WO2012154013A2 - 제어 정보를 전송하는 방법 및 이를 위한 장치 - Google Patents

제어 정보를 전송하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012154013A2
WO2012154013A2 PCT/KR2012/003755 KR2012003755W WO2012154013A2 WO 2012154013 A2 WO2012154013 A2 WO 2012154013A2 KR 2012003755 W KR2012003755 W KR 2012003755W WO 2012154013 A2 WO2012154013 A2 WO 2012154013A2
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
pdcch
response information
downlink
Prior art date
Application number
PCT/KR2012/003755
Other languages
English (en)
French (fr)
Other versions
WO2012154013A3 (ko
Inventor
양석철
김민규
안준기
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/117,310 priority Critical patent/US8917603B2/en
Priority to EP12781947.2A priority patent/EP2709299B1/en
Priority to KR1020137032000A priority patent/KR101931944B1/ko
Priority to JP2014510259A priority patent/JP5932974B2/ja
Priority to ES12781947.2T priority patent/ES2575393T3/es
Priority to CN201280034142.9A priority patent/CN103650393B/zh
Publication of WO2012154013A2 publication Critical patent/WO2012154013A2/ko
Publication of WO2012154013A3 publication Critical patent/WO2012154013A3/ko
Priority to US14/537,703 priority patent/US9800362B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting control information and an apparatus therefor.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division mult iple access (TDMA) ⁇ 1 stem, orthogonal frequency division mult iple access (FDMA) systems, SC- Single carrier frequency division mult iple access (FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division mult iple access
  • FDMA orthogonal frequency division mult iple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting control information in a wireless communication system. Another object of the present invention is to provide a method and apparatus for efficiently transmitting uplink control information in a time division duplex (TDD) system and efficiently managing resources for the same.
  • TDD time division duplex
  • uplink control information is supported in a wireless communication system supporting carrier aggregation and operating in a TDDCTime Division Duplex (TDDCTime Division Duplex).
  • TDDCTime Division Duplex TDDCTime Division Duplex
  • Receiving Determining the number of bits of reception response information for at least one of the one or more PDCCHs and one or more PDSCHs using a value indicated by a predetermined 2-bit field in a Downlink Control Information (DCI) format for UL scheduling; And transmitting the received voice response information through a physical uplink shared channel (PUSCH) corresponding to the DCI format, wherein the number of bits of the received voice response information is determined using the following equation:
  • a communication device configured to transmit uplink control information in a wireless communication system that supports carrier aggregation and operates in a time division duplex (TDD), the radio frequency (RF) ) unit; And a processor, wherein the processor includes at least one of at least one physical downlink control channel (PDCCH) and at least one physical downlink shared channel (PDSCH) in a plurality of downlink subframes according to an uplink-downlink configuration.
  • the processor includes at least one of at least one physical downlink control channel (PDCCH) and at least one physical downlink shared channel (PDSCH) in a plurality of downlink subframes according to an uplink-downlink configuration.
  • Receive at least one f and use the value indicated by a predetermined 2-bit field in a downlink control information (DCI) format for UL scheduling to determine received response information of at least one of the one or more PDCCHs and one or more PDSCHs.
  • DCI downlink control information
  • PUSCH Physical Uplink Shared CHannel
  • V is a value indicated by the predetermined 2-bit field and is an integer of 1 to 4
  • t / max is the number of PDSCH signals and PDCCH signals received in the plurality of downlink subframes for each component carrier.
  • the maximum value is indicated and '] ' is the ceiling function ' .
  • the number of bits of the received voice response information is equal to a value according to the following equation:
  • C is the number of component carriers configured
  • C 2 is the number of component carriers supporting up to two transport blocks and to which bundling is not applied.
  • the reception response information includes reception response information for one or more component carriers, and the bit of the reception response information for the c-th component carrier.
  • the / + 4 1 ⁇ -) 14 corresponds to the number of downlink subframes requiring feedback of the received voice response information on the corresponding component carrier.
  • the UL-DL configuration is UL-DL configuration # 5. .
  • the TDD system can efficiently transmit the uplink control information, and can efficiently manage the resources for this.
  • FIG. 1 illustrates physical channels used in an .3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • FIG. 6 illustrates a process of processing UL-SCH data and control information.
  • FIG. 7 illustrates multiplexing of control information and UL-SCH data on a PUSCH.
  • TDD UL ACK / NACK Uplink Acknowledgment 1 edgement / Negat IV Acknowledgement
  • FIG. 9 illustrates ACK / NACK transmission using a downlink assignment index (DAI).
  • DAI downlink assignment index
  • 10 illustrates a Carrier Aggregation (CA) communication system.
  • 11 illustrates cross-carrier scheduling.
  • FIG. 13 illustrates a process of processing UL-SCH data and control information when ACK / NACK is transmitted through a PUSCH when an E-PUCCH format (ie, PUCCH format 3) is set.
  • E-PUCCH format ie, PUCCH format 3
  • CDMA code division multle access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • UTRA is part of the UMTSOJniversal Mobile Telecommunications System.
  • 3rd Generation Partnership Project (3GPP) 1 ong term evolution (LTE) employs 0-FDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-LMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • LTE-A Advanced
  • a reception response result for HARQ-ACIC downlink transmission (eg PDSCH or SPS release PDCCH), that is, ACK / NACK / DTX response (simply, ACK / NACK response, ACK / NACK).
  • the ACK / NACK / DTX response means ACK, NACK, DTX, or NACK / DTX.
  • HARQ—ACK Black for a Specific CC indicates that the HARQ-ACK of a specific CC indicates an ACK / NACK answer for a downlink signal (eg, PDSCH) associated with the CC (eg, scheduled for the CC).
  • PDSCH may be replaced by a transport block or codeword.
  • PDSCH means a PDSCH corresponding to a DL grant PDCCH.
  • PDSCH is commonly used with PDSCH w / PDCCH.
  • SPS Release PDCCH PDCCH indicating SPS release. UE releases SPS
  • SPS PDSCH means a PDSCH transmitted DL using a resource semi-statically configured by the SPS.
  • the SPS PDSCH has no DL grant PDCCH to be treated.
  • the SPS PDSCH is commonly used herein with the PDSCH w / o PDCCH.
  • DCI Downlink Assignment Index
  • the DAI may indicate an order value or a counter value of the PDCCH.
  • the value indicated by the DAI field of the DL grant PDCCH is referred to as DL DAI
  • the value indicated by the DAI field in the UL grant PDCCH is referred to as UL DAI.
  • CA-based system Represents a wireless communication system that can operate by combining a plurality of component carriers (or cells).
  • the CA-based communication system may use only one component carrier (or cell) or merge a plurality of component carriers (or cells) according to a configuration.
  • the number of component carriers (or cells) to be merged may be configured independently for each terminal.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S101.
  • the UE receives a Primary Synchronization Channel (P—SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • the terminal receives the physical broadcast channel from the base station (Chysical Broadcast Channel) My broadcast information can be obtained.
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell discovery step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S102.
  • System information can be obtained.
  • the terminal may perform a random access procedure as in steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and through a physical downlink control channel and a corresponding physical downlink shared channel for the preamble.
  • PRACH physical random access channel
  • the response message may be received (S104).
  • contention resolution procedures such as transmission of an additional physical random access channel (S105) and a physical downlink control channel and receiving a physical downlink shared channel (S106) can be performed. have.
  • the UE After performing the procedure as described above, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel as a general uplink / downlink signal transmission procedure.
  • S107 physical downlink control channel / physical downlink shared channel reception
  • S107 physical uplink shared channel
  • UCI uplink control information
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQ I Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RKRank Indication RKI
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • UCI is generally transmitted through PUCCH, but when control information and traffic data must be transmitted at the same time It may be transmitted through the PUSCH. In addition, the UCI may be aperiodically transmitted through the PUSCH according to a network request / instruction.
  • uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to FDEKFrequency Division Duplex (FDEKFrequency Division Duplex) and a type 2 radio frame structure applicable to TDD (Time Division Duplex).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a TTK transmission time interval.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of 0FDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of 0FDM symbols included in one slot may vary depending on the configuration of CP Cyclic Prefix).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of 0FDM symbols included in one slot may be seven.
  • the 0FDM symbol is configured by the extended CP, since the length of one 0FDM symbol is increased, the number of 0FDM symbols included in one slot is smaller than that of the normal CP.
  • the number of 0FDM symbols included in one slot may be six.
  • Extended CP can be used
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and a U link pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS U link pilot time slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 illustrates UL-DL configuration (Uplink-Downlink Conf igurat ion) of subframes in a radio frame in TDD mode.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • St special subframe includes a Down 1 ink Pilot TimeSlot (DwPTS), a Guard Period (GP), and an Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for downlink transmission
  • UpPTS is a time interval reserved for uplink transmission.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot vary. Can be changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of 0FOM symbols in the time domain.
  • One downlink slot may include 7 (6) OFDM symbols, and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB includes 12X7 (6) REs.
  • the number N RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, but an OFDM symbol is replaced with an SC ⁇ FDMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe are indicated in a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which PDSCFKPhysical Downlink Shared CHancel) is allocated.
  • Examples of a downlink control channel used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ AC / NAC (hybrid automatic repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • HARQ AC / NAC hybrid automatic repeat request acknowledgment / negative-acknowledgment
  • DCI downlink control format
  • the DCI format has formats 0 for uplink, formats 1, 1A, IB, 1C, ID, 2, 2A, 3, 3A, and the like defined for downlink.
  • the DCI format is based on the use of a hopping flag, RB assignment, modulated ion coding scheme (MCS), redundancy version (NDV), NDKnew data indicator (TK), transmit power control (TPC), and cyclic shift DM RS (demodulat).
  • MCS modulated ion coding scheme
  • NDV redundancy version
  • TK NDKnew data indicator
  • TPC transmit power control
  • CSI cyclic shift DM RS (demodulat).
  • ion reference signal, CQI (channel quality informat ion) request, HARQ process number, TPMKtransmitted precoding matrix indicator, PMI (precoding) matrix indicator) may optionally include information such as confirmation.
  • the PDCCH includes downlink shared channel (DL—SCH) transmission format and resource allocation information, uplink shared channel (UL-SCH) transmission format and resource allocation information, and paging channel. , Paging information on PCH), system information on DL—SCH, resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, ⁇ power control Command, VoIP voice over IP) activation indication information, and the like.
  • Multiple PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregate of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on the radio state.
  • the CCE refers to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a CRCCcyclic redundancy check to the control information.
  • the CRC is masked with an identifier (eg, RNTKradio network temporary identifier) depending on the owner or purpose of use of the PDCCH.
  • an identifier eg, RNTKradio network temporary identifier
  • an identifier eg, cell—RNTI (C-RNTI)
  • C-RNTI cell—RNTI
  • P-RNTI paging—RNTI
  • SI—RNTKsystem information RNTI may be masked to the CRC.
  • a RA-RNTI random access-RNTI
  • 5 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SOFDMA symbols according to CP lengths.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • Control area It is used to include a PUCCH and transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Scheduling Request
  • 00K (0n— Off Keying) method.
  • HARQ AC / NACK This is a male answer signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (Codeword, CT), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQK Channel Quality Indicator Feedback information on a downlink channel. Feedback information related to MIMOC Multiple Input Multiple Output (Rank Indicator), PMKPrecoding . Matrix Indicator), PTI (Precoding Type Indicator), and the like. 20 bits are used per subframe.
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for transmission of control information.
  • SC-FDMA available for transmission of control information means remaining SC— FDMA symbol except SC-FDMA symbol for transmission of reference signal in subframe, and in case of subframe where SRS (Sounding Reference Signal) is set, the last of subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • Table 2 shows the mapping relationship between PUCCH format and UCI in LTE.
  • LTE-A HARQ ACK / NACK + SR up to 24 bits Since the LTE terminal cannot simultaneously transmit the PUCCH and the PUSCH, when UCI (eg, CQI / PMI, HARQ-ACK, RI, etc.) transmission is required in a subframe in which the PUSCH is transmitted, the UCI is multiplexed in the PUSCH region. For example, when HARQ-ACK should be transmitted in a subframe to which PUSCH transmission is allocated, the UE multiplexes UL-SCH data and HARQ-ACK before DFT-spreading, and then transmits control information and data together through the PUSCH. do.
  • UCI eg, CQI / PMI, HARQ-ACK, RI, etc.
  • FIG. 6 illustrates a process of processing UL—SCH data and control information.
  • error detection is provided to a UL ⁇ SCH transport block (TB) through CRC Cyclic Redundancy Check (S100).
  • the entire transport block is used to calculate the CRC parity bits. Bits of the transport block is 0 ' ⁇ 1' ⁇ 2 ' "3''' ⁇ the ' ⁇ / ⁇ -1, the parity bit is The size of the transport block is A, the number of parity bits is L.
  • code block division and code block CRC attachment are performed (S110).
  • the bit input for code block division is 60 '', 6 3 '. ' to be.
  • B is the number of bits of the transport block (including CRC).
  • Bit after code block division is c ,. 0 , c,, c ,. 2 , c,. 3 , ..., c,.
  • ⁇ r represents the code block number ( ⁇ ⁇ , ⁇ ., ⁇ D , Kr represents the number of bits of the code block r .
  • C represents the total number of code blocks.
  • Channel coding is performed after the code block division and the code block CRC (S120).
  • C represents the total number of code blocks.
  • Turbo coding may be used for channel coding.
  • Rate matching is performed after channel coding (S130).
  • the bits after rate matching are e r0 , ⁇ , ⁇ 2 , ⁇ 3 , ..., e £ — 1 ⁇ .
  • r 0, l ⁇ ", Cl, and C represents the total number of code blocks.
  • Code block concatenation is performed after rate matching (S140). After code block concatenation Bit becomes 'H'. G represents the total number of coded bits for transmission. When the control information is multiplexed with the UL-SCH transmission, the bits used for the transmission of the control information are not included in the G. fo'f ⁇ U .. 'fG — Corresponds to the SCH codeword.
  • the channel quality information (CQI and / or PMI) (o 0 , Ol , ... o o ⁇ ), ⁇ ([ ⁇ ⁇ or! : ⁇ '" ⁇ ]) and HARQ-ACK ( [0 ° ] , [o °. ] Or ° ⁇ 0 0 ⁇ . —) are performed independently of each other (S150 ⁇ S170)
  • Channel coding of UCI is based on the number of coded symbols for each control information. For example, the number of coded symbols may be used for rate matching of coded control information, and the number of coded symbols corresponds to the number of modulation symbols, the number of REs, etc. in a later process. the channel coding of the ACK is.
  • L 0 1 '" ° ⁇ ⁇ -means HARQ-ACK consisting of two or more bits of information (that is, O ACK > 2 ACK is coded as 1 and NACK is coded as 0.
  • 2-bit HARQ-ACK (3,2) simplex code is used and the encoded data can be cyclically repeated. ( 3 2, 0) block code is used.
  • QA CK represents the total number of encoded bits, bit sequence q ° ' q], q2 '. ' ⁇ - 1 is obtained by combining the encoded HARQ-ACK block (s). To fit the length of the bit sequence to « ⁇ , the last coded HARQ—ACK block may be part (ie rate matching).
  • Q ACK Q ACK ⁇ Q M
  • Q ' CK is the number of coded symbols for HARQ-ACK, and is the modulation order (order). Is set equal to UL-SCH data.
  • the input of the data / control multiplexing block is' f fiMc, which means coded UL—SCH bits, and ⁇ , which means coded CQI / PMI bits, 2 , ⁇ ,. " '( ⁇ 1 (S180).
  • the input of the channel interleaver is the output of the data / control multiplexing block, — 0 1 2 1,
  • the coded rank indicators, q,, ..,, and coded HARQ-ACK are performed on the target (S190).
  • ⁇ Is a column vector of length for RI
  • the 10 channel interleaver multiplexes control information and UL-SCH data for PUSCH transmission.
  • the channel interleaver includes mapping control information and UL—SCH data to a channel interleaver matrix corresponding to a PUSCH resource.
  • the bit sequence read from the channel interleaver matrix to row-by-row is output.
  • the read bit sequence is mapped onto the resource is grid. ⁇ + ew modulation symbols are transmitted on the subframe.
  • the 7 shows multiplexing of control information and UL-SCH data on the PUSCH.
  • the UE When the control information is to be transmitted in a subframe to which PUSCH transmission is allocated, the UE multiplexes the DFT-spread control information (UCI) and the UL—SCH data together.
  • the control information includes at least one of CQI / PMI, HARQ ACK / NACK, and RI. Each RE number used for CQI / PMI, ACK / NACK, and RI transmissions is 0.
  • the MCS Modulation and Coding allocated for PUSCH transmission
  • the offset ⁇ value allows different coding rates according to the control information and is set semi-statically by higher layer (eg RRC) signals.
  • UL-SCH data and control information are not mapped to the same RE. Control information is mapped to exist in both slots of the subframe.
  • CQI and / or PMKCQI / PMI) resources may include UL-SCH data resources. After being located at the beginning and sequentially mapped to all SC-FDMA symbols on one subcarrier, the mapping is performed on the next subcarrier. CQI / PMI is mapped from left to right in the subcarrier, that is, the direction in which the SC-FDMA symbol index increases.
  • PUSCH data (UL-SCH data) is rate-matched taking into account the amount of CQI / PMI resources (ie, the number of coded symbols). The same modulation order as the UL-SCH data (modu 1 at i on order) is used for CQI / PMI.
  • the ACK / NACK is inserted through puncturing into a part of the SOFDMA resource to which the UL ⁇ SCH data is mapped.
  • the ACK / NACK is located next to the RS and is filled in the direction of increasing up, i.e., subcarrier index, starting from the bottom in the corresponding SC-FDMA symbol.
  • an SC-FDMA symbol for ACK / NACK is located in an SC-FDMA symbol # 2 / # 5 in each slot.
  • the coded RI is located next to a symbol for ACK / NACK.
  • control information (eg, using QPSK modulation) may be scheduled to be transmitted on the PUSCH without UL-SCH data.
  • Control information (CQI / PMI, RI and / or ACK / NACK) is multiplied prior to DFT-spreading to maintain low cubic metric single-carrier characteristics.
  • Multiplexing ACK / NACK, RI ⁇ and CQI / PMI is similar to that shown in FIG. SC— FDMA symbol for ACK / NACK is located next to RS, and resources to which CQI is mapped may be balanced.
  • the number of REs for ACK / NACK ⁇ RI is the reference MCS (CQI / PMI).
  • Channel coding and rate matching for control signaling without UL-SCH data are the same as for the case of control signaling with UL—SCH data described above.
  • the TDD scheme is used to share the same frequency band in a time domain to a 'DL sub-frame and UL sub-frame (see Fig. 2 (b)). Therefore, in case of DL / UL asymmetric data traffic situation, many DL subframes may be allocated or many UL subframes may be allocated. Therefore, in the TDD scheme, a DL subframe and a UL subframe do not correspond one-to-one.
  • M is the number of DL subframes corresponding to one UL subframe.
  • the UE should transmit ACK / NACK responses for a plurality of PDSCHs (or PDCCHs requiring ACK / NACK responses) on M DL subframes in one UL subframe.
  • the UE may receive one or more PDSCH signals on M DL subframes (SF) (S502_0 to S502 ⁇ M ⁇ 1).
  • Each PDSCH signal is used to transmit one or more (eg two) transport blocks (TB) (or codewords (CW)) depending on the transmission mode.
  • TB transport blocks
  • CW codewords
  • a PDCCH signal requiring an ACK / NACK response in steps S502_0 to S502_-1, for example, a PDCCH signal (simply, an SPS release PDCCH signal) indicating SPS release (Semi—Persistent Scheduling release). Can be received.
  • the UE goes through a process for transmitting ACK / NACK (eg, generating ACK / NACK (payload), ACK / NACK resource allocation, etc.).
  • ACK / NACK is transmitted through one UL subframe for M DL subframes (S504).
  • the ACK / NACK includes reception response information for the PDSCH signal and / or the SPS release PDCCH signal of steps S502 — 0 to S502 — M-1.
  • the ACK / NACK is basically transmitted through the PUCCH, but when there is a PUSCH transmission at the time of the ACK / NACK transmission, the ACK / NACK is transmitted through the PUSCH.
  • Various PUCCH formats shown in Table 2 may be used for ACK / NACK transmission.
  • various methods such as ACK / NACK bundling and ACK / NACK channel select ion may be used to reduce the number of ACK / NACK bits transmitted through the PUCCH format.
  • ACK / NACK for data received in M DL subframes is transmitted through one UL subframe (that is, M DL SF (s): 1 UL SF), and the relationship between them is DASK Downlink Association Set Index).
  • Table 3 shows DASKK ⁇ ko.k ⁇ kM-) as defined in LTE (-A).
  • Table 3 shows ACK / NACK This indicates the interval with the DL subframe associated with the UL subframe from which the UE is transmitted. Specifically, if there is a PDSCH transmission and / or an SPS release PDCCH in the subframe n—k (kEK), the UE is in the subframe n. Transmits the corresponding ACK / NACK.
  • the base station When transmitting a plurality of PDSCHs to one UE in a plurality of DL subframes, the base station transmits a plurality of PDCCHs, one for each PDSCH. In this case, the UE transmits ACK / NACK for a plurality of PDSCHs through a PUCCH or a PUSCH on one UL subframe.
  • a method of transmitting ACK / NACK for a plurality of PDSCHs is largely divided into two methods as follows.
  • ACK / NACK bundling ACK / NACK bits for a plurality of data units (eg PDSCH, SPS release PDCCH, etc.) are combined by logical—AND operation. For example, if all data units are successfully decoded, the Rx node (eg, terminal) sends an ACK signal. On the other hand, when decoding (or detecting) one of the data units fails, the Rx node transmits a NACK signal or nothing.
  • data units eg PDSCH, SPS release PDCCH, etc.
  • a terminal receiving a plurality of PDSCHs occupies a plurality of puccH resources for ACK / NACK transmission.
  • the ACK / NACK response for a plurality of data units is identified by the combination of the PUCCH resources used for the actual ACK / NACK transmission and the transmitted ACK / NACK contents (eg bit values).
  • the following problems may occur when a terminal transmits an ACK / NACK signal to a base station in TDD.
  • the UE may transmit some of the PDCCH (s) sent by the base station during several subframe periods. If missed, the UE may not know that the PDSCH corresponding to the missed PDCCH is transmitted to itself, and thus an error may occur when generating ACK / NACK.
  • the TDD system includes a downlink assignment index (DAI) in the PDCCH.
  • DAI is a cumulative value of PDCCH (s) corresponding to PDSCH (s) and PDCCH (s) indicating downlink SPS release (i.e., DL subframe (s) n ⁇ k (k eK) to the current subframe (ie , Counting value).
  • the three DL subframes is a UL sub-frame "when Daewoong eu three DL grant to sequentially index the subframe PDSCH is sent to the interval PDCCH to schedule the PDSCH to (that is the count in sequence) Send it on.
  • the UE may know whether the PDCCH has been properly received until the DAI information in the PDCCH.
  • the DAI included in the PDSCH-scheduling PDCCH and the SPS release PDCCH is referred to as DL DAI, DAI-c (counter), or simply DAI.
  • Table 4 shows values indicated by the DL DAI field.
  • MSB Most significant bit.
  • LSB Least significant bit.
  • the UE may know that the second PDCCH is missed because the DL DAI value of the third PDCCH is different from the number of detected PDCCHs. In this case, the UE may process the ACK / NACK response for the second PDCCH as NACK (or NACK / DTX).
  • the UE detects the DAI value of the last detected PDCCH and the number of PDCCHs detected up to that point. Cannot match that the last PDCCH was missed (ie DTX). Accordingly, the UE recognizes that only two PDCCHs are scheduled during the DL subframe period.
  • the PUSCH-scheduling PDCCH (ie UL grant PDCCH) includes a D / U field (UL DAI field for convenience).
  • the UL DAI field is a 2-bit field and the UL DAI field indicates information about the number of scheduled PDCCHs.
  • the UE assumes that at least one downlink allocation is lost (that is, DTX generation) when ⁇ ⁇ (t / z + N ⁇ 3 ⁇ 4 -l) m 0 d4 + i].
  • U DA denotes the total number of DL grant PDCCHs and SPS release PDCCHs detected in subframe "-e) (see Table 3).
  • N SPS represents the number of SPS PDSCHs and is 0 or 1.
  • Table 5 shows values () indicated by the UL DAI field.
  • MSB Most significant bit.
  • LSB Least significant bit.
  • CA 10 illustrates a Carrier Aggregation (CA) communication system.
  • the LTE-A system collects a plurality of UL / DL frequency blocks to use a wider frequency band and uses a carrier aggregation or bandwidth aggregation technique that uses a larger UL / DL bandwidth.
  • Each frequency block is transmitted using a component carrier (CC).
  • the component carrier may be understood as the carrier frequency (or center carrier, center frequency) for the corresponding frequency block.
  • a plurality of UL / DL component carriers may be collected to support a wider UL / DL bandwidth.
  • CCs may be adjacent to each other or non-adjacent in the frequency domain.
  • the bandwidth of each CC can be determined independently.
  • UL CC It is also possible to merge asymmetric carriers different in the number of DL CCs. For example, in case of two UL CCs and one UL CC, the configuration may be configured to correspond to 2: 1.
  • DL CC / UL CC links may be fixed to the system or configured semi-statically.
  • the frequency band that a specific UE can monitor / receive may be limited to M ( ⁇ N) CCs. ), UE group-specific or UE-specific.
  • the control information may be set to be transmitted and received only through a specific CC.
  • This specific CC may be referred to as a primary CCXPrimary CC (PCC) (or anchor CC), and the remaining CC may be referred to as a secondary CC (SCC).
  • PCC primary CCXPrimary CC
  • SCC secondary CC
  • LTE-A uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of downlink and uplink resources. Uplink resources are not required. Therefore, the cell may be configured with only downlink resources, or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCO) may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • PCell may refer to a cell indicated in the handover process
  • SCell may be configured to establish an RRC connection. Later, it can be used to provide configurable and additional radio resources: PCell and SCell can be collectively referred to as serving cells, so for terminals that are in RRC_C0NNECTED state but carrier aggregation is not configured or does not support carrier aggregation, There is only one serving cell consisting of the PCell, whereas RRC—the UE in the CONNECTED state and the carrier aggregation is configured.
  • At least one serving cell exists, and the entire serving cell includes a PCell and an entire SCell.
  • the network is initially configured during the connection establishment process after the initial security activation process is initiated.
  • PCell becoming one SCell on the UE may be configured for a terminal supporting carrier aggregation.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • the introduction of a carrier indicator field (CIF) may be considered.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • RRC signaling eg, RRC signaling
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • PDCCH on DL CC can allocate PDSCH or PUSCH resource on specific DL / UL CC among a plurality of merged DL / UL CCs using CIF
  • the base station may allocate the PDCCH monitoring IX CC set to reduce the BD complexity of the terminal side.
  • the PDCCH monitoring DL CC set includes one or more DL CCs as part of the merged total DL CCs, and the UE performs detection / decoding of the PDCCH only on the corresponding DL CCs. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in a UE-specific (UE-speciiic), UE-group-specific or cell-specific (ceU-speci fic) scheme.
  • the term “PDCCH monitoring DL CC” may be replaced with equivalent terms such as a monitoring carrier, a monitoring cell, and the like.
  • the CC merged for the terminal may be replaced with equivalent terms such as a serving CC, a serving carrier, a serving cell, and the like.
  • DL CC A is set to PDCCH monitoring DL CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC can transmit only PDCCH scheduling its PDSCH without CIF according to the LTE PDCCH rule.
  • the DL CC A (monitoring DL CC) may transmit not only the PDCCH scheduling the PDSCH of the DL CC A but also the PDCCH scheduling the PDSCH of another CC using the CIF. In this case, PDCCH moni PDCCH is not transmitted in DL CC B / C that is not configured as a terminating DL CC.
  • the following scheme is further considered for ACK / NACK transmission in a CA-based TDD system.
  • a plurality of ACK / NACK corresponding to the number of TBs may be transmitted.
  • -Bundled ACK / NACK scheme By applying at least one of CW bundling, CC bundling, and subframe (subframe, SF) bundling, the total number of transmitted ACK / NACK bits can be reduced and transmitted.
  • CW bundling means applying ACK / NACK bundling for each DL SF for each CC.
  • CW bundling is also referred to as spatial bundling.
  • CC bundling means applying ACK / NACK bundling to all or some CCs for each DL SF.
  • SF bundling means applying ACK / NACK bundling to all or some DL SFs for each CC.
  • ACK / NACK information is transmitted through joint coding (eg, Reed-Muller code, Tail-biting convolut ional code, etc.), Block-spreading, and SC-FDMA modulation.
  • joint coding eg, Reed-Muller code, Tail-biting convolut ional code, etc.
  • Block-spreading e.g., Block-spreading, and SC-FDMA modulation.
  • one symbol sequence is transmitted over a frequency domain, and a time-domain spread based on 0 CC (0rthogonal Cover Code) is applied to the symbol sequence.
  • Control signals of multiple terminals may be multiplexed on the same RB using 0CC.
  • five SC-FDMA symbols i.e., UCI data
  • the symbol sequence ( ⁇ dl, d2, ⁇ ) may mean a modulation symbol sequence or a codeword bit sequence.
  • the RS symbol may be generated from a CAZACX Consistant Amplitude Zero Autocorrelation Sequences sequence having a specific cyclic shift.
  • the RS may be transmitted in a form (multiplied) in which a specific 0CC is applied to a plurality of RS symbols in the time domain.
  • a channel coding based UCI eg, multiple ACK / NACK
  • E-PUCCH format referred to as a "multi-bit UCI coding" transmission method.
  • the E—PUCCH format of FIG. 12 is based on the 3GPP technical specification (TS) 36.211 V10.1.0 (2011.03), 36.212 V10.1.0 (2011.03) and 36.213 V10.1.0 (published before May 1, 2011). It corresponds to PUCCH format 3 of 2011.03, and E-PUCCH format and PUCCH format 3 are used in the same meaning. 36.213 V10.1.0 With reference to "7.3 UE procedure for reporting HARQ-ACK", a method of configuring an ACK / NACK payload when E-PUCCH format (ie, PUCCH format 3) is additionally described will be described. The ACK / NACK payload for PUCCH format 3 is configured per cell and then concatenated according to the cell index order.
  • the HARQ-ACK feedback bit for the c—th serving cell (black is DL CC) is ⁇ ⁇ ,... It is given by ⁇ D (c> 0).
  • O K represents the number of bits (ie, size) of the HARQ—ACK payload for the c-th serving cell.
  • each ACK in the HARQ-ACK payload of the serving cell The location of / NACK is given by c> H JW — 2 and.
  • Codeword 0 and codeword 1 correspond to transport blocks 0 and 1 or transport blocks 1 and 0, respectively, according to swapping.
  • PUCCH format 3 transmits an ACK / NACK bit and an SR 1-bit together.
  • the ACK / NACK payload for 10 songs may be configured in consideration of the set PUCCH format.
  • FIG. 13 illustrates a process of processing UL-SCH data and control information when ACK / NACK is transmitted through a PUSCH when an E-PUCCH format (ie, PUCCH format 3) is set.
  • FIG. 13 shows a part related to ACK / NACK in the block diagram of FIG. 6.
  • the ACK / NACK payload input to the channel coding block S170 is in the PUCCH format.
  • the ACK / NACK payload is configured for each cell and then concatenated according to the cell index order.
  • the HARQ-ACK feedback bit for the c—th serving cell is given by 0 K 0 ⁇ K ,..., 0 ACK ACK (c> 0). Therefore, when one serving cell is configured Is input.
  • Output bits of the channel coding block (S170) is input to a channel interleaver block (S190).
  • the output bits of the data and control multiplexing block S180 and the output bits of the RI channel coding block S160 are also input to the channel interleaver block S190.
  • RI is optionally present.
  • Embodiment ACK / NACK Transmission Scheme in TDD System
  • PUSCH-scheduling PDCCH i.e., UL
  • UL PUSCH-scheduling PDCCH
  • a PDSCH includes a PDSCH requiring an ACK / NACK answer, for example, a PDSCH w / PDCCH, a PDSCH w / o PDCCH (eg, an SPS PDSCH), and the PDCCH requires an ACK / NACK response.
  • PDCCH for example SPS release PDCCH.
  • DAI-c DAI-counter
  • DAI-c DL (ie DL DAI): can inform the PDSCH or DL grant PDCCH order that is scheduled based on the DL SF order. That is, the DAI-counter value is 20 PDCCH (s) corresponding to the PDSCH (s) up to the current subframe within the DL subframe (s) nk k & K) S— 3) and the PDCCH (s indicating the release of the downlink SPS. ) May represent an accumulated value (ie, a counting value). Meanwhile, the order indicated by the DAI-c may be an order excluding a PDSCH (eg, an SPS PDSCH) transmitted without a PDCCH.
  • a PDSCH eg, an SPS PDSCH
  • DAI_c 3 of the 3rd or 7th scheduled PDSCH or DL grant PDCCH
  • the method of notifying maxPDCCHperCC (equivalent to the number of DL subframes requiring ACK / NACK feedback) through a PDCCH scheduling a PUSCH may be considered.
  • the PDSCH transmitted without the PDCCH for example, the SPS PDSCH
  • DAI field of 10 PDCCH scheduling PCC is borrowed for a purpose other than DAI—c (for example, to designate / move an ACK / NACK resource)
  • scheduling for DL CC except PCC is performed.
  • a method of informing a maximum value of the number of transmitted PDSCHs and / or PDCCHs through a PDCCH scheduling a PUSCH may be considered.
  • the UE ACK / NACK only for the PDSCH (or PDCCH) and the ACK / NACK position for DAI—c l ⁇ maxPDCCHperCC (if DAI-c starts with 1) for each DL CC.
  • the number / position of the ACK / NACK bits constituting the ACK / NACK payload for the corresponding DL CC is instantaneously, as illustrated in the description of FIG. 12, to prevent misalignment between the base station and the terminal. It may be determined depending on the transmission mode of each DL CC (ie, the maximum number of CWs that can be transmitted) and the presence or absence of CT bundling rather than the number of CWs (or TBs) transmitted.
  • the maxPDCCHperCC information may be indicated through a DAI field (ie, ULDAI field) in the UL grant PDCCH.
  • ULDAI field ie, ULDAI field
  • 4 when considering the TDD UL-DL configuration of DLSF: UL SF 9: 1 Modulo— 4 operations can be applied to maxPDCCHperCC values exceeding.
  • UL_DAI 4 UL ⁇ DAI indicates the value indicated by the 2-bar UL—DAI field (expressed as, for convenience). Is a symbol defined for convenience and may be replaced with any symbol (eg, W).
  • maxPDCCHperCC and N cc may be replaced by any term / symbol (eg ⁇ ) as a uniformly defined term / symbol.
  • a CK N ma ⁇ cc (C + C 2 ) where 0 ACK represents the total number of ACK / NACK feedback bits, ie C ⁇ is CC
  • c Indicates the number of bits (ie, size) of the ACK / NACK payload for the first DLCC (or serving cell) ( c ⁇ 0).
  • N cc is the PDSCH and / or scheduled / transmitted to each DL CC.
  • PDCCH e.g.
  • C denotes the number of CCs allocated to the UE and ( ⁇ denotes the number of CCs that are set to a transmission mode supporting a plurality of transport block transmissions (eg, 2) and to which spatial bundling is not applied.
  • denotes the number of CCs that are set to a transmission mode supporting a plurality of transport block transmissions (eg, 2) and to which spatial bundling is not applied.
  • + C 2 , and C denotes the number of CCs set to a transmission mode supporting single transport block transmission or to which spatial bundling is applied.
  • C represents the number of DL CCs (or serving cells) configured for the UE.
  • O K c when the first DL CC (or serving cell) is set to a transmission mode supporting a single transport block transmission or when spatial bundling is applied, ⁇ maxCC , and the c—th DL CC (or serving cell) has multiple (eg, 2xN max: cc when the transmission mode is set to support the transport block transmission of 2) and spatial bundling is not applied.
  • FIG 14 illustrates ACK / NACK transmission according to the present method.
  • the ACK / NACK position (posit ion) where there is no corresponding DAI-c value (eg, when a PDCCH containing a corresponding DAI-c value is not received or maxPDCCHperCC is greater than the maximum value of DAI-c). ) May be NACK or DTX processed as shown. In the case of M ⁇ 4 as shown in FIG.
  • the terminal using the UL-DAI V and the PDSCH and / or the PDSCH and / or PDCCH number t / max in the PDCCH can most Placed CC, to calculate the maxPDCCHperCC value A ⁇ maxC c as shown in Equation (5) Can be.
  • the UE may receive U c PDSCH (and / or PDCCH) signals in COc. Shin and (c ⁇ 0) (S1502). Thereafter, the UE receives the UL grant PDCCH signal (S1504), and determines max and cc using the value indicated by the DAI field in the UL grant PDCCH signal (S1506). Although not limited to this, N cc may be determined using Equations 4-5.
  • the UE uses the maxCC 5 ACK / NACK feedback bits for the c-th DL CC (or serving cell) 0 K 0 K , ..., 0 o K ACK t (that is, ACK / NACK payload per CC) Produces)
  • the ACK / NACK feedback bits for each CC are sequentially concatenated in a cell index order, preferably in ascending order, and the UE performs signal processing (eg, channel coding, modulation, Scramble, etc.) and transmit 0 o K o ⁇ K , ..., o ACK ACK through the PUSCH (c> 0) (S1510).
  • signal processing eg, channel coding, modulation, Scramble, etc.
  • the maxPDCCHperCC value ⁇ maxCC may be calculated as 6 according to Equation 5. Accordingly, the UE may configure 6 ACKSCH and 15 PDCCH signals (or DAI-c) for each COIl and configure ACK / NACK feedback bits of the corresponding CC as shown.
  • the number / location of ACK / NACK bits in each ACK / NACK payload for each CC may vary according to a transmission mode and spatial bundling configuration of the corresponding CC.
  • the total ACK / NACK payload size can be adjusted using the UL DAI value.
  • the size of the ACK / NACK payload (in other words, the ACK / NACK part) for each CC for each 20 DL CC may be determined in consideration of the UL DAI value, the transmission mode, and the bundling of the corresponding CC.
  • the position of each ACK / NACK in the ACK / NACK payload for each CC may be determined using the DL DAI value (s) received in each DL CC.
  • the HARQ-ACK feedback bit (another ACK / NACK payload) for the c-th DL CC (or serving cell) is defined as ..., c / CK ACK (c> 0). .
  • 25 O K represents the number of bits (ie, size) of the HARQ-ACK payload for the c-th DL CC.
  • 0 K B ⁇ _ may be given if a transmission mode supporting single transport block transmission is set or spatial bundling is applied. While c-th DL CC
  • O K 2B L
  • Equation 4 Another expression of .5 ⁇ . Therefore, may be determined using Equation 4.
  • the position of each ACK / NACK in the HARQ-ACK payload for each CC is set to C D K A! -,-Is given.
  • DAI (k) represents the DL DAI value of the PDCCH detected in the DL subframe " ⁇ .
  • a transmission mode that supports multiple (e.g., 2) transport block transmissions is set.
  • each ACK / NACK position in the HARQ-ACK payload per CC is given by ⁇ 2 ⁇ 22 and ⁇ o c A m _ 2 is the HARQ for codeword 0.
  • ACK represents an.
  • -White schemes may be suitable when: DL scheduling is performed relatively uniformly across all CCs. On the other hand, when DL scheduling is performed (or concentrated) on only one or a few CCs, an unnecessarily high maxPDCCHperCC value may be applied to all CCs. in this case,
  • Unnecessary overhead may result due to an increase in the number of ACK / NACK modulation symbols occupied in the PUSCH or the number of RE 20s used for ACK / NACK transmission.
  • Equation 5 represents the number of coded modulation symbols for HARQ-ACK when one UL—SCH transport block is transmitted on a UL CC.
  • Equation 6 represents the number of coded modulation symbols for HARQ-ACK when two UL—SCH transport blocks are transmitted on a 25 UL CC.
  • the number of coded modulation symbols for HARQ-ACK is It is equivalent to the number of REs for HARQ-ACK.
  • ⁇ ' represents the number of coded modulation symbols per layer. 0 is
  • M: ' CH is a band that is scheduled for PUSCH transmission of a transport block in the current subframe (subcarrier unit).
  • M: CH — MI ' IA ' is the initial of the same transport block.
  • a band scheduled for PUSCH transmission (subcarrier unit). Number of SC-FDMA symbols per subframe for the same transmit initial PUSCH transmission
  • N, syinb (2 (-1 ) -.
  • V is the SRS :).
  • N B is the number of SC— FDMA symbols in an uplink slot.
  • N, as a value related to SRS transmission, has a value of 0 or 1.
  • c is the number of code blocks for the same transport block. Is the payload size of the code block. The superscript indicates the layer number. 0 represents the lower limit of the encoded modulation symbol.
  • C means the number of CC
  • C 2 supports the transmission of up to two transport blocks. This is the number of CCs for which a transmission mode is set and no spatial bundling is applied.
  • N 2 W states
  • the parameter O may be given as follows according to the received ULDAI value: C is a symbol defined for convenience and may be any symbol (eg, W ⁇ ) — Can be replaced.
  • N RE O ⁇ N RE (C + C 2 )
  • the parameter N RE that controls the number of REs can be calculated in a similar manner as in Example 1.
  • the UE may calculate N RE as shown in Equation 10 by using the PDSCH and / or the number of PDCCHs t / max of the CC on which the UL-DAI and the PDSCH and / or the PDCCH are most received.
  • one or more PUSCHs may be transmitted through one or more CCs in a specific UL SF, and a PUSCH transmitted without scheduling by a UL grant PDCCH (ie, PUSCH w / o PDCCH (eg, SPS PUSCH) may also be included in one or more PUSCH.
  • PUSCH w / o PDCCH eg, SPS PUSCH
  • the method according to implementation examples 1 and 2 can be used together in one system.
  • one method is applied equally to all terminals through cell-specific conf igurat ion, or corresponding to each terminal through UE-specific conf igurat ion.
  • the method can be applied independently.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • the base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • Terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • Processor 122 may be configured to implement the procedures and / or methods proposed herein.
  • Memory 124 processor It is connected to 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as UEC User Equipment (MSC), Mobile Station (MS), and Mobile Subscriber Station (MSS).
  • MSC User Equipment
  • MS Mobile Station
  • MSS Mobile Subscriber Station
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more ASICs pplication specific integrated circuits (DSPs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs. (field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • DSPs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 캐리어 병합을 지원하고 TDD로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 있어서, UL-DL 구성에 따라 복수의 하향링크 서브프레임 내에서 하나 이상의 PDCCH 및 하나 이상의 PDSCH 중 적어도 하나를 수신하는 단계; UL 스케줄링을 위한 DCI 포맷 내의 소정의 2-비트 필드가 지시하는 값을 이용하여 상기 하나 이상의 PDCCH 및 하나 이상의 PDSCH 중 적어도 하나에 대한 수신 응답 정보의 비트 수를 결정하는 단계; 및 상기 DCI 포맷에 대응하는 PUSCH를 통해 상기 수신 응답 정보를 전송하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

【명세세
【발명의 명칭】
제어 정보를 전송하는 방법 및 이를 위한 장치
【기술분야】
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 제어 정보를 전송 하는 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA (code division multiple access) 시스템, FDMA( frequency division multiple access) 시스템, TDMA(t ime division mult iple access) 入 1스템, 0FDMA( orthogonal frequency division mult iple access) 시스템, SC-FDMA( single carrier frequency division mult iple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 무선 통신 시스템에서 제어 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 TDD(Time Division Duplex) 시스템에서 상향링크 제어 정보를 효율적으로 전송하고, 이를 위 한 자원을 효율적으로 관리하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발 명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급 하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이디-.
【기술적 해결방법】
본 발명의 일 양상으로, 캐리어 병합 (carrier aggregat ion)을 지원하고 TDDCTime Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법에 있어서, UL-DL 구성 (uplink-downlink conf igurat ion)에 따라 복수 의 하향링크 서브프레임 내에서 하나 이상의 PDCCH(Physical Downlink Control Channel) 및 하나 이상의 PDSCH(F¾ysical Downlink Shared CHannel) 중 적어도 하나 를 수신하는 단계; UL 스케줄링을 위한 DCI (Downlink Control Information) 포맷 내 의 소정의 2-비트 필드가 지시하는 값을 이용하여 상기 하나 이상의 PDCCH 및 하나 이상의 PDSCH 중 적어도 하나에 대한 수신 응답 정보의 비트 수를 결정하는 단계; 및 상기 DCI 포맷에 대응하는 PUSCH(Physical Uplink Shared CHannel)를 통해 상기 수신 웅답 정보를 전송하는 단계를 포함하고, 상기 수신 웅답 정보의 비트 수는 하 기 식을 이용하여 결정되는 방법이 제공된다:
V UL
(Uma -VD U A L ])I 여기서, 는상기 소정의 2-비트 필드가 지시하는 값으로서 1 내지 4의 정 수이고, 1그는 콤포년트 캐리어 별로 상기 복수의 하향링크 서브프레임 내에서 수 신된 PDSCH 신호 및 PDCCH 신호의 개수 중에서 최대 값을 나타내고, 「,는 올림 함 수 (ceiling function)를 나타낸다.
본 발명의 다른 양상으로, 캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하도록 구성된 통신 장치에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 UL-DL 구성 (uplink-downlink configuration) 에 따라 복수의 하향링크 서브프레임 내에서 하나 이상의 PDCCH(Physical Downlink Control Channel) 및 하나 이상의 PDSCH(Physical Downlink Shared CHannel) 중 적 어도 하나를 f 수신하고, UL 스케줄링을 위한 DCI (Downlink Control Information) 포 맷 내의 소정의 2-비트 필드가 지시하는 값을 이용하여 상기 하나 이상의 PDCCH 및 하나 이상의 PDSCH 중 적어도 하나에 대한 수신 웅답 정보의 비트 수를 결정하며, 상기 DCI 포맷에 대응하는 PUSCH(Physical Uplink Shared CHannel)를 통해 상기 수 신 웅답 정보를 전송하도록 구성되고, 상기 수신 웅답 정보의 비트 수는 하기 식을 이용하여 결정되는 통신 장치가 제공된다:
Figure imgf000005_0001
여기서, V 는 상기 소정의 2-비트 필드가 지시하는 값으로서 1 내지 4의 정 수이고, t/max는 콤포넌트 캐리어 별로 상기 복수의 하향링크 서브프레임 내에서 수 신된 PDSCH 신호 및 PDCCH 신호의 개수 중에서 최대 값을 나타내고, 「 ]는 올림 함 수 (ceiling function')를 나타낸다.
바람직하게, 상기 수신 웅답 정보의 비트 수는 하기 식에 따른 값과 동일하 다:
( UL
/ +4|(t/max -K-)/4 ^x(C + C2)
여기서, C는 구성된 콤포넌트 캐리어의 개수이고, C2는 최대 2개의 전송블록을 지원하고 번들링이 적용되지 않는 콤포넌트 캐리어의 개수이다.
바람직하게, 상기 수신 응답 정보는 하나 이상의 콤포넌트 캐리어에 대한 수 신 웅답 정보를 포함하고, c-번째 콤포년트 캐리어에 대한 수신 응답 정보의 비트
"厂" CT,
(i) .상기 c-번째 콤포넌트 캐리어가 단일 전송블록을 지원하는 전송모드로 설 정되거나 번들링이 적용되는 경우 (^^/+4|(^max—계) /4 t>이고,
(ii) 상기 C—번째 콤포넌트 캐리어가 두 개의 전송블록을 지원하는 전송모」 로 설정되고 번들링이 적용되지 않는 경우 2x0^^+41(^
Figure imgf000005_0002
다.
UL
바람직하게 , 상기 / + 41 瞧 - ) 14 는 해당 콤포넌트 반송파에 대해 수신 웅답 정보의 피드백이 필요한 하향링크 서브프레임의 개수에 대웅한다 바람직하게, 상기 UL-DL 구성이 UL-DL 구성 #5이다.
【유리한 효과】
본 발명에 의하면, 무선 통신 시스템에서 제어 정보를 효율적으로 전송할 수 있다. 구체적으로, TDD 시스템에서 상향링크 제어 정보를 효율적으로 전송하고, 이 를 위한 자원을 효율적으로 관리할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면 은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상 을 설명한다.
도 1은 무선 통신 시스템의 일례인 .3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임 (radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 4는 하향링크 프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 예시한다 .
도 6은 UL-SCH 데이터와 제어 정보의 처리 과정을 예시한다.
도 7은 PUSCH 상에서 제어 장보와 UL-SCH 데이터의 다중화를 나타낸다.
도 8은 단일 셀 상황에서 TDD UL ACK/NACK (Up link Acknow 1 edgement /Negat i ve Acknowledgement) 전송 과정을 나타낸다.
도 9는 DAI (Downlink Assignment Index)를 이용한 ACK/NACK 전송을 예시한다. 도 10은 캐리어 병합 (Carrier Aggregation, CA) 통신 시스템을 예시한다. 도 11은 크로스-캐리어 스케줄링을 예시한다.
도 12는 슬롯 레벨의 E— PUCCH 포맷을 예시한다.
도 13은 E-PUCCH 포맷 (즉, PUCCH 포맷 3)이 설정된 경우, ACK/NACK을 PUSCH를 통해 전송하는 경우의 UL-SCH 데이터와 제어 정보의 처리 과정을 예시한다.
도 14-16은 본 발명의 실시예에 따른 ACK/NACK 전송을 예시한다.
도 17은 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 【발명을 실시를 위한 형태】
이하의 기술은 CDMA(code division mult i le access) , FDMA( frequency division multiple access) , TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access) , SCᅳ FDMA( single carrier frequency division multiple access) 둥과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communicat ions)/GPRS(General Packet Radio Service )/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E— UTRA (Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA는 UMTSOJniversal Mobile Telecommunications System)의 일부아 다. 3GPP(3rd Generation Partnership Project ) LTE ( 1 ong term evolution)는 E— UTRA 를 사용하는 E-LMTS( Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향 링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술 적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어는 본 발 명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
먼저, 본 명세서에서 사용되는 용어에 대해 정리한다.
· HARQ-ACIC 하향링크 전송 (예, PDSCH 혹은 SPS release PDCCH)에 대한 수신응답결과, 즉, ACK/NACK/DTX응답 (간단히, ACK/NACK응답, ACK/NACK)을 나타낸다. ACK/NACK/DTX응답은 ACK, NACK, DTX또는 NACK/DTX를 의미한다. 특정 CC에 대한 HARQ— ACK흑은 특정 CC의 HARQ-ACK은 해당 CC와 연관된 (예, 해당 CC에 스케줄링된) 하향링크 신호 (예, PDSCH)에 대한 ACK/NACK 웅답을 나타낸다. PDSCH는 전송블록 혹은 코드워드로 대체될 수 있다.
· PDSCH: DL 그랜트 PDCCH에 대응하는 PDSCH를 의미한다. 본 명세서에서
PDSCH는 PDSCH w/ PDCCH와 흔용된다. • SPS 해제 PDCCH: SPS 해제를 지시하는 PDCCH를 의미한다. 단말은 SPS 해제
PDCCH에 대한 ACK/NACK 정보를 상향링크 피드백한다.
• SPS PDSCH: SPS에 의해 반-정적으로 설정된 자원을 이용하여 DL 전송되는 PDSCH를 의미한다. SPS PDSCH는 대웅되는 DL 그랜트 PDCCH가 없다. 본 명세서에서 SPS PDSCH는 PDSCH w/o PDCCH와 흔용된다.
• DAI (Downlink Assignment Index): PDCCH를 통해 전송되는 DCI에 포함된다.
DAI는 PDCCH의 순서 값 또는 카운터 값을 나타낼 수 있다. 편의상, DL 그랜트 PDCCH의 DAI 필드가 지시하는 값을 DL DAI라고 지칭하고, UL그랜트 PDCCH 내의 DAI 필드가 지시하는 값을 UL DAI라고 지칭한다.
· CA 기반 시스템 : 복수의 콤포넌트 캐리어 (혹은 셀)를 병합하여 운영할 수 있는 무선 통신 시스템을 나타낸다. CA 기반 통신 시스템은 설정에 따라 하나의 콤포넌트 캐리어 (혹은 셀)만을 사용하거나, 복수의 콤포넌트 캐리어 (혹은 셀)를 병합하여 사용할 수 있다. 병합되는 콤포넌트 콤포넌트 캐리어 (혹은 셀)의 개수는 단말 별로 독립적으로 구성될 수 있다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크 (Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크 (Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류 /용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 샐에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (Primary Synchronization Channel, P—SCH)및 부동기 채널 (Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널 (Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 샐 탐색 단계에서 하향링크 참조 신호 (Downlink Reference Signal , DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널 (Physical Downlink Control Channel , PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (Physical Random Access Channel , PRACH)을 통해 프리앰블 (preamble)을 전송하고 (S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리 ¾블에 대한 응답 메시지를 수신할 수 있다 (S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송 (S105) 및 물리하향링크제어채널 및 이에 대웅하는 물리하향링크공유 채널 수신 (S106)과 같은 충돌해결절차 (Content ion Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전송 절차로서 물리하향링크제어채널 /물리하향링크공유채널 수신 (S107) 및 물리상향링크공유채널 (Physical Uplink Shared Channel,
PUSCH)/물리상향링크제어채널 (Physical Up 1 ink Control Channel, PUCCH)전송 (S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보 (Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK( Hybrid Automatic Repeat and reQuest Acknowledgement/Negat ive-ACK) , SR(Schedul ing Request ) , CQ I (Channel Quality Indicator) , PMI (Precoding Matrix Indicator) , RKRank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ— ACK혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK (간단히, ACK), 네거티브 ACK(NACK), DTX및 NACK/DTX중 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임의 구조를 예시한다. 셀를라 0FOM 무선 패¾ 통신 시스템에서, 상향링크 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE표준에서는 FDEKFrequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTKtransmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 0FDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 0FDMA를 사용하므로 0FDM심볼이 하나의 심볼 구간을 나타낸다. 0FDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록 (RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 0FDM 심볼의 수는 CP Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 노멀 CP normal CP)가 있다. 예를 들어, 0FDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 7개일 수 있다. 0FDM 심볼이 확장된 CP에 의해 구성된 경우, 한 0FDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 0FDM 심볼의 수는 노멀 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다
노멀 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며 , 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간 (Guard Period, GP), UpPTS(U link Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된디-. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
표 1은 TDD 모드에서 무선 프레임 내 서브프레임들의 UL-DL 구성 (Uplink-Downlink Conf igurat ion)을 예시한다.
【표 1】
Figure imgf000011_0001
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, St 특별 (special) 서브프레임을 나타낸다. 특별 서브프레임은 DwPTS ( Down 1 ink Pilot TimeSlot), GP( Guard Period), UpPTS (Up link Pilot TimeSlot)을 포함한다. DwPTS는 하향링크 전송용으로 유보된 시간 구간이며, UpPTS는 상향링크 전송용으로 유보된 시간 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임 의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하 게 변경될 수 있다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 0FOM 심볼을 포함 한다. 하나의 하향링크 슬롯은 7(6)개의 OFDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소 (element) 는 자원 요소 (Resource Element, RE)로 지칭된다. 하나의 RB는 12X7(6)개의 RE를 포 함한다ᅳ 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, OFDM 심볼이 SCᅳ FDMA 심 볼로 대체된다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4) 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대웅한다. 남은 OFDM 심볼은 PDSCFKPhysical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH( Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개 수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ AC /NAC ( Hybrid Automatic Repeat request acknowledgment/negat ive— acknowledgment ) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI (Downlink Control Informat ion)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, IB, 1C, ID, 2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그 (hop ing flag) , RB할당, MCS(modulat ion coding scheme) , RV( redundancy version) , NDKnew data indicator) , TPC(transmit power control), 사이클릭 쉬프트 DM RS(demodulat ion reference signal), CQI (channel quality informat ion) 요청, HARQ 프로세스 번호, TPMKtransmitted precoding matrix indicator) , PMI (precoding matrix indicator) 확인 (confirmation) 등의 정보를 선택적으로 포함한다.
PDCCH는 하향링크 공유 채널 (downlink shared channel, DL— SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel, UL-SCH)의 전송 포 맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이징 정보, DL— SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 웅답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Τχ파워 제어 명령, VoIP Voice over IP)의 활성화 지시 정보 등을 나른다. 복 수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집합 (aggregat ion)상에서 전송된다. CCE는 PDCCH에 무선 채 ^ 상 태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수 의 자원 요소 그룹 (resource element group, REG)에 대웅한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRCCcyclic redundancy check)를 부가한 다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자 (예, RNTKradio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해딩- 단말의 식별자 (예, cell— RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, paging— RNTI (P-RNTI)) 가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (system information block, SIC))를 위한 것일 경우, SI— RNTKsystem information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것 일 경우, RA-RNTI (random access-RNTI )가 CRC에 마스킹 될 수 있다.
도 5는 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP길이에 따라 서로 다른 수의 SOFDMA심볼을 포함할 수 있다. 상향링크 서 브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 상향링크 제어 정보 (Uplink Control Information, UCI)를 전송하 는테 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
― SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정 보이다. 00K(0n— Off Keying) 방식을 이용하여 전송된다.
- HARQ AC /NACK: PDSCH상의 하향링크 데이터 패킷에 대한 웅답 신호이다. 하 향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코 드워드 (Codeword, CT)에 대한 웅답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링 크 코드워드에 대한 웅답으로 ACK/NACK 2비트가 전송된다.
- CQK Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIMOCMultiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMKPrecoding. Matrix Indicator), PTI (Precoding Type Indicator)등을 포함한다. 서 브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보 (UCI)의 양은 제어 정보 전 송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브 프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC— FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임 의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용 된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
표 2는 LTE에서 PUCCH 포맷과 UCI의 맵큉 관계를 나타낸다.
【표 2】
PUCCH 포맷 상향링크 제어 정보 (Uplink Control Information, UCI)
SRCScheduling Request) (비변조된 파형)
1一비트 HARQ ACK/NACK (SR 존재 /비존재)
2-비트 HARQ ACK/NACK (SR 존재 /비존재)
-ll 9 CSI (20개의 코딩된 비트)
포맷 2 CSI 및 1— 또는 2-비트 HARQ ACK/NACK (20비트) (확장 CP만 해당)
포맷 2a CSI 및 1一비트 HARQ ACK/NACK (20+1개의 코딩된 비트)
포맷 2b CSI 및 2—비트 HARQ ACK/NACK (20+2개의 코딩된 비트)
포맷 3 (LTE-A) 최대 24비트의 HARQ ACK/NACK + SR LTE 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없으므로 PUSCH가 전송되는 서브프레임에서 UCI (예, CQI/PMI, HARQ-ACK, RI등) 전송이 필요한 경우, UCI를 PUSCH 영역에 다중화 한다. 일 예로, PUSCH 전송이 할당된 서브프레임에서 HARQ— ACK을 전송해야 할 경우, 단말은 UL-SCH 데이터와 HARQ-ACK를 DFT-확산 이전에 다중화 한 뒤, PUSCH를 통해 제어 정보와 데이터를 함께 전송한다.
도 6은 UL— SCH 데이터와 제어 정보의 처리 과정을 예시한다.
도 6을 참조하면, 에러 검출은 CRC Cyclic Redundancy Check) 부착을 통해 ULᅳ SCH 전송블록 (Transport Block, TB)에 제공된다 (S100).
전체 전송블록이 CRC 패리티 비트를 계산하기 위해 사용된다. 전송블록의 비트는 0'Ω1'Ω2'"3'''·'β/Ι-1이다, 패리티 비트는
Figure imgf000015_0001
이다 전송블록의 크기는 A이고, 패리티 비트의 수는 L 이다.
전송블록 CRC 부착 이후, 코드 블록 분할과 코드 블록 CRC 부착이 실행된다 (S110). 코드 블록 분할에 대한 비트 입력은 60' ' ,63'…' 이다. B는 전송블록 (CRC 포함)의 비트 수이다. 코드 블록 · 분할 이후의 비트는 c,.0,c, ,c,.2,c,.3,...,c,.^ 이 된다. r은 코드 블록 번호를 나타내고 (^ο,^.,ο D, Kr은 코드 블록 r의 비트 수를 나타낸다. C는 코드 블록의 총 개수를 나타낸다.
채널 코딩은 코드 블록 분할과 코드 블록 CRC 이후에 실행된다 (S120). 채널 코딩 이후의 비트는 ^,^,^,^,…, ^ 이 된다■ / = 0,1,2이고, ^은 코드 블록 r을 위한 i번째 부호화된 스트림의 비트 수를 나타낸다 (즉, Dr =Kr +4 ) . r은 코드 블록 번호를 나타내고 (Γ=0,1,'··,Ο1), Kr은 코드 블록 r의 비트 수를 나타낸다. C는 코드 블록의 총 개수를 나타낸다. 채널 코딩을 위해 터보 코딩이 사용될 수 있다. 레이트 매칭은 채널 코딩 이후에 수행된다 (S130). 레이트 매칭 이후의 비트는 er0,^,^2,^3,...,e £1}이 된다. ^은 r—번째 코드 블록의 레이트 매칭된 비트의 수이다. r=0,l^",C-l이고, C는 코드 블록의 총 개수를 나타낸다.
코드 블록 연결은 레이트 매칭 이후에 실행된다 (S140). 코드 블록 연결 이후 비트는 'H 가 된다. G는 전송을 위한 부호화된 비트의 총 개수를 나타낸다. 제어 정보가 UL-SCH전송과 다중화 되는 경우, 제어 정보 전송에 사용되는 비트는 G에 포함되지 않는다. fo'f\U..'fG — SCH 코드워드에 해당한다.
UCI의 경우, 채널 품질 정보 (CQI 및 /또는 PMI)( o0,Ol,...oo^ ), ^([。^또는!:。。'"^]) 및 HARQ-ACK([0° ] , [o °. ] 또는 °ι 0 0^.— )의 채널 코딩이 각각 독립적으로 수행된다 (S150~S170). UCI의 채널 코딩은 각각의 제어 정보를 위한 부호화된 심볼의 개수에 기초하여 수행된다. 예를 들어, 부호화된 심볼의 개수는 부호화된 제어 정보의 레이트 매칭에 사용될 수 있다. 부호화된 심볼의 개수는 이후의 과정에서 변조 심볼의 개수, RE의 개수 등에 대응된다. HARQ-ACK의 채널 코딩은 단계 S170의 입력 비트 시퀀스 [0。 J , [οο °ι 1 또는 Lo0 o, 0 0 .'"ᅬ를 이용하여 수행된다. [0。 ]와 [Oo °i ]는 각각 1一비트
1
HARQ-ACK와 2-비트 HARQ-ACK을 의미한다. 또한, L 0 1 '"°ο^- 은 두 비트 이상의 정보로 구성된 HARQ-ACK을 의미한다 (즉, OACK > 2 ACK은 1로 부호화되고, NACK은 0으로 부호화된다. 1—비트 HARQ-ACK의 경우, 반복 (repet i t ion) 코딩이 사용된다. 2-비트 HARQ-ACK의 경우, (3,2) 심플렉스 코드가 사용되고 인코딩된 데이터는 순환 반복될 수 있다. 0 >2의 경우, (32,0) 블록 코드가 사용된다.
QACK 은 부호화된 비트의 총 개수를 나타내며, 비트 시뭔스 q° 'q] ,q2 '…'^^― 1는 부호화된 HARQ-ACK 블록 (들)의 결합에 의해 얻어진다. 비트 시뭔스의 길이를 «·에 맞추기 위해, 마지막에 결합되는 부호화된 HARQ— ACK 블록은 일부분일 수 있다 (즉, 레이트 매칭). QACK =QACK ~QM 이고, Q'CK 은 HARQ-ACK을 위한 부호화된 심볼의 개수이며 , 은 변조 차수 (order)이다. 은 UL-SCH 데이터와 동일하게 설정된다.
데이터 /제어 다중화 블록의 입력은 부호화된 UL— SCH 비트를 의미하는 'f fiMc 와 부호화된 CQI/PMI 비트를 의미하는 ,^' 2,^,."' ( 广1 이다 (S180). 데이터 /제어 다중화 블록의 출력은 2 ' ᅳ— ' 이다ᅳ ^는 길이 2,„의 컬럼 백터이다 ( '' = ο,...,//'-ΐ )ᅳ = 이고, ^ (G + eceJ이다. H는 UL— SCH 데이터와 CQI/PMI를 위해 할당된 부호화된 비트의 총 개수이다.
채널 인터리버의 입력은 데이터 /제어 다중화 블록의 출력, — 0 1 2 1 ,
5 부호화된 랭크 지시자 ,q , ,ᅳ.. , ,및 부호화된 HARQ-ACK 를 , 대상으로 수행된다 (S190). gt 는 CQI/PMI를 위한 길이 Qm 의 컬럼 백터이고 '^077'-1이다 ( H'=H7g,„ ). ^는 ACK/NACK을 위한 길이 em의 컬럼 백터이고 /
Figure imgf000017_0001
). ^는 RI를 위한 길이 의 컬럼 백터이고
/ = ο,...,ρ;;/ -ι이다 =
10 채널 인터리버는 PUSCH 전송을 위해 제어 정보와 UL-SCH 데이터를 다중화한다.
, 구체적으로, 채널 인터리버는 PUSCH 자원에 대응하는 채널 인터리버 행렬에 제어 정보와 UL— SCH 데이터를 맵핑하는 과정을 포함한다.
채널 인터리빙이 수행된 이후, 채널 인터리버 행렬로부터 행-바이-행으로 독출된 비트 시뭔스 가 출력된다. 독출된 비트 시퀀스는 자원 is 그리드 상에 맵핑된다. ^ +ew개의 변조 심볼이 서브프레임을 통해 전송된다.
도 7은 PUSCH 상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다. PUSCH 전송이 할당된 서브프레임에서 제어 정보를 전송하고자 할 경우, 단말은 DFT-확산 이전애 제어 정보 (UCI)와 UL— SCH 데이터를 함께 다중화 한다. 제어 정보는 CQI/PMI, HARQ ACK/NACK및 RI중에서 적어도 하나를 포함한다. CQI/PMI , ACK/NACK및 RI전송에 0 사용되는 각각의 RE 개수는 PUSCH 전송을 위해 할당된 MCS( Modulation and Coding
ACQI .HARQ-ACK ARI
Scheme) 및 오프셋 값 ( , Ά^ , A°ff-' )에 기초한다. 오프셋 ᅳ값은 제어 정보에 따라 서로 다른 코딩 레이트를 허용하며 상위 계층 (예, RRC) 시그널에 의해 반-정적으로 설정된다. UL-SCH 데이터와 제어 정보는 동일한 RE에 맵핑되지 않는다. 제어 정보는 서브프레임의 두 슬롯에 모두 존재하도록 맵핑된다.
5 도 7을 참조하면, CQI 및 /또는 PMKCQI/PMI) 자원은 UL-SCH 데이터 자원의 시작 부분에 위치하고 하나의 부반송파 상에서 모든 SC-FDMA 심볼에 순차적으로 맵핑된 이후에 다음 부반송파에서 맵핑이 이뤄진다. CQI/PMI는 부반송파 내에서 왼쪽에서 오른쪽, 즉 SC-FDMA 심볼 인텍스가 증가하는 방향으로 맵핑된다. PUSCH 데이터 (UL-SCH 데이터)는 CQI/PMI 자원의 양 (즉, 부호화된 심볼의 개수)을 고려해서 레이트-매칭된다. UL-SCH데이터와 동일한 변조 차수 (modu 1 at i on order )가 CQI /PMI에 사용된다. ACK/NACK은 ULᅳ SCH 데이터가 맵핑된 SOFDMA의 자원의 일부에 펑처링을 통해 삽입된다. ACK/NACK는 RS 옆에 위치하며 해당 SC-FDMA 심볼 내에서 아래쪽부터 시작해서 위쪽, 즉 부반송파 인덱스가 증가하는 방향으로 채워진다. 노멀 CP인 경우 도면에서와 같이 ACK/NACK을 위한 SC-FDMA 심볼은 각 슬롯에서 SC-FDMA 심볼 #2/#5에 위치한다. 서브프레임에서 ACK/NACK이 실제로 전송하는지 여부와 관계 없이 부호화된 RI는 ACK/NACK을 위한 심볼의 옆에 위치한다.
LTE에서 제어 정보 (예, QPSK 변조 사용)는 UL-SCH 데이터.없이 PUSCH 상에서 전송되도록 스케줄링 될 수 있다. 제어 정보 (CQI/PMI, RI 및 /또는 ACK/NACK)는 낮은 CM (Cubic Metric) 단일ᅳ반송파 특성을 유지하기 위해 DFT-스프레딩 이전에 다증화된다. ACK/NACK, RI ᅳ및 CQI/PMI를 다중화 하는 것은 도 7에서 도시한 것과 유사하다. ACK/NACK를 위한 SC— FDMA 심볼은 RS 옆에 위치하며, CQI가 맵핑된 자원이 평처링 될 수 있다. ACK/NACK 맟 RI을 위한 RE의 개수는 레퍼런스 MCS(CQI/PMI
ACQI AHARQ-ACK ARI
MCS)와 오프셋 파라미터 (Δ°( ' , ^offse, , 또는 Aoffset )에 기초한다ᅳ 레퍼런스 MCS는
CQI 페이로드 사이즈 및 자원 할당으로부터 계산된다. UL-SCH 데이터가 없는 제어 시그널링을 위한 채널 코딩 및 레이트 매칭은 상술한 UL— SCH 데이터가 있는 제어 시그널링의 경우와 동일하다.
다음으로 TDD 시스템의 ACK/NACK 전송 과정에 대해 설명한다 . TDD 방식은 동일한 주파수 대역을 시간 도메인에서' DL 서브프레임과 UL 서브프레임으로 나눠 사용한다 (도 2(b) 참조). 따라서, DL/UL 비대칭 데이터 트래픽 상황의 경우 DL 서브프레임이 많게 할당되거나 UL 서브프레임이 많게 할당될 수 있다. 따라서, TDD 방식에서는 DL 서브프레임과 UL 서브프레임이 일대일로 대응되지 않는 경우가 발생한다. 특히, DL서브프레임의 수가 UL서브프레임보다 많은 경우, 단말은 복수의 DL 서브프레임 상의 복수의 PDSCH (및 /또는 ACK/NACK 응답을 요하는 PDCCH)에 대한 ACK/NACK 응답을 하나의 UL 서브프레임에서 전송해야 하는 상황이 발생한다. 예를 들어, TDD구성에 따라 DL서브프레임: UL서브프레임 =M:1로 설정될 수 있다. 여기서, M은 하나의 UL 서브프레임에 대응하는 DL 서브프레임의 개수이다. 이 경우, 단말은 M개의 DL 서브프레임 상의 복수의 PDSCH (혹은 ACK/NACK 응답을 요하는 PDCCH)에 대한 ACK/NACK 응답을 하나의 UL 서브프레임에서 전송해야 한다.
도 8은 단일 셀 상황에서 TDD UL ACK/NACK 전송 과정을 나타낸다.
도 8을 참조하면, 단말은 M개의 DL 서브프레임 (Subframe, SF) 상에서 하나 이상의 PDSCH 신호를 수신할 수 있다 (S502_0~S502ᅳ M— 1). 각각의 PDSCH 신호는 전송 모드에 따라 하나 또는 복수 (예, 2개)의 전송블록 (TB) (혹은 코드워드 (CW))을 전송하는데 사용된다. 또한, 도시하지는 않았지만, 단계 S502_0~S502_ -1에서 ACK/NACK응답을 요하는 PDCCH신호, 예를 들어 SPS해제 (Semi— Persistent Schedul ing release)를 지시하는 PDCCH 신호 (간단히, SPS 해제 PDCCH 신호)도 수신될 수 있다. M개의 DL서브프레임에 PDSCH신호 및 /또는 SPS해제 PDCCH신호가 존재하면, 단말은 ACK/NACK을 전송하기 위한 과정 (예 , ACK/NACK (페이로드) 생성, ACK/NACK 자원 할당 등)을 거쳐, M개의 DL 서브프레임에 대웅하는 하나의 UL 서브프레임을 통해 ACK/NACK을 전송한다 (S504). ACK/NACK은 단계 S502— 0~S502— M-1의 PDSCH 신호 및 /또는 SPS 해제 PDCCH 신호에 대한 수신 응답 정보를 포함한다. ACK/NACK은 기본적으로 PUCCH를 통해 전송되지만, ACK/NACK전송 시점에 PUSCH전송이 있는 경우 ACK/NACK은 PUSCH를 통해 전송된다. ACK/NACK 전송을 위해 표 2의 다양한 PUCCH 포맷이 사용될 수 있다. 또한, PUCCH 포맷을 통해 전송되는 ACK/NACK 비트 수를 줄이기 위해 ACK/NACK 번들링 (bundling), ACK/NACK 채널 선택 (channel select ion)과 같은 다양한 방법이 사용될 수 있다.
상술한 바와 같이 , TDD에서는 M개의 DL 서브프레임에서 수신한 데이터에 대한 ACK/NACK이 하나의 UL서브프레임을 통해 전송되며 (즉, M DL SF(s): 1 UL SF), 이들간의 관계는 DASKDownlink Association Set Index)에 의해 주어진다.
표 3은 LTE(-A)에 정의된 DASKK^ko.k^ kM- )를 나타낸다. 표 3은 ACK/NACK 을 전송하는 UL 서브프레임 입장에서 자신과 연관된 DL 서브프레임과의 간격을 나타 낸다.구체적으로,서브프레임 n— k (kEK)에 PDSCH전송 및 /또는 SPS해제 PDCCH가 있 는 경우 단말은 서브프레임 n에서 대응하는 ACK/NACK을 전송한다.
【표 3】
Figure imgf000020_0001
복수의 DL 서브프레임에서 복수의 PDSCH를 한 단말에게 전송하는 경우, 기지 국은 각 PDSCH에 대하여 하나씩 복수의 PDCCH를 전송한다. 이 때, 단말은 복수의 PDSCH에 대한 ACK/NACK을 하나의 UL 서브프레임 상에서 PUCCH또는 PUSCH를 통해 전 송한다. 기존 LTE에서 TDD 모드로 동작 시 복수의 PDSCH에 대하여 ACK/NACK을 전송 하는 방식은 다음과 같이 크게 2가지 방식으로 나워진다.
1) ACK/NACK 번들링 (ACK/NACK bundling): 복수의 데이터 유닛 (예, PDSCH, SPS해제 PDCCH등)에 대한 ACK/NACK비트가 논리— AND연산에 의해 결합된다. 예를 들 어, 모든 데이터 유닛이 성공적으로 복호된 경우 Rx노드 (예, 단말)는 ACK신호를 전 송한다. 반면, 데이터 유닛 중 하나라도 복호 (또는 검출)가 실패한 경우 Rx 노드는 NACK신호를 전송하거나 아무것도 전송하지 않는다.
2) PUCCH 선택 전송: 복수의 PDSCH를 수신하는 단말은 ACK/NACK 전송을 위 해 복수의 puccH자원들을 점유한다. 복수의 데이터 유닛에 대한 ACK/NACK응답은 실 제 ACK/NACK 전송에 사용된 PUCCH 자원과 전송된 ACK/NACK 내용 (예, 비트 값)의 조 합에 의해 식별된다.
TDD에서 단말이 기지국에게 ACK/NACK신호를 전송할 때에 다음과 같은 문제점 이 발생할 수 있다.
• 여러 서브프레임 구간 동안 기지국이 보낸 PDCCH (들) 중 일부를 단말이 놓쳤을 경우 단말은 놓친 PDCCH에 해당되는 PDSCH가 자신에게 전송된 사실도 알 수 없으므로 ACK/NACK 생성 시에 오류가 발생할 수 있다.
이러한 오류를 해결하기 위해, TDD시스템은 PDCCH에 DAI (Downlink Assignment Index)를 포함시킨다. DAI는 DL서브프레임 (들) nᅳ k (k eK ) 내에서 현재 서브프 레임까지 PDSCH (들)에 대응하는 PDCCH (들) 및 하향링크 SPS 해제를 지시하는 PDCCH (들)의 누적 값 (즉, 카운팅 값)을 나타낸다. 예를 들어, 3개의 DL 서브프레임 이 하나의 UL서브프레임이' 대웅되는 경우ᅳ 3개의 DL 서브프레임 구간에 전송되는 PDSCH에 순차적으로 인덱스를 부여 (즉 순차적으로 카운트)하여 PDSCH를 스케줄링하 는 PDCCH에 실어 보낸다. 단말은 PDCCH에 있는 DAI 정보를 보고 이전까지의 PDCCH를 제대로 수신했는지 알 수 있다. 편의상, PDSCH-스케줄링 PDCCH 및 SPS 해제 PDCCH에 포함된 DAI를 DL DAI, DAI-c(counter ) , 또는 간단히 DAI라고 지칭한다.
표 4는 DL DAI 필드가 지시하는 값 을 나타낸다.
【표 4】
Figure imgf000021_0001
MSB: Most significant bit . LSB: Least significant bit .
도 9는 DL DAI를 이용한 ACK/NACK전송을 예시한다. 본 예는 3 DL서브프레임 : 1
UL 서브프레임으로 구성된 TDD 시스템을 가정한다. 편의상, 단말은 PUSCH 자원을 이 용하여 ACK/NACK을 전송한다고 가정한다. 기존 LTE에서는 PUSCH를 통해 ACK/NACK을 전송하는 경우 1비트 또는 2비트 번들링된 ACK/NACK을 전송한다.
도 9를 참조하면, 첫 번째 예시와 같이 2번째 PDCCH를 놓친 경우, 단말은 세 번째 PDCCH의 DL DAI 값과 그때까지 검출된 PDCCH의 수가 다르므로 2번째 PDCCH를 놓친 것을 알 수 있다. 이 경우, 단말은 2번째 PDCCH에 대한 ACK/NACK 응답을 NACK (혹은 NACK/DTX)으로 처리할 수 있다. 반면, 두 번째 예시와 같이 마지막 PDCCH를 놓친 경우, 단말은 마지막으로 검출한 PDCCH의 DAI 값과 그때까지 검출된 PDCCH 수 가 일치하므로 마지막 PDCCH를 놓친 것을 인식할 수 없다 (즉, DTX). 따라서, 단말은 DL 서브프레임 구간 동안 2개의 PDCCH만을 스케줄링 받은 것으로 인식한다. 이 경우, 단말은 처음 2개의 PDCCH에 대응하는 ACK/NACK만을 번들링하므로 ACK/NACK 피드백 과정에서 오류가 발생한다. 이러한 문제를 해결하기 위해, PUSCH-스케줄링 PDCCH (즉, UL 그랜트 PDCCH)는 D/U 필드 (편의상, UL DAI 필드)를 포함한다. UL DAI 필드는 2비 트 필드이며, UL DAI 필드는 스케줄링된 PDCCH의 개수에 관한 정보를 알려준다.
구체적으로, 단말은 ^≠(t/z +N^¾-l)m0d4 + i] 경우' 적어도 하나의 하향링크 할당이 손실되었다고 가정하고 (즉, DTX발생), 번들링 과정에 따라 모든 코 드워드에 대해 NACK을 생성한다. 여기서, UDA,는 서브프레임 "― e ) (표 3참 조)에서 검출된 DL 그랜트 PDCCH 및 SPS 해제 PDCCH의 총 개수를 나타낸다. NSPS는 SPS PDSCH의 개수를 나타내며 0 또는 1이다.
표 5는 UL DAI 필드가 지시하는 값 ( )을 나타낸다.
【표 5】
Figure imgf000022_0001
MSB: Most significant bit . LSB: Least significant bit .
도 10은 캐리어 병합 (Carrier Aggregation, CA) 통신 시스템을 예시한다.
LTE-A 시스템은 보다 넓은 주파수 대역을 사용하기 위해 복수의 UL/DL 주파수 블록 을 모다 더 큰 UL/DL 대역폭을 사용하는 캐리어 병합 (carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각 주파수 블록은 콤포넌트 캐리어 (Component Carrier, CC)를 이용해 전송된다. 콤포년트 캐리어는 해당 주파수 블록 을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다.
도 10을 참조하면, 복수의 UL/DL 콤포넌트 캐리어 (Component Carrier, CC)들 을 모아 더 넓은 UL/DL 대역폭을 지원할 수 있다. CC들은 주파수 영역에서 서로 인 접하거나 비-인접할 수 있디-. 각 CC의 대역폭은 독립적으로 정해질 수 있다. UL CC 의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 예를 들어, DL CC 2 개 UL CC 1개인 경우에는 2:1로 대응되도록 구성이 가능하다. DL CC/UL CC링크는 시 스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N 개의 CC로 구성되더라도 특정 단말이 모니터링 /수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다ᅳ 캐리어 병합에 대한 다양한 파라미터는 셀 특정 (cell-specific), 단말 그룹 특정 (UE group-specific) 또는 단말 특정 (UE— speci f ic) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설 정될 수 있디-. 이러한 특정 CC를 프라이머리 CCXPrimary CC, PCC) (또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC(Secondary CC, SCC)로 지칭할 수 있다.
LTE-A는 무선 자원을 관리하기 위해 셀 (cell)의 개념을 사용한다. 셀은 하향 링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아 니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수 (또 는, DL CC)와 상향링크 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage) 는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수 (또는 PCC) 상에서 동작 하는 셀을 프라이머리 셀 (Primary Cell, PCell)로 지칭하고, 세컨더리 주파수 (또는 SCO 상에서 동작하는 셀을 세컨더리 셀 (Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 연결 설정 (initial connection establishment) 과정을 수행하 거나 연결 재—설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 샐로 통칭 될 수 있다. 따라서, RRC_C0NNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거 나 캐리어 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC— CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우, 하 나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화 (initial security activation) 과 정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이 상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성할 수 있다.
크로스—캐리아스케줄링 (또는 크로스 -CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있 다. 크로스 CC 스케줄링을 위해, 캐리어 지시 필드 (carrier indicator field, CIF) 의 도입이 고려될 수 있다. PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링 (예 , RRC 시그널링 )에 의해 반 -정적 및 단말 -특정 (또는 단말 그룹-특정 ) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.
- CIF 디스에이블드 (disabled): DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당
- CIF 이네이블드 (enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합 된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당 가능
CIF가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH 모니 터링 IX CC세트를 할당할 수 있다. PDCCH모니터링 DL CC세트는 병합된 전체 DL CC 의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH의 검 출 /디코딩을 수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우, PDCCH는 PDCCH 모니터링 DL CC 세트를 통해서만 전송된다. PDCCH 모니터링 DL CC 세 트는 단말 -특정 (UE-speciiic), 단말 -그룹 -특정 또는 셀 -특정 (ceU-speci f ic) 방식으 로 설정될 수 있다. 용어 "PDCCH모니터링 DL CC" 는 모니터링 캐리어, 모니터링 셀 등과 같은 등가의 용어로 대체될 수 있다. 또한, 단말을 위해 병합된 CC는 서빙 CC, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다.
도 11은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH 모니터링 DL CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어 , 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에 이블 된 경우, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스 케줄링 하는 PDCCH만을 전송할 수 있다. 반면, CIF가 이네이블 된 경우, DL CC A (모 니터링 DL CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니 라 다른 CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH 모니 터링 DL CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다.
CA 기반 TDD 시스템에서의 ACK/NACK 전송
CA 기반 TDD 시스템에서 ACK/NACK 전송을 위해 다음 방식이 추가로 고려된다.
- 풀 (full) ACK/NACK 방식 : 단말에게 할당된 모든 CC와 복수 DL 서브프레임 (즉, SF n-k keK )) — 3 참조)을 통해 전송될 수 있는 최대 CW (혹은
TB) 수에 대응되는 복수 ACK/NACK을 전송할 수 있다.
- 번들링된 ACK/NACK 방식 : CW 번들링 , CC 번들링 및 서브프레임 (subframe, SF) 번들링 중 적어도 하나를 적용하여 전체 전송 ACK/NACK 비트 수를 줄 여서 전송할 수 있다.
CW 번들링은 각 DL SF에 대해 CC별로 ACK/NACK 번들링을 적용하는 것을 의미 한다. CW 번들링은 공간 번들링으로도 지칭된다. CC 번들링은 각 DL SF에 대해 모든 혹은 일부 CC에 대해 ACK/NACK번들링을 적용하는 것을 의미한다. SF번들링은 각 CC 에 대해 모든 혹은 일부 DL SF에 대해 ACK/NACK 번들링을 적용하는 것을 의미한다. ACK/NACK 번들링은 복수의 ACK/NACK응답에 대해 논리 AND 연산 과정을 의미한다. 도 12는 슬롯 레벨의 E-PUCCH 포맷을 예시한다. E-PUCCH 포맷에서, 복수의
ACK/NACK정보는 조인트 코딩 (예, Reed-Muller code, Tail-biting convolut ional code 등), 블록 -확산 (Block— spreading), SC-FDMA 변조를 거쳐 전송된다.
도 12를 참조하면, 하나의 심볼 시퀀스가 주파수 영역에 걸쳐 전송되고, 해당 심볼 시퀀스에 대해 0CC(0rthogonal Cover Code) 기반의 시간—도메인 확산이 적용된 다. 0CC를 이용하여 동일한 RB에 여러 단말들의 제어 신호가 다중화 될 수 있다. 구체적으로, 길이 -5 (SF Spreading Factor)=5)의 0CC(C1~C5)를 이용하여, 하나의 심 볼 시퀀스 ({dl,d2, })로부터 5개의 SC-FDMA심볼 (즉, UCI 데이터 파트)이 생성된다. 여기서, 심볼 시퀀스 ({dl,d2, })는 변조 심볼 시퀀스 또는 코드워드 비트 시퀀스를 의미할 수 있다. 심볼 시퀀스 ({dlᅳ d2 "})가 코드워드 비트 시뭔스를 의미할 경우, 도 12의 블록도는 변조 블록을 더 포함한다. 도면은 1 슬롯 동안 2개의 RS 심볼 (즉, RS파트)이 사용된 경우를 도시하였지만, 3개의, RS심볼로 구성된 RS파트와 SF=40CC 를 이용해 구성된 UCI 데이터 파트를 사용하는 등 다양한 웅용도 고려할 수 있다. 여기서, RS 심볼은 특정 사이클릭 쉬프트를 갖는 CAZACX Const ant Amplitude Zero Autocorrelation Sequences) 시뭔스로부터 생성될 수 있다. 또한, RS는 시간 영역의 복수 RS 심볼에 특정 0CC가 적용된 (곱해진) 형태로 전송될 수 있다. 편의상, E-PUCCH 포맷을 사용하는 채널 코딩 기반의 UCI (예, 복수 ACK/NACK) 전송 방식을 "멀티 -비트 UCI 코딩" 전송 방법이라 지칭한다.
도 12의 E— PUCCH 포맷은 본 발명의 최초 우선일 (2011.05.12) 이전에 공개된 3GPP TS( technical specification) 36.211 V10.1.0 (2011.03), 36.212 V10.1.0 (2011.03) 및 36.213 V10.1.0 (2011.03)의 PUCCH 포맷 3에 대응하며, 본 명세서에서 E-PUCCH 포맷과 PUCCH 포맷 3은 동일한 의미로 사용된다. 36.213 V10.1.0 "7.3 UE procedure for reporting HARQ-ACK" 을 참조하여, E-PUCCH 포맷 (즉, PUCCH 포맷 3) 설정 시 ACK/NACK 페이로드 구성 방법을 부가적으로 설명한다. PUCCH 포맷 3을 위한 ACK/NACK 페이로드는 셀 별로 구성된 뒤, 셀 인덱스 순서에 따라 연접된다.
구체적으로, c—번째 서빙 셀 (흑은 DL CC)을 위한 HARQ— ACK 피드백 비트는 ^ ^ ,…, ^디로 주어진다 (c>0). O K는 c-번째 서빙 셀을 위한 HARQ— ACK 페 이로드의 비트 수 (즉, 사이즈)를 나타낸다. c-번째 서빙 셀에 대해, 단일 전송블록 전송을 지원하는 전송모드가 설정되거나 공간 번들링이 적용되는 경우, O K =M 으로 주어질 수 있다. 반면, c-번째 서빙 샐에 대해, 복수 (예, 2)의 전송블록 전송 을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, o K = 으로 주어질 수 있다 . M은 표 3에 정의된 K 세트 내의 원소 개수를 나타낸다.
c—번째 서빙 셀에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되 거나 공간 번들링이 적용되는 경우, 해당 서빙 셀의 HARQ-ACK 페이로드 내에서 각 ACK/NACK의 위치는 o D K세 \로 주어진다. DAI(k)는 DL 서브프레임 "― /t에서 검출된
PDCCH의 DL DAI 값을 나타낸다. 반면, c—번째 서빙 셀에 대해, 복수 (예, 2)의 전송 블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, 해 당 서빙 셀의 HARQ-ACK 페이로드 내에서 각 ACK/NACK의 위치는 c>HJW2 및 로 주어진다. 는 코드워드 0을 위한 HARQ-ACK을 나타내고, ξί"(ιή— 는 코드워드 1을 위한 HARQ— ACK을 나타낸다. 코드워드 0과 코드워드 1은 스와핑에 따라 각각 전송블록 0과 1, 또는 전송블록 1과 0에 대응된다. SR전송을 위 해 설정된 서브프레임에서 PUCCH 포맷 3가 전송되는 경우, PUCCH 포맷 3은 ACK/NACK 비트와 SR 1-비트를 함께 전송한다.
5 기존 LTE에서는 ACK/NACK 전송 시점에 PUSCH가 존재하는 경우, UL— SCH 데이터 페이로드를 펑처링 (및 /또는 레이트-매칭)한 후, ACK/NACK을 UL— SCH 데이터와 다중 화하여 PUCCH가 아닌 PUSCH를 통해 전송한다 (즉, ACK/NACK피기백) (도 6~7참조). CA 기반 TDD 시스템에서도 ACK/NACK 전송 시점 (예, UL 서브프레임)에 PUSCH가 존재하는 경우, 풀 또는 번들링된 ACK/NACK을 PUSCH에 피기백 할 수 있다. 이 경우, PUSCH 전
10 송을 위한 ACK/NACK 페이로드는 설정된 PUCCH 포맷을 고려하여 구성될 수 있다.
. 도 13은 E-PUCCH 포맷 (즉, PUCCH 포맷 3)이 설정된 경우, ACK/NACK을 PUSCH를 통해 전송하는 경우의 UL-SCH 데이터와 제어 정보의 처리 과정을 예시한다. 도 13은 도 6의 블록도에서 ACK/NACK과 관련된 일부를 나타낸다.
도 13에서 채널 코딩 블록 (S170)에 입력되는 ACK/NACK 페이로드는 PUCCH 포맷
15 3을 위해 정의된 방법에 따라 구성된다. 즉, ACK/NACK페이로드는 셀 별로 구성된 뒤 , 셀 인덱스 순서에 따라 연접된다. 구체적으로, c—번째 서빙 셀 (혹은 DL CC)을 위한 HARQ-ACK피드백 비트는 0 K 0^K ,...,0 ACK ACK 로 주어진다 (c>0). 따라서, 하나의 서빙 셀이 구성된 경우
Figure imgf000027_0001
이 입력된다. 다른 예로, 두 개의 서빙 셀이 구성된 경우 (c=0, c=l), 채널 코딩 블록
20 (S170)에는 입력된다. 채
Figure imgf000027_0002
: 널 코딩 블록 (S170)의 출력 비트는 채널 인터리버 블록 (S190)에 입력된다. 채널 인 터리버 블록 (S190)에는 데이터 및 제어 다중화 블록 (S180)의 출력 비트와 RI용 채 널 코딩 블록 (S160)의 출력 비트도 입력된다. RI는 선택적으로 존재한다.
한편, CA기반 TDD시스템에서 PUSCH를 통해 ACK/NACK을 전송하는 경우, CC개
25 수, CW 개수 및 /또는 DL SF 개수가 많아 풀 또는 번들링된 ACK/NACK 페이로드 사이 즈가 커질 경우, PUSCH에 피기백 되는 ACK/NACK 비트 혹은 심볼 양이 많아지므로 " α-scH데이터 쓰루풋 손실을 야기할 가능성이 존재한다.
실시예: TDD 시스템의 ACK/NACK 전송 방안
상술한 문제를 해소하기 위해, PUSCH로 피기백 되는 ACK/NACK 페이로드 사이 즈 혹은 ACK/NACK 전송에 사용되는 RE 개수를 적웅적으로 결정 /조절하기 위한 정보 5 를 PUSCH-스케줄링 PDCCH (즉, UL 그랜트 PDCCH)를 통해 알려줄 것을 제안한다.
이하에서 다르게 언급하지 않는 한ᅳ PDSCH는 ACK/NACK웅답이 요구되는 PDSCH, 예를 들어 PDSCH w/ PDCCH, PDSCH w/o PDCCH (예, SPS PDSCH)를 포함하고, PDCCH는 ACK/NACK 응답이 요구되는 PDCCH, 예를 들어 SPS 해제 PDCCH를 포함한다. 또한, DL SF:UL SF = M:l인 TDD구성은 UL SF에 대응되는 DL SF의 수가 M개임을 의미한다. 즉, 10 해당 ^ll DL SF을 통해 수신된 DL 신호 (즉, PDSCH 및 /또는 PDCCH)에 대한 ACK/NACK 이 해당 UL SF를 통해 전송될 수 있다.
;; 구현 예 1: ACK/NACK페이로드 사이즈 조절
각 DL CC별로 개별적으로, 기존 LTE (3GPP Re 1-8) TDD에서와 유사하게 DL 그 랜트 PDCCH 내의 DAI 필드를 이용하여 아래와 같이 DAI—카운터 (DAI— c)를 동작시키는 15 상황을 고려할 수 있다 (여기서 , DAI-c값은 0이나 1, 혹은 임의의 숫자로 시작될 수 있으며, 편의상 1로 시작됨을 가정한다). DAI-c는 DL DAI와 흔용된다.
• DAI-c: DL (즉 DL DAI): DL SF 순서를 기반으로 스케줄링 되는 PDSCH 또 는 DL그랜트 PDCCH순서를 알려줄 수 있다. 즉, DAI-카운터 값은 DL서브프레임 (들) n-k k&K ) S— 3 참조) 내에서 현재 서브프레임까지 PDSCH (들)에 대응하는 20 PDCCH (들) 및 하향링크 SPS 해제를 지시하는 PDCCH (들)의 누적 값 (즉, 카운팅 값)을 나타낼 수 있다. 한편, DAI-c가 지시하는 순서는 PDCCH없이 전송되는 PDSCH (예, SPS PDSCH)를 제외한 순서일 수 있다. DAI-c 값은 0 이나 1, 혹은 임의의 숫자로 시작될 수 있으며, 편의상 1로 시작된다고 가정한다. 예를 들어 , DL SF #1, #3을 통해 PDSCH 一 가 스케줄링되는 경우, 해당 PDSCH를 스케줄링하는 PDCCH 내의 DAI-c는 각각 1, 2로 25 시그널링될 수 있다. 2-비트 DAI-c를 기반으로 DL SF:UL SF = 9:1인 TDD구성 (예, 표 1의 UL-DL 구성 5)까지 고려할 경우, 아래와 같은 modulo— 4 연산을 적용할 수 있다.
- 1 또는 5 또는 9번째 스케줄링 되는 PDSCH 또는 DL 그랜트 PDCCH의 DAI-c=l - 2 또는 6번째 스케줄링 되는 PDSCH 또는 DL 그랜트 PDCCH의 DAI— c=2
- 3 또는 7번째 스케즐링 되는 PDSCH 또는 DL 그랜트 PDCCH의 DAI_c=3
- 4 또는 8번째 스케줄링 되는 PDSCH 또는 DL 그랜트 PDCCH의 DAI— c=4 이런 상황에서,각각의 DLCC에 스케줄링 /전송된 PDSCH및 /또는 PDCCH (예, SPS 5 해제 PDCCH)의 개수 중 최대 값 (편의상, maxPDCCHperCC로 지칭) (ACK/NACK 피드백이 필요한 DL 서브프레임의 개수와 등가이다)을, PUSCH를 스케줄링하는 PDCCH를 통해 알려주는 방식을 고려할 수 있다. 이로 제한되는 것은 아니지만, PDCCH 없이 전송되 는 PDSCH (예, SPS PDSCH)의 경우 기지국과 단말이 모두 알고 있는 스케줄링 정보이 므로 maxPDCCHperCC 결정 대상에서 제외될 수 있다. 또한, PCC를 스케줄링 하는 10 PDCCH의 DAI 필드가 DAI— c가 아닌 다른 용도 (예, ACK/NACK자원을 지정 /이동하는 용 도)로 차용되는 경우를 고려하면, PCC를 제외한 DL CC에 대해 스케줄링 /전송된 PDSCH 및 /또는 PDCCH 개수 중 최대 값을 PUSCH를 스케줄링 하는 PDCCH를 통해 알려 주는 방식을 고려할 수 있다.
이 경우, 단말은 각 DL CC 별로 DAI— c=l~maxPDCCHperCC (DAI-c가 1로 시작되 15 는 경우)에 대웅하는 PDSCH (혹은 PDCCH) 및 ACK/NACK 위치 (position)에 대해서만 ACK/NACK 페이로드를 구성할 수 있다. 해당 DL CC에 대한 ACK/NACK 페이로드를 구성 하는 ACK/NACK 비트의 개수 /위치는 기지국과 단말간 블일치 (misalignment) 방지를 : 위해, 도 12에 관한 설명에서 예시한 바와 같이, 순시적으로 전송되는 CW (혹은 TB) 개수가 아닌 각 DL CC의 전송모드 (즉, 전송 가능한 최대 CW 개수) 및 CT 번들링 유 0 무에 의존하여 결정될 수 있다. maxPDCCHperCC 정보는 UL 그랜트 PDCCH 내의 DAI 필 드 (즉, ULDAI필드)를 통해 지시될 수 있다.2ᅳ비트 ULDAI필드를 기반으로 DLSF:UL SF = 9:1인 TDD UL-DL구성까지 고려할 경우, 4를 초과하는 maxPDCCHperCC값에는 아 래와 같이 modulo— 4 연산을 적용할 수 있다.
― maxPDCCHperCC=l 또는 5 또는 9인 경우: UL— DAI=1
5 - maxPDCCHperCC=2 또는 6인 경우: UL— DAI=2
- maxPDCCHperCC=3 또는 7인 경우: UL— DAI=3
- maxPDCCHperCC=4 또는 8인 경우: UL_DAI=4 UL一 DAI는 2-바트 UL— DAI 필드가 지시하는 값 (편의상, 로 표시 )을 나타낸 다. 는 편의상 정의된 기호로서 임의의 기호 (예, W )로 대체될 수 있다.
DL SF: UL SF = M: 1인 TDD UL-DL구성을 고려하면, PUSCH로 피기백 되는 ACK/NACK 페이로드의 비트 수 C °"은 UL-DAI V 를 통해 수신된 maxPDCCHperCC 값 Nmax,cc 에 따라 수학식 1과 같이 결정될 수 있다. 여기서, maxPDCCHperCC 및 N cc는 편 의상 정의된 용어 /기호로서 임의의 용어 /기호 (예, ^^)로 대체될 수 있다.
【수학식 1】
ACK=Nma^cc(C + C2) 여기서, 0ACK는 총 ACK/NACK피드백 비트 수를 나타낸다.즉, C ^는 CC별
C-1
ACK/NACK 피드백 비트 수를 합한 값이다. 0ACK = /) K 로 주어지며, 0 CK
' c=0
c—번째 DLCC (혹은 서빙 셀)을 위한 ACK/NACK페이로드의 비트 수 (즉,사이즈)를 나 타낸다 (c≥0).
여기서, N cc는 각각의 DL CC에 스케줄링 /전송된 PDSCH및 /또는. PDCCH (예,
SPS 해제 PDCCH)의 개수 중 최대 값을 나타낸다. Nmax,cc는 해당 DL CC(들)에서 동 일한 값을 갖는다. 즉, N =^maxc이다 (c≥o). 여기서, N c 는 c—번째 DL
CC (혹은 서빙 셀)에서 스케줄링 /전송된 PDSCH 및 /또는 PDCCH에 해당한다.
여기서, C는 단말에게 할당된 CC개수를 의미하고, (^는 복수 (예, 2)의 전송 블록 전송을 지원하는 전송 모드로 설정되고 공간 번들링이 적용되지 않는 CC 개수 를 의미한다. C = Ci+C2이고, C,은 단일 전송블록 전송을 지원하는 전송 모드 로 설정되거나 공간 번들링이 적용되는 CC 개수를 나타낸다.
수학식 2 및 수학식 3은 수학식 1과 등가이다.
【수학식 2] ACK=Nma^ccxC,+2xNm^ccxC2 【수학식 3】
block or spatial bundling
otherwise
Figure imgf000031_0001
여기서 , C은 단말에게 구성된 DL CC (혹은 서빙 셀)의 개수를 나타낸다. O K c—번째 DL CC(혹은 서빙 셀)가 단일 전송블록 전송을 지원하는 전송 모드 로 설정되거나 공간 번들링이 적용되는 경우 ^maxCC이고, c—번째 DL CC (혹은 서빙 셀)가 복수 (예, 2)의 전송블록 전송을 지원하는 전송 모드로 설정되고 공간 번들링 이 적용되지 않는 경우 2xNmax:cc이다.
도 14는 본 방법에 따른 ACK/NACK 전송을 예시한다. 본 예는 4개의 CC가 병합 되고 DL SF:UL SF = 4:1(즉, M=4)로 구성된 TDD 상황에서 maxPDCCHperCC에 기반하여 AC /NACK 페이로드를 구성하는 예를 나타낸다.
도 14를 참조하면, DL CC #1, #2, #3, #4 각각에 대해 스케줄링 /전송된 PDSCH 의 개수는 각각 .2, 3, 1, 0이므로, 이들 중 최대 값 (즉, maxPDCCHperCC = 3)이 UL그 랜트 PDCCH를 통해 지시된다. 단말은 각 DL CC별로 초기 값부터 (maxPDCCHperCC ― 1 = 2)에 해당하는 DAI-c에 대웅하는 PDSCH 및 ACK/NACK 위치에 대해서만 ACK/NACK 페 이로드를 구성한다. 여기서, 대응되는 DAI-c 값이 없는 (예, 대응되는 DAI— c 값을 포 함하는 PDCCH를 수신하지 못한 경우, 혹은 DAI-c 의 최대 값보다 maxPDCCHperCC이 큰 경우) ACK/NACK 위치 (posit ion)는 도시된 것처럼 NACK 혹은 DTX 처리될 수 있다. 도 14와 같이 M≤4인 경우에는 maxPDCCHperCC 값도 N ≤4가 되므로, 단 말은 수신된 UL DAI과 maxCC이 같다고 판단할 수 있다 (즉,
Figure imgf000031_0002
하지 만, M > 4 (예, M=9) (표 1, TDD UL-DL 구성 5)인 경우, maxPDCCHperCC 값의 범위가 ^VmaxCC > 4 (반면 , UL DAI 값의 범위는 1^) ≤4 )인 경우도 발생하므로 무조건 / =^m^cc로 판단 내릴 수 없다 ·상기 문제를 해결하기 위해, 본 예에서는 각 cc 별로 4개 이상의 DL 그랜트 PDCCH가 검출에 실패하는 경우가 모든 COll 대해 발생될 확률이 매우 희박하다는 점에 착안하여 maxCC값을 아래와 같이 산출하는 방안을 추가로 제안한다. 아래의 방안은 모든 UL— DL구성에 대해 일반적으로 적용되거나, 특 정 UL— DL 구성 (예, UL-DL 구성 5)에만 적용될 수 있다. 후자의 경우, 특정 UL-DL 구 성 외의 나머지 UL— DL구성에 대해, 단말은 수신된 UL DAI과 ^m^cc이 같다고 판단 할 수 있다 (즉, A L 1 =Nmax,cc
구체적으로, 단말이 실제 수신한 CC별 PDSCH 및 /또는 PDCCH의 개수 중에서 최 대 값을 ^max (간단히, t/)라 정의하면, 4 - 1) < t/max - 1^^≤ 4 ^의 조건을 만 족하는 L 값 (L은 0보다 같거나 큰 정수)을 선택한 후, 수신된 UL-DAI / 값에 4L 을 더하여 아래 수학식 4와 같이 maxCC7값을 산출할 수 있다. 이때 , 아래 수학식 4 를 만족하는 L 값이 존재하지 않으면, PUSCH로의 ACK/NACK 전송을 생략할 수 있다. 【수학식 4】
Figure imgf000032_0001
4( — 1)〈 匪 _ /≤4 L≥0
. 등가의 방법으로, 단말은 UL-DAI V 와 PDSCH 및 /또는 PDCCH가 가장 많이 수 신된 CC의 PDSCH 및 /또는 PDCCH 개수 t/max 을 이용하여, 수학식 5와 같이 maxPDCCHperCC 값 A^maxCc을 계산할 수 있다.
【수학식 5】
N
1 v max'CC = V v DAI + τ 4 ^ (υ皿 Ο
여기서 , 「 "1는 올림 (ceiling)함수를 나타낸다.
도 15 및 16은 상기 제안에 따른 ACK/NACK 전송 과정을.예시한다. 도면은 단 장에서 도시되어 있으나, 대응 동작이 기지국에서 수행되는 것은 자명하다. 도 15를 참조하면, 단말은 COc에서 Uc개의 PDSCH (및 /또는 PDCCH) 신호를 수 신한다 (c≥0)(S1502):. 이후, 단말은 UL그랜트 PDCCH신호를 수신하고 (S1504), UL그 랜트 PDCCH 신호 내의 DAI 필드가 지시하는 값 을 이용하여 max,cc를 결정한 다 (S1506). 이로 제한되는 것은 아니나, N cc는 수학식 4~5를 이용하여 결정될 : 수 있다. 이후, 단말은 maxCC를 이용하여 c-번째 DL CC (혹은 서빙 셀)를 위한 5 ACK/NACK피드백 비트 0 K 0 K ,...,0 o K ACK t (즉, CC별 ACK/NACK페이로드)를 생성한다
(c>0)(S1508). 복수의 DL CC가 구성된 경우, CC 별 ACK/NACK 피드백 비트는 셀 인 텍스 순서에 따라 순차적으로, 바람직하게는 오름차순으로 연접되고, 단말은 물리 채널 전송을 위한 신호 처리 (예, 채널 코딩, 변조, 스크램블 등) 과정을 거쳐 o 0 K o^K,...,oACK ACK 를 PUSCH를 통해 전송한다 (c>0)(S1510).
10 도 16을 참조하면, DL CC#1에서는 6개꾀 PDSCH 및 PDCCH 신호가 수신되었으므
S U#1=6이고, DLCC#2에서는 3개의 PDSCH및 PDCCH신호가 수신되었으므로 1½=3이다. 따라서, ^ 는 U#1 및 U#2 중 최대 값인 6으로 주어진다. 한편, UL그랜트 PDCCH 내의
UL DAI 필드는 2를 지시하므로, 수학식 5에 따라 maxPDCCHperCC값 ^maxCC은 6으로 계산될 수 있다. 따라서, 단말은 도시된 바와 같이 각 COIl 대해 6개의 PDSCH 및 15 PDCCH 신호 (혹은 DAI-c)를 가정하고 해당 CC의 ACK/NACK 피드백 비트를 구성할 수 있다. 각각의 CC 별 ACK/NACK 페이로드에서 ACK/NACK 비트의 개수 /위치는 해당 CC의 전송모드 및 공간 번들링 설정에 따라 달라질 수 있다.
정리하면, UL DAI 값을 이용하여 전체 ACK/NACK 페이로드 사이즈를 조절할 수 있디-. 구체적으로, UL DAI 값과, 해당 CC의 전송모드 및 번들링 여부를 고려하여 각 20 DL CC를 위한 CC 별 ACK/NACK 페이로드 (다른 말로, ACK/NACK 파트)의 사이즈를 결정 할 수 있다. 또한, 각 DL CC에서 수신된 DL DAI 값 (들)을 이용하여 CC별 ACK/NACK페 이로드 내에서 각 ACK/NACK의 위치를 결정할 수 있다.
구체적으로, c-번째 DL CC (혹은 서빙 셀)을 위한 HARQ— ACK 피드백 비트 (다른 ; 말로 ACK/NACK 페이로드 )를 ,...,c/CK ACK 라고 정의한다고 가정한다 (c>0).
' c,0 c ― 1
25 O K는 c-번째 DL CC를 위한 HARQ-ACK페이로드의 비트 수 (즉, 사이즈)를 나타낸 ' 다. c—번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거 나 공간 번들링이 적용되는 경우, 0 K =B^ _주어질 수 있다. 반면, c-번째 DL
COll 대해, 복수 (예, 2)의 전송블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지: 않는 경우, O K =2B L로 주어질 수 있다. 여기서, 는
.5 ^의 다른 표현이다. 따라서, 는 수학식 4를 이용하여 결정될 수 있다.
. c-번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거 나 공간 번들링이 적용되는 경우, CC별 HARQ-ACK페이로드 내에서 각 ACK/NACK의 위 치는 CDKA! -、로— 주어진다. DAI(k)는 DL서브프레임 "^에서 검출된 PDCCH의 DL DAI 값을 나타낸다. 반면, c-번째 DL CC에 대해, 복수 (예, 2)의 전송블록 전송을 지원하 10 는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, CC 별 HARQ-ACK 페이 로드 내에서 각 ACK/NACK의 위치는 ^2 ^ᅳ2 및 。 로— 주어진다. oc A m_2 는 코드워드 0을 위한 HARQ— ACK을 나타내고, 。 오 는 코드워드 1을 위한
HARQ-ACK을 나타낸다.
구현 예 2: ACK/NACK 전송에 사용되는 RE 개수 조절
15 상술한 maxPDCCHperCC에 대한 UL DAI 시그널링을 기반으로 하는 ACK/NACK 피
― 기백 방식들은, DL 스케줄링이 모든 CC에 비교적 균일하게 수행되는 경우에 적합할 : 수 있다. 반면, 하나혹은 소수의 CC에만 DL 스케줄링이 수행 (혹은 집중)되는 경우 에는 불필요하게 높은 maxPDCCHperCC 값이 모든 CC에 적용될 수 있다. 이 경우,
PUSCH내에 점유하는 ACK/NACK변조 심볼 수 혹은 ACK/NACK전송을 위해 사용되는 RE 20 수의 증가로 인해 불필요한 오버헤드를 가져올 수 있다.
따라서, UL그랜트 PDCCH (예 , UL DAI필드 이용)를 통해 (피기백되는 ACK/NACK 페이로드 비트 수가 아닌) PUSCH 내에 ACK/NACK 전송을 위해 사용되는 RE 수를 조절 . 하는 방안을 고려할 수 있다. 수학식 5는 UL CC상에서 하나의 UL— SCH전송블록이 전 송되는 경우에 HARQ— ACK을 위한 부호화된 변조 심볼의 개수를 나타낸다. 수학식 6은 25 UL CC 상에서 두 개의 UL— SCH 전송블록이 전송되는 경우에 HARQ— ACK을 위한 부호화 된 변조 심볼의 개수를 나타낸다. HARQ-ACK을 위한 부호화된 변조 심볼의 개수는 HARQ-ACK을 위한 RE의 개수와 등가이다.
【수학식 5】
Figure imgf000035_0001
【수학식 6】
= max[min(Q , -M
Figure imgf000035_0002
여기서, ρ' 는 레이어 당 부호화된 변조 심볼의 개수를 나타낸다. 0는
HARQ-ACK비트의 개수이다. M:' CH는 현재 서브프레임에서 전송블록의 PUSCH전송을 위해 스케즐링된 대역이다 (부반송파 단위) M: CHMI'IA'는 동일 전송블록의 초기
PUSCH 전송을 위해 스케줄링된 대역이다 (부반송파 단위). 동일 전송블 초기 PUSCH 전송을 위한 서브프레임 당 SC-FDMA 심볼의 개수이다
N, syinb = (2.( -1)— VSRS:)이다. N B은 상향링크 슬롯에 있는 SC— FDMA 심볼의 개수이다. N, SRS 전송과 관련된 값으로서 0 또는 1의 값을 갖는다. βί 오프셋 값을 나타낸다. c는 동일 전송블록에 대한 코드블록의 개수이다. 는 코 드블록 의 페이로드 사이즈이다. 윗첨자는 레이어 번호를 나타낸다. 0 는 부호화 된 변조 심볼의 하한 값을 나타낸다.
본 예에서, DL SF:UL SF = M:l인 TDD 구성에서 PUSCH로 피기백 되는 ACK/NACK 페이로드의 비트 수 (^"은 UL DAI 값에 상관없이 아래와 같이 주어질 수 있다. 【수학식 7]
0ACK =M(C + C2)
여기서, C는 CC 개수를 의미하며, C2는 최대 2개의 전송블록 전송을 지원하 도록 전송 모드가 설정되고 또한 공간 번들링이 적용되지 않는 CC의 개수이다.
PUSCH 내에 ACK/NACK 전송을 위해 사용되는 RE 수는 수신된 UL DAI 값에 따라 다음과 같이 조절될 수 있다. 구체적으로, N-비트 (예, N=2)로 구성된 (즉, 2W개의 상태가 표현 가능한) ULDAI의 사용을 가정하면, 수학식 5~6에 사용되는 파라미터 O 는 UL DAI 값에 따라 O'4CX이하의 2W가지의 값으로 산출될 수 있다. maxPDCCHperCC 값에 기반하여 ACK/NACK 페이로드의 비트 수를 결정하는 방식과 달리, 본 예에서는 a DAI 시그널링을 통해 PUSCH 내 ACK/NACK 전송 RE 수를 조절할 수 있다. 따라서, 2W개의 UL DAI 값들이 M값에 상관없이 사용될 수 있다.
일 예로, N-비트 UL DAI를 £{1,ᅳ,2"}라 정의하면 파라미터 O는 수신된 ULDAI값에 따라 다음과 같이 주어질 수 있다. C는 편의상 정의된 기호로서 임의 의 기호 (예, W^ ) — 대체될 수 있다.
【수학식 8】
O^NRE(C + C2) 여기서, RE 개수를 조절하는 파라미터 NRE는、 구현 예 1과 유사한 방식으로 산출될 수 있디-. NRE는 편의상 정의된 호로서 임의의 기호로 대체될 수 있다. 구체적으로, N=2인 경우를 예로 들면, 단말이 실제 수신한 CC별 PDSCH 및 /또 는 PDCCH의 개수 중에서 최대값을 i max (간단히, U )라 정의하면, 4(=2w)x( -l)<t/max— ] ^<4(=2 ><^의 조건을 만족하는 L 값 (L은 0보다 같거 나 큰 정수)을 선택한 후, 수신된 ULDAI 값에 4(=2N)XL을 더하여 아래 수학식 9와 같이 NRE 값을 산출할 수 있다. 이때, 아래 수학식 9를 만족하는 L 값이 존재 하지 않으면, PUSCH로의 ACK/NACK 전송을 생략할 수 있다.
【수학식 9】
NRE=V^I +4(=2N)xL,
Figure imgf000036_0001
등가의 방법으로, 단말은 UL-DAI 와 PDSCH 및 /또는 PDCCH가 가장 많이 수 신된 CC의 PDSCH및 /또는 PDCCH개수 t/max을 이용하여, 수학식 10과 같이 NRE를 계 산할 수 있다
【수학식 10】
N UL ,Ν
NRE = / +에 X I (umax一 )/ (= )
한편, (상기 2가지 구현 예 모두에 대하여), CA 기반 TDD 시스템에서는 특정 UL SF에서 하나 이상의 CC를 통해 하나 이상의 PUSCH가 전송될 수 있으며, UL 그랜 트 PDCCH에 의한 스케줄링 없이 전송되는 PUSCH (즉, PUSCH w/o PDCCH, 예를 들어 SPS PUSCH)도 하나 이상의 PUSCH에 포함될 수 있다. 만약, ACK/NACK피기백을 위해 PUSCH w/o PDCCH가 선택된 경우에는 O = C^ =M(C + C2)를 적용하여 해당 PUSCH로의 ACK/NACK 피기백을 수행하는 것이 바람직하다.
구현 예 1 및 2에 따른 방법은 하나의 시스템에서 함께 사용될 수 있다. 이 경우, 셀—특정 구성 (cell-specific conf igurat ion)을 통해 모든 단말에게 하나의 방 법이 동일하게 적용되거나, 혹은 단말—특정 구성 (UE-specific conf igurat ion)을 통 해 각 단말 별로 해당 방법이 독립적으로 적용될 수 있다.
도 17은 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 도 17을 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio Frequency, RF)유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연결되 고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (116)은 프로세 서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제 안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (124)는 프로세서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소.또는 특징은 다른 구성요소나 특징과 결합되 지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동 작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하 다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었디-. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기 지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에 서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다 른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB), 억세스 포인트 (access point) 등의 용어에 의해 대 체될 수 있다. 또한, 단말은 UECUser Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs pplication specific integrated circuits) , DSPs(digital signal processors) , DSPDs(digi tal signal processing devices) , PLDs (programmable lo ic devices) , FPGAs (field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트를러, 마이크로 프 로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단 에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적 으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첩부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에 서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위】
【청구항 1】
캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법에 있어서,
UL-DL 구성 (uplink-downlink conf igurat ion)에 따라 복수의 하향링크 서브프 레임 내에서 하나 이상의 PDCCHCPhysical Downlink Control Channel) 및 하나 이상 의 PDSCH(Physical Downlink Shared CHannel) 중 적어도 하나를 수신하는 단계;
UL 스케줄링을 위한 DCI (Downlink Control Information) 포맷 내의 소정의 2- 비트 필드가 지시하는 값을 이용하여 상기 하나 이상의 PDCCH 및 하나 이상의 PDSCH 중 적어도 하나에 대한 수신 응답 정보의 비트 수를 결정하는 단계; 및
상기 DCI 포맷에 대응하는 PUSCH(Physical Uplink Shared CHannel)를 통해 상 기 수신 응답 정보를 전송하는 단계를 포함하고,
상기 수신 웅답 정보의 비트 수는 하기 식을 이용하여 결정되는 방법:
V v DUALI + τ4 ^ (Κ )/4
여기서, 는 상기 소정의 2-비트 필드가 지시하는 값으로서 1 내지 4의 정 수이고, f/, 는 콤포넌트 캐리어 별로 상기 복수의 하향링크 서브프레임 내에서 수 신된 PDSCH 신호 및 PDCCH 신호의 개수 중에서 최대 값을 나타내고, 「 ]는 올림 함 수 (ceiling function)를 나타낸다.
【청구항 2】
제 1항에 있어서,
상기 수신 응답 정보의 비트 수는 하기 식에 따른 값과 동일한 방법:
(에 — V4 (c + c2)
여기서, C는 구성된 콤포넌트 캐리어의 개수이고, (:2는 최대 2개의 전송블록을 지원하고 번들링이 적용되지 않는 콤포넌트 캐리어의 개수이다.
【청구항 3]
게 1항에 있어서, 상기 수신 응답 정보는 하나 이상의 콤포넌트 캐리어에 대한 수신 응답 정보 를 포함하고, c-번째 콤포년트 캐리어에 대한 수신 응답 정보의 비트 수는,
(i) 상기 c-번째 콤포년트 캐리어가 단일 전송블록을 지원하는 전송모드로 설 정되거나 번들링이 적용되는 경우
Figure imgf000041_0001
이고.
(ii) 상기 c-번째 콤포넌트 캐리어가 두 개의 전송블록을 지원하는 전송모드 로 설정되고 번들링이 적용되지 않는 경우
Figure imgf000041_0002
방법 .
【청구항 4】
제 1항에 있어서,
Figure imgf000041_0003
해당 콤포넌트 반송파에 대해 수신 응답 정보의 피드백이 필요한 하향링크 서브프레임의 개수에 대응하는 방법 .
【청구항 5]
게 1항에 있어서,
상기 UL-DL 구성이 UL-DL 구성 #5인 방법 .
【청구항 6】
캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하도록 구성된 통신 장 치에 있어서,
무선 주파수 (Radio Frequency, RF) 유닛; 및
프로세서를 포함하고,
상기 프로세서는 UL-DL 구성 (uplink-downlink conf igurat ion)에 따라 복수의 하향링크 서브프레임 내에서 하나 이상의 PDCCH(Physical Down link Control Channel) 및 하나 이상의 PDSCH(Physical Downlink Shared CHannel) 중 적어도 하나를 수신하 고, UL 스케즐링을 위한 DCI (Downlink Control Information) 포맷 내의 소정의 2-비 트 필드가 지시하는 값을 이용하여 상기 하나 이상의 PDCCH 및 하나 이상의 PDSCH 중 적어도 하나에 대한 수신 응답 정보의 비트 수를 결정하며, 상기 DCI 포맷에 대 응하는 PUSCH(Physical Uplink Shared CHannel)를 통해 상기 수신 응답 정보를 전송 하도록 구성되고,
상기 수신 응 정보의 비트 수는 하기 식을 이용하여 결정되는통신 장치 :
V y DUALI + "
Figure imgf000042_0001
여기서, 는 상기 소정의 2-비트 필드가 지시하는 값으로서 1 내지 4의 정 수이고, t/max는 콤포넌트 캐리어 별로 상기 복수의 하향링크 서브프레임 내에서 수 신된 PDSCH 신호 및 PDCCH 신호의 개수 중에서 최대 값을 나타내고, 「 ]는 올림 함 수 (ceiling function)를 나타낸다.
【청구항 7】
제 6항에 있어서,
상기 수신 응답 정보의 비트 수는 하기 식에 따른 값과 동일한 통신 장치:
Figure imgf000042_0002
+ 4 (tmax- ) N( + C2)
여기서, C는 구성된 콤포넌트 캐리어의 개수이고, C2는 최대 2개의 전송블록을 지원하고 번들링이 적용되지 않는 콤포넌트 캐리어의 개수이다.
【청구항 8】 .
제 6항에 있어서,
상기 수신 응답 정보는 하나 이상의 콤포넌트 캐리어에 대한 수신 응답 정보 를 포함하고, c-번째 콤포넌트 캐리어에 대한 수신 웅답 정보의 비트 수는,
(i) 상기 c-번째 콤포년트 캐리어가 단일 전송블록을 지원하는 전송모드로 설 정되거나 번들링이 적용되는 경우 (기/+4Rt/max— ^ )/4 )이고,
(ii) 상기 c—번째 콤포넌트 캐리어가 두 개의 전송블록을 지원하는 전송모드 로 설정되고 번들링이 적용되지 않」 경우 2x( /+4 - UL/V4 l 통신 장치 . 【청구항 9】
제 6항에 있어서, 상기 +4ᅵ( -0)/4 해당 콤포넌트 반송파에 대해 수신 응답 정보의 피드백이 필요한 하향링크 서브프레임의 개수에 대응하는 통신 장ᄎ' 【청구항 10】
제 6항에 있어서,
상기 UL— DL 구성이 UL-DL 구성 #5인 통신 장치 .
PCT/KR2012/003755 2011-05-12 2012-05-14 제어 정보를 전송하는 방법 및 이를 위한 장치 WO2012154013A2 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/117,310 US8917603B2 (en) 2011-05-12 2012-05-14 Method for transmitting control information and apparatus therefor
EP12781947.2A EP2709299B1 (en) 2011-05-12 2012-05-14 Method for transmitting control information and apparatus therefor
KR1020137032000A KR101931944B1 (ko) 2011-05-12 2012-05-14 제어 정보를 전송하는 방법 및 이를 위한 장치
JP2014510259A JP5932974B2 (ja) 2011-05-12 2012-05-14 制御情報を送信する方法及びそのための装置
ES12781947.2T ES2575393T3 (es) 2011-05-12 2012-05-14 Método para transmitir información de control y aparato para el mismo
CN201280034142.9A CN103650393B (zh) 2011-05-12 2012-05-14 发送控制信息的方法及其设备
US14/537,703 US9800362B2 (en) 2011-05-12 2014-11-10 Method for transmitting control information and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161485185P 2011-05-12 2011-05-12
US61/485,185 2011-05-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/117,310 A-371-Of-International US8917603B2 (en) 2011-05-12 2012-05-14 Method for transmitting control information and apparatus therefor
US14/537,703 Continuation US9800362B2 (en) 2011-05-12 2014-11-10 Method for transmitting control information and apparatus therefor

Publications (2)

Publication Number Publication Date
WO2012154013A2 true WO2012154013A2 (ko) 2012-11-15
WO2012154013A3 WO2012154013A3 (ko) 2013-03-21

Family

ID=47139840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003755 WO2012154013A2 (ko) 2011-05-12 2012-05-14 제어 정보를 전송하는 방법 및 이를 위한 장치

Country Status (7)

Country Link
US (2) US8917603B2 (ko)
EP (2) EP3029865B1 (ko)
JP (3) JP5932974B2 (ko)
KR (1) KR101931944B1 (ko)
CN (3) CN106899391B (ko)
ES (1) ES2575393T3 (ko)
WO (1) WO2012154013A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144621A (zh) * 2013-04-23 2015-12-09 高通股份有限公司 Let中的新载波类型(nct)中的具有紧凑下行链路控制信息(dci)格式的pdsch传输方案
CN107820687A (zh) * 2015-07-01 2018-03-20 Lg 电子株式会社 无线通信系统中发送信号的方法和设备
WO2019153898A1 (zh) * 2018-02-12 2019-08-15 华为技术有限公司 指示方法,网络设备及用户设备
CN110892776A (zh) * 2018-04-05 2020-03-17 株式会社Ntt都科摩 用户装置及基站装置
CN116094659A (zh) * 2018-08-09 2023-05-09 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146034B2 (en) 2010-04-30 2012-03-27 International Business Machines Corporation Efficient Redundancy Identification, Redundancy Removal, and Sequential Equivalence Checking within Designs Including Memory Arrays.
CN106899391B (zh) * 2011-05-12 2020-09-04 Lg电子株式会社 发送控制信息的方法及其设备
WO2012164855A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 端末装置及び応答信号送信方法
DK3122110T3 (en) 2011-07-13 2018-12-10 Sun Patent Trust BASE STATION DEVICE AND TRANSMISSION PROCEDURE
CN108183777B (zh) 2012-05-10 2020-12-18 瑞典爱立信有限公司 用于混合自动重传请求信令的方法和装置
CN103516496B (zh) * 2012-06-27 2018-12-25 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
KR20150105353A (ko) 2013-01-03 2015-09-16 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
US20150109997A1 (en) * 2013-10-21 2015-04-23 Alexander Sirotkin Apparatus, system and method of interfacing between a cellular manager and a wlan access device
KR102197028B1 (ko) * 2013-11-04 2020-12-30 한국전자통신연구원 무선랜에서 주파수 선택적 전송에 기반하여 무선 통신을 수행하는 방법 및 장치
WO2015065160A1 (ko) * 2013-11-04 2015-05-07 한국전자통신연구원 무선랜에서 주파수 선택적 전송에 기반하여 무선 통신을 수행하는 방법 및 장치
JP6396494B2 (ja) 2014-04-08 2018-09-26 エルジー エレクトロニクス インコーポレイティド 無線リソースの用途変更を支援する無線通信システムにおいて上りリンク制御情報送信方法及びそのための装置
WO2015180175A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 一种下行控制信息的发送、接收方法和设备
US9686064B2 (en) 2015-01-21 2017-06-20 Intel IP Corporation Devices and methods for HARQ-ACK feedback scheme on PUSCH in wireless communication systems
CN106160983A (zh) * 2015-01-29 2016-11-23 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
US11218254B2 (en) 2015-01-29 2022-01-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving HARQ-ACK signal in wireless communication system supporting carrier aggregation
WO2016122243A1 (en) * 2015-01-29 2016-08-04 Samsung Electronics Co., Ltd. Harq-ack information feedback method and apparatus
CN105846977B (zh) * 2015-01-29 2021-02-02 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
WO2016158536A1 (ja) * 2015-03-31 2016-10-06 株式会社Nttドコモ ユーザ端末、無線通信システムおよび無線通信方法
GB2540628A (en) * 2015-07-24 2017-01-25 Fujitsu Ltd Control messages in wireless communication
JP2017034450A (ja) * 2015-07-31 2017-02-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3334201B1 (en) * 2015-08-05 2021-04-21 Sharp Kabushiki Kaisha Terminal device and corresponding method
CN107005365B (zh) * 2015-08-10 2020-05-08 华为技术有限公司 反馈信息的发送、接收方法、用户设备及接入网设备
US10735146B2 (en) 2015-09-25 2020-08-04 Samsung Electronics Co., Ltd. Method and device for feeding back and receiving HARQ-ACK information
CN107294665A (zh) * 2016-04-01 2017-10-24 北京三星通信技术研究有限公司 Harq-ack信息的反馈方法及设备
JP6092347B1 (ja) * 2015-11-05 2017-03-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106714320B (zh) * 2015-11-16 2019-07-05 电信科学技术研究院 一种下行控制信息dci传输方法及装置
MX2018008683A (es) 2016-01-29 2018-09-17 Panasonic Ip Corp America Nodo b evolucionado, equipo de usuario y metodo de comunicacion inalambrica.
US10548169B2 (en) 2016-02-02 2020-01-28 Lg Electronics Inc. Method and device for transmitting/receiving wireless signal in wireless communication system
KR20180126445A (ko) * 2016-03-25 2018-11-27 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 피드백 정보를 전송하는 방법 및 장치
JP6977126B2 (ja) * 2016-03-25 2021-12-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. フィードバック情報の伝送方法及び装置
WO2017171299A1 (en) * 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and apparatus for feeding back harq-ack information
US10790942B2 (en) 2016-04-01 2020-09-29 Samsung Electronics Co., Ltd Method and apparatus for feeding back HARQ-ACK information
EP3424168B1 (en) * 2016-04-04 2022-06-01 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback in wireless communication system
KR20170114911A (ko) 2016-04-04 2017-10-16 삼성전자주식회사 무선 통신 시스템에서 피드백 송수신 방법 및 장치
US9960830B2 (en) 2016-04-04 2018-05-01 Samsung Electronics Co., Ltd. Method and apparatus for managing beam in beamforming system
CN108886436B (zh) * 2016-04-07 2021-11-09 瑞典爱立信有限公司 无线电网络节点、无线设备以及其中执行的方法
PL3424256T3 (pl) 2016-04-07 2019-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Węzeł sieci radiowej, urządzenie bezprzewodowe i sposoby w nich wykonywane
CN107370576B (zh) * 2016-05-12 2019-11-19 中国移动通信有限公司研究院 一种确定混合自动重传请求反馈时序的方法及装置
JP2019134199A (ja) * 2016-06-03 2019-08-08 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10756868B2 (en) * 2016-07-01 2020-08-25 Qualcomm Incorporated Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot
WO2018014191A1 (en) * 2016-07-19 2018-01-25 Nec Corporation Method and device for performing communication
CN107733558B (zh) * 2016-08-12 2020-07-21 华为技术有限公司 混合自动重传请求确认harq-ack反馈方法和装置
WO2018083924A1 (ja) * 2016-11-01 2018-05-11 日本電気株式会社 基地局、端末装置、方法、プログラム、及び記録媒体
WO2018082059A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 Harq-ack反馈信息的传输方法及相关装置
CN114158122A (zh) 2017-01-06 2022-03-08 大唐移动通信设备有限公司 一种数据传输方法、终端及基站
CN108282252B (zh) * 2017-01-06 2020-10-20 电信科学技术研究院 一种数据传输方法、终端及基站
RU2742284C1 (ru) * 2017-05-02 2021-02-04 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
SG11201911632VA (en) * 2017-06-09 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Wireless communication method and device
JP7173997B2 (ja) * 2017-06-27 2022-11-17 テレフオンアクチーボラゲット エルエム エリクソン(パブル) フィードバックシグナリングフォーマット選択
CN109391352B (zh) * 2017-08-11 2021-12-10 华为技术有限公司 一种应答信息的传输方法、终端设备和网络设备
CN109391440B (zh) * 2017-08-11 2020-12-15 华为技术有限公司 一种混合自动重传请求harq反馈方法及设备
EP3672346B2 (en) 2017-09-05 2024-04-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, terminal and network device
CN109474391B (zh) 2017-09-08 2021-06-25 大唐移动通信设备有限公司 一种反馈信息传输方法、装置、终端、基站及存储介质
US10938519B2 (en) * 2017-09-11 2021-03-02 Qualcomm Incorporated Resource (RE) mapping rule for uplink control information (UCI) piggyback on physical uplink shared channel (PUSCH)
JP7203104B2 (ja) * 2017-11-14 2023-01-12 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線アクセスネットワークのための確認応答シグナリングプロセス
JP7080619B2 (ja) * 2017-11-15 2022-06-06 シャープ株式会社 端末装置及び通信方法
CN109802765B (zh) 2017-11-17 2022-03-29 华为技术有限公司 一种应答信息发送方法及装置
JPWO2019107548A1 (ja) * 2017-12-01 2020-11-26 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109905215B (zh) * 2017-12-08 2021-04-23 电信科学技术研究院 传输方法和设备
TWI678118B (zh) * 2018-02-08 2019-11-21 大陸商電信科學技術研究院有限公司 資料傳輸方法、終端及基地台
EP3675570B1 (en) * 2018-02-14 2022-12-21 LG Electronics Inc. Transmitting and receiving control information for paging in wireless communication system
KR20230062665A (ko) 2018-02-17 2023-05-09 주식회사 윌러스표준기술연구소 무선 통신 시스템의 상향링크 제어 정보 전송 방법 및 이를 이용하는 장치
CN112219420B (zh) * 2018-04-04 2024-03-26 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统
CN118473608A (zh) 2018-05-11 2024-08-09 韦勒斯标准与技术协会公司 在无线通信系统中多路复用上行链路控制信息的方法和使用该方法的装置
CN112640339B (zh) * 2018-07-03 2022-05-10 中兴通讯股份有限公司 用于无线通信的方法、装置和计算机可读程序存储介质
US11412497B2 (en) * 2019-03-27 2022-08-09 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
EP3937579B1 (en) * 2019-05-03 2023-03-15 LG Electronics Inc. Method and device for transmitting and receiving signals in wireless communication system
CN110311768B (zh) * 2019-06-28 2022-08-19 展讯通信(上海)有限公司 反馈信息的发送方法、网元设备、终端及存储介质
CN115276918B (zh) * 2019-08-02 2024-04-26 中兴通讯股份有限公司 信息计数方法、装置和计算机存储介质
US11729801B2 (en) 2019-08-16 2023-08-15 Qualcomm Incorporated Dynamic HARQ-ACK codebook construction for multiple active semi-persistent scheduling configurations
CN110740016B (zh) * 2019-10-06 2022-09-09 中国信息通信研究院 一种车联网通信反馈定时方法和设备
EP4047848A4 (en) * 2019-10-15 2022-11-30 LG Electronics Inc. METHOD AND APPARATUS FOR TRANSMITTING OR RECEIVING A WIRELESS SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
CN113259073B (zh) * 2020-02-07 2023-02-17 维沃移动通信有限公司 Pusch传输方法、pusch传输控制方法及相关设备
US11963209B2 (en) 2020-02-28 2024-04-16 Qualcomm Incorporated Downlink control indicator (DCI) monitoring and semi-persistent scheduling (SPS) reception with limited capability devices
US11902967B2 (en) * 2020-10-22 2024-02-13 Acer Incorporated Device of handling a HARQ retransmission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092222A (ko) * 2007-04-11 2008-10-15 엘지전자 주식회사 Tdd 시스템에서의 데이터 전송 방법
CN101505208A (zh) * 2008-02-04 2009-08-12 三星电子株式会社 分配上行ack/nack信道的方法
US8264992B2 (en) * 2008-11-26 2012-09-11 Research In Motion Limited Control information feedback over the long-term evolution physical uplink shared channel
CN101448310B (zh) * 2009-01-06 2014-08-20 中兴通讯股份有限公司 一种物理上行共享信道发送功率控制方法
KR20100083440A (ko) * 2009-01-13 2010-07-22 삼성전자주식회사 다중 반송파 전송 방식을 사용하는 무선 통신 시스템에서의상향링크 제어 정보 송신 장치 및 방법
CN102014496B (zh) * 2009-10-16 2013-07-31 电信科学技术研究院 一种上行控制信道资源配置方法、设备和系统
CN102025467B (zh) * 2009-12-30 2013-05-15 电信科学技术研究院 一种反馈信息的传输方法及传输装置
CN101789851B (zh) * 2010-01-15 2015-08-12 中兴通讯股份有限公司 一种多载波系统及其正确/错误应答消息的发送方法
CN101984568B (zh) * 2010-11-05 2016-01-13 中兴通讯股份有限公司 一种信息发送方法及系统
CN106899391B (zh) * 2011-05-12 2020-09-04 Lg电子株式会社 发送控制信息的方法及其设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2709299A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144621B (zh) * 2013-04-23 2018-12-28 高通股份有限公司 Lte中的新载波类型(nct)中的具有紧凑下行链路控制信息(dci)格式的pdsch传输方案
CN105144621A (zh) * 2013-04-23 2015-12-09 高通股份有限公司 Let中的新载波类型(nct)中的具有紧凑下行链路控制信息(dci)格式的pdsch传输方案
US11121843B2 (en) 2015-07-01 2021-09-14 Lg Electronics Inc Method and device for transmitting signal in wireless communication system
US10848291B2 (en) 2015-07-01 2020-11-24 Lg Electronics Inc. Method and device for transmitting signal in wireless communication system
CN112910621A (zh) * 2015-07-01 2021-06-04 Lg 电子株式会社 无线通信系统中发送信号的方法和设备
CN112953698A (zh) * 2015-07-01 2021-06-11 Lg电子株式会社 在ca无线通信系统中接收harq-ack的方法、基站和处理器
US11088809B2 (en) 2015-07-01 2021-08-10 Lg Electronics Inc. Method and apparatus for transmitting signals in wireless communication system
CN107820687A (zh) * 2015-07-01 2018-03-20 Lg 电子株式会社 无线通信系统中发送信号的方法和设备
US11652598B2 (en) 2015-07-01 2023-05-16 Lg Electronics Inc. Method and apparatus for transmitting signals in wireless communication system
CN112910621B (zh) * 2015-07-01 2023-07-11 Lg 电子株式会社 无线通信系统中发送信号的方法和设备
WO2019153898A1 (zh) * 2018-02-12 2019-08-15 华为技术有限公司 指示方法,网络设备及用户设备
US11431462B2 (en) 2018-02-12 2022-08-30 Huawei Technologies Co., Ltd. Indication method, network device, and user equipment
CN110892776A (zh) * 2018-04-05 2020-03-17 株式会社Ntt都科摩 用户装置及基站装置
CN116094659A (zh) * 2018-08-09 2023-05-09 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质

Also Published As

Publication number Publication date
EP2709299A4 (en) 2014-12-24
JP2017123686A (ja) 2017-07-13
US8917603B2 (en) 2014-12-23
CN106899391A (zh) 2017-06-27
EP3029865A1 (en) 2016-06-08
US20140105076A1 (en) 2014-04-17
JP2016158286A (ja) 2016-09-01
KR20140034803A (ko) 2014-03-20
EP3029865B1 (en) 2017-07-19
EP2709299B1 (en) 2016-04-13
CN106899391B (zh) 2020-09-04
JP2014519252A (ja) 2014-08-07
CN107104761B (zh) 2020-07-31
ES2575393T3 (es) 2016-06-28
JP5932974B2 (ja) 2016-06-08
JP6110543B2 (ja) 2017-04-05
US9800362B2 (en) 2017-10-24
EP2709299A2 (en) 2014-03-19
WO2012154013A3 (ko) 2013-03-21
KR101931944B1 (ko) 2018-12-24
US20150063179A1 (en) 2015-03-05
CN107104761A (zh) 2017-08-29
JP6312883B2 (ja) 2018-04-18
CN103650393B (zh) 2016-10-12
CN103650393A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP6312883B2 (ja) 制御情報を送信する方法及びそのための装置
JP6243387B2 (ja) 制御情報を送信する方法及びそのための装置
KR102008819B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
KR101878145B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
EP2634947B1 (en) Method and apparatus for transmitting control information
WO2012044115A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2014107053A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
WO2013015587A2 (ko) 무선 통신 시스템에서 서브프레임을 설정하는 방법
WO2012015216A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2012044135A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2012047038A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2013157869A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2013133679A1 (ko) 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781947

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014510259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012781947

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137032000

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14117310

Country of ref document: US