WO2012149780A1 - 利用光信号传输数据信息的方法、系统和装置 - Google Patents

利用光信号传输数据信息的方法、系统和装置 Download PDF

Info

Publication number
WO2012149780A1
WO2012149780A1 PCT/CN2011/080360 CN2011080360W WO2012149780A1 WO 2012149780 A1 WO2012149780 A1 WO 2012149780A1 CN 2011080360 W CN2011080360 W CN 2011080360W WO 2012149780 A1 WO2012149780 A1 WO 2012149780A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
module
spectrum
signal
Prior art date
Application number
PCT/CN2011/080360
Other languages
English (en)
French (fr)
Inventor
操时宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES11864805.4T priority Critical patent/ES2660015T3/es
Priority to CN201180002351.0A priority patent/CN102907025B/zh
Priority to PCT/CN2011/080360 priority patent/WO2012149780A1/zh
Priority to EP11864805.4A priority patent/EP2753009B1/en
Publication of WO2012149780A1 publication Critical patent/WO2012149780A1/zh
Priority to US14/226,159 priority patent/US9391733B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0224Irregular wavelength spacing, e.g. to accommodate interference to all wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]

Definitions

  • the present invention relates to communication technologies, and in particular, to a method, system, and apparatus for transmitting data information using optical signals. Background technique
  • the center frequencies of optical signals of different wavelengths are distributed according to the Fixed Optical Grid (OFG). See Figure 1. Take the 50GHz Grid commonly used in existing WDM networks as an example. Whether it is 100Gbit/s, 40Gbit or 10Gbit/s, the center frequency is strictly in accordance with the 50GHz grid.
  • the prior art uses a Flex Grid technology that allows one optical signal to occupy multiple consecutive OFSs.
  • the 100Gbit/s signal occupies the 50GHz spectrum area
  • 400Gbit/s occupies the spectrum area of 75 ⁇ 87.5GHz
  • lTbit/s occupies the spectrum area of 150GHz ⁇ 200GHz.
  • the specific method may be that the 12.5 GHz is the OFS unit
  • the 100 Gbit/s signal occupies four consecutive OFS units
  • the 400 Gbit/s signal occupies 6 to 7 consecutive OFS units
  • the lTbit/s signal occupies continuous 12 to 16 OFS units.
  • the OFS occupied by one optical signal is continuously cascaded, that is, connected together. This can be seen, for example, from the spectrum diagram of the optical signal in the existing elastic grid network shown in the figure. Cross-transmission of multiple nodes in network transmission will cause a large number of OFS fragments, resulting in a disordered spectrum distribution of optical signals in the optical fiber and reducing the utilization of spectrum resources.
  • the embodiment of the invention provides a method, a system and a device for transmitting data information by using an optical signal, which solves the problem that the optical signal is cross-transmitted through multiple nodes of the transmission network in the prior art, causing a large number of OFS fragments, resulting in optical signals in the optical fiber.
  • the spectrum is disorderly distributed, reducing the utilization of spectrum resources.
  • a method for transmitting data information including: selecting at least two optical carriers, wherein the at least two optical carriers correspond to at least two optical spectrum slots, There are idle optical spectrum slots or optical spectrum slots occupied by other optical signals between the two optical spectrum slots; data information is modulated onto the at least two optical carriers to form an optical signal, so that the one optical signal occupies at least two An optical spectrum slot, wherein the two optical spectrum slots have an idle optical spectrum slot or an optical spectrum slot occupied by other optical signals; and the optical signal is sent.
  • a method for receiving data information including: receiving an optical signal, the one optical signal occupying at least two optical spectrum slots, and the idle optical light between the two optical spectral slots a spectrum slot occupied by a spectrum slot or other optical signal; generating a multi-path sub-optical signal from the optical signal according to the optical spectrum slot occupied by the optical signal; and demodulating the data information from the multi-path sub-optical signal.
  • a transmitting node including: an optical carrier source, a data modulation module, and a sending module, where: the optical carrier source includes a carrier generating module and a first optical carrier selecting module, where the carrier Generating a module for generating a plurality of optical carriers; the first optical carrier selecting module is configured to select at least two optical carriers from the plurality of optical carriers, and the at least two optical carriers correspond to at least two optical spectrum slots An optical spectrum slot or an optical spectrum slot occupied by other optical signals is disposed between the two optical spectrum slots; the data modulation module is configured to modulate data information onto the at least two optical carriers to form an optical signal. Equivalently occupying at least two optical spectrum slots, wherein the two optical spectrum slots have an idle optical spectrum slot or an optical spectrum slot occupied by other optical signals; and the sending module is configured to send the optical path signal.
  • the optical carrier source includes a carrier generating module and a first optical carrier selecting module, where the carrier Generating a module for generating a plurality of optical carriers; the first optical carrier selecting
  • a receiving node including: a receiving module, configured to receive an optical signal, where one optical signal occupies at least two optical spectrum slots, and between the two optical spectrum slots An optical spectrum slot occupied by an idle optical spectrum slot or other optical signal; a sub-optical signal generating module configured to generate a multi-path sub-optical signal from the optical signal according to the optical spectrum slot occupied by the one optical signal; and a data recovery module And for demodulating data information from the multi-path sub-optical signal.
  • a system for transmitting data information comprising the above-described transmitting node and receiving node.
  • the spectrum corresponding to one optical signal occupies at least two optical spectrum slots (OFS), and the two OFSs have idle OFS or are used by other optical signals.
  • OFS optical spectrum slots
  • the cross-transmission of multiple nodes in the transmission network can be flexibly arranged according to the size of the OFS block, so that the fiber spectrum is closely arranged, the OFS fragments are reduced, and the utilization of the fiber spectrum is improved.
  • Figure 1 is a schematic diagram of a fixed grid of an existing WDM network
  • FIG. 2 is a schematic diagram of an existing WDM network elastic grid
  • FIG. 3 is a schematic diagram of a spectrum of an optical signal in an existing elastic grid network
  • FIG. 4 is a flow chart of an embodiment of a method for transmitting data information by an optical signal according to the present invention
  • FIG. 5 is a schematic diagram of a frequency spectrum of an optical spectrum slot occupied by an optical signal according to an embodiment of the present invention
  • 6a is a schematic diagram of cross-transmission in a transmission network in the prior art
  • 6b is a schematic diagram of cross-transmission in a transmission network according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of an embodiment of a method for transmitting data information by an optical signal according to the present invention.
  • FIG. 8a is a schematic diagram of separating a main optical signal into sub-light signals according to an embodiment of the invention.
  • FIG. 8b is a schematic diagram of separating a main optical signal into sub-light signals according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a transmitting node according to the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of a transmitting node according to the present invention.
  • FIG. 11 is a schematic structural diagram of another embodiment of a transmitting node according to the present invention.
  • FIG. 12 is a schematic structural diagram of an embodiment of an intermediate node according to the present invention.
  • FIG. 13 is a schematic structural diagram of a cross-transmission module according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an embodiment of a non-coherent receiving node according to the present invention.
  • 15 is a schematic structural diagram of an embodiment of a coherent receiving node according to the present invention.
  • 16 is a schematic structural diagram of another embodiment of a receiving node according to the present invention.
  • 17 is a schematic structural diagram of another embodiment of a non-coherent receiving node according to the present invention.
  • FIG. 18 is a schematic structural diagram of an embodiment of a coherent receiving node according to the present invention.
  • FIG. 19 is a schematic structural diagram of a system for transmitting optical signal information according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION The following describes a method, apparatus, and system for transmitting data information using optical signals.
  • Figure 4 shows a flow chart of the method. The method includes the following steps.
  • Step 41 Select at least two optical carriers, where the at least two optical carriers correspond to at least two optical spectrum slots.
  • OFS orthogonal frequency division multiple access
  • a plurality of optical carriers may be generated by an optical carrier source, and the OFSs of the plurality of optical carriers are consecutively cascaded, and at least two optical carriers are selected from the plurality of optical carriers, and the at least two optical carriers correspond to at least two optical carriers.
  • Step 42 Modulate data information onto the at least two optical carriers to form an optical signal.
  • the one optical signal occupies at least two OFSs, and the two OFSs have an idle OFS or an OFS occupied by other optical signals.
  • the one optical signal is in terms of data information integrity, and the data information carried on the corresponding effective carrier is combined to be complete data information.
  • OFDM orthogonal frequency division multiplexing
  • any one of the carriers is removed, and the receiving end will not receive the correct and complete data information. Therefore, the effective carriers corresponding to the one optical signal are not necessarily transmitted via the same path or optical fiber, or may be transmitted via different paths or optical fibers, and then received together at the receiving end.
  • the optical signal in this case may also be referred to as an optical signal as long as the data information carried on the effective carrier is combined to be complete data information.
  • the 0FS occupied by the one optical signal may be a single 0FS separated from each other, or there may be a continuous cascade of optical spectrum slots.
  • the spectrum of the formed optical signal is as shown in FIG. 5, which occupies 0FS1, 0FS2, 0FS5, 0FS6, and 0FS7—a total of 5 0FS.
  • the spectrum of the optical signals of one channel is not continuous, and two 0FS, 0FS3 and P 0FS4 are spaced apart in the middle.
  • 0FS3 and 0FS4 are either unused or can be used to carry optical signals from other channels.
  • the command information of the control/management plane interface can be obtained, and the selection of each optical carrier can be controlled, thereby adjusting the 0FS occupied by the optical signal of one path, and ensuring the light of the one path.
  • the signal occupies the following two 0FSs: there are idle 0FS between the two 0FSs or 0FS used by other optical signals.
  • the command information can be adjusted to the optical carrier for transmission along with the data information to be transmitted, or can be transmitted using independent wavelengths.
  • Step 43 Send the one optical signal.
  • the optical signals formed by the optical signals and the optical carriers modulated with other data information may be cross-transmitted, that is, the optical signals including the optical signals of the one optical signal may be combined.
  • one optical signal obtained according to the above embodiment occupies at least 2 OFS, and there are idle OFS or OFS used by other optical signals between the two OFSs, the one way can be used in the transmission process.
  • the optical signal and the optical signal formed by the optical carrier modulated with other data information are cross-transmitted, and can be flexibly arranged according to the size of the OFS block, so that the optical fiber spectrum is closely arranged, the OFS fragment is reduced, and the utilization ratio of the optical fiber spectrum is improved.
  • FIG. 6a is a schematic diagram of the combined situation of cross-transmission in the optical signal transmission process in the prior art, and the multi-channel optical signal outputted by the node A is combined with the optical signal outputted by the Node B, because B The OFS occupied by one optical signal output by the node is continuously cascaded, and the spectrum width is large. It cannot be inserted into the spectrum gap of the multi-channel optical signals output by the A node, and can only be arranged in order, resulting in the optical fiber spectrum resources after the combination. The utilization rate is low.
  • FIG. 6b is a schematic diagram of a combined situation of cross-transmission in an optical signal transmission process according to an embodiment of the present invention.
  • the multi-path optical signal outputted by the node A (the optical signal after combining multiple optical signals) and the node B are shown.
  • the output optical signals are combined, and one optical signal outputted by the node B can be carried on two OFS blocks according to the spectral distribution of the multiple optical signals output by the node A, and there are between the two OFS blocks.
  • the idle OFS or the OFS used by other optical signals, each OFS block is relatively small, such that one OFS block can be inserted in the middle of the OFS block corresponding to the multiple optical signals output by the node A, reducing the generation of OFS fragments, effectively Improve spectrum utilization.
  • the OFS block is a set of several OFSs, and the OFSs in this set are consecutively concatenated.
  • Figure 7 shows a flow chart of the method. The method includes the following steps.
  • Step 71 Receive an optical signal, where the one optical signal occupies at least two optical spectrum slots, and the two optical spectrum slots have an idle optical spectrum slot or an optical spectrum slot occupied by other optical signals.
  • Step 72 Generate a multi-path sub-optical signal from the one optical signal according to the optical spectrum slot occupied by the one optical signal.
  • receiving the one-way optical signal can be divided into two types: non-coherent reception and coherent reception. happening.
  • the processing methods of non-coherent reception and coherent reception are different.
  • the one optical signal may be separated into multiple sub-optical signals respectively occupying one OFS according to a single OFS occupied by the one optical signal.
  • the optical signal on the left side of the figure is separated into multiple sub-optical signals on the right side of the figure in units of 0FS, and each sub-optical signal occupies a 0FS.
  • the one optical signal is separated into multiple sub-optical signals according to the successively cascaded 0FS blocks occupied by the one optical signal. As shown in Fig.
  • the optical signal on the left side of the figure includes two 0FS blocks, one 0FS block includes 0FS1 and 0FS2, and the other 0FS block includes 0FS5, 0FS6 and 0FS7, and the two OFS blocks are separated into the right side of the figure.
  • the two-way optical signal includes
  • the separation mode and process of the main optical signal are controlled by acquiring instruction information of the control/management plane interface.
  • the optical signal may be selected according to its occupied 0FS to select at least one local oscillator light source, and the local oscillator light source and the one optical signal are mixed to generate multi-channel mixing.
  • Multi-path sub-light signal there are also two embodiments.
  • at least one local oscillator light source is selected according to a single optical spectrum slot occupied by the one optical signal, and the local oscillator light source is mixed with the one optical signal to generate a mixed multipath.
  • Optical signal In a simple case, a corresponding number of local oscillator sources can be selected in a one-to-one correspondence for each 0FS of the optical signal.
  • a local oscillator source with several 0FSs.
  • at least one local oscillator light source is selected according to the continuously cascaded optical spectrum slot occupied by the one optical signal, and the local oscillator light source and the one optical signal are mixed to generate a hybrid. The optical signal after the frequency.
  • one local oscillator source can be selected correspondingly for each successively cascaded 0FS block.
  • a plurality of consecutive cascaded 0FS blocks share one local oscillator light source.
  • Step 73 Demodulate data information from the multi-path sub-optical signal.
  • the multi-channel sub-optical signals are respectively converted into corresponding analog electric signals, and the analog electrical signals are converted into corresponding numbers. Signaling, and recovering the data information from the digital signal, completing the transmission of the data information.
  • the multi-path sub-optical signal generated after mixing is converted into a corresponding analog electric signal, the analog electric signal is converted into a corresponding digital signal, and the data information is recovered from the digital signal to complete the data information.
  • the one optical signal may also be cross-transmitted at least once as a whole after transmission and/or before reception.
  • the cross-transmission includes: scheduling the one optical signal from the input fiber of the intermediate node as a whole to the output fiber of the intermediate node.
  • the overall transmission guarantees the one-way optical letter
  • the data signal transmitted by the number is complete.
  • the intermediate node is a node that passes after the one optical signal is transmitted from the transmitting node that transmits the optical signal to the receiving node that receives the optical signal.
  • the input and output fibers may be either line fibers or local fibers.
  • the effective carriers corresponding to one optical signal are not necessarily transmitted through the same path or optical fiber, or may be transmitted through different paths or optical fibers, and then received together at the receiving end,
  • An optical signal occupies at least 2 OFS, and there is an idle OFS or an OFS occupied by other optical signals between the two OFSs.
  • the one optical signal according to the embodiment of the present invention occupies at least two OFSs, and there are idle OFSs or OFSs used by other optical signals between the two OFSs, the optical signals and the optical signals may be combined during transmission.
  • the optical signals formed by the optical carriers modulated with other data information are cross-transmitted, and can be flexibly arranged according to the size of the OFS block, so that the optical fiber spectrum is closely arranged, the OFS fragments are reduced, and the utilization ratio of the optical fiber spectrum is improved.
  • Embodiments of the present invention further provide a sending node, an intermediate node, and a receiving node, respectively.
  • Fig. 9 shows a schematic structural diagram of a transmitting node 11 according to an embodiment of the present invention.
  • the transmitting node 11 includes an optical carrier source 111, a data modulation module 112, and a sending module 114, where: the optical carrier source 111 includes a carrier generating module 1111 and a first optical carrier selecting module 1113, and the carrier generating module 1111 is configured to Generating a plurality of optical carriers; the first optical carrier selection module 1113 is configured to select at least two optical carriers from the plurality of optical carriers, where the at least two optical carriers correspond to at least two optical spectrum slots, Between the two optical spectrum slots, there are idle optical spectrum slots or optical spectrum slots occupied by other optical signals; the data modulation module 112 is configured to modulate data information onto the at least two optical carriers to form an optical signal, so that An optical signal occupies at least two optical spectrum slots, between the two optical spectrum slots, an optical spectrum slot or an optical spectrum slot occupied by other optical signals; and the sending module 114 is configured to send the optical signal
  • FIG. 10 shows a schematic structural diagram of a transmitting node according to another embodiment of the present invention.
  • the main difference between this embodiment and the embodiment shown in FIG. 9 is that the transmitting node of the embodiment shown in FIG. 9 can transmit only one optical signal, and the transmitting node 11 of this embodiment has the capability of simultaneously transmitting multiple optical signals.
  • the transmitting node 11 includes a plurality of sets of optical carrier sources 111 (only one optical carrier source is shown) and a data modulation module 112, and a plurality of optical signals connected to the plurality of data modulation modules 112.
  • the combining module 113, and the sending module 114 and the first controller 115, the first controller 115 selects the first optical carrier selection module 1113 included in the optical carrier source 111 module according to the requirements of the control/management plane through the control/management plane interface. (not shown) and the multi-path optical signal combining module 113 perform control; in addition, the first controller 115 can also interact with the control/management plane through the control/management plane interface, including making an application, signaling response, and the like.
  • the multiplexed optical signal combining module 113 combines the optical signals formed by the one optical signal and the optical carrier modulated with other data information before transmitting.
  • all the optical signals generated by the transmitting node 11 of the present invention may be such that the OFS occupies at least 2 OFS, the OFS with the idle OFS between the two OFSs, or the OFS used by other optical signals.
  • the one optical signal may also be part of the one optical signal.
  • FIG. 11 shows a detailed structural diagram of a transmitting node according to another embodiment of the present invention.
  • the optical carrier source 111 includes a carrier generator 1111 and a first optical carrier selecting module 1113, wherein the carrier generating module 1111 is configured to generate multiple optical carriers; the first optical carrier selecting module 1113 is used. Selecting at least two optical carriers from the plurality of optical carriers, the at least two optical carriers corresponding to at least two optical spectrum slots, and the idle optical spectrum slots or other optical signals between the two optical spectral slots Occupied optical spectrum slot.
  • the first optical carrier selection module 1113 can be implemented by a Demultiplexer (DeMUX) module.
  • the tunable DeMUX can select at least two optical carriers, and the OFS between the two optical carriers has an idle OFS or an OFS occupied by other optical signals.
  • the adjustable DeMUX can be a DeMUX based on Liquid Crystal on Silicon (LCoS) technology or a Wavelength Selective Switch (WSS) based on Micro-electromechanical Systems (MEMS).
  • the data modulation module 112 includes at least one modulation module 1121 and an optical coupler 1122, where the modulation module 1121 is configured to receive an optical carrier, and modulate the data information to the optical carrier, and send The optical coupler 1122 is configured to combine the received output signals of the at least one modulation module 1121 to form an optical signal.
  • Each optical carrier modulation mode can be amplitude modulation or Quadrature Amplitude Modulation (QAM).
  • the multi-channel optical signal combining module 113 can be implemented by an adjustable Multiplexer (MUX) module, and the adjustable MUX is an MUX based on LCoS technology.
  • the adjustable MUX can output the corresponding spectrum of the data modulation module 112, and at least two 0FS are occupied.
  • the two 0FSs have an idle 0FS or an optical signal of 0FS used by other optical signals as a whole. .
  • the first controller 115 is configured to acquire control commands of the control/management plane interface, control the optical carrier source 111 to select an optical carrier, and control and/or configure the multiple optical signal combining module 113.
  • the first controller 115 can also interact through the control/management plane interface and the control/management plane, including requesting, signaling, and the like.
  • the information of the control/management plane interface can be modulated onto the carrier together with the data information to be transmitted, or an independent wavelength can be used.
  • the transmitting module 114 is configured to send the combined optical signal output by the multiple optical signal combining module 113.
  • Figure 12 shows a schematic block diagram of an intermediate node 12 in accordance with one embodiment of the present invention. It can be seen that the intermediate node 12 includes at least one cross-transmission module 121 for extracting an optical signal from the input optical fiber as a whole in the optical layer; and/or, the optical signal from the input optical fiber. Dispatching the optical layer into the output fiber as a whole; and/or integrating the optical signal as a whole in the optical layer into the output fiber, wherein the spectrum corresponding to the one optical signal occupies at least two optical spectrum slots OFS, there is an idle OFS between the two OFSs or an OFS used by other optical signals.
  • the intermediate node further includes a second controller 122 for controlling and/or configuring the cross-transmission module 121 according to the requirements of the control/management plane.
  • the second controller 122 can also interact through the control/management plane interface and the control/management plane, including requesting, signaling, and the like.
  • the information of the control/management plane interface can be modulated onto the carrier along with the data information to be transmitted, or a separate wavelength can be used.
  • Figure 13 shows a schematic block diagram of a cross-transport module 121 in accordance with one embodiment of the present invention. It can be seen that the cross-transmission module 121 includes an LCoS WSS sub-sub-module 1211, an LCoS WSS sub-sub-module 1212, an LCoS WSS sub-sub-module 1213, and an LCoS WSS east sub-module 1214.
  • LCoS WSS West sub-module 1211 for separating the local west down-channel optical signal from the west input line fiber, and sending the remaining optical signal to the LCoS WSS east sub-module 1214;
  • the LCoS WSS East Sub-module 1214 is configured to combine the local east-up optical signal with the optical signal sent by the LCoS WSS sub-sub-module 1211, and send it to the east-direction output fiber;
  • the LCoS WSS East sub-module 1213 is configured to separate the local east-down optical signal from the east-direction input line fiber, and send the remaining optical signal to the LCoS WSS west sub-module 1212;
  • the LCoS WSS West Sub-module 1212 is configured to combine the local west-up optical signal with the optical signal sent by the LCoS WSS East sub-module 1213 and send it to the west-direction output fiber.
  • the LCoS WSS sub-modules can perform overall switching on the following optical signals according to the control signal of the second controller 122: the spectrum corresponding to the optical signal occupies at least two optical spectrum slots 0FS, and the two 0FSs have idle 0FS. Or 0FS used by other optical signals.
  • the second controller 122 can control and/or configure the LCoS WSS sub-module according to the requirements of the control/management plane through the control/management plane interface.
  • the optional optical carrier module 121 of the present invention can also set transmission sub-modules in other directions according to actual engineering requirements, such as LCoS WSS South sub-module, LCoS WSS south sub-module, LCoS WSS north sub-module,
  • LCoS WSS sub-sub-module The functions of the LCoS WSS sub-sub-module and the like are similar to those of the embodiment shown in FIG. 13 and will not be described again.
  • FIG. 14 shows a schematic structural diagram of a receiving node 13 according to an embodiment of the present invention.
  • the receiving node 13 includes a receiving module 131, configured to receive an optical signal, where the optical signal occupies at least two optical spectrum slots, and the optical spectrum slots occupied by the optical spectrum slots or other optical signals between the two optical spectrum slots a sub-optical signal generating module 132, configured to generate a multi-path sub-optical signal from the one-way optical signal according to the optical spectrum slot occupied by the one optical signal; and a data recovery module 133, configured to decode from the multi-path sub-optical signal Recall the data information.
  • a receiving module 131 configured to receive an optical signal, where the optical signal occupies at least two optical spectrum slots, and the optical spectrum slots occupied by the optical spectrum slots or other optical signals between the two optical spectrum slots
  • a sub-optical signal generating module 132 configured to generate a multi-path sub-optical signal from the one-way optical signal according to the optical spectrum slot occupied by the one optical
  • the sub-optical signal generating module 132 further includes a second optical carrier selecting module 1321 for separating the optical signals into one optical channel according to a single optical spectrum slot occupied by the optical signals.
  • a plurality of sub-optical signals respectively occupying one optical spectrum slot, or for separating the one optical signal into a plurality of sub-optical signals according to the successively cascaded optical spectrum slots occupied by the one optical signal.
  • the one optical signal occupies at least two optical spectrum slots OFS, and there is an idle OFS or an OFS used by other optical signals between the two OFSs.
  • the manner of separating the received optical signals into a plurality of sub-optical signals according to the occupied OFS is the same as that of the embodiment shown in FIGS. 8a and 8b, and details are not described herein again.
  • Fig. 15 shows a schematic structural diagram of a receiving node 13 according to an embodiment of the present invention. This embodiment corresponds to the embodiment of the transmitting node shown in Fig. 9, and the receiving node 13 is designed for coherent reception.
  • the sub-optical signal generating module 132 further includes a local oscillator source selecting module 1322 and a mixing module 1323.
  • the local oscillator light source selection module 1322 is configured to select at least one local oscillator light source according to a single optical spectrum slot occupied by the one optical signal
  • the mixing module 1323 is configured to use the at least one local oscillator light source and the one light The signal is mixed to generate a mixed multi-path sub-optical signal; or the local oscillator source selecting module 1322 is configured to select at least one local oscillator source according to the continuously cascaded optical spectrum slot occupied by the one optical signal.
  • the mixing module 1323 mixes the at least one local oscillator light source with the one optical signal to generate a mixed optical signal.
  • Fig. 16 shows a schematic structural diagram of a receiving node 13 according to an embodiment of the present invention.
  • the receiving node in this embodiment corresponds to the embodiment of the transmitting node shown in FIG. It can be seen that the receiving node 13 includes a receiving module 131, a multiplexed optical signal splitting module 134, a sub-optical signal generating module 132, a data recovery module 133, and a third controller 135.
  • the multiplexed optical signal splitting module 134 is configured to separate the multiplexed optical signals after receiving the optical signals, wherein at least one of the optical signals occupies at least two optical spectral slots OFS, and the two OFSs have idle OFS or are OFS used by other optical signals.
  • the multiplexed optical signal splitting module 134 can separate the one optical signal as a whole and transmit it to the sub-optical signal generating module 132.
  • the operations of the sub-optical signal generating module 132 and the data recovery module 132 are the same as those of the embodiment shown in FIGS. 14 and 15, and are not described again.
  • the third controller 135 controls the sub-optical signal generating module 132 and the multi-path optical signal shunting module 134 according to the control command of the control/management plane interface,
  • the information of the control/management plane interface can be modulated onto the carrier along with the data information to be transmitted, or a separate wavelength can be used.
  • the partial output port of the multiplexed optical signal branching module 134 can also be directly connected to the data recovery module 133, and the multiplexed optical signal branching module 134 can directly transmit the separated at least one optical signal to the data recovery module. 133, restore data information.
  • Fig. 17 shows a specific application of the receiving node 13 of the embodiment shown in Fig. 14, which is also used in the case of non-coherent reception.
  • the multiplexed optical signal splitting module 134 can be implemented by an adjustable DeMUX module, which can be a DeCoUX based on LCoS technology, which functions in the same manner as the multiplexed optical signal splitting module 134 described in connection with FIG.
  • the second optical carrier selection module 131 can be implemented by an adjustable DeMUX module, which can be a DeMUX or a Micro-electromechanical Systems (MEMS) based on LCoS (Liquid Crystal on Silicon) technology.
  • MEMS Micro-electromechanical Systems
  • LCoS Liquid Crystal on Silicon
  • WSS Wavelength Selective Switch
  • the data recovery module 133 includes a photoelectric conversion sub-module 1331, an analog-to-digital conversion sub-module 1332, and a digital processing sub-module 1333.
  • the photoelectric conversion sub-module 1331 includes a plurality of 0/E circuits for converting the multi-path sub-optical signals into multi-channel analog electrical signals.
  • the 0/E module implements optical-to-electrical conversion.
  • the specific implementation can be a Photo Inductive-Negative (PIN) or an Avalanche Photodiode (APD).
  • the analog to digital conversion submodule 1332 includes a plurality of analog to digital converter (ADC) circuits for converting analog electrical signals into digital signals.
  • the digital processing sub-module 1333 is configured to extract data information from the digital signal.
  • Fig. 18 shows a specific application of the receiving node 13 of the embodiment shown in Fig. 15, which is also used in the case of coherent reception.
  • the sub-light signal generating module 132 further includes a local oscillator light source selecting module 1322 and a mixing module 1323, the functions of which are the same as those described with reference to FIG. 15, and will not be repeated here.
  • the data recovery module 133 includes a photoelectric conversion sub-module 1331, an analog-to-digital conversion sub-module 1332, and a digital processing sub-module 1333, wherein: the photoelectric conversion sub-module 1331 is configured to convert the multi-channel mixed optical signal into multiple The analog-to-digital conversion sub-module 1332 is configured to convert the multi-channel analog electrical signal into a digital signal; the digital processing sub-module 1333 is configured to extract data information from the digital signal.
  • the local oscillator light source selection module 1322 is configured to select parameters such as the wavelength of the local oscillator light source corresponding to each mixer.
  • the local oscillator light source may be a wavelength-adjustable light source.
  • the splitter is divided into m paths by a l:m splitter, where m can be determined according to the number of separated 0 FSs or the number of 0 FS blocks and the manner of reception.
  • a corresponding number of local oscillator sources can be selected one by one for each OFS of the optical signal or one local oscillator source can be selected correspondingly for each successively cascaded 0FS block.
  • a plurality of 0FS shared one local oscillator light source or several consecutive cascaded 0FS blocks may share one local oscillator light source.
  • Each channel is mixed by a mixer, and then photoelectric conversion and analog-to-digital conversion are performed.
  • Each mixed signal uses k photoelectric conversions and an ADC, where k is related to the modulation pattern.
  • Figure 19 illustrates a system for transmitting data information using optical signals in accordance with one embodiment of the present invention.
  • the system comprises a transmitting node 11 and a receiving node 13, and optionally also an intermediate node 12.
  • the details of the transmitting node 11, the receiving node 13, and the intermediate node 12 have been described in detail above and will not be repeated here.
  • At least one optical signal occupies at least two optical spectrum slots (OFS), and the two OFSs have idle OFS or OFS used by other optical signals, so According to the size of the OFS block in the optical signal, the optical spectrum is closely arranged to improve the utilization of the optical fiber spectrum.
  • OFS optical spectrum slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

利用光信号传输数据信息的方法、 系统和装置
技术领域 本发明涉及通信技术, 具体涉及一种利用光信号传输数据信息的方法、系统和装 置。 背景技术
现有波分复用 (Wavelength Division Multiplexing, WDM) 网络中, 不同波长光 信号的中心频率都是按照固定光频谱栅格 (Optical Frequency Grid, OFG) 分布。 见 图 1, 以现有 WDM网络中常用的 50GHz的栅格 (Grid) 为例, 不管是 100Gbit/s、 40Gbit还是 10Gbit/s的信号, 其中心频率都是严格按照 50GHz的栅格分布的。
随着流量的迅猛增长, WDM 网络中信号的速度将进一步提升, 可提升到 400Gbit/s, 甚至 lTbit/s。 这些高速信号的信号频谱宽度可能超过 50GHz, 将无法在 按照 50GHz固定栅格设计的网络中传输。 一个可行的方法是采用间隔更大的栅格, 例如 100GHz的栅格。 但是, 如果有相对低速的信号需要和高速信号混传, 相对低速 的信号同样会占用一个 100GHz的光频谱槽 (Optical Frequency Slot, OFS), 浪费了 光纤的频谱资源。
目前, 现有技术中采用一种弹性栅格 (Flex Grid)技术, 允许一路光信号可以占用 多个连续的 OFS。 见图 2, 100Gbit/s的信号占用 50GHz的频谱区域, 400Gbit/s占用 了 75〜87.5GHz的频谱区域, lTbit/s占用了 150GHz〜200GHz的频谱区域。 具体做 法可以是,采用 12.5GHz为 OFS单位, 100Gbit/s的信号占用了连续的 4个 OFS单位, 400Gbit/s的信号占用 6〜7个连续的 OFS单位, lTbit/s的信号占用了连续的 12〜16 个 OFS单位。
在弹性栅格技术中, 一路光信号占用的 OFS是连续级联的, 即是连接在一起。 例如, 从图所示的现有弹性栅格网络中光信号频谱示意图中可以看出这一点。在网络 传输中经过多个节点的交叉传输, 会造成大量的 OFS碎片, 导致光纤中的光信号频 谱分布凌乱, 降低频谱资源的利用率。 发明内容
本发明实施例通过提供一种利用光信号传输数据信息的方法、系统和装置,解决 现有技术中光信号经传输网络多个节点的交叉传输, 造成大量的 OFS碎片, 导致光 纤中的光信号频谱分布凌乱, 降低频谱资源的利用率的问题。
为解决上述技术问题,根据本发明的一个方面,提供了一种传输数据信息的方法, 包括: 选择至少 2个光载波, 所述至少 2个光载波对应于至少 2个光频谱槽, 所述 2 个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽;将数据信息调制到 所述至少 2 个光载波上形成一路光信号, 使得所述一路光信号占用至少两个光频谱 槽,所述 2个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽; 以及发 送所述一路光信号。
根据本发明的另一个方面, 提供了一种接收数据信息的方法, 包括: 接收一路光 信号,所述一路光信号占用至少两个光频谱槽,所述 2个光频谱槽之间有空闲光频谱 槽或者其他光信号占用的光频谱槽; 根据所述一路光信号占用的光频谱槽, 从所述一 路光信号生成多路子光信号; 以及从所述多路子光信号解调出数据信息。
根据本发明的另一个方面, 提供了一种发送节点, 包括: 光载波源、 数据调制模 块和发送模块, 其中: 所述光载波源包括载波生成模块和第一光载波选择模块, 所述 载波生成模块用于生成多个光载波;所述第一光载波选择模块用于从所述多个光载波 中选择至少 2个光载波,所述至少 2个光载波对应于至少 2个光频谱槽,所述 2个光 频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽;所述数据调制模块用于 将数据信息调制到所述至少 2个光载波上形成一路光信号,使得所述一路光信号占用 至少两个光频谱槽,所述 2个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光 频谱槽; 以及所述发送模块用于发送所述一路光信号。
根据本发明的另一个方面, 提供了一种接收节点, 包括: 接收模块, 用于接收一 路光信号,所述一路光信号占用至少两个光频谱槽,所述 2个光频谱槽之间有空闲光 频谱槽或者其他光信号占用的光频谱槽; 子光信号生成模块,用于根据所述一路光信 号占用的光频谱槽, 从所述一路光信号生成多路子光信号; 以及数据恢复模块, 用于 从所述多路子光信号解调出数据信息。
根据本发明的另一个方面, 提供了一种传输数据信息的系统, 包括上述发送节点 和接收节点。
由上可见, 在本发明实施例的一种实现方式中, 因一路光信号对应的频谱至少占 用 2个光频谱槽 (OFS), 所述 2个 OFS之间有空闲 OFS或者被其他光信号使用的 OFS, 经传输网络多个节点的交叉传输, 可以依据 OFS 块的大小, 灵活排布, 使光 纤频谱紧密排列, 减少 OFS碎片, 提高光纤频谱的利用率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为现有 WDM网络固定栅格示意图;
图 2为现有 WDM网络弹性栅格示意图;
图 3为现有弹性栅格网络中光信号频谱示意图;
图 4为本发明光信号传输数据信息的方法的一个实施例流程图;
图 5为本发明实施例中的一路光信号占用光频谱槽的频谱示意图;
图 6a为现有技术中在传输网络中交叉传输的示意图;
图 6b为根据本发明实施例的在传输网络中交叉传输的示意图;
图 7为本发明光信号传输数据信息的方法的一个实施例流程图;
图 8a为根据本发明一个实施例的主光信号分离成子光信号示意图;
图 8b为根据本发明另一实施例的主光信号分离成子光信号示意图;
图 9为本发明发送节点的一个实施例的结构示意图;
图 10为本发明发送节点的另一个实施例的结构示意图;
图 11为本发明发送节点的另一个实施例的结构示意图;
图 12为本发明中间节点的一个实施例的结构示意图;
图 13为根据本发明实施例的交叉传输模块的结构示意图;
图 14为本发明非相干接收节点的一个实施例的结构示意图;
图 15为本发明相干接收节点的一个实施例的结构示意图;
图 16为本发明接收节点的另一个实施例的结构示意图;
图 17为本发明非相干接收节点的另一个实施例的结构示意图;
图 18为本发明相干接收节点的一个实施例的结构示意图;
图 19为根据本发明一个实施例的光信号传输数据信息的系统结构示意图。 具体实施方式 下面对利用光信号传输数据信息的方法、 装置和系统进行详细说明。
因此, 根据本发明的一个实施例, 提出了一种传输数据信息的方法。 图 4示出了 该方法的流程图。 该方法包括如下步骤。
步骤 41、 选择至少 2个光载波, 所述至少 2个光载波对应于至少 2个光频谱槽
(OFS), 所述 2个 OFS之间有空闲 OFS或者被其他光信号占用的 OFS。
例如, 可以首先由光载波源生成多个光载波, 多个光载波对应的 OFS是连续级 联的,在上述多个光载波中选择至少 2个光载波,所述至少 2个光载波对应至少如下 的 2个 OFS: 所述 2个 OFS之间有空闲 OFS或者其他光信号占用的 OFS。
步骤 42、 将数据信息调制到所述至少 2个光载波上形成一路光信号。 由此, 所 述一路光信号占用了至少 2个 OFS, 所述 2个 OFS之间有空闲 OFS或者被其他光信 号占用的 OFS。
在本发明实施例中, 所述一路光信号是从数据信息完整性来说的, 其对应的有效 载波上承载的数据信息合在一起才是完整的数据信息。 以正交频分复用 (orthogonal frequency division multiplexing, OFDM) 信号为例, 将其中的任何一个载波拿掉, 接 收端都将接收不到正确的、 完整的数据信息。 因此, 所述一路光信号对应的有效载波 不一定是经由相同的路径或光纤传输, 也有可能是经由不同的路径或光纤传输,然后 在接收端被一起接收。在这种情形下, 只要是所述的有效载波上承载的数据信息合在 一起才是完整的数据信息, 那么这种情形下的光信号也可以称为一路光信号。
所述一路光信号占用的 0FS可以是彼此分离的单个的 0FS, 也可以存在连续级 联的光频谱槽块。
例如,形成的一路光信号的频谱如图 5所示, 占用了 0FS1、 0FS2、 0FS5、 0FS6、 0FS7—共 5个 0FS。 从图 5中可以看出, 所述一路光信号的频谱不是连续的, 中间 间隔了两个 0FS, 0FS3禾 P 0FS4。 0FS3和 0FS4或者闲置不用, 或者可以用来承载 其他路的光信号。 而其中也存在连续级联的 0FS块: 0FS1-0FS2以及 OFS5-OFS7。
在利用多个光载波生成一路光信号的过程中, 可以通过获取控制 /管理平面接口 的指令信息, 控制对各光载波的选择, 从而调整所述一路光信号占用的 0FS, 确保所 述一路光信号占用如下的 2个 0FS: 所述 2个 0FS之间有空闲 0FS或者被其他光信 号使用的 0FS。指令信息可以和需要传输的数据信息一起调节到光载波上传输,也可 以采用独立的波长传输。
步骤 43、 发送所述一路光信号。 根据一个实施方式,可以将所述一路光信号和调制有其他数据信息的光载波形成 的光信号交叉传输,也即对包含所述一路光信号的多路光信号进行合路。合路过程中, 由于根据上述实施例得到的一路光信号至少占用 2个 OFS, 所述 2个 OFS之间有空 闲 OFS或者被其他光信号使用的 OFS, 因此在传输过程中可以将所述一路光信号和 调制有其他数据信息的光载波形成的光信号交叉传输, 可以依据 OFS块的大小, 灵 活排布, 使光纤频谱紧密排列, 减少 OFS碎片, 提高光纤频谱的利用率。
见图 6a和图 6b,图 6a为现有技术中光信号传输过程中交叉传输的合路情况的示 意图, 要将节点 A输出的多路光信号与 B节点输出的一路光信号合并, 因 B节点输 出的一路光信号所占用的 OFS是连续级联的, 频谱宽度较大, 无法安插到 A节点输 出的多路光信号的频谱间隙中, 只能次序排列, 导致合路后的光纤频谱资源的利用率 较低。
见图 6b, 为本发明实施例中光信号传输过程中交叉传输的合路情况的示意图, 要将节点 A输出的多路光信号 (为多路光信号合路后的光信号) 与节点 B输出的一 路光信号合并, 因节点 B路输出的一路光信号可以根据节点 A输出的多路光信号频 谱分布的情况,将其承载在两个 OFS块上,所述 2个 OFS块之间有空闲的 OFS或者 被其他光信号使用的 OFS, 每个 OFS块相对较小, 这样其中一个 OFS块就可以安插 到节点 A输出的多路光信号对应的 OFS块中间, 减少 OFS碎片的产生, 有效提高频 谱的利用率。
本领域技术人员可以理解, 传输网络中如果全部光信号为所述一路光信号(即其 对应的频谱至少占用 2个 OFS, 所述 2个 OFS之间有空闲 OFS或者被其他光信号使 用的 OFS), 或部分为所述一路光信号, 进行交叉传输时, 可以依据 OFS块的大小, 灵活排布, 使光信号频谱紧密排列, 将 OFS碎片状况降至很低, 较大程度地提高频 谱的利用率。在此, 所述 OFS块为若干 OFS的集合, 在这个集合中的 OFS是连续级 联的。
根据本发明的另一个实施例, 提出了一种接收数据信息的方法。 图 7示出了该方 法的流程图。 该方法包括如下步骤。
步骤 71、 接收一路光信号, 所述一路光信号占用至少两个光频谱槽, 所述 2个 光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽。
步骤 72、 根据所述一路光信号占用的光频谱槽, 从所述一路光信号生成多路子 光信号。
本领域技术人员知道,接收所述一路光信号可以分为非相干接收和相干接收两种 情况。 在本实施例中, 非相干接收和相干接收的处理方法不同。
在非相干接收的情况下, 在一种实施方式中, 可以根据所述一路光信号占用的单 个 OFS, 将所述一路光信号分离成分别占用一个 OFS的多路子光信号。 见图 8a, 以 一个 0FS为单位, 将图中左边的所述一路光信号分离成图中右边的多路子光信号, 每路子光信号占用一个 0FS。在另一种实施方式中,根据所述一路光信号占用的连续 级联的 0FS块, 将所述一路光信号分离成多路子光信号。 见图 8b, 在图中左边的所 述一路光信号包括两个 0FS块, 一个 0FS块包括 0FS1和 0FS2, 另一个 0FS块包 括 0FS5、 0FS6和 0FS7, 把这两个 OFS块分离成图中右边的两路子光信号。
该主光信号分离过程中, 通过获取控制 /管理平面接口的指令信息, 控制主光信 号的分离方式和过程。
再举例而言, 在相干接收的情况下, 可以将光信号按照其占用的 0FS选择至少 一路本振光源,将所述本振光源与所述一路光信号进行混频, 生成多路混频后的多路 子光信号。 在此, 优选也有两种实施方式。 在一种实施方式中, 根据所述一路光信号 占用的单个光频谱槽,选择至少一路本振光源,将所述本振光源与所述一路光信号进 行混频, 生成混频后的多路子光信号。 简单的情形下, 可以对于光信号的每个 0FS 都一一对应地选择相应数目的本振光源。 当然, 根据接收算法及接收性能的要求, 也 可以若干个 0FS共用一路本振光源。 在另一种实施方式中, 根据所述一路光信号占 用的连续级联的光频谱槽块,选择至少一路本振光源,将所述本振光源与所述一路光 信号进行混频, 生成混频后的光信号。 简单的情形下, 可以每个连续级联的 0FS块 对应地选择一个本振光源。 当然, 也可以根据接收算法及接收性能的要求, 若干个连 续级联的 0FS块共用一路本振光源。
步骤 73、 从所述多路子光信号解调出数据信息。
在非相干接收的情况下, 将所述一路光信号按照其占用的 0FS分离成多路子光 信号之后,将多路子光信号分别转换为相应的模拟电信号,将模拟电信号转换为相应 的数字信号, 并且从数字信号中恢复所述数据信息, 完成数据信息的传输。
在相干接收的情况下, 将混频后生成的多路子光信号转换成相应的模拟电信号, 将模拟电信号转换成相应的数字信号, 并且从数字信号中恢复所述数据信息, 完成数 据信息的传输。
根据本发明的一个实施例, 所述一路光信号在发送之后和 /或接收之前, 还可以 作为整体至少进行一次交叉传输。在此, 交叉传输包括: 将所述一路光信号从中间节 点的输入光纤中作为整体调度到中间节点的输出光纤中。整体传送保证所述一路光信 号所传输的数据信号是完整的。在此, 中间节点是在所述一路光信号从发送该光信号 的发送节点发出之后、到达接收该光信号的接收节点之前所经过的节点。输入光纤和 输出光纤可能是线路光纤, 也可能是本地光纤。
另外一种实施情形, 在传输过程中,一路光信号对应的有效载波不一定是经由相 同的路径或光纤传输, 也可以是经由不同的路径或光纤传输,然后在接收端被一起接 收, 所述一路光信号至少占用 2个 OFS, 所述 2个 OFS之间有空闲 OFS或者被其他 光信号占用的 OFS。
由于根据本发明实施例的所述一路光信号至少占用 2个 OFS, 所述 2个 OFS之 间有空闲 OFS或者被其他光信号使用的 OFS, 因此在传输过程中可以将所述一路光 信号和调制有其他数据信息的光载波形成的光信号交叉传输, 可以依据 OFS块的大 小, 灵活排布, 使光纤频谱紧密排列, 减少 OFS碎片, 提高光纤频谱的利用率。 本发明实施例还分别提供一种发送节点、 中间节点和接收节点。
图 9示出了根据本发明的一个实施例的发送节点 11的示意性结构图。 可见, 发 送节点 11包括光载波源 111、 数据调制模块 112和发送模块 114, 其中: 所述光载波 源 111包括载波生成模块 1111和第一光载波选择模块 1113, 所述载波生成模块 1111 用于生成多个光载波; 所述第一光载波选择模块 1113用于从所述多个光载波中选择 至少 2个光载波,所述至少 2个光载波对应于至少 2个光频谱槽,所述 2个光频谱槽 之间有空闲光频谱槽或者其他光信号占用的光频谱槽;所述数据调制模块 112用于将 数据信息调制到所述至少 2个光载波上形成一路光信号,使得所述一路光信号占用至 少两个光频谱槽,所述 2个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频 谱槽; 以及所述发送模块 114用于发送所述一路光信号。
图 10示出了根据本发明的另一个实施例的发送节点的示意性结构图。 该实施例 与图 9所示实施例的主要区别在于,图 9所示实施例的发送节点只可传送一路光信号, 该实施例的发送节点 11具有可同时传送多路光信号的能力。
见图 10, 发送节点 11包括多组依次连接的光载波源 111 (图中仅仅示出了一个 光载波源)和数据调制模块 112, 还包括与多个数据调制模块 112连接的多路光信号 合路模块 113, 及发送模块 114和第一控制器 115, 第一控制器 115通过控制 /管理平 面接口根据控制 /管理平面的要求对光载波源 111 模块中包含的第一光载波选择模块 1113 (未示出)和多路光信号合路模块 113进行控制; 另外, 第一控制器 115也可以 通过控制 /管理平面接口, 和控制 /管理平面进行交互, 包括提出申请、 信令响应等。 多路光信号合路模块 113, 用于进行发送之前, 将所述一路光信号和调制有其他 数据信息的光载波形成的光信号合路。
本领域技术人员应理解, 本发明发送节点 11生成的各路光信号中, 可以全部是 这种至少占用 2个 OFS、 所述 2个 OFS之间有空闲 OFS或者被其他光信号使用的 OFS的所述一路光信号, 也可以部分是这种所述一路光信号。
图 11示出了根据本发明的另一个实施例的发送节点的具体结构图。
可见, 在发送节点中, 光载波源 111包括载波生成器 1111和第一光载波选择模 块 1113, 其中所述载波生成模块 1111用于生成多个光载波; 所述第一光载波选择模 块 1113用于从所述多个光载波中选择至少 2个光载波, 所述至少 2个光载波对应于 至少 2个光频谱槽,所述 2个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光 频谱槽。第一光载波选择模块 1113可以由一个可调解复用器 (Demultiplexer, DeMUX) 模块实现。 可调 DeMUX可以选择至少两个光载波, 这两个光载波所对应的 OFS之 间有空闲 OFS 或者被其他光信号占用的 OFS。 可调 DeMUX可以是基于硅基液晶 (Liquid Crystal on Silicon, LCoS)技术的 DeMUX, 或微型机 电系统 (Micro-electromechanical Systems, MEMS)的波长选择开关 (Wavelength Selective Switch, WSS)。
另外还可以看到, 其中所述数据调制模块 112包括至少一个调制模块 1121和一 个光耦合器 1122, 其中所述调制模块 1121, 用于接收一个光载波, 将数据信息调制 到该光载波, 送到光耦合器 1122; 所述光耦合器 1122用于将接收的所述至少一个调 制模块 1121的输出信号合路, 形成一路光信号。 每个光载波调制方式可以是幅度调 制, 也可以是正交幅度调制 (Quadrature Amplitude Modulation, QAM)。
多路光信号合路模块 113可以由一个可调的复用器(Multiplexer, MUX)模块实 现, 可调的 MUX是基于 LCoS技术的 MUX。 可调的 MUX能将数据调制模块 112 输出的, 对应的频谱至少占用 2个 0FS, 所述 2个 0FS之间有空闲 0FS或者被其他 光信号使用的 0FS的光信号做为一个整体进行合路。
另外, 第一控制器 115 用于获取控制 /管理平面接口的控制指令, 控制光载波源 111选择光载波以及对多路光信号合路模块 113进行控制和 /或配置。 第一控制器 115 还可通过控制 /管理平面接口和控制 /管理平面进行交互,包括提出申请、信令响应等。 控制 /管理平面接口的信息, 可以和需要传输的数据信息一起调制到载波上, 也可以 采用独立的波长。
发送模块 114用于发送多路光信号合路模块 113输出的合路后的光信号。 图 12示出了根据本发明的一个实施例的中间节点 12的示意性结构图。可见, 中 间节点 12包括至少一个交叉传输模块 121, 所述交叉传输模块 121用于将一路光信 号从输入光纤中作为整体在光层提取出来; 和 /或, 将所述一路光信号从输入光纤中 作为整体在光层调度到输出光纤中; 和 /或, 将所述一路光信号作为整体在光层合入 到输出光纤中, 其中所述一路光信号对应的频谱至少占用 2个光频谱槽 OFS, 所述 2 个 OFS之间有空闲 OFS或者被其他光信号使用的 OFS。 另外, 中间节点还包括第二 控制器 122, 用于根据控制 /管理平面的要求, 对交叉传输模块 121进行控制和 /或配 置。同时,第二控制器 122也可以通过控制 /管理平面接口和控制 /管理平面进行交互, 包括提出申请、 信令响应等。 控制 /管理平面接口的信息可以和需要传输的数据信息 一起调制到载波上, 也可以采用独立的波长。
图 13示出了根据本发明的一个实施例的交叉传输模块 121的示意性结构图。 可 见,交叉传输模块 121包括 LCoS WSS西下子模块 1211、LCoS WSS西上子模块 1212、 LCoS WSS东下子模块 1213和 LCoS WSS东上子模块 1214。
LCoS WSS西下子模块 1211,用于从西向输入线路光纤中分离出本地西向下路光 信号, 将其余光信号送到 LCoS WSS东上子模块 1214;
LCoS WSS东上子模块 1214, 用于将本地东向上路光信号, 与 LCoS WSS西下 子模块 1211送过来的光信号一起合路, 送到东向输出光纤;
LCoS WSS东下子模块 1213,用于从东向输入线路光纤中,分离出本地东向下路 光信号, 将其余光信号送到 LCoS WSS西上子模块 1212;
LCoS WSS西上子模块 1212, 用于将本地西向上路光信号, 与 LCoS WSS东下 子模块 1213送过来的光信号一起合路, 送到西向输出光纤。
这些 LCoS WSS子模块都可以根据第二控制器 122的控制信号对如下的光信号进 行整体切换: 该光信号对应的频谱至少占用 2个光频谱槽 0FS, 所述 2个 0FS之间 有空闲 0FS或者被其他光信号使用的 0FS。 另外, 第二控制器 122可以通过控制 /管 理平面接口,根据控制 /管理平面的要求对上述 LCoS WSS子模块进行控制和 /或配置。
本领技术人员应知, 本发明可选择间隔光载波模块 121还可根据实际工程需求, 设置其他方向的传输子模块, 例如 LCoS WSS南上子模块、 LCoS WSS南下子模块、 LCoS WSS北上子模块、 LCoS WSS北下子模块等, 其功能与图 13所示实施例类同, 不再赘述。
图 14示出了根据本发明的一个实施例的接收节点 13的示意性结构图。该实施例 与图 9所示发送节点的实施例相对应, 并且该接收节点 13针对非相干接收而设计。 接收节点 13包括接收模块 131, 用于接收一路光信号, 所述一路光信号占用至少两 个光频谱槽, 所述 2 个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱 槽; 子光信号生成模块 132, 用于根据所述一路光信号占用的光频谱槽从所述一路光 信号生成多路子光信号; 以及数据恢复模块 133, 用于从所述多路子光信号解调出数 据信息。
从图 14可见, 在非相干接收情况下, 子光信号生成模块 132进一步包括第二光 载波选择模块 1321, 用于根据所述一路光信号占用的单个光频谱槽将所述一路光信 号分离成分别占用一个光频谱槽的多路子光信号,或者用于根据所述一路光信号占用 的连续级联的光频谱槽块将所述一路光信号分离成多路子光信号。所述一路光信号至 少占用 2个光频谱槽 OFS, 所述 2个 OFS之间有空闲 OFS或者被其他光信号使用的 OFS。 将接收的所述一路光信号按照其占用的 OFS 分离成多个子光信号的分离方式 与图 8a、 8b所示实施例相同, 不再赘述。
图 15示出了根据本发明的一个实施例的接收节点 13的示意性结构图。该实施例 与图 9所示发送节点的实施例相对应, 并且该接收节点 13针对相干接收而设计。
从图 15可见, 与非相干接收的情况不同之处在于, 在相干接收情况下, 子光信 号生成模块 132进一步包括本振光源选择模块 1322和混频模块 1323。所述本振光源 选择模块 1322 用于根据所述一路光信号占用的单个光频谱槽选择至少一路本振光 源, 所述混频模块 1323用于将所述至少一路本振光源与所述一路光信号进行混频, 生成混频后的多路子光信号; 或者所述本振光源选择模块 1322用于根据所述一路光 信号占用的连续级联的光频谱槽块选择至少一路本振光源, 所述混频模块 1323将所 述至少一路本振光源与所述一路光信号进行混频, 生成混频后的光信号。
图 16示出了根据本发明的一个实施例的接收节点 13的示意性结构图。该实施例 中的接收节点与图 10所示的发送节点的实施例相对应。可见,接收节点 13包括接收 模块 131、 多路光信号分路模块 134、 子光信号生成模块 132、 数据恢复模块 133和 第三控制器 135。
多路光信号分路模块 134用于接收光信号之后,将多路光信号分离出来,其中至 少有一路光信号至少占用 2个光频谱槽 OFS, 所述 2个 OFS之间有空闲 OFS或者被 其他光信号使用的 OFS。多路光信号分路模块 134能够将所述一路光信号作为一个整 体进行分离, 发送到子光信号生成模块 132。 子光信号生成模块 132和数据恢复模块 132的工作与图 14、 15所示实施例相同, 不再赘述。 第三控制器 135依据控制 /管理 平面接口的控制指令, 控制子光信号生成模块 132及多路光信号分路模块 134动作, 控制 /管理平面接口的信息可以和需要传输的数据信息一起调制到载波上, 也可以采 用独立的波长。
本领域技术人员应了解,多路光信号分路模块 134部分输出端口还可直接连接数 据恢复模块 133, 多路光信号分路模块 134可以将分离出的至少一路光信号直接传送 给数据恢复模块 133, 恢复数据信息。
图 17示出了图 14所示实施例的接收节点 13的一个具体应用, 其同样使用在非 相干接收的情况中。
多路光信号分路模块 134可以由一个可调的 DeMUX模块来实现,具体实现可以 为基于 LCoS技术的 DeMUX,其作用与结合图 16所描述的多路光信号分路模块 134 的作用相同。
第二光载波选择模块 131可以由一个可调的 DeMUX模块来实现,具体实现方式 可为基于 LCoS(Liquid Crystal on Silicon, 硅基液晶)技术的 DeMUX或微型机电系统 (Micro-electromechanical Systems, MEMS)的波长选择开关 (Wavelength Selective Switch, WSS), 其作用与结合图 14所描述的第二光载波选择模块 1321的作用相同。
数据恢复模块 133包括光电转换子模块 1331、 模数转换子模块 1332和数字处理 子模块 1333。光电转换子模块 1331包括多个 0/E电路, 用于将所述多路子光信号转 换为多路模拟电信号。 0/E 模块实现光到电的转换, 具体实现可以为光电二极管 (Positive Intrinsic-Negative, PIN)或者雪崩光电二极管(Avalanche Photodiode, APD)。
模数转换子模块 1332, 包括多个模数转换(Analog to Digital Converter, ADC) 电 路, 用于将模拟电信号转换为数字信号。 数字处理子模块 1333, 用于从数字信号中 提取数据信息。
图 18示出了图 15所示实施例的接收节点 13的一个具体应用, 其中同样使用在 相干接收的情况中。
从图中可见, 子光信号生成模块 132进一步包括本振光源选择模块 1322和混频 模块 1323, 其作用与参照图 15所描述的相同, 这里不再重复。
数据恢复模块 133包括光电转换子模块 1331、 模数转换子模块 1332和数字处理 子模块 1333, 其中: 所述光电转换子模块 1331, 用于将所述多路混频后的光信号转 换成多路模拟电信号; 所述模数转换子模块 1332, 用于将所述多路模拟电信号转换 为数字信号; 所述数字处理子模块 1333, 用于从所述数字信号中提取数据信息。
在图 18中,本振光源选择模块 1322用于选择每个混频器对应的本振光源的波长 等参数, 为了配置灵活, 本振光源可以是波长可调整的光源。 在图 18中, 一路光信 号从多路光信号分路模块 134输出后, 经过 l :m的分路器分成 m路, 其中 m可以根 据一一分离的 0FS的数目或者 0FS块的数目以及接收的方式来确定。简单的情形下, 可以对于光信号的每个 OFS都一一对应地选择相应数目的本振光源或者对于每个连 续级联的 0FS块对应地选择一个本振光源。 当然, 根据接收算法及接收性能的要求, 也可以若干个 0FS共用一路本振光源或者若干个连续级联的 0FS块共用一路本振光 源。 每一路再采用混频器混频, 然后再进行光电转换和模数转换等。 每个混频后的信 号采用 k个光电转换和 ADC, 其中 k和调制码型相关。
图 19示出了根据本发明一个实施例的利用光信号传输数据信息的系统。 从图中 可见, 该系统包括发送节点 11和接收节点 13, 并且可选地还包括中间节点 12。 关于 其中的发送节点 11、 接收节点 13和中间节点 12的具体内容在上面已经进行了详细 描述, 这里不再重复。
由于在根据本发明实施例的系统中, 至少一路光信号至少占用 2 个光频谱槽 (OFS),所述 2个 OFS之间有空闲 OFS或者被其他光信号使用的 OFS, 因此在传输 中可以依据所述一路光信号中 OFS块的大小, 灵活排布, 使光纤中光信号频谱排列 紧密, 提高光纤频谱的利用率。 本领域技术人员应该理解,本发明实施例中装置模块的划分为功能划分, 实际具 体结构可以为上述功能模块的拆分或合并。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
权利要求的内容记载的方案也是本发明实施例的保护范围。
本领域普通技术人员可以理解上述实施例方法中的全部或部分处理是可以通过 程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中。
以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围。凡在 本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1. 一种传输数据信息的方法, 包括:
选择至少 2个光载波, 所述至少 2个光载波对应于至少 2个光频谱槽, 所述 2个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽;
将数据信息调制到所述至少 2个光载波上形成一路光信号,使得所述一路光 信号占用至少两个光频谱槽,所述 2个光频谱槽之间有空闲光频谱槽或者其他光 信号占用的光频谱槽; 以及
发送所述一路光信号。
2. 根据权利要求 1所述的方法, 进一步包括: 将所述一路光信号和调制有 其他数据信息的光载波形成的光信号交叉传输。
3. 根据权利要求 1所述的方法, 其中所述一路光信号占用的光频谱槽中存 在连续级联的光频谱槽块。
4. 一种接收数据信息的方法, 包括:
接收一路光信号, 所述一路光信号占用至少两个光频谱槽, 所述 2个光频谱 槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽;
根据所述一路光信号占用的光频谱槽, 从所述一路光信号生成多路子光信 号; 以及
从所述多路子光信号解调出数据信息。
5. 根据权利要求 4所述的方法, 其中根据所述一路光信号占用的光频谱槽, 从所述一路光信号生成多路子光信号进一步包括:
根据所述一路光信号占用的单个光频谱槽,将所述一路光信号分离成分别占 用一个光频谱槽的多路子光信号。
6. 根据权利要求 4所述的方法, 其中根据所述一路光信号占用的光频谱槽, 从所述一路光信号生成多路子光信号进一步包括:
根据所述一路光信号占用的连续级联的光频谱槽块,将所述一路光信号分离 成多路子光信号。
7. 根据权利要求 4所述的方法, 其中根据所述一路光信号占用的光频谱槽, 从所述一路光信号生成多路子光信号进一步包括:
根据所述一路光信号占用的单个光频谱槽, 选择至少一路本振光源, 将所述 本振光源与所述一路光信号进行混频, 生成混频后的多路子光信号。
8. 根据权利要求 4所述的方法, 其中根据所述一路光信号占用的光频谱槽, 从所述一路光信号生成多路子光信号进一步包括:
根据所述一路光信号占用的连续级联的光频谱槽块, 选择至少一路本振光 源, 将所述本振光源与所述一路光信号进行混频, 生成混频后的光信号。
9. 一种发送节点, 包括: 光载波源、 数据调制模块和发送模块, 其中: 所述光载波源包括载波生成模块和第一光载波选择模块,
所述载波生成模块用于生成多个光载波;
所述第一光载波选择模块用于从所述多个光载波中选择至少 2 个光载 波, 所述至少 2个光载波对应于至少 2个光频谱槽, 所述 2个光频谱槽之间 有空闲光频谱槽或者其他光信号占用的光频谱槽;
所述数据调制模块用于将数据信息调制到所述至少 2 个光载波上形成一路 光信号, 使得所述一路光信号占用至少两个光频谱槽, 所述 2个光频谱槽之间有 空闲光频谱槽或者其他光信号占用的光频谱槽; 以及
所述发送模块用于发送所述一路光信号。
10. 根据权利要求 9所述的发送节点, 进一步包括多路光信号合路模块, 用 于将所述一路光信号和调制有其他数据信息的光载波形成的光信号合路。
11.根据权利要求 9所述的发送节点, 其中所述一路光信号占用的光频谱槽 中存在连续级联的光频谱槽块。
12. 一种接收节点, 包括:
接收模块, 用于接收一路光信号, 所述一路光信号占用至少两个光频谱槽, 所述 2个光频谱槽之间有空闲光频谱槽或者其他光信号占用的光频谱槽;
子光信号生成模块, 用于根据所述一路光信号占用的光频谱槽, 从所述一路 光信号生成多路子光信号; 以及
数据恢复模块, 用于从所述多路子光信号解调出数据信息。
13. 根据权利要求 12所述的接收节点, 其中所述子光信号生成模块进一步 包括第二光载波选择模块, 用于根据所述一路光信号占用的单个光频谱槽, 将所 述一路光信号分离成分别占用一个光频谱槽的多路子光信号。
14. 根据权利要求 12所述的接收节点, 其中所述子光信号生成模块进一步 包括第二光载波选择模块,用于根据所述一路光信号占用的连续级联的光频谱槽 块, 将所述一路光信号分离成多路子光信号。
15. 根据权利要求 12所述的接收节点, 其中所述子光信号生成模块进一步 包括本振光源选择模块和混频模块,
所述本振光源选择模块用于根据所述一路光信号占用的单个光频谱槽,选择 至少一路本振光源,
所述混频模块用于将所述至少一路本振光源与所述一路光信号进行混频,生 成混频后的多路子光信号。
16. 根据权利要求 12所述的接收节点, 其中所述子光信号生成模块进一步 包括本振光源选择模块和混频模块,
所述本振光源选择模块用于根据所述一路光信号占用的连续级联的光频谱 槽块, 选择至少一路本振光源,
所述混频模块将所述至少一路本振光源与所述一路光信号进行混频,生成混 频后的光信号。
17、一种传输数据信息的系统, 包括根据权利要求 9一 11之一所述的发送节 点和根据权利要求 9一 16之一所述的接收节点。
18、 根据权利要求 17所述的系统, 还包括中间节点, 所述中间节点用于将 所述一路光信号从所述中间节点的输入光纤作为整体调度到所述中间节点的输 出光纤中。
PCT/CN2011/080360 2011-09-29 2011-09-29 利用光信号传输数据信息的方法、系统和装置 WO2012149780A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES11864805.4T ES2660015T3 (es) 2011-09-29 2011-09-29 Método y sistema para transmitir información de datos utilizando señales ópticas
CN201180002351.0A CN102907025B (zh) 2011-09-29 2011-09-29 利用光信号传输数据信息的方法、系统和装置
PCT/CN2011/080360 WO2012149780A1 (zh) 2011-09-29 2011-09-29 利用光信号传输数据信息的方法、系统和装置
EP11864805.4A EP2753009B1 (en) 2011-09-29 2011-09-29 Method and system for transmitting data information by using optical signals
US14/226,159 US9391733B2 (en) 2011-09-29 2014-03-26 Method, system, and apparatus for transmitting data information by using optical signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080360 WO2012149780A1 (zh) 2011-09-29 2011-09-29 利用光信号传输数据信息的方法、系统和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/226,159 Continuation US9391733B2 (en) 2011-09-29 2014-03-26 Method, system, and apparatus for transmitting data information by using optical signals

Publications (1)

Publication Number Publication Date
WO2012149780A1 true WO2012149780A1 (zh) 2012-11-08

Family

ID=47107757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080360 WO2012149780A1 (zh) 2011-09-29 2011-09-29 利用光信号传输数据信息的方法、系统和装置

Country Status (5)

Country Link
US (1) US9391733B2 (zh)
EP (1) EP2753009B1 (zh)
CN (1) CN102907025B (zh)
ES (1) ES2660015T3 (zh)
WO (1) WO2012149780A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9641277B2 (en) 2011-11-21 2017-05-02 Huawei Technologies Co., Ltd. Optical signal transmission method, apparatus and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141188A1 (ja) * 2014-03-19 2015-09-24 日本電気株式会社 光送信器、光通信装置、光通信システムおよび光送信方法
US11611405B2 (en) * 2020-08-11 2023-03-21 Microsoft Technology Licensing, Llc Efficient spectrum allocation in a multi-node optical network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600467A (en) * 1995-06-14 1997-02-04 Mci Communications Corp. Method and apparatus for reducing harmonic interference on multiplexed optical communication lines
US6459832B1 (en) * 2000-11-28 2002-10-01 Nortel Networks Limited Method and apparatus for optical signal transmission using multiple sub-signals of non-uniform bandwidth
WO2008112685A1 (en) * 2007-03-15 2008-09-18 Nec Laboratories America, Inc. Orthogonal frequency division multiple access (ofdma) based passive optical network (pon) architecture and its extension to long distance

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770767B2 (ja) * 2000-02-17 2006-04-26 株式会社日立製作所 トランスポンダ、波長多重伝送装置、波長多重伝送システムおよび情報通信装置
ATE392751T1 (de) * 2000-06-16 2008-05-15 Alcatel Lucent Wellenlängenzuordnungsverfahren und wdm- einrichtung
US7324755B2 (en) * 2002-07-02 2008-01-29 Hrl Laboratories, Llc Optical code-division multiple access transmission system and method
FR2844654B1 (fr) 2002-09-12 2005-02-25 Cit Alcatel Peigne de frequences pour reseau a multiplexage par repartition de frequences optiques
US7376356B2 (en) * 2002-12-17 2008-05-20 Lucent Technologies Inc. Optical data transmission system using sub-band multiplexing
US7627675B2 (en) 2003-05-01 2009-12-01 Cisco Technology, Inc. Methods and devices for regulating traffic on a network
EP2253991B1 (en) * 2003-06-19 2012-03-14 Nippon Telegraph And Telephone Corporation Optical modulation apparatus
US20050058462A1 (en) * 2003-09-12 2005-03-17 Novx Systems, Inc. Transmission format for supression of four-wave mixing in optical networks
US20050175035A1 (en) 2004-02-06 2005-08-11 Kevin Neely Method and system for providing DOCSIS service over a passive optical network
US7580630B2 (en) * 2004-06-07 2009-08-25 Nortel Networks Limited Spectral shaping for optical OFDM transmission
ATE364269T1 (de) 2005-03-07 2007-06-15 Alcatel Lucent Wellenlängenraster für dwdm
US7630361B2 (en) 2005-05-20 2009-12-08 Cisco Technology, Inc. Method and apparatus for using data-over-cable applications and services in non-cable environments
CN101277155A (zh) * 2007-03-30 2008-10-01 华为技术有限公司 一种色散补偿信号的产生装置与方法
US20080310842A1 (en) 2007-06-14 2008-12-18 John Skrobko Docsis compatible pon architecture
WO2009012419A2 (en) * 2007-07-17 2009-01-22 Opvista Incorporated Optical wavelength-division-multiplexed (wdm) comb generator using a single laser
US8078054B2 (en) * 2008-06-30 2011-12-13 Alcatel Lucent Apparatus and method for improving the tolerance of tone-based optical channel monitoring to stimulated Raman scattering
WO2010012309A1 (en) * 2008-07-31 2010-02-04 Nokia Siemens Networks Oy Method for data processing in an optical network, optical network component and communication system
WO2010012308A1 (en) * 2008-07-31 2010-02-04 Nokia Siemens Networks Oy Method for data processing in an optical network, optical network component and communication system
US8699882B2 (en) * 2009-01-08 2014-04-15 Ofidium Pty Ltd Signal method and apparatus
TWI382683B (zh) * 2009-05-06 2013-01-11 Ind Tech Res Inst 預補償光纖色散所引起的延遲的方法、應用該方法的多子載波訊號產生器、以及應用該訊號產生器的光正交分頻多工系統之傳送器
WO2011031831A1 (en) 2009-09-09 2011-03-17 Broadcom Corporation Ethernet passive optical network over coaxial (epoc)
US8180227B2 (en) * 2009-09-23 2012-05-15 Alcatel Lucent Digital coherent detection of multi-carrier optical signal
US8391308B2 (en) 2009-09-23 2013-03-05 Hitachi Communication Technologies, Inc. Docsis pon
US8897651B2 (en) 2009-09-25 2014-11-25 Futurewei Technologies, Inc Passive optical network data over cable service interface specification upstream proxy architecture over the next generation hybrid fiber-coaxial networks
CN101702634B (zh) 2009-11-12 2012-02-08 无锡路通光电技术有限公司 实现射频无源光网络提供docsis服务的装置及方法
CN102082684B (zh) 2009-12-01 2013-04-24 华为技术有限公司 业务配置转换方法、装置及系统
CN101997725B (zh) 2010-11-25 2015-09-16 中兴通讯股份有限公司 一种基于pon承载docsis业务的系统和装置
US8909043B2 (en) * 2011-02-04 2014-12-09 Nec Laboratories America, Inc. Routing, wavelength assignment, and spectrum allocation in wavelength convertible flexible optical wavelength-division multiplexing networks
US8873962B2 (en) * 2011-03-30 2014-10-28 Nec Laboratories America, Inc. Method for traffic grooming, wavelength assignment and spectrum allocation
US20120281979A1 (en) * 2011-05-03 2012-11-08 Verizon Patent And Licensing Inc. Optical network with light-path aggregation
US8644710B2 (en) * 2011-06-15 2014-02-04 Verizon Patent And Licensing Inc. Optical transport having full and flexible bandwidth and channel utilization
US8649683B2 (en) * 2011-06-15 2014-02-11 Verizon Patent And Licensing Inc. Light path characterization, traffic protection, and wavelength defragmentation
US9020350B2 (en) * 2011-06-24 2015-04-28 Techsys Insights Optical spectrum recovery
US8873952B2 (en) * 2011-09-01 2014-10-28 Nec Laboratories America, Inc. Variable rate optical transmitter based on all-optical OFDM super-channel technology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600467A (en) * 1995-06-14 1997-02-04 Mci Communications Corp. Method and apparatus for reducing harmonic interference on multiplexed optical communication lines
US6459832B1 (en) * 2000-11-28 2002-10-01 Nortel Networks Limited Method and apparatus for optical signal transmission using multiple sub-signals of non-uniform bandwidth
WO2008112685A1 (en) * 2007-03-15 2008-09-18 Nec Laboratories America, Inc. Orthogonal frequency division multiple access (ofdma) based passive optical network (pon) architecture and its extension to long distance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2753009A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9641277B2 (en) 2011-11-21 2017-05-02 Huawei Technologies Co., Ltd. Optical signal transmission method, apparatus and system

Also Published As

Publication number Publication date
EP2753009B1 (en) 2018-01-03
EP2753009A1 (en) 2014-07-09
ES2660015T3 (es) 2018-03-20
EP2753009A4 (en) 2014-10-01
CN102907025A (zh) 2013-01-30
CN102907025B (zh) 2016-03-09
US9391733B2 (en) 2016-07-12
US20140205297A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US8611743B2 (en) Optical-layer traffic grooming in flexible optical networks
US8903238B2 (en) Ultra dense WDM with agile and flexible DSP add-drop
US8855492B2 (en) Selectable multiple-wavelength access for optical network units in arrayed waveguide based wavelength division multiplexing passive optical network
US9438348B2 (en) Communication method for a cluster of network hosts
WO2015074375A1 (zh) 一种光网络交换设备
US9414135B2 (en) Flexible-client, flexible-line interface transponder
US8787762B2 (en) Optical-layer traffic grooming at an OFDM subcarrier level with photodetection conversion of an input optical OFDM to an electrical signal
JP2006262478A (ja) 光ネットワーク及びノード
JP5509388B2 (ja) 通信システムの中央ノード、無線通信システム、光マルチプレクサ/デマルチプレクサデバイス、及びデータを通信システム内の1つ又は複数のノード群に送信する方法
WO2014001738A1 (en) Optical signal routing
WO2008003215A1 (fr) Procédé, système et dispositif pour réaliser une diffusion en coupleur à multiplexage de longueurs d'onde-réseau optique passif (wdm-pon)
CN106605381B (zh) 光网络中的可重新配置的分插复用器
US9391733B2 (en) Method, system, and apparatus for transmitting data information by using optical signals
WO2015135296A1 (zh) 一种基于光梳的roadm上下路收发的系统、方法及终端
JP5004776B2 (ja) 通信装置
JP2003101560A (ja) 光ファイバネットワークシステムの伝送方式及びその光ファイバネットワークシステム並びにその中央装置
Tokas et al. A scalable optically-switched datacenter network with multicasting
WO2008000164A1 (fr) Procédé et système de renouvellement d'un réseau optique passif
JP2000507784A (ja) 挿入及び抽出のための光スペクトルマルチプレクサ
JP2007067952A (ja) 光スイッチ装置、光アクセスネットワーク、そのシステム、光波長多重伝送方法およびプログラム
US10630413B2 (en) Optical communications system with centralized wavelength source
US9312980B1 (en) Communication fabric for a cluster of network hosts
US20230353243A1 (en) Generating a common and stable radio frequency (rf) carrier for a plurality of distributed units
US20230396335A1 (en) Subscriber apparatus, optical communication system and optical signal monitoring method
JP2010213223A (ja) 無線通信システムおよび無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002351.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011864805

Country of ref document: EP