한, 증발가스밸브(34a,34b)는 저장 용기(32) 각각에 대한 증발가스의 배출을 개폐시키도록 개별적으로 설치되는 제 2 개별밸브(34a)와, 저장 용기(32) 전부에 대한 증발가스의 배출을 통합적으로 개폐시키도록 설치되는 제 2 통합밸브(34b)를 포함할 수 있는데, 증발가스밸브로서 제 2 개별밸브(34a)만 설치되거나, 제 2 통합밸브(34b)만 설치될 수도 있다. 여기에서도 상기에서 설명한 바와 같이 제 2 개별밸브(34a)를 모두 개방시킨다면 각각의 저장용기들이 하나의 패키지화되어 1개의 탱크로 사용하는 효과를 거둘 수 있을 것이다. 역시 제 2 개별밸브(34a)만 설치하거나, 제 1 통합밸브(34b)만을 설치하여 사용할 수도 있을 것이다.
본 발명에 따른 액화천연가스의 저장 탱크(30)는 저장 용기(32) 각각 또는 전부에 대한 내부 압력을 측정하여 감지신호로 출력하는 압력감지부(35)와, 압력감지부(35)로부터 출력되는 감지신호를 수신받아 저장 용기(32) 각각 또는 전부에 대한 내부 압력을 디스플레이부(37)를 통해서 본체(31)의 외측으로 디스플레이되도록 하는 제어부(36)를 더 포함할 수 있다. 여기서, 압력감지부(35)는 저장 용기(32) 각각 또는 전부에 대한 내부 압력을 측정하기 위하여, 일례로 선하역라인(33)에서 저장 용기(32)의 전단에 각각 설치되거나, 선하역라인(33)에서 액화천연가스의 선ㆍ하역을 위하여 이동하는 통합된 경로상에 설치될 수 있다. 또한, 제어부(36)는 본체(31)에 마련되거나 원격지에서 유ㆍ무선통신이 가능하도록 설치된 조작부(36a)로부터 출력되는 조작신호에 따라 선하역밸브(33a,33b)와 증발가스밸브(34a,34b)를 각각 제어하도록 할 수 있다.
도 10에 도시된 바와 같이, 본 발명에 따른 액화천연가스의 저장 탱크(30)는 저장 용기(32)로부터 하역되는 액화천연가스의 기화 및 소비지에서 요구되는 발열량(heating value)의 조절을 위하여, 저장용기(32) 일부 또는 전부로부터 하역되는 액화천연가스를 기화시키도록 설치되는 가열부(38)와, 가열부(38)를 통과하는 천연가스의 발열량을 조절하도록 설치되는 발열량 조절부(39)를 포함할 수 있다. 여기서, 가열부(38)와 발열량 조절부(39)는 선하역라인(33)에서 저장 용기(32)들 중에서 어느 하나 또는 다수가 통합되는 라인상에 설치되거나, 저장 용기(32)와 선하역라인(33)에 연결되어 밸브에 의해 액화천연가스를 통과시키도록 하는 별도의 라인에 설치될 수 있다.
가열부(38)는 액화천연가스를 공기와의 열교환에 의해 1차적으로 가열시키도록 설치되는 플레이트 핀 타입의 열교환기(38a)와, 열교환기(38a)를 통과함으로써 기화되는 액화천연가스를 2차적으로 가열시키도록 설치되는 전기 히터(38b)를 포함할 수 있다.
발열량 조절부(39)가 설치되는 라인, 예컨대 선하역라인(33)에는 발열량 조절부(39)를 바이패스밸브(41a)에 의해 바이패스하도록 연결되는 바이패스라인(41)을 더 포함할 수 있다. 따라서, 천연가스에 대한 발열량 조절이 필요한 경우에는 바이패스밸브(41a)의 동작에 의해 천연가스가 발열량 조절부(39)로 공급되도록 함으로써 소비지에서 요구되는 발열량을 가진 천연가스가 공급되도록 하며, 천연가스에 대한 발열량 조절이 불필요한 경우에는 바이패스밸브(41a)의 동작에 의해 천연가스가 바이패스라인(41)을 통해서 발열량 조절부(39)를 바이패스하도록 할 수 있다. 여기서, 바이패스밸브(41a)는 3방향 밸브로 이루어지거나, 다수의 양방향 밸브로 이루어질 수 있다.
또한, 본 발명에 따른 액화천연가스의 저장 탱크(30)는 하역되는 천연가스가 소비지에서 요구되는 온도를 가지도록 하기 위하여, 하역되는 천연가스의 온도를 감지하는 온도감지부(42)와, 온도감지부(42)의 신호를 수신받아 천연가스가 설정된 온도 범위에 도달하도록 전기 히터(38b)를 제어하는 제어부(36)를 더 포함할 수 있다. 제어부(36)는 하역되는 천연가스의 온도를 디스플레이부(37)를 통해서 본체(31)의 외측으로 디스플레이되도록 할 수도 있다.
여기서 온도감지부(42)는 선하역라인(33)의 출구측에 설치될 수 있다. 또한, 제어부(36)는 조작부(36a)의 조작신호에 따라 앞서 설명한 바이패스밸브(41a)를 제어할 수 있다.
이와 같이, 본 발명에 따른 액화천연가스의 저장 탱크(30)는 기능에 따라 저장과 증발가스 처리가 가능한 저장 용기(32), 그리고 저장, 증발가스 처리뿐만 아니라 기화 설비, 발열량 조절이 가능한 저장 용기(32)로 나누어질 수 있으며, 소비지의 수요자 요구에 맞추어서 손쉽게 액화천연가스 또는 천연가스를 운송할 수 있도록 한다.
도 11은 본 발명의 제 1 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도이다.
도 11에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 액화천연가스의 저장 용기(50)는 내측에 저장되는 액화천연가스의 저온을 견디는 금속으로 제작되는 내부쉘(51)과 내부쉘(51)의 외측을 감싸서 내부 압력을 견디기 위한 강(steel) 소재로 제작되는 외부쉘(52) 사이에 열전달을 감소시키는 단열층부(53)가 설치될 수 있다.
내부쉘(51)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 실시예에서처럼 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수 있다.
외부쉘(52)은 내부쉘(51)과의 사이에 공간을 형성하도록 내부쉘(51)의 외측을 감싸며, 내부 압력을 견디기 위한 강(steel) 소재로 이루어지며, 내부쉘(51)에 가해지는 내부 압력을 분담함으로써 내부쉘(51) 소재의 사용량을 절감하도록 하여 제작 비용을 절감하도록 한다.
내부쉘(51)은 후에 설명할 연결유로에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(51)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(52)과 단열층부(53)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로에 의해 거의 동일하게 될 수 있으므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
한편, 내부쉘(51)은 외부쉘(52)의 두께(t2)에 비하여 작은 두께(t1)를 가지도록 형성될 수 있으며, 이로 인해 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
단열층부(53)는 내부쉘(51)과 외부쉘(52) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(53)에는 내부쉘(51) 내의 압력과 동일한 압력이 가해지도록 구조 또는 재질적인 설계가 이루어질 수 있는데, 여기서, 내부쉘(51) 내의 압력과 동일한 압력이란, 엄밀한 정도로 동일한 것을 의미하는 것이 아니라 유사한 정도도 포함하는 의미이다.
단열층부(53)와 내부쉘(51)의 내부는 내부쉘(51) 내측과 외측간의 압력 평형을 위해 연결유로(54)에 의해 서로 연결될 수 있다. 이와 같은 연결유로(54)에 의하여 내부쉘(51) 안과 밖(외부쉘(52) 안쪽)에서의 압력 평형이 되며, 외부쉘(52)이 압력의 상당부분을 지지하여 내부쉘(51)의 두께를 줄일 수 있게 된다.
도 12에 도시된 바와 같이, 연결유로(54)는 내부쉘(51)의 출입구(51a)에 마련되는 연결부(55)에서 단열층부(53)가 접하는 측에 형성될 수 있다. 따라서, 내부쉘(51) 내의 압력이 연결유로(54)를 통해서 단열층부(53) 측으로 이동함으로써 내부 셀(51)의 내측과 외측간에 압력이 평형을 이루도록 한다.
도 13에 도시된 바와 같이, 저온 특성이 우수한 금속으로 이루어진 내부쉘(51)과 강도가 우수한 강(steel) 소재로 이루어진 외부쉘(52) 사이에 열전달을 감소시킴과 아울러 적정 BOR(Boil Off Rate)을 유지하기 위한 두께를 가진 단열층부(53)가 설치됨으로써 액화천연가스 뿐만 아니라 가압액화천연가스의 저장을 가능하도록 하고, 내부쉘(51)의 내측과 외측간의 압력 균형으로 인하여 내부쉘(51)의 두께(t1)를 감소시켜 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다. 또한, 내부쉘(51)의 내압에 의한 구조적 결함 발생도 방지할 수 있고, 내구성이 우수한 저장 용기(50)를 제공할 수 있다.
한편, 연결부(55)는 내부쉘(51)에서 액화천연가스의 공급 및 배출을 위하여 형성된 출입구(51a)에 일체를 이루도록 연결되어 외부쉘(52)의 외측으로 돌출되도록 마련됨으로써 밸브 등의 외부 부재가 연결되도록 할 수도 있다.
도 14에 도시된 바와 같이, 본 발명의 제 2 실시예에 따른 액화천연가스의 저장 용기에 따르면, 외부쉘(52)의 외측에 단열을 위하여 외부단열층(56)이 설치될 수 있다. 여기서, 외부단열층(56)은 외부쉘(52)의 외측을 감싸도록 외부쉘(52)에 부착되거나, 성형 또는 제작된 자신의 형상에 의하여 외부쉘(52)을 감싸는 상태를 유지하도록 하고, 이로 인해 외부와의 열전달을 차단하도록 한다. 따라서, 열대지방과 같은 고온 환경에서 저장 용기에 저장된 액화천연가스나 가압액화천연가스로부터 발생되는 BOG를 감소시키도록 한다.
도 15에 도시된 바와 같이, 본 발명의 제 3 실시예에 따른 액화천연가스의 저장 용기에 따르면, 외부쉘(52)의 외측에 히팅을 위하여 설치되는 히팅부재(57)가 설치될 수 있다. 또한, 히팅부재(57)는 열매의 순환 공급에 의해 외부쉘(52)에 열을 공급하도록 하는 열매순환라인이거나, 저장 용기(50)에 부착되는 배터리나 축전기 또는 외부의 전원공급부로부터 공급되는 전원에 의해 발열하는 히터로 이루어질 수 있으며, 휨이 가능한 판상 발열체나 본 실시예에서처럼 외부쉘(52)의 외측면을 따라 감겨지는 열선으로 이루어질 수 있다.
따라서, 극지방과 같은 저온 환경에서 저장 용기에 저장된 액화천연가스나 가압액화천연가스가 외부의 냉기로 인한 영향을 받지 않도록 함으로써 외부쉘(52)이 일반 강판으로 제작될 수 있도록 하여 제작 비용을 절감할 수 있다.
도 16은 본 발명의 제 4 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도이다. 도 16에 도시된 바와 같이, 본 발명의 제 4 실시예에 따른 액화천연가스의 저장 용기(60)는 내측에 액화천연가스가 저장되는 내부쉘(61)과 내부쉘(61)의 외측을 감싸는 외부쉘(62) 사이에 내부쉘(61)과 외부쉘(62)을 지지하도록 하는 지지대(63)와 열전달을 감소시키는 단열층부(64)가 설치된다. 한편, 내부쉘(61)에 대한 액화천연가스의 공급 및 배출을 위하여 내부쉘(61)의 출입구에는 연결부(미도시)가 일체로 연결되어 외부쉘(62)의 외측으로 돌출될 수 있으며, 이러한 연결부에는 밸브 등의 외부 부재가 연결될 수 있다.
내부쉘(61)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어질 수 있으며, 본 실시예에서처럼 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수 있다.
외부쉘(62)은 내부쉘(61)과의 사이에 공간을 형성하도록 내부쉘(61)의 외측을 감싸고, 내부 압력을 견디기 위한 강(steel) 소재로 이루어질 수 있으며, 내부쉘(61)에 가해지는 내부 압력을 분담함으로써 내부쉘(61)의 소재의 사용량을 절감하도록 하여 제작 비용을 절감할 수 있다.
내부쉘(61)은 연결유로에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(61)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(62), 지지대(63) 및 단열층부(64)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로에 의해 거의 동일하게 될 수 있으므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
지지대(63)는 내부쉘(61)과 외부쉘(62)을 지지하도록 내부쉘(61)과 외부쉘(62) 사이의 공간에 설치됨으로써 내부쉘(61)과 외부쉘(62)을 구조적으로 보강하게 되고, 액화천연가스의 저온에 견디기 위한 금속(예컨대, 저온강)으로 제작될 수 있으며, 도 17에 도시된 바와 같이, 내부쉘(61)과 외부쉘(62)의 측부 둘레를 따라 단일로 설치되거나, 본 실시예에서처럼 내부쉘(61)과 외부쉘(62)의 측부에서 상하로 간격을 두고서 다수로 설치될 수 있다.
도 18에 도시된 바와 같이, 지지대(63)는 내부쉘(61)의 외측면과 외부쉘(62)의 내측면에 각각 지지되는 제 1 및 제 2 플랜지(63a,63b)와, 제 1 및 제 2 플랜지(Flange; 63a,63b) 사이에 마련되는 제 1 웨브(Web; 63c)를 포함할 수 있다. 여기서, 제 1 및 제 2 플랜지(63a,63b) 각각은 링 형태로 이루어지거나, 링 형태를 다수로 분할한 곡률 부재로 이루어질 수 있다.
또한, 지지대(63)는 플랜지와 같은 별도의 부재를 사용하지 않고 내부쉘(61)의 외측면과 외부쉘(62)의 내측면에 용접으로 고정 지지될 수도 있다. 이 때, 지지대를 통해 외부로 열이 전달되는 것을 막기 위해 지지대에 유리섬유를 삽입할 수도 있다.
제 1 웨브(63c)는 제 1 및 제 2 플랜지(63a,63b)에 양단이 각각 고정되는 다수의 그레이팅(Grating)으로 이루어질 수 있다. 여기서 그레이팅은 일부가 제 1 및 제 2 플랜지(63a,62b) 사이에서 압축력을 주로 받도록 고정되고, 나머지가 트러스 구조를 이루도록 고정될 수 있으며, 형태 및 고정 위치를 변경 내지 조절할 수 있는데, 이는 제 1 웨브(63c)가 내ㆍ외부쉘에 용접으로 고정 지지되는 경우에도 동일하다.
외부쉘(62)의 내측면과 제 2 플랜지(63b) 사이에는 열전달을 차단하기 위한 단열부재(65)가 설치될 수 있다. 여기서, 단열부재(65)는 유리섬유(Glass fiber)로 이루어질 수 있고, 내부쉘(61)의 온도가 지지대(63)에 의해 외부쉘(62)로 전달되는 것을 방지한다.
또한, 지지대(63)가 용접으로 고정지지 되는 경우에는 외부쉘(62)과 접촉하는 지지대(63)의 끝단 부분에 유리섬유와 같은 단열부재를 배치시킨 후 용접으로 고정하거나, 별도의 단열부재를 지지대 외부와 외부쉘 내측 사이에 배치시켜, 내부쉘(61)의 온도가 지지대(63)에 의해 외부쉘(62)로 전달 되는 것을 방지할 수도 있다.
본 발명에 따른 액화천연가스의 저장 용기(60)은 내부쉘(61)과 외부쉘(62)을 지지하도록 내부쉘(61)과 외부쉘(62) 사이의 하부 공간에 설치되는 하부지지대(66)를 더 포함할 수 있다. 여기서, 하부지지대(66)는 내부쉘(61)의 외측면과 외부쉘(62)의 내측면에 각각 지지되는 제 3 및 제 4 플랜지와, 제 3 및 제 4 플랜지 사이에 마련되는 제 2 웨브를 포함할 수 있으며, 제 2 웨브는 제 3 및 제 4 플랜지에 양단이 각각 고정되는 다수의 그레이팅으로 이루어질 수 있는데, 이들 구성요소에 대해서는 설치 위치에 따른 구체적인 형상만 달리할 뿐 지지대(63)와 대비되는 구성요소는 동일하다. 또한, 외부쉘(62)의 내측면과 제 4 플랜지 사이에 열전단을 차단하기 위한 단열부재(미도시)가 설치될 수 있다. 여기서, 단열부재는 유리섬유로 이루어질 수 있다.
단열층부(64)는 내부쉘(61)과 외부쉘(62) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(64)에는 내부쉘(61) 내의 압력과 동일한 압력이 가해지도록 설계가 이루어질 수 있는데, 여기서, 내부쉘(61) 내의 압력과 동일한 압력이란, 엄밀하게 동일한 것을 의미하는 것이 아니라, 유사한 정도도 포함하는 의미이다, 또한, 단열층부(64)와 내부쉘(61) 내부는 내부쉘(61) 내측과 외측간의 압력 평형을 위해 도 12에 도시된 이전의 실시예에서와 같이 연결유로(54; 도 12에 도시)에 의해 서로 연결될 수 있으며, 이러한 연결유로(54)에 대해서는 이전의 실시예에서 상세히 설명하였으므로 그 설명을 생략하기로 하겠다.
또한, 단열층부(64)는 지지대(63), 특히 그레이팅 구조의 웨브(63c)을 통과할 수 있는 입자(Grain) 형태의 단열재(예컨대, perlite)로 이루어질 수 있다. 따라서, 충진시에 입자 형태의 단열층부(64)가 자유롭게 고루 섞여서 충진될 수 있어 내부쉘(61)과 외부쉘(62)사이의 틈이 발생하지 않게 되어 단열 성능이 우수해 질 수 있다.
또한, 그레이팅 지지 구조 방식의 지지대(63)와 하부지지대(66)에 의해 충진시 단열층부(64)의 입자 유동이 자유롭도록 되어 단열층부(64)의 불균질성이 방지될 수 있다.
도 19에 도시된 바와 같이, 본 발명의 제 5 실시예에 따른 액화천연가스의 저장 용기(70)는 횡방향으로도 설치될 수 있는데, 이 경우 이전 실시예에서의 하부지지대(66; 도 16)를 생략할 수 있다.
도 20은 본 발명의 제 6 실시예에 따른 액화천연가스의 저장 용기를 도시한 단면도이다.
도 20에 도시된 바와 같이, 본 발명의 제 6 실시예에 따른 액화천연가스의 저장 용기(80)는 내측에 액화천연가스가 저장되는 내부쉘(81)과 내부쉘(81)의 외측을 감싸는 외부쉘(82) 사이에 열전달을 감소시키는 단열층부(84)가 설치되며, 내부쉘(81)의 외측면과 외부쉘(82)의 내측면이 금속심(83)에 의해 연결된다. 한편, 내부쉘(81)에 대한 액화천연가스의 공급 및 배출을 위하여 내부쉘(81)의 출입구에는 연결부(미도시)가 일체로 연결되어 외부쉘(82)의 외측으로 돌출될 수 있으며, 이러한 연결부에는 밸브 등의 외부 부재가 연결될 수 있다.
내부쉘(81)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어질 수 있으며, 본 실시예에서처럼 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수 있다.
외부쉘(82)은 내부쉘(81)과의 사이에 공간을 형성하도록 내부쉘(81)의 외측을 감싸고, 내부 압력을 견디기 위한 강(steel) 소재로 이루어질 수 있으며, 내부쉘(81)에 가해지는 내부 압력을 분담함으로써 내부쉘(81)의 소재를 절감하도록 하여 제작 비용을 절감할 수 있다.
내부쉘(81)은 연결유로에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(81)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(82), 금속심(83) 및 단열층부(84)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로에 의해 거의 동일하게 될 수 있으므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
금속심(83)은 내부쉘(81)의 외측면과 외부쉘(82)의 내측면에 연결됨으로써 내부쉘(81)과 외부쉘(82)이 서로 지지되도록 하고, 내부쉘(81)과 외부쉘(82)의 측부 둘레를 따라 설치될 수 있는데, 본 실시예에서처럼 내부쉘(81)과 외부쉘(82)의 측부에서 상하로 간격을 두고서 다수로 설치될 수 있다. 또한, 금속심(83)은 강선 등과 같은 와이어(Wire)로 이루어질 수 있다. 여기서, 금속심(83)은 예컨대, 내부쉘(81)의 외측면과 외부쉘(82)의 내측면에 다수로 마련되는 고리 등에 연결되거나, 다수로 마련되는 지지점(83a)에 체결 또는 용접되거나, 그 밖에 다양한 방식에 의해 내부쉘(81)과 외부쉘(82)을 연결할 수 있다.
도 21에 도시된 바와 같이, 금속심(83)은 내부쉘(81)의 한 지지점(83a)이 인근한 외부쉘(82)의 두 지지점(83a)에 연결됨과 아울러, 외부쉘(82)의 한 지지점(83a)이 인근한 내부쉘(81)의 두 지지점(83a)에 연결됨을 반복하여 설치될 수 있으며, 내부쉘(81)과 외부쉘(82) 사이의 둘레를 따라 지그재그로 배열되도록 연결될 수 있으며, (a) 및 (b)에서와 같이, 연결 횟수 내지 개수를 달리할 수 있다.
본 발명에 따른 액화천연가스의 저장 용기(80)는 내부쉘(81)과 외부쉘(82)을 지지하도록 내부쉘(81)과 외부쉘(82) 사이의 하부 공간에 설치되는 하부지지대(86)를 더 포함할 수 있다. 여기서, 하부지지대(86)는 내부쉘(81)의 외측면과 외부쉘(82)의 내측면에 각각 지지되는 플랜지와, 플랜지 사이에 마련되는 웨브를 포함할 수 있으며, 웨브가 플랜지에 양단이 각각 고정되는 다수의 그레이팅으로 이루어질 수 있는데, 이들 구성요소에 대해서는 상술한 제 4 실시예에 따른 액화천연가스의 저장 용기(60)의 하부지지대(66)와 동일하므로 그 설명을 생략하기로 하겠다.
단열층부(84)는 내부쉘(81)과 외부쉘(82) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(84)에는 내부쉘(81) 내의 압력과 동일한 압력이 가해지도록 구조 또는 재질적인 설계가 이루어질 수 있는데, 여기서, 내부쉘(81) 내의 압력과 동일한 압력이란, 엄밀한 의미의 동일이 아니라 근소한 차이를 가진 경우도 포함한다. 또한, 단열층부(84)와 내부쉘(81)은 내부쉘(81) 내측과 외측간의 압력 평형을 위해 도 12에 도시된 이전의 실시예에서와 같이 연결유로(54; 도 12에 도시)에 의해 서로 연결될 수 있으며, 이러한 연결유로(54)에 대해서는 이전의 실시예에서 상세히 설명하였으므로 그 설명을 생략하기로 하겠다.
단열층부(84)는 금속심(83)을 통과할 수 있는 입자(Grain) 형태의 단열재로 이루어질 수 있다. 따라서, 충진시에 입자 형태의 단열층부(84)가 자유롭게 고루 섞여서 충진될 수 있어 내부쉘(81)과 외부쉘(82)사이의 틈이 발생하지 않아 단열층부(84)의 불균질성을 방지하여 우수한 단열 성능을 가지도록 한다.
도 22에 도시된 바와 같이, 본 발명의 따른 액화천연가스의 저장 용기(90)는 횡방향으로도 설치될 수 있는데, 이 경우 이전 실시예에서의 하부지지대(86; 도 20)를 생략할 수 있다.
도 23은 본 발명의 제 8 실시예에 따른 액화천연가스의 저장 용기를 도시한 구성도이다.
도 23에 도시된 바와 같이, 본 발명의 제 8 실시예에 따른 액화천연가스의 저장 용기(510)는 내측에 액화천연가스가 저장되는 내부쉘(511)과 내부쉘(511)의 외측을 감싸는 외부쉘(512)을 포함하고, 내부쉘(511)의 내부 공간과 내부쉘(511)과 외부쉘(512) 사이의 공간이 이퀄라이징라인(514)에 의해 서로 연결된다. 또한, 내부쉘(511)과 외부쉘(512) 사이에 단열층부(513)가 설치될 수 있다.
내부쉘(511)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9% 니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 실시예에서처럼 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수 있다.
내부쉘(511)은 연결유로(또는 후술할 이퀄라이징 라인)에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(511)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(512)과 단열층부(513)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로(또는 이퀄라이징라인)에 의해 거의 동일하게 될 수 있으므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
내부쉘(511)의 내부 공간 상부에는 제 1 배기라인(515)이 연결되어 외부로 연장되며, 제 1 배기라인(515)에 가스의 흐름을 개폐시키기 위한 제 1 배기밸브(515a)가 설치된다. 따라서, 제 1 배기라인(515)이 제 1 배기밸브(515a)의 개방에 의해 내부쉘(511)의 내부 공간으로부터 외부로 가스를 배출시킬 수 있도록 한다.
또한, 내부쉘(511)의 내부 공간 상단과 하단에 제 1 및 제 2 연결부(516a,516b)가 각각 연결되어 외부쉘(512)을 통과하여 외부로 돌출된다. 따라서, 제 1 연결부(516a)에 연결되는 선역라인(7)을 통해서 내부쉘(511)의 내측으로 액화천연가스를 선역할 수 있도록 하고, 제 2 연결부(516b)에 연결되는 하역라인(8)을 통해서 내부쉘(511) 내측의 액화천연가스를 하역할 수 있도록 한다. 한편, 선역라인(7)과 하역라인(8)에는 밸브(7a,8a)가 각각 설치될 수 있다.
외부쉘(512)은 내부쉘(511)과의 사이에 공간을 형성하도록 내부쉘(511)의 외측을 감싸며, 내부 압력을 견디기 위한 강(steel) 소재로 이루어지며, 내부쉘(511)에 가해지는 내부 압력을 분담함으로써 내부쉘(511)의 소재를 줄이도록 하여 제작 비용을 절감하도록 한다.
한편, 내부쉘(511)은 외부쉘(512)의 두께에 비하여 작은 두께를 가지도록 형성될 수 있으며, 이로 인해 저장 용기(510)의 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
단열층부(513)는 내부쉘(511)과 외부쉘(512) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(513)에는 내부쉘(511) 내의 압력과 동일한 압력이 가해지도록 구조 또는 재질적인 설계가 이루어질 수 있다.
이퀄라이징라인(Equalizing line; 514)은 내부쉘(511)의 내부 공간과 내부쉘(511)과 외부쉘(512) 사이의 공간을 서로 연결시킴으로써 내부쉘(511)의 내측 공간과 외측 공간을 연결시키고, 이로 인해 내부쉘(511)의 내부 압력과 내부쉘(511)과 외부쉘(512) 사이의 압력 차이를 최소화하여 이들 압력이 서로 평형을 이룰 수 있도록 한다. 따라서, 내부쉘(511)의 내측과 외측간의 압력차이가 최소화됨으로써 내부쉘(511)이 부담하는 압력을 감소시키며, 이로 인해 내부쉘(511)의 두께를 줄일 수 있도록 하여 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있고, 내부쉘(511)의 내압에 의한 구조적 결함 발생을 방지하며, 내구성이 우수한 저장 용기(510)를 제공하도록 한다.
이퀄라이징라인(514)은, 도 23에 도시된 바와 같이, 일부가 외부쉘(512)의 바같으로 노출되도록 형성할 수 있는데, 이러한 구성은 이퀄라이징라인(514)이 저장용기에 저장된 액화천연가스에 대해 높이방향으로 높도록 형성되도록 하므로 내부쉘(511)의 내측에 저장된 액화천연가스가 넘쳐서 내부쉘(511)의 외측 공간으로 흘러가는 것을 방지하는 효과가 있다.
따라서, 액화천연가스 운반선에 저장용기가 적재되는 경우 운반선의 롤링 또는 액화천연가스의 슬로싱에서 액화천연가스가 넘쳐 단열층부 내로 누설되는 것을 방지하도록 한다.
이러한 이퀄라이징라인(514)은, 도 23에 도시된 바와 같이, 일단이 내부쉘(511)의 내측과 소통하고 타단이 내부쉘(511)과 외부쉘(512) 사이의 공간과 소통하되, 타단이 외부쉘(512)로부터 상기 공간의 간격(h)의 1/2 지점이 되는 곳에 위치하도록 하는 것이 바람직하다.
이는 이퀄라이징라인(514)을 통해 흐를 수도 있는 저온의 천연가스가 단열층부 내로 누설되는 경우 천연가스가 외부쉘에 주는 영향을 최소화하여 외부쉘(512)이 취성파괴 되는 것을 방지하며, 또한 누설된 액화천연가스가 외부쉘(512)로부터 일정거리를 두고 상기 공간으로 누설되므로 누설된 액화천연가스가 단열층부 내에서 증발되어 증발가스(BOG)로 되는 것도 어느 정도 방지할 수 있다.
이퀄라이징라인(514)은 외부쉘(512)의 바깥으로 노출될 수 있는 바, 이퀄라이징라인을 통한 열손실을 방지하기 위해 이퀄라이징라인(514)의 내측 또는 외측 중 적어도 하나에 단열을 위한 인슐레이션(insulation) 처리를 하는 것이 바람직하다. 또한, 이퀄라이징라인(514)의 내측으로는 저온의 천연가스가 흐를 수 있으므로 내부쉘과 마찬가지로 저온특성이 우수한 금속을 사용하는 것이 바람직하다.
이퀄라이징라인(514)이 외부셀(512)의 바깥으로 노출되는 부분에는 이퀄라이징라인(514)과 외부쉘(512)간을 용접하여 고정시킬 수 있는데, 용접되는 부위의 외부쉘(512)측에는 별도의 이퀄라이징라인 플랜지(519)를 형성하여 이퀄라이징라인(514)과 용접되도록 한다. 이 때, 이퀄라이징라인 플랜지(519)는 이퀄라이징라인(514)과 접하므로 이퀄라이징라인(514)과 마찬가지로 저온 특성이 우수한 금속을 사용하는 것이 바람직하며, 외부쉘(512) 측에 용접으로 고정된다.
내부쉘(511)과 외부쉘(512)을 지지하도록 내부쉘(511)과 외부쉘(512) 사이의 공간에 지지대(517)가 설치될 수 있다. 지지대(517)는 내부쉘(511)과 외부쉘(512)을 구조적으로 보강하게 되고, 액화천연가스의 저온에 견디기 위한 금속으로 제작될 수 있으며, 내부쉘(511)과 외부쉘(512)의 측부 둘레를 따라 단일로 설치되거나, 본 실시예에서처럼 내부쉘(511)과 외부쉘(512)의 측부에서 상하로 간격을 두고서 다수로 설치될 수 있다.
또한, 내부쉘(511)과 외부쉘(512)을 지지하도록 내부쉘(511)과 외부쉘(512) 사이의 하부 공간에 하부지지대(518)가 설치될 수 있다.
지지대(517)와 하부지지대(518)는 도 18에 도시된 지지대(63)와 마찬가지로, 내부쉘(511)과 외부쉘(512)의 내측면에 각각 지지되는 플랜지와 이들 플랜지 사이에 마련되는 웨브를 포함할 수 있으며, 웨브가 플랜지 각각에 양단이 고정되는 다수의 그레이팅으로 이루어질 수 있고, 외부쉘(512)과 플랜지 사이에 열전달을 차단하도록 유리섬유 등과 같은 단열부재가 설치될 수 있다. 또한, 지지대(517)는 도 20에 도시된 금속심(83)과 마찬가지로, 내부쉘(511)의 외측면과 외부쉘(512)의 내측면에 연결됨으로써 내부쉘(511)과 외부쉘(512)이 서로 지지되도록 할 수 있다.
도 24에 도시된 바와 같이, 본 발명의 제 9 실시예에 따른 액화천연가스의 저장 용기에 따르면, 이퀄라이징라인(514)에 유체, 예컨대 천연가스나 증발가스의 흐름을 개폐시키기 위한 개폐밸브(514a)가 설치될 수 있다. 따라서, 저장 용기의 위치나 자세 변경 등과 같은 경우에 이퀄라이징라인(514)을 통한 유체의 이동을 개폐밸브(514a)에 의해 차단할 수 있다
도 25에 도시된 바와 같이, 본 발명의 제 10 실시예에 따른 액화천연가스의 저장 용기에 따르면, 이퀄라이징라인(514)에 제 2 배기밸브(514b)가 설치되는 제 2 배기라인(514c)이 연결될 수 있으며, 이로 인해 제 2 배기밸브(514b)의 개방에 의해 이퀄라이징라인(514)과 제 2 배기라인(514c)을 통해서 내부쉘(511) 내부의 가스를 외부로 배출시킬 수 있다. 따라서, 내부쉘(511)에 배기라인을 연결시키기 위한 복잡한 공정을 피할 수 있도록 하고, 구조적 안정성을 유지하도록 함과 아울러 용이하게 배기라인을 설치할 수 있다.
도 26은 본 발명의 제 11 실시예에 따른 액화천연가스의 저장용기를 도시한 단면도다.
도 26에 도시된 바와 같이, 본 발명의 제 11 실시예에 따른 액화천연가스의 저장용기(100)는 액화천연가스의 저온에 견디기 위한 금속으로 이루어지는 내부쉘(110)과 내부쉘(110)의 외측을 감싸는 외부쉘(120) 사이에 열전달을 감소키는 위한 단열층부(130)가 설치되고, 내부쉘(110)과 외부쉘(120)에 연결부(140)가 마련되되, 연결부(140)는 내부쉘(110)로부터 외측으로 연장되는 주입부(141)의 끝단에 밸브(4)에 접한 상태에서 플랜지 연결되기 위한 제 1 플랜지(142)가 마련되고, 외부쉘(120)로부터 주입부(141)를 감싸도록 연장되는 연장부(143)의 끝단에 밸브(4)에 플랜지 연결되기 위한 제 2 플랜지(144)가 형성된다.
내부쉘(110)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 실시예에서처럼 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수 있다.
외부쉘(120)은 내부쉘(110)과의 사이에 공간을 형성하도록 내부쉘(110)의 외측을 감싸며, 내부 압력을 견디기 위한 강(steel) 소재로 이루어질 수 있으며 내부쉘(110)에 가해지는 내부 압력을 분담함으로써 내부쉘(110)의 소재를 절감하도록 하여 제작 비용을 절감하도록 한다.
내부쉘(110)은 연결유로에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(110)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(120)과 단열층부(130)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
한편, 내부쉘(110)은 외부쉘(120)의 두께에 비하여 작은 두께를 가지도록 형성될 수 있으며, 이로 인해 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
단열층부(130)는 내부쉘(110)과 외부쉘(120) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(130)에는 내부쉘(110) 내의 압력과 동일한 압력이 가해지도록 구조 또는 재질적인 설계가 이루어질 수 있는데, 여기서, 내부쉘(110) 내의 압력과 동일한 압력이란, 엄밀한 의미의 동일이 아니라 어느 정도 근사한 압력도 해당되는 의미이다.
단열층부(130)와 내부쉘(110)의 내부는 내부쉘(110) 내측과 외측간의 압력 평형을 위해 연결유로(미도시)에 의해 서로 연결될 수 있다. 여기서, 연결유로는 홀, 파이프 등과 같이 유로를 제공할 수 있는 다양한 실시형태를 포함할 수 있으며, 일례로 연결부(140)의 주입부(141)에 형성되는 홀로 이루어질 수 있다. 따라서, 내부쉘(110) 내의 압력이 연결유로를 통해서 단열층부(130) 측으로 이동함으로써 내부 셀(110)의 내압과 단열층부(130)의 내압이 평형을 유지하도록 한다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로에 의해 거의 동일하게 되므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5 bar 정도가 될 수 있으므로 내부쉘을 0.5bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
연결부(140)는 제 1 플랜지(142)가 밸브(4)에 직접 접촉하여 볼트(181)와 너트(182)에 의해 플랜지 연결됨으로써 주입부(141)와 밸브(4)의 유로가 연결되도록 하며, 주입부(141) 및 제 1 플랜지(142)가 액화천연가스에 직접 닿기 때문에 내부쉘(110)과 동일한 재질, 예컨대 저온 특성이 우수한 금속, 예컨대 알루미늄, 스테인레스 스틸, 5~9%니켈강 등으로 이루어질 수 있다.
또한, 연결부(140)는 본 실시예에서처럼 연장부(143)가 주입부(141)의 외부를 간격을 가지고서 감싸며, 제 2 플랜지(144)가 제 1 플랜지(142)를 사이에 두고 밸브(4)에 볼트(181) 및 너트(182)로 플랜지 연결될 수 있으며, 연장부(143)와 제 2 플랜지(144)가 강(steel) 소재로 이루어질 수 있다.
도 27에 도시된 바와 같이, 연결부(150)는 제 1 플랜지(152)가 주입부(151)에 나사 결합됨으로써 주입부(151)와 일체를 이루도록 한다.
도 28에 도시된 바와 같이, 연결부(160)는 제 1 플랜지(162)가 주입부(161)에 볼트나 스크루 등의 체결부재(163)로 고정되도록 할 수 있다. 여기서, 체결부재(163)는 제 1 플랜지(162)를 관통하여 주입부(161)의 끝단에 형성되는 결합부(163a)에 원주방향을 따라 다수로 체결될 수 있다.
체결부재(163)로서 볼트를 사용하는 경우에는 도 28 (a)와 같이 결합부(163a)와 제 1 플랜지(162)에 암나사선을 가공하고, 별도의 수나사선이 가공된 볼트로 제 1 플랜지(162)와 주입부(161a)를 체결하며, 이 때 수나사선을 가진 볼트의 머리는 주위 부재들과의 간섭을 피하기 위해 제 1 플랜지(162)에 볼트의 머리 부분을 수용할 수 있도록 볼트 머리 모양의 형태를 가공할 수 있다.
단, 제 1 플랜지의 외부로 볼트의 머리가 나오도록 구성한다면 도 28 (b)와 같이 볼트의 머리와 주위 부재들 간의 간섭을 피하기 위해 밸브(4)측에 볼트의 머리 부분을 수용할 수 있도록 볼트 머리 모양의 형태를 가공하여 제 1 플랜지와 체결하여야 할 것이다.
도 29에 도시된 바와 같이, 연결부(170)는 제 2 플랜지(174)가 제 1 플랜지(172)의 가장자리에 위치하여 밸브(4)에 접한 상태에서 볼트(181) 및 너트(182)에 의해 플랜지 연결될 수 있다. 이때, 제 1 플랜지(172)는 밸브(4)에 볼트(183)로만 서로 결합될 수 있다.
도 30은 본 발명의 제 12 실시예에 따른 액화천연가스의 저장 용기를 도시한 요부 확대도이다.
도 30에 도시된 바와 같이, 본 발명의 제 12 실시예에 따른 액화천연가스의 저장 용기(520)는 내측에 액화천연가스가 저장되는 내부쉘(521)과 내부쉘(521)의 외측을 감싸는 외부쉘(522)을 포함하고, 외부 주입부(9a)에 연결되어 단열층부(523)로 돌출되는 연결부(524)와 내부쉘(521) 사이에 열수축을 완충시키도록 완충부(525)가 마련되며, 나아가서, 내부쉘(521)과 외부쉘(522) 사이의 공간에 단열층부(523)가 설치될 수 있다.
내부쉘(521)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9% 니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 실시예에서처럼 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수 있다.
외부쉘(522)은 내부쉘(521)과의 사이에 공간을 형성하도록 내부쉘(521)의 외측을 감싸며, 내부 압력을 견디기 위한 강(steel) 소재로 이루어지며, 내부쉘(521)에 가해지는 내부 압력을 분담함으로써 내부쉘(521)의 소재를 줄이도록 하여 제작 비용을 절감하도록 한다.
내부쉘(521)은 연결유로에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(521)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(522)과 단열층부(523)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로에 의해 거의 동일하게 되므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5 bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
한편, 내부쉘(521)은 외부쉘(522)의 두께에 비하여 작은 두께를 가지도록 형성될 수 있으며, 이로 인해 저장 용기(520)의 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
단열층부(523)는 내부쉘(521)과 외부쉘(522) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(523)에는 내부쉘(521) 내의 압력과 동일한 압력이 가해지도록 하는 구조 또는 재질적인 설계가 이루어질 수 있다.
연결부(524)는 내부쉘(521)로부터 돌출되도록 마련되되, 내부쉘(521)에서 액화천연가스가 주입되도록 형성되는 주입구(521a)측에 연결되어 외측으로 돌출되며, 내부쉘(521)에 액화천연가스를 주입하기 위한 외부 주입부(9a)에 연결될 수 있는데, 완충부(525)를 매개로 내부쉘(521)에 연결될 수 있다. 이때, 외부쉘(522)은 연결부(524)를 감싸도록 일측에 연장부(522a)가 마련되며, 일례로 연장부(522a)의 끝단이 연결부(524)와 함께 외부 주입부(9a)에 연결될 수 있다.
완충부(525)는 내부쉘(521)과 연결부(524) 사이에 열수축을 완충시키도록 마련됨으로써 내부쉘(521)에서 발생하는 열에 의한 수축을 완충시켜서 연결부(524)에 하중이 집중되는 것을 방지한다.
또한, 완충부(525)는 본 실시예에서처럼 내부쉘(521)의 주입구(521a)와 연결부(524)에 양단이 플랜지 이음 등으로 연결되도록 이음부(525b)를 형성하는 배관 형태로 이루어질 수 있다. 또한, 완충부(525)는 내부쉘(521)과 연결부(524) 사이에 일체를 이루도록 형성될 수 있다.
도 31에 도시된 바와 같이, 완충부(525)는 루프(525a)를 가질 수 있는데, 본 실시예에서처럼 루프(525a)가 단일로 이루어짐과 아울러 그 평면 형상이 다각형, 예컨대 사각형으로 이루어질 수 있다.
도 32의 (a)에서와 같이, 완충부(526)는 단일의 루프(526a)로 이루어지되, 그 평면 형상이 원형으로 이루어질 수 있으며, 도 32의 (b)에 도시된 바와 같이, 완충부(527)는 루프(527a)가 다수로 이루어지는 코일 형태를 가질 수 있으며, 이러한 코일은 중심부로부터 양단으로 갈수록 폭이 감소되는 마름모꼴의 형태를 가질 수 있다. 따라서, 루프(526a,527a)에 의해 내부쉘(521)의 열수축으로 인한 충격을 완화시킨다.
도 33은 본 발명에 따른 액화천연가스의 생산 장치를 도시한 구성도이다.
본 발명에 따른 액화천연가스의 생산 장치(200)는 천연가스의 공급라인(220)으로부터 다수로 분기되는 제 1 분기라인(221)에 열교환기(230)가 각각 설치되고, 열교환기(230)가 냉매공급부(210)로부터 공급되는 냉매를 이용하여 제 1 분기라인(221)을 통해 공급되는 천연가스를 냉각시키며, 재생부(240)에 의해 열교환기(230) 각각에 응결된 이산화탄소를 제거하도록 재생유체가 천연가스를 대신하여 공급된다.
본 발명에 따른 액화천연가스의 생산 장치(200)는 액화천연가스뿐만 아니라, 일정한 압력으로 가압된 가압액화천연가스, 예컨대 13~25 bar의 압력으로 -120 ~ -95℃로 냉각된 가압액화천연가스의 생산에도 사용될 수 있다.
냉매공급부(210)는 천연가스와의 열교환을 위한 냉매를 열교환기(230)에 공급함으로써 열교환기(230)에서 천연가스가 액화되도록 한다.
열교환기(230)는 천연가스의 공급라인(220)으로부터 다수로 분기되는 제 1 분기라인(221)에 각각 설치됨으로써 다수개가 서로 병렬로 연결되고, 공급라인(220)으로부터 공급되는 천연가스를 냉매공급부(210)로부터 공급되는 냉매와의 열교환에 의해 냉각시키며, 전체 용량이 액화천연가스 생산량을 초과하도록 함으로써 액화천연가스의 생산시 하나 또는 다수가 대기 상태를 유지하도록 할 수 있다.
열교환기(230)의 개수 및 용량은 전체 플랜트의 액화천연가스 생산량을 고려하여 정해질 수 있는데, 예를 들면, 액화천연가스 총 생산량의 20%를 담당할 수 있는 열교환기(230)의 경우 10대를 구비하고, 그 중 5대를 가동시키고, 나머지는 대기 상태를 유지하도록 할 수 있다. 이러한 구성은 이산화탄소가 동결된 열교환기에 대해 가동을 중단시키고 동결된 이산화탄소를 제거하는 동안에도 대기상태 중인 열교환기를 가동시킬 수 있으므로 전체 플랜트의 액화천연가스의 총 생산량을 일정하게 유지할 수 있게 해준다.
재생부(240)는 열교환기(230) 각각에 천연가스를 대신하여 응결된 이산화탄소를 제거하는 재생유체를 선택적으로 공급한다. 또한 재생부(240)는 재생유체를 공급하는 재생유체공급부(241)와, 재생유체공급부(241)로부터 제 1 분기라인(221) 각각에서 열교환기(230)의 전단과 후단에 각각 연결되는 재생유체라인(242)과, 제 1 분기라인(221) 각각에서 재생유체라인(242)이 연결되는 부위의 전단과 후단에 각각 설치되는 제 1 밸브(243)와, 재생유체라인(242)에서 열교환기(230) 각각의 전단과 후단에 설치되는 제 2 밸브(244)를 포함할 수 있다.
여기서 재생유체공급부(241)는 재생유체로서 일례로 고온의 에어를 사용할 수 있으며, 이러한 고온의 에어를 압력이나 펌핑력을 이용하여 열교환기(230) 측으로 공급하여 응결된 이산화탄소를 액체 또는 기체 상태로 상변화를 시켜 제거할 수 있다.
본 발명에 따른 액화천연가스의 생산 장치(200)는 열교환기(230) 각각에 대한 이산화탄소의 동결 여부의 확인과 열교환기(230) 각각에 대한 재생유체의 공급 제어를 위하여, 열교환기(230) 각각에 대한 이산화탄소의 동결을 확인하도록 설치되는 감지부(250)와, 감지부(250) 각각으로부터 출력되는 감지신호를 수신받음과 아울러 제 1 및 제 2 밸브(243,244)와 재생유체공급부(241)를 제어하는 제어부(260)를 더 포함할 수 있다.
제어부(260)는 감지부(250)로부터 출력되는 감지신호로부터 이산화탄소의 동결이 발생된 열교환기(230)를 확인하고, 이러한 열교환기(230)에 재생유체를 공급하기 위하여, 먼저 제 1 밸브(243)를 차단하여 열교환기(230)로의 천연가스 공급을 차단하고, 재생유체공급부(241)의 구동과 제 2 밸브(244)의 개방에 의해 재생유체가 열교환기(230)에 공급되도록 하며, 재생유체에 의해 열교환기(230)에 동결된 이산화탄소를 액화 또는 기화시켜서 제거되도록 한다. 한편, 제어부(260)는 열교환기(230)에 재생유체를 타이머에 의해 카운트하여 설정된 시간이 종료될 때까지 공급할 수 있다.
감지부(250)는 본 실시예에서처럼 제 1 분기라인(221) 각각에서 열교환기(230)의 후단에 설치되어 통과하는 액화천연가스의 유량을 측정하는 유량계로 이루어질 수 있다. 따라서, 유량계인 감지부(250)가 측정한 유량값이 설정값 이하인 경우에는 해당하는 열교환기(230)에 이산화탄소의 동결이 발생한 것으로 판단할 수 있다.
또한, 감지부(250)는 유량계 이외에도 제 1 분기라인(221) 각각에 설치되어 열교환기(230)의 전ㆍ후단의 가스에 함유되어 있는 이산화탄소의 함유량을 측정하는 이산화탄소측정기로 이루어질 수 있으며, 열교환기(230)의 전ㆍ후단에서 측정된 가스에 함유된 이산화탄소량의 차이가 설정량 이상인 경우 열교환기(230)에 이산화탄소의 동결이 발생한 것으로 판단할 수 있다.
본 발명에 따른 액화천연가스의 생산 장치(200)는 이산화탄소의 동결이 발생한 열교환기(230)의 동작을 중지시키기 위하여 냉매공급부(210)로부터 열교환기(230)에 냉매를 공급하는 냉매라인(211)에서 열교환기(230) 각각의 전단과 후단에 설치되는 제 3 밸브(270)를 더 포함한다. 여기서, 제 3 밸브(270)는 제어부(260)에 의해 각각 제어될 수 있는데, 예를 들면, 제어부(260)가 감지부(250)를 통해서 이산화탄소가 동결된 열교환기(230)의 전단과 후단에 위치하는 제 3 밸브(270)를 차단시킴으로써 이산화탄소가 동결된 열교환기(230)의 동작을 정지시키도록 한다.
도 34 및 도 35는 본 발명에 따른 저장 탱크 운반 장치를 가지는 부유식 구조물을 도시한 측면도 및 정면도이다.
도 34 및 도 35에 도시된 바와 같이, 본 발명에 따른 저장 탱크의 운반 장치를 가지는 부유식 구조물(300)은 부력에 의해 해상에 부유하도록 설치되는 부유 구조물(320) 상에 저장 탱크의 운반 장치(310)가 설치된다. 여기서, 부유 구조물(320)은 바지 타입(Barge type)으로 이루어진 구조물이거나, 자체 추력을 이용하여 항해가 가능한 선박일 수 있다.
본 발명에 따른 저장 탱크의 운반 장치(310)는 승강부(311)에 의해 승강되는 적재대(311a) 상에 저장 탱크(330)의 이동 방향을 따라 레일(312)이 마련되고, 저장 탱크(330)가 적재되는 이송대차(313)가 레일(312)을 따라 이동 가능하도록 설치된다.
이렇게 함으로써, 크레인 등을 이용하여 저장 탱크를 운반하는 것보다 저장 탱크에 가해지는 충격을 줄일 수 있으며, 또한 복수개의 저장 탱크를 연결하여 대량의 화물을 먼 거리까지 운송할 수 있어 비용측면에서 타 운송수단에 비해 보다 효율적이다. 또한, 이는 저장 탱크를 들어서 이동하는 방법이 아니므로 비교적 무거운 저장 탱크의 이동에 더욱 효과적일 것이다.
본 발명에 따른 저장 탱크의 운반 장치(310)는 본 실시예에서처럼 부유 구조물(320)에 설치됨을 나타내었으나, 이에 한하지 않고, 지면에 고정되거나, 그 밖의 다양한 운송 장치에 설치될 수도 있다.
저장 탱크(330)에는 액화천연가스 또는 일정한 압력으로 가압된 액화천연가스가 저장될 수 있으며, 이 밖에도 다양한 화물이 저장될 수 있다. 한편, 가압된 액화천연가스는 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도로 액화된 천연가스일 수 있으며, 이러한 가압액화천연가스의 저장을 위하여 저장 탱크(330)는 저온과 압력에 충분히 견디기 위한 재질 및 구조로 이루어질 수 있다.
또한, 저장 탱크(330)는 액화천연가스 또는 일정한 압력으로 가압된 액화천연가스를 저장할 수 있도록 이중구조로 제작하고, 상기에서 설명하였듯이 이중구조의 내부 압력과 저장탱크(330) 내부의 압력이 평형을 이루도록 저장 탱크의 이중구조와 저장탱크의 내부간에는 연결유로를 갖도록 할 수도 있다.
이 때, 내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로에 의해 거의 동일하게 되므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5 bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
도 36에 도시된 바와 같이, 승강부(311)는 적재대(311a)를 상하로 승강시키는데, 일례로 적재대(311a)를 부유식 구조물(320)로부터 안벽(5)의 상면까지 승강시킬 수 있다. 여기서, 적재대(311a)는 일측 또는 양측에 하단의 힌지 결합부(311c)를 중심으로 하방으로 회전하여 개방됨으로써 이송대차(313)의 이동로를 제공하는 이동발판(311b)이 설치될 수 있다.
이동발판(311b)은 상측으로 접힌 경우에는 이송대차(313)의 움직임을 제한하는 역할을 하며, 승강부(311)에 의해 적재대(311a)가 안벽(5)의 높이와 동일한 높이로 상승시 안벽(5)과 적재대(311a)간의 연결을 도와줌으로써 이송대차(313)가 안전하게 육상으로 이동하도록 하는 역할을 한다. 또한, 이동발판(311b)은 하방으로 펼쳐졌을 때 상측을 향하는 면에 레일(312)에 연결되는 보조레일(311d)이 설치될 수 있다.
또한, 승강부(311)는 적재대(311a)의 승강을 위하여 다양한 구조물과 액츄에이터가 사용될 수 있는데, 예를 들면, 적재대(311a)의 하부에 상하로 신축이 가능하도록 슬라이딩 결합되는 다수의 결합부재 또는 적재대(311a)의 하부에 서로 링크로 연결됨으로써 회동 방향에 따라 상하로 신축되는 다수의 링크부재 등에 의해 적재대(311)가 상하로 이동 가능하게 설치되도록 할 수 있고, 직선 운동을 위한 구동력을 제공하는 모터나 유압에 의해 동작하는 실린더 등과 같은 액츄에이터를 사용하여 적재대(311a)가 승강되도록 할 수 있다.
레일(312)은 적재대(311a) 상에 저장 탱크(330)의 이동 방향을 따라 설치되는데, 한 쌍으로 이루어지되, 안벽(5) 상에 위치하는 열차의 레일(미도시)과 동일한 폭을 가지도록 나란하게 배열될 수 있다. 따라서, 승강부(311)에 의해 안벽(5)의 상면까지 상승된 이송대차(313)가 레일(312)을 따라 이동하여 안벽(5) 상의 레일로 이동하면 열차 등의 육상운송장치에 의해 원거리 이동이 가능해진다.
이송대차(313)는 레일(312)을 따라 이동 가능한 휠(313a)이 하부에 다수로 마련되고, 상부에 저장 탱크(330)가 적재되며, 다른 이송대차(313)의 연결을 위하여 일측 또는 양측에 연결부가 마련될 수 있다. 또한, 이송대차(313)는 저장 탱크(330)가 장착됨으로써 저장 탱크(330)를 부식 및 외부의 충격으로부터 보호하기 위한 강(steel) 소재의 탱크 보호대(313b)가 상면에 설치될 수 있다.
이송대차(313)는 예를 들면 케이블을 통해 윈치에 연결됨으로써 윈치의 구동에 의해 레일(312)을 따라 이동할 수 있으며, 이에 한하지 않고, 휠(313a) 중 일부 또는 전부에 회전력을 전달하는 이송구동부(미도시)에 의해 자력으로 레일(312)을 따라 주행할 수 있다.
도 37은 본 발명에 따른 가압액화천연가스 저장 용기의 고압 유지 시스템을 도시한 구성도이다. 도 37에 도시된 바와 같이, 본 발명에 따른 가압액화천연가스 저장 용기의 고압 유지 시스템(400)은 저장 용기(411)로부터 소비지의 저장 탱크(6)에 연결되어 가압액화천연가스의 하역을 가능하도록 하는 하역라인(410)을 포함하고, 하역라인(410)을 통해 하역되는 가압액화천연가스의 일부를 저장 용기(411)에 기화시켜서 공급하는데, 이를 위해 압력보충라인(420) 및 증발기(430)를 더 포함할 수 있다.
하역라인(410)은 저장 용기(411)로부터 소비지의 저장 탱크(6)에 연결되어 가압액화천연가스의 하역을 가능하도록 하며, 저장 용기(411)에 저장된 가압액화천연가스의 압력만으로 가압액화천연가스가 저장 탱크(6)에 하역되도록 할 수 있다. 이는 하역라인(410)을 저장 탱크(6)의 상부에서 하부까지 연장되도록 설치함으로써 저장 용기(411)에 저장된 가압액화천연가스의 압력만으로 가압액화천연가스를 저장 탱크(6)에 하역시킬 수 있게 하며, 또한 증발가스의 발생도 최소화시킬 수 있게 된다.
만약 하역시 발생하는 증발가스의 양을 보다 줄이기 위해 하역라인(411)을 저장 탱크(6)의 하부에 연결한다면 가압액화천연가스가 저장 탱크의 하부부터 적재되므로 증발가스의 밸생량이 보다 줄어들 수 있으나, 저장 용기(411)에 저장된 가압액화천연가스의 압력만으로 가압액화천연가스를 저장 탱크(6)로 안정적으로 하역시키기에는 압력이 부족해 질 수 있으므로 하역라인에 펌프를 추가 설치하여야 할 것이다.
압력보충라인(420)은 하역라인(410)으로부터 분기되어 저장 용기(411)에 연결되며, 증발기(430)가 설치된다. 또한, 압력보충라인(420)은 저장 용기(411)의 상부에 연결될 수 있으며, 이로 인해 압력보충라인(420)을 통해서 저장 용기(411)에 공급되는 천연가스가 저장 용기(411) 내의 가압액화천연가스와의 접촉에 의해 액화됨을 최소화함으로써 저장 용기(411)의 압력 감소를 낮추도록 한다.
증발기(430)는 압력보충라인(420)을 통해 공급되는 가압액화천연가스를 기화시켜서 저장 용기(411)에 공급되도록 한다. 따라서, 압력보충라인(420)을 통해서 증발기(430)에 의해 기화된 천연가스가 저장 용기(411)에 공급됨으로써 가압액화천연가스의 초기 하역시 감소되는 저장 용기(411) 내의 압력이 상승하게 되며, 이로 인해 저장 용기(411) 내의 압력은 액화천연가스의 거품점(Bubble point) 압력 이상으로 유지하게 된다.
본 발명에 따른 가압액화천연가스 저장 용기의 고압 유지 시스템(400)은 소비지의 저장탱크에서 발생하는 증발가스를 액화천연가스로 회수하도록 증발가스라인(440)과, 압축기(450)를 더 포함할 수 있다.
여기서, 증발가스라인(440)은 저장 탱크(6)로부터 발생되는 증발가스를 저장 용기(411)에 공급되도록 설치되는데, 저장 용기(411)의 하부에 연결됨으로써 온도 변화를 최소화하여 액화천연가스의 회수율을 높이도록 한다.
또한, 압축기(450)는 증발가스라인(440)에 설치되며, 증발가스라인(440)을 따라 공급되는 증발가스를 압축하여 저장 용기(411)에 저장되도록 한다. 따라서, 가압액화천연가스의 하역하는 동안 저장 탱크(6)에서 발생하는 증발가스를 증발가스라인(440)을 거쳐서 압축기(450)를 통해 가압한 뒤 저장 용기(411)의 하부로 주입하여 응축되도록 함으로써 가압액화천연가스의 운송 효율을 향상시킬 수 있다.
또한, 본 발명에 따른 가압액화천연가스 저장 용기의 고압 유지 시스템(400)에 의하면, 증발기(430)와 압축기(450)는 상호 보완이 가능함으로써 저장 탱크(6)에서 발생하는 증발가스의 양이 저장 용기(411)의 압력을 유지하기에 충분하지 않게 되면 증발기(430)의 부하는 증가하고, 증발가스가 충분하다면 증발기(430)의 부하는 감소하게 된다.
도 38은 본 발명의 제 13 실시예에 따른 열교환기 분리형 액화 장치를 도시한 구성도이다.
도 38에 도시된 바와 같이, 본 발명의 제 13 실시예에 따른 열교환기 분리형 천연가스 액화 장치(610)는 천연가스가 스테인레스 스틸 재질로 이루어지는 액화용 열교환기(620)에 의해 냉매와 열교환됨으로써 액화되도록 하고, 알루미늄 재질로 이루어지는 냉매용 열교환기(631,632)에 의해 냉매를 냉각시켜서 액화용 열교환기(620)에 공급되도록 한다.
액화용 열교환기(620)는 액화라인(623)을 통해서 천연가스를 공급받아 냉매와의 열교환에 의해 액화되도록 하고, 이를 위해 액화라인(623)이 제 1 유로(621)에 연결됨과 아울러 냉매순환라인(638)이 제 2 유로(622)에 연결됨으로써 제 1 및 제 2 유로(621,622)를 각각 통과하는 천연가스와 냉매가 서로 열교환되도록 하며, 전부분이 스테인레스 스틸 재질로 이루어질 수 있으나, 이에 한하지 않고, 제 1 유로(621)와 같이 액화된 천연가스가 접촉되거나, 극저온에 견뎌야 할 필요를 가진 부품이나 부분에 대해서 부분적으로 스테인레스 스틸 재질로 이루어질 수 있다. 여기서, 액화라인(623)은 제 1 유로(621)의 후단에 개폐밸브(624)가 설치된다.
냉매용 열교환기(631,632)는 본 실시예에서처럼 다수, 예컨대 제 1 및 제 2 냉매용 열교환기(631,632)로 이루어질 수 있으며, 이에 한하지 않고, 단일로 이루어질 수 있는데, 전부분이 알루미늄 재질로 이루어지거나, 냉매의 접촉과 이로 인해 열전달이 필요한 부품이나 부분에 대해서 부분적으로 알루미늄 재질로 이루어질 수 있다. 또한, 냉매용 열교환기(631,632)는 냉매 냉각부(630)에 포함될 수 있다.
냉매 냉각부(630)는 액화용 열교환기(620)에 냉매를 제 1 및 제 2 냉매용 열교환기(631,632)에 의해 냉각시켜서 공급하는데, 이를 위해 일례로, 액화용 열교환기(620)로부터 배출되는 냉매를 압축기(633) 및 후냉각기(after-cooler; 634)에 의해 압축 및 냉각시키며, 후냉각기(634)를 통과한 냉매를 분리기(635)에 의해 기상 냉매와 액상 냉매로 분리하여, 기상 냉매를 기상라인(638a)에 의해 제 1 냉매용 열교환기(631)의 제 1 유로(631a)와 제 2 냉매용 열교환기(632)의 제 1 유로(632a)로 공급하고, 액상 냉매를 액상라인(638b)에 의해 제 1 냉매용 열교환기(631)의 제 2 유로(631b)를 거쳐서 연결라인(638c)을 따라 제 1 J-T(Joule-Thomson) 밸브(636a)에 의해 저압으로 팽창시켜서 제 1 냉매용 열교환기(631)의 제 3 유로(631c)를 거쳐서 압축기(633)에 공급되어 압축 및 그 이후의 과정을 반복하도록 한다.
또한, 냉매 냉각부(630)는 제 2 냉매용 열교환기(632)의 제 1 유로(632a)를 통과한 고압의 냉매를 제 2 J-T 밸브(636b)에 의해 저압으로 팽창시켜서 액화용 열교환기(620)에 공급되도록 함과 아울러, 냉매공급라인(637)을 통해서 제 3 J-T 밸브(636c)에 의해 저압으로 팽창시켜서 제 2 냉매용 열교환기(632)의 제 2 유로(632b)와 제 1 냉매용 열교환기(631)의 제 3 유로(631c)로 거쳐서 압축기(633)에 공급되도록 한다.
후냉각기(634)는 압축기(633)에 의해 압축된 냉매의 압축열을 제거함과 아울러 냉매의 일부를 액화시킨다. 또한, 제 1 냉매용 열교환기(631)는 제 1 및 제 2 유로(631a,631b)를 통해서 공급되는 팽창전의 고온 냉매를 제 3 유로(631c)로 공급되는 팽창후의 저온 냉매와의 열교환에 의해 냉각시킨다. 그리고, 제 2 냉매용 열교환기(632)는 제 1 유로(632a)를 통해서 공급되는 팽창전의 고온 냉매를 제 2 유로(632b)로 공급되는 팽창후의 저온 냉매와의 열교환에 의해 냉각시킨다.
또한, 액화용 열교환기(620)는 제 1 및 제 2 열교환기(631,632)와 제 2 J-T 밸브(636b)를 거쳐서 팽창된 저온 냉매가 공급됨으로써 천연가스를 냉각시켜서 액화시키게 된다.
도 39는 본 발명의 제 14 실시예에 따른 열교환기 분리형 액화 장치를 도시한 구성도이다.
도 39에 도시된 바와 같이, 본 발명의 제 14 실시예에 따른 열교환기 분리형 천연가스 액화 장치(640)는 제 13 실시예에 따른 열교환기 분리형 천연가스 액화 장치(610)와 마찬가지로, 천연가스를 공급받아 냉매와의 열교환에 의해 액화되도록 함과 아울러 스테인레스 스틸 재질로 이루어지는 액화용 열교환기(650)와, 액화용 열교환기(650)에 냉매를 알루미늄 재질로 이루어지는 냉매용 열교환기(661)에 의해 냉각시켜서 공급하는 냉매 냉각부(660)를 포함하는데, 제 13 실시예에 따른 열교환기 분리형 천연가스 액화 장치(610)와 동일한 구성이나 부분에 대해서는 설명을 생략하고, 차이점에 대해서 설명하기로 하겠다.
냉매 냉각부(660)는 액화용 열교환기(650)로부터 배출되는 냉매를 압축기(663) 및 후냉각기(664)에 의해 압축 및 냉각시켜서 냉매용 열교환기(661)의 제 1 유로(661a)에 공급하고, 냉매용 열교환기(661)의 제 1 유로(661a)를 통과한 냉매를 팽창기(665)에 의해 팽창시켜서 유량배분밸브(666)의 조작에 따라 액상용 열교환기(650)에 공급하거나, 냉매용 열교환기(661)의 제 2 유로(661b)를 거쳐서 압축기(663)로 공급한다. 여기서, 유량배분밸브(666)는 본 실시예에서처럼 3방향 밸브로 이루어질 수 있으며, 이와 달리 다수의 양방향 밸브로 이루어질 수 있다.
냉매용 열교환기(661)는 제 1 유로(661a)를 통해서 공급되는 팽창전의 고온 냉매가 제 2 유로(661b)를 통해서 공급되는 팽창후의 저온 냉매와의 열교환에 의해 냉각되도록 한다. 또한, 유량배분밸브(666)의 조작에 따라 저온의 냉매를 냉매용 열교환기(661)와 액화용 열교환기(650)에 분배하게 되는데, 액화용 열교환기(650)는 냉매용 열교환기(661)와 팽창기(665)를 거친 저온 냉매에 의해 천연가스를 냉각시켜서 액화시키도록 한다.
도 40 및 도 41은 본 발명에 따른 액화천연가스 저장 용기 운반선을 도시한 정단면도 및 측단면도이다.
도 40 및 도 41에 도시된 바와 같이, 본 발명에 따른 액화천연가스 저장 용기 운반선(700)은 액화천연가스가 저장된 저장 용기를 운반하기 위한 선박으로서, 선체(710)에 마련되는 화물창(720)의 상부에 폭방향과 길이방향으로 다수로 설치됨으로써 화물창(720)의 상부를 다수의 개구(721)로 구획하는 제 1 및 제 2 상부지지대(730,740)를 포함하고, 개구(721)마다 삽입되는 저장 용기(791)를 제 1 및 제 2 상부지지대(730,740)에 의해 지지되도록 한다.
한편, 저장 용기(791)는 일반적인 액화천연가스는 물론, 일정 압력으로 가압된 액화천연가스, 예를 들면, 13 ~ 25bar의 압력과 -120 ~ -95℃의 온도를 가지는 가압액화천연가스가 저장될 수 있고, 이를 위해 이중 구조 또는 단열부재 등이 설치될 수 있으며, 튜브 형태 또는 실린더 형태로 이루어질 수 있고, 그 밖의 다양한 형태를 가질 수 있다.
화물창(720)은 선체(710)에 상부가 개방되도록 마련될 수 있는데, 이 경우 선체(710)는 컨테이너선의 선체가 활용될 수 있다. 따라서, 액화천연가스 저장 용기 운반선(700)의 제작에 소요되는 시간을 비용을 줄일 수 있도록 한다.
도 42에 도시된 바와 같이, 제 1 및 제 2 상부지지대(730,740)는 화물창(720)의 상부에 폭방향과 길이방향으로 다수로 설치됨으로써 화물창(720)의 상부를 다수의 개구(721)로 구획하며, 개구(721)마다 저장 용기(791)가 수직되게 삽입되어 지지되도록 한다. 즉, 제 1 상부지지대(730)는 화물창(720)의 상부에 선체(710)의 폭방향으로 설치되되, 선체(710)의 길이방향을 따라 간격을 두고서 다수로 설치된다. 또한, 제 2 상부지지대(740)는 화물창(720) 상부에 선체(710)의 길이방향으로 설치되되, 선체(710)의 폭방향을 따라 간격을 두고서 다수로 설치된다. 따라서, 제 1 및 제 2 상부지지대(730,740)는 화물창(720)의 상부에 가로방향과 세로방향으로 다수의 개구(721)가 형성되도록 하며, 화물창(720)의 상단에 용접에 의해 고정되거나, 볼트 등의 체결부재로 고정될 수 있다.
또한, 제 1 및 제 2 상부지지대(730,740)와 화물창(720)의 내측면 중 일부 또는 전부에 저장 용기(791)의 측부를 지지하기 위한 지지블록(760)이 다수로 설치될 수 있다. 지지블록(760)은 저장 용기(791)의 전후 및 좌우를 각각 지지하도록 마련될 수 있고, 저장 용기(791)를 안정적으로 지지하도록 저장 용기(791)의 외측면 곡률과 상응하는 곡률을 가지는 지지면(761)이 형성될 수 있다.
하부지지대(750)는 화물창(720)의 하부에 설치되며, 개구(721)로 삽입된 저장 용기(791)의 하부를 지지하는데, 화물창(720)의 바닥면에 상방을 향하여 수직되게 다수로 설치되고, 각각의 사이에 간격 유지를 위한 보강부재(751)가 더 설치될 수 있다. 한편, 하부지지대(750) 및 보강부재(751)는 저장 용기(791)마다 한 조로 이루어질 수 있으며, 화물창(720)의 바닥면에 세로방향과 가로방향으로 다수로 설치됨으로써 다수의 저장 용기(791) 하부를 지지하도록 할 수 있다.
본 발명에 따른 액화천연가스 저장 용기 운반선(700)은 저장 용기(791)의 지지를 위하여 컨테이너선의 경우 스탠천(Stanchion), 래싱 브리지(lashing bridge) 등을 그대로 이용할 수 있고, 이 때 제 1 및 제 2 상부지지대(730, 740)를 스탠천 및 래싱 브리지에 고정 지지시켜 사용할 수도 있다.
이로 인해 종래의 컨테이너선을 적은 변경으로만으로도 저장 용기(791)의 운반을 가능하도록 개조할 수 있으며, 저장 용기(791)와 함께 컨테이너박스(792)를 운송하도록 데크(711) 상에 컨테이너적재부(770)를 추가로 마련할 수도 있을 것이다.
도 43은 본 발명에 따른 이산화탄소 고형화 제거 시스템을 도시한 구성도이다.
도 43에 도시된 바와 같이, 본 발명에 따른 이산화탄소 고형화 제거 시스템(810)은 고압 천연가스를 저압으로 감압시키는 팽창 밸브(812)와, 팽창 밸브(812)의 후단에 설치됨과 아울러 액화된 천연가스의 내부에 존재하는 얼어서 고형화된 이산화탄소를 필터링하는 고형화 이산화탄소 필터(813)와, 팽창 밸브(812)및 고형화 이산화탄소 필터(813)의 고형화된 이산화탄소를 기화시키는 가열부(816)를 포함하고, 고형화 이산화탄소 필터(813)에 의해 액화된 천연가스로부터 고형화된 이산화를 탄소를 필터링하고, 팽창 밸브(812)와 고형화 이산화탄소 필터(813)에 천연가스의 공급을 중단한 상태에서 가열부(816)로부터 열을 공급하여 고형화된 이산화탄소를 재생하여 제거시킬 수 있다.
팽창 밸브(812)는 고압 천연가스가 공급되는 공급라인(811)에 설치되며, 공급라인(811)을 통해서 공급되는 고압 천연가스를 저압으로 감압시켜 액화시킨다.
고형화 이산화탄소 필터(813)는 공급라인(811)에서 팽창 밸브(812)의 후단에 설치되며, 팽창 밸브(812)로부터 공급되는 액화천연가스로부터 얼어서 고형화된 이산화탄소를 필터링하게 되며, 이를 위해 이산화탄소 고형물을 필터링하기 위한 필터부재가 내측에 설치된다.
또한, 팽창 밸브(812)와 고형화 이산화탄소 필터(813)는 제 1 및 제 2 개폐 밸브(814,815)에 의해 고압 천연가스의 공급과 저압 액화천연가스의 배출이 개폐되는데, 이를 위해 제 1 및 제 2 개폐 밸브(814,815)는 공급라인(811)에서 팽창 밸브(812)의 전단과 고형화 이산화탄소 필터(813)의 후단에 각각 설치되어 천연가스의 흐름을 각각 개폐시키킨다. 여기서, 제 1 개폐 밸브(814)는 팽창 밸브(812)로의 고압 천연가스 공급을 개폐시키며, 제 2 개폐 밸브(815)는 고형화 이산화탄소 필터(813)로부터 배출되는 저압 액화천연가스의 배출을 개폐시킨다.
가열부(816)는 팽창 밸브(812)와 고형화 이산화탄소 필터(813)의 고형화된 이산화탄소를 기화시키도록 열을 제공하는데, 일례로 팽창 밸브(812) 및 고형화 이산화탄소 필터(813)와의 열교환을 위한 열매가 순환 공급되는 열매라인(816a)에 설치되는 재생 열교환기(816b)와, 열매라인(816a)에서 재생 열교환기(816b)의 전단과 후단에 각각 설치되는 제 4 및 제 5 개폐 밸브(816c,816d)를 포함한다.
가열부(816)에 의해 재생된 이산화탄소를 외부로 배출시키도록 이산화탄소가 배출되는 배출라인(817a)에 제 3 개폐 밸브(817)가 설치된다.
제 3 개폐 밸브(817)는 제 1 개폐 밸브(814)와 팽창 밸브(812) 사이의 공급라인(811)으로부터 분기되는 배출라인(817a)에 가열부(816)에 의해 재생된 이산화탄소의 배출을 개폐시키도록 설치된다.
또한, 본 발명에 따른 이산화탄소 고형화 제거 시스템(810)은 다수로 이루어져서 일부가 이산화탄소의 필터링을 수행하는 동안 다른 일부가 이산화탄소의 재생을 수행하도록 제 1 내지 제 3 개폐 밸브(814,815,817)와 가열부(816)가 제어될 수 있으며, 본 실시예에서는 2개로 이루어져서 각각이 이산화탄소의 필터링과 재생을 교번하여 수행하게 되며, 이를 위한 동작을 첨부된 도면을 참조하여 설명하면 다음과 같다.
도 44에 도시된 바와 같이, 본 발명에 따른 이산화탄소 고형화 제거 시스템(810)은 어느 하나를 기준으로 설명하면, 먼저 제 1 및 제 2 개폐 밸브(814,815)의 개방에 의해 공급라인(811)을 통해서 팽창 밸브(812) 측으로 고압 천연가스를 공급하여 저압 팽창시키면, 천연가스는 냉각되어 저압의 액화천연가스가 고형화 이산화탄소 필터(813)에 공급되며, 냉각에 의해 액화천연가스에 포함되는 고형화된 이산화탄소는 이산화탄소 필터(813)에 의해 필터링 된다. 고형화 이산화탄소 필터(813)에 고형화된 이산화탄소가 지속적으로 쌓이게 되면, 제 1 및 제 2 개폐 밸브(814,815)를 폐쇄시킴으로써 공급라인(811)을 통한 고압 천연가스의 공급을 중단시킨 다음, 제 4 및 제 5 개폐 밸브(816c,816d)의 개방에 의해 재생 열교환기(816b)에 열매를 순환 공급시킴으로써 팽창 밸브(812) 및 고형화 이산화탄소 필터(813)에 열을 공급하여 고형화된 이산화탄소를 기화시킴으로써 재생시킨다.
재생된 이산화탄소는 제 3 개폐 밸브(817)의 개방에 의해 배출라인(817a)을 따라 외부로 배출됨으로써 제거된다.
또한, 본 발명에 따른 이산화탄소 고형화 제거 시스템(810)이 다수, 예컨대 2개로 이루어지는 경우 어느 하나(I)가 천연가스로부터 고형화된 이산화탄소 필터링이 수행되도록 제 1 내지 제 5 개폐 밸브(814,815,817,816c,816d)가 제어되며, 다른 하나(II)는 이와는 상반되는 동작을 함으로써 고형화된 이산화탄소의 기화를 통한 재생이 수행되도록 한다.
이와 같이, 본 발명에 따른 이산화탄소 고형화 제거 시스템(810)은 이산화탄소 제거 방식 중에서 이산화탄소를 얼려서 고형화하여 분리하는 저온 방식을 적용하고 있으며, 이로 인해 천연가스 액화과정과 결합하는 것이 가능하도록 한다. 이 경우 전처리 이산화탄소의 제거 과정이 필요없게 되므로 그에 따른 설비 감소가 발생된다. 또한, 고압으로 급송되는 천연가스를 액화하고 팽창 밸브(812)에 의해 저압으로 팽창 및 감압 시 이산화탄소가 고형화되는 경우, 고형화된 이산화탄소를 기계적인 필터인 고형화 이산화탄소 필터(813)로 필터링하고, 고형화된 이산화탄소가 고형화 이산화탄소 필터(813)에 지속으로 쌓이게 되는 경우 다수의 고형화 이산화탄소 필터(813)를 번갈아 사용하면서 동시에 이산화탄소의 재생을 가능하도록 할 수 있다.
도 45는 본 발명에 따른 액화천연가스 저장 용기의 연결구조를 도시한 단면도이다.
도 45에 도시된 바와 같이, 본 발명에 따른 액화천연가스 저장 용기의 연결구조(820)는 이중 구조를 갖는 액화천연가스 저장 용기(830)의 내부쉘(831)과 외부 주입부(840)를 연결하는 구조로서, 내부쉘(831)과 외부 주입부(840)가 슬라이딩 결합되는데, 이를 위해 슬라이딩 결합부(821)를 포함할 수 있다.
슬라이딩 결합부(821)는 내부쉘(831)과 외부 주입부(840)의 연결부분에 마련되며, 내부쉘(831) 또는 외부쉘(832)의 열수축 또는 열팽창을 완충시키도록 열수축 또는 열팽창에 의해 변위가 발생하는 방향을 따라 내부쉘(831)과 외부 주입부(840)의 연결부분이 서로 슬라이딩 가능하도록 마련될 수 있다.
한편, 저장 용기(830)는 일례로 내부쉘(831)의 내측에 액화천연가스가 저장되고, 내부쉘(831)의 외측을 외부쉘(832)이 감싸며, 내부쉘(831)과 외부쉘(832) 사이의 공간에 온도 영향을 감소시키는 단열층부(833)가 설치될 수 있다.
여기서, 내부쉘(831)은 일반적인 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9% 니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어질 수 있다.
저장 용기(830)는 이전의 실시예들과 마찬가지로 외부쉘(832)이 내부 압력을 견디기 위한 강(steel) 소재로 이루어질 수 있으며, 내부쉘(831)의 내부와 단열층부(833)가 위치하는 공간에 동일한 압력이 가해지기 위한 구조를 가질 수 있으며, 일례로 내부쉘과 단열층부를 연결하는 연결유로에 의해 내부쉘의 내부와 단열층부의 압력이 동일하거나 근사해질 수 있게 된다.
이로 인해 내부쉘 내측에 있는 가압액화천연가스의 압력은 외부쉘이 지탱하게 되어, 내부쉘이 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장이 가능하다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 상술한 연결유로에 의해 거의 동일하게 될 수 있어 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5 bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
또한, 외부쉘과 단열층부가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 저장 용기(830)를 설계할 수도 있다.
슬라이딩 결합부(821)는 내부쉘(831)에 액화천연가스의 주입 및 배출을 위해 형성되는 주입구(831a)로부터 외측으로 연장되는 연결부(822)와 외부 주입부(840)로부터 돌출되는 결합부(823)가 끼움 방식에 의해 서로 슬라이딩 결합됨으로써 이루어질 수 있다.
도 46에 도시된 바와 같이, 연결부(822)와 결합부(823)는 원형관으로 이루어짐으로써 어느 하나가 다른 하나에 삽입되어 슬라이딩 가능하게 결합될 수 있으며, 이에 한하지 않고, 사각형이나 다양한 형태의 단면 형상을 서로 상응하게 형성함으로써 슬라이딩 결합될 수 있다.
본 발명에 따른 액화천연가스 저장 용기의 연결구조(820)는 외부쉘(832)로부터 슬라이딩 결합부(821)를 감싸도록 연장 형성되는 연장부(824)를 더 포함할 수 있다. 따라서, 연장부(824)에 의해 슬라이딩 결합부(821)가 외부로 노출됨으로써 외부 환경에 의해 영향을 받는 것을 방지할 수 있다. 또한, 연장부(824)는 끝단에 플랜지가 형성됨으로써 외부 주입부(840)에 플랜지 결합될 수 있으며, 이로 인해 저장 용기(830)가 외부 주입부(840)에 안정적으로 결합되도록 할 수 있다.
한편, 외부 주입부(840)에 마련된 결합부(823)는 본 실시예에서처럼 외부 주입부(840)에 일체를 이루도록 형성될 수 있고, 이와 달리, 외부 주입부(840)와는 별개의 부재로 이루어져서 연장부(824)에 고정될 수 있으며, 이때 외부 주입부(840)에 플랜지 결합이나 다양한 방식에 의해 결합될 수 있다.
도 47에 도시된 바와 같이, 본 발명에 따른 액화천연가스 저장 용기의 연결구조(820)는 열수축 또는 열팽창에 의해 내부쉘(831)과 외부 주입부(840) 사이의 연결부분에 하중이 집중되더라도 연결부(822)와 결합부(823)가 서로 슬라이딩 운동할 수 있게 됨으로써 열수축 또는 열팽창을 완충시켜서 내부쉘(831)과 외부 주입부(840)에 하중이 집중되는 것을 방지하며, 이로 인해 열수축 또는 열팽창에 따른 손상을 방지한다.
또한, 슬라이딩 결합부(821)의 틈(공차)을 통해 저장 용기(830) 내의 천연가스가 단열층부(833)로 이동할 수 있으므로 단열층부(833)의 압력과 내부쉘831)의 압력이 동일하거나, 근사해질 수 있고, 이는 도 23 내지 도 25에 도시된 바와 같은 단열 층부와 내부쉘의 등가 압력 유지를 위한 이퀄라이징라인을 대체할 수 있는 효과도 가질 수 있다.
도 48은 본 발명에 따른 액화천연가스의 저장용기를 개략적으로 도시한 도면이고, 도 49는 본 발명에 따른 액화천연가스의 저장용기 내부쉘의 구조를 개략적으로 도시한 도면이고, 도 50은 본 발명에 따른 액화천연가스의 저장용기 내부쉘의 구조에 대한 다양한 형태를 나타낸 도면이고, 도 51은 본 발명에 따른 액화천연가스의 저장용기 내부쉘의 구조에 대한 다양한 형태를 나타낸 도면이고, 도 52는 본 발명에 따른 액화천연가스의 저장용기의 내부쉘의 구조를 개략적으로 도시한 도면이다.
도 48 내지 도 52에 도시된 본 발명의 일실시예인 액화천연가스의 저장용기(900)는, 내부쉘(910), 외부쉘(920), 지지대(930), 단열층부(940)를 포함한다.
본 발명의 저장용기(900)는 내측에 액화천연가스가 저장되는 내부쉘(910)과 내부쉘(910)의 외측을 감싸는 외부쉘(920) 사이에 내부쉘(910)과 외부쉘(920)을 지지하도록 하는 지지대(930)와 열전달을 감소시키는 단열층부(940)가 설치된다.
한편, 내부쉘(910)에 대한 액화천연가스의 공급 및 배출을 위하여 내부쉘(910)의 출입구에는 연결부(미도시)가 일체로 연결되어 외부쉘(920)의 외측으로 돌출될 수 있으며, 이러한 연결부에는 밸브 등의 외부 부재가 연결될 수 있다.
내부쉘(910)은, 도 48에 도시된 바와 같이. 주름구조(950)를 가진 원통형(또는 튜브형)으로 이루어질 수 있으나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수도 있다.
내부쉘(910)에 형성되는 주름구조(950)는 주름의 단면 형상에 따라 다양한 굴곡부(952)를 가질 수 있으며, 다양한 굴곡부(952)를 갖는 주름(951)을 하나 이상 가질 수 있다.
하나 이상의 주름(951)은 하나의 내부쉘(910) 전체에서 동일한 모양을 갖도록 굴곡각도(953), 주름깊이(954), 주름거리(955)를 결정할 수도 있고(도 50의 (a), (b), (c) 참조), 일부가 서로 다른 모양을 갖거나, 전체가 서로 다른 모양을 갖도록 굴곡각도(953), 주름깊이(954), 주름거리(955)를 결정할 수도 있다.
다양한 굴곡부(952)의 형상으로는 각진 모서리 굴곡부(9521), 둥근 모서리 굴곡부(9522), 물결모양 굴곡부(9523) 등 다양한 형상을 가질 수 있다.
도 50의 (a) 실시예에서는 하나의 주름(951)에 각진 모서리 굴곡부(9521)가 4개 형성되도록 제작된 내부쉘(910)을 도시하였으며, 각진 모서리 굴곡부(9521)의 굴곡각도(953)를 다양하게 구성한다면 더욱 다양한 모양의 주름을 갖도록 할 수 있을 것이다.
도 50의 (b), (c) 각각의 실시예에서는 하나 이상의 주름(951)이 서로 주름깊이(954)와 주름거리(955)를 달리하도록 형성된 내부쉘(910)을 도시하였으며, 각각의 주름에 각진 모서리를 갖지 않도록 모서리 부분을 라운딩처리하여 둥근 모서리 굴곡부(9522)를 갖도록 하였다.
도 51의 (a), (b) 각각의 실시예에서는 하나 이상의 주름(951)이 서로 주름깊이(954)와 주름거리(955)를 달리하도록 형성된 내부쉘(910)을 도시하였으나, 각각의 주름(951)에는 물결모양의 굴곡부가 형성된 물결모양 굴곡부(9523)를 갖는 내부쉘(910)을 도시하였다.
또한, 도 52의 (a), (b)에 도시된 바와 같이, 각진 모서리 또는 둥근 모서리를 갖는 굴곡부(9521, 9522)와 물결모양을 갖는 굴곡부(9523)를 하나의 주름으로 형성할 수도 있을 것이다.
도 48 및 도 49에서는 내부쉘(910)의 외면 중 측면부에 주름구조(950)를 형성하는 것으로 도시하였으나, 측면뿐만아니라 상부덮개(960)나 하부덮개(970)에도 필요하다면 주름구조(950)를 형성할 수 있을 것이다.
내부쉘(910)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견딜 수 있는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어질 수 있다.
외부쉘(920)은 내부쉘(910)과의 사이에 공간을 형성하도록 내부쉘(910)의 외측을 감싸고, 내부압력을 견디기 위한 강(steel) 소재로 이루어질 수 있으며, 내부쉘(910)에 가해지는 내부압력을 분담함으로써 내부쉘(910)의 소재의 사용량을 절감하도록 하여 제작비용을 절감할 수 있다.
단열층부(940)는 내부쉘(910)과 외부쉘(920) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다.
단열층부(940)에는 내부쉘(910) 내의 압력과 동일한 압력이 가해지도록 설계가 이루어질 수 있는데, 여기서, 내부쉘(910) 내의 압력과 동일한 압력이란, 엄밀하게 동일한 것을 의미하는 것이 아니라, 유사한 정도도 포함하는 의미이다.
단열층부(940)와 내부쉘(910) 내부는 내부쉘(910) 내측과 외측간의 압력 평형을 위해 이전의 실시예에서와 같이 연결유로(54; 도 12에 도시) 또는 이퀄라이징라인(514; 도 23에 도시)에 의해 서로 연결될 수 있으며, 이러한 연결유로(54) 또는 이퀄라이징라인(514)에 대해서는 이전의 실시예에서 상세히 설명하였으므로 그 설명을 생략하기로 한다.
내부쉘(910)은 연결유로(54) 또는 이퀄라이징라인(514)에 의해 내부쉘과 단열층부의 압력이 동일하거나, 근사해지므로, 가압액화천연가스의 압력은 외부쉘이 지탱할 수 있게 된다. 따라서, 내부쉘(910)은 -120 ~ -95℃의 온도를 견디도록 제작되어도, 내부쉘과 외부쉘에 의해 상기한 압력(13 ~ 25bar)과 온도 조건, 일례로 17bar의 압력과 -115℃의 온도를 가지는 가압액화천연가스의 저장을 가능하도록 하며, 외부쉘(920), 지지대(930) 및 단열층부(940)가 조립된 상태에서 상기한 압력과 온도 조건을 만족하도록 설계될 수도 있다.
내부쉘과 외부쉘이 받게 되는 압력은 정상상태에서 연결유로 또는 이퀄라이징라인에 의해 거의 동일하게 되므로 차이가 거의 없게 되나, 비상상태에서 급하게 저장용기의 압력을 나추는 경우(full vent)에는 내부쉘의 내측 및 외측의 압력차가 0.5bar 정도가 될 수 있으므로 내부쉘을 0.5 bar 정도의 압력을 견디도록 제작할 수도 있을 것이다.
지지대(930)는 상기한 다른 실시예에서 설명한 바와 동일한 방식 및 기능을 갖도록 설치할 수 있으므로 자세한 설명은 생략하며, 상기한 다른 실시예에서와 마찬가지로 내부쉘(910)과 외부쉘(920) 사이의 하부 공간에 하부지지대(931)를 추가하여 설치할 수 있다.
도 53에 도시된 바와 같이, 본 발명에 따른 액화천연가스의 저장 용기(900는 횡방향으로도 설치될 수 있는데, 이 경우 하부지지대(931)를 생략할 수 있다.
도 48 내지 도 52에 도시된 본 발명의 일실시예인 액화천연가스의 저장용기(900)의 제작방법은. 주름구조를 형성한 내부쉘(910)을 저장용기의 내측에 배치하고, 외부쉘(920)은 저장용기의 외측에 배치하고, 내부쉘(910)과 외부쉘(920)을 지지하는 지지대(930)는 내부쉘(910)과 외부쉘(920) 사이의 공간에 설치하고, 열전달을 감소시키는 단열층부(940)는 내부쉘(910)과 외부쉘(920) 사이의 공간에 설치한다.
이 때, 내부쉘(910)의 주름구조는 롤러(roller)를 이용하여 목적하는 곡면을 복수 개 만든 후 용접에 의해 연결하여 제작할 수 있다.
주름구조를 만들기 위한 롤러(roller)에는 일반 롤러 뿐만아니라 파형 롤러(corrugated roller) 등 주름구조(주름 또는 목적 곡면)를 만들 수 있는 모든 종류의 롤러를 포함하며, 롤러(roller)를 이용하여 복수개의 주름을 만든 후 이음부를 용접으로 접합하여 액화천연가스의 저장용기(900)를 제작하게 된다.
이러한 방식으로 제작되는 저장용기를 구성하는 각 부분들의 구성 및 기능은 상술한 바와 동일하므로 자세한 설명은 생략하기로 한다.
도 54 내지 도 61에 도시된 본 발명의 다양한 실시예에 따른 액화천연가스 저장용기의 구조는, 내부쉘(1010)의 내측에 액화천연가스를 저장하고, 내부쉘(1010)의 외측에 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 내부쉘(1010)과의 사이에 공간을 형성하고, 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 복수개의 지지대(1030) 및 열전달을 감소시키는 단열층부(1040)를 설치한다.
내부쉘(1010)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 발명의 다양한 실시예를 도시한 도면에서 보듯이 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수도 있다.
이러한 내부쉘(1010)은 -120 ~ -95℃의 온도를 견딜 수 있도록 제작하는 것이 바람직하다.
외부쉘(1020)은 내부쉘(1010)과의 사이에 공간을 형성하도록 내부쉘(1010)의 외측을 감싸며, 내부쉘(1010) 내에 저장되는 액화천연가스의 압력을 견딜 수 있는 강(steel) 소재로 이루어지며, 후술할 이퀄라이징 라인(1090)에 의해 외부쉘(1020)이 내부쉘(1010) 내측의 압력을 분담함으로써 내부쉘(1010) 소재의 사용량을 절감할 수 있고, 저장용기(1000)의 제작 비용도 줄일 수 있게 된다.
이러한 외부쉘(1020)은 13 ~ 25bar의 압력을 견디도록 제작하는 것이 바람직하다.
내부쉘(1010)은 후술할 이퀄라이징 라인(1090)에 의해 내부쉘(1010)의 내측 압력과 내부쉘(1010) 및 외부쉘(1020)이 형성하는 공간(즉, 단열층부(1040)가 형성되는 공간)의 압력이 동일(여기서, 내부쉘(1010)의 내측 압력과 동일한 압력이란, 엄밀한 정도로 동일한 것을 의미하는 것이 아니라 근사한 정도도 포함하는 의미이다)해져 액화천연가스의 압력을 외부쉘이 지탱할 수 있게 된다.
따라서, 내부쉘(1010)을 내부쉘(1010)의 내측에 저장되는 액화천연가스의 압력을 견딜 수 있는 지에 무관하게 -120 ~ -95℃의 온도를 견디도록만 제작하여도 액화천연가스 저장용기(1000)는 안전하게 액화천연가스를 저장할 수 있게 된다.
즉, 일정한 압력 및 온도(예를 들어, 17bar 및 -115℃)를 갖도록 생산된 액화천연가스를 저장용기(1000)의 내부쉘(1010)에 저장하더라도 외부쉘(1020)과 단열층부(1040)가 조립된 상태에서 일정한 압력 및 온도를 갖는 액화천연가스를 안전하게 저장할 수 있게 된다.
한편, 내부쉘(1010)은 외부쉘(1020)의 두께(t2)에 비하여 작은 두께(t1)를 가지도록 형성될 수 있으며, 이로 인해 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
지지대(1030)는 내부쉘(1010)이 외부셀(1020)에 지지될 수 있도록 하는데, 내부쉘(1010)의 온도변화에 따른 수축 및 팽창을 구속한다면 지지대(1030)에 응력집중이 생겨 손상의 우려가 높으므로 지지대(1030)에 응력집중이 생기지 않도록 제작하여야 한다.
따라서, 지지대(1030)는 내부쉘(1010) 측에 연결되는 내부지지대(1031) 및 외부쉘(1020) 측에 연결되는 외부지지대(1032)로 구성하되, 도 54에 도시된 바와 같이, 내부지지대(1031) 및 외부지지대(1032)가 접촉면을 사이에 두고 슬라이딩되도록 연결하는 것이 바람직하다.
내부지지대(1031) 및 외부지지대(1032)는 슬라이딩이 가능하도록 어느 하나에 슬라이딩 바(10315)를 형성하고, 다른 하나에 슬라이딩 바(10315)가 삽입 연결될 수 있는 슬라이딩 홀(10325)을 형성할 수 있다.
슬라이딩 바(10315)는 내부지지대(1031) 및 외부지지대(1032) 중 어느 하나로부터 외측으로 돌출되도록 형성되고, 슬라이딩 홀(10325)은 내부지지대(1031) 및 외부지지대(1032) 중 다른 하나에 형성하되, 슬라이딩 바(10315)가 삽입되어 좌우방향으로 슬라이딩 될 수 있도록 형성한다.
도 54의 A를 확대한 도면인 도 55에는 다양한 형태의 지지대(1030)를 도시하였다.
도 55에 도시된 바와 같이, 지지대(1030)는 내부쉘(1010) 측에서 외부쉘(1020) 측으로 지지대(1030)를 통한 열전달이 최소화될 수 있도록 단면적이 최소가 되는 구조로 제작하는 것이 바람직하며, 이를 위해 도 55의 (a)와 같이, 내부지지대(1031) 및 외부지지대(1032)가 슬라이딩될 수 있도록 하는 내부지지대(1031)의 하부플랜지(10312) 및 외부지지대(1032)의 상부플랜지(10321)를 형성한다.
이 때, 내부지지대(1031) 및 외부지지대(1032)는 구조적 강성을 높일 수 있도록 양단부에 각각 상부플랜지(10311, 10321) 및 하부플랜지(10312, 10322)를 형성하고, 상부플랜지(10311, 10321) 및 하부플랜지(10312, 10322) 사이를 웨브(10313, 10323)로 연결한 I형 부재로 형성할 수 있다.
즉, 내부지지대(1031)의 플랜지에서 외측으로 돌출되는 슬라이딩 바(10315)를 형성하고, 외부지지대(1032)의 플랜지에는 슬라이딩 바(10315)가 삽입 연결되어 슬라이딩 될 수 있도록 하는 슬라이딩 홀(10325)을 형성할 수도 있고, 슬라이딩 바(10315)를 외부지지대(1032)에 형성하고, 슬라이딩 홀(10325)을 내부지지대(1031)에 형성할 수 있다.
슬라이딩 바(10315)는 수직방향으로 지지대의 외측으로 돌출하는 것이 바람직하다.
한편, 내부쉘(1010) 측에 연결되는 내부지지대(1031)는 내부쉘(1010) 내측에 저장되는 극저온의 액화천연가스로부터 전달되는 극저온에 의해 취성파괴가 발생할 있으므로 저온에 견디는 금속(예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속)으로 제작하는 것이 바람직하고, 외부지지대(1032)는 내부쉘(1010)과 직접적인 연결이 이루어지지 않으므로 고가의 저온용 금속이 아닌 강화플라스틱 소재로 제작하여 저장용기(1000)의 제작비용을 절약하는 것이 바람직하다.
슬라이딩 바(10315)는 별도의 부재로 제작한 후 지지대에 용접 연결하는 것이 편리하므로, 슬라이딩 바(10315) 및 슬라이딩 바(10315)를 연결하는 지지대는 용접이 가능한 금속으로 제작하는 것이 바람직하다.
즉, 슬라이딩 바(10315)는 금속으로 제작한 후 금속으로 제작되는 내부지지대(1031)에 용접으로 연결시키되, 내부지지대(1031)에 직접연결되는 슬라이딩 바(10315)가 내부쉘(1010) 내측의 극저온의 액화천연가스로부터 전달되는 극저온의 온도로 인해 취성파괴되지 않도록 내부지지대(1031)와 마찬가지로 저온용 금속으로 제작하는 것이 바람직하다.
슬라이딩 바(10315)의 단부에는 슬라이딩 홀(10325)의 폭보다 크게 형성되는 슬라이딩 헤드(10316)를 갖도록 하여 슬라이딩 바(10315)가 슬라이딩 홀(10325)로부터 예기치 않게 빠지는 것을 방지하도록 하거나, 내부쉘(1010)이 상항방향으로 열수축 및 열팽창이 있어도 내부지지대(1031) 및 외부지지대(1032)가 내부쉘(1010)을 구속할 수있도록 한다.
슬라이딩 홀(10325)은, 도 55의 (a)에 도시된 바와 같이, 슬라이딩 바(10315)가 형성된 내부지지대(1031)의 하부플랜지(10312)가 외부지지대(1031)의 상부플랜지(10321)를 슬라이딩할 수 있도록 외부지지대(1031)의 상부플랜지(10321)에 형성하거나, 도 55의 (b)에 도시된 바와 같이, 슬라이딩 바(10315)가 형성된 내부지지대(1031)의 상부 및 하부플랜지(10311, 10312)가 외부지지대(1031)의 하부 및 상부플랜지(10322, 10321)를 슬라이딩할 수 있도록 외부지지대(1031)의 하부 및 상부플랜지(10322, 10321)에 형성할 수 있다.
외부지지대(1032)는 상술하였듯이 강화플라스틱 소재로 제작하는 것이 바람직한데, 강화플라스틱 소재는 용접이 불가능하므로, 도 57에 도시된 바와 같이, 용접 불가능한 외부지지대(1032)를 외부쉘(1020)에 용접 연결하기 위한 용접이 가능한 금속으로 제작되는 별도의 연결 플레이트(10326) 및 연결 플레이트(10326)를 외부지지대(1032)에 체결하기 위한 체결부(10327)를 추가할 수 있다.
연결 플레이트(10326) 및 체결부(10327)는 저온에 견디는 금속으로 제작하는 것이 바람직하다.
체결부(10327)에 의해 용접이 불가능한 소재로 제작된 외부지지대(1032)는 저온에 견디는 금속으로 제작된 연결플레이트(10326)와 체결되고, 연결플레이트(10326)는 외부쉘(1020)과 용접되어 외부지지대(1032)가 외부쉘(1020)과 연결된다.
체결부(10327)는 저온에 견디는 금속으로 제작되는 볼트 및 너트로 제작하여 연결 플레이트(10326)와 플랜지(10321, 10322)를 체결하도록 할 수 있다.
이러한 지지대(1030)는, 도 55의 (a) 및 (c)에 도시된 바와 같이, 하나 이상의 내부지지대(1031) 및 외부지지대(1032)로 구성하되, 내부지지대(1031) 및 외부지지대(1032)가 교대로 배치되도록 하여 내부쉘(1010)의 열수축 및 열팽창이 잘 흡수되도록 지지대(1030)를 구성할 수 있다.
이 때, 지지대(1030)의 최하측에는 외부지지대(1032)가 위치하도록 하는 것이 바람직한데, 최하측에 위치하는 지지대가 (1032)가 가장 큰 하중을 받으므로 고가의 저온용 금속으로 제작되는 내부지지대(1031)가 최하측에 위치한다면 큰 하중으로 인해 수명이 짧아지게 되므로 이를 방지하기 위해 저가의 소재로 제작되는 외부지지대(1032)를 최하측에 위치시키는 것이다.
즉, 본 발명에 따른 지지대(1030)는, 도 55의 (b)에 도시된 바와 같이, 최하측에 외부지지대(1032)를 형성하고, 그 위에 내부지지대(1031)가 오도록 교대로 외부지지대(1032) 및 내부지지대(1031)를 형성할 수 있다.
그리고, 외부지지대(1032)의 플랜지와 슬라이딩 되는 내부지지대(1031)의 플랜지에 슬라이딩 바(10315)를 형성하고, 내부지지대(1031)의 플랜지와 슬라이딩되는 외부지지대(1032)의 플랜지에 슬라이딩 홀(10325)을 형성한다.
지지대(1030)는 내부쉘(1010) 및 외부쉘(1020)의 측부 둘레를 따라 복수개 설치될 수 있고, 또한 내부쉘(1010)의 상하방향으로 간격을 두고서 복수개 설치될 수 있다.
이러한 구성으로 인해 내부쉘(1010)의 반경 방향의 열수축 및 열팽창은 외부쉘(1020)에 지지되면서 자유롭게 이루어지게 되며, 상하방향의 열수축 및 열팽창도 외부지지대(1032)의 슬라이딩 홀(10325)에 내부지지대(1031)에 형성된 슬라이딩 헤드(10316)가 걸려 구속되므로 내부쉘(1010)을 보다 잘 지지할 수 있게 된다.
이 때, 상하방향의 열수축 및 열팽창은 후술할 주름구조의 형상으로 인해 열변화를 흡수할 수 있으므로 상하방향의 과도한 구속이 발생하지 않아 슬라이딩 헤드(10316) 및 슬라이딩 홀(10325)의 구조적 안정성을 보장한다.
한편, 외부쉘(1020)이 내부쉘(1010)을 보다 안정적으로 지지할 수 있도록 도 54에 도시된 바와 같이, 내부쉘(1010) 및 외부쉘(1020) 사이의 하부 공간에 하부지지대(1033)를 추가할 수도 있으며, 도 61에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기처럼 저장용기(1000)를 횡방향으로 설치하는 경우에는 내부지지대(1031) 및 외부지지대(1032)에 형성된 슬라이딩 바(10315) 및 슬라이딩 홀(10325)이 내부쉘(1010)을 안정적으로 지지하기 어려우므로 하부지지대(1033)를 설치하는 것이 바람직할 것이다.
단열층부(1040)는 내부쉘(1010)과 외부쉘(1020) 사이의 공간에 설치되고, 열전달을 감소시키는 단열재로 이루어진다. 또한, 단열층부(1040)에는 내부쉘(1010) 내의 압력과 동일한 압력이 가해지도록 구조 또는 재질적인 설계가 이루어질 수 있는데, 여기서, 내부쉘(1010) 내의 압력과 동일한 압력이란, 엄밀한 정도로 동일한 것을 의미하는 것이 아니라 유사한 정도도 포함하는 의미이다.
따라서, 단열층부(1040)가 마련되는 내부쉘(1010) 및 외부쉘(1020) 사이의 공간과 내부쉘(1010) 내측의 공간은 압력 평형을 위해 이퀄라이징 라인(1090)으로 서로를 연결할 수 있다.
이와 같은 이퀄라이징 라인(1090)에 의하여 내부쉘(1010) 안과 밖(외부쉘(1020) 안쪽)에서의 압력이 평형이 되며, 외부쉘(1020)이 압력의 상당부분을 지지하여 내부쉘(1010)의 두께를 줄일 수 있게 된다.
이퀄라이징 라인(1090)는 내부쉘(1010)의 선역라인(7)에 마련되는 제1 연결부(1080)에서 외부쉘(1020)의 안쪽 공간과 접하는 측에 형성될 수 있다.
이퀄라이징 라인(1090)은 도 54에 도시된 바와 같이 밸브로 구성되거나, 후술할 도 58 내지 도 60에 도시된 바와 같이 배관으로 구성할 수도 있다. 따라서, 내부쉘(1010) 내의 압력이 이퀄라이징 라인(1090)를 통해서 단열층부(1040) 측으로 이동함으로써 내부쉘(1010)의 내측과 외측간에 압력이 평형을 이룬다.
즉, 이퀄라이징 라인(1090)에 의해 내부쉘(1010)의 내측과 외측간의 압력이 균형을 이룰 수 있으므로, 내부쉘(1010)을 저온 특성이 우수한 금속으로 제작하고, 외부쉘(1020)을 강도가 우수한 강(steel) 소재로 제작할 수 있어 액화천연가스뿐만 아니라 가압액화천연가스의 저장이 가능해진다.
또한, 내부쉘(1010)의 두께(t1)를 감소시켜 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있게 되며, 내부쉘(1010)의 내압에 의한 구조적 결함 발생도 방지할 수 있고, 내구성이 우수한 저장용기(1000)를 제공할 수 있다.
한편, 내부쉘(1010)의 내부 공간 상단과 하단에 제1 및 제2 연결부(1080,1081)를 각각 설치하여 외부쉘(1020)을 통과하여 외부로 돌출하되, 제1 연결부(1080)에 연결되는 선역라인(7)을 통해서 내부쉘(1010)의 내측으로 액화천연가스를 선역할 수 있도록 하고, 제2 연결부(1081)에 연결되는 하역라인(8)을 통해서 내부쉘(1010) 내측의 액화천연가스를 하역할 수 있도록 할 수 있다.
한편, 선역라인(7)과 하역라인(8)에는 밸브(7a, 8a)를 각각 설치할 수 있다.
도 58 및 도 59에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기(1000)는 제1 배기라인(1085), 제1 재기밸브(1086) 그리고, 내부쉘(1010)의 내부 공간으로부터 저장용기(1000)의 외부로 돌출된 후 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 연결되는 이퀄라이징 라인(1090)을 포함한다.
제1 배기라인(1085)는 내부쉘(1010)의 내부 공간 상부에 연결되어 외부로 연장되고, 제1 배기밸브(1086)는 가스의 흐름을 개폐시키기 위해 제1 배기라인(1085)에 설치하여 제1 배기라인(1085)이 제1 배기밸브(1086)의 개방에 의해 내부쉘(1010)의 내부 공간으로부터 외부로 가스를 배출할 수 있도록 한다.
이퀄라이징 라인(1090)은 도 54에 도시된 실시예와는 달리 배관으로 구성하여 길게 형성되도록 함으로써 내부쉘(1010) 내측에 저장된 액화천연가스가 넘쳐 흘러도 이퀄라이징 라인(1090)을 통해 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 누설되는 것을 방지할 수 있게 된다.
이퀄라이징 라인(1090)에는 유체, 예컨대 천연가스나 증발가스의 흐름을 개폐시키기 위한 개폐밸브(1091)가 설치될 수 있다. 따라서, 저장용기(1000)의 위치나 자세 변경 등과 같은 경우에 이퀄라이징 라인(1090)을 통한 발생할 수 있는 유체의 이동을 개폐밸브(1091)가 차단할 수 있게 된다.
도 60에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기(1000)는 제2 배기라인(1095), 제2 배기밸브(1096)을 포함할 수 있으며, 이퀄라이징 라인(1090)은 제2 배기밸브(1096)가 설치되는 제2 배기라인(1095)에 연결된다.
제2 배기밸브(1096)는 이퀄라이징 라인(1090)과 제2 배기라인(1095)을 통해서 내부쉘(1010) 내부의 가스를 외부로 배출할 수 있는데, 이로 인해 도 58 및 도 59에 도시된 바와 같이 내부쉘(1010)에 별도의 배기라인(1085)을 연결시키기 위한 복잡한 공정을 피할 수 있고, 저장용기(1000)를 관통하여 설치하는 장치가 감소하여 저장용기(1000)의 구조적 안정성을 유지할 수 있게 된다.
상술한 본 발명에 따른 다양한 실시예의 저장용기(1000)의 내부쉘(1010)은, 도 49 내지 도 52와 같이, 주름구조로 제작할 수도 있으며, 이에 대한 자세한 설명은 도 49 내지 도 52의 설명과 동일하다.
즉, 내부쉘(1010)은, 도 54에 도시된 바와 같이, 상부에는 상부덮개(1060), 하부에는 하부덮개(1070), 측면에는 주름구조(1050)를 갖는 원통형(또는 튜브형)으로 이루어질 수 있으며, 그 밖의 다면체를 비롯한 다양한 형상을 가지도록 제작할 수도 있다.
또한, 내부쉘(1010)에 형성되는 주름구조(1050)는 주름의 단면 형상에 따라 다양한 굴곡부(도 49 내지 도 52의 도면부호 152)를 가질 수 있으며, 다양한 굴곡부(152)를 갖는 주름(1051)을 하나 이상 가질 수 있다.
도 62 내지 도 67에 도시된 본 발명의 다양한 실시예에 따른 액화천연가스 저장용기의 구조는, 내부쉘(1010)의 내측에 액화천연가스를 저장하고, 내부쉘(1010)의 외측에 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 내부쉘(1010)과의 사이에 공간을 형성하고, 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 지지대(1030) 및 단열층부(1040)를 설치한다.
지지대(1030)는 내부쉘(1010)이 외부셀(1020)에 지지될 수 있도록 하고, 단열층부(1040)는 2 이상의 단열층을 적층하여 내부쉘(1010) 및 외부쉘(1020) 사이의 열전달을 감소시키되, 외부쉘(1020)과의 접촉면에 설치되는 단열층은 내부쉘(1010) 측에 설치되는 단열층보다 밀도가 큰 것을 설치한다.
왜냐하면, 내부쉘(1010)에 저장되는 액화천연가스가 내부쉘(1010)로부터 누설(leak)되거나 후술할 이퀄라이징 라인(1090)을 통해 넘쳐 흘러(overflow) 외부쉘(1020)에 직접 닿게 되면 외부쉘(1020)이 취성파괴될 우려가 높으므로 누설 또는 흘러 넘친 액화천연가스가 외부쉘(1020) 측으로 흐를수록 밀도가 높은 단열층에 의해 외부쉘(1020)에 직접 닿게 되는 것을 방지하기 위함이다.
따라서, 외부쉘(1020)과의 접촉면에는 밀도가 높은 단열재를 설치하는 것이 바람직하며, 닫힘셀(closed cell) 단열재를 사용할 수 있는데, 닫힘셀 단열재를 외부쉘(1020)에 설치할 경우 본드를 이용해 외부쉘에 접착시킬 수 있다.
닫힘셀 단열재란 단열재 내외부에 압력차가 존재하며, 단열 성능을 발휘하기 위해 고압을 견디는 구조로 구성된다.
단열층부(1040)에 설치되는 2 이상의 단열층에는 다양한 종류의 단열재(예를 들면, 개방셀(open cell) 단열재 또는 닫힘셀(closed cell) 단열재)를 사용할 수 있으며, 상술하였듯이 외부쉘(1020)과의 접촉면에는 고밀도의 단열재, 즉 닫힘셀 단열재를 설치하고, 내부쉘(1010) 측에 설치되는 단열층에은 외부쉘(1020)과의 접촉면에 사용되는 단열재보다 저밀도의 단열재, 즉 개방셀(open cell) 단열재를 설치할 수 있다.
개방셀 단열재란 고압하에서 사용하는 경우 공기가 단열재 내부를 자유롭게 다닐 수 있는 구조이며, 단열재의 내외부에 압력차가 존재하지 않고, 압력을 단열재가 견디는 구조가 아닌 단열재이다. 다만, 파우더 종류의 단열재의 경우 고압하에서 입자 자체가 받는 압력이 존재할 수 있다.
일반적으로 닫힘셀 단열재는 고가이므로 외부쉘(1020)과의 접촉면에만 닫힘셀 단열재를 사용하여 단열층부(1040)의 제작 비용을 줄일 수 있으며. 이 경우 닫힘셀의 두께를 20 ~ 80mm가 되도록 제작하는 것이 바람직하다.
또한, 개방셀 단열재는 단열재의 설치가 간편할 뿐만 아니라, 저장용기 조립을 용이하게 하므로 개방셀 및 닫힘셀을 함께 적절한 두께로 단열층부(1040)를 제작한다면 단열성능을 확보함과 동시에 설치 편이성, 제작비용 절감효과를 달성할 수 있게 된다.
닫힘셀 단열재로는 블록 형태의 글래스 버블(block type glass bubble), 고밀도 폴리우레탄 폼(polyurethane foam, PUF) 등을 들 수 있고 개방셀 단열재로는 입자 형태의 글래스 버블(grain type glass bubble) 등을 들 수 있는데, 글래스 버블(glass bubble)은 그 자체로는 개방셀 구조이나 무기물 혹은 유기물을 이용하여 글래스 버블 입자를 서로 묶어 블록 형태로 만들어 닫힘셀 단열재로 제작할 수 있다.
내부쉘(1010)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 발명의 다양한 실시예를 도시한 도면에서 보듯이 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수도 있다.
이러한 내부쉘(1010)은 -163 ~ -95℃의 온도를 견딜 수 있도록 제작할 수 있으며, 바람직하게는 -120 ~ -95℃의 온도를 견딜 수 있도록 제작할 수 있다.
외부쉘(1020)은 내부쉘(1010)과의 사이에 공간을 형성하도록 내부쉘(1010)의 외측을 감싸며, 내부쉘(1010) 내에 저장되는 액화천연가스의 압력을 견딜 수 있는 강(steel) 소재로 이루어지며, 후술할 이퀄라이징 라인(1090)에 의해 외부쉘(1020)이 내부쉘(1010) 내측의 압력을 분담함으로써 내부쉘(1010) 소재의 사용량을 절감할 수 있고, 저장용기(1000)의 제작 비용도 줄일 수 있게 된다.
이러한 외부쉘(1020)은 13 ~ 25bar의 압력을 견디도록 제작하는 것이 바람직하다.
내부쉘(1010)은 후술할 이퀄라이징 라인(1090)에 의해 내부쉘(1010)의 내측 압력과 내부쉘(1010) 및 외부쉘(1020)이 형성하는 공간(즉, 단열층부(1040)가 형성되는 공간)의 압력이 동일(여기서, 내부쉘(1010)의 내측 압력과 동일한 압력이란, 엄밀한 정도로 동일한 것을 의미하는 것이 아니라 근사한 정도도 포함하는 의미이다)해져 액화천연가스의 압력을 외부쉘이 지탱할 수 있게 된다.
따라서, 내부쉘(1010)을 내부쉘(1010)의 내측에 저장되는 액화천연가스의 압력을 견딜 수 있는 지에 무관하게 -163 ~ -95℃의 온도를 견디도록만 제작하여도 액화천연가스 저장용기(1000)는 안전하게 액화천연가스를 저장할 수 있게 된다.
즉, 일정한 압력 및 온도(예를 들어, 17bar 및 -115℃)를 갖도록 생산된 액화천연가스를 저장용기(1000)의 내부쉘(1010)에 저장하더라도 외부쉘(1020)과 단열층부(1040)가 조립된 상태에서 일정한 압력 및 온도를 갖는 액화천연가스를 안전하게 저장할 수 있게 된다.
한편, 내부쉘(1010)은 외부쉘(1020)의 두께(t2)에 비하여 작은 두께(t1)를 가지도록 형성될 수 있으며, 이로 인해 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
지지대(1030)는 내부쉘(1010)이 외부쉘(1020)에 지지될 수 있도록 내부쉘(1010)과 외부쉘(1020) 사이의 공간에 설치됨으로써 내부쉘(1010)과 외부쉘(1020)을 구조적으로 보강하게 되고, 액화천연가스의 저온에 견디기 위한 금속 또는 복합소재(예컨대, 저온강, glassfiber reinforced epoxy)으로 제작될 수 있으며, 내부쉘(1010)과 외부쉘(1020)의 측부 둘레를 따라 단일로 설치되거나, 내부쉘(1010)과 외부쉘(1020)의 측부에서 상하로 간격을 두고서 다수로 설치될 수 있다.
지지대(1030)가 내부쉘(1010) 및 외부쉘(1020)에 용접으로 고정지지 되는 경우에는 외부쉘(1020)과 접촉하는 지지대(1030)의 끝단 부분의 내측에 유리섬유와 같은 단열부재를 배치시키거나, 별도의 단열부재를 지지대 끝단 부분의 내측에 배치시킨 후 용접으로 고정하여, 내부쉘(1010))의 온도가 지지대(1030)에 의해 외부쉘(1020)로 전달되는 것을 방지하도록 할 수 있다.
또한, 내부쉘(1010)을 지지하도록 내부쉘(1010) 및 외부쉘(1020) 사이의 하부 공간에 하부지지대(1033)를 추가 설치할 수도 있으며, 도 67에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기처럼 저장용기(1000)를 횡방향으로 설치하는 경우에는 하부지지대(1033)를 생략할 수 있다.
도 62 및 도 63은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조 및 도 62의 D를 확대한 종방향 단면도이다.
도 62 및 도 63에 도시된 본 발명의 실시예에 따른 단열층부(1040)는 제1 단열층(1041) 및 제2 단열층(1042)으로 구성될 수 있다.
단열층부(1040)의 내부쉘(1010) 측에는 개방셀(open cell) 단열재로 구성되는 제1 단열층(1041)을 형성하고, 외부쉘(1020) 측에는 닫힘셀(closed cell) 단열재로 구성되는 제2 단열층(1042)을 형성한다.
개방셀 단열재는 공극에 의해 체밀 충전이 되지 않으므로 후술할 이퀄라이징 라인(1090)에 의해 내부쉘(1010)의 내측 공간과 내부쉘(1010) 및 외부쉘(1020) 사이의 공간이 압력평형이 되어 동일한 압력이 될 때 압력평형을 위한 별도의 공간을 단열층부(1040)에 마련할 필요가 없는 장점이 있다.
단열층부(1040)가 마련되는 내부쉘(1010) 및 외부쉘(1020) 사이의 공간과 내부쉘(1010)의 내부 공간은 압력 평형을 위해 이퀄라이징 라인(1090)으로 서로 연결할 수 있다.
이와 같은 이퀄라이징 라인(1090)에 의하여 내부쉘(1010) 안과 밖(외부쉘(1020) 안쪽)에서의 압력이 평형이 되며, 외부쉘(1020)이 압력의 상당부분을 지지하여 내부쉘(1010)의 두께를 줄일 수 있게 된다.
이퀄라이징 라인(1090)는 내부쉘(1010)의 선역라인(10)에 마련되는 제1 연결부(1080)에서 외부쉘(1020)의 안쪽 공간과 접하는 측에 형성될 수 있다.
이퀄라이징 라인(1090)은 도 62에 도시된 바와 같이 밸브로 구성되거나, 후술할 도 64 내지 도 66에 도시된 바와 같이 배관으로 구성할 수도 있다.
따라서, 내부쉘(1010) 내의 압력이 이퀄라이징 라인(1090)를 통해서 단열층부(1040) 측으로 이동함으로써 내부쉘(1010)의 내측과 외측간에 압력이 평형을 이루도록 한다.
내부쉘(1010)을 저온 특성이 우수한 금속으로 제작하고, 외부쉘(1020)을 강도가 우수한 강(steel) 소재로 제작하며, 단열층부(1040)를 적절한 두께의 제1 및 제2 단열층(1041, 1042)으로 구성함으로써 액화천연가스뿐만 아니라 가압액화천연가스의 저장을 가능하도록 하고, 내부쉘(1010)의 내측과 외측간의 압력 균형으로 인하여 내부쉘(1010)의 두께(t1)를 감소시켜 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
또한, 내부쉘(1010)의 내압에 의한 구조적 결함 발생도 방지할 수 있고, 내구성이 우수한 저장용기(1000)를 제공할 수 있다.
한편, 내부쉘(1010)의 내부 공간 상단과 하단에 제1 및 제2 연결부(1080,1081)를 각각 설치하여 외부쉘(1020)을 통과하여 외부로 돌출하되, 제1 연결부(1080)에 연결되는 선역라인(7)을 통해서 내부쉘(1010)의 내측으로 액화천연가스를 선역할 수 있도록 하고, 제2 연결부(1081)에 연결되는 하역라인(8)을 통해서 내부쉘(1010) 내측의 액화천연가스를 하역할 수 있도록 할 수 있다.
한편, 선역라인(10)과 하역라인(20)에는 밸브(7a, 8a)를 각각 설치할 수 있다.
도 64 및 도 65에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기(1000)는 제1 배기라인(1085), 제1 재기밸브(1086) 그리고, 내부쉘(1010)의 내부 공간으로부터 저장용기(1000)의 외부로 돌출된 후 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 연결되는 이퀄라이징 라인(1090)을 포함한다.
제1 배기라인(1085)는 내부쉘(1010)의 내부 공간 상부에 연결되어 외부로 연장되고, 제1 배기밸브(1086)는 가스의 흐름을 개폐시키기 위해 제1 배기라인(1085)에 설치하여 제1 배기라인(1085)이 제1 배기밸브(1086)의 개방에 의해 내부쉘(1010)의 내부 공간으로부터 외부로 가스를 배출할 수 있도록 한다.
이퀄라이징 라인(1090)은 도 62에 도시된 실시예와는 달리 배관으로 구성하여 길게 형성되도록 함으로써 내부쉘(1010) 내측에 저장된 액화천연가스가 넘쳐 흘러도 이퀄라이징 라인(1090)을 통해 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 누설되는 것을 방지할 수 있게 된다.
이퀄라이징 라인(1090)에는 유체, 예컨대 천연가스나 증발가스의 흐름을 개폐시키기 위한 개폐밸브(1091)가 설치될 수 있다. 따라서, 저장용기(1000)의 위치나 자세 변경 등과 같은 경우에 이퀄라이징 라인(1090)을 통한 발생할 수 있는 유체의 이동을 개폐밸브(1091)가 차단할 수 있게 된다.
도 66에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기(1000)는 제2 배기라인(1095), 제2 배기밸브(1096)을 포함할 수 있으며, 이퀄라이징 라인(1090)은 제2 배기밸브(1096)가 설치되는 제2 배기라인(1095)에 연결된다.
제2 배기밸브(1096)는 이퀄라이징 라인(1090)과 제2 배기라인(1095)을 통해서 내부쉘(1010) 내부의 가스를 외부로 배출할 수 있는데, 이로 인해 도 64 및 도 65에 도시된 바와 같이 내부쉘(1010)에 별도의 배기라인(1085)을 연결시키기 위한 복잡한 공정을 피할 수 있고, 저장용기(1000)를 관통하여 설치하는 장치가 감소하여 저장용기(1000)의 구조적 안정성을 유지할 수 있게 된다.
상술한 본 발명에 따른 다양한 실시예의 저장용기(1000)의 내부쉘(1010)은, 도 49 내지 도 52와 같이, 주름구조로 제작할 수도 있으며, 이에 대한 자세한 설명은 도 49 내지 도 52의 설명과 동일하다.
즉, 내부쉘(1010)은, 도 62에 도시된 바와 같이, 상부에는 상부덮개(1060), 하부에는 하부덮개(1070), 측면에는 주름구조(1050)를 갖는 원통형(또는 튜브형)으로 이루어질 수 있으며, 그 밖의 다면체를 비롯한 다양한 형상을 가지도록 제작할 수도 있다.
내부쉘(1010)에 형성되는 주름구조(1050)는 주름의 단면 형상에 따라 다양한 굴곡부(도 49 내지 도 52의 도면부호 152)를 가질 수 있으며, 다양한 굴곡부(152)를 갖는 주름(1051)을 하나 이상 가질 수 있다.
도 62 내지 도 67에 도시된 본 발명의 실시예인 액화천연가스의 저장용기(1000)를 제작하는 방법은, 외부쉘(1020)을 만든 후 닫힘셀 단열재를 외부쉘(1020)에 설치(예컨대, 본드로 접합)하여 제2 단열층(1042)을 제작완료한다. 그 후 내부쉘(예컨대, 주름구조를 형성한 내부쉘(1010))을 저장용기의 내측에 삽입하여 외부쉘(1020)이 저장용기의 외측에 배치되도록 한 후 내부쉘(1010)을 외부쉘(1020)에 지지하는 지지대(1030)를 내부쉘(1010)과 외부쉘(1020) 사이의 공간에 설치하고, 저밀도의 단열재(예컨대, 개방셀 단열재)를 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에 충진하여 제1 단열층(1041)을 형성한다.
내부쉘(1010)의 주름구조는 롤러(roller)를 이용하여 목적하는 곡면을 복수 개 만든 후 용접에 의해 연결하여 제작한다.
주름구조를 만들기 위한 롤러(roller)에는 일반 롤러 뿐만아니라 파형 롤러(corrugated roller) 등 주름구조(주름 또는 목적 곡면)를 만들 수 있는 모든 종류의 롤러를 포함하며, 롤러(roller)를 이용하여 복수개의 주름을 만든 후 이음부를 용접으로 접합하여 액화천연가스의 저장용기(1000)를 제작한다.
도 68 내지 도 75에 도시된 본 발명의 다양한 실시예에 따른 액화천연가스 저장용기의 구조는, 내부쉘(1010)의 내측에 액화천연가스를 저장하고, 내부쉘(1010)의 외측에 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 내부쉘(1010)과의 사이에 공간을 형성하고, 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 지지대(1030) 및 열전달을 감소시키는 단열층부(1040)를 설치한다.
지지대(1030)는 내부쉘(1010)이 외부셀(1020)에 지지될 수 있도록 하고, 단열층부(1040)는 유체가 흐를 수 있도록 구성되는 통로(1043) 및 단열층(1044)으로 구성된다.
통로(1043)는 내부쉘 측에 형성하여 내부쉘(1010)의 벽면을 따라 유체가 흐를 수 있도록 구성하고, 단열층(1044)은 외부쉘(1020) 측에 형성하는 것이 바람직하다.
왜냐하면, 내부쉘(1010)에 저장되는 액화천연가스가 내부쉘(1010)로부터 누설(leak)되거나 후술할 이퀄라이징 라인(1090)을 통해 넘쳐 흘러(overflow) 외부쉘(1020)에 직접 닿게 되는 경우 외부쉘(1020)이 취성 파괴될 우려가 높으므로 누설되거나 넘쳐흐르는 극저온의 액화천연가스가 내부쉘(1010) 및 외부쉘(1020) 사이의 공간은 흐르되 외부쉘(1020)에는 직접 닿지 않도록 하여 저장용기(1000)의 구조적 안정성을 확보함과 동시에 단열성능을 유지하도록 하기 위함이다.
단열층(1044)은 상하방향으로 일정한 간격을 두고 설치되는 2 이상의 단열재 블록(10441)으로 형성할 수 있고, 단열재 블록(10441) 각각의 사이에는 보강 단열재(10442)를 설치할 수 있다.
단열재 블록(10441)은 하나의 일체형으로 제작하거나, 몇 개의 큰 블록으로 제작하게 되면 블록 자체를 제작하기도 어려울 뿐더러 시공시 취급이 어려워 작업자의 작업성을 떨어뜨리기 때문에 작업이 편할 수 있도록 작업자가 취급하기에 적당한 크기의 블록으로 만들어 적층하는 것이 바람직하며, 적층시에는 도 69 및 도 70에 도시된 바와 같이 조적(벽돌쌓기) 방식으로 적층할 수 있다.
보강 단열재(10442)는 단열재 블록(10441)이 열팽창 또는 열수축에 의해 변형되어 손상이 발생하는 것을 방지하기 위해 단열재 블록(10441)의 열팽창 또는 열수축을 흡수할 수 있도록 단열재 블록(10441) 각각의 사이에 설치된다.
보강 단열재(10442)를 단열재 블록(10441) 각각의 사이에 설치하는 방법은 압력을 가하여 단열재 블록(10441)의 사이를 채우거나, 사출성형(injection molding)에 의해 채울 수 있으며, 압력을 가하여 채우는 경우는 글래스 울(glass wool), 사출성형으로 채우는 경우는 폴리우레탄(polyurethane)을 사용하는 것이 바람직하다.
보강 단열재(10442)의 내부쉘(1010) 측에는 보강 단열재 홈(10443)을 형성할 수 있는데, 보강 단열재(10442)가 단열재 블록(10441)의 열팽창 또는 열수축을 보다 잘 흡수할 수 있도록 하기 위함이다.
이러한 보강 단열재 홈(10443)은 보강 단열재(10442)를 다양한 방법으로 단열재 블록(10441) 각각의 사이를 채운 후 파내어 형성할 수 있다.
단열재 블록(10441)은 2 이상의 단열재로 적층하여 내부쉘(1010) 및 외부쉘(1020) 사이의 열전달을 효율적으로 감소시킬 수 있다.
이 때, 외부쉘(1020)과의 접촉면에 설치되는 단열층은 내부쉘(1010) 측에 설치되는 단열층보다 밀도가 큰 것을 설치하는 것이 바람직한데, 내부쉘(1010)에 저장되는 액화천연가스가 내부쉘(1010)로부터 누설(leak)되거나 넘쳐 흘러(overflow) 외부쉘(1020)에 직접 닿게 되면 외부쉘(1020)이 취성파괴될 우려가 높으므로 누설 또는 흘러 넘친 액화천연가스가 외부쉘(1020) 측으로 흐를수록 밀도가 높은 단열층에 의해 누설 또는 넘친 액화천연가스가 외부쉘(1020)에 직접 닿게 되는 것이 방지된다.
따라서, 외부쉘(1020)과의 접촉면에는 밀도가 높은 단열재를 설치하는 것이 바람직하며, 닫힘셀(closed cell) 단열재를 사용할 수 있는데, 닫힘셀 단열재를 외부쉘(1020)에 설치할 경우 본드를 이용해 외부쉘에 접착시킬 수 있다.
닫힘셀 단열재란 단열재 내외부에 압력차가 존재하며, 단열 성능을 발휘하기 위해 고압을 견디는 구조로 구성된다.
고밀도의 단열재(예를 들면, 고밀도 폴리우레탄폼(poly urethane foam, 1000~300 kg/m3)는 가압상태에서도 변형이 크게 일어나지 않아 누설된 가압액화천연가스에 의한 영향을 거의 받지 않으면서 단열 성능도 효과적으로 유지할 수 있어 많은 장점이 있다.
단열재 블록(10441)에 적층되는 2 이상의 단열재는 다양한 종류의 단열재(예를 들면, 개방셀(open cell) 단열재 또는 닫힘셀(closed cell) 단열재)를 사용할 수 있으며, 상술하였듯이 외부쉘(1020)과의 접촉면에는 고밀도의 단열재, 즉 닫힘셀 단열재를 설치하고, 내부쉘(1010) 측에 설치되는 단열재는 외부쉘(1020)과의 접촉면에 사용되는 단열재보다 저밀도의 단열재, 즉 개방셀(open cell) 단열재를 설치할 수 있다.
개방셀 단열재란 고압하에서 사용하는 경우 공기가 단열재 내부를 자유롭게 다닐 수 있는 구조이며, 단열재의 내외부에 압력차가 존재하지 않고, 압력을 단열재가 견디는 구조가 아닌 단열재이다. 다만, 파우더 종류의 단열재의 경우 고압하에서 입자 자체가 받는 압력이 존재할 수 있다.
일반적으로 닫힘셀 단열재는 고가이므로 외부쉘(1020)과의 접촉면에만 닫힘셀 단열재를 사용하여 단열층부(1040)의 제작 비용을 줄일 수 있으며. 이 경우 닫힘셀의 두께를 20 ~ 80mm가 되도록 제작하는 것이 바람직하다.
또한, 개방셀 단열재는 단열재의 설치가 간편할 뿐만 아니라, 저장용기 조립을 용이하게 하므로 개방셀 및 닫힘셀을 함께 적절한 두께로 단열재 블록(10441)을 제작한다면 단열성능을 확보함과 동시에 설치 편이성, 제작비용 절감효과를 달성할 수 있게 된다.
닫힘셀 단열재로는 블록 형태의 글래스 버블(block type glass bubble), 고밀도 폴리우레탄 폼(polyurethane foam, PUF) 등을 들 수 있고 개방셀 단열재로는 입자 형태의 글래스 버블(grain type glass bubble) 등을 들 수 있는데, 글래스 버블(glass bubble)은 그 자체로는 개방셀 구조이나 무기물 혹은 유기물을 이용하여 글래스 버블 입자를 서로 묶어 블록 형태로 만들어 닫힘셀 단열재로 제작할 수 있다.
내부쉘(1010)은 내측에 액화천연가스가 저장되기 위한 공간을 형성하고, 액화천연가스의 저온에 견디는 금속, 예를 들면, 알루미늄, 스테인레스 스틸, 5~9%니켈강 등과 같은 저온 특성이 우수한 금속으로 이루어지며, 본 발명의 다양한 실시예를 도시한 도면에서 보듯이 튜브 형태로 이루어지거나, 그 밖의 다면체를 비롯한 다양한 형상을 가질 수도 있다.
이러한 내부쉘(1010)은 -120 ~ -95℃의 온도를 견딜 수 있도록 제작하는 것이 바람직하다.
외부쉘(1020)은 내부쉘(1010)과의 사이에 공간을 형성하도록 내부쉘(1010)의 외측을 감싸며, 내부쉘(1010) 내에 저장되는 액화천연가스의 압력을 견딜 수 있는 강(steel) 소재로 이루어지며, 후술할 이퀄라이징 라인(1090)에 의해 외부쉘(1020)이 내부쉘(1010) 내측의 압력을 분담함으로써 내부쉘(1010) 소재의 사용량을 절감할 수 있고, 저장용기(1000)의 제작 비용도 줄일 수 있게 된다.
이러한 외부쉘(1020)은 13 ~ 25bar의 압력을 견디도록 제작하는 것이 바람직하다.
내부쉘(1010)은 후술할 이퀄라이징 라인(1090)에 의해 내부쉘(1010)의 내측 압력과 내부쉘(1010) 및 외부쉘(1020)이 형성하는 공간(즉, 단열층부(1040)가 형성되는 공간)의 압력이 동일(여기서, 내부쉘(1010)의 내측 압력과 동일한 압력이란, 엄밀한 정도로 동일한 것을 의미하는 것이 아니라 근사한 정도도 포함하는 의미이다)해져 액화천연가스의 압력을 외부쉘이 지탱할 수 있게 된다.
따라서, 내부쉘(1010)을 내부쉘(1010)의 내측에 저장되는 액화천연가스의 압력을 견딜 수 있는 지에 무관하게 -120 ~ -95℃의 온도를 견디도록만 제작하여도 액화천연가스 저장용기(1000)는 안전하게 액화천연가스를 저장할 수 있게 된다.
즉, 일정한 압력 및 온도(예를 들어, 17bar 및 -115℃)를 갖도록 생산된 액화천연가스를 저장용기(1000)의 내부쉘(1010)에 저장하더라도 외부쉘(1020)과 단열층부(1040)가 조립된 상태에서 일정한 압력 및 온도를 갖는 액화천연가스를 안전하게 저장할 수 있게 된다.
한편, 내부쉘(1010)은 외부쉘(1020)의 두께(t2)에 비하여 작은 두께(t1)를 가지도록 형성될 수 있으며, 이로 인해 제작시 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있다.
지지대(1030)는 내부쉘(1010)이 외부쉘(1020)에 지지될 수 있도록 내부쉘(1010)과 외부쉘(1020) 사이의 공간에 설치됨으로써 내부쉘(1010)과 외부쉘(1020)을 구조적으로 보강하게 되고, 액화천연가스의 저온에 견디기 위한 금속(예컨대, 저온강)으로 제작될 수 있으며, 내부쉘(1010)과 외부쉘(1020)의 측부 둘레를 따라 단일로 설치되거나, 내부쉘(1010)과 외부쉘(1020)의 측부에서 상하로 간격을 두고서 다수로 설치될 수 있다.
지지대(1030)가 내부쉘(1010) 및 외부쉘(1020)에 용접으로 고정지지 되는 경우에는 외부쉘(1020)과 접촉하는 지지대(1030)의 끝단 부분의 내측에 유리섬유와 같은 단열부재를 배치시키거나, 별도의 단열부재를 지지대 끝단 부분의 내측에 배치시킨 후 용접으로 고정하여, 내부쉘(1010))의 온도가 지지대(1030)에 의해 외부쉘(1020)로 전달되는 것을 방지하도록 할 수 있다.
또한, 내부쉘(1010)이 외부쉘(1020)에 지지될 수 있도록 내부쉘(1010) 및 외부쉘(1020) 사이의 하부 공간에 하부지지대(66)를 추가 설치할 수도 있으며, 도 75에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기처럼 저장용기(1000)를 횡방향으로 설치하는 경우에는 하부지지대(1033)를 생략할 수 있다.
도 68은 본 발명의 실시예에 따른 액화천연가스의 저장용기의 구조를 개략적으로 도시한 종방향 단면도이고, 도 69는 도 68의 E를 확대한 도면이다.
도 68 및 도 69에 도시된 본 발명의 실시예에 따른 단열층부(1040)는 통로(1043) 및 단열층(1044)으로 구성된다.
단열층부(1040)의 내부쉘(1010) 측(즉, 단열층(1044)과 내부쉘(1010) 사이의 공간)에는 유체가 흐를 수 있는 통로(1043)가 위치하므로 내부쉘(1010) 내측 압력(내압)과 내부쉘(1010) 외측 압력(외압)이 이퀄라이징 라인(1090)을 통해 쉽게 압력평형을 이룰 수 있게 된다.
단열층(1044)은 상술하였듯이 2 이상의 단열재로 적층되는 단열재 블록(10441)이 설치되는 바, 단열재 블록(10441)의 내부쉘 측은 개방셀(open cell) 단열재로 구성하고, 외부쉘(1020) 측은 닫힘셀(closed cell) 단열재로 구성할 수 있다.
이는 저장용기(1000)를 필요에 따라 작게 제작하는 경우 통로(1043)도 작게 제작할 수 밖에 없어 후술할 이퀄라이징 라인(1090)에 의해 내부쉘(1010)의 내압을 통로(1043)가 좀 더 크게 분담할 수 있도록 공극에 의해 체밀 충전이 되지 않는 개방셀 단열재를 단열재 블록(10441)의 내부쉘(1010) 측에 사용한 것이다.
내부쉘(1010)의 내압을 단열층부(1040)가 더 많이 분담할수록 내부쉘(1010)을 제작할 때 저온강의 사용을 줄일 수 있으므로 내부쉘(1010)의 제작비를 절감할 수 있다.
단열층부(1040)가 마련되는 내부쉘(1010) 및 외부쉘(1020) 사이의 공간과 내부쉘(1010) 내측의 공간은 압력 평형을 위해 이퀄라이징 라인(1090)으로 서로 연결한다.
이와 같은 이퀄라이징 라인(1090)에 의하여 내부쉘(1010) 안과 밖(외부쉘(1020) 안쪽)에서의 압력이 평형이 되며, 외부쉘(1020)이 압력의 상당부분을 지지하여 내부쉘(1010)의 두께를 줄일 수 있게 된다.
이퀄라이징 라인(1090)는 내부쉘(1010)의 선역라인(10)에 마련되는 제1 연결부(1080)에서 외부쉘(1020)의 안쪽 공간과 접하는 측에 형성될 수 있다.
이퀄라이징 라인(1090)은 도 68에 도시된 바와 같이 밸브로 구성되거나, 후술할 도 72 내지 도 74에 도시된 바와 같이 배관으로 구성할 수도 있다. 따라서, 내부쉘(1010) 내의 압력이 이퀄라이징 라인(1090)를 통해서 단열층부(1040) 측으로 이동함으로써 내부쉘(1010)의 내측과 외측간에 압력이 평형을 이룬다.
즉, 내부쉘(1010)을 저온 특성이 우수한 금속으로 제작하고, 외부쉘(1020)을 강도가 우수한 강(steel) 소재로 제작하며, 통로(1043)를 내부쉘(1010)의 벽면을 따라 형성하고, 단열재 블록(10441)을 적절한 두께의 2 이상의 단열재로 구성함으로써 액화천연가스뿐만 아니라 가압액화천연가스의 저장을 가능하도록 하고, 내부쉘(1010)의 내측과 외측간의 압력 균형으로 인하여 내부쉘(1010)의 두께(t1)를 감소시켜 저온 특성이 우수한 고가의 금속 사용을 줄일 수 있게 된다.
또한, 내부쉘(1010)의 내압에 의한 구조적 결함 발생도 방지할 수 있고, 내구성이 우수한 저장용기(1000)를 제공할 수도 있다.
한편, 내부쉘(1010)의 내부 공간 상단과 하단에 제1 및 제2 연결부(1080,1081)를 각각 설치하여 외부쉘(1020)을 통과하여 외부로 돌출하되, 제1 연결부(1080)에 연결되는 선역라인(7)을 통해서 내부쉘(1010)의 내측으로 액화천연가스를 선역할 수 있도록 하고, 제2 연결부(1081)에 연결되는 하역라인(8)을 통해서 내부쉘(1010) 내측의 액화천연가스를 하역할 수 있도록 할 수 있다.
한편, 선역라인(10)과 하역라인(20)에는 밸브(7a, 8a)를 각각 설치할 수 있다.
도 72 및 도 73에 도시된 본 발명의 제2 및 실시예에 따른 액화천연가스의 저장용기(1000)는 제1 배기라인(1085), 제1 재기밸브(1086) 그리고, 내부쉘(1010)의 내부 공간으로부터 저장용기(1000)의 외부로 돌출된 후 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 연결되는 이퀄라이징 라인(1090)을 포함한다.
제1 배기라인(1085)는 내부쉘(1010)의 내부 공간 상부에 연결되어 외부로 연장되고, 제1 배기밸브(1086)는 가스의 흐름을 개폐시키기 위해 제1 배기라인(1085)에 설치하여 제1 배기라인(1085)이 제1 배기밸브(1086)의 개방에 의해 내부쉘(1010)의 내부 공간으로부터 외부로 가스를 배출할 수 있도록 한다.
이퀄라이징 라인(1090)은 도 68에 도시된 실시예와는 달리 배관으로 구성하여 길게 형성되도록 함으로써 내부쉘(1010) 내측에 저장된 액화천연가스가 넘쳐 흘러도 이퀄라이징 라인(1090)을 통해 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 누설되는 것을 방지할 수 있게 된다.
이퀄라이징 라인(1090)에는 유체, 예컨대 천연가스나 증발가스의 흐름을 개폐시키기 위한 개폐밸브(1091)가 설치될 수 있다. 따라서, 저장용기(1000)의 위치나 자세 변경 등과 같은 경우에 이퀄라이징 라인(1090)을 통한 발생할 수 있는 유체의 이동을 개폐밸브(1091)가 차단할 수 있게 된다.
도 74에 도시된 본 발명의 실시예에 따른 액화천연가스의 저장용기(1000)는 제2 배기라인(1095), 제2 배기밸브(1096)을 포함할 수 있으며, 이퀄라이징 라인(1090)은 제2 배기밸브(1096)가 설치되는 제2 배기라인(1095)에 연결된다.
제2 배기밸브(1096)는 이퀄라이징 라인(1090)과 제2 배기라인(1095)을 통해서 내부쉘(1010) 내부의 가스를 외부로 배출할 수 있는데, 이로 인해 도 72 및 도 73에 도시된 바와 같이 내부쉘(1010)에 별도의 배기라인(1085)을 연결시키기 위한 복잡한 공정을 피할 수 있고, 저장용기(1000)를 관통하여 설치하는 장치가 감소하여 저장용기(1000)의 구조적 안정성을 유지할 수 있게 된다.
상술한 본 발명에 따른 다양한 실시예의 저장용기(1000)의 내부쉘(1010)은, 도 49 내지 도 52와 같이, 주름구조로 제작할 수도 있으며, 이에 대한 자세한 설명은 도 49 내지 도 52의 설명과 동일하다.
즉, 내부쉘(1010)은, 도 68에 도시된 바와 같이. 상부에는 상부덮개(1060), 하부에는 하부덮개(1070), 측면에는 주름구조(1050)를 갖는 원통형(또는 튜브형)으로 이루어질 수 있으며, 그 밖의 다면체를 비롯한 다양한 형상을 가지도록 제작할 수도 있다.
내부쉘(1010)에 형성되는 주름구조(1050)는 주름의 단면 형상에 따라 다양한 굴곡부(1052)를 가질 수 있으며, 다양한 굴곡부(1052)를 갖는 주름(1051)을 하나 이상 가질 수 있다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (26)

  1. 액화천연가스의 저장용기에 있어서,
    상기 액화천연가스가 내측에 저장되는 내부쉘(910);
    상기 내부쉘(910)과의 사이에 공간을 형성하도록 상기 내부쉘(910)의 외측을 감싸는 외부쉘(920);
    상기 내부쉘(910)과 상기 외부쉘(920)을 지지하도록 상기 내부쉘(910)과 상기 외부쉘(920) 사이의 공간에 설치되는 지지대(930); 및
    상기 내부쉘(910)과 상기 외부쉘(920) 사이의 공간에 설치되며, 열전달을 감소시키는 단열층부(940);
    를 포함하는 것을 특징으로 하는 액화천연가스의 저장용기.
  2. 청구항 1에 있어서,
    상기 내부쉘(910)은 주름구조(950)를 형성하고 있는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  3. 청구항 2에 있어서,
    상기 주름구조(950)는 하나 이상의 주름(951)으로 구성하되,
    상기 주름(951)은 하나 이상의 굴곡부(952)를 갖도록 형성되는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  4. 청구항 3에 있어서,
    상기 굴곡부(952)는 각진 모서리 굴곡부(9521), 둥근 모서리 굴곡부(9522), 및 물결 모양 굴곡부(9523) 중 어느 하나 이상을 갖도록 형성되는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  5. 청구항 1에 있어서,
    상기 지지대(1030)는 상기 내부쉘(1010) 측에 연결되는 내부지지대(1031) 및 상기 외부쉘(1020) 측에 연결되는 외부지지대(1032)로 구성되며, 상기 내부지지대(1031) 및 외부지지대(1032) 중 어느 하나에 슬라이딩 바(10315)를 형성하고, 다른 하나에 상기 슬라이딩 바(10315)가 삽입 연결되어 슬라이딩되는 슬라이딩 홀(10325)을 형성하는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  6. 청구항 5에 있어서,
    상기 슬라이딩 바(10315)는 상기 내부지지대(1031) 및 외부지지대(1032) 중 어느 하나로부터 외측으로 돌출되도록 형성되고,
    상기 슬라이딩 홀(10325)는 상기 내부지지대(1031) 및 외부지지대(1032) 중 다른 하나에 형성하되, 상기 슬라이딩 바(10315)가 삽입되어 좌우방향으로 슬라이딩 될 수 있도록 하는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  7. 청구항 6에 있어서,
    상기 슬라이딩 바(10315)의 단부에는 상기 슬라이딩 홀(10325)의 폭보다 크게 형성되는 슬라이딩 헤드(10316)를 갖는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  8. 청구항 7에 있어서,
    상기 지지대(1030)는 하나 이상의 내부지지대(1031) 및 외부지지대(1032)로 구성하되, 교대로 배치되며;
    최하측에는 최하측 외부지지대(1032)가 위치하는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  9. 청구항 8에 있어서, 상기 내부지지대(1031) 및 외부지지대(1032)는,
    양단부에 형성되는 상부플랜지(10311, 10321) 및 하부플랜지(10312, 10322)와,
    상기 상부 및 하부플랜지(10311, 10321, 10312, 10322)를 연결하는 웨브(10313, 10323);를 포함하는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  10. 청구항 9에 있어서,
    상기 최하측 외부지지대(1032)의 상부플랜지(10321)에는 슬라이딩 홀(10325)이 형성되고, 상기 최하측 외부지지대(1032)의 상측에 위치하는 최하측 내부지지대(1031)의 하부플랜지(10312)에는 슬라이딩 바(10315)가 형성되는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  11. 청구항 10에 있어서,
    상기 내부지지대(1031)는 저온에 견디는 금속으로 제작하고, 상기 외부지지대(1032)는 강화 플라스틱 소재로 제작하되,
    상기 외부지지대(1032)는 체결부(10327)에 의해 저온에 견디는 금속으로 제작된 연결플레이트(10326)와 체결되고, 상기 연결플레이트(10326)는 상기 외부쉘(1020)과 용접되어 상기 외부지지대(1032)가 상기 외부쉘(1020)과 연결되는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  12. 청구항 11에 있어서,
    상기 지지대(1030)는 상기 내부쉘(1010) 및 외부쉘(1020)의 측부 둘레를 따라 복수개 설치되고, 상기 내부쉘(1010)의 상하방향으로 간격을 두고서 복수개 설치하되,
    상기 내부쉘(1010)이 외부쉘(1020)에 지지될 수 있도록 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 하부 공간에 설치되는 하부지지대(1033);
    를 더 포함하는 것을 특징으로 하는 액화천연가스 저장용기의 구조.
  13. 청구항 1에 있어서,
    상기 내부쉘(1010)의 내부 공간과 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간을 연결하는 이퀄라이징 라인(1090);
    을 더 포함하는 것을 특징으로 하는 액화천연가스 저장용기의 구조.
  14. 청구항 13에 있어서,
    상기 이퀄라이징 라인(1090)은 상기 내부쉘(1010)의 내부 공간으로부터 상기 저장용기(1000)의 외부로 돌출된 후 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간으로 연결되는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  15. 청구항 14에 있어서,
    상기 이퀄라이징라인의 일단은 상기 내부 쉘의 내측과 소통하고, 타단은 상기 내부 쉘 및 외부 쉘 사이의 공간과 소통하며, 타단은 상기 공간의 간격(h)의 1/2 지점이 되는 곳에 위치하는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  16. 청구항 15에 있어서,
    상기 저장 용기의 외부로 돌출되는 이퀄라이징라인 부분과 접하는 상기 외부 쉘 측에는 이퀄라이징라인 플랜지(519)를 형성하여 상기 이퀄라이징라인 플랜지(519)가 상기 이퀄라이징라인과 연결되도록 하되, 상기 이퀄라이징라인 플랜지(519) 및 이퀄라이징라인은 액화천연가스의 저온에 견디는 금속으로 이루어지는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  17. 청구항 1에 있어서,
    상기 단열층부(1040)의 내부쉘(1010) 측에는 개방셀(open cell) 단열재로 구성되는 제1 단열층(1041)을 형성하고, 외부쉘(1020) 측에는 닫힘셀(closed cell) 단열재로 구성되는 제2 단열층(1042)을 형성하는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  18. 청구항 1에 있어서,
    상기 단열층부(1040)의 내부쉘(1010) 측에는 상기 내부쉘(1010)의 벽면을 따라 유체가 흐를 수 있도록 구성되는 통로(1043)가 형성되고, 외부쉘(1020) 측에는 단열층(1044)이 형성되는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  19. 청구항 1 내지 청구항 18 중 어느 한 항에 있어서,
    상기 내부쉘은 액화천연가스의 저온에 견디는 금속으로 이루어지고, 상기 외부쉘은 내부 압력을 견디기 위한 강(steel) 소재로 이루어지는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  20. 청구항 19에 있어서,
    상기 내부쉘은 -120 ~ -95℃의 온도를 견디고, 상기 외부쉘은 13 ~ 25bar의 압력을 견디는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  21. 청구항 20에 있어서,
    상기 내부쉘은 0.5bar의 압력을 견디는 것;
    을 특징으로 하는 액화천연가스의 저장용기.
  22. 액화천연가스 저장용기의 구조에 있어서,
    내부쉘(1010)의 내측에는 상기 액화천연가스를 저장하고, 상기 내부쉘(1010)의 외측에는 상기 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 상기 내부쉘(1010)과의 사이에 공간을 형성하고, 상기 공간에는 지지대(1030)를 설치하여 상기 내부쉘(1010)을 지지하고, 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 열전달을 감소시키도록 적층되는 2 이상의 단열층을 갖는 단열층부(1040);를 설치하되,
    상기 2 이상의 단열층 중 상기 외부쉘(1020)과의 접촉면에 설치되는 단열층은 상기 내부쉘(1010) 측에 설치되는 단열층보다 밀도가 큰 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  23. 액화천연가스 저장용기의 구조에 있어서,
    내부쉘(1010)의 내측에는 상기 액화천연가스를 저장하고, 상기 내부쉘(1010)의 외측에는 상기 내부쉘(1010)의 외측을 감싸는 외부쉘(1020)을 설치하여 상기 내부쉘(1010)과의 사이에 공간을 형성하고, 상기 공간에는 지지대(1030)를 설치하여 상기 내부쉘(1010)이 외부쉘(1020)에 지지되도록 하고, 상기 내부쉘(1010) 및 외부쉘(1020) 사이의 공간에는 열전달을 감소시키도록 단열층을 갖는 단열층부(1040);를 설치하되,
    상기 단열층부(1040)는 유체가 흐를 수 있도록 구성되는 통로(1043)와 단열재로 구성되는 단열층(1044)으로 이루어지는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  24. 청구항 18 또는 청구항 23에 있어서,
    상기 단열층(1044)은 상하방향으로 일정한 간격을 두고 설치되는 2 이상의 단열재 블록(10441)으로 형성하되;
    상기 단열재 블록(10441) 각각의 사이에는 보강 단열재(10442)가 설치되는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  25. 청구항 24에 있어서,
    상기 보강 단열재(10442)는 사출성형(injection molding)에 의해 상기 단열재 블록(10441) 각각의 사이에 채워지는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
  26. 청구항 25에 있어서,
    상기 보강 단열재(10442)의 내부쉘(1010) 측에는 보강 단열재 홈(10443)을 형성하는 것;
    을 특징으로 하는 액화천연가스 저장용기의 구조.
PCT/KR2012/003767 2011-05-12 2012-05-14 액화천연가스 저장용기의 구조 및 제작방법 WO2012154015A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/810,885 US9360160B2 (en) 2011-05-12 2012-05-14 Liquefied natural gas storage container and method for manufacturing the same
AU2012254258A AU2012254258B2 (en) 2011-05-12 2012-05-14 Structure and manufacturing method of liquefied natural gas storage container

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2011-0044529 2011-05-12
KR1020110044529 2011-05-12
KR20120045979A KR101485110B1 (ko) 2011-05-12 2012-05-01 액화천연가스 저장용기의 구조
KR10-2012-0045978 2012-05-01
KR1020120045978A KR101403621B1 (ko) 2011-05-12 2012-05-01 액화천연가스 저장용기의 구조 및 제작방법
KR10-2012-0045979 2012-05-01
KR10-2012-0048232 2012-05-07
KR1020120048232A KR101350804B1 (ko) 2011-05-12 2012-05-07 액화천연가스 저장용기의 구조
KR10-2012-0050301 2012-05-11
KR20120050301A KR101481159B1 (ko) 2011-05-12 2012-05-11 액화천연가스 저장용기의 구조

Publications (2)

Publication Number Publication Date
WO2012154015A2 true WO2012154015A2 (ko) 2012-11-15
WO2012154015A3 WO2012154015A3 (ko) 2013-03-21

Family

ID=47139842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003767 WO2012154015A2 (ko) 2011-05-12 2012-05-14 액화천연가스 저장용기의 구조 및 제작방법

Country Status (3)

Country Link
US (1) US9360160B2 (ko)
AU (1) AU2012254258B2 (ko)
WO (1) WO2012154015A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985508A4 (en) * 2013-04-11 2016-04-06 Korea Gas Corp FAR-LOCAL GAS SUPPLY STATION WITH LNG TANKS AND NATURAL GAS SUPPLY PROCESSES THEREWITH
CN110440525A (zh) * 2019-08-07 2019-11-12 王壮 一种天然气液化装置及液化方法
KR20200033642A (ko) * 2018-09-20 2020-03-30 하이리움산업(주) 액체수소 저장탱크를 포함하는 액체수소 충전시스템 및 충전방법

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123906A (ja) * 2013-12-27 2015-07-06 川崎重工業株式会社 縦置き燃料用タンク及び支持構造
CN103822085B (zh) * 2014-03-19 2016-01-13 北京华诚浩达真空空压设备有限公司 带内胆循环加热的液化天然气瓶夹层抽真空系统及方法
US20160109177A1 (en) * 2014-10-16 2016-04-21 General Electric Company System and method for natural gas liquefaction
ES2673600T3 (es) * 2015-07-24 2018-06-25 Salzburger Aluminium Aktiengesellschaft Dispositivo para albergar un fluido criogénico
JP7080066B2 (ja) * 2018-02-14 2022-06-03 アルバック・クライオ株式会社 低温液化ガス発生装置
CN108790797A (zh) * 2018-04-20 2018-11-13 北京天海工业有限公司 塑料内胆全缠绕复合气瓶的内胆
SE543073C2 (en) * 2018-10-29 2020-09-29 Scania Cv Ab Venting arrangement for a vehicle with liquefied natural gas tanks
RU2708479C1 (ru) * 2019-03-14 2019-12-09 Общество с ограниченной ответственностью "Нейт" Регазификатор-подогреватель газа
KR102211324B1 (ko) * 2019-04-16 2021-02-04 한국가스공사 내조의 인양이 가능한 액화 가스 탱크 및 액화 가스 탱크에서 내조의 인양 방법
WO2021034692A1 (en) * 2019-08-16 2021-02-25 Chart Inc. Double-walled tank support and method of construction
US10960957B1 (en) * 2020-04-10 2021-03-30 Tritec Marine Ltd Gas supply marine vessel
US11161573B1 (en) 2020-04-10 2021-11-02 Tritec Marine Ltd. Gas supply marine vessel and floating refueling facility
US11112174B1 (en) * 2020-08-26 2021-09-07 Next Carbon Solutions, Llc Devices, systems, facilities, and processes for liquefied natural gas production
KR20220089052A (ko) * 2020-12-21 2022-06-28 삼성전자주식회사 반응 가스 공급 시스템, 이를 포함하는 원자층 증착 장치, 및 이를 이용해서 기판을 처리하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194700U (ko) * 1987-12-14 1989-06-22
JPH05178378A (ja) * 1991-12-26 1993-07-20 Mitsubishi Heavy Ind Ltd 耐振用二重殻断熱容器
JPH06159598A (ja) * 1992-11-25 1994-06-07 Mitsubishi Heavy Ind Ltd 液化ガスの貯蔵設備
JPH09184320A (ja) * 1995-12-28 1997-07-15 Ishikawajima Harima Heavy Ind Co Ltd 平底形地上タンク

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347402A (en) * 1965-03-22 1967-10-17 Exxon Research Engineering Co Cryogenic tank
GB1346771A (en) * 1970-05-20 1974-02-13 Hamilton W Low temperature cargo containers for ships
FR2168674A5 (ko) * 1972-01-20 1973-08-31 Worms Engeenering
US3866785A (en) * 1972-12-11 1975-02-18 Beatrice Foods Co Liquefied gas container
FR2264712B1 (ko) * 1974-03-21 1976-12-17 Gaz Transport
US4170952A (en) * 1976-03-09 1979-10-16 Mcdonnell Douglas Corporation Cryogenic insulation system
FR2691520B1 (fr) * 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
JPH06159593A (ja) * 1992-11-13 1994-06-07 Mitsubishi Heavy Ind Ltd 二重貯槽における内槽支持構造
TW261654B (ko) * 1993-05-20 1995-11-01 Ishikawajima Harima Heavy Ind
JPH094762A (ja) * 1995-06-16 1997-01-07 Jgc Corp 配管の断熱支持装置
US6106449A (en) * 1996-12-23 2000-08-22 Vacupanel, Inc. Vacuum insulated panel and container and method of production
TW359736B (en) * 1997-06-20 1999-06-01 Exxon Production Research Co Systems for vehicular, land-based distribution of liquefied natural gas
FR2877638B1 (fr) * 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
CA2663097C (en) * 2006-09-27 2014-11-18 Matthias Rebernik Container for receiving media and/or devices to be stored at low temperatures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194700U (ko) * 1987-12-14 1989-06-22
JPH05178378A (ja) * 1991-12-26 1993-07-20 Mitsubishi Heavy Ind Ltd 耐振用二重殻断熱容器
JPH06159598A (ja) * 1992-11-25 1994-06-07 Mitsubishi Heavy Ind Ltd 液化ガスの貯蔵設備
JPH09184320A (ja) * 1995-12-28 1997-07-15 Ishikawajima Harima Heavy Ind Co Ltd 平底形地上タンク

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985508A4 (en) * 2013-04-11 2016-04-06 Korea Gas Corp FAR-LOCAL GAS SUPPLY STATION WITH LNG TANKS AND NATURAL GAS SUPPLY PROCESSES THEREWITH
US10487984B2 (en) 2013-04-11 2019-11-26 Korea Gas Corporation Remote natural gas supply station using LNG tank container and method for supplying natural gas using the same
KR20200033642A (ko) * 2018-09-20 2020-03-30 하이리움산업(주) 액체수소 저장탱크를 포함하는 액체수소 충전시스템 및 충전방법
KR102130703B1 (ko) 2018-09-20 2020-07-07 하이리움산업(주) 액체수소 저장탱크를 포함하는 액체수소 충전시스템 및 충전방법
CN110440525A (zh) * 2019-08-07 2019-11-12 王壮 一种天然气液化装置及液化方法

Also Published As

Publication number Publication date
US20140069931A1 (en) 2014-03-13
WO2012154015A3 (ko) 2013-03-21
US9360160B2 (en) 2016-06-07
AU2012254258A1 (en) 2013-01-10
AU2012254258B2 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2012154015A2 (ko) 액화천연가스 저장용기의 구조 및 제작방법
WO2012053705A1 (ko) 액화천연가스 저장 용기 운반선
WO2012053704A1 (ko) 액화천연가스의 저장 용기
WO2012050273A1 (ko) 가압액화천연가스 생산 방법 및 이에 사용되는 생산 시스템
WO2020017769A1 (ko) 휘발성 유기화합물 처리 시스템 및 선박
WO2016104890A1 (ko) 화물창 점검용 갠트리 타워 크레인
WO2014092369A1 (ko) 선박의 액화가스 처리 시스템
KR101049230B1 (ko) 액화천연가스의 저장 용기
WO2017078244A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2017171163A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2016018038A1 (ko) 액화가스 화물창에 사용되는 방벽시트와 이를 이용하는 액화가스 화물창과 그 제조방법
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2016195232A1 (ko) 선박
WO2015012578A1 (ko) 부유식 해상구조물의 단열시스템
WO2015012577A1 (ko) 부유식 해상구조물 및 부유식 해상구조물의 온도 제어 방법
WO2013169076A1 (ko) 이중구조의 액화천연가스 저장용기
WO2016195230A1 (ko) 선박
WO2019245259A1 (ko) 저압 배전이 적용된 선박
WO2019027063A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법, 그리고 엔진의 연료 공급 방법
WO2023085667A1 (ko) 컨테이너 적재 보조장치, 이를 구비한 컨테이너 운반선 및 컨테이너 하역방법
WO2022025534A1 (ko) 액화가스 저장탱크 및 이를 포함하는 선박
KR20120127311A (ko) 액화천연가스 저장용기의 구조
WO2016195233A1 (ko) 선박
KR101223492B1 (ko) 액화천연가스의 저장 용기
WO2022215829A1 (ko) 액화가스 저장탱크 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782362

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2012254258

Country of ref document: AU

Date of ref document: 20120514

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13810885

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.02.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12782362

Country of ref document: EP

Kind code of ref document: A2