WO2012153160A1 - Vacuna recombinante contra prrs en vector viral - Google Patents

Vacuna recombinante contra prrs en vector viral Download PDF

Info

Publication number
WO2012153160A1
WO2012153160A1 PCT/IB2011/000977 IB2011000977W WO2012153160A1 WO 2012153160 A1 WO2012153160 A1 WO 2012153160A1 IB 2011000977 W IB2011000977 W IB 2011000977W WO 2012153160 A1 WO2012153160 A1 WO 2012153160A1
Authority
WO
WIPO (PCT)
Prior art keywords
further characterized
recombinant vaccine
paramyxovirus
virus
orf
Prior art date
Application number
PCT/IB2011/000977
Other languages
English (en)
French (fr)
Inventor
Bernardo Lozano-Dubernard
Ernesto Soto-Priante
David Sarfati-Mizrahi
Jesus Horacio LARA-PUENTE
Original Assignee
Laboratorio Avi-Mex, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratorio Avi-Mex, S.A. De C.V. filed Critical Laboratorio Avi-Mex, S.A. De C.V.
Priority to BR112013028605A priority Critical patent/BR112013028605A2/pt
Priority to PCT/IB2011/000977 priority patent/WO2012153160A1/es
Priority to KR1020137032542A priority patent/KR20140033096A/ko
Priority to CN201180072146.1A priority patent/CN103649320A/zh
Priority to MX2013012994A priority patent/MX351695B/es
Priority to CA2834956A priority patent/CA2834956C/en
Priority to US14/116,319 priority patent/US10201602B2/en
Priority to EP11865316.1A priority patent/EP2712927B1/en
Priority to JP2014509846A priority patent/JP6101251B2/ja
Priority to TW101115990A priority patent/TWI602918B/zh
Publication of WO2012153160A1 publication Critical patent/WO2012153160A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • A61K39/17Newcastle disease virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18141Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention is related to the techniques used in the prevention and control of Porcine Reproductive and Respiratory Syndrome (PRRS), and more particularly is related to a recombinant viral vector vaccine that has an exogenous nucleotide sequence inserted which encodes proteins with antigenic activity against the PRRS virus, and a pharmaceutically acceptable carrier, adjuvant and / or excipient.
  • PRRS Porcine Reproductive and Respiratory Syndrome
  • vPRRS Porcine Reproductive and Respiratory Syndrome virus
  • ORFs open reading frames
  • ORF1a ORF1 b
  • ORF2 - ORF7 which in turn they give rise to the assembly of 7 structural proteins (gp 2a, 2b - 5, M and N) and at least 13 non-structural proteins (nsp 1a, nsp 1b - nsp 12), each with specific functions that conform to vPRRS .
  • This virus exhibits immunomodulatory behavior by selectively infecting the cells of the monocyte / macrophage line responsible for initiating the immune response and participating in the direction of the immune response, among other things.
  • the virus has been shown to be able to alter the immune response through a decrease in the production of interferon gamma (IFNG) and the late production of neutralizing antibodies and the production of immunological decoys (Yoo et al., 2009; Sang et al. , 2009; Patel et al., 2009; Chen et al., 2009; Lalit, 2009). Because the vPRRS has a high antigenic variability, its combat has been hindered by the traditional method based on various vaccination strategies.
  • IFNG interferon gamma
  • ORF 5 and ORF 6 have shown to have good expectations, being at least partially responsible for the virulence of the virus (Kim et al., 2009; Zuckermann et al., 2007), demonstrating that immunity is achieved with live products (replicants) since they are the only ones that provide protection against a challenge, measuring this protection through the reduction of post-challenge viremia.
  • ORF 5 mutants were developed in 2005 modifying their glycosylation and were tested as immunogens, finding that hypoglycosylation of GP5 increases the ability of vPRRS to induce neutralizing antibodies in vivo (Ansari et al, 2005).
  • the region between amino acid residues 1-25 is of high variability between American and European isolates, while the hypervariable region of the regions of the strains of each continent is grouped between amino acids 26 and 39 , near the terminal amino acid sequence.
  • ORF 5 can lead to atypical outbreaks of the disease such as the sow mortality and abortion syndrome (SAMS) or the "high fever” syndrome observed in China (Ferrari et al, 2003; Martelli, 2003 ).
  • SAMS sow mortality and abortion syndrome
  • the PRRS vaccine that is currently marketed is an attenuated virus, however it has the disadvantage that it can cause infection in pigs, with the consequent development of the disease and immune damage, especially in naive animals (highly susceptible without prior exposure) ; Additionally, it has been shown that this vaccine virus mutates and can be recombined with circulating field viruses creating new genetic variants of the virus. Likewise, studies have been carried out that show that the live attenuated vaccine is not entirely efficient in preventing disease, and it has even been previously shown that anti-vPRRS antibodies are involved in the mechanism of amplification of antibody-dependent infection (ADE).
  • ADE antibody-dependent infection
  • US Patent No. 7,722,878 describes recombinant PRRS vaccines consisting of a vector comprising a portion of vPRRS ORF 1, alone or in combination with another ORF. These vaccines are useful for inducing immune response in animals and for the prevention or reduction of the severity of conditions and symptoms caused by a vPRRS infection. To determine the efficacy of these vaccines, the number of pulmonary lesions characteristic of vPRRS was measured, reducing lung lesions to a maximum of 47%.
  • US Pat. No. 7,041,443 describes viruses, polynucleotides and polypeptides of isolated European PRRS, which can be used in the preparation of immunogenic compositions, which consist of an attenuated or inactivated vPRRS that includes a polynucleotide selected from various sequences
  • US Patent No. 6,207,165 describes a multivalent vaccine formula for the vaccination of pigs against pathogens involved in reproductive and / or respiratory pathologies, including PRRS.
  • the vaccine includes at least three types of vaccines, each comprising a plasmid and a gene with a porcine pathogenic valence, which in the case of PRRS may be the E, ORF 3 or M genes.
  • US Patent No. 5,998,601 describes nucleotide sequences of vPRRS strain VR-2332, which can encode ORFs or fragments thereof, as well as vaccines derived therefrom.
  • PRRS Porcine Reproductive and Respiratory Syndrome
  • a recombinant vaccine comprising a viral vector capable of generating a cellular immune response due to an increased production of alpha and / or gamma interferon and capable of rapid replication, preferably based on the Newcastle disease virus, having a nucleotide sequence selected from ORF 5, ORF 6 and combinations thereof of PRRS, and a pharmaceutically acceptable carrier, adjuvant and / or excipient.
  • Figure 1 shows body weight gain in pigs immunized with the inactivated PRRS vaccines of the present invention, compared to the commercial vaccine.
  • Figure 2 shows the body weight gain in pigs immunized with the live PRRS vaccines of the present invention, compared to the commercial vaccine.
  • a recombinant vaccine comprising a viral vector capable of generating a cellular immune response due to an increased production of alpha and / or gamma interferon and capable of rapidly replicating, which it has an exogenous nucleotide sequence inserted that encodes PRRS virus antigenic sites (vPRRS), and a pharmaceutically acceptable carrier, adjuvant and / or excipient, provides adequate protection against Porcine Reproductive and Respiratory Syndrome.
  • vPRRS PRRS virus antigenic sites
  • the viral vector used may be live (active) or inactivated (dead), it being understood that the recombinant virus that functions as a viral vector and contains the nucleotide sequence that codes for vPRRS antigenic sites has lost property to replicate. Inactivation is achieved by physical or chemical procedures well known in the state of the art, preferably by chemical inactivation with formaldehyde or beta-propiolactone (Office International des Epizooties 2008). Newcastle disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 576-589). In the opposite sense, it is understood that an active or live virus maintains its ability to replicate.
  • the viral vector used is a paramyxovirus, which is selected from any paramyxovirus that includes any serotype, genotype or genetic class, including lentogenic, mesogenic and velogenic viruses. It is also possible to use paramyxoviruses to which reverse genetic techniques can be performed to eliminate phenylalanine from position 117 and the basic amino acids from the position near position Q114 that give the pathogenicity to paramyxoviruses, or paramyxoviruses included in the genus Avulavirus that infect birds, such as Newcastle disease virus or Sendai virus.
  • the viral vector is the Newcastle disease virus
  • said viral vector is preferably selected from lentogenic or mesogenic strains, such as LaSota, B1, QV4, Ulster, Roakin, Komarov strains.
  • the recombinant virus is of the LaSota strain.
  • nucleotide sequence that codes for vPRRS antigenic sites sequences of various ORFs, such as ORF 5 and ORF 6, have been described in the state of the art, which can be used in the preparation of vaccines against PRRS. , such as those described in US Patents No. 5,885,513 and 7,041, 443, and in Chinese Patent Application No. CN1778926A.
  • the nucleotide sequences used are selected from those described in SEQ ID NO: 1 (ORF 5), SEQ ID NO: 2 (ORF 6), and combinations thereof.
  • the viral vector of the vaccine of the present invention can be prepared by PCR amplifying the nucleotide sequence of interest so that it can then be inserted, already amplified, into the paramyxovirus viral vector. Insertion is performed using standard molecular biology cloning techniques. The infectious clone thus produced is transfected in a cell culture for the generation of the recombinant virus.
  • the virus is replicated in any system suitable for growth, such as SPF chicken embryo, or commercial cell lines or specifically designed to grow viruses, until reaching the concentration of the virus required to achieve the antigen response, preferably between 10 60 and 10 100 DIEP50% / ml_, more preferably between 10 80 and 10 95 DIEP50% / mL.
  • the vaccine is alive, it is a naturally occurring lentogenic vaccine virus or one attenuated by methods already known in the state of the art.
  • the vaccine is inactivated, once the viral concentration required to achieve the antigenic response is reached, the virus is inactivated.
  • the inactivation is performed by physical or chemical procedures well known in the state of the art, preferably by chemical inactivation with formaldehyde, beta-propiolactone or binary ethyleneimine (BEI).
  • Pharmaceutically acceptable carriers for the vaccines of the present invention are preferably aqueous solutions or emulsions. More particularly, it is preferred that the vehicle used be a water-oil, oil-water or water-oil-water (WOW) emulsion, preferably a water-oil-water emulsion.
  • WOW water-oil-water
  • the administration of the vaccine it can be carried out intramuscularly, intranasally, subcutaneously, aspersion, nebulization or in drinking water, using the appropriate means and forms in each case in pigs and depending on whether it is a live vaccine or an inactivated vaccine, preferably intramuscularly or intranasally, more preferably intramuscularly.
  • an intermediate vector called "pSL1180NDV / LS" was first developed.
  • the total viral RNA extraction from Newcastle strain LaSota was carried out by the triazole method.
  • the cDNA (complementary DNA) synthesis of the viral genome was carried out, using as a template the total RNA purified above.
  • all the Newcastle genome genes (15, 183 base pairs (bp)
  • 7 fragments with "overlapping" ends and cohesive restriction sites were amplified by PCR.
  • Fragment 1 comprises nucleotide (nt) 1-1755, F2 goes from nt 1-3321, F3 comprises from nt 1755-6580, F4 goes from 6,151-10, 210, F5 covers nt 7,381-11, 351, F6 ranges from 11, 351-14,995 and F7 comprises nt 14,701-15, 186.
  • the assembly of the 7 fragments was performed within a cloning vector called pGEM-pSL1180 using standard ligation techniques, which allowed the reconstruction of the Newcastle LaSota genome, which after cloning contains a unique Sacll restriction site, between the P and M genes, which serves for the cloning of any gene from interest in this viral region of the vector.
  • the plasmid plntNhe was digested with Spel-Hpal and subsequently cloned into the plntNhe, generating the plasmid plnt Nhe 56.
  • Plasmids pINTNhe 56 was digested with the Nhel enzyme and plasmid PSL1180 NDV / LS was digested with Sacll; The digestion products were shaved in order to leave compatible ligation sites and the GE / GS-ORF5 / 6 region was purified and inserted into the Sacll site of pNDV / LS, thus generating the infective clone called pNDV-LS (wt) Orf5 / 6.
  • Hep-2 and A-549 cells were initially infected with MAV-7 virus at a multiplicity of infection (OI) of 1. After 1 hour incubation at 37 ° C under 5% C0 2 atmosphere, the cells were transfected with 1 microgram (pg) of DNA from clone pNDV-LS (wt) Orf5 / 6, together with 0.2 g of DNA from the expression plasmids pNP, pP and pL which encode the viral proteins P, NP and L , necessary for the generation of the recombinant in both cell types. Forty-eight hours after transfection, the recombinant virus generated in both cell types was harvested and injected into 10-day-old SPF chicken embryos to amplify the generated virus. Harvested allantoic fluid was titrated by plaque assay in Vero cells, thereby generating the final recombinant virus, used in vaccine preparation.
  • OI multiplicity of infection
  • the active and inactivated vaccines were prepared in an emulsion of the water in oil in water type.
  • mineral oil and surfactants of the Span 80 and Tween 80 type were used.
  • the aqueous phase the FAA was mixed with a conservative solution (thimerosal).
  • the aqueous phase was slowly added to the oil phase under constant stirring. To achieve the specified particle size, a homogenizer or a colloid mill was used.
  • the above vaccines were formulated to provide a minimum of 10 80 DIEP50% / 0.5 mL in order to use a dose per pig of 2.0 mL.
  • pSL1180 NDV / LS a recombinant experimental vector vaccine (pSL1180 NDV / LS) with ORF 5 and ORF 6 genes, called pNDV-LS (wt) / Orf5 / 6 vac, was prepared and tested in its form live without adjuvant (Example 5A), live form with a water-oil-water adjuvant (Example 5B), and inactivated form with a water-oil-water adjuvant (Example 5C), applied in two doses in all cases.
  • An active PRRS pathogenic virus was used, at a dose of 10 60 DICC 50% / mL / 45 minutes, to challenge the different experiments in order to measure the effectiveness of the vaccines.
  • the pigs were housed in isolation rooms with negative pressure, and allowed to acclimatize for 3 days before treatment.
  • the animals were fed commercial feed and water was supplied for domestic use ad libitum; both food and drinking water were free of additives and / or antibiotics.
  • air filtration systems and air seals were placed in each room.
  • the pigs were immunized on day 0 and on day 14 with the vaccines of the present invention, obtained according to Examples 5A-5C (pNDV-LS (wt) / Orf5 / 6 vac), and using a dose of 2.0 mL per pig.
  • another group was immunized with a single dose of 2.0 mL (manufacturer's recommendation) per pig with the commercial vaccine commonly used against PRRS (Ingelvac ® PRRS MLV).
  • the vaccination day was designated as "days post-zero vaccination" (DPV 0).
  • blood samples were taken from animals of all groups by puncture of the vena cava, on the following dates: DPV 0, DPV 7, DPV 14, DPV 21, DPV 28, DPV 35, DPV 42, and DPV 49 (sacrifice).
  • the challenge was DPV 35 (DPDF 0) in all pigs in the groups, except the negative control group;
  • the challenge virus was spray administered in a chamber specifically designed for pigs.
  • DPV 49 or DPDF 14 all pigs in the groups were slaughtered and subject to post mortem examination. To demonstrate the effectiveness of the vaccine, growth performance and the percentage of lung lesions in immunized pigs were evaluated.
  • the pigs of the different groups were sacrificed to DPDF 14, by electroshock and bleeding, followed by necropsy.
  • the evaluation included the right and left apical lobes, right and left heart lobes, left cranial border, and right diaphragmatic lobe and intermediate lobe.
  • tissue samples were collected from the affected organs. Gross lesions suggestive of vPRRS infection (defined as areas of possible interstitial pneumonia), were determined with the method of planimetry (Ciprián et al., 1988; Lara et al., 2008); The results are shown in Table 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pulmonology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Cell Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Se describe una vacuna recombinante, viva o inactivada, que comprende un vector viral y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable, caracterizada porque el vector viral es un virus capaz de generar una respuesta inmune celular debido a una producción incrementada de interferón alfa y/o gamma y capaz de replicarse rápidamente, y tiene insertada una secuencia de nucleótidos de ORF 5 y ORF 6 de PRRS.

Description

VACUNA RECOMBINANTE CONTRA PRRS EN VECTOR VIRAL
CAMPO DE LA INVENCION
La presente invención está relacionada con las técnicas utilizadas en la prevención y control del Síndrome Reproductivo y Respiratorio Porcino (PRRS, por sus siglas en inglés), y más particularmente está relacionada con una vacuna recombinante de vector viral que tiene insertada una secuencia de nucleótidos exógena que codifica proteínas con actividad antigénica contra el virus de PRRS, y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable.
ANTECEDENTES DE LA INVENCION
El virus del Síndrome Reproductivo y Respiratorio Porcino (vPRRS), es un virus envuelto que pertenece al grupo de los ARN, familia Arteriviridae, género Arterivirus. Tiene un tamaño que oscila alrededor de los 460 nm y su genoma viral está compuesto de una tira hebra de ARN en sentido positivo, la cual da lugar a 7 marcos de lectura abiertos (ORFs), ORF1a, ORF1 b, ORF2 - ORF7, que a su vez dan lugar al ensamblaje de 7 proteínas estructurales (gp 2a, 2b - 5, M y N) y al menos 13 proteínas no estructurales (nsp 1a, nsp 1b - nsp 12), cada una con funciones específicas que conforman al vPRRS. Este virus presenta un comportamiento inmunomodulador al infectar selectivamente las células de la línea monocito/macrófago encargada de iniciar la respuesta inmune y participar en la dirección de la respuesta inmune, entre otras cosas. El virus ha demostrado ser capaz de alterar la respuesta inmune a través de una baja en la producción de interferón gamma (IFNG) y la producción tardía de anticuerpos neutralizantes y la producción de señuelos inmunológicos (Yoo et al., 2009; Sang et al., 2009; Patel et al., 2009; Chen et al., 2009; Lalit, 2009). Debido a que el vPRRS posee una alta variabilidad antigénica, se ha dificultado su combate mediante el método tradicional basado en diversas estrategias de vacunación. Es por ello que a nivel mundial se trabaja intensamente en desarrollar un biológico que sea capaz de combatir la difusión de la infección y los efectos, siendo los productos de la manipulación genética del virus las mejores opciones para lograrlo (Lara, 2010). En este contexto también se investigan las subunidades virales que pudieran conferir algún tipo de protección, el uso de los ORF 5 y ORF 6 ha demostrado tener buenas expectativas al ser responsables, al menos parcialmente, de la virulencia del virus (Kim et al., 2009; Zuckermann et al., 2007), demostrándose que se logra inmunidad con productos vivos (replicantes) ya que son los únicos que brindan protección ante un desafío, midiendo esta protección a través de la reducción de la viremia postdesafío. En el 2005 se desarrollaron mutantes del ORF 5 modificando su glicosilación y se probaron como inmunógenos, encontrando que la hipoglicosilación de la GP5 aumenta la habilidad del vPRRS para inducir anticuerpos neutralizantes in vivo (Ansari et al, 2005).
En el caso específico del ORF 5, la región entre los residuos de aminoácidos 1-25 es de alta variabilidad entre aislamientos americanos y europeos, mientras que la región hipervariable de las regiones de las cepas de cada continente está agrupada entre los aminoácidos 26 y 39, cerca de la secuencia terminal de aminoácidos.
El cambio de la secuencia de ORF 5 puede dar lugar a brotes atípicos de la enfermedad como el síndrome de mortalidad y aborto de cerdas (SAMS) o el síndrome de "fiebre alta" observado en China (Ferrari et al, 2003; Martelli, 2003).
La vacuna contra PRRS que se comercializa actualmente es de virus atenuado, sin embargo presenta la desventaja de que puede producir infección en los cerdos, con el consecuente desarrollo de la enfermedad y daño inmunológico, sobre todo en animales náive (altamente susceptibles sin exposición previa); adicionalmente, se ha demostrado que este virus vacunal muta y puede recombinarse con los virus de campo circulantes creando nuevas variantes genéticas del virus. Asimismo, se han realizado estudios que demuestran que la vacuna viva atenuada no es del todo eficiente para prevenir la enfermedad, e incluso se ha demostrado previamente que los anticuerpos anti-vPRRS están involucrados en el mecanismo de amplificación de la infección dependiente de anticuerpos (ADE, por sus siglas en inglés) y/o en la inmunopatología causada por el vPRRS (Thanawongnuwech y Suradhat, 2010), lo cual podría provocar que, contrario a lo esperado, los animales vacunados sean más susceptibles a los efectos de la enfermedad de PRRS.
Por ello, existen numerosas patentes relacionadas con vacunas recombinantes contra esta enfermedad.
La Patente Estadounidense No. 7,722,878 describe vacunas recombinantes contra PRRS que consisten de un vector que comprende una porción de ORF 1 de vPRRS, sola o en combinación con otro ORF. Estas vacunas son útiles para inducir respuesta inmune en animales y para la prevención o reducción de la severidad de condiciones y síntomas causados por una infección del vPRRS. Para determinar la eficacia de estas vacunas, se midió el número de lesiones pulmonares características del vPRRS, lográndose reducir las lesiones pulmonares hasta un máximo de 47%.
En la Patente Estadounidense No. 5,888,513 se describen proteínas recombinantes correspondientes a ORF 2 - ORF 7 de un vPRRS aislado en España, las cuales se producen en sistema de expresión de baculovirus y pueden ser utilizadas en la formulación de vacunas. Las Solicitudes de Patente Chinas Nos. CN1554766A y CN1800375A describen vacunas recombinantes contra PRRS, las cuales utilizan un adenovirus como vector. Asimismo, la Solicitud de Patente China No. CN1778926A describe un gen modificado ORF 5 de vPRRS, el cual se puede utilizar para la preparación de una vacuna contra esta enfermedad.
En la Patente Estadounidense No. 7,041 ,443 se describen virus, polinucleótidos y polipéptidos de PRRS tipo europeo aislados, los cuales pueden ser utilizados en la elaboración de composiciones inmunogénicas, las cuales consisten en un vPRRS atenuado o inactivado que incluye un polinucléotido seleccionado entre diversas secuencias.
Por otro lado, la Patente Estadounidense No. 6,207,165 describe una fórmula de vacuna multivalente para la vacunación de cerdos contra agentes patógenos involucrados en patologías reproductivas y/o respiratorias, entre ellas PRRS. La vacuna incluye por lo menos tres tipos de vacunas, cada una comprendiendo un plásmido y un gen con una valencia patógena porcina, que en el caso de PRRS pueden ser los genes E, ORF 3 o M.
Finalmente, la Patente Estadounidense No. 5,998,601 describe secuencias de nucleótidos de la cepa VR-2332 de vPRRS, que pueden codificar para ORFs o fragmentos de los mismos, así como vacunas derivadas de las mismas.
No obstante lo anterior, aunque las vacunas descritas en el estado de la técnica han servido para atenuar los efectos de la enfermedad, hasta el momento no se ha logrado obtener un nivel de protección contra el vPRRS suficiente para un control efectivo de la enfermedad.
OBJETOS DE LA INVENCION
Teniendo en cuenta los defectos de la técnica anterior, es un objeto de la presente invención proporcionar una vacuna recombinante de vector viral contra el Síndrome Reproductivo y Respiratorio Porcino (PRRS, por sus siglas en inglés) que sea efectiva.
Es un objeto más de la presente invención proporcionar una vacuna recombinante de vector viral contra PRRS, que produzca una respuesta inmune más rápida que una vacuna basada en el virus completo de PRRS.
Es otro objeto de la presente invención proveer el uso de una vacuna recombinante de vector viral para el control del PRRS. Es un objeto adicional de la presente invención, proveer una construcción de vector viral con una secuencia de nucleótidos exógena insertada que codifica para proteínas con actividad antigénica contra el virus de PRRS.
BREVE DESCRIPCIÓN DE LA INVENCION
Para ello, se ha inventado una vacuna recombinante que comprende un vector viral capaz de generar una respuesta inmune celular debido a una producción incrementada de interferón alfa y/o gamma y capaz de replicarse rápidamente, preferiblemente basado en el virus de la enfermedad de Newcastle, que tiene insertada una secuencia de nucleótidos seleccionada entre ORF 5, ORF 6 y combinaciones de los mismos de PRRS, y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable.
BREVE DESCRIPCION DE LAS FIGURAS
Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, algunas modalidades, características y algunos objetos y ventajas de la misma, se comprenderán mejor en la descripción detallada, cuando se lea en relación con los dibujos anexos, en los cuales:
La Figura 1 muestra la ganancia de peso corporal en cerdos inmunizados con las vacunas inactivadas contra PRRS de la presente invención, en comparación con la vacuna comercial.
La Figura 2 muestra la ganancia de peso corporal en cerdos inmunizados con las vacunas vivas contra PRRS de la presente invención, en comparación con la vacuna comercial.
DESCRIPCION DETALLADA DE LA INVENCION
Durante el desarrollo de la presente invención, se ha encontrado de manera inesperada que una vacuna recombinante que comprende un vector viral capaz de generar una respuesta inmune celular debido a una producción incrementada de interferón alfa y/o gamma y capaz de replicarse rápidamente , el cual tiene insertada una secuencia de nucleótidos exógena que codifica para sitios antigénicos del virus de PRRS (vPRRS), y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable, brinda una protección adecuada contra el Síndrome Reproductivo y Respiratorio Porcino.
El vector viral utilizado puede estar vivo (activo) o inactivado (muerto), entendiéndose por inactivado que el virus recombinante que funciona como vector viral y contiene la secuencia de nucleótidos que codifica para sitios antigénicos del vPRRS haya perdido la propiedad de replicarse. La inactivación se logra mediante procedimientos físicos o químicos bien conocidos en el estado de la técnica, preferiblemente mediante inactivación química con formaldehído o beta-propiolactona (Office International des Epizooties 2008). Newcastle Disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 576-589). En el sentido opuesto, se entiende que un virus activo o vivo, mantiene su capacidad para replicarse.
Preferiblemente, el vector viral utilizado es un paramixovirus, el cual se selecciona entre cualquier paramixovirus que incluya cualquier serotipo, genotipo o clase genética, incluyendo los virus lentogénicos, mesogénicos y velogénicos. Asimismo, es posible utilizar paramixovirus a los cuales puede realizarse técnicas de genética inversa para eliminar la fenilalanina de la posición 117 y los aminoácidos básicos de la posición cercana a la posición Q114 que dan la patogenicidad a los paramixovirus, o paramixovirus incluidos en el género Avulavirus que infectan a las aves, tales como el virus de la enfermedad de Newcastle o el virus Sendai. Más preferiblemente el vector viral es el virus de la enfermedad de Newcastle, dicho vector viral se selecciona preferiblemente de cepas lentogénicas o mesogénicas, tal como las cepas LaSota, B1 , QV4, Ulster, Roakin, Komarov.De manera preferida, el virus recombinante es de la cepa LaSota.
Por lo que se refiere a la secuencia de nucleótidos que codifica para sitios antigénicos del vPRRS, en el estado de la técnica se han descrito secuencias de diversos ORFs, como ORF 5 y ORF 6, que pueden ser utilizados en la elaboración de vacunas contra PRRS, tales como los descritos en las Patentes Estadounidenses No. 5,885,513 y 7,041 ,443, y en la Solicitud de Patente China No. CN1778926A. En el caso de la presente invención, las secuencias de nucleótidos utilizadas se seleccionan entre las descritas en SEQ ID NO: 1 (ORF 5), SEQ ID NO: 2 (ORF 6), y combinaciones de las mismas.
El vector viral de la vacuna de la presente invención se puede preparar amplificando mediante PCR la secuencia de nucleótidos de interés para poder insertarla posteriormente, ya amplificada, dentro del vector viral de paramixovirus. La inserción se realiza utilizando técnicas estándares de clonación de biología molecular. La clona infecciosa así producida es transfectada en un cultivo celular para la generación del virus recombinante.
El virus se replica en cualquier sistema adecuado para su crecimiento, tales como embrión de pollo SPF, o líneas celulares comerciales o diseñadas expresamente para hacer crecer virus, hasta alcanzar la concentración del virus que se requiere para lograr la respuesta antigénica, preferiblemente entre 1060 y 10100 DIEP50%/ml_, más preferiblemente entre 1080 y 1095 DIEP50%/mL. En la modalidad en la que la vacuna es viva, se trata de un virus activo vacunal lentogénico naturalmente o uno atenuado mediante procedimientos ya conocidos en el estado de la técnica. Por otro lado, cuando la vacuna es inactivada, una vez alcanzada la concentración viral requerida para lograr la respuesta antigénica, se procede a inactivar el virus. De manera preferida, la inactivación se realiza mediante procedimientos físicos o químicos bien conocidos en el estado de la técnica, preferiblemente mediante inactivación química con formaldehído, beta-propiolactona o etilenimina binaria (B. E. I.).
Los vehículos farmacéuticamente aceptables para la vacunas de la presente invención son preferentemente soluciones acuosas o emulsiones. Más particularmente, se prefiere que el vehículo utilizado sea una emulsión agua-aceite, aceite-agua o agua-aceite-agua (WOW, por sus siglas en inglés), preferiblemente una emulsión agua-aceite-agua. Por lo que se refiere a la administración de la vacuna, ésta puede realizarse por vía intramuscular, vía intranasal, vía subcutánea, aspersión, nebulización o en el agua de bebida, utilizando los medios y formas adecuados a cada caso en los cerdos y dependiendo si se trata de una vacuna viva o de una vacuna inactivada, preferiblemente por vía intramuscular o intranasal, más preferiblemente por vía intramuscular.
La presente invención será mejor entendida a partir de los siguientes ejemplos, los cuales se presentan únicamente con fines ilustrativos para permitir la comprensión cabal de las modalidades preferidas de la presente invención, sin que por ello se implique que no existen otras modalidades no ilustradas que puedan llevarse a la práctica con base en la descripción detallada arriba realizada. EJEMPLOS
Ejemplo 1
Generación del vector Newcastle LaSota.
Para clonar el genoma del virus de Newcastle cepa LaSota y generar así un vector viral, primeramente se elaboró un vector intermedio denominado "pSL1180NDV/LS". Para ello se llevó a cabo la extracción de ARN viral total de Newcastle cepa LaSota por el método de triazol. A partir del ARN purificado, se llevó a cabo la síntesis de ADNc (ADN complementario) del genoma viral, usando como molde el ARN total purificado anteriormente. Con el objetivo de clonar todos los genes del genoma de Newcastle (15, 183 pares de bases (pb)), se amplificaron por PCR, 7 fragmentos con extremos "traslapantes" y sitios de restricción cohesivos. El fragmento 1 (F1 ) abarca del nucleótido (nt) 1-1755, F2 va de nt 1-3321 , F3 comprende del nt 1755-6580, F4 va de 6,151-10, 210, F5 abarca del nt 7,381-11 ,351 , F6 va de 11 ,351-14,995 y F7 comprende del nt 14,701- 15, 186. El ensamble de los 7 fragmentos fue realizado dentro de un vector de clonación denominado pGEM-pSL1180 usando técnicas estándares de ligación, lo que permitió reconstruir el genoma de Newcastle LaSota, el cual después de la clonación contiene un sitio de restricción único Sacll, entre los genes P y M, el cual sirve para la clonación de cualquier gen de interés en esta región viral del vector.
Ejemplo 2
Clonación de los genes ORF 5 y ORF 6 del vPRRS
Para clonar los genes ORF 5 y ORF 6 del vPRRS, se llevó a cabo la extracción de ARN total viral, por el método de Triazol. Este ARN total purificado fue usado posteriormente para sintetizar ADNc (ADN complementario) y mediante el uso de oligonucleótidos específicos con la técnica de PCR se amplificaron dichos genes del virus de PRRS. Los genes ORF 5 y ORF 6 fueron insertados posteriormente en el vector pJET fermentas usando técnicas estándares de clonación, generando así el plásmido: pJET ORF5/ORF6.
Ejemplo 3
Clonación de los genes ORF 5 y ORF 6 de vPRRS dentro del sitio Sacll del vector pSL1180 NDV/LS para la generación del plásmido pNDV-LS(wt)Orf5/6.
A: Generación del vector intermediario plntNhe:
Con el objeto de introducir las secuencias de transcripción de Newcastle denominadas GE/GS en el extremo 5 prima de los genes ORF 5 y ORF 6, se construyó un nuevo vector intermediario denominado plntNhe, mediante la amplificación inicial por PCR de las secuencias GE/GS tomando como molde el genoma de Newcastle y la posterior inserción de estas secuencias en pGEM-T.
B: Subclonación de los genes ORF 5 y ORF 6 al vector plntNhe:
El plásmido plntNhe fue digerido con Spel-Hpal y posteriormente clonado dentro del plntNhe , generando el plásmido plnt Nhe 56.
C: Subclonación de GE/GS-ORF5/6 al vector pSL1180NDV/LS.
Los plásmidos pINTNhe 56 fue digerido con la enzima Nhel y el plásmido PSL1180 NDV/LS fue digerido con Sacll; los productos de la digestión fueron rasurados a fin de dejar sitios compatibles de ligación y la región GE/GS-ORF5/6 fue purificada e insertada dentro del sitio Sacll de pNDV/LS, generando así la clona infectiva denominada pNDV-LS(wt) Orf5/6. Ejemplo 4
Generación del virus recombinante rNDV-LS(wt)Orf5/6 en cultivo celular
Células Hep-2 y A-549 fueron ¡nicialmente infectadas con virus MAV-7 a una multiplicidad de infección ( OI) de 1. Después de 1 hora de incubación a 37°C en atmósfera de C02 al 5%, las células fueron transfectadas con 1 microgramo (pg) de ADN de la clona pNDV-LS(wt)Orf5/6, junto con 0.2 g de ADN de los plásmidos de expresión pNP, pP y pL los cuales codifican para las proteínas virales P, NP y L, necesarias para la generación del recombinante en ambos tipos celulares. Cuarenta y ocho horas después de la transfección, el virus recombinante generado en ambos tipos celulares fue cosechado e inyectado a embriones de pollo SPF de 10 días de edad para amplificar el virus generado. El líquido alantoideo cosechado fue titulado por ensayo en placa en células Vero, generando de esta manera el virus recombinante final, utilizado en la preparación de las vacunas.
Ejemplo 5
Método de elaboración de la vacuna con virus recombinante de Newcastle LaSota con insertos ORF 5 y ORF 6 del vPRRS: pNDV-LS(wt)/Orf5/6vac
A partir de las semillas de producción, se inocularon huevos embrionados de pollo, libres de patógenos específicos (SPF), con la dosis infectante previamente determinada. Los embriones se incubaron a 37°C por un periodo de 72 horas, revisando diariamente la mortalidad. Transcurrido este periodo, se refrigeraron los embriones vivos de un día para otro, preferentemente 24 horas, se cosechó el fluido amnioalantoideo (FAA) en condiciones asépticas y se clarificó por centrifugación. El FAA fue sometido a pruebas para determinar su pureza, esterilidad y título DIEP.
Las vacunas activa e inactivada se prepararon en una emulsión del tipo agua en aceite en agua. Para la preparación de la fase oleosa se utilizó aceite mineral y surfactantes del tipo Span 80 y Tween 80. Para la preparación de la fase acuosa se mezcló el FAA con una solución conservadora (timerosal). Para la elaboración de la emulsión, se agregó lentamente la fase acuosa a la fase oleosa bajo agitación constante. Para alcanzar el tamaño de partícula especificado, se utilizó un homogenizador o un molino coloidal.
Las vacunas anteriores se formularon para aportar un mínimo de 1080 DIEP50%/0.5 mL a fin de utilizar una dosis por cerdo de 2.0 mL.
De conformidad con el procedimiento arriba descrito, se elaboró una vacuna experimental recombinante en vector (pSL1180 NDV/LS) con genes ORF 5 y ORF 6, denominada pNDV-LS(wt)/Orf5/6 vac, la cual fue probada en su forma viva sin adyuvante (Ejemplo 5A), forma viva con un adyuvante agua-aceite-agua (Ejemplo 5B), y forma inactivada con un adyuvante agua-aceite-agua (Ejemplo 5C), aplicada en dos dosis en todos los casos.
EJEMPLO 6
Evaluación ¡n vivo de la potencia de la vacuna recombinante pNDV-LS(wt)/Orf5/6 vac
Con el propósito de determinar la efectividad de las vacunas de la presente invención y demostrar que las mismas pueden ser más efectivas que la vacuna comercial (aplicada en 1 dosis), se probó la efectividad de las mismas.
Se utilizó un virus activo patógeno de PRRS, a una dosis de 1060 DICC 50%/mL/45 minutos, para desafío en los diferentes experimentos a fin de medir la efectividad de las vacunas.
Para ello, se utilizaron 104 cerdos SPF de 3 a 5 semanas de edad, los cuales fueron aretados por duplicado con un número individual, pesados y asignados al azar a los 9 grupos de tratamiento, de acuerdo a la Tabla 1.
Tabla 1. Grupos de tratamiento.
Figure imgf000010_0001
Los cerdos fueron alojados en cuartos de aislamiento con presión negativa, y se permitió que se aclimataran por 3 días antes del tratamiento. Para todos los grupos, los animales fueron alimentados con alimento comercial y se les suministró agua para uso doméstico ad libitum; tanto el alimento como el agua de bebida fue libre de aditivos y/o antibióticos. Asimismo, se colocaron sistemas de filtración de aire y sellos de aire en cada cuarto. Los cerdos fueron inmunizados al día 0 y al día 14 con las vacunas de la presente invención, obtenidas conforme a los Ejemplo 5A-5C (pNDV-LS(wt)/Orf5/6 vac), y utilizando una dosis de 2.0 mL por cerdo. Para fines de comparación, otro grupo fue inmunizado con una dosis única de 2.0 mL (recomendación del fabricante) por cerdo con la vacuna comercial utilizada comúnmente contra PRRS (Ingelvac® PRRS MLV).
El día de vacunación fue designado como "días post vacunación-cero" (DPV 0). Asimismo, se tomaron muestras de sangre de los animales de todos los grupos mediante punción de la vena cava, en las siguientes fechas: DPV 0, DPV 7, DPV 14, DPV 21 , DPV 28, DPV 35, DPV 42, y DPV 49 (sacrificio).
El desafío se realizó el DPV 35 (DPDF 0) en todos los cerdos de los grupos, excepto el grupo control negativo; el virus de desafío fue administrado por aerosol en una cámara específicamente diseñada para los cerdos. Al día DPV 49 o DPDF 14, todos los cerdos de los grupos fueron sacrificados y sujetos a examen post mortem. Para demostrar la efectividad de la vacuna se evaluó el desempeño de crecimiento y el porcentaje de lesiones pulmonares en los cerdos inmunizados.
Porcentaje de lesiones pulmonares
Los cerdos de los diferentes grupos fueron sacrificados al DPDF 14, mediante electroshock y desangrado, seguido de la necropsia. Los pulmones insuflados, aún conectados a la tráquea, fueron removidos. La evaluación incluyó los lóbulos apicales derecho e izquierdo, lóbulos cardiacos derecho e izquierdo, borde craneal del izquierdo y lóbulo diafragmático derecho y el lóbulo intermedio. Dependiendo de la presencia o ausencia de lesiones, muestras de tejidos fueron colectadas de los órganos afectados. Las lesiones macroscópicas sugestivas a la infección por vPRRS (definidas como áreas de posible neumonía intersticial), fueron determinadas con el método de planimetría (Ciprián et al., 1988; Lara et al., 2008); los resultados se muestran en la Tabla 1.
Tabla 1. Reducción de lesiones pulmonares en cerdos vacunados contra PRRS
Lesión Pulmonar Reducción de lesión
Tratamiento
% Pulmonar %
Control Negativo 0.07 No Aplica
E5A (pNDV-LS(wt)/Orf5/6 vac
3.92 67.30
viva), 2 dosis
E5B (pNDV-LS(wt)/Orf5/6 vac
7.27 39.36
viva + adyuvante), 2 dosis
E5C (pNDV-LS(wt)/Orf5/6 vac
5.20 56.63
inactivada+ adyuvante), 2 dosis
Ingelvac PRRS MLV 15.54 -129.60
Control Positivo 11.99 0 Como se puede observar, con la aplicación de las vacunas pNDV- LS(wt)/Orf5/6 vac en sus diferentes variantes (viva, viva con adyuvante e inactivada con adyuvante) se logró reducir el porcentaje de lesión pulmonar hasta en un 67%, al compararse contra el control positivo, mientras que el porcentaje de lesiones pulmonares se incrementó en aproximadamente 30% respecto al control positivo al utilizar la vacuna comercial. Esto es consistente con lo reportado en el estado de la técnica (Thanawongnuwech y Suradhat, 2010),
Seroloqía
Se utilizaron las muestras de sangre obtenidas de los animales de todos los grupos para realizar las pruebas de serología, seleccionándose las correspondientes al muestreo basal, al día previo al desafío y al día de sacrificio. Se realizaron las pruebas de seroconversion utilizando ELISA Herd Check PRRS 2XR de IDEXX de acuerdo a las instrucciones del fabricante; los resultados encontrados se muestran a continuación.
Tabla 2. Porcentaje de seroconversion
Figure imgf000012_0001
Los resultados anteriores indican que, de acuerdo a lo esperado, en el muestreo basal todos los cerdos SPF fueron negativos. Al momento del desafío, el único grupo que había seroconvertido fue el inmunizado con la vacuna Ingelvac PRRS MLV, mientras que no se detectó seroconversion en ninguno de los grupos inmunizados con las vacunas de la presente invención. Este resultado se debe a que el kit de ELISA comercialmente disponible sólo detecta respuesta de anticuerpos contra la proteína de nucleocápside codificada por el ORF 7, la cual no se encuentra en ninguna de las vacunas de los ejemplos 5A-5C.
En lo que respecta al momento del sacrificio, podemos observar que el grupo vacunado con la vacuna comercial se mantiene seropositivo y los demás grupos seronegativos; esto puede deberse a que el tiempo entre el desafío y el sacrificio fue corto y no dio tiempo a la seroconversión al virus de desafío utilizado. No obstante, la presencia del virus en todos los grupos desafiados fue confirmada mediante pruebas de PCR.
Asimismo, con el objetivo de detectar la seroconversión al pNDV- LS(wt)/Orf5/6 vac en sus diferentes modalidades y utilizando las muestras serológicas mencionadas anteriormente, se corrió la prueba de Hl utilizando la metodología ya descrita en el estado de la técnica. Los resultados obtenidos se muestran en la Tabla 3.
Tabla 3. Porcentaje de seroconversión por la prueba de Hl para pNDV-LS(wt)/Orf5/6 vac
Figure imgf000013_0001
Como se puede observar, al inicio de la prueba los cerdos SPF fueron completamente negativos a la vacuna pNDV-LS(wt)/Orf5/6 vac en sus diferentes modalidades (E5A-E5C). Sin embargo, al momento del predesafio se encontró una completa seroconversión en los grupos vacunados con las vacunas de la presente invención, siendo el 100% de los animales vacunados seropositivos con diferentes títulos de anticuerpos según el tratamiento utilizado, mientras que el grupo control negativo, el control positivo y el inmunizado con la vacuna comercial se mantuvieron seronegativos. Al momento del sacrificio se mantuvo la misma tendencia, a saber, los grupos vacunados con pNDV-LS(wt)/0rf5/6 vac mantuvieron la seroconversión en el 100% de los animales y los demás grupos se mantuvieron seronegativos.
Lo anterior demuestra la efectividad de la selección de un vector viral capaz de generar una respuesta inmune celular debido a una producción incrementada de interferón alfa y/o gamma y capaz de replicarse rápidamente, como una solución para hacer efectiva la vacuna. Desempeño del crecimiento
Con la finalidad de comprobar el desarrollo alcanzado, los cerdos fueron pesados individualmente al inicio, durante y al final del estudio en el post mortem. Como se puede observar en la Figura 1 , hubo un ligero incremento en la ganancia de peso (w) de los cerdos al utilizar la vacuna del Ejemplo 5C (pNDV-LS(wt)/Orf5/6 vac inactivada con adyuvante), en comparación con la vacuna comercial.
Por otro lado, en lo que respecta a los cerdos inmunizados con vacunas vivas (Figura 2), se observa que la ganancia de peso de los animales vacunados pNDV- LS(wt)/Orf5/6 vac, con y sin adyuvante, es considerablemente mayor al compararse con la vacuna comercial.
Estos experimentos confirman el éxito de la presente invención, ya que se demuestra que las vacunas de la presente invención mostraron una clara superioridad en el tiempo para seroconvertir respecto a la vacuna comercial, con lo cual se logró una protección de mejor nivel, observándose en la reducción significativa de las lesiones pulmonares en los cerdos. Con esto, se logró una mejora en los parámetros productivos al compararlos con los animales no vacunados. Asimismo, se induce una respuesta serológica medible diferencial a la producida por el virus patógeno de campo o a la vacuna activa comercial existente, lo que significa que las vacunas recombinantes de la presente invención cumplen con el parámetro de ser DIVA (Differentiation of infected from vaccinated Animáis).
Aún cuando se ha ilustrado y descrito modalidades específicas de la invención, debe hacerse hincapié en que son posibles numerosas modificaciones a la misma, como puede ser el virus utilizado como vector viral, y el tipo de emulsión o vehículos utilizados. Por lo tanto, la presente invención no deberá considerarse como restringida excepto por lo que exija la técnica anterior y las reivindicaciones anexas.

Claims

NOVEDAD DE LA INVENCION REIVINDICACIONES
1. Un vector viral capaz de generar una respuesta inmune celular debido a una producción incrementada de interferón alfa y/o gamma y capaz de replicarse rápidamente, caracterizado porque tiene insertada una secuencia de nucleótidos exógena que codifica para proteínas con actividad antigénica contra el virus de PRRS.
2. Un vector viral, de conformidad con la reivindicación 1 , caracterizado además porque es un paramixovirus.
3. Un vector viral, de conformidad con la reivindicación 2, caracterizado además porque el paramixovirus se selecciona entre cualquier paramixovirus que incluya cualquier serotipo, genotipo o clase genética, incluyendo los virus lentogénicos, mesogénicos y velogénicos; paramixovirus a los cuales puede realizarse técnicas de genética inversa para eliminar la fenilalanina de la posición 117 y los aminoácidos básicos de la posición cercana a la posición Q1 4 que dan la patogenicidad a los paramixovirus; o paramixovirus incluidos en el género Avulavirus que infectan a las aves.
4. Un vector viral, de conformidad con la reivindicación 3, caracterizado además porque el paramixovirus se selecciona entre el virus de la enfermedad de Newcastle y el virus Sendai.
5. Un vector viral de paramixovirus, de conformidad con la reivindicación 4, caracterizado además porque el paramixovirus es el virus de la enfermedad de Newcastle.
6. Un vector viral, de conformidad con la reivindicación 5, caracterizado además porque el virus de la enfermedad de Newcastle se selecciona entre las cepas LaSota, B1 , QV4, Ulster, Roakin y Komarov .
7. Un vector viral, de conformidad con la reivindicación 1 , caracterizado además porque la secuencia de nucleótidos exógena se selecciona entre ORF 5, ORF 6 y combinaciones de los mismos.
8. Un vector viral, de conformidad con la reivindicación 7, caracterizado además porque ORF 5 tiene la secuencia SEQ ID NO: 1 y ORF 6 tiene la secuencia SEQ ID NO: 2.
9. Una vacuna recombinante, caracterizada porque comprende un vector viral capaz de generar una respuesta inmune celular debido a una producción incrementada de interferón alfa y/o gamma y capaz de replicarse rápidamente, que tiene insertada una secuencia de nucleótidos exógena que codifica para proteínas con actividad antigénica contra el virus de PRRS, y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable.
10. Una vacuna recombinante, de conformidad con la reivindicación 9, caracterizada además porque el virus es un paramixovirus.
11. Una vacuna recombinante, de conformidad con la reivindicación 10, caracterizada además porque el paramixovirus se encuentra vivo o inactivado.
12. Una vacuna recombinante, de conformidad con la reivindicación 11 , caracterizada además porque el paramixovirus se selecciona entre cualquier paramixovirus que incluya cualquier serotipo, genotipo o clase genética, incluyendo los virus lentogénicos, mesogénicos y velogénicos; paramixovirus a los cuales puede realizarse técnicas de genética inversa para eliminar la fenilalanina de la posición 117 y los aminoácidos básicos de la posición cercana a la posición Q114 que dan la patogenicidad a los paramixovirus; o paramixovirus incluidos en el género Avulavirus que infectan a las aves.
13. Una vacuna recombinante, de conformidad con la reivindicación 12, caracterizada además porque el paramixovirus se selecciona entre el virus de la enfermedad de Newcastle y el virus Sendai.
14. Una vacuna recombinante, de conformidad con la reivindicación 13, caracterizada además porque el paramixovirus es el virus de la enfermedad de Newcastle.
15. Una vacuna recombinante, de conformidad con la reivindicación 14, caracterizada además porque el virus de la enfermedad de Newcastle se selecciona entre las cepas LaSota, B1 , QV4, Ulster, Roakin y Komarov.
16. Una vacuna recombinante, de conformidad con la reivindicación 9, caracterizada además porque la secuencia de nucleótidos exógena se selecciona entre ORF 5, ORF 6 y combinaciones de los mismos.
17. Una vacuna recombinante, de conformidad con la reivindicación 16, caracterizada además porque ORF 5 tiene la secuencia SEQ ID NO: 1 y ORF 6 tiene la secuencia SEQ ID NO: 2.
18. Una vacuna recombinante, de conformidad con la reivindicación 9, caracterizada además porque los vehículos farmacéuticamente aceptables son preferentemente soluciones acuosas o emulsiones.
19. Una vacuna recombinante, de conformidad con la reivindicación 18, caracterizada además porque el vehículo farmacéuticamente aceptable se selecciona entre una emulsión agua-aceite, aceite-agua y agua-aceite-agua.
20. Una vacuna recombinante, de conformidad con la reivindicación 19, caracterizada además porque el vehículo farmacéuticamente aceptable es una emulsión agua- aceite-agua.
21. Una vacuna recombinante, de conformidad con la reivindicación 9, caracterizada además porque la concentración de virus que se requiere para lograr la respuesta antigénica es de entre 1060 y 10100 DIEP50%/mL.
22. Una vacuna recombinante, de conformidad con la reivindicación 21 , caracterizada además porque la concentración de virus que se requiere para lograr la respuesta antigénica es de entre 1080 y 1095 DIEP50%/mL.
23. Una vacuna recombinante, de conformidad con la reivindicación 9, caracterizada además porque se administra por vía intramuscular, vía intranasal, vía subcutánea, aspersión, nebulización o en el agua de bebida.
24. Una vacuna recombinante, de conformidad con la reivindicación 23, caracterizada además porque se administra por vía intramuscular.
25. El uso de una vacuna recombinante, de conformidad con la reivindicación 9, para el control de PRRS.
26. El uso de una vacuna recombinante, de conformidad con la reivindicación 9, para el control de PRRS, caracterizado porque los animales inmunizados presentan lesiones pulmonares menores al 12% después de la aplicación de dos dosis de la vacuna.
PCT/IB2011/000977 2011-05-07 2011-05-07 Vacuna recombinante contra prrs en vector viral WO2012153160A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112013028605A BR112013028605A2 (pt) 2011-05-07 2011-05-07 vetor viral, vacina recombinante contra prrs e uso de uma vacina
PCT/IB2011/000977 WO2012153160A1 (es) 2011-05-07 2011-05-07 Vacuna recombinante contra prrs en vector viral
KR1020137032542A KR20140033096A (ko) 2011-05-07 2011-05-07 바이러스성 벡터를 이용한 prrs에 대한 재조합 백신
CN201180072146.1A CN103649320A (zh) 2011-05-07 2011-05-07 Prrs病毒载体重组疫苗
MX2013012994A MX351695B (es) 2011-05-07 2011-05-07 Vacuna recombinante contra el síndrome reproductivo y respiratorio porcino en vector viral.
CA2834956A CA2834956C (en) 2011-05-07 2011-05-07 Recombinant vaccine against prrs in a viral vector
US14/116,319 US10201602B2 (en) 2011-05-07 2011-05-07 Recombinant vaccine against PRRS in a viral vector
EP11865316.1A EP2712927B1 (en) 2011-05-07 2011-05-07 Recombinant vaccine against prrs in a viral vector
JP2014509846A JP6101251B2 (ja) 2011-05-07 2011-05-07 ウイルスベクターにおける抗prrs組換えワクチン
TW101115990A TWI602918B (zh) 2011-05-07 2012-05-04 含病毒載體之抗prrs重組疫苗

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2011/000977 WO2012153160A1 (es) 2011-05-07 2011-05-07 Vacuna recombinante contra prrs en vector viral

Publications (1)

Publication Number Publication Date
WO2012153160A1 true WO2012153160A1 (es) 2012-11-15

Family

ID=47138846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/000977 WO2012153160A1 (es) 2011-05-07 2011-05-07 Vacuna recombinante contra prrs en vector viral

Country Status (10)

Country Link
US (1) US10201602B2 (es)
EP (1) EP2712927B1 (es)
JP (1) JP6101251B2 (es)
KR (1) KR20140033096A (es)
CN (1) CN103649320A (es)
BR (1) BR112013028605A2 (es)
CA (1) CA2834956C (es)
MX (1) MX351695B (es)
TW (1) TWI602918B (es)
WO (1) WO2012153160A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016012406A2 (en) * 2014-07-21 2016-01-28 Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'emilia Romagna "Bruno Ubertini" (Izsler) Attenuated strain of prrs and potential use in immunising preparations

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885513A (en) 1997-03-31 1999-03-23 Northrop Grumman Corporation Resin infusion method
US5888513A (en) 1994-05-13 1999-03-30 Cyanamid Iberica, S.A. Recombinant PRRSV proteins, diagnostic kits and vaccines containing such recombinant PRRSV proteins
US5998601A (en) 1994-08-05 1999-12-07 Regents Of The University Of Minnesota VR-2332 viral nucleotide sequence and methods of use
US6207165B1 (en) 1996-07-19 2001-03-27 Merial Polynucleotide formula against porcine reproductive and respiratory pathologies
CN1554766A (zh) 2003-12-26 2004-12-15 南京农业大学 猪繁殖与呼吸综合征重组腺病毒和疫苗
US7041443B2 (en) 2000-02-08 2006-05-09 Regents Of The University Of Minnesota Porcine reproductive and respiratory syndrome virus and methods of use
CN1778926A (zh) 2004-11-23 2006-05-31 华中农业大学 一种修饰的猪繁殖与呼吸综合征病毒orf5基因及应用
CN1800375A (zh) 2005-12-23 2006-07-12 南京农业大学 猪繁殖与呼吸综合征与猪圆环病毒重组腺病毒及疫苗
WO2007040876A2 (en) * 2005-08-30 2007-04-12 Board Of Regents Of The University Of Nebraska Methods and compositions for vaccination of animals with prrsv antigens with improved immunogenicity
US7722878B2 (en) 2004-06-17 2010-05-25 Boehringer Ingelheim Vetmedica, Inc. PRRSV subunit vaccines
WO2010058236A1 (es) * 2008-11-19 2010-05-27 Laboratorio Avi-Mex, S.A. De C.V. Vacuna recombinante de vector viral inactivado

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192593B2 (en) * 1997-05-23 2007-03-20 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Use of recombinant parainfluenza viruses (PIVs) as vectors to protect against infection and disease caused by PIV and other human pathogens
US6146642A (en) * 1998-09-14 2000-11-14 Mount Sinai School Of Medicine, Of The City University Of New York Recombinant new castle disease virus RNA expression systems and vaccines
SG83740A1 (en) * 1999-08-10 2001-10-16 Inst Of Molecular Agrobiology An attenuated porcine reproductive and respiratory syndrome virus strain and methods of use
CN101104641B (zh) * 2006-07-11 2012-04-18 生宝生物科技股份有限公司 作为猪生殖和呼吸道征候群疫苗的prrs病毒的融合蛋白
US20100330190A1 (en) * 2007-12-17 2010-12-30 Compans Richard W Immunogenic compositions and methods of use thereof
CN101401937A (zh) * 2008-01-23 2009-04-08 山东省农业科学院畜牧兽医研究所 共表达prrsv orf5及orf6双基因核酸疫苗的制备方法
US8475807B2 (en) * 2008-03-13 2013-07-02 University Of Maryland College Park Avian influenza virus live attenuated vaccine and uses thereof
CN101376027B (zh) * 2008-09-24 2012-06-13 中国农业科学院哈尔滨兽医研究所 表达禽流感病毒H9亚型HA蛋白的重组新城疫病毒LaSota弱毒疫苗株
CN101880652A (zh) * 2009-07-01 2010-11-10 中国农业科学院哈尔滨兽医研究所 表达猪干扰素(α、β或γ)的重组新城疫弱毒疫苗株
WO2011059334A1 (en) * 2009-11-16 2011-05-19 Stichting Dienst Landbouwkundig Onderzoek Use of newcastle disease virus-based vector for inducing an immune response in mammals
CA2785653C (en) * 2009-12-28 2018-05-01 Merial Limited Recombinant ndv antigen and uses thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888513A (en) 1994-05-13 1999-03-30 Cyanamid Iberica, S.A. Recombinant PRRSV proteins, diagnostic kits and vaccines containing such recombinant PRRSV proteins
US5998601A (en) 1994-08-05 1999-12-07 Regents Of The University Of Minnesota VR-2332 viral nucleotide sequence and methods of use
US6207165B1 (en) 1996-07-19 2001-03-27 Merial Polynucleotide formula against porcine reproductive and respiratory pathologies
US5885513A (en) 1997-03-31 1999-03-23 Northrop Grumman Corporation Resin infusion method
US7041443B2 (en) 2000-02-08 2006-05-09 Regents Of The University Of Minnesota Porcine reproductive and respiratory syndrome virus and methods of use
CN1554766A (zh) 2003-12-26 2004-12-15 南京农业大学 猪繁殖与呼吸综合征重组腺病毒和疫苗
US7722878B2 (en) 2004-06-17 2010-05-25 Boehringer Ingelheim Vetmedica, Inc. PRRSV subunit vaccines
CN1778926A (zh) 2004-11-23 2006-05-31 华中农业大学 一种修饰的猪繁殖与呼吸综合征病毒orf5基因及应用
WO2007040876A2 (en) * 2005-08-30 2007-04-12 Board Of Regents Of The University Of Nebraska Methods and compositions for vaccination of animals with prrsv antigens with improved immunogenicity
CN1800375A (zh) 2005-12-23 2006-07-12 南京农业大学 猪繁殖与呼吸综合征与猪圆环病毒重组腺病毒及疫苗
WO2010058236A1 (es) * 2008-11-19 2010-05-27 Laboratorio Avi-Mex, S.A. De C.V. Vacuna recombinante de vector viral inactivado

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals", 2008, OFFICE INTERNATIONAL DES EPIZOOTIES, article "Newcastle Disease", pages: 576 - 589
CAI, J. ET AL.: "Construction and characterization of a recombinant canine adenovirus expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus", JOURNAL OF VETERINARY MEDICAL SCIENCE, vol. 72, no. 8, August 2010 (2010-08-01), pages 1035 - 1040, XP055115058 *
DE LEEUW, O. S. ET AL.: "Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain", JOURNAL OF GENERAL VIROLOGY, vol. 84, no. 2, February 2003 (2003-02-01), pages 475 - 484, XP055115064 *
DINAPOLI, J. M. ET AL.: "Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 104, no. 23, June 2007 (2007-06-01), pages 9788 - 9793, XP055115670 *
JIANG, Y. ET AL.: "DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity", VACCINE, vol. 24, no. 15, April 2006 (2006-04-01), pages 2869 - 2879, XP028011166 *
NAKAYA, T. ET AL.: "Recombinant Newcastle disease virus as a vaccine vector", JOURNAL OF VIROLOGY, vol. 75, no. 23, December 2001 (2001-12-01), pages 11868 - 11873, XP002414492 *
See also references of EP2712927A4
ZHENG, Q. ET AL.: "Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV)", VIRUS GENES, vol. 35, no. 3, December 2007 (2007-12-01), pages 585 - 595, XP019557766 *

Also Published As

Publication number Publication date
EP2712927B1 (en) 2019-08-21
MX2013012994A (es) 2013-12-12
CA2834956C (en) 2018-11-20
JP2014515925A (ja) 2014-07-07
CN103649320A (zh) 2014-03-19
JP6101251B2 (ja) 2017-03-22
KR20140033096A (ko) 2014-03-17
TWI602918B (zh) 2017-10-21
TW201311899A (zh) 2013-03-16
US20140199343A1 (en) 2014-07-17
BR112013028605A2 (pt) 2017-01-17
US10201602B2 (en) 2019-02-12
MX351695B (es) 2017-10-24
EP2712927A4 (en) 2014-11-05
CA2834956A1 (en) 2012-11-15
EP2712927A1 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP6845266B2 (ja) 多価組換型鳥ヘルペスウイルス及び鳥類を免疫化するためのワクチン
US9409954B2 (en) Recombinant non-pathogenic marek's disease virus constructs encoding infectious laryngotracheitis virus and newcastle disease virus antigens
ES2867457T3 (es) Vacuna recombinante contra paramyxovirus aviar y procedimiento de fabricación y utilización de la misma
ES2732828T3 (es) Virus de la enfermedad de Marek recombinantes y usos de los mismos
WO2018145077A1 (en) Infectious bronchitis virus vaccine using newcastle disease viral vector
EP3694987A1 (en) Recombinant non-pathogenic marek's disease virus constructs encoding multiple heterologous antigens
ES2935643T3 (es) Construcciones de virus de la enfermedad de Marek no patógeno recombinante que codifican antígenos del virus de la laringotraqueítis infecciosa y del virus de la bursitis infecciosa
ES2333223T3 (es) Virus de la bronquitis infecciosa que contiene un gen punta modificado.
US10383936B2 (en) Infectious laryngotracheitis virus (ILTV) vaccine using recombinant newcastle disease virus vector
ES2784336T3 (es) MDV1 recombinante y sus usos
KR102332656B1 (ko) H9 헤마글루티닌을 포함하는 뉴캐슬병 재조합 벡터 및 이로부터 제조된 재조합 바이러스
WO2012153160A1 (es) Vacuna recombinante contra prrs en vector viral
Milić et al. Overview of current advances in the development of subunit and recombinant vaccines against Newcastle disease virus
WO2015013178A1 (en) Infectious laryngotracheitis virus (iltv) vaccine using recombinant newcastle disease virus vector
US20140341950A1 (en) Recombinant avian paramyxovirus vaccine and method for making and using thereof
BR122023000986B1 (pt) Composição compreendendo o vírus recombinante da doença de marek de sorotipo 1 (mdv1)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865316

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2834956

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014509846

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 002454-2013

Country of ref document: PE

Ref document number: MX/A/2013/012994

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011865316

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137032542

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013028605

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14116319

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112013028605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131106