WO2012152748A1 - Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke - Google Patents

Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke Download PDF

Info

Publication number
WO2012152748A1
WO2012152748A1 PCT/EP2012/058357 EP2012058357W WO2012152748A1 WO 2012152748 A1 WO2012152748 A1 WO 2012152748A1 EP 2012058357 W EP2012058357 W EP 2012058357W WO 2012152748 A1 WO2012152748 A1 WO 2012152748A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
sleep mode
mode
active mode
test routine
Prior art date
Application number
PCT/EP2012/058357
Other languages
English (en)
French (fr)
Inventor
Rudolf Temming
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DK12721464.1T priority Critical patent/DK2691283T3/en
Priority to US14/116,246 priority patent/US8996209B2/en
Priority to ES12721464.1T priority patent/ES2670595T3/es
Priority to EP12721464.1A priority patent/EP2691283B1/de
Publication of WO2012152748A1 publication Critical patent/WO2012152748A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/169Diagnosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/53Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • B61L7/06Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission
    • B61L7/08Circuitry

Definitions

  • the invention relates to a method for operating a railway track with link elements , such as Signa ⁇ len, switches and Gleisokomelde wornen, each of a fail-safe computer, which cyclically performs a test routine, and an iron ⁇ web track for performing the method.
  • link elements such as Signa ⁇ len, switches and Gleisokomelde wornen
  • each of a fail-safe computer which cyclically performs a test routine
  • an iron ⁇ web track for performing the method.
  • Track elements are understood to mean all devices that serve the safety and control of rail traffic in the area of track systems. It may be, for example ⁇ play to axle counters, point machines, signals, or track-break detector. Usually, the route elements and the controlling computers are permanently energized, so that there is always operational readiness and the execution of test routines is possible. Axle counters and switch contacts, for example, permanently supplied with a quiescent current and safe signaling computers, for example in the form of electronic controls are constantly switched ⁇ tet. This consumes a lot of energy.
  • Signaling safety requirements are defined in the CENELEC standard EN50129 by SILO - not technically safe - up to SIL4 - highly reliable in signaling terms.
  • Signal-technically safe computers to SIL3 or SIL4 are generally designed multi-channel and carry out scholar ⁇ lines during the startup phase and after startup cyclically within a defined period of time. If the cyclic test is not successfully carried out within the defined period of time, safety-relevant operation is no longer possible and a safety-relevant shutdown is usually carried out.
  • the zyk ⁇ metallic test in the time windows in which the secure computer must perform any logic for the normal operation is carried out. Since the run-up times are very long by the test routine, for example, about 30s, the computer remains for safety's sake permanently switched on, whereby the driven
  • the invention has for its object to provide a generic method for operating a railway line and a suitable for carrying out the method railway track, which ⁇ a reduction in energy consumption possible.
  • the object is achieved in that the computer is operated dependent on demand in active mode or sleep mode, the computer in sleep mode for the duration of the
  • Check routine is switched by a fail-safe timer logic in the active mode.
  • the object is also achieved by a railway track for carrying out the method, wherein the computer formedoversab ⁇ pending operable in active mode and sleep mode and can be switched by means of a fail-safe timer logic during the sleep mode for the duration of the test routine to the active ⁇ mode is.
  • Low-load state can mean energy-saving mode in the manner of a stand-by mode or even completely de-energized, that is switched off, state.
  • Full load condition that is fully functional operating state of the stretch ⁇ element is provided only for actual needs, namely only if a rail vehicle, the respective
  • example ⁇ signals can be controlled by the fail-safe computer such that a current flow occurs only in the region of visibility of an approaching rail vehicle and the signal is darkened by the computer as soon as the visibility range is left.
  • the fail-safe computer is in active mode as well as in sleep mode in the tested state. In the active ⁇ mode, the cyclic test is similar to previously during the time window in which the secure computer does not have to perform logic for normal operation. In sleep mode, the
  • the timer logic is preferably designed with three channels in SIL4 safety level.
  • the operational readiness can be produced at any time, for example, by a train detection signal.
  • train detection systems for example based on axle counters, may their very safe generated output quasi misappropriated in this way or mitbe ⁇ uses.
  • the track elements are connected to facilities for decentralized power supply. In this way, in addition to the energy savings is a good starting point for future wireless concepts the railway safety technology.
  • decentralized that is local, energy supply of line elements, for example by means of battery or solar panel, can also
  • Track elements are operated in remote locations completely independent of fixed lines or permanently assigned radio channels.
  • Figure 1 shows the main components of a fail-safe computer
  • Figure 2 shows a multi-channel computer architecture.
  • the signal-technically secure computer 1 illustrated in FIG. 1 consists essentially of function blocks for the actual computer functionality 2, an active mode 3 and a sleep mode 4.
  • the active mode 3 contains a logic for the cyclical execution of a test routine 5, whereby safety requirements for a SIL3 or SIL4 status of the computer 1 are met. So that this test routine 5 can also be executed during the sleep mode 4, a timer logic 6 is provided in the sleep mode 4, which switches the computer 1 for the execution of the cyclic test routine 5 in the active mode 3 After completion of the test routine 5, the computer 1 switched back to the sleep mode 4.
  • the computer 1 is permanently, that is, even during sleep mode 4, in a tested state and can request its actual computer functionality 2, namely the control associated route elements, immediately from sleep mode 4 in active mode 3 are switched.
  • the requirement of the computer functionality 2 is carried out by a demand-dependent signal from the outside, for example by an activated communication signal 9 or by a supervisor ⁇ signal 10.
  • the timer logic 6, which the check routine. 5 in sleep mode 4 starts eliminating a real computer start-up, in which the test routine 5 would have to be performed and therefore would cause an inadmissibly long inoperability of the computer 1.
  • the computer 1 needs to be woken up to demand switching of sleep mode 4 in active mode 3 quasi only.
  • FIG. 2 shows a two-channel computer architecture in conjunction with a three-channel timer logic.
  • Each of the three functionally identical timer channels 6.1, 6.2 and 6.3 is connected to the first 1.1 and the second computer channel 1.2.
  • the computer channels 1.1 and 1.2 perform independently of each other ⁇ the test routine 5.1 and 5.2 and the demand-dependent computer functionality 2.1 and 2.2.
  • resistors 11.1, 11.2 and 11.3 are connected upstream of the second computer channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Eisenbahnstrecke mit Streckenelementen, welche jeweils von einem signaltechnisch sicheren Rechner (1, 1.1, 1.2), der zyklisch eine Prüfroutine (5; 5.1, 5.2) durchführt, angesteuert werden sowie eine zur Durchführung des Verfahrens ausgerüstete Eisenbahnstrecke. Um Energie und Kosten einzusparen, ist vorgesehen, dass der Rechner (1; 1.1, 1.2) bedarfsweise im Aktivmode (3) oder Sleepmode (4) betrieben wird, wobei der Rechner (1; 1.1, 1.2) im Sleepmode (5) für die Zeitdauer der Prüfroutine (5; 5.1, 5.2) mittels einer signaltechnisch sicheren Timer-Logik (6; 6.1, 6.2, 6.3) in den Aktivmode (3) geschaltet wird.

Description

Beschreibung
Verfahren zum Betreiben einer Eisenbahnstrecke sowie diesbe¬ zügliche Eisenbahnstrecke
Die Erfindung betrifft ein Verfahren zum Betreiben einer Eisenbahnstrecke mit Streckenelementen, beispielsweise Signa¬ len, Weichen und Gleisfreimeldeeinrichtungen, welche jeweils von einem signaltechnisch sicheren Rechner, der zyklisch eine Prüfroutine durchführt, angesteuert werden sowie eine Eisen¬ bahnstrecke zur Durchführung des Verfahrens.
Unter Streckenelementen werden alle Vorrichtungen verstanden, die im Bereich von Gleisanlagen der Sicherheit und der Steue- rung des Schienenverkehrs dienen. Dabei kann es sich bei¬ spielsweise um Achszähler, Weichenantriebe, Signale oder Gleisbruchmelder handeln. Üblicherweise werden die Streckenelemente und die ansteuernden Rechner dauerhaft bestromt, so dass jederzeit Betriebsbereitschaft besteht und die Durchfüh- rung von Prüfroutinen möglich ist. Achszähler und Weichenkontakte werden beispielsweise permanent mit einem Ruhestrom versorgt und signaltechnisch sichere Rechner, beispielsweise in Form elektronischer Stellteile, sind ständig eingeschal¬ tet. Dadurch wird sehr viel Energie verbraucht.
Die Anforderungen an die signaltechnische Sicherheit sind in der CENELEC-Norm EN50129 von SILO - signaltechnisch nicht sicher - bis SIL4 - signaltechnisch hochgradig sicher - definiert. Signaltechnisch sichere Rechner nach SIL3 oder SIL4 sind in der Regel mehrkanalig ausgebildet und führen Prüfrou¬ tinen während der Hochlaufphase und nach dem Hochlaufen zyklisch innerhalb einer definierten Zeitspanne durch. Wird die zyklische Prüfung nicht innerhalb der definierten Zeitspanne erfolgreich durchgeführt, ist ein sicherheitsrelevanter Be- trieb nicht mehr möglich und es erfolgt in der Regel eine sicherheitsrelevante Abschaltung. Durchgeführt wird die zyk¬ lische Prüfung in den Zeitfenstern, in denen der sichere Rechner keine Logik für den Normalbetrieb durchführen muss. Da die Hochlaufzeiten durch die Prüfroutine sehr lang sind, beispielsweise ca. 30s, bleibt der Rechner sicherheitshalber permanent eingeschaltet, wodurch auch die angesteuerten
Streckenelemente eingeschaltet bleiben und ein hoher Energie- bedarf resultiert.
Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zum Betreiben einer Eisenbahnstrecke sowie eine zur Durchführung des Verfahrens geeignete Eisenbahnstrecke an- zugeben, welche eine Verringerung des Energieverbrauchs er¬ möglichen .
Verfahrensgemäß wird die Aufgabe dadurch gelöst, dass der Rechner bedarfsabhängig in Aktivmode oder Sleepmode betrieben wird, wobei der Rechner im Sleepmode für die Zeitdauer der
Prüfroutine mittels einer signaltechnisch sicheren Timer-Logik in den Aktivmode geschaltet wird.
Die Aufgabe wird auch durch eine Eisenbahnstrecke zur Durch- führung des Verfahrens gelöst, bei der der Rechner bedarfsab¬ hängig in Aktivmode und Sleepmode betreibbar ausgebildet und mittels einer signaltechnisch sicheren Timer-Logik während des Sleepmode für die Zeitdauer der Prüfroutine in den Aktiv¬ mode schaltbar ist.
Durch im Sleepmode des ansteuernden Rechners weitestgehenden Betrieb der Streckenelemente in einen Niedriglastzustand er¬ gibt sich eine erhebliche Energie- und damit Kosteneinspa¬ rung. Niedriglastzustand kann dabei Energiesparmodus nach Art eines Stand-by-Betriebes oder auch vollständig stromloser, das heißt ausgeschalteter, Zustand bedeuten. Volllastzustand, das heißt voll funktionsfähiger Betriebszustand des Strecken¬ elementes, ist nur bei tatsächlichem Bedarf vorgesehen, nämlich nur dann, wenn ein Schienenfahrzeug das jeweilige
Streckenelement benötigt. Auf diese Weise können beispiels¬ weise Signale durch den signaltechnisch sicheren Rechner derart angesteuert werden, dass eine Bestromung nur im Sichtbarkeitsbereich eines herannahenden Schienenfahrzeuges erfolgt und das Signal, sobald der Sichtbarkeitsbereich verlassen ist, durch den Rechner dunkel geschaltet wird.
Da eine echte Rechnerhochlaufzeit entfällt und der Rechner quasi nur eingeschaltet werden muss und sich wegen der Prüf¬ routine im Sleepmode bereits im geprüften Zustand befindet, kann sichergestellt werden, dass der Rechner sofort nach einer Einschaltaufforderung einsatzfähig ist. Für das Einschalten des Rechners wird nur ein Zeitraum von ca. 30ms be- nötigt, während ein Rechnerhochlauf ca. 30s beansprucht. Der signaltechnisch sichere Rechner befindet sich sowohl im Aktivmode als auch im Sleepmode im geprüften Zustand. Im Aktiv¬ mode erfolgt die zyklische Prüfung ähnlich wie bisher während der Zeitfenster, in denen der sichere Rechner keine Logik für den Normalbetrieb durchführen muss. Im Sleepmode wird der
Rechner durch die signaltechnisch sichere Timer-Logik rechtzeitig wieder in den Aktivmode geschaltet, damit er die zyk¬ lischen Prüfungen noch vor Ablauf der definierten Zeitspanne ausführen kann. Die Timer-Logik ist vorzugsweise dreikanalig in SIL4-Sicherheitsniveau ausgebildet.
Durch Beschränkung der Betriebsbereitschaft des Rechners und der angesteuerten Streckenelemente auf die tatsächlich erforderlichen Zeiträume kann sich, insbesondere bei schwach be- fahrenden oder Nebenstrecken, eine erhebliche Energieeinspa¬ rung ergeben.
Die Betriebsbereitschaft kann dabei jederzeit beispielsweise von einem Gleisfreimeldesignal hergestellt werden. Bei vor- handenen Gleisfreimeldeanlagen, beispielsweise auf der Grundlage von Achszählern, kann deren sehr sicher erzeugtes Ausgangssignal auf diese Weise quasi zweckentfremdet oder mitbe¬ nutzt werden. Gemäß Anspruch 3 ist vorgesehen, dass die Streckenelemente mit Einrichtungen zur dezentralen Energieversorgung verbunden sind. Auf diese Weise ergibt sich neben der Energieeinsparung eine gute Einstiegsbasis für zukünftige kabellose Konzepte der Eisenbahnsicherungstechnik. Durch dezentrale, das heißt lokale, Energieversorgung von Streckenelementen, beispielsweise mittels Batterie oder Solarpaneel, können auch
Streckenelemente an entlegenen Orten vollständig unabhängig von Festleitungen oder fest zugewiesenen Funkkanälen betrieben werden.
Die Erfindung wird nachfolgend anhand figürlicher Darstellungen verdeutlicht.
Es zeigen:
Figur 1 die wesentlichen Baugruppen eines signaltechnisch sicheren Rechners und
Figur 2 eine mehrkanalige Rechnerarchitektur.
Der in Figur 1 veranschaulichte signaltechnisch sichere Rechner 1 besteht im Wesentlichen aus Funktionsblöcken für die eigentliche Rechnerfunktionalität 2, einen Aktivmode 3 und einen Sleepmode 4. Der Aktivmode 3 beinhaltet eine Logik zur zyklischen Durchführung einer Prüfroutine 5, wodurch Sicherheitsanforderungen für einen SIL3 oder SIL4-Status des Rechners 1 erfüllt werden. Damit diese Prüfroutine 5 auch während des Sleepmodes 4 ausgeführt werden kann, ist im Sleepmode 4 eine Timer-Logik 6 vorgesehen, welche den Rechner 1 für die Durchführung der zyklischen Prüfroutine 5 in den Aktivmode 3 umschaltet 7. Nach Beendigung der Prüfroutine 5 wird der Rechner 1 in den Sleepmode 4 zurückgeschaltet 8. Auf diese Weise befindet sich der Rechner 1 permanent, das heißt auch während des Sleemodes 4, in geprüftem Zustand und kann bei Anforderung seiner eigentlichen Rechnerfunktionalität 2, nämlich der Ansteuerung zugeordneter Streckenelemente, sofort von Sleepmode 4 in Aktivmode 3 umgeschaltet werden. Die An- forderung der Rechnerfunktionalität 2 erfolgt dabei durch ein bedarfsabhängiges Signal von außen, beispielsweise durch ein aktiviertes Kommunikationssignal 9 oder durch ein Überwacher¬ signal 10. Durch die Timer-Logik 6, welche die Prüfroutine 5 im Sleepmode 4 startet, entfällt ein echter Rechnerhochlauf, bei dem die Prüfroutine 5 durchgeführt werden müsste und der deshalb eine unzulässig lange Funktionsuntüchtigkeit des Rechners 1 verursachen würde. Stattdessen muss der Rechner 1 zur bedarfsabhängigen Umschaltung von Sleepmode 4 in Aktivmode 3 quasi lediglich geweckt werden.
Figur 2 zeigt eine zweikanalige Rechnerarchitektur in Verbindung mit einer dreikanaligen Timer-Logik. Jeder der drei funktionsgleichen Timer-Kanäle 6.1, 6.2 und 6.3 ist dabei mit dem ersten 1.1 und dem zweiten Rechnerkanal 1.2 verbunden. Die Rechnerkanäle 1.1 und 1.2 führen dabei unabhängig vonein¬ ander die Prüfroutine 5.1 und 5.2 und die bedarfsabhängige Rechnerfunktionalität 2.1 und 2.2 aus. Zur eindeutigen Kanal- trennung sind dem zweiten Rechnerkanal 1.2 Widerstände 11.1, 11.2 und 11.3 vorgeschaltet.
Erst die in den Figuren 1 und 2 dargestellte Rechnerarchitektur gewährleistet ausreichende signaltechnische Sicherheit, um einen Sleepmode 4 einzuführen und damit den Energiebedarf des Rechners 1 und der angesteuerten Streckenelemente erheb¬ lich zu verringern. Letztlich ergibt sich dadurch auch die Möglichkeit einer Dezentralisierung, insbesondere bezüglich der Energieversorgung, die beispielsweise auf Solarenergie basieren kann.

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Eisenbahnstrecke mit
Streckenelementen, beispielsweise Signalen, Weichen und
Gleisfreimeldeeinrichtungen, welche jeweils von einem signaltechnisch sicheren Rechner (1, 1.1, 1.2), der zyklisch eine Prüfroutine (5; 5.1, 5.2) durchführt, angesteuert werden, d a d u r c h g e k e n n z e i c h n e t , dass
der Rechner (1; 1.1, 1.2) bedarfsweise im Aktivmode (3) oder Sleepmode (4) betrieben wird, wobei der Rechner (1; 1.1, 1.2) im Sleepmode (5) für die Zeitdauer der Prüfroutine (5; 5.1, 5.2) mittels einer signaltechnisch sicheren Timer-Logik (6; 6.1, 6.2, 6.3) in den Aktivmode (3) geschaltet wird. 2. Eisenbahnstrecke zur Durchführung des Verfahrens nach An¬ spruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
der Rechner (1; 1.1, 1.2) bedarfsabhängig im Aktivmode (3) und Sleepmode (4) betreibbar ausgebildet und mittels einer signaltechnisch sicheren Timer-Logik (6; 6.1, 6.2, 6.3) während des Sleepmode (4) für die Zeitdauer der Prüfroutine (5; 5.1, 5.
2) in den Aktivmode (3) schaltbar ist.
3. Eisenbahnstrecke nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t , dass
die Streckenelemente mit Einrichtungen zur dezentralen Energieversorgung verbunden sind.
PCT/EP2012/058357 2011-05-11 2012-05-07 Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke WO2012152748A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK12721464.1T DK2691283T3 (en) 2011-05-11 2012-05-07 Procedure for operating a railway section as well as a railway section relating thereto
US14/116,246 US8996209B2 (en) 2011-05-11 2012-05-07 Method for operating a railway section and corresponding railway section
ES12721464.1T ES2670595T3 (es) 2011-05-11 2012-05-07 Procedimiento para operar una línea ferroviaria, así como línea ferroviaria asociada
EP12721464.1A EP2691283B1 (de) 2011-05-11 2012-05-07 Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011075652A DE102011075652A1 (de) 2011-05-11 2011-05-11 Verfahren zum Betreiben einer Eisenbahnstrecke sowie diesbezügliche Eisenbahnstrecke
DE102011075652.3 2011-05-11

Publications (1)

Publication Number Publication Date
WO2012152748A1 true WO2012152748A1 (de) 2012-11-15

Family

ID=46085920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/058357 WO2012152748A1 (de) 2011-05-11 2012-05-07 Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke

Country Status (8)

Country Link
US (1) US8996209B2 (de)
EP (1) EP2691283B1 (de)
DE (1) DE102011075652A1 (de)
DK (1) DK2691283T3 (de)
ES (1) ES2670595T3 (de)
HU (1) HUE039173T2 (de)
NO (1) NO2691283T3 (de)
WO (1) WO2012152748A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012100A1 (fr) * 2013-10-18 2015-04-24 Scle Systemes Pour Le Ferroviaire Et L En Dispositif pour securiser un systeme utilisant des commandes electriques

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216382A1 (de) 2012-09-14 2014-03-20 Siemens Aktiengesellschaft Energiesparmodus für Signalsystem eines Bahnsystems
DE102016225618A1 (de) * 2016-12-20 2018-06-21 Siemens Aktiengesellschaft Betreiben eines Steuergeräts an einer Bahnstrecke
CN112208588B (zh) * 2020-09-27 2022-10-18 通号城市轨道交通技术有限公司 一种列车唤醒和休眠系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457682B2 (en) * 1999-12-07 2002-10-01 Railroad Controls Llc Automated railroad crossing warning system
EP1594101A1 (de) * 2004-05-08 2005-11-09 Siemens Schweiz AG Verfahren und Stellteil zur Steuerung und/oder Überwachung von Funktionseinheiten mittels Speisesignalmodulation
EP1731397A1 (de) * 2005-06-06 2006-12-13 Siemens Schweiz AG Sicherungsanlage zur Bereitsstellung eines gesicherten Bahnübergangs
WO2009100292A1 (en) * 2008-02-08 2009-08-13 General Electric Company Railway sensor communication system and method
WO2010006926A1 (de) * 2008-07-15 2010-01-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zum betreiben einer eisenbahnsicherungsanlage
WO2011107362A1 (de) * 2010-03-01 2011-09-09 Siemens Aktiengesellschaft Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611291A (en) * 1983-11-10 1986-09-09 General Signal Corp. Vital interface system for railway signalling
US5491788A (en) * 1993-09-10 1996-02-13 Compaq Computer Corp. Method of booting a multiprocessor computer where execution is transferring from a first processor to a second processor based on the first processor having had a critical error
US8857770B2 (en) * 2004-01-02 2014-10-14 David J. Ruskauff Railway dark territory switch automation
US7416159B2 (en) * 2004-01-02 2008-08-26 Donald Coy Beaman Method and apparatus for controlling railway switches
US7268565B2 (en) * 2005-12-08 2007-09-11 General Electric Company System and method for detecting rail break/vehicle
US7457691B2 (en) * 2005-12-30 2008-11-25 Canadian National Railway Company Method and system for computing rail car switching solutions in a switchyard based on expected switching time
US7565228B2 (en) * 2005-12-30 2009-07-21 Canadian National Railway Company System and method for computing railcar switching solutions in a switchyard using empty car substitution logic
US7742849B2 (en) * 2005-12-30 2010-06-22 Canadian National Railway Company System and method for computing car switching solutions in a switchyard using car ETA as a factor
EP2000385A1 (de) 2007-06-05 2008-12-10 Siemens Schweiz AG Vorrichtung zur Übertragung von Daten zwischen einer fest installierten Datenübertragungseinheit und einem beweglichen Objekt
FR2958248B1 (fr) * 2010-04-01 2012-06-15 Alstom Transport Sa Procede de gestion de la circulation de vehicules sur un reseau ferroviaire et systeme associe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457682B2 (en) * 1999-12-07 2002-10-01 Railroad Controls Llc Automated railroad crossing warning system
EP1594101A1 (de) * 2004-05-08 2005-11-09 Siemens Schweiz AG Verfahren und Stellteil zur Steuerung und/oder Überwachung von Funktionseinheiten mittels Speisesignalmodulation
EP1731397A1 (de) * 2005-06-06 2006-12-13 Siemens Schweiz AG Sicherungsanlage zur Bereitsstellung eines gesicherten Bahnübergangs
WO2009100292A1 (en) * 2008-02-08 2009-08-13 General Electric Company Railway sensor communication system and method
WO2010006926A1 (de) * 2008-07-15 2010-01-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zum betreiben einer eisenbahnsicherungsanlage
WO2011107362A1 (de) * 2010-03-01 2011-09-09 Siemens Aktiengesellschaft Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012100A1 (fr) * 2013-10-18 2015-04-24 Scle Systemes Pour Le Ferroviaire Et L En Dispositif pour securiser un systeme utilisant des commandes electriques

Also Published As

Publication number Publication date
HUE039173T2 (hu) 2018-12-28
US8996209B2 (en) 2015-03-31
DE102011075652A1 (de) 2012-11-15
ES2670595T3 (es) 2018-05-31
EP2691283A1 (de) 2014-02-05
US20140107874A1 (en) 2014-04-17
EP2691283B1 (de) 2018-02-21
NO2691283T3 (de) 2018-07-21
DK2691283T3 (en) 2018-05-07

Similar Documents

Publication Publication Date Title
EP2691283B1 (de) Verfahren zum betreiben einer eisenbahnstrecke sowie diesbezügliche eisenbahnstrecke
DE102009012986A1 (de) Verfahren zum Betreiben einer Zugbeeinflussungseinrichtung, streckenseitige elektonische Einheit und Balise für eine Zugbeeinflussungseinrichtung sowie Zugbeeinflussungseinrichtung
EP2162339B1 (de) Vorrichtung zur übertragung von daten zwischen einer fest installierten datenübertragungseinheit und einem beweglichen objekt
EP2983961A2 (de) Verfahren zum ein- und ausschalten eines zuges sowie strecken- und zugkonfiguration zur durchführung des verfahrens
EP2608375A2 (de) Schaltungsanordnung mit einem Wechselrichter und Verfahren zur Funktionsprüfung von elektromechanischen Schaltern
EP2874857A2 (de) Betrieb eines schienenfahrzeugs mittels etcs-einrichtung
EP2307256A1 (de) Verfahren und vorrichtung zum betreiben einer eisenbahnsicherungsanlage
EP2868548B1 (de) Verfahren zur Überwachung eines Schaltungszustandes eines Schalters eines Zugsicherungssystem, sowie Zugsicherungssystem
DE102010063005A1 (de) Verfahren und Vorrichtung zum Betreiben einer Eisenbahn-Nebenstrecke
DE102010010452A1 (de) Verfahren zum Betreiben einer Eisenbahnstrecke sowie diesbezügliche Eisenbahnstrecke
EP3038877A1 (de) Verfahren zum aus- und einschalten eines zuges sowie strecken- und zugkonfiguration zur durchführung des verfahrens
EP2939900A1 (de) Autonome Lageüberwachung für Weichen
EP2978654A2 (de) Verfahren zum ersetzen eines ersten stellwerkes durch ein zweites stellwerk
DE102008012953B4 (de) Überprüfung von Anzeigesystemen in Schienenfahrzeugen
DE102006031230B4 (de) Verfahren zur Übertragung von Daten
EP1702827A1 (de) Bedienplatzsystem
EP2708439B1 (de) Verfahren und System zum Extrahieren eines Signalbegriffs aus einem Magnetkreis
DE2458224B2 (de) Datenverarbeitungssystem mit koordinierung der parallelarbeit von mindestens zwei datenverarbeitungsanlagen
WO2006000267A1 (de) Vorrichtung zur spannungsversorgung eines steuergeräts
EP3010776A1 (de) Verfahren zum wiedereinschalten eines zuges und einrichtung zur durchführung des verfahrens
DE102015204105A1 (de) Anordnung und Verfahren für eine Stromversorgung einer Fahrleitung
EP3309040B1 (de) Sicherungsanordnung für den eisenbahnverkehr
EP0918223B1 (de) Geschwindigkeitsprüfeinrichtung
DE102019119577A1 (de) Elektrisches Bordnetz eines zumindest teilweise elektromotorisch antreibbaren Kraftfahrzeugs
DE102016225618A1 (de) Betreiben eines Steuergeräts an einer Bahnstrecke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12721464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012721464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14116246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE