WO2012047038A2 - 제어 정보를 전송하는 방법 및 이를 위한 장치 - Google Patents

제어 정보를 전송하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012047038A2
WO2012047038A2 PCT/KR2011/007409 KR2011007409W WO2012047038A2 WO 2012047038 A2 WO2012047038 A2 WO 2012047038A2 KR 2011007409 W KR2011007409 W KR 2011007409W WO 2012047038 A2 WO2012047038 A2 WO 2012047038A2
Authority
WO
WIPO (PCT)
Prior art keywords
response information
subframe
cell
nack
ack
Prior art date
Application number
PCT/KR2011/007409
Other languages
English (en)
French (fr)
Other versions
WO2012047038A3 (ko
Inventor
안준기
양석철
김민규
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR20137011560A priority Critical patent/KR20130118878A/ko
Priority to US13/876,064 priority patent/US9014097B2/en
Priority to CN201180048714.4A priority patent/CN103155468B/zh
Publication of WO2012047038A2 publication Critical patent/WO2012047038A2/ko
Publication of WO2012047038A3 publication Critical patent/WO2012047038A3/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting control information and an apparatus therefor.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency divisi on multiple access (FDMA) systems, time division mult iple access (TDMA) systems, orthogonal frequency division mult iple access (0FDMA) systems, and SC_FDMA (single single) systems. carrier frequency division multiple access) systems.
  • CDMA code division multiple access
  • FDMA frequency divisi on multiple access
  • TDMA time division mult iple access
  • SC_FDMA single single
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting control information in a wireless communication system. Another object of the present invention is to provide a method and apparatus for efficiently transmitting uplink control information in a situation where a plurality of cells are configured and efficiently managing resources for the same.
  • the technical problems to be described are not limited to the above technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
  • a method for transmitting uplink control information in a communication device configured with a plurality of cells in a wireless communication system the at least one PDCCHCPhysical Downlink Control Channel (PDCCHCP) signal through one or more subframes on the plurality of cells and Receiving at least one of at least one Physical Downlink Shared CHannel (PDSCH) signal; Generating total reception response information for the at least one PDCCH signal and at least one PDSCH signal, wherein a plurality of reception response information parts constituting the overall reception response information are generated for each cell and each subframe; If there is a subframe in which a plurality of transport blocks are received in a cell configured to support the transmission of the plurality of transport blocks, DTX
  • NACK Negative Acknowledgment 1 edgement
  • a communication device configured to transmit uplink control information in a situation where a plurality of cells are configured in a wireless communication system, the radio frequency
  • Radio Frequency, RF Radio Frequency, RF unit; And a processor, wherein the processor includes one or more PDCC Physical Downlinks through one or more subframes on the plurality of cells.
  • the processor includes one or more PDCC Physical Downlinks through one or more subframes on the plurality of cells.
  • PD control channel
  • PDSCH physical downlink shared channel
  • DTX discontinuous transmission
  • NACK Negative Acknowledgment
  • a communication device that is mapped to is provided.
  • generating the received voice response information for the cell configured to support the plurality of transport block transmissions includes mapping the received voice response state for the corresponding subframe to a bit value according to the following table:
  • a to D represent different 2-bit values, respectively.
  • the payload size of the overall reception response information is given according to the number of cells configured for the communication device.
  • the aspect is for transmitting the entire reception response information
  • the method may further include determining a physical uplink ink control channel (PUCCH) transmission power, wherein the PUCCH transmission power is determined based on the number of valid bits among bits constituting the entire reception response information.
  • PUCCH physical uplink ink control channel
  • the aspect further includes determining a PUCCH transmission power for the transmission of the overall received voice response information, the PUCCH transmission power is determined based on the number of activated cells of the plurality of cells.
  • the entire received response information includes a plurality of received voice response information for each cell concatenated in increasing order of a cell index, and the received voice response information for each cell includes one or more received voice response information concatenated in a subframe index order. Include the part.
  • the aspect further comprises transmitting the entire received response information using PUCCH format 3.
  • control information can be efficiently transmitted in a wireless communication system. Specifically, in a situation where a plurality of cells are configured, the uplink control information can be efficiently transmitted, and resources for this can be managed efficiently.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • CA Carrier Aggregation
  • FIG. 10 illustrates an ACK / NACK transmission scheme according to an embodiment of the present invention.
  • FIG. 11 illustrates an operation of a terminal and a base station according to an embodiment of the present invention.
  • CDMA code division mult i access
  • FDMA frequency division mult iple access
  • TDMA time division mult iple access
  • OFDMA orthogonal frequency division multiple access
  • SC0 single carrier frequency division SC0. It can be used in various wireless access systems such as multiple access.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA supports Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for EDGE Wireless technology such as GSM Evolution).
  • 0FDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of UMTS Jni versa 1 Mobile Telecommunications System.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs 0-FDMA on downlink and SC-FDMA on uplink as part of E-UMTS (Evolved UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S101.
  • the terminal may transmit a primary synchronization channel
  • P-SCH Synchronization Channel
  • S-SCH 'Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell discovery step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to physical downlink control channel information in step S102 to provide more specific information.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a voice response message for the preamble through a physical downlink control channel and a physical downlink shared channel. Can be received (S104).
  • PRACH physical random access channel
  • S105 additional physical random access channel
  • S106 reception of a physical downlink control channel and a corresponding physical downlink shared channel
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel as a general uplink / downlink signal transmission procedure.
  • S107 physical downlink control channel / physical downlink shared channel reception
  • S107 physical uplink shared channel
  • UCI uplink control information
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-AC (HARQ ACK / NACK), Scheduling Request (S), Channel Quality Indicator (CQI), PMK Precoding Matrix Indicator (RK), and RKRank Indication (RQ).
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply, ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • UCI is generally transmitted through a PUCCH, but may be transmitted through a PUSCH when control information and traffic data are to be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH according to a network request / instruction.
  • FIG. 2 illustrates the structure of a radio frame.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • the length of one subframe is lnis and the length of one slot may be 0.5ms. have.
  • One slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol represents one symbol period.
  • FDM symbols may also be referred to as SC-FDMA symbols or symbol intervals.
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (standard CP) and a standard CPC normal CP (CP).
  • standard CP standard CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • Type 2 wireless frames When the standard CP is used, since one and the pilot include seven OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the TDD scheme divides the same frequency band into DL subframes and UL subframes in the time domain.
  • DL subframe: UL subframe M: l may be set according to the TDD configuration.
  • M is the number of DL subframes in one UL subframe. Accordingly, the UE transmits ACK / NACK responses for a plurality of PDSCHs on M DL subframes in one UL subframe.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include 7 (6) OFDM symbols and the resource block may include 12 subcarriers in the frequency domain. have.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12X7 (6) REs.
  • the number N RBs of the RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, except that an OFDM symbol is an SC-FDMA core. Replaced by a ball. ⁇
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe are indicated in a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which PDSCHCPhysical Downlink Shared CHancel) is allocated.
  • Examples of a downlink control channel used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ AC / NACK (hybrid automatic repeat request acknowledgment / negat i ve-acknow 1 edgment) signal in response to the uplink transmission.
  • HARQ AC / NACK hybrid automatic repeat request acknowledgment / negat i ve-acknow 1 edgment
  • DCI Format is format 0 for uplink, format 1 for downlink, 1A, IB, 1C, ID,
  • DCI Formats 2, 2A, 3, 3A and the like are defined.
  • DCI format is hopping flag depending on usage
  • hop ing flag (hop ing flag), RB assignment, modulated ion coding scheme (MCS), redundancy version (RV),
  • NDKnew data indicator (TK)
  • TPC transmit power control
  • DM cyclic shift
  • Transmission Mode RS
  • CQI channel quality informat ion
  • TPMI transmitted precoding matrix indicator
  • PMI precoding matrix indicator
  • Transmission mode 1 Transmission from a single base station antenna port 0
  • Transmission mode 2 Transmit diversity
  • Transmission mode 7 Transmission using UE-specif ic reference signals
  • ⁇ format IB Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6)
  • the PDCCH includes downlink shared channel (DL-SCH) transmission format and resource allocation information, uplink shared channel (UL-SCH) transmission format and resource allocation information, paging channel Px information on PCH), system information on DL-SCH, resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual terminals in a terminal group, Tx power control Command, the activation instruction information of VoIPCVoice over IP).
  • Multiple PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregate of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a coding rate based on the radio channel state to the PDCCH.
  • the CCE is based on a plurality of resource element groups (resource element grou, REG). Format of the PDCCH and
  • the number of PDCCH bits is determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a CRC cyclic redundancy check to the control information.
  • the CRC is masked with an identifier (eg, R TKradio network temporary ident if ier) depending on the owner of the PDCCH or the purpose of use. For example, when the PDCCH is for a specific terminal, an identifier (eg, cell-RNTI (C-RNTI)) of the corresponding terminal may be masked on the CRC.
  • C-RNTI cell-RNTI
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • 5 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Scheduling Request
  • 00K (0n— Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (Codeword, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • Feedback information related to MIMOC Multiple Input Multiple Output includes a RI (Rank Indicator), a PMK Precoding Matrix Indicator (RIK), and a PTKPrecoding Type Indicator. 20 bits are used per subframe.
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for transmission of control information.
  • SC-FDMA available for control information transmission means the remaining SC-FDMA symbol except SC— FDMA symbol for transmission of reference signal in subframe, and in case of subframe in which SRS (Sounding Reference Signal) is set, the last of subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • Table 1 shows the mapping relationship between the PUCCH format and UCI in LTE.
  • FIG. 6 illustrates a Carrier Aggregation (CA) communication system.
  • the LTE-A system collects a plurality of uplink / downlink frequency blocks to use a wider frequency band and uses a carrier aggregation or bandwidth aggregation technique that uses a larger uplink / downlink bandwidth.
  • Each frequency block is transmitted using a component carrier (CC).
  • Component carriers have corresponding frequencies It can be understood as the carrier frequency (or center carrier, center frequency) for the block.
  • CCs uplink / downlink component carriers
  • Each of the CCs may be adjacent to each other or non-adjacent in the frequency domain.
  • the bandwidth of each component carrier can be determined independently. It is also possible to combine asymmetric carriers in which the number of UL CCs and the number of DL CCs are different. For example, in case of two UL CCs and one UL CC, the configuration can be configured to be 2: 1. DL CC / UL CC links may be fixed in the system or may be configured semi-statically. In addition, even if the entire system band is composed of N CCs, the frequency band that can be monitored / received by a specific terminal may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific or UE-specific manner. Meanwhile, the control information may be set to be transmitted and received only through a specific CC.
  • This specific CC may be referred to as a primary CC (or CCC) (or anchor CC), and the remaining CC may be referred to as a secondary CC (SCO).
  • LTE-A uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of downlink and uplink resources. Uplink resources are not required. Therefore, the cell may be configured with only downlink resources, or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on a primary frequency (or PCC) is called a primary cell (PCell), and the secondary frequency (or A cell operating on the SCO may be referred to as a secondary cell (SCell).
  • the PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PCell and SCell may be collectively referred to as a serving cell. Therefore, in the RRC_C0NNECTED state but the carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell consisting of the PCell.
  • the network may configure one or more SCells for the UE supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • a carrier indicator field may be considered.
  • the presence of a CIF in the PDCCH may be semi-static and terminal-specific by higher layer signaling (eg, RRC signaling). (Or terminal group-specific) manner.
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • PDCCH on DL CC can be merged using CIF PDSCH or PUSCH resource on a specific DL / UL CC can be allocated among the DL / UL CC
  • the base station may allocate the PDCCH monitoring DL CC set to reduce the BD complexity of the terminal.
  • DL CC PDCCH monitoring set comprises at least one DL CC, as part of the combined total DL CC, and the UE performs the detection / decoding of the PDCCH only on the DL CC '. That is, when the base station schedules the PDSCH / PUSCH to the terminal,
  • the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in UE-specific, UE-group-specific or cell-specific (eel 1) speci ic.
  • the term “PDCCH monitoring DL CC” may be replaced with equivalent terms such as a monitoring carrier, a monitoring cell, and the like.
  • the CC merged for the terminal may be replaced with equivalent terms such as a serving CC, a serving carrier, a serving cell, and the like.
  • FIG. 7 illustrates scheduling when a plurality of carriers are merged. Assume that three DL CCs are merged. Assume that DL CC A is set to PDCCH monitoring DL CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC can transmit only PDCCH scheduling its PDSCH without CIF according to the LTE PDCCH rule.
  • CIF is enabled by UE-specific (or UE-group-specific or cell-specific) higher layer signaling, DL CC A (monitoring)
  • DL CC is not only a PDCCH for scheduling PDSCH of DL CC A using CIF
  • the PDCCH scheduling the PDSCH of the CC may also be transmitted.
  • PDCCH monitoring DL PDCCH monitoring DL
  • PDCCH is not transmitted in DL CC B / C that is not set to CC.
  • a plurality of PDSCHs are transmitted through a plurality of DL CCs.
  • PUCCH format 3 is a PUCCH format based on block-spreading. ACK / NACK transmission using PUCCH format 3 is one example. PUCCH format 3 may be used to transmit ACK / NACK, CSI (eg, CQI, PMI, RI, PTI, etc.), SR, or two or more of these information together. have.
  • PUCCH format 3 illustrates PUCCH format 3 at the slot level.
  • PUCCH format 3 one symbol sequence is transmitted over a frequency domain, and UE multiplexing is performed by using time-domain spreading based on 0CC (Orthogonal Cover Code). That is, the symbol sequence is time-domain spread by 0CC and transmitted.
  • 0CC Orthogonal Cover Code
  • the symbol sequence ⁇ 11, (12 , ⁇ ) may mean a modulation symbol sequence or a codeword bit sequence.
  • the symbol sequence ( ⁇ (11 , (12 , ⁇ ) is a codeword bit.
  • the block diagram of Fig. 8 further includes a modulation block, although the figure uses a total of two RS symbols (ie, RS parts) during one slot, but uses an RS part consisting of three RS symbols.
  • Block-spread UCI is transmitted to the network through Fast Fourier Transform (FFT) and IFFTdnverse Fast Fourier Transform (SCFT) in units of SC-FDMA symbols.
  • FFT Fast Fourier Transform
  • SCFT IFFTdnverse Fast Fourier Transform
  • the block-spreading technique modulates control information (eg, ACK / NACK) using the SC-FDMA scheme, unlike the PUCCH format 1 or 2 series of the existing LTE.
  • the symbol sequence ( ⁇ ' ⁇ ⁇ ) in slot 0 is mapped to a subcarrier of one SC— FDMA symbol, and five SC-FDMA by block-spreading using 0CC (C1 to C5). Mapped to a symbol.
  • a symbol mwonseu ( ⁇ '12 ⁇ ⁇ ' 23 ⁇ ) is a SC-FDMA sub-carriers are mapped to the symbols, 0CC (C1 ⁇ C5) a using block in the slot 11 - 50 of SC- by diffusion Mapped to FOMA symbol.
  • the symbol during 3 ⁇ 4's ( ⁇ 0 ⁇ '11 ⁇ or ⁇ /' 12 ⁇ ⁇ / ' 23 ⁇ ) is a symbol sequence ( ⁇ (11, (12 ⁇ of FIG. 9) shown in each of the slots D shows the form the FFT or FFT / IFFT is applied - the symbol sequence ( ⁇ 0 ⁇ ll ⁇ or ⁇ i / '12 ⁇ c' 23 ⁇ ) is a symbol sequence in Fig.
  • a PUCCH resource set may be configured by an upper layer (eg, RRC), and a PUCCH resource to be actually used may be indicated using an ACK (ACK / NACK Resource Indicator) value of the PDCCH.
  • ACK ACK / NACK Resource Indicator
  • Table 2 shows an example of explicitly indicating a PUCCH resource for HARQ-ACK. [Table 2]
  • the upper layer includes an RRC layer, and an ARI value may be indicated through a PDCCH carrying a DL grant.
  • the ARI value may be indicated using a SCell PDCCH and / or TKX Transm Power Control) field of one or more PCell PDCCHs which do not correspond to the initial DAI value.
  • CC activation / deactivation may be configured using Ll / L2 (layer l / layer2) signaling (eg, MAC signaling).
  • Ll / L2 layer l / layer2
  • MAC signaling eg, MAC signaling
  • the UE may receive DL data only in an activated DL CC without having to access all configured DL CCs, thereby saving power consumption.
  • the configured CC set indicates a CC set commanded to be available as an upper layer (eg, RRC) signal.
  • the activated CC set is less than or equal to the configured CC set. That is, the activated CC set is a subset of the configured CC set.
  • the CC set may be a DL CC set, a UL CC set, or a combination thereof.
  • a plurality of CCs (carrier, carrier resource, frequency resource, sal, etc.) C) is used to efficiently transmit uplink control information, preferably ACK / NACK (in other words, HARQ-ACK) using PUCCH format 3 (or a new PUCCH format), and resource allocation therefor Explain the plan.
  • a CC when a CC is set to the non-MIMO mode, it is assumed that at most one transport block (TB) (transport block is equivalent to a codeword) can be transmitted in subframe k of the CC.
  • transport block transport block is equivalent to a codeword
  • up to m transport blocks or codewords
  • Whether the CC is set to the MIM0 mode can be known using the transmission mode set by the higher layer.
  • the number of ACK / NACK bits (i.e., HARQ-ARQ bits) for the CC is one (non) depending on the transmission mode set for the CC regardless of the number of transport blocks (black codewords) actually transmitted.
  • -MIMO or m (MIM0) is assumed.
  • HARQ-ACK Receive response result for a downlink signal (eg PDSCH or SPS release PDCCH), that is, ACK / NACK / DTX response (simple, ACK / NACK response).
  • ACK / NACK / DTX Answer means ACK, NACK, DTX or NACK / DTX.
  • ACK and NACK indicate that decoding on the PDSCH was successful / failed.
  • DTX indicates that PDCCH detection failed.
  • HARQ-ACK for a specific CC / subframe Black or HARQ-ACK for a specific CC / subframe is an ACK / NACK ACK for downlink signals associated with that CC / subframe (e.g., scheduled for that CC / subframe).
  • PDSCH may be replaced by a transport block or codeword.
  • PUCCH Index This is treated by PUCCH resources.
  • PUCCH indexes are for example PUCCH resources Represents an index.
  • the PUCCH resource index is mapped to at least one of an orthogonal cover (0C), a cyclic shift (CS), and a PRB.
  • ARI AC / NACK Resource Indicator: Used to indicate PUCCH resources.
  • the ARI may be used for indicating a resource variation value (eg, offset) for a specific PUCCH resource (group) configured by a higher layer.
  • the ARI may be used for indicating a specific PUCCH resource (group) index within a set of PUCCH resources (group) by a higher layer.
  • the ARI may be included in the TPCC Transmit Power Control (field) field of the PDCCH for the PDSCH on the SCC. PUCCH power control is performed through the TPC field in the PDCCH scheduling the PCC (ie, the PDCCH corresponding to the PDSCH on the PCC).
  • the ARI may be included in the TPC field of the remaining PDCCH except for the PDCCH scheduling the specific cell (eg, PCell) while having an initial value of DAKDownlink Assignment Index. ARI is commonly used with HARQ-ACK resource indication value.
  • the DAI Used in TDD systems. It is included in the DCI transmitted through the PDCCH.
  • the DAI may indicate an order value or a counter value of the PDCCH.
  • the DAI of the DL grant PDCCH is referred to as the DL DAI and the UL DAI of the DAI in the IL grant PDCCH.
  • PUCCH format 3 is used to carry ACK / NACK for one or more PDCCHs and / or one or more PDSCHs received in a plurality of DL CCs.
  • ACK / NAKC payload configuration method for PUCCH format 3 the following may be considered.
  • Method 1 Payload Based on DL CC Received by PDSCH
  • the UE may transmit an ACK / NACK by configuring a payload sequence suitable for the actually received PDSCH. For example, it is assumed that the terminal merges five DL CCs, and all DL CCs are configured in MIM0 mode so that a maximum of two codewords can be received per CC. If the UE receives MIM0 data with only two DL CCs at some point (for example, subframe), a total 4 bit payload may be configured to transmit ACK / NACK.
  • Method 2 Payload Based on Configured DL CC
  • the UE may transmit ACK / NACK by configuring a payload sequence for all configured DL :. For example, suppose that the UE merges five DL CCs, and all DL CCs are configured in MIM0 mode, so that a maximum of two codewords can be received per CC. If the UE receives data with only two DL CCs at some time (for example, subframes), the ACK / NACK may be transmitted by configuring a payload sequence of a total of 10 bits (5DLCCx2CW).
  • Method 1 when the UE does not detect the PDCCH scheduling the PDSCH (PDCCH DTX), the ACK / NACK payload expected by the base station and the ACK / NACK payload transmitted by the UE do not match. Therefore, there is a high probability that the base station fails to detect ACK / NACK.
  • the UE transmits ACK / NACK according to the maximum payload size, so misalignment regarding the ACK / NACK payload (specifically, payload size, ACK / NACK location, etc.) between the base station and the UE. Does not exist.
  • the UE When considering the PDCCH DTX in the method 2, the UE is determined that the base station ACK / NACK must be transmitted with power that can be decoded. That is, even though the UE receives the PDSCH through two DL CCs, PDCCH DTX may have occurred in the remaining three DL CCs from the UE's point of view. Therefore, the terminal should transmit the ACK / NACK at a power that the base station can decode the ACK / NACK for all five DL CC.
  • the present invention proposes a scheme in which the payload of ACK / NACK matches the number of configured DL CCs, and the transmission power for PUCCH format 3 matches the number of activated DL CCs.
  • FIG. 10 illustrates an ACK / NACK transmission scheme according to an embodiment of the present invention.
  • This example assumes that the terminal configures five MIMO DL CCs (DL CC # 0 to DL CC # 4), and only two DL CCs (CC # 0 and CC # 2) are activated.
  • the terminal configures 10-bit ACK / NACK payload because 5 DL CCs are configured and all DL CCs are set to a transmission mode supporting two transport block transmissions (5 DL C02 bit). (BPSK household).
  • a downlink signal eg PDSCH or PDCCH indicating SPS release
  • the ACK / NACK payload consists of a plurality of ACK / NACK parts configured for each DL CC, and the plurality of ACK / NACK parts are sequentially concatenated according to the CC index (or cell index).
  • HARQ-ACK feedback bits for the c-th DL CC are defined as ⁇ , ⁇ (c ⁇ 0).
  • O c CK is c_ The number of bits (ie, size) of the HARQ-ACK payload for the DL DL CC.
  • O / Ci l if the transmission mode supported by a single transport block transmission set or the bundling space is applied.
  • O c ACK 2
  • DL CC # 0 and DL CC # 2 which are active CCs, can receive PDCCH / PDSCH, only bits 0, 1, 4, and 5 can transmit meaningful ACK / NACK. Edie-. If the UE correctly receives the DL CC activation signal, the base station knows in advance that ACK / NACK will not be transmitted for the DL CC that is already inactivated (apriory information). Only ACK / NACK detection can be attempted. Therefore, even though a total of five DL CCs are merged, the UE may transmit ACK / NACK by allocating only power capable of properly transmitting only ACK / NACK for an activated DL CC (for example, two DL CCs).
  • UE transmit power PUCCH for PUCCH transmission in serving cell (equivalent to UL CC) c and subframe i (0 is given as follows.
  • PUCCH is P 0 - a parameter composed of the sum of N0 ⁇ AL yo PUCCH and PUCCH 0 _UE-. ⁇ 0 NOMINAL PUCCH and ⁇ UE PUCCH are provided by higher layer (eg layer).
  • PL C represents the downlink path loss estimate of the serving cell c.
  • the parameter ⁇ ⁇ — PUCCH (F) is provided by the higher layer.
  • Each A F PUCCH (E) value is
  • the parameter is provided by the higher layer. Otherwise, ie, if the PUCCH is configured to be transmitted on a single antenna port, ⁇ (F ') is zero. That is, ⁇ ⁇ () corresponds to a power compensation "value considering the antenna port transmission mode.
  • n SR is 0 when subframe i is a subframe configured for SR transmission and there is UL-SCH transmission in the corresponding subframe, and 1 otherwise.
  • n HARQ indicates a power compensation value associated with HARQ-ACK. Specifically, " HR Q is
  • the number of information bits of HARQ-ACK is given.
  • Q is determined in consideration of the number of activated DL CCs. It is not limited to this, but can be defined as / ⁇ ⁇ + ⁇ ⁇ ⁇ :! ⁇
  • Represents the total number of activated DL CCs, and ( 2 is an activated DL with a transmission mode that supports transmission of m (eg m 2) transport blocks among the activated DL CCs.
  • g (i) g (i-1) + ⁇ S PUCCH (i- / c m ).
  • g (0) is the first value after reset
  • ⁇ UCCH is UE specific correct value and is also called TPC command.
  • the U CCH is included in the PDCCH having the DCI format 1A / 1B / 1D / 1 / 2A / 2 / 2B / 2C for the PCell.
  • jCCH is joint coded with another UE specific PUCCH correction value on a PDCCH having DCI format 3 / 3A.
  • the ACK / NACK payload for PUCCH format 3 is configured based on a configured DL CC, for a DL CC (MIMO DL CC) configured to support multiple codeword (equivalent to transport blocks) transmissions
  • the UE always transmits 2-bit ACK / NACK regardless of the number of codewords actually received. In this case, each ACK / NACK bit represents HARQ-ACK for the first and second codewords.
  • the UE sets HARQ-ACK for the second codeword to NACK (or NACK / DTX).
  • the UE in case of receiving a PDSCH transmitting only a single codeword in a MIMO DL CC, the UE only needs to use two actual ACK / NACK states of the 2-bit ACK / NACK for the corresponding DL CC. Remains. Therefore, in the present example, when a PDSCH transmitting only a single codeword is received in a MIMO DL CC, a method of decoupling a NACK and a PDCCH DTX is proposed.
  • Table 3 illustrates an ACK / NACK bit configuration scheme according to an embodiment of the present invention.
  • Table 3 illustrates an ACK / NACK bit configuration scheme according to an embodiment of the present invention.
  • the relation between the bit values constituting the HARQ-ACK and the ACK / NACK payload may be variously modified.
  • the terminal may separate the NACK and the DTX when configuring the ACK / NACK payload for the corresponding MIM0DLCC.
  • the base station can also distinguish between DTX and NACK for the corresponding MIMO DL COfl.
  • the payload of ACK / NACK may be generated according to the number of configured DL CCs, and the power may be generated according to the number of activated DL CCs. Accordingly, when a single codeword is received in the activated MIMO DL CC, the UE does not need to allocate additional power or adjust power for DTX decoupling.
  • 11 illustrates an operation of a terminal and a base station according to an embodiment of the present invention. Example It is assumed that ACK / NACK is configured to be transmitted using PUCCH format 3.
  • a base station and a terminal configure a plurality of DL CCs (equivalent to sal) (S1102).
  • the plurality of DL CCs includes a MIMO DL CC and / or a Non-MIMO DL CC.
  • the Non-MIMO DL CC is a DLCC set to a transmission mode that supports single codeword transmission.
  • the base station transmits a single codeword to the terminal through the MIMO DL CC (S1104).
  • Step S1104 illustrates only a part related to the present invention, the base station may transmit a codeword to the terminal through another DL CC in the subframe in which step S1104 is performed.
  • the UE feeds back the ACK / NACK payload for PUCCH format 3 to the base station (S1106).
  • the ACK / NACK payload consists of a plurality of CC-specific ACK / NACK parts, which are sequentially concatenated according to the sal index.
  • the DTX and all of the NACK state is decoupled (for example, see Table 3).
  • the states DTX and NACK are all coupled to each other.
  • the base station and the terminal may perform operations according to the DTX and NACK decoupling (S1108).
  • S1108 the DTX and NACK decoupling
  • the ACK / NACK information means only PDSCH decoding failure. That is, the PDCCH signal is transmitted successfully, but the decoding of the Daesung PDSCH signal fails. Also,
  • the UE may not know whether there is a single codeword transmission or a plurality of codeword transmissions in the corresponding MIMO DL CC.
  • the base station knows the information on the number of codewords transmitted to the terminal, it is possible to apply the proposed method according to the present example. That is, when receiving the ACK / NACK information indicating the DTX for the MIMO DL CC from the terminal, the base station is a single codeword is scheduled to the MIMO DL CC
  • the ACK / NACK information may be interpreted as DTX, and the base station may interpret the ACK / NACK information as NACK / DTX when a plurality of codewords are scheduled in the corresponding MIMO DL CC.
  • the base station can recognize whether the transmission failure for the UE occurred in both the PDCCH and PDSCH, or only in the PDSCH. Accordingly, the base station may perform an operation for increasing transmission reliability in consideration of a physical channel in which transmission failure occurs. For example, since DTX means PDCCH detection failure, the base station can increase the transmission power for the PDCCH in order to increase the transmission reliability of the PDCCH signal. In addition, in the case of DTX, the terminal cannot recognize / receive the PDSCH signal itself. If the lost PDSCH signal includes the redundancy version for initial transmission of the transmission block, the base station may transmit the same redundancy version as before when retransmitting the PDSCH according to the HARQ operation.
  • the redundancy version for the initial transmission includes the system bits for the transport block.
  • NACK means PDSCH decoding failure
  • the base station may increase transmission reliability by adjusting the coding rate, transmission power, etc. of the PDSCH when the PDSCH signal is retransmitted.
  • the PDSCH in which the NACK is generated contains a redundancy version for initial transmission. It is possible to adjust the redundancy version carried on the retransmission PDSCH according to whether or not.
  • the above description is illustrated centering on the CA FDD system.
  • the present invention can also be applied to a CA TDD system.
  • the TDD scheme divides the same frequency band into DL subframes and UL subframes in the time domain (see FIG.
  • the CA TDD system is basically the same as the CA FDD system. Specifically, when configuring the ACK / NACK payload for PUCCH format 3, the ACK / NACK portion for each DL CC includes ACK / NACK for one or more subframes. In this case, an ACK / NACK portion for each CC is generated for each subframe.
  • the HARQ—ACK feedback bit for the c-th DL CC (or serving cell) is defined as ⁇ ,. ⁇ Signy (c ⁇ 0). O K is for the c ⁇ th DLCC
  • DAI (k) represents a DL DAI value of the PDCCH detected in a DL subframe.
  • HARA-by-CC HARA each ACK / NACK within an ACK payload The positions of are given by 0 — 2 and 2 H. ⁇ 2 - 2 indicates the HARQ-ACK for codeword 0, 0 ⁇ (k is for codeword 1
  • HARQ Indicates ACK.
  • FIG. 12 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • the base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected to the processor 112 and transmits and / or receives a radio signal.
  • Terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • Processor 122 may be configured to implement the procedures and / or methods proposed herein.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • RF unit 126 is connected with the processor 122 and transmits and / or receives wireless signals.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a base station may, in some cases, be performed by their upper node. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by a base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal is a UE User Equipment (MS), MS (Mobile Station), MSS (Mobile
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware
  • an embodiment of the present invention may be implemented by software, software, or a combination thereof.
  • an embodiment of the present invention may include one or more ASICs pplication specific integrated circuits (DSPs), digital signal processors (DSPs), DSPDs (digital signal processing devices), PLDs (pr ogr ammab 1 e logic devices), It can be implemented by FPGAs (ield programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • DSPs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs pr ogr ammab 1 e logic devices
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 복수의 셀이 구성된 상황에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 있어서, 하나 이상의 PDCCH 신호 및 하나 이상의 PDSCH 신호 중 적어도 하나를 수신하는 단계; 상기 하나 이상의 PDCCH 신호 및 하나 이상의 PDSCH 신호 중 적어도 하나에 대한 전체 수신 응답 정보를 생성하되, 상기 전체 수신 응답 정보를 구성하는 수신 응답 정보 부분은 각 셀 및 각 서브프레임 별로 생성되는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
제어 정보를 전송하는 방법 및 이를 위한 장치
【기술분야】
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 제어 정보를 전송 하는 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA (code division multiple access) 시스템, FDMA( frequency d i v i s i on multiple access) 시스템, TDMA(t ime division mult iple access) 시스템, 0FDMA( orthogonal frequency division mult iple access) 시스템, SC_FDMA( single carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 무선 통신 시스템에서 제어 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 복수의 셀이 구 성된 상황에서 상향링크 제어 정보를 효율적으로 전송하고, 이를 위한 자원을 효율 적으로 관리하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명에서 이루 고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
본 발명의 일 양상으로, 무선 통신 시스템에서 복수의 샐이 구성된 통신 장치 에서 상향링크 제어 정보를 전송하는 방법에 있어서, 상기 복수의 셀 상에서 하나 이상의 서브프레임을 통해 하나 이상의 PDCCHCPhysical Downlink Control Channel) 신호 및 하나 이상의 PDSCH( Physical Downlink Shared CHannel) 신호 중 적어도 하 나를 수신하는 단계 ; 및 상기 하나 이상의 PDCCH 신호 및 하나 이상의 PDSCH 신호에 대한 전체 수신 응답 정보를 생성하되, 상기 전체 수신 웅답 정보를 구성하는 복수 의 수신 웅답 정보 부분은 각 셀 및 각 서브프레임 별로 생성되는 단계를 포함하고, 상기 복수의 전송블록 전송을 지원하도록 설정된 셀에 복수의 전송블록이 수신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX(Discontinuous
Transmission) 및 모두 NACK(Negat ive Acknow 1 edgement )인 상태는 동일한 비트 값으 로 매핑되고, 복수의 전송블록 전송을 지원하도록 설정된 셀에 하나의 전송블록만 수신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX 및 모두 NACK인 상태는 서로 다른 비트 값으로 매핑되는 방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에서 복수의 샐이 구성된 상황에 서 상향링크 제어 정보를 전송하도톡 구성된 통신 장치에 있어서, 무선 주파수
(Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 상기 복수 의 셀 상에서 하나 이상의 서브프레임을 통해 하나 이상의 PDCC Physical Downlink Control Channel) 신호 및 하나 이상의 PDSCH (Physical Downlink Shared CHannel) 신 호 중 적어도 하나를 수신하는 단계; 및 상기 하나 이상의 PDCCH 신호 및 하나 이상 의 PDSCH 신호에 대한 전체 수신 응답 정보를 생성하되, 상기 전체 、수신 응답 정보 를 구성하는 복수의 수신 웅답 정보 부분은 각 셀 및 각 서브프레임 별로 생성되도 록 구성되며, 상기 복수의 전송블록 전송을 지원하도록 설정된 샐에 복수의 전송블 록이 수신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX(Discont inuous Transmission) 및 모두 NACK(Negat ive Acknowledgement )인 상태 는 동일한 비트 값으로 매핑되고, 복수의 전송블록 전송을 지원하도록 설정된 셀에 하나의 전송블록만 수신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX 및 모두 NACK인 상태는 서로 다른 비트 값으로 매핑되는 통신 장치가 제공된다. 바람직하게, 상기 복수의 전송블록 전송을 지원하도록 설정된 셀에 대한 수신 웅답 정보를 생성하는 것은, 해당 서브프레임에 대한 수신 웅답 상태를 아래 표에 따라 대웅하는 비트 값으로 매핑하는 것을 포함한다:
Figure imgf000005_0001
여기서, A~D는 각각 서로 다른 2비트 값을 나타낸다.
바람직하게, 상기 전체 수신 응답 정보의 페이로드 사이즈는 상기 통신 장치 에 대해 구성된 셀의 개수에 따라 주어진다.
바람직하게, 상기 양상은 상기 전체 수신 응답 정보의 전송을 위한 PUCCH(Physical Upl ink Control Channel)전송 전력을 결정하는 것을 더 포함하고,상 기 PUCCH 전송 전력은 상기 전체 수신 응답 정보를 구성하는 비트 중 유효 비트의 개수에 기초하여 결정된다.
바람직하게, 상기 양상은 상기 전체 수신 웅답 정보의 전송을 위한 PUCCH 전 송 전력을 결정하는 것을 더 포함하고, 상기 PUCCH 전송 전력은 상기 복수의 셀 중 활성화된 셀의 개수에 기초하여 결정된다.
바람직하게, 상기 전체 수신 응답 정보는 셀 인덱스가 증가하는 순서로 연접 된 복수의 셀 별 수신 웅답 정보 부분을 포함하고, 각 셀 별 수신 웅답 정보 부분은 서브프레임 인덱스 순서로 연접된 하나 이상의 수신 웅답 정보 부분을 포함한다. 바람직하게, 상기 양상은 상기 전체 수신 응답 정보를 PUCCH 포맷 3을 이용하 여 전송하는 것을 더 포함한다.
【유리한 효과】 '
본 발명에 의하면, 무선 통신 시스템에서 제어 정보를 효율적으로 전송할 수 있다. 구체적으로, 복수의 셀이 구성된 상황에서 상향링크 제어 정보를 효율적으로 전송하고, 이를 위한 자원을 효율적으로 관리할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면 은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상 을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임 (radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 4는 하향링크 프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 6은 캐리어 병합 (Carrier Aggregation, CA) 통신 시스템을 예시한다. 도 7은 크로스-캐리어 스케줄링을 예시한다.
도 8~9는 PUCCH 포맷 3을 예시한다.
도 10은 본 발명의 일 실시예에 따른 ACK/NACK 전송 방안을 예시한다.
도 11은 본 발명의 일 실시예에 따른 단말 및 기지국 동작을 예시한다.
도 12는 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 【발명을 실시를 위한 형태]
이하의 기술은 CDMA(code division mult i le access) , FDMA( frequency division mult iple access) , TDMA(t ime division mult iple access) , 0FDMA(orthogonal frequency division multiple access) , SCᅳ FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communicat ions)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA는 UMTS Jni versa 1 Mobile Telecommunications System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTE( long term evolution)는 E—UTRA 를 사용하는 E— UMTS(Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향 링크에서 SC— FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크 (Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크 (Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류 /용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (Primary
Synchronization Channel , P-SCH)및'부동기 채널 (Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널 (Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 샐 탐색 단계에서 하향링크 참조 신호 (Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널 (Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (Physical Random Access Channel, PRACH)을 통해 프리앰블 (preamble)을 전송하고 (S103), 물리하향링크제어채널 및 이에 대웅하는 물리하향링크공유 채널을 통해 프리앰블에 대한 웅답 메시지를 수신할 수 있다 (S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송 (S105) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신 (S106)과 같은 충돌해결절차 (Content ion Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전송 절차로서 물리하향링크제어채널 /물리하향링크공유채널 수신 (S107) 및 물리상향링크공유채널 (Physical Uplink Shared Channel ,
PUSCH)/물리상향링크제어채널 (Physical Upl ink Control Channel , PUCCH)전송 (S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보 (Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK( Hybrid Automatic Repeat and reQuest Acknowledgement /Negat ive-AC ) , S (Schedul ing Request) , CQI (Channel Quality Indicator) , PMKPrecoding Matrix Indicator) , RKRank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK (간단히 , ACK) , 네거티브 ACK(NACK), DTX및 NACK/DTX중 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임의 구조를 예시한다 . 셀를라 OFDM 무선 패킷 통신 시스템에서, 상향링크 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI( transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 lnis이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 0FDMA를 사용하므로, OFDM심볼이 하나의 심볼 구간을 나타낸다. (FDM 심볼은 또한 SC-FDMA 심블 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록 (RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CPCnormal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
표준 CP가 사용되는 경우 하나와 술롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH (physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다. 도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은
2개의 하프 프레임 (half frame)으로 구성되며 , 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간 (Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD 방식은 동일한 주파수 대역을 시간 도메인에서 DL 서브프레임과 UL 서브프레임으로 나눠 사용한다. TDD 구성에 따라 DL 서브프레임: UL 서브프레임 = M:l을 설정될 수 있다. M은 하나의 UL 서브프레임에 대웅하는 DL 서브프레임의 개수이다. 따라서 , 단말은 M개의 DL 서브프레임 상의 복수의 PDSCH에 대한 ACK/NACK 응답을 하나의 UL 서브프레임에서 전송한다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함 한다ᅳ 하나의 하향링크 슬롯은 7(6)개의 OFDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소 (element) 는 자원 요소 (Resource Element, RE)로 지칭된다. 하나의 RB는 12X7(6)개의 RE를 포 함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, OFDM 심볼이 SC-FDMA 심 볼로 대체된다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4) 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대웅한다. 남은 OFDM 심볼은 PDSCHCPhysical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH (Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개 수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 웅답으로 HARQ AC /NACK( Hybrid Automatic Repeat request acknow 1 edgment /negat i ve-acknow 1 edgment ) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCKDownlink Control Informat ion)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, IB, 1C, ID,
2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그
(hop ing flag), RB할당, MCS(modulat ion coding scheme) , RV( redundancy version) ,
NDKnew data indicator) , TPC( transmit power control) , 사이클릭 쉬프트 DM
RS(demodulat ion reference signal), CQI (channel quality informat ion) 요정, HARQ 프로세스 번호, TPMI (transmitted precoding matrix indicator) , PMI (precoding matrix indicator) 확인 (confirmation) 등의 정보를 선택적으로 포함한다 다중ᅳ안테 나 기술을 구성하기 위한 전송 모드 및 DCI 포맷의 정보 컨텐츠는 다음과 같다. 전송 모드 (Transmission Mode)
• 전송 모드 1: Transmission from a single base station antenna port 0 전송 모드 2: Transmit diversity
• 전송 모드 3: Open- loop spatial multiplexing
0 전송 모드 4: Closed- loop spatial multiplexing
• 전송 모드 5: Multi-user MIMO
0 전송 모드 6: Closed-loop rankᅳ 1 precoding
• 전송 모드 7: Transmission using UE-specif ic reference signals
PCI 포맷
0 포1 0: Resource grants for the PUSCH transmissions (uplink)
• 포1 1: Resource assignments for single codeword PDSCH transmissions (transmission modes 1, 2 and 7)
• 포맷 1A: Compact signaling of resource assignments for single codeword PDSCH (all modes)
β포맷 IB: Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6)
• 포맷 1C: Very compact resource assignments for PDSCH (e.g. paging/broadcast system information)
9 포1 ID: Compact resource assignments for PDSCH using multi—user MIMO (mode 5)
• 포 2: Resource assignments for PDSCH for closed- loop MIMO operation (mode 4)
• 포 2A: Resource assignments for PDSCH for open- loop MIMO operation (mode 3)
• 포맷 3/3A: Power control co謹 ands for PUCCH and PUSCH with 2-bit/l-bit power adjustments
PDCCH는 하향링크 공유 채널 (downlink shared channel, DL—SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel, UL— SCH)의 전송 포 맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx파워 제어 명령, VoIPCVoice over IP)의 활성화 지시 정보 등을 나른다. 복 수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집합 (aggregat ion)상에서 전송된다. CCE는 PDCCH에 무선 채널 상 태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수 의 자원 요소 그룹 (resource element grou , REG)에 대웅한다. PDCCH의 포맷 및
PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC cyclic redundancy check)를 부가한 다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자 (예, R TKradio network temporary ident i f ier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자 (예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, paging-RNTI (P-RNTI)) 가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (system information block, SIC))를 위한 것일 경우, SI-RNTI (system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 웅답을 위한 것 일 경우, RA-RNTI (random access-RNTI )가 CRC에 마스킹 될 수 있다.
도 5는 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP길이에 따라 서로 다른 수의 SC-FDMA심불을 포함할 수 있다. 상향링크 서 브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 상향링크 제어 정보 (Uplink Control Information, UCI)를 전송하 는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정 보이다. 00K(0n— Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하 향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코 드워드 (Codeword, CW)에 대한 웅답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링 크 코드워드에 대한 웅답으로 ACK/NACK 2비트가 전송된다.
- CQI (Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. 포포포포포포포 ¬맷맷맷맷맷맷맷
MIMOCMultiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMKPrecoding Matrix Indicator), PTKPrecoding Type Indicator)등을 포함한다. 서 브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보 (UCI)의 양은 제어 정보 전 송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브 프레임에서 참조 신호 전송을 위한 SC— FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임 의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용 된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
표 1은 LTE에서 PUCCH포맷과 UCI의 매핑 관계를 나타낸다.
【표 1】
PUCCH 포맷 상향링크 제어 정보 (Uplink Control Information, UCI)
SR( Scheduling Request) (비변조된 파형)
1-비트 HARQ ACK/NACK (SR 존재 /비존재)
2-비트 HARQ ACK/NACK (SR 존재 /비존재)
CQI (20개의 코딩된 비트)
CQI 및 1— 또는 2ᅳ비트 HARQ ACK/NACK (20비트) (확장 CP만 해당)
CQ1 및 1—비트 HARQ ACK/NACK (20+1개의 코딩된 비트)
Figure imgf000017_0001
CQI 및 2—비트 HARQ ACK/NACK (20+2개의 코딩된 비트) 도 6은 캐리어 병합 (Carrier Aggregation, CA)통신 시스템을 예시한다. LTE-A 시스템은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상 /하향링크 주파수 블 록을 모다 더 큰 상 /하향링크 대역폭을 사용하는 캐리어 병합 (carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각각의 주파수 블록은 콤포넌트 캐 리어 (Component Carrier, CC)를 이용하여 전송된다. 콤포넌트 캐리어는 해당 주파수 블록을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다. 도 6을 참조하면, 복수의 상 /하향링크 콤포넌트 캐리어 (Component Carrier, CC)들을 모아서 더 넓은 상 /하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파 수 영역에서 서로 인접하거나 비—인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병 합도 가능하다. 예를 들어, DL CC 2개 UL CC 1개인 경우에는 2:1로 대웅되도록 구성 이 가능하다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반―정적으로 구성될 수 있디-. 또한, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 모니터링 /수 신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정 (cell— specific), 단말 그룹 특정 (UE group-specific) 또 는 단말 특정 (UE— specific) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC(Primary CC, PCC) (또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC(Secondary CC, SCO 로 지칭할 수 있다.
LTE-A는 무선 자원을 관리하기 위해 셀 (cell)의 개념을 사용한다. 셀은 하향 링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아 니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수 (또 는, DL CC)와 상향링크 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage) 는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수 (또는 PCC) 상에서 동작 하는 셀을 프라이머리 셀 (Primary Cell, PCell)로 지칭하고, 세컨더리 주파수 (또는 SCO 상에서 동작하는 셀을 세컨더리 셀 (Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 연결 설정 (initial connection establishment) 과정을 수행하 거나 연결 재 -설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 셀로 통칭 될 수 있다. 따라서, RRC_C0NNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거 나 캐리어 병합을 지원하지 않는 단말의 경우 PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, R C_C0NNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우, 하 나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화 (initial security activation) 과 정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이 상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성할 수 있다.
크로스ᅳ캐리어 스케줄링 (또는 크로스 -CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있 다. 크로스 CC 스케줄링을 위해, 캐리어 지시 필드 (carrier indicator field, CIF) 의 도입이 고려될 수 있다ᅳ PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링 (예 , RRC 시그널링 )에 의해 반 -정적 및 단말 -특정 (또는 단말 그룹-특정) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.
ᅳ CIF 디스에이블드 (disabled): DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당
ᅳ CIF 이네이블드 (enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합 된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH또는 PUSCH 자원을 할당 가능
CIF가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH 모니 터링 DL CC세트를 할당할 수 있다. PDCCH모니터링 DL CC세트는 병합된 전체 DL CC 의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH의 검 출 /디코딩을 '수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우,
PDCCH는 PDCCH 모니터링 DL CC 세트를 통해서만 전송된다. PDCCH 모니터링 DL CC 세 트는 단말 -특정 (UE-specific), 단말—그룹 -특정 또는 셀 -특정 (eel 1— speci f ic) 방식으 로 설정될 수 있다. 용어 "PDCCH모니터링 DL CC" 는 모니터링 캐리어, 모니터링 셀 등과 같은 등가의 용어로 대체될 수 있다. 또한, 단말을 위해 병합된 CC는 서빙 CC, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다.
도 7은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH 모니터링 DL CC로 설정되었다고 가정한디-.
DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에 이블 된 경우, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스 케줄링 하는 PDCCH만을 전송할 수 있다. 반면, 단말 -특정 (또는 단말 -그룹 -특정 또 는 셀—특정) 상위 계층 시그널링에 의해 CIF가 이네이블 된 경우, DL CC A (모니터링
DL CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른
CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH 모니터링 DL
CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다.
LTE-A 시스템에서는 복수의 DL CC를 통해 전송된 복수의 PDSCH에 대한 복수의
ACK/NACK 정보 /신호를 특정 UL CC를 통해 전송하는 것을 고려하고 있다. 이를 위해 기존 LTE에서의 PUCCH 포맷 la/lb를 이용한 ACK/NACK 전송과는 달리, 복수의 ACK/NACK정보를 조인트 코딩 (예, Reed-Muller code, Tail-biting convolut ional code 등)한 후 새로운 PUCCH포맷 (PUCCH포맷 3으로 지칭)을 이용하여 복수의 ACK/NACK정 보 /신호를 전송하는 것을 고려할 수 있다. PUCCH 포맷 3은 블록—확산 (Block-spreading)에 기반한 PUCCH 포맷이다. PUCCH 포맷 3을 이용한 ACK/NACK 전송 은 일 예로서, PUCCH 포맷 3은 ACK/NACK, CSI (예, CQI, PMI, RI, PTI 등), SR, 또는 이들 중 2 이상의 정보를 함께 전송하는데 사용될 수 있다.
도 8은 슬롯 레벨에서 PUCCH 포맷 3을 예시한다. PUCCH 포맷 3에서 하나의 심 볼 시퀀스는 주파수 영역에 걸쳐 전송되고 0CC( Orthogonal Cover Code) 기반의 시간 ᅳ도메인 확산을 이용하여 단말 다중화가 수행된다. 즉, 심볼 시퀀스가 0CC에 의해 시간-도메인 확산되어 전송되는 형태이다. 0CC를 이용하여 동일한 RB에 여러 단말들 의 제어 신호들을 다중화 시킬 수 있다.
도 8을 참조하면, 길이 -5 (SF(SpreadingFactor)=5)의 0CC(C1~C5)를 이용하여, 하나의 심볼 시뭔스 ({dl,d2,—})로부터 5개의 SC-FDMA 심볼 (즉, UCI 데이터 파트)이 생성된다. 여기서, 심볼 시퀀스 ({(11,(12,ᅳ})는 변조 심볼 시뭔스 또는 코드워드 비 트 시뭔스를 의미할 수 있다. 심볼 시퀀스 ({(11,(12,ᅳ})가 코드워드 비트 시퀀스를 의미할 경우, 도 8의 블록도는 변조 블록을 더 포함한다. 도면은 1 슬롯 동안 총 2 개의 RS 심볼 (즉, RS 파트)을 사용하였지만, 3개의 RS 심볼로 구성된 RS 파트를 사 용하고 SF=4의 0CC를 이용하여 구성된 UCI 데이터 파트를 사용하는 방식 등 다양한 웅용도 고려할 수 있다. 여기서, RS 심볼은 특정 사이클릭 쉬프트를 갖는 CAZAC 시 퀀스로부터 생성될 수 있다. 또한, RS는 시간 영역의 복수 RS 심볼에 특정 0CC가 적 용된 (곱해진) 형태로 전송될 수 있다. 블록-확산된 UCI는 SC-FDMA 심볼 단위로 FFT(Fast Fourier Transform)과정 , IFFTdnverse Fast Fourier Transform)과정을 거 쳐 네트워크로 전송된다. 즉, 블톡 -확산 기법은 제어 정보 (예, ACK/NACK등)를 기존 LTE의 PUCCH포맷 1 또는 2 계열과는 다르게 SC-FDMA 방식을 이용해 변조한다.
도 9는 서브프레임 레벨에서 PUCCH포맷 3을 예시한다.
도 9를 참조하면, 슬롯 0에서 심볼 시뭔스 ({ ^'Ο ίήΐ })는 한 SC— FDMA 심볼의 부반송파에 매핑되며, 0CC(C1~C5)를 이용한 블록-확산에 의해 5개의 SC-FDMA 심볼에 매핑된다. 유사하게, 슬롯 1에서 심볼 시뭔스 ({ί'12~ί'23})는 한 SC-FDMA심볼의 부 반송파에 매핑되며, 0CC(C1~C5)를 이용한 블록-확산에 의해 5개의 SC-FOMA 심볼에 매핑된다 . 여기서 , 각 슬롯에 도시된 심볼 시 ¾스({ ^'0 ~ ^'11}또는 { /'12~ί/'23})는 도 9의 심볼 시퀀스({(11,(12, })에 FFT 또는 FFT/IFFT가 적용된 형태를 나타낸디-. 심볼 시퀀스 ({ 0~ ll } 또는 {i/'12~c'23 })가 도 9의 심볼 시퀀스 ({dl,d2,".})에 FFT가 적용된 형태인 경우, SC-FDMA 생성을 위해 { 0〜 11} 또는 {/12~^23 }에 IFFT가 추가로 적용된다. 전체 심볼 시뭔스 ({c'0~c/'23})는 하나 이상의 UCI를 조인 트 코딩함으로써 생성되며, 앞의 절반 ({ί/'0~ί/'1ΐ})은 슬롯 0을 통해 전송되고 뒤의 절반 ( /'O i ll})은 슬롯 1을 통해 전송된다. 도시하지는 않았지만, 0CC는 슬롯 단 위로 변경될 수 있고, UCI 데이터는 SC— FDMA심볼 단위로 스크램블 될 수 있다.
PUCCH포맷 3을 위한 자원은 명시적으로 주어질 수 있다. 구체적으로, 상위 계 층 (예, RRC)에 의해 PUCCH 자원 세트가 구성되고, PDCCH의 ARI(ACK/NACK Resource Indicator) 값을 이용하여 실제 사용될 PUCCH자원이 지시될 수 있다. 표 2는 HARQ-ACK을 위한 PUCCH 자원을 명시적으로 지시하는 예를 나타낸다. 【표 2]
Figure imgf000023_0001
ARI: ACK/NACK Resource Indicator. 표 2에서 상위 계층은 RRC 계층을 포함하 고, ARI 값은 DL 그랜트를 나르는 PDCCH를 통해 지시될 수 있다. 예를 들어, ARI 값 은 SCell PDCCH및 /또는 상기 DAI초기 값에 대응되지 않는 하나 이상의 PCell PDCCH 의 TKXTransm Power Control) 필드를 이용해 지시될 수 있다.
단말이 다수의 DL/UL CC를 병합하고 있는 경우, 단말의 전력 소모를 줄이기 위해 CC를 활성화 /비활성화 (Activation/Deactivation)할 수 있다. 즉, 단말이 사용 할 수 있는 CC (예, PDSCH를 수신하거나 PUSCH흩 전송하는 CC)를 시그널링을 이용해 설정할 수 있다. CC 활성화 /비활성화는 Ll/L2( layer l/layer2) 시그널링 (예 , MAC 시 그널링)을 이용해 설정될 수 있다. DL 데이터 수신을 예로 들면, 단말은 구성된 (configured) DL CC 모두에 접속할 필요성이 없이 활성화된 DL CC에서만 DL 데이터 를 수신하므로 소모 전력을 절약할 수 있다. 여기서, 구성된 CC세트는 상위 계층 (예, RRC)신호로 사용 가능하다고 명령 받은 CC세트를 나타낸다. 활성화된 CC세트는 구 성된 CC 세트보다 작거나 같다. 즉, 활성화된 CC 세트는 구성된 CC 세트의 부분 집 합이다. CC 세트는 DL CC 세트, UL CC 세트 또는 이들의 조합일 수 있다.
실시예
본 발명에서는 복수의 CC (캐리어, 캐리어 자원, 주파수 자원, 샐 등과 등가이 다)가 병합된 경우에 PUCCH 포맷 3 (또는 새로운 PUCCH 포맷)을 이용하여 상향링크 제어 정보, 바람직하게는 ACK/NACK (다른 말로, HARQ-ACK)를 효율적으로 전송하는 방 안, 이를 위한 자원 할당 방안을 설명한다.
설명의 편의상, CC가 non-MIMO 모드로 설정된 경우, 해당 CC의 서브프레임 k 에서 최대 한 개의 전송블록 (Transport Block, TB) (전송블록은 코드워드와 등가이 다)이 전송될 수 있다고 가정한다. CC가 MIM0모드로 설정된 경우, 해당 CC의 서브 프레임 k에서 최대 m개 (예, 2개)의 전송블록 (혹은 코드워드)이 전송될 수 있다고 가 정한다. CC가 MIM0모드로 설정되었는지 여부는 상위 계층에 의해 설정된 전송 모드 를 이용하여 알 수 있다. 해당 CC에 대한 ACK/NACK비트 (즉, HARQ-ARQ 비트)의 개수 는 실제 전송된 전송블록 (흑은 코드워드)의 개수와 관계없이, 해당 CC에 대해 설정 된 전송 모드에 따라 1개 (non-MIMO) 또는 m개 (MIM0)가 할당된다고 가정한다.
먼저, 본 명세서에서 사용되는 용어에 대해 정리한다.
• HARQ-ACK: 하향링크 신호 (예, PDSCH 혹은 SPS release PDCCH)에 대한 수신웅답결과, 즉, ACK/NACK/DTX웅답 (간단히 , ACK/NACK웅답)을 나타낸다. ACK/NACK/DTX 웅답은 ACK, NACK, DTX 또는 NACK/DTX를 의미한다 . ACK과 NACK은 PDSCH에 대한 디코딩이 성공 /실패한 것을 나타낸다. DTX는 PDCCH 검출이 실패한 것을 나타낸다. 특정 CC/서브프레임에 대한 HARQ-ACK 흑은 특정 CC/서브프레임의 HARQ-ACK은 해당 CC/서브프레임과 연관된 (예, 해당 CC/서브프레임에 스케줄링된) 하향링크 신호에 대한 ACK/NACK 웅답을 나타낸다. PDSCH는 전송블록 혹은 코드워드로 대체될 수 있다.
• PUCCH인덱스: PUCCH자원에 대웅된다. PUCCH인덱스는 예를 들어 PUCCH자원 인덱스를 나타낸다. PUCCH 자원 인덱스는 직교 커버 (0C), 사이클릭 쉬프트 (CS) 및 PRB 중 적어도 하나로 매핑된다.
參 ARI (AC /NACK Resource Indicator): PUCCH 자원을 지시하기 위한 용도로 사용된다. 일 예로, ARI는 (상위 계층에 의해 구성된) 특정 PUCCH 자원 (그룹)에 대한 자원 변형 값 (예, 오프셋)을 알려주는 용도로 사용될 수 있다. 다른 예로, ARI는 (상위 계층에 의해 구성된) PUCCH자원 (그룹) 세트 내에서 특정 PUCCH자원 (그룹) 인덱스를 알려주는 용도로 사용될 수 있다. ARI는 SCC 상의 PDSCH에 대웅하는 PDCCH의 TPCCTransmit Power Control) 필드에 포함될 수 있다. PUCCH 전력 제어는 PCC를 스케줄링하는 PDCCH (즉, PCC 상의 PDSCH에 대응하는 PDCCH) 내의 TPC 필드를 통해 수행된다. 또한, ARI는 DAKDownlink Assignment Index) 초기 값을 가지면서 특정 셀 (예, PCell)을 스케줄링하는 PDCCH를 제외하고 남은 PDCCH의 TPC 필드에 포함될 수 있다. ARI는 HARQ-ACK자원 지시 값과 흔용된다.
• DAKDownlink Assignment Index): TDD 시스템에서 사용된다. PDCCH를 통해 전송되는 DCI에 포함된다. DAI는 PDCCH의 순서 값 또는 카운터 값을 나타낼 수 있다. 편의상, DL그랜트 PDCCH의 DAI는 DL DAI라고 지칭하고, IL그랜트 PDCCH 내의 DAI의 UL DAI라고 지칭한다.
PUCCH 포맷 3은 복수의 DL CC에서 수신된 하나 이상의 PDCCH 및 /또는 하나 이 상의 PDSCH에 대한 ACK/NACK을 나르는데 사용된다. PUCCH포맷 3을 위한 ACK/NAKC페 이로드 구성 방법으로 다음을 고려할 수 있다.
• 방법 1: PDSCH가 수신된 DL CC에 기초한 페이로드 - 단말은 실제 수신한 PDSCH에 맞는 페이로드 시퀀스를 구성해서 ACK/NACK을 전송할 수 있다. 예를 들어, 단말이 5개의 DL CC를 병합하고 있고, 모든 DL CC들이 MIM0 모드로 구성 (configuration)되어 있어서 CC당 최대 2개의 코 드워드를 수신할 수 있다고 가정한다. 만약, 단말이 어느 시점 (예, 서브프 레임)에 2개의 DL CC로만 MIM0 데이터를 수신하였을 경우에는 총 4 비트의 페이로드를 구성해서 ACK/NACK을 전송할 수 있다.
• 방법 2: 구성된 (configured) DL CC에 기초한 페이로드
- 단말은 모든 구성된 DL :에 맞는 페이로드 시뭔스를 구성해서 ACK/NACK을 전송할 수 있다. 예를 들어, 단말이 5개의 DL CC를 병합하고 있고, 모든 DL CC들이 MIM0 모드로 구성되어 있어서 CC당 최대 2개의 코드워드를 수신할 수 있다고 가정한다. 만약, 단말이 어느 시점 (예, 서브프레임)에 2개의 DL CC로만 데이터를 수신하였더라도 총 10비트 (5DLCCx2CW)의 페이로드 시퀀 스를 구성하여 ACK/NACK을 전송할 수 있다.
방법 1의 경우, 단말이 PDSCH를 스케줄링 하는 PDCCH를 검출하지 못한 경우 (PDCCH DTX), 기지국이 예상하는 ACK/NACK 페이로드와 단말이 전송하는 ACK/NACK 페 이로드가 불일치한다. 따라서, 기지국에서 ACK/NACK 검출에 실패할 확를이 높디-. 방법 2의 경우, 단말은 최대 페이로드 사이즈에 맞춰 ACK/NACK을 전송하므로 기지국과 단말 사이의 ACK/NACK페이로드 (구체적으로, 페이로드 사이즈, ACK/NACK위 치 등)에 관한 불일치 (misalignment)는 존재하지 않는다.
실시예 1
방법 2에서 PDCCH DTX를 고려할 경우, 단말은 기지국이 최대 페이로드 모두를 디코딩 할 수 있는 전력으로 ACK/NACK을 전송해야 한다. 즉, 단말이 2개의 DL CC를 통해서 PDSCH를 수신하였다고 할지라도 단말 입장에서는 나머지 3개의 DL CC에서 PDCCH DTX가 발생했을 수 있다. 따라서, 단말은 기지국이 5개의 DL CC 모두에 대한 ACK/NACK을 디코딩할 수 있는 전력으로 ACK/NACK을 전송해야 한다. 이 경우, 단말이 PDCCH 검출에 실패 (즉, PDCCH DTX)한 3개의 DL CC에 대한 ACK/NACK (비트)는 모두 NACK (또는 NACK/DTX커플링 )으로 설정된다.따라서, 방법 2의 경우, 단말이 ACK/NACK 전송을 위해 과도한 전력, 불필요한 전력을 할당하는 문제가 '발생할 수 있다.
따라서 , ACK/NACK의 페이로드는 구성된 DL CC의 개수에 맞추고, PUCCH 포맷 3 을 위한 전송 전력은 활성화된 DL CC의 개수에 맞추는 방안을 제안한다.
도 10은 본 발명의 일 실시예에 따른 ACK/NACK 전송 방안을 예시한다. 본 예 는 단말이 5개의 MIMO DL CC(DL CC#0 ~ DL CC#4)를 구성하고 있고, 그 중 2개의 DL CC(CC#0과 CC#2)만 활성화되어 있다고 가정한다.
도 10을 참조하면, 단말은 5개의 DL CC가 구성되어 있고 모든 DL CC가 2개의 전송블록 전송올 지원하는 전송 모드로 설정되어 있으므로 10비트의 ACK/NACK 페이 로드를 구성한다 (5 DL C02비트) (BPSK가정). ACK/NACK페이로드의 구성 시, 해당 DL CC에서 실제로 하향링크 신호 (예, PDSCH, 또는 SPS 해제를 지시하는 PDCCH)의 전송 이 있었는지 고려되지 않는다. ACK/NACK 페이로드는 DL CC 별로 구성된 복수의 ACK/NACK 부분으로 구성되며, 복수의 ACK/NACK 부분은 CC 인덱스 (혹은 셀 인덱스) 에 따라 순차적으로 연접된다. 구체적으로, c-번째 DL CC (혹은 서빙 셀)을 위한 HARQ-ACK 피드백 비트를 ^, ^ 라고 정의한다고 가정한다 (c≥0). Oc CK는 c_번 째 DL CC를 위한 HARQ-ACK 페이로드의 비트 수 (즉, 사이즈)를 나타낸다. c-번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거나 공간 번들링이 적용되는 경우, O/Ci =l로 주어진다. 반면, c-번째 DL CC에 대해, 복수 (예, 2)의 전 송블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, Oc ACK =2로 주어질 수 있다. 은 코드워드 0에 대한 HARQ-ACK을 나타내고, oc 은 코드워드 1에 대한 HARQ-ACK을 나타낸다.
한편, 실제로 PDCCH/PDSCH를 수신할 수 있는 DL CC는 활성 CC인 DL CC#0과 DL CC#2 밖에 없으므로 의미 있는 ACK/NACK이 전송될 수 있는 비트는 0, 1, 4, 5번 비 트뿐이디-. 만약, 단말이 DL CC 활성화 신호를 제대로 받았다면, 기지국은 이미 비활 성화된 DL CC에 대해서는 ACK/NACK이 전송되지 않을 것임을 미리 알고 있으므로 (apriory information), 이러한 정보를 이용하여 총 2개의 DL CC에 대해서만 ACK/NACK 검출을 시도할 수 있다. 따라서, 단말은 총 5개의 DL CC를 병합하고 있더 라도 활성화된 DL CC (예, 2개 DL CC)에 대한 ACK/NACK만을 제대로 전송할 수 있는 전 력만 할당하여 ACK/NACK을 전송할 수 있다.
구체적으로, 서빙 샐 (UL CC과 등가이다) c 및 서브프레임 i에서 PUCCH 전송을 위한 단말 전송 전력 PUCCH(0은 다음과 같이 주어진다.
【수학식 11
Figure imgf000028_0001
PCMAX,C(0는 서빙 셀 C를 위해 설정된 단말의 최대 전송 전력을 나타낸다. PUCCH 는 P0N0薩 AL PUCCH 와 0_UE— PUCCH 의 합으로 구성되는 파라미터이다. 尸 0 NOMINAL PUCCH와 ^ UE PUCCH는 상위 계층 (예, 계층)에 의해 제공된다.
PLC는 서빙 셀 c의 하향링크 경로 손실 추정치를 나타낸다 .
파라미터 ΔΡPUCCH(F)는 상위 계층에 의해 제공된다. 각각의 AF PUCCH(E) 값은
PUCCH 포맷 la 대비 해당 PUCCH 포맷에 대응되는 값을 나타낸다.
단말이 상위 계층에 의해 두 개의 안테나 포트에서 PUCCH를 전송하도록 구성된 (configured) 경우, 파라미터 은 상위 계층에 의해 제공된다. 그렇지 않은 경우, 즉 PUCCH가 단일 안테나 포트에서 전송되도록 구성된 경우, Δ (F')은 0이다. 즉, Δ ΰ( )는 안테나 포트 전송 모드를 고려한 전력 보상 '값에 해당한다.
/?(·)는 PUCCH 포맷 의존 (dependent) 값이다. PUCCH 포맷 3의 경우, = ^g + ¾-i 로 주어진다ᅳ nsRSR과 관련된 전력 보상 값을 나타낸다. 구체적으로, nSR는 서브프레임 i가 SR 전송을 위해 설정된 서브프레임이고 해당 서브프레임에 UL-SCH 전송이 있는 경우 0이고, 그렇지 않은 경우 1이다.
nHARQ 는 HARQ-ACK과 관련된 전력 보상 값을 나타낸다. 구체적으로 , "H RQ는
HARQ-ACK의 정보 비트 수에 대웅한다. 본 예에 따르면, Q는 활성화된 DL CC의 개수를 고려하여 정해진다. 이로 제한되는 것은 아니지만, / ^ ^+^ᅳ^ :!로 정의될 수 있다. ^은 활성화된 DL CC의 총 개수를 나타내고, ( 2는 활성화된 DL CC 중에서 m (예, m=2)개의 전송 블록 전송을 지원하는 전송 모드가설정된 활성화된 DL
CC의 개수를 나타낸다. 도 10의 예에서 "™/¾? =4이다. g(0는 현재 PUCCH 전력 제어 조정 상태 (adjustment state)를 나타낸다. 구체
M-\
적으로, g(i) = g(i-1)+∑SPUCCH(i-/cm)로 주어질 수 있다. g(0)은 리셋 후 첫 번째 값
m=0
이다. ^UCCH 는 단말 특정 정정 (correct ion) 값이며 TPC 커맨드라고도 불린다. UCCH는 PCell의 경우 DCI 포맷 1A/1B/1D/1/2A/2/2B/2C를 가진 PDCCH에 포함된다. 또한, jCCH는 DCI 포맷 3/3A를 가진 PDCCH상에서 다른 단말 특정 PUCCH정정 값과 조인트 코딩된다.
실시예 2
PUCCH 포맷 3을 위한 ACK/NACK 페이로드를 구성된 (configured) DL CC에 기초 하여 구성하는 경우, 복수의 코드워드 (전송블록과 등가이다) 전송을 지원하도록 설 정된 DL CC (MIMO DL CC)에 대해 단말은 실제 수신된 코드워드의 개수와 관계 없이 항상 2비트 ACK/NACK을 전송한다. 이 경우, 각각의 ACK/NACK 비트는 첫 번째 및 두 번째 코드워드에 대한 HARQ-ACK을 나타낸다. 만약, MIMO DL CC에서 단일 코드워드만 을 전송하는 PDSCH를 수신한 경우에 단말은 두 번째 코드워드에 대한 HARQ-ACK을 NACK (혹은 NACK/DTX)로 설정한다.
하지만, MIMO DL CC에서 단일 코드워드만을 전송하는 PDSCH를 수신한 경우에 단말은 해당 DL CC에 대한 2비트 ACK/NACK 중 실제 2개의 ACK/NACK 상태만을 사용하 면 되므로 2개의 ACK/NACK 상태가 남는다. 따라서 , 본 예에서는 MIMO DL CC에서 단 일 코드워드만을 전송하는 PDSCH를 받았을 경우, NACK과 PDCCH DTX를 디커플링 (decoupling) 하는 방안을 제안한다.
표 3은 본 발명의 일 실시예에 따른 ACK/NACK 비트 구성 방안을 예시한다. 표 에서 HARQ-ACK과 ACK/NACK 페이로드를 구성하는 비트 값의 대웅 관계는 일 예로서 다양하게 변형될 수 있다.
【표 3】
Figure imgf000031_0001
표 3을 보면 , MIM0DLCC에서 복수의 코드워드가 수신된 경우, 해당 MIMO DL CC 에 대해 DTX (PDCCH 검출 실패)와 모두 NACK인 HARQ-ACK(s)은 동일한 ACK/NACK 페 이로드 비트 값에 매핑된다. 반면, 복수의 MIMO DL CC에서 하나의 코드워드만 수신 된 경우, 해당 MIMO DL CC에 대해 DTX와 모두 NACK인 HARQ-ACK(s)은 서로 다른 비 트 값에 매핑된다. 일 예로, 단말은 MIMO DL CC에서 단일 코드워드를 수신한 경우,
NACK은 이로, ACK은 10으로, DTX는 00으로 매핑할 수 있다.
따라서 , 단말은 MIM0DLCC에서 단¾ 코드워드를 수신한 경우, 해당 MIM0DLCC 에 대한 ACK/NACK 페이로드 구성 시 NACK와 DTX를 분리할 수 있다. 또한, 기지국도 해당 MIMO DL COfl 대해 DTX와 NACK을 구분할 수 있다.
또한, 상술한 바와 같이, ACK/NACK의 페이로드는 구성된 (configured) DL CC의 개수에 맞추고, 전력은 활성화된 (activated) DL CC의 개수에 맞춰 생성될 수 있다. 따라서, 활성화된 MIMO DL CC에서 단일 코드워드를 수신한 경우 단말이 DTX 디커플 링을 위해 추가 전력을 할당한다거나 전력을 조절할 필요가 없다는 이점이 있다. 도 11은 본 발명의 일 실시예에 따른 단말 및 기지국 동작을 예시한다. 본 예 는 PUCCH 포맷 3을 이용하여 ACK/NACK을 전송되도록 설정되었다고 가정한다.
도 11을 참조하면, 기지국과 단말은 복수의 DL CC (샐과 등가이다)를 구성한다 (S1102). 복수의 DL CC는 MIMO DL CC및 /또는 Non-MIMO DL CC를 포함한다. MIMO DL CC 는 최대 m (예, m=2)의 코드워드 전송을 지원하는 전송 모드로 설정된 DL CC이고, Non-MIMO DL CC는 단일 코드워드 전송을 지원하는 전송 모드로 설정된 DLCC이다. 이 후, 기지국은 단말에게 MIMO DL CC를 통해 단일 코드워드를 전송한다 (S1104). 단계 S1104는 본 발명과 관련된 부분만을 도시한 것으로서, 기지국은 단계 S1104 수행되 는 서브프레임에서 다른 DL CC를 통해 코드워드를 단말에게 전송할 수 있다.
이후, 단말은 PUCCH 포맷 3을 위한 ACK/NACK 페이로드를 기지국에게 피드백한 다 (S1106). ACK/NACK 페이로드는 복수의 CC 별 ACK/NACK 부분으로 구성되며 이들은 샐 인덱스에 따라 순차적으로 연접된다. 또한, 각각의 CC 별 ACK/NACK 부분의 비트 수는 해당 CC에 대해 설정된 전송 모드에 따라 1비트 또는 m비트 (예, m=2)로 주어진 다. 이때, 단계 S1104에 해당하는 DL CC (즉, 단일 코드워드가 수신된 MIMO DL CC) 에 대한 ACK/NACK부분 구성 시, DTX 및 모두 NACK인 상태는 디커플링된다 (예, 표 3 참조). 반면, 복수의 코드워드가 수신된 MIMO DL CC의 경우, 해당 DL CC에 대한 ACK/NACK부분 구성 시, DTX 및 모두 NACK인 상태는 서로 커플링된다.
MIMO DL CC에서 단일 코드워드 전송이 있었던 경우, 기지국과 단말은 해당
MIMO DL CC에 대해 DTX와 모두 NACK인 상태를 구분할 수 있다. 따라서, 기지국과 단 말은 DTX 및 NACK 디커플링에 따른 동작을 수행할 수 있다 (S1108). 예를 들어, MIM0
DL CC에서 단일 코드워드 전송이 있었고, 해당 MIMO DL CC에 대한 ACK/NACK 정보가
NACK을 지시한다고 가정하자. 본 발명에 따르면, NACK과 DTX가 디커플링되므로, 상 기 ACK/NACK 정보는 오로지 PDSCH 디코딩 실패만을 의미한다. 즉, PDCCH 신호는 성 공적으로 전송되었으나 대웅하는 PDSCH 신호의 디코딩이 실패한 경우이다. 또한,
MIMO DL CC에서 DTX발생 시, 단말은 해당 MIMO DL CC에서 단일 코드워드 전송이 있 었는지 복수의 코드워드 전송이 있었는지 알 수 없다. 그러나, 기지국은 단말에게 전송한 코드워드의 개수에 대한 정보를 알고 있으므로, 본 예에 따른 제안 방법을 적용할 수 있다. 즉, 단말로부터 MIMO DL CC에 대해 DTX를 지시하는 ACK/NACK 정보 를 수신한 경우, 기지국은 해당 MIMO DL CC에 단일 코드워드가 스케줄링 된 경우
ACK/NACK정보를 DTX로 해석하고ᅳ기지국은 해당 MIMO DL CC에 복수의 코드워드가 스 케줄링 된 경우 ACK/NACK 정보를 NACK/DTX로 해석할 수 있다.
본 예에 따르면, 기지국은 단말에 대한 전송 실패가 PDCCH 및 PDSCH모두에서 발생했는지 , PDSCH에서만 발생했는지 인지할 수 있다. 따라서, 기지국은 전송 실패 가 발생한 물리 채널을 고려하여 전송 신뢰도를 높이기 위한 동작을 수행할 수 있 다. 예를 들어, DTX는 PDCCH검출 실패를 의미하므로, 기지국은 PDCCH신호의 전송 신 뢰도를 높이기 위해 PDCCH에 대한 전송 전력을 높일 수 있다. 또한, DTX의 경우, 단 말은 PDSCH 신호 자체를 인식 /수신할 수 없다. 만약, 손실된 PDSCH 신호가 전송 블 록의 초기 전송을 위한 리던던시 버전이 포함하고 있었다면, 기지국은 HARQ 동작에 따라 PDSCH를 재전송하는 경우 이전과 동일한 리던던시 버전을 전송할 수 있다. 초 기 전송을 위한 리던던시 버전에는 전송블록에 대한 시스템 비트가 포함되기 때문 이다. 또한, NACK은 PDSCH 디코딩 실패를 의미하므로, 기지국은 PDSCH 신호를 재전 송하는 경우에 PDSCH의 부호화율, 전송 전력 등을 조정하여 전송 신뢰도를 높일 수 있다. 또한, NACK이 발생한 PDSCH가 초기 전송을 위한 리던던시 버전을 포함하고 있 는지 여부에 따라 재전송 PDSCH에 실리는 리던던시 버전을 조정할 수 있다. 편의상, 상술한 설명은 CA FDD시스템을 중심으로 예시되어 있다. 그러나, 본 발명은 CA TDD 시스템에도 적용될 수 있다. TDD 방식은 동일한 주파수 대역을 시간 도메인에서 DL서브프레임과 UL서브프레임으로 나눠 사용한다 (도 2(b) 참조). 따라 서 , 하나 이상의 하향링크 서브프레임에 대한 ACK/NACK이 대응하는 단일 상향링크 서브프레임을 통해 전송된다는 점을 제외하고, CA TDD 시스템은 CA FDD 시스템과 기 본적으로 동일하다. 구체적으로, PUCCH포맷 3을 위한 ACK/NACK페이로드 구성 시, 각 DL CC를 위한 ACK/NACK부분은 하나 이상의 서브프레임에 대한 ACK/NACK을 포함한다. 이 경우, 각 CC를 위한 ACK/NACK부분은 서브프레임 별로 생성된다.
보다 구체적으로, c-번째 DL CC (혹은 서빙 셀)을 위한 HARQ— ACK피드백 비트 를 ^^^ ,.·시^니라고 정의한다고 가정한다 (c≥0). O K는 cᅳ번째 DLCC를 위한
HARQ-ACK페이로드의 비트 수 (즉, 사이즈)를 나타낸다. c-번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거나 공간 번들링이 적용되는 경우, 0χ 로 주어질 수 있다. 반면, c-번째 DL CC에 대해, 복수 (예, 2)의 전송블톡 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, < K=2 로 주어질 수 있다. 는 c-번째 DL CC에서 ACK/NACK 피드백이 필요한
DL서브프레임의 개수를 나타낸다. UL그랜트 PDCCH의 UL DAI 필드를 통해 지시 되거나, M으로 주어질 수 있다. M은 HARA— ACK페이로드가 전송되는 UL서브프레임에 대웅하는 DL서브프레임의 개수를 나타낸다.
c-번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거 나 공간 번들링이 적용되는 경우, CC별 HARA-ACK페이로드 내에서 각 ACK/NACK의 위 치는 로 주어진다. DAI(k)는 DL서브프레임 에서 검출된 PDCCH의 DL DAI 값을 나타낸다. 반면, c-번째 DL CC에 대해, 복수 (예, 2)의 전송블록 전송을 지원하 는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, CC 별 HARA— ACK 페이 로드 내에서 각 ACK/NACK의 위치는 022 H로 주어진다. ^2 -2 는 코드워드 0을 위한 HARQ-ACK을 나타내고, 0 ^(k 는 코드워드 1을 위한
HARQ— ACK을 나타낸다.
도 12는 본 발명에 실시예에 작용될 수 있는 기지국 및 단말을 예시한다. 무 선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.
도 12를 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio Frequency, RF)유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연결되 고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF유닛 (116)은 프로세 서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제 안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (124)는 프로세서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되 지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동 작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하 다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수산 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기 지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에 서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다 른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB), 억세스 포인트 (access point) 등의 용어에 의해 대 체될 수 있다. 또한, 단말은 UE User Equi ment), MS(Mobile Station), MSS (Mobile
Subscriber Station) 등의 용어로 대체될 수 있다. 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어
(fir丽 are), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs pplication specific integrated circuits) , DSPs(digital signal processors) , DSPDsCdigi tal signal processing devices) , PLDs (pr ogr ammab 1 e logic devices) , FPGAs(f ield programmable gate arrays) , 프로세서 , 콘트롤러 , 마이크로 콘트를러, 마이크로 프 로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단 에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적 으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에 서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위】
【청구항 1】
무선 통신 시스템에서 복수의 셀이 구성된 통신 장치에서 상향링크 제어 정 보를 전송하는 방법에 있어서,
상기 복수의 셀 상에서 하나 이상의 서브프레임을 통해 하나 이상의
PDCCHCPhysical Downlink Control Channel) 신호 및 하나 이상의 PDSCH (Physical Downlink Shared CHannel) 신호 중 적어도 하나를 수신하는 단계; 및
상기 하나 이상의 PDCCH 신호 및 하나 이상의 PDSCH 신호에 대한 전체 수신 응답 정보를 생성하되, 상기 전체 수신 웅답 정보를 구성하는 복수의 수신 웅답 정 보 부분은 각 셀 및 각 서브프레임 별로 생성되는 단계를 포함하고,
상기 복수의 전송블록 전송을 지원하도록 설정된 셀에 복수의 전송블록이 수 신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX(Discontinuous Transmission) 및 모두 NACK(Negat ive Acknowledgement)인 상태는 동일한 비트 값으 로 매핑되고,
복수의 전송블록 전송을 지원하도록 설정된 셀에 하나의 전송블록만 수신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX 및 모두 NACK인 상태는 서로 다른 비트 값으로 매핑되는 방법.
【청구항 2】
거) 1항에 있어서,
상기 복수의 전송블록 전송을 지원하도록 설정된 셀에 대한 수신 응답 정보 를 생성하는 것은, 해당 서브프레임에 대한 수신 웅답 상태를 아래 표에 따라 대웅 하는 비트 값으로 매핑하는 것을 포함하는 방법:
Figure imgf000039_0001
여기서, A~D는 각각 서로 다른 2비트 값을 나타낸다.
【청구항 3】
제 1항에 있어서,
상기 전체 수신 웅답 정보의 페이로드 사이즈는 상기 통신 장치에 대해 구성 된 샐의 개수에 따라 주어지는 방법.
【청구항 4】
제 1항에 있어서,
상기 전체 수신 웅답 정보의 전송을 위한 PUCCH(Physical Uplink Control Channel) 전송 전력을 결정하는 단계를 더 포함하고, 상기 PUCCH 전송 전력은 상기 전체 수신 응답 정보를 구성하는 비트 중 유효 비트의 개수에 기초하여 결정되는 방법 .
【청구항 5】
게 1항에 있어서,
상기 전체 수신 웅답 정보의 전송을 위한 PUCCH 전송 전력을 결정하는 단계를 더 포함하고, 상기 PUCCH 전송 전력은 상기 복수의 샐 중 활성화된 셀의 개수에 기 초하여 결정되는 방법.
【청구항 6]
제 1항에 있어서,
상기 전체 수신 웅답 정보는 셀 인덱스가 증가하는 순서로 연접된 복수의 셀 별 수신 웅답 정보 부분을 포함하고, 각 샐 별 수신 응답 정보 부분은 서브프레임 인덱스 순서로 연접된 하나 이상의 수신 웅답 정보 부분을 포함하는 방법.
【청구항 7】
제 1항에 있어서,
상기 전체 수신 웅답 정보를 PUCCH 포맷 3을 이용하여 전송하는 단계를 더 포 함하는 방법 .
【청구항 8】
무선 통신 시스템에서 복수의 셀이 구성된 상황에서 상향링크 제어 정보를 전송하도록 구성된 통신 장치에 있어서,
무선 주파수 (Radio Frequency, RF) 유닛; 및
프로세서를 포함하고,
상기 프로세서는 상기 복수의 셀 상에서 하나 이상의 서브프레임을 통해 하 나 이상의 PDCCH(Physical Downlink Control Channel) 신호 및 하나 이상의 PDSCHCPhysical Downlink Shared CHannel) 신호 중 적어도 하나를 수신하는 단계 ; 및 상기 하나 이상의 PDCCH 신호 및 하나 이상의 PDSCH 신호에 대한 전체 수신 응답 정보를 생성하되, 상기 전체 수신 웅답 정보를 구성하는 수신 웅답 정보 부분 은 각 샐 및 각 서브프레임 별로 생성되도록 구성되며,
상기 복수의 전송블록 전송을 지원하도록 설정된 셀에 복수의 전송블록이 수 신된 서브프레임이 있는 경우, 상기 샐 및 서브프레임에 대해 DTX(Discontinuous Transmission) 및 모두 NACK( Negative Acknowledgement)인 상태는 동일한 비트 값으 로 매핑되고,
복수의 전송블록 전송을 지원하도록 설정된 셀에 하나의 전송블록만 수신된 서브프레임이 있는 경우, 상기 셀 및 서브프레임에 대해 DTX 및 모두 NACK인 상태는 서로 다른 비트 값으로 매핑되는 통신 장치 .
【청구항 9]
제 8항에 있어서,
상기 복수의 전송블록 전송을 지원하도록 설정된 셀에 대한 수신 응답 정보 를 생성하는 것은, 해당 서브프레임에 대한 수신 웅답 상태를 아래 표에 따라 대응 하는 비트 값으로 매핑하는 것을 포함하는 통신 장치:
Figure imgf000041_0001
여기서, A~D는 각각 서로 다른 2비트 값을 나타낸다.
【청구항 10】
제 8항에 있어서,
상기 전체 수신 웅답 정보의 페이로드 사이즈는 상기 통신 장치에 대해 구성 된 셀의 개수에 따라 주어지는 통신 장치.
【청구항 11】 제 8항에 있어서,
상기 프로세서는 또한 상기 전체 수신 웅답 정보의 전송을 위한 PUCCHCPhysical Uplink Control Channel) 전송 전력을 결정하도록 구성되고, 상기 PUCCH 전송 전력은 상기 전체 수신 웅답 정보를 구성하는 비트 중 유효 비트의 개수 에 기초하여 결정되는 통신 장치 .
【청구항 12】
제 8항에 있어서,
상기 프로세서는 또한 상기 전체 수신 웅답 정보의 전송을 위한 PUCCH(Physical Uplink Control Channel) 전송 전력을 결정하도록 구성되고, 상기 PUCCH 전송 전력은 상기 복수의 셀 중 활성화된 셀의 개수에 기초하여 결정되는 통 신 장치 .
【청구항 13]
거 18항에 있어서,
상기 전체 수신 응답 정보는 셀 인텍스가 증가하는 순서로 연접된 복수의 셀 별 수신 웅답 정보 부분을 포함하고, 각 셀 별 수신 웅답 정보 부분은 서브프레임 인덱스 순서로 연접된 하나 이상의 수신 응답 정보 부분을 포함하는 통신 장치 . 【청구항 14]
제 8항에 있어서,
상기 프로세서는 또한 상기 전체 수신 응답 정보를 PUCCH 포맷 3을 이용하여 전송하도록 구성된 통신 장치 .
PCT/KR2011/007409 2010-10-08 2011-10-06 제어 정보를 전송하는 방법 및 이를 위한 장치 WO2012047038A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20137011560A KR20130118878A (ko) 2010-10-08 2011-10-06 제어 정보를 전송하는 방법 및 이를 위한 장치
US13/876,064 US9014097B2 (en) 2010-10-08 2011-10-06 Method for transmitting control information and device therefor
CN201180048714.4A CN103155468B (zh) 2010-10-08 2011-10-06 用于传送控制信息的方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39108210P 2010-10-08 2010-10-08
US61/391,082 2010-10-08

Publications (2)

Publication Number Publication Date
WO2012047038A2 true WO2012047038A2 (ko) 2012-04-12
WO2012047038A3 WO2012047038A3 (ko) 2012-05-31

Family

ID=45928235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007409 WO2012047038A2 (ko) 2010-10-08 2011-10-06 제어 정보를 전송하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US9014097B2 (ko)
KR (1) KR20130118878A (ko)
CN (1) CN103155468B (ko)
WO (1) WO2012047038A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984804A (zh) * 2012-12-18 2013-03-20 重庆邮电大学 TD-LTE系统中eNB端HARQ反馈信息调度方法及装置
US11546117B2 (en) * 2017-11-17 2023-01-03 Qualcomm Incorporated Techniques and apparatuses for hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for carrier aggregation in new radio

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073779B2 (ja) * 2010-04-30 2012-11-14 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及びユーザ端末
US9172513B2 (en) 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
US9635624B2 (en) * 2011-02-22 2017-04-25 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
US20140307694A1 (en) * 2011-11-07 2014-10-16 Broadcom Corporation Uplink Transmissions and Grants in Extension Carrier
CN105227266B (zh) 2012-01-12 2019-06-14 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
US9877306B2 (en) * 2012-03-09 2018-01-23 Sun Patent Trust Wireless communication terminal device and control channel forming method
CN104144030B (zh) * 2013-05-09 2019-05-10 中兴通讯股份有限公司 数据发送、接收方法、数据发送及接收端
WO2016161602A1 (en) * 2015-04-09 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Pucch resource allocation and fallback operation
US9686742B1 (en) * 2015-09-10 2017-06-20 Mbit Wireless, Inc. Method and apparatus to reduce power consumption in standby mode for wireless communication systems
WO2019028800A1 (zh) 2017-08-10 2019-02-14 华为技术有限公司 终端模式获取方法、装置及设备
US11412461B2 (en) 2018-03-05 2022-08-09 Lg Electronics Inc. Method for transmitting uplink channel in wireless communication system and device for supporting the same
US11303419B2 (en) * 2018-04-06 2022-04-12 Qualcomm Incorporated Semi-static HARQ-ACK codebook with multiple PDSCH transmissions per slot
CN109150422B (zh) * 2018-08-16 2021-11-16 海能达通信股份有限公司 一种数据传输方法及终端
CN111277361B (zh) * 2019-03-28 2021-06-18 维沃移动通信有限公司 传输块大小确定方法和通信设备
US11350477B2 (en) * 2019-03-29 2022-05-31 Qualcomm Incorporated Control signaling after primary cell link failure
WO2022027562A1 (en) * 2020-08-07 2022-02-10 Lenovo (Beijing) Limited Configuring sounding reference signal resource sets

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8121082B2 (en) * 2008-02-05 2012-02-21 Nokia Siemens Networks Oy DTX detection when ACK/NACK is transmitted with scheduling request
KR101573072B1 (ko) * 2008-08-27 2015-12-01 엘지전자 주식회사 무선통신 시스템에서 제어정보 전송방법
CN101662833A (zh) 2009-09-29 2010-03-03 中兴通讯股份有限公司 上行混合重传反馈信息分量载波的选择方法及装置
EP2522089A4 (en) * 2010-01-08 2016-11-09 Nokia Solutions & Networks Oy DOWNLINK CONTROL SIGNALING FOR LAND CONNECTION
KR101701305B1 (ko) * 2010-06-21 2017-02-13 주식회사 팬택 반송파 집합화 환경에서 상향제어정보를 송수신하는 방법 및 장치
US20120113827A1 (en) * 2010-11-08 2012-05-10 Sharp Laboratories Of America, Inc. Dynamic simultaneous pucch and pusch switching for lte-a
CN102651678B (zh) * 2011-02-23 2015-07-22 华为技术有限公司 控制信息的传输方法、装置及系统
US9363753B2 (en) * 2011-07-19 2016-06-07 Qualcomm Incorporated Sleep mode for user equipment relays
US8953635B2 (en) * 2012-05-17 2015-02-10 Sharp Kabushiki Kaisha Devices for sending and receiving feedback information
US9462520B2 (en) * 2013-01-21 2016-10-04 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for using enhanced receiver and gaps when handling interference

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: 'A/N Codebook Design Aggregation using Format 2 and DFT-D-OFDM' 3GPP TSG-RAN WG1 MEETING #6LBIS, RL-103886 28 June 2010, *
HUAWEI: 'HARQ DTX within the agreed ACK/NACK Framework' 3GPP TSG-RAN WG1 MEETING #62, RL-104499 23 August 2010, *
LG ELECTRONICS: 'Further details of ACK/NACK selection method' 3GPP TSG-RAN WG1 MEETING #62, RL-104641 23 August 2010, *
SAMSUNG: 'UL HARQ-ACK Multiplexing: Mapping for 4 Bits' 3GPP TSG-RAN WG1 MEETING #62, RL-104577 23 August 2010, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984804A (zh) * 2012-12-18 2013-03-20 重庆邮电大学 TD-LTE系统中eNB端HARQ反馈信息调度方法及装置
US11546117B2 (en) * 2017-11-17 2023-01-03 Qualcomm Incorporated Techniques and apparatuses for hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for carrier aggregation in new radio

Also Published As

Publication number Publication date
CN103155468B (zh) 2015-09-16
US20130195063A1 (en) 2013-08-01
WO2012047038A3 (ko) 2012-05-31
KR20130118878A (ko) 2013-10-30
US9014097B2 (en) 2015-04-21
CN103155468A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
US9800394B2 (en) Method and apparatus for transmitting control information
JP6316871B2 (ja) 信号送受信方法及びそのための装置
KR102008819B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
US10862607B2 (en) Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same
US9225503B2 (en) Method for transmitting/receiving data in wireless communication system and base station for same
KR102216247B1 (ko) 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
US10039121B2 (en) Scheduling method for device-to-device communication and apparatus for same
EP2709305B1 (en) Method and apparatus for transmitting control information
KR101801579B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
US9014097B2 (en) Method for transmitting control information and device therefor
US20150237611A1 (en) Method and device for transmitting control information
KR102001932B1 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US10314018B2 (en) Method for transmitting and receiving wireless signal and apparatus therefor
KR20140034803A (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2012015216A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20200033345A (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2014011007A1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20170053610A (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US20170085344A1 (en) Method for transmitting signal in wireless communication system and device therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048714.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830923

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13876064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011560

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11830923

Country of ref document: EP

Kind code of ref document: A2