WO2012147914A1 - 光導波路デバイス - Google Patents
光導波路デバイス Download PDFInfo
- Publication number
- WO2012147914A1 WO2012147914A1 PCT/JP2012/061350 JP2012061350W WO2012147914A1 WO 2012147914 A1 WO2012147914 A1 WO 2012147914A1 JP 2012061350 W JP2012061350 W JP 2012061350W WO 2012147914 A1 WO2012147914 A1 WO 2012147914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- optical waveguide
- thermal expansion
- liquid crystal
- crystal polymer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/0305—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
- G02F1/0356—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/07—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 buffer layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/54—Arrangements for reducing warping-twist
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/02—Materials and properties organic material
- G02F2202/022—Materials and properties organic material polymeric
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/21—Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof
Definitions
- the present invention relates to an optical waveguide device, and more particularly to an optical modulator.
- the traveling wave type optical modulator is an optical modulator that modulates a light wave by the interaction between the light wave traveling through the optical waveguide and the microwave traveling through the electrode provided along the optical waveguide due to the electro-optic effect, By matching the speed between the light wave and the microwave, a broad band can be achieved.
- a method for realizing the speed matching conventionally, a configuration in which an electrode is formed on a low dielectric constant buffer layer provided on an optical waveguide substrate has been used. However, this configuration has a drawback that the drive voltage cannot be lowered because the electric field applied to the optical waveguide is reduced by the presence of the buffer layer.
- FIG. 5 a traveling wave type optical modulator having a thinned optical waveguide substrate as shown in FIG. 5 has been proposed (for example, see Patent Document 1).
- the optical waveguide substrate 101 on which the optical waveguide 104 is formed is fixed and held on the holding substrate 102 by the adhesive layer 103.
- the thickness of the optical waveguide substrate 101 is about 10 ⁇ m or less, and is thinner than a normal one (for example, a thickness of 0.5 mm).
- the adhesive layer 103 one having a dielectric constant lower than that of the optical waveguide substrate 101 is used, and the thickness thereof is sufficiently thick so that leakage of an electric field applied from the electrode 105 to the adhesive layer 103 becomes large ( For example, 10 ⁇ m to 200 ⁇ m).
- the equivalent refractive index with respect to the microwave (the value is larger than the equivalent refractive index with respect to the light wave) is reduced. Compared with the case where the thickness of the film is thick, it becomes smaller. Thus, the difference in the value of the equivalent refractive index becomes small, so that the speed of the light wave and the microwave approaches the state of matching, and a wide band is realized.
- speed matching is possible without providing a buffer layer on the optical waveguide substrate 101, so that the strength of the electric field applied to the optical waveguide 104 does not decrease, and the drive voltage can be lowered. It can be realized at the same time.
- the adhesive layer 103 is thick.
- the adhesive layer is thick, its adhesive strength is reduced.
- the temperature is increased by irradiation with ultraviolet rays or heating, and then the stress is generated when the adhesive is cured and then the temperature is decreased.
- the adhesive layer is thick, the generated stress is also increased.
- forming the adhesive layer thickly involves processes that are difficult to manufacture, such as parallel placement of the substrate and prevention of dripping of the adhesive, resulting in high costs.
- Patent Documents 2 and 3 As a technique for coping with such a problem, a structure using a resin substrate as shown in Patent Documents 2 and 3 has been proposed. According to the above structure, since it is not necessary to use a thick adhesive layer, it is easy to perform parallel alignment at the time of bonding, and there is a merit in terms of process and characteristics such that the influence of shrinkage of the adhesive during curing is small. .
- the thermal expansion coefficient (linear expansion coefficient; the same applies hereinafter) of the resin substrate is close to the thermal expansion coefficient of the optical waveguide substrate. It is desirable in terms of characteristics.
- the thermal expansion coefficient of the resin is isotropic, whereas an optical waveguide substrate having an anisotropic thermal expansion coefficient may be used.
- the thermal expansion coefficient is 2 ppm / ° C. in the Z-axis direction and 16 ppm / ° C. in the X direction and the Y direction.
- the present invention has been made in view of the above points, and an object of the present invention is to provide an optical waveguide device capable of reducing the stress generated inside the optical waveguide substrate due to a difference in thermal expansion coefficient. It is in.
- the optical waveguide device of the present invention includes an optical waveguide substrate having a thickness of 30 ⁇ m or less, and a holding substrate for holding the optical waveguide substrate, An optical waveguide device in which the optical waveguide substrate and the holding substrate are bonded by an adhesive layer, wherein the holding substrate is a substrate made of a liquid crystal polymer having a dielectric constant lower than that of the optical waveguide substrate, and the optical waveguide substrate
- the holding substrate is a substrate made of a liquid crystal polymer having a dielectric constant lower than that of the optical waveguide substrate, and the optical waveguide substrate
- the thermal expansion coefficient of the holding substrate has anisotropy in the substrate plane, and the anisotropic axial direction of the optical waveguide substrate and the anisotropic axial direction of the holding substrate are aligned. The relative orientation of the optical waveguide substrate and the holding substrate is adjusted.
- the present invention provides the above optical waveguide device, wherein the axis having the larger thermal expansion coefficient and the axis having the smaller thermal expansion coefficient of the anisotropic axis direction of the optical waveguide substrate are respectively the anisotropic of the holding substrate.
- the relative orientation of the optical waveguide substrate and the holding substrate is adjusted so as to coincide with the axis having the larger thermal expansion coefficient and the axis having the smaller thermal expansion coefficient.
- the present invention is characterized in that in the above optical waveguide device, the holding substrate is attached to a resin casing.
- the present invention is characterized in that in the optical waveguide device described above, the thermal expansion coefficient of the holding substrate made of the liquid crystal polymer on the side in contact with the casing is substantially equal to the thermal expansion coefficient of the casing.
- the stress generated inside the optical waveguide substrate due to the difference in thermal expansion coefficient can be reduced.
- FIG. 1 is a cross-sectional configuration diagram of a traveling wave optical modulator according to a first embodiment of the present invention.
- 1 is a plan configuration diagram of a traveling wave type optical modulator according to a first embodiment of the present invention.
- FIG. It is a cross-sectional block diagram of the traveling wave type
- (First embodiment) 1 and 2 show a cross-sectional configuration diagram and a plan configuration diagram of a traveling wave type optical modulator 10 which is an optical waveguide device according to the first embodiment of the present invention.
- the cross-sectional configuration diagram of FIG. 1 shows a state cut along the line AA ′ in the plan configuration diagram of FIG.
- an optical modulator 10 includes an optical waveguide substrate 11 on which a Mach-Zehnder optical waveguide 15 is formed, a holding substrate 13 that holds the optical waveguide substrate 11, and the optical waveguide substrate 11 and the holding substrate 13.
- a liquid crystal polymer substrate 12 interposed therebetween, an adhesive layer 14 for bonding and fixing the optical waveguide substrate 11 and the liquid crystal polymer substrate 12, and a signal electrode 16 and a ground electrode 17-1 formed on the optical waveguide substrate 11 , 17-2.
- the optical waveguide substrate 11 is an X-cut substrate cut from a mother crystal having an electro-optic effect so that the principal axis P and the substrate surface S are parallel to each other.
- a lithium niobate (LN) substrate or tantalate A lithium (LT) substrate or the like can be used.
- a Mach-Zehnder optical waveguide 15 composed of an input waveguide 15-3, branch optical waveguides 15-1 and 15-2, and an output waveguide 15-4 is connected to the X-cut optical waveguide substrate 11 with the main axis P and the branched optical waveguide.
- the waveguides 15-1 and 15-2 are formed so as to be vertical (that is, the main axis P is in the plane of the paper in FIG. 1).
- the upper limit value of the thickness of the optical waveguide substrate 11 can be arbitrarily selected, but may be, for example, 30 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
- the lower limit of the thickness of the optical waveguide substrate 11 may be arbitrarily selected, it is preferably about 1 ⁇ m or more.
- an LN substrate is used as the optical waveguide substrate 11.
- the thermal expansion coefficient (linear expansion coefficient; the same applies hereinafter) of the LN substrate is 2 ppm / ° C. in the Z-axis (main axis P) direction, the X direction (the vertical direction in the figure, that is, the direction perpendicular to the board surface) and the Y direction (in the figure).
- the direction perpendicular to the plane of the paper, that is, the propagation direction of the waveguide) is 16 ppm / ° C.
- the liquid crystal polymer substrate 12 is a resin substrate whose dielectric constant (real part) is lower than the dielectric constant of the optical waveguide substrate 11, and in order to reduce the equivalent refractive index to the microwave as described above. Used.
- the dielectric constant is preferably 5 or less, and more preferably 3 or less. In order to suppress the loss of microwaves, it is preferable that the imaginary part of the complex dielectric constant is small.
- the liquid crystal polymer has different thermal expansion coefficients depending on the flow direction of the resin at the time of molding and the direction perpendicular thereto, and the thermal expansion coefficient in these two directions is controlled by the flow rate of the resin and the shape of the pouring port. Is possible. Ideally, it is desirable that the thermal expansion coefficient in each axial direction of the liquid crystal polymer substrate 12 is equal to the thermal expansion coefficient in each axial direction of the optical waveguide substrate 11.
- the polymer is not known. Therefore, in the present embodiment, the thermal expansion coefficient in the two orthogonal directions of the liquid crystal polymer substrate 12 is the two orthogonal directions of the optical waveguide substrate 11 (two axes of the Z axis and the X axis, or the Z axis and the Y axis).
- the thermal expansion coefficient of the liquid crystal polymer substrate 12 is a polyphenylin sulfide resin.
- dielectric constant 4.6
- the resin flow direction during molding is adjusted to 7 ppm / ° C.
- the direction perpendicular thereto is adjusted to 60 ppm / ° C.
- the liquid crystal polymer substrate 12 has a thermal expansion coefficient of 7 ppm / ° C.
- the relative orientation with respect to the optical waveguide substrate 11 is set along the X-axis direction or the Y-axis direction of the (LN substrate).
- the ratio of the thermal expansion coefficients in the biaxial direction of the liquid crystal polymer substrate 12 may not be perfectly matched with the ratio of the thermal expansion coefficients in the biaxial direction of the optical waveguide substrate 11, and in a range in which characteristics that are not problematic in practice are obtained. There may be a difference in the ratio of thermal expansion coefficients. Although it is desirable that the difference between the thermal expansion coefficients of the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 is small, it is most important to match (align) the biaxial anisotropic directions of the thermal expansion coefficient. It is more desirable to reduce the difference between the thermal expansion coefficients of the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 in the axial direction of the two axes having the larger thermal expansion coefficient.
- the liquid crystal polymer substrate 12 is sufficiently thick so that the microwave electric field generated by the electrodes 16, 17-1 and 17-2 leaks into the liquid crystal polymer substrate 12, for example, a thickness of 50 ⁇ m or more. To do. Thereby, the equivalent refractive index with respect to a microwave can be made small. There is no particular limitation on the upper limit of the thickness.
- the liquid crystal polymer may have a slight distribution in the thermal expansion coefficient in the direction of the plate thickness depending on the molding conditions, but the anisotropy of the thermal expansion coefficient when viewed as the entire liquid crystal polymer substrate 12 is light. If it is close to the waveguide substrate 11, there is no problem in device characteristics even if there is a local thermal expansion coefficient distribution inside the liquid crystal polymer substrate 12.
- the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 are bonded and fixed by an adhesive layer 14.
- an adhesive forming the adhesive layer 14 an ultraviolet curable adhesive that is cured by irradiating ultraviolet rays or a thermosetting adhesive that is cured by heating can be used.
- the adhesive it is preferable that both the dielectric constant and the imaginary part of the complex dielectric constant are low.
- an acrylic or epoxy adhesive is used. Comparing these, in general, acrylic adhesives have lower imaginary parts of dielectric constant and complex dielectric constant than epoxy adhesives, and epoxy adhesives have higher adhesive strength and mechanical strength.
- the adhesive layer 14 is desirably made sufficiently thin in view of the need to improve the reliability of the optical modulator 10, for example, 20 ⁇ m or less, preferably 9 ⁇ m or less, more preferably 1 ⁇ m or less. To form. If the thickness exceeds 30 ⁇ m, it is difficult to parallelize at the time of bonding as described above. In general, the thinner the adhesive layer is, the higher the adhesive strength is. Therefore, by reducing the thickness of the adhesive layer 14 in this way, there is a problem in terms of reliability between the optical waveguide substrate 11 and the liquid crystal polymer substrate 12. It can be bonded and fixed with sufficient strength. In addition, when the adhesive is cured, the temperature rises by ultraviolet irradiation or heating, and then cures to lower the temperature to generate stress.
- the adhesive layer 14 is thin and has two-axis anisotropic thermal expansion coefficient. If the directions of properties match, the generated stress can be reduced, and the yield at the time of bonding can be improved. In bonding, it is desirable that the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 be cleaned and surface-treated by an appropriate method so that the bonding strength is sufficiently developed.
- the thermal expansion coefficient of the liquid crystal polymer substrate 12 used for this evaluation is 7 ppm / ° C. in the Z-axis direction and 60 ppm / ° C. in the X and Y directions.
- Adhesive layer thickness ( ⁇ m)
- a typical tolerance for thermal drift is 3.0V or less. Even if a conventional resin substrate (acrylic) is used, characteristics within an allowable range can be obtained, but it can be seen that the structure using the liquid crystal polymer substrate 12 can provide better characteristics.
- the holding substrate 13 is a substrate that holds the optical waveguide substrate 11 via the liquid crystal polymer substrate 12, and is sufficiently thick in order to hold the optical waveguide substrate 11 firmly, for example, 200 ⁇ m or more, preferably Is about 0.5 to 1.0 mm.
- the material of the holding substrate 13 has a thermal expansion coefficient of the optical waveguide substrate 11 so that no stress is generated inside the optical waveguide substrate 11 when the environmental temperature fluctuates or the generated stress is reduced. Use a material close to the coefficient. More preferably, the optical waveguide substrate 11 and the holding substrate 13 are made of the same material. For example, when the optical waveguide substrate 11 is an LN substrate, quartz, alumina, or an LN substrate having the same crystal orientation as the optical waveguide substrate 11 can be used as the material of the holding substrate 13.
- the fixing method of the liquid crystal polymer substrate 12 and the holding substrate 13 is not particularly limited in the present invention.
- a method of bonding and fixing using the same adhesive as the adhesive layer 14, and heating the liquid crystal polymer substrate 12 The liquid crystal polymer substrate 12 is heated and fixed to the holding substrate 13, the liquid crystal polymer substrate 12 and the holding substrate 13 are mechanically fixed (for example, screwed), etc. Can be applied.
- the Mach-Zehnder optical waveguide 15 is, for example, a method of thermally diffusing a metal such as titanium (Ti) into the optical waveguide substrate 11, and protons in the optical waveguide substrate 11 (lithium (Li) atoms in the case of an LN substrate). And a method of forming the optical waveguide substrate 11 in a ridge shape and guiding light to the ridge portion.
- a metal such as titanium (Ti) into the optical waveguide substrate 11
- protons in the optical waveguide substrate 11 lithium (Li) atoms in the case of an LN substrate.
- the electrodes 16, 17-1 and 17-2 formed on the optical waveguide substrate 11 propagate light waves propagating through the branched optical waveguides 15-1 and 15-2 by causing microwaves to travel through the optical waveguide substrate 11.
- the signal electrode 16 is disposed between the branched optical waveguides 15-1 and 15-2, and the ground electrodes 17-1 and 17-2 are connected to the branched optical waveguides 15-1 and 15-2, respectively. It is arranged so as to face the signal electrode 16 with being sandwiched. With this arrangement, the microwave electric field has a main component in the principal axis P direction inside the branched optical waveguides 15-1 and 15-2.
- the electrodes 16, 17-1 and 17-2 are formed directly on the optical waveguide substrate 11. It is said. For this reason, the strength of the electric field of the microwave applied to the branched optical waveguides 15-1 and 15-2 does not decrease, and the drive voltage can be lowered.
- the modulation voltage input to each of the electrodes 16, 17-1 and 17-2 is supplied from an external high frequency power supply 30.
- FIGS. 3 and 4 show a cross-sectional configuration diagram and a plan configuration diagram of a traveling wave type optical modulator 20 which is an optical waveguide device according to the second embodiment of the present invention.
- the cross-sectional configuration diagram of FIG. 3 shows a state cut along the line AA ′ in the plan configuration diagram of FIG.
- the optical modulator 20 includes an optical waveguide substrate 21 on which a Mach-Zehnder optical waveguide 25 is formed, a liquid crystal polymer substrate 22 that is a holding substrate for holding the optical waveguide substrate 21, an optical waveguide substrate 21, and An adhesive layer 24 for bonding and fixing the liquid crystal polymer substrate 22, a signal electrode 26 and ground electrodes 27-1 and 27-2 formed on the optical waveguide substrate 21, and a package housing for fixing the liquid crystal polymer substrate 22 23.
- the optical waveguide substrate 21 is an X-cut substrate cut from a mother crystal having an electro-optic effect so that the principal axis P and the substrate surface S are parallel to each other.
- a lithium niobate (LN) substrate or tantalate A lithium (LT) substrate or the like can be used.
- a Mach-Zehnder optical waveguide 25 comprising an input waveguide 25-3, branch optical waveguides 25-1 and 25-2, and an output waveguide 25-4 is provided on the X-cut optical waveguide substrate 21.
- the waveguides 25-1 and 25-2 are formed so as to be vertical (that is, the main axis P is in the drawing in FIG. 3).
- the upper limit value of the thickness of the optical waveguide substrate 21 can be arbitrarily selected, but may be, for example, 30 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
- the lower limit of the thickness of the optical waveguide substrate 21 may be arbitrarily selected, it is preferably about 1 ⁇ m or more.
- an LN substrate is used as the optical waveguide substrate 21.
- the coefficient of thermal expansion of the LN substrate is 2 ppm / ° C. in the Z-axis (principal axis P) direction, the X direction (the vertical direction in the figure, that is, the direction perpendicular to the substrate surface) and the Y direction (the direction perpendicular to the paper surface in the figure, that is, the waveguide direction).
- Propagation direction is 16 ppm / ° C.
- the liquid crystal polymer substrate 22 is a substrate used for the purpose of reducing the equivalent refractive index to microwaves and for holding the optical waveguide substrate 21 as described above.
- a material having a dielectric constant (real part) lower than that of the optical waveguide substrate 21 is used. In order to suppress the loss of microwaves, it is preferable that the imaginary part of the complex dielectric constant is small.
- the liquid crystal polymer has different thermal expansion coefficients depending on the flow direction of the resin at the time of molding and the direction perpendicular thereto, and the thermal expansion coefficient in these two directions is controlled by the flow rate of the resin and the shape of the pouring port. Is possible. Ideally, it is desirable that the thermal expansion coefficient in each axial direction of the liquid crystal polymer substrate 12 is equal to the thermal expansion coefficient in each axial direction of the optical waveguide substrate 11.
- the polymer is not known. Therefore, in the present embodiment, the thermal expansion coefficient in the two orthogonal directions of the liquid crystal polymer substrate 22 is the two orthogonal directions of the optical waveguide substrate 21 (two axes of the Z axis and the X axis, or the Z axis and the Y axis).
- the thermal expansion coefficient of the liquid crystal polymer substrate 22 is a polyphenylin sulfide-based resin.
- the flow direction of the resin during molding is adjusted to 7 ppm / ° C., and the direction perpendicular thereto is adjusted to 60 ppm / ° C.
- the liquid crystal polymer substrate 22 has a thermal expansion coefficient of 7 ppm / ° C.
- the relative orientation with respect to the optical waveguide substrate 21 is set along the X-axis direction or the Y-axis direction of the (LN substrate).
- the ratio of the thermal expansion coefficients in the biaxial direction of the liquid crystal polymer substrate 22 may not be perfectly matched with the ratio of the thermal expansion coefficients in the biaxial direction of the optical waveguide substrate 21.
- thermal expansion coefficients of the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 may be a difference in the ratio of thermal expansion coefficients. Although it is desirable that the difference between the thermal expansion coefficients of the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 is small, it is most important to match (align) the biaxial anisotropic directions of the thermal expansion coefficient. It is more desirable to reduce the difference between the thermal expansion coefficients of the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 in the axial direction of the two axes having the larger thermal expansion coefficient.
- the thickness of the liquid crystal polymer substrate 22 is such that the microwave electric field generated by the electrodes 26, 27-1, and 27-2 leaks greatly into the liquid crystal polymer substrate 22, and the optical waveguide substrate 21 is firmly held.
- the thickness is sufficiently thick so that it can be formed, for example, 50 ⁇ m or more, preferably about 0.5 to 1.0 mm. There is no particular limitation on the upper limit of the thickness.
- the liquid crystal polymer may have a slight distribution of thermal expansion coefficient in the thickness direction depending on the molding conditions, but the anisotropy of the thermal expansion coefficient when viewed as the entire liquid crystal polymer substrate 22 is light. If it is close to the waveguide substrate 21, there is no problem in device characteristics even if there is a local thermal expansion coefficient distribution inside the liquid crystal polymer substrate 22.
- the optical waveguide substrate 21 and the liquid crystal polymer substrate 22 are bonded and fixed by an adhesive layer 24.
- an ultraviolet curable adhesive that is cured by irradiating ultraviolet rays or a thermosetting adhesive that is cured by heating can be used.
- the adhesive layer 24 is desirably made sufficiently thin in order to improve the reliability of the optical modulator 20, for example, 20 ⁇ m or less, preferably 9 ⁇ m or less, more preferably 1 ⁇ m or less. To form. If the thickness exceeds 30 ⁇ m, it is difficult to parallelize at the time of bonding as described above. In general, the thinner the adhesive layer is, the higher the adhesive strength is. Therefore, by thinning the adhesive layer 24 in this way, there is a problem in terms of reliability between the optical waveguide substrate 21 and the liquid crystal polymer substrate 22. It can be bonded and fixed with sufficient strength. Further, when the adhesive is cured, the temperature is increased by ultraviolet irradiation or heating, and then the temperature is cured and the temperature is decreased to generate a stress. However, when the adhesive layer 24 is thin, the generated stress can be reduced. . In bonding, it is desirable that the optical waveguide substrate 11 and the liquid crystal polymer substrate 12 be cleaned and surface-treated by an appropriate method so that the bonding strength is sufficiently developed.
- the dielectric constant of the adhesive used for the adhesive layer 24 is the same as that of the liquid crystal polymer substrate 22 when the thickness of the adhesive layer 24 is thicker than 1 ⁇ m (in order to reduce the equivalent refractive index with respect to microwaves).
- the dielectric constant of the substrate 21 needs to be lower. This is because if the thickness is greater than 1 ⁇ m, the adhesive layer 24 has a great influence on the equivalent refractive index of the microwave. On the other hand, when the thickness of the adhesive layer 24 is 1 ⁇ m or less, the influence of the adhesive layer 24 on the equivalent refractive index of the microwave is negligible.
- the rate may be higher than the dielectric constant of the optical waveguide substrate 21.
- the package housing 23 stores the optical waveguide substrate 21, the liquid crystal polymer substrate 22, and the portions made up of the electrodes 26, 27-1 and 27-2 from the outside so as to prevent damage and ensure reliability.
- the liquid crystal polymer substrate 22 is fixedly attached to a convex portion (pedestal) provided on the inner bottom surface of the member. In FIG. 3, only a part of the bottom surface and the convex portion of the package housing 23 are shown.
- the material of the package housing 23 is made of resin in order to reduce the cost of the optical modulator 20.
- the resin material of the package housing 23 is set so that the thermal expansion coefficient of the liquid crystal polymer substrate 22 on the package housing 23 side is close to the thermal expansion coefficient of the resin material used for the package housing 23.
- the molding conditions for the liquid crystal polymer substrate 22 are selected. As described above, the liquid crystal polymer substrate 22 needs to be molded so that the thermal expansion coefficient on the side of the optical waveguide substrate 21 has anisotropy, but by controlling the molding conditions, the thermal expansion coefficient is adjusted in the plate thickness direction. A liquid crystal polymer substrate 22 having a thermal expansion coefficient having anisotropy on the optical waveguide substrate 21 side and isotropic on the package housing 23 side can also be produced. By doing in this way, the stress which generate
- resin material of the package housing 23 polycarbonate
- the method of fixing the liquid crystal polymer substrate 22 and the package housing 23 is not particularly limited in the present invention.
- a method of bonding and fixing using the same adhesive as the adhesive layer 24, a liquid crystal polymer substrate, and the like can be applied.
- the liquid crystal polymer substrate 22 is heated and fixed to the package housing 23, and the liquid crystal polymer substrate 22 and the package housing 23 are mechanically fixed (for example, A method of screwing) can be applied.
- the Mach-Zehnder optical waveguide 25 is, for example, a method of thermally diffusing a metal such as titanium (Ti) into the optical waveguide substrate 21, and protons in the optical waveguide substrate 21 (lithium (Li) atoms in the case of an LN substrate). And a method of forming the optical waveguide substrate 21 in a ridge shape and guiding light to the ridge portion.
- a metal such as titanium (Ti) into the optical waveguide substrate 21, and protons in the optical waveguide substrate 21 (lithium (Li) atoms in the case of an LN substrate).
- the electrodes 26, 27-1, 27-2 formed on the optical waveguide substrate 21 propagate light waves propagating through the branched optical waveguides 25-1 and 25-2 by causing microwaves to travel through the optical waveguide substrate 21.
- the signal electrode 26 is disposed between the branch optical waveguides 25-1 and 25-2, and the ground electrodes 27-1 and 27-2 pass through the branch optical waveguides 25-1 and 25-2, respectively. It is arranged so as to face the signal electrode 26 with being sandwiched. With this arrangement, the microwave electric field has a main component in the principal axis P direction inside the branched optical waveguides 25-1 and 25-2.
- the electrodes 26, 27-1 and 27-2 are formed directly on the optical waveguide substrate 21. It is said. For this reason, the strength of the electric field of the microwave applied to the branch optical waveguides 25-1 and 25-2 does not decrease, and the drive voltage can be lowered.
- the modulation voltage input to each of the electrodes 26, 27-1, and 27-2 is supplied from an external high frequency power supply 30.
- the embodiment of the present invention has been described in detail with reference to the drawings.
- the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention.
- the specific configurations of the Mach-Zehnder optical waveguides 15 and 25 and the electrodes 16, 17-1, 17-2, 26, 27-1, and 27-2 are not limited to those described above, and are appropriately determined as necessary. , You may change.
- the liquid crystal polymer substrates 12 and 22 are required to ensure device characteristics that the dielectric constant is lower than that of the optical waveguide substrates 11 and 21 and that the imaginary part of the complex dielectric constant is low. For adjustment, even if fillers and aggregates are mixed as appropriate to increase the dielectric constant and complex dielectric constant, there is no problem as long as the device characteristics fall within the practical range.
- the stress generated inside the optical waveguide substrate due to the difference in thermal expansion coefficient can be reduced.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
熱膨張係数の差に起因して光導波路基板の内部に発生する応力を低減することのできる光導波路デバイスを提供する。厚さ30μm以下の光導波路基板(11)と、光導波路基板(11)を保持し光導波路基板(11)より誘電率が低い液晶ポリマ基板(12)と、を有し、光導波路基板(11)と液晶ポリマ基板(12)が接着剤層(14)によって接着された光導波路デバイス(10)であって、光導波路基板(11)と液晶ポリマ基板(12)の熱膨張係数はそれぞれ基板面内に異方性を有し、光導波路基板(11)の異方性の軸方向と液晶ポリマ基板(12)の異方性の軸方向が揃うように、光導波路基板(11)と液晶ポリマ基板(12)の相対的向きが調整されている。
Description
本発明は、光導波路デバイス、特に光変調器に関する。
本願は、2011年4月28日に、日本に出願された特願2011-102391号に基づき優先権を主張し、その内容をここに援用する。
本願は、2011年4月28日に、日本に出願された特願2011-102391号に基づき優先権を主張し、その内容をここに援用する。
近年、光通信システムの高速大容量化が進んで1波長当り40ギガビット/秒以上の通信速度が実用になってきている。これを受けて、基幹部品である光変調器の広帯域化が求められている。進行波型光変調器は、光導波路を進行する光波と光導波路に沿って設けた電極を進行するマイクロ波とが電気光学効果による相互作用をすることで光波を変調する光変調器であり、光波とマイクロ波との速度整合をとることにより、広帯域化を図ることができる。前記速度整合を実現する方法として、従来、光導波路基板上に設けた低誘電率のバッファ層の上に電極を形成した構成が用いられてきた。しかし、この構成では、光導波路に印加される電界がバッファ層の存在によって小さくなってしまうため、駆動電圧を低電圧化できないという欠点がある。
この欠点を改善するために、図5のような光導波路基板を薄板化した進行波型光変調器が提案されている(例えば、特許文献1参照)。図5において、光導波路104が形成された光導波路基板101は、接着剤層103により保持基板102に固着されて保持されている。光導波路基板101の厚さは10μm程度以下であり、通常のもの(例えば厚さ0.5mm)よりも薄型である。接着剤層103としては、その誘電率が光導波路基板101よりも低いものを用い、その厚さを、電極105から印加される電界の接着剤層103への漏れが大きくなるよう十分に厚く(例えば10μm~200μm)する。このような構成では、電極105からの電界が低誘電率の接着剤層103の内部に漏れ出すことによってマイクロ波に対する等価屈折率(その値は光波に対する等価屈折率より大きい)が光導波路基板101の厚さが厚い場合と比べて小さくなる。このように等価屈折率の値の差が小さくなるので、光波とマイクロ波の速度が整合した状態に近付き、広帯域化が実現する。それとともに、この構成では光導波路基板101上にバッファ層を設けることなく速度整合が可能なので、光導波路104に印加される電界の強度が低下してしまうことがなく、駆動電圧の低電圧化も同時に実現することができる。
しかしながら、図5の構成とした場合、接着剤層103の厚さが厚いため次のような点が問題になる。第1に、接着剤層が厚いとその接着強度が低下してしまう。第2に、接着剤の硬化時に紫外線照射や加熱によってその温度が上昇し、その後硬化して温度が下がると応力が発生するが、接着剤層が厚いと発生する応力も大きくなってしまう。第3に、接着剤層を厚く形成することは、基板の平行出しや接着剤の液だれ防止など製造上難しい工程を含むため、コスト高になってしまう。
こうした問題に対処するための技術として、特許文献2,3に示されるような樹脂基板を用いた構造が提案されている。前記構造によれば、厚い接着層を用いずに済むため、貼り合せ時の平行出しが行いやすく、さらに、硬化時の接着剤の収縮の影響が小さい、といった工程上や特性上のメリットがある。
樹脂基板を用いた特許文献2,3の構造において、樹脂基板の熱膨張係数(線膨張係数。以下同様)は光導波路基板の熱膨張係数に近い値であることが、製造工程上もデバイスの特性上も望ましい。ここで、一般に、樹脂の熱膨張係数は等方性であるのに対して、光導波路基板には熱膨張係数が異方性を持つものが用いられることもある。例えば、後述するLN基板の場合、熱膨張係数はZ軸方向が2ppm/℃、X方向やY方向が16ppm/℃である。そのため、ZカットではなくXカットやYカットのLN基板を用いた場合には、基板面内に大きな異方性が存在することになり、基板面内の各方向においてこのLN基板と樹脂基板の熱膨張係数を合わせることが不可能である。
このようなことから、従来の光導波路デバイスは、光導波路基板の内部に熱膨張係数の差に起因する応力が発生し、デバイス特性が劣化してしまうおそれがあった。また、この応力は、光導波路基板と樹脂基板の間の接着剤層を薄くすることにより低減することはできるものの、完全にゼロにすることは難しい。このため、光導波路基板と樹脂基板を貼り合わせる(接着する)工程において一定の割合で不良品(初期動作点シフトやひび割れ等)が発生してしまう。このような不良品の発生は、光導波路基板が薄型になるにつれて顕著となる。
このようなことから、従来の光導波路デバイスは、光導波路基板の内部に熱膨張係数の差に起因する応力が発生し、デバイス特性が劣化してしまうおそれがあった。また、この応力は、光導波路基板と樹脂基板の間の接着剤層を薄くすることにより低減することはできるものの、完全にゼロにすることは難しい。このため、光導波路基板と樹脂基板を貼り合わせる(接着する)工程において一定の割合で不良品(初期動作点シフトやひび割れ等)が発生してしまう。このような不良品の発生は、光導波路基板が薄型になるにつれて顕著となる。
本発明は上記の点に鑑みてなされたものであり、その目的は、熱膨張係数の差に起因して光導波路基板の内部に発生する応力を低減することのできる光導波路デバイスを提供することにある。
本発明は上記の課題を解決するためになされたものであり、本発明の光導波路デバイスは、厚さ30μm以下の光導波路基板と、前記光導波路基板を保持する保持基板と、を有し、前記光導波路基板と前記保持基板が接着剤層によって接着された光導波路デバイスであって、前記保持基板は、前記光導波路基板より誘電率が低い液晶ポリマからなる基板であり、前記光導波路基板と前記保持基板の熱膨張係数はそれぞれ基板面内に異方性を有し、前記光導波路基板の前記異方性の軸方向と前記保持基板の前記異方性の軸方向が揃うように、前記光導波路基板と前記保持基板の相対的向きが調整されていることを特徴とする。
また、本発明は、上記の光導波路デバイスにおいて、前記光導波路基板の前記異方性の軸方向のうち熱膨張係数の大きい方の軸と小さい方の軸が、それぞれ前記保持基板の前記異方性の軸方向のうち熱膨張係数の大きい方の軸と小さい方の軸と一致するように、前記光導波路基板と前記保持基板の相対的向きが調整されていることを特徴とする。
また、本発明は、上記の光導波路デバイスにおいて、前記保持基板を樹脂製の筐体に取り付けたことを特徴とする。
また、本発明は、上記の光導波路デバイスにおいて、前記液晶ポリマからなる保持基板の前記筐体と接する側の熱膨張係数が前記筐体の熱膨張係数とほぼ等しいことを特徴とする。
本発明によれば、熱膨張係数の差に起因して光導波路基板の内部に発生する応力を低減することができる。
以下、図面を参照しながら本発明の好ましい実施形態について詳しく説明する。
(第1の実施形態)
図1及び図2は、本発明の第1の実施形態による光導波路デバイスである進行波型の光変調器10の断面構成図と平面構成図をそれぞれ示した。図1の断面構成図は、図2の平面構成図のA-A’線に沿って切断した様子を表している。
図1及び図2は、本発明の第1の実施形態による光導波路デバイスである進行波型の光変調器10の断面構成図と平面構成図をそれぞれ示した。図1の断面構成図は、図2の平面構成図のA-A’線に沿って切断した様子を表している。
図1,図2において、光変調器10は、マッハツェンダー光導波路15が形成された光導波路基板11と、光導波路基板11を保持する保持基板13と、光導波路基板11と保持基板13との間に介挿された液晶ポリマ基板12と、光導波路基板11と液晶ポリマ基板12とを接着固定する接着剤層14と、光導波路基板11上に形成された信号電極16及び接地電極17-1,17-2と、を含んで構成されている。
光導波路基板11は、電気光学効果を有する母結晶からその主軸Pと基板表面Sとが平行になるように切り出されたXカットの基板であり、例えば、ニオブ酸リチウム(LN)基板やタンタル酸リチウム(LT)基板等を用いることができる。このXカットの光導波路基板11に、入力導波路15-3と分岐光導波路15-1及び15-2と出力導波路15-4とからなるマッハツェンダー光導波路15が、上記主軸Pと分岐光導波路15-1及び15-2とが垂直になるように(即ち図1において主軸Pが紙面内にくるように)して形成されている。光導波路基板11の厚さの上限値は任意で選択可能であるが、例えば30μm以下であってよく、好ましくは20μm以下であり、より好ましくは10μm以下である。光導波路基板11の厚さの下限値も任意で選択してよいが、好ましくは1μm程度以上であることが好ましい。このように光導波路基板11を薄板化すると、電極16,17-1,17-2により励起されて光導波路基板11内を進行するマイクロ波に対する等価屈折率が小さくなって、分岐光導波路15-1及び15-2を進行する光波に対する等価屈折率との差が小さくなる。これにより、光波とマイクロ波との速度整合がとれた状態、あるいは速度差が小さい状態となり、光変調器10の広帯域化が実現される。
以下では、光導波路基板11にLN基板を用いるものとする。LN基板の熱膨張係数(線膨張係数。以下同様)は、Z軸(主軸P)方向が2ppm/℃、X方向(図の上下方向、つまり基板面に垂直な方向)やY方向(図の紙面垂直方向、つまり導波路の伝搬方向)が16ppm/℃である。
液晶ポリマ基板12は、その誘電率(実部)が光導波路基板11の誘電率よりも低い特性を持った樹脂製の基板であり、上記のようにマイクロ波に対する等価屈折率を小さくするために用いられる。誘電率は5以下が好ましく、3以下であると更に好ましい。マイクロ波の損失を抑えるため、複素誘電率の虚部が小さいことが好ましい。
ここで、液晶ポリマは、その成形時における樹脂の流動方向とそれに垂直な方向とで熱膨張係数が異なり、この2つの方向の熱膨張係数は、樹脂流し込みの速度や流し込み口の形状などにより制御することが可能である。理想的には、液晶ポリマ基板12の各軸方向の熱膨張係数が、光導波路基板11の各軸方向の熱膨張係数と同等の値であることが望ましいが、現状、そのような物性の液晶ポリマは知られていない。そのため、本実施形態では、液晶ポリマ基板12の直交する2軸方向の熱膨張係数は、光導波路基板11の直交する2軸方向(Z軸とX軸の2軸、または、Z軸とY軸の2軸)の熱膨張係数の比と近い値を持つように調整されている。具体例として、光導波路基板11(LN基板)が上述の熱膨張係数(比の値は8)を有しているとすると、液晶ポリマ基板12の熱膨張係数は、ポリフェニリンサルファイド系の樹脂(誘電率=4.6)を用いて、成形時の樹脂流動方向が7ppm/℃、これと垂直な方向が60ppm/℃となるように、調整されている。液晶ポリマ基板12は、熱膨張係数が7ppm/℃の方向が光導波路基板11(LN基板)のZ軸(主軸P)方向に沿い、熱膨張係数が60ppm/℃の方向が光導波路基板11(LN基板)のX軸方向またはY軸方向に沿うように、光導波路基板11に対する相対的な向きが設定されている。これにより、熱膨張係数の差に起因して光導波路基板11の内部に発生する応力を低減でき、温度変化にともなう特性の安定性を向上することができる。
液晶ポリマ基板12の2軸方向の熱膨張係数の比は光導波路基板11の2軸方向の熱膨張係数の比に完全に合わせなくてもよく、実用上問題のない特性が得られる範囲で、熱膨張係数の比の差が存在していてもよい。
光導波路基板11と液晶ポリマ基板12の熱膨張係数の差は小さいことが望ましいが、熱膨張係数の2軸の異方性の方向を一致させる(揃える)ことが最も重要である。2軸のうち、熱膨張係数が大きい方の軸方向において、光導波路基板11と液晶ポリマ基板12の熱膨張係数の差を小さくすることがより望ましい。
液晶ポリマ基板12の2軸方向の熱膨張係数の比は光導波路基板11の2軸方向の熱膨張係数の比に完全に合わせなくてもよく、実用上問題のない特性が得られる範囲で、熱膨張係数の比の差が存在していてもよい。
光導波路基板11と液晶ポリマ基板12の熱膨張係数の差は小さいことが望ましいが、熱膨張係数の2軸の異方性の方向を一致させる(揃える)ことが最も重要である。2軸のうち、熱膨張係数が大きい方の軸方向において、光導波路基板11と液晶ポリマ基板12の熱膨張係数の差を小さくすることがより望ましい。
液晶ポリマ基板12の厚さは、電極16,17-1,17-2によって発生するマイクロ波の電界が液晶ポリマ基板12の内部に大きく漏れ出すように、十分に厚く、例えば50μm以上の厚さとする。これにより、マイクロ波に対する等価屈折率を小さくすることができる。厚さの上限については特に制限はない。また、液晶ポリマは、その成形条件によっては板厚の方向において熱膨張係数に若干の分布が見られることもあるが、液晶ポリマ基板12全体として見たときの熱膨張係数の異方性が光導波路基板11と近ければ、液晶ポリマ基板12内部に局所的な熱膨張係数の分布があってもデバイスの特性上問題はない。
光導波路基板11と液晶ポリマ基板12とは、接着剤層14によって接着固定されている。接着剤層14を形成する接着剤には、紫外線を照射することによって硬化する紫外線硬化型の接着剤や、加熱によって硬化する熱硬化型の接着剤を用いることができる。接着剤については誘電率、複素誘電率の虚部が共に低いことが好ましく、例えばアクリル系、エポキシ系接着剤が用いられる。これらを比較すると一般にアクリル系接着剤の方がエポキシ系接着剤よりも誘電率、複素誘電率の虚部が共に低く、接着強度および機械強度はエポキシ系接着剤の方が大きい。
接着剤層14は、光変調器10の信頼性を向上させる必要性から、その厚さを十分に薄くすることが望ましく、例えば20μm以下、好ましくは9μm以下、より好ましくは1μm以下の厚さとなるように形成する。厚さが30μmを超えると、前述したように貼り合せ時の平行出しが困難になる。また、一般に接着剤層は薄く形成した方が接着強度は大きくなるので、このように接着剤層14を薄くすることにより、光導波路基板11と液晶ポリマ基板12とを信頼性の上で問題がない程度に十分な強度で接着固定することができる。また、接着剤の硬化時に、紫外線照射や加熱によってその温度が上昇しその後硬化して温度が下がり応力が発生するが、接着剤層14の厚さが薄く、熱膨張係数の2軸の異方性の方向が一致していれば、発生する応力を低減することができ、貼り合わせ時の歩留まりを向上することが可能である。接着にあたっては、光導波路基板11と液晶ポリマ基板12は、接着強度が十分に発現するよう、適切な方法で洗浄や表面処理をしておくことが望ましい。
接着剤層14の厚さが熱ドリフト(測定温度-40℃~85℃での駆動電圧の変化)に与える影響を測定したところ、次の結果を得た。この評価に使用した液晶ポリマ基板12の熱膨張係数は、Z軸方向が7ppm/℃、X方向とY方向が60ppm/℃である。
接着剤層の厚さ(μm) 熱ドリフト(V)
1 0.3
2 0.5
3 0.4
4 0.1
5 0.4
一方、液晶ポリマ基板12に代えてアクリル系樹脂基板(誘電率=4.0)を採用した構造(特許文献2,3)のデバイスについて同様の測定を行ったところ、次の結果を得た。
接着剤層の厚さ(μm) 熱ドリフト(V)
3 2.1
4 2.9
5 3.0
熱ドリフトの一般的な許容値は3.0V以下である。従来の樹脂基板(アクリル系)を用いても許容範囲内の特性は得られるが、液晶ポリマ基板12を用いた構造の方が良好な特性を得られることが分かる。
接着剤層の厚さ(μm) 熱ドリフト(V)
1 0.3
2 0.5
3 0.4
4 0.1
5 0.4
一方、液晶ポリマ基板12に代えてアクリル系樹脂基板(誘電率=4.0)を採用した構造(特許文献2,3)のデバイスについて同様の測定を行ったところ、次の結果を得た。
接着剤層の厚さ(μm) 熱ドリフト(V)
3 2.1
4 2.9
5 3.0
熱ドリフトの一般的な許容値は3.0V以下である。従来の樹脂基板(アクリル系)を用いても許容範囲内の特性は得られるが、液晶ポリマ基板12を用いた構造の方が良好な特性を得られることが分かる。
保持基板13は、液晶ポリマ基板12を介して光導波路基板11を保持する基板であり、光導波路基板11をしっかりと保持できるようにするため、その厚さは十分に厚く、例えば200μm以上、好ましくは0.5~1.0mm程度とする。保持基板13の材質には、環境温度が変動した際に光導波路基板11の内部に応力が発生しないよう、あるいは発生する応力が低減されるよう、その熱膨張係数が光導波路基板11の熱膨張係数と近い材質のものを使用する。光導波路基板11と保持基板13とが同材質であれば尚更好ましい。例えば、光導波路基板11がLN基板である場合には、保持基板13の材質として、石英やアルミナ、光導波路基板11と結晶方位が同じLN基板を利用することができる。
液晶ポリマ基板12と保持基板13との固定方法は、本発明では特に限定されるものではなく、例えば、接着剤層14と同様の接着剤を用いて接着固定する方法、液晶ポリマ基板12を加熱によって粘着性が生じる材質からなるものとし、この液晶ポリマ基板12を加熱して保持基板13に固着させる方法、液晶ポリマ基板12と保持基板13を機械的に固定(例えばネジ止め)する方法、等を適用することができる。
マッハツェンダー光導波路15は、例えば、チタン(Ti)等の金属を光導波路基板11の内部に熱拡散させる方法、光導波路基板11内部の原子(LN基板の場合、リチウム(Li)原子)をプロトンと交換する方法、光導波路基板11をリッジ状に形成し、前記リッジ部に光を導波させる方法、等を用いて作製することができる。
光導波路基板11上に形成される各電極16,17-1,17-2は、光導波路基板11内にマイクロ波を進行させて分岐光導波路15-1及び15-2中を伝搬する光波を変調するための電極であり、信号電極16が分岐光導波路15-1と15-2の間に配置され、接地電極17-1及び17-2がそれぞれ分岐光導波路15-1,15-2を挟んで信号電極16と対向するようにして配置される。この配置により、分岐光導波路15-1及び15-2の内部では、マイクロ波の電界が主軸P方向の主成分を持つようになる。上述したとおり、光導波路基板11の下部に設けられた液晶ポリマ基板12によって速度整合をとる構成であるので、各電極16,17-1,17-2は光導波路基板11上に直接形成する構成としている。このため、分岐光導波路15-1及び15-2に印加されるマイクロ波の電界の強度が低下せず、駆動電圧を低電圧化できる。各電極16,17-1,17-2へ入力する変調電圧は、外部の高周波電源30から供給される。
(第2の実施形態)
図3及び図4は、本発明の第2の実施形態による光導波路デバイスである進行波型の光変調器20の断面構成図と平面構成図をそれぞれ示した。図3の断面構成図は、図4の平面構成図のA-A’線に沿って切断した様子を表している。
図3及び図4は、本発明の第2の実施形態による光導波路デバイスである進行波型の光変調器20の断面構成図と平面構成図をそれぞれ示した。図3の断面構成図は、図4の平面構成図のA-A’線に沿って切断した様子を表している。
図3,図4において、光変調器20は、マッハツェンダー光導波路25が形成された光導波路基板21と、光導波路基板21を保持する保持基板である液晶ポリマ基板22と、光導波路基板21と液晶ポリマ基板22とを接着固定する接着剤層24と、光導波路基板21上に形成された信号電極26及び接地電極27-1,27-2と、液晶ポリマ基板22を固定するパッケージ用筐体23と、を含んで構成されている。
光導波路基板21は、電気光学効果を有する母結晶からその主軸Pと基板表面Sとが平行になるように切り出されたXカットの基板であり、例えば、ニオブ酸リチウム(LN)基板やタンタル酸リチウム(LT)基板等を用いることができる。このXカットの光導波路基板21に、入力導波路25-3と分岐光導波路25-1及び25-2と出力導波路25-4とからなるマッハツェンダー光導波路25が、上記主軸Pと分岐光導波路25-1及び25-2とが垂直になるように(即ち図3において主軸Pが紙面内にくるように)して形成されている。光導波路基板21の厚さの上限値は任意で選択可能であるが、例えば30μm以下であってよく、好ましくは20μm以下であり、より好ましくは10μm以下である。光導波路基板21の厚さの下限値も任意で選択してよいが、好ましくは1μm程度以上であることが好ましい。このように光導波路基板21を薄板化すると、電極26,27-1,27-2により励起されて光導波路基板21内を進行するマイクロ波に対する等価屈折率が小さくなって、分岐光導波路25-1及び25-2を進行する光波に対する等価屈折率との差が小さくなる。これにより、光波とマイクロ波との速度整合がとれた状態、あるいは速度差が小さい状態となり、光変調器20の広帯域化が実現される。
以下では、光導波路基板21にLN基板を用いるものとする。LN基板の熱膨張係数は、Z軸(主軸P)方向が2ppm/℃、X方向(図の上下方向、つまり基板面に垂直な方向)やY方向(図の紙面垂直方向、つまり導波路の伝搬方向)が16ppm/℃である。
液晶ポリマ基板22は、上記のようにマイクロ波に対する等価屈折率を小さくする目的と、光導波路基板21を保持する目的のために用いられる基板である。液晶ポリマ基板22の材質には、その誘電率(実部)が光導波路基板21の誘電率よりも低い特性を有するものを用いる。マイクロ波の損失を抑えるため、複素誘電率の虚部が小さいことが好ましい。
ここで、液晶ポリマは、その成形時における樹脂の流動方向とそれに垂直な方向とで熱膨張係数が異なり、この2つの方向の熱膨張係数は、樹脂流し込みの速度や流し込み口の形状などにより制御することが可能である。理想的には、液晶ポリマ基板12の各軸方向の熱膨張係数が、光導波路基板11の各軸方向の熱膨張係数と同等の値であることが望ましいが、現状、そのような物性の液晶ポリマは知られていない。そのため、本実施形態では、液晶ポリマ基板22の直交する2軸方向の熱膨張係数は、光導波路基板21の直交する2軸方向(Z軸とX軸の2軸、または、Z軸とY軸の2軸)の熱膨張係数の比と近い値を持つように調整されている。具体例として、光導波路基板21(LN基板)が上述の熱膨張係数(比の値は8)を有しているとすると、液晶ポリマ基板22の熱膨張係数は、ポリフェニリンサルファイド系の樹脂を用いて、成形時の樹脂流動方向が7ppm/℃、これと垂直な方向が60ppm/℃となるように、調整されている。液晶ポリマ基板22は、熱膨張係数が7ppm/℃の方向が光導波路基板21(LN基板)のZ軸(主軸P)方向に沿い、熱膨張係数が60ppm/℃の方向が光導波路基板21(LN基板)のX軸方向またはY軸方向に沿うように、光導波路基板21に対する相対的な向きが設定されている。これにより、熱膨張係数の差に起因して光導波路基板21の内部に発生する応力を低減でき、温度変化にともなう特性の安定性を向上することができる。
液晶ポリマ基板22の2軸方向の熱膨張係数の比は光導波路基板21の2軸方向の熱膨張係数の比に完全に合わせなくてもよく、実用上問題のない特性が得られる範囲で、熱膨張係数の比の差が存在していてもよい。
光導波路基板11と液晶ポリマ基板12の熱膨張係数の差は小さいことが望ましいが、熱膨張係数の2軸の異方性の方向を一致させる(揃える)ことが最も重要である。2軸のうち、熱膨張係数が大きい方の軸方向において、光導波路基板11と液晶ポリマ基板12の熱膨張係数の差を小さくすることがより望ましい。
液晶ポリマ基板22の2軸方向の熱膨張係数の比は光導波路基板21の2軸方向の熱膨張係数の比に完全に合わせなくてもよく、実用上問題のない特性が得られる範囲で、熱膨張係数の比の差が存在していてもよい。
光導波路基板11と液晶ポリマ基板12の熱膨張係数の差は小さいことが望ましいが、熱膨張係数の2軸の異方性の方向を一致させる(揃える)ことが最も重要である。2軸のうち、熱膨張係数が大きい方の軸方向において、光導波路基板11と液晶ポリマ基板12の熱膨張係数の差を小さくすることがより望ましい。
液晶ポリマ基板22の厚さは、電極26,27-1,27-2によって発生するマイクロ波の電界が液晶ポリマ基板22の内部に大きく漏れ出すように、また、光導波路基板21をしっかりと保持できるように、十分に厚く、例えば50μm以上、好ましくは0.5~1.0mm程度とする。厚さの上限については特に制限はない。また、液晶ポリマは、その成形条件によっては板厚の方向において熱膨張係数に若干の分布が見られることもあるが、液晶ポリマ基板22全体として見たときの熱膨張係数の異方性が光導波路基板21と近ければ、液晶ポリマ基板22内部に局所的な熱膨張係数の分布があってもデバイスの特性上問題はない。
光導波路基板21と液晶ポリマ基板22とは、接着剤層24によって接着固定されている。接着剤層24を形成する接着剤には、紫外線を照射することによって硬化する紫外線硬化型の接着剤や、加熱によって硬化する熱硬化型の接着剤を用いることができる。
接着剤層24は、光変調器20の信頼性を向上させる必要性から、その厚さを十分に薄くすることが望ましく、例えば20μm以下、好ましくは9μm以下、より好ましくは1μm以下の厚さとなるように形成する。厚さが30μmを超えると、前述したように貼り合せ時の平行出しが困難になる。また、一般に接着剤層は薄く形成した方が接着強度は大きくなるので、このように接着剤層24を薄くすることにより、光導波路基板21と液晶ポリマ基板22とを信頼性の上で問題がない程度に十分な強度で接着固定することができる。また、接着剤の硬化時に、紫外線照射や加熱によってその温度が上昇しその後硬化して温度が下がり応力が発生するが、接着剤層24の厚さが薄いと発生する応力を低減することができる。接着にあたっては、光導波路基板11と液晶ポリマ基板12は、接着強度が十分に発現するよう、適切な方法で洗浄や表面処理をしておくことが望ましい。
接着剤層24に用いる接着剤の誘電率は、接着剤層24の厚さを1μmより厚くする場合には、液晶ポリマ基板22と同様に(マイクロ波に対する等価屈折率を小さくするため)光導波路基板21の誘電率よりも低いことが必要である。これは、厚さが1μmより厚いと接着剤層24がマイクロ波の等価屈折率に与える影響が大きいからである。一方、接着剤層24の厚さを1μm以下とする場合には、接着剤層24がマイクロ波の等価屈折率に与える影響は無視できる程度となるので、接着剤層24に用いる接着剤の誘電率は光導波路基板21の誘電率より高くてもかまわない。
パッケージ用筐体23は、破損防止や信頼性確保などのために光導波路基板21、液晶ポリマ基板22、及び各電極26,27-1,27-2からなる部分を外界から隔離して収納する部材であり、その内部底面に設けられた凸部(台座)に液晶ポリマ基板22が固定して取り付けられている。図3では、パッケージ用筐体23の底面の一部と凸部のみを示している。
パッケージ用筐体23の材質は、光変調器20の低コスト化を図るために樹脂製とする。このとき、液晶ポリマ基板22のパッケージ用筐体23側の熱膨張係数とパッケージ用筐体23に用いる樹脂材料の熱膨張係数とが近い値を持つように、パッケージ用筐体23の樹脂材料と液晶ポリマ基板22の成形条件を選ぶ。上述したように、液晶ポリマ基板22は光導波路基板21側の熱膨張係数が異方性を持つように成形する必要があるが、成形条件を制御することにより、熱膨張係数を板厚方向に変化させることも可能であり、熱膨張係数が光導波路基板21側では異方性を有し、パッケージ用筐体23側では等方性を有するような液晶ポリマ基板22も作製可能である。このようにすることで、環境温度が変動した際に光導波路基板21の内部に発生する応力を低減することができる。したがって、光変調器20の特性を劣化させることなく、パッケージ用筐体23を樹脂製とすることによる低コスト化を実現可能である。
具体例として、例えば、パッケージ用筐体23の樹脂材料には、ポリカーボネイト(熱膨張係数=70ppm/℃)やノリル(熱膨張係数=2.5ppm/℃)を用いることができる。ポリカーボネイトを用いた場合には、液晶ポリマ基板22の材料には、二液性熱硬化エポキシ接着剤(熱膨張係数=63×10-6/K)を利用することができる。ノリルを用いた場合には、液晶ポリマ基板22の樹脂材料には、紫外線硬化型エポキシ接着剤(熱膨張係数=20×10-6/K)を利用することができる。
液晶ポリマ基板22とパッケージ用筐体23との固定方法は、本発明では特に限定されるものではなく、例えば、上記接着剤層24と同様の接着剤を用いて接着固定する方法、液晶ポリマ基板22を加熱によって粘着性が生じる材質からなるものとし、この液晶ポリマ基板22を加熱してパッケージ用筐体23に固着させる方法、液晶ポリマ基板22とパッケージ用筐体23を機械的に固定(例えばネジ止め)する方法、等を適用することができる。
マッハツェンダー光導波路25は、例えば、チタン(Ti)等の金属を光導波路基板21の内部に熱拡散させる方法、光導波路基板21内部の原子(LN基板の場合、リチウム(Li)原子)をプロトンと交換する方法、光導波路基板21をリッジ状に形成し、前記リッジ部に光を導波させる方法、等を用いて作製することができる。
光導波路基板21上に形成される各電極26,27-1,27-2は、光導波路基板21内にマイクロ波を進行させて分岐光導波路25-1及び25-2中を伝搬する光波を変調するための電極であり、信号電極26が分岐光導波路25-1と25-2の間に配置され、接地電極27-1及び27-2がそれぞれ分岐光導波路25-1,25-2を挟んで信号電極26と対向するようにして配置される。この配置により、分岐光導波路25-1及び25-2の内部では、マイクロ波の電界が主軸P方向の主成分を持つようになる。上述したとおり、光導波路基板21の下部に設けられた液晶ポリマ基板22によって速度整合をとる構成であるので、各電極26,27-1,27-2は光導波路基板21上に直接形成する構成としている。このため、分岐光導波路25-1及び25-2に印加されるマイクロ波の電界の強度が低下せず、駆動電圧を低電圧化できる。各電極26,27-1,27-2へ入力する変調電圧は、外部の高周波電源30から供給される。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、マッハツェンダー光導波路15,25や各電極16,17-1,17-2,26,27-1,27-2の具体的な構成は、上述したものに限られず、必要に応じて適宜、変更してもよい。
また、液晶ポリマ基板12,22について、誘電率が光導波路基板11,21より低いこと及び複素誘電率の虚部が低いことをデバイス特性確保の要件としたが、熱膨張係数や機械的強度の調整のために、適宜フィラーや骨材を混合して誘電率や複素誘電率を上昇させても、デバイスの特性低下が実用的範囲内におさまるのであれば、差し支えない。
例えば、マッハツェンダー光導波路15,25や各電極16,17-1,17-2,26,27-1,27-2の具体的な構成は、上述したものに限られず、必要に応じて適宜、変更してもよい。
また、液晶ポリマ基板12,22について、誘電率が光導波路基板11,21より低いこと及び複素誘電率の虚部が低いことをデバイス特性確保の要件としたが、熱膨張係数や機械的強度の調整のために、適宜フィラーや骨材を混合して誘電率や複素誘電率を上昇させても、デバイスの特性低下が実用的範囲内におさまるのであれば、差し支えない。
10,20…光変調器 11,21…光導波路基板 12,22…液晶ポリマ基板 13…保持基板 23…パッケージ用筐体 14,24…接着剤層 15,25…マッハツェンダー光導波路 15-1,15-2,25-1,25-2…分岐光導波路 15-3,25-3…入力導波路 15-4,25-4…出力導波路 16,26…信号電極 17-1,17-2,27-1,27-2…接地電極
本発明の光導波路デバイスによれば、熱膨張係数の差に起因して光導波路基板の内部に発生する応力を低減することができる。
Claims (4)
- 厚さ30μm以下の光導波路基板と、前記光導波路基板を保持する保持基板と、
を有し、前記光導波路基板と前記保持基板が接着剤層によって接着された光導波路デバイスであって、前記保持基板は、前記光導波路基板より誘電率が低い液晶ポリマからなる基板であり、前記光導波路基板と前記保持基板の熱膨張係数はそれぞれ基板面内に異方性を有し、前記光導波路基板の前記異方性の軸方向と前記保持基板の前記異方性の軸方向が揃うように、前記光導波路基板と前記保持基板の相対的向きが調整されている、光導波路デバイス。 - 前記光導波路基板の前記異方性の軸方向のうち熱膨張係数の大きい方の軸と小さい方の軸が、それぞれ前記保持基板の前記異方性の軸方向のうち熱膨張係数の大きい方の軸と小さい方の軸と一致するように、前記光導波路基板と前記保持基板の相対的向きが調整されている、請求項1に記載の光導波路デバイス。
- 前記保持基板を樹脂製の筐体に取り付けた、請求項1又は請求項2に記載の光導波路デバイス。
- 前記液晶ポリマからなる保持基板の前記筐体と接する側の熱膨張係数が前記筐体の熱膨張係数とほぼ等しい、請求項3に記載の光導波路デバイス。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/114,449 US9002165B2 (en) | 2011-04-28 | 2012-04-27 | Optical waveguide device |
EP12777019.6A EP2703855A4 (en) | 2011-04-28 | 2012-04-27 | OPTICAL WAVEGUIDE DEVICE |
CN201280020761.2A CN103492919B (zh) | 2011-04-28 | 2012-04-27 | 光波导器件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011102391A JP5691808B2 (ja) | 2011-04-28 | 2011-04-28 | 光導波路デバイス |
JP2011-102391 | 2011-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147914A1 true WO2012147914A1 (ja) | 2012-11-01 |
Family
ID=47072426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061350 WO2012147914A1 (ja) | 2011-04-28 | 2012-04-27 | 光導波路デバイス |
Country Status (5)
Country | Link |
---|---|
US (1) | US9002165B2 (ja) |
EP (1) | EP2703855A4 (ja) |
JP (1) | JP5691808B2 (ja) |
CN (1) | CN103492919B (ja) |
WO (1) | WO2012147914A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11624965B2 (en) | 2020-08-13 | 2023-04-11 | Fujitsu Optical Components Limited | Optical waveguide device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11307352B2 (en) | 2016-07-15 | 2022-04-19 | Corning Incorporated | Optical waveguide article with laminate structure and method for forming the same |
JP7380204B2 (ja) | 2019-12-26 | 2023-11-15 | 住友大阪セメント株式会社 | 光導波路デバイス |
US11953742B2 (en) * | 2021-03-30 | 2024-04-09 | Tdk Corporation | Optical device and optical system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63133104A (ja) * | 1986-11-04 | 1988-06-04 | ハネウエル・インコーポレーテッド | 集積光チップを低応力にて装着する方法及び装置 |
JPH06504853A (ja) * | 1990-10-09 | 1994-06-02 | ハネウエル・インコーポレーテッド | 熱分離及び高g衝撃分離のためのインテグレイテッドオプティクスデバイス装着構造 |
JPH11174261A (ja) * | 1997-12-11 | 1999-07-02 | Furukawa Electric Co Ltd:The | 光ファイバの固定方法および該固定方法に用いる固定用治具 |
JP2003215519A (ja) | 2001-11-16 | 2003-07-30 | Ngk Insulators Ltd | 光導波路デバイスおよび進行波形光変調器 |
JP2003258364A (ja) * | 2001-12-25 | 2003-09-12 | Sumitomo Electric Ind Ltd | 光通信装置 |
JP2003318478A (ja) * | 2002-04-26 | 2003-11-07 | Sumitomo Electric Ind Ltd | 光通信装置 |
JP2004309683A (ja) * | 2003-04-04 | 2004-11-04 | Kanegafuchi Chem Ind Co Ltd | 光導波路およびグレーテイング、レンズ、フォトニック結晶およびこれらの作製方法。 |
JP2005221584A (ja) * | 2004-02-03 | 2005-08-18 | Ngk Spark Plug Co Ltd | 光導波路用材料並びに光導波路構造付きデバイス及びその製造方法 |
JP2009210634A (ja) | 2008-02-29 | 2009-09-17 | Sumitomo Osaka Cement Co Ltd | 光導波路デバイス |
JP2009210633A (ja) | 2008-02-29 | 2009-09-17 | Sumitomo Osaka Cement Co Ltd | 光導波路デバイス |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8802832A (nl) | 1988-02-29 | 1989-09-18 | Philips Nv | Methode voor het vervaardigen van een gelaagd element en het aldus verkregen element. |
JP3990090B2 (ja) * | 2000-03-31 | 2007-10-10 | 日本オプネクスト株式会社 | 光電子装置およびその製造方法 |
JP5063001B2 (ja) * | 2003-08-21 | 2012-10-31 | 日本碍子株式会社 | 進行波形光変調器 |
CN100447615C (zh) * | 2003-08-21 | 2008-12-31 | 日本碍子株式会社 | 光波导器件以及行波型光学调制器 |
DE102005026243B4 (de) * | 2005-06-07 | 2018-04-05 | Snaptrack, Inc. | Elektrisches Bauelement und Herstellungsverfahren |
-
2011
- 2011-04-28 JP JP2011102391A patent/JP5691808B2/ja active Active
-
2012
- 2012-04-27 US US14/114,449 patent/US9002165B2/en not_active Expired - Fee Related
- 2012-04-27 EP EP12777019.6A patent/EP2703855A4/en not_active Withdrawn
- 2012-04-27 CN CN201280020761.2A patent/CN103492919B/zh not_active Expired - Fee Related
- 2012-04-27 WO PCT/JP2012/061350 patent/WO2012147914A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63133104A (ja) * | 1986-11-04 | 1988-06-04 | ハネウエル・インコーポレーテッド | 集積光チップを低応力にて装着する方法及び装置 |
JPH06504853A (ja) * | 1990-10-09 | 1994-06-02 | ハネウエル・インコーポレーテッド | 熱分離及び高g衝撃分離のためのインテグレイテッドオプティクスデバイス装着構造 |
JPH11174261A (ja) * | 1997-12-11 | 1999-07-02 | Furukawa Electric Co Ltd:The | 光ファイバの固定方法および該固定方法に用いる固定用治具 |
JP2003215519A (ja) | 2001-11-16 | 2003-07-30 | Ngk Insulators Ltd | 光導波路デバイスおよび進行波形光変調器 |
JP2003258364A (ja) * | 2001-12-25 | 2003-09-12 | Sumitomo Electric Ind Ltd | 光通信装置 |
JP2003318478A (ja) * | 2002-04-26 | 2003-11-07 | Sumitomo Electric Ind Ltd | 光通信装置 |
JP2004309683A (ja) * | 2003-04-04 | 2004-11-04 | Kanegafuchi Chem Ind Co Ltd | 光導波路およびグレーテイング、レンズ、フォトニック結晶およびこれらの作製方法。 |
JP2005221584A (ja) * | 2004-02-03 | 2005-08-18 | Ngk Spark Plug Co Ltd | 光導波路用材料並びに光導波路構造付きデバイス及びその製造方法 |
JP2009210634A (ja) | 2008-02-29 | 2009-09-17 | Sumitomo Osaka Cement Co Ltd | 光導波路デバイス |
JP2009210633A (ja) | 2008-02-29 | 2009-09-17 | Sumitomo Osaka Cement Co Ltd | 光導波路デバイス |
Non-Patent Citations (3)
Title |
---|
KOTARO YANAGIHARA: "Progress of new functional polymers", BULLETIN OF THE JAPAN ELECTRONIC MATERIALS SOCIETY, vol. 18, 1 October 1986 (1986-10-01), pages 96 - 100, XP008171488 * |
LIQUID CRYSTAL POLYMER, PLASTICS, vol. 45, no. 4, 1 April 1994 (1994-04-01), pages 58 - 59, XP008171773 * |
See also references of EP2703855A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11624965B2 (en) | 2020-08-13 | 2023-04-11 | Fujitsu Optical Components Limited | Optical waveguide device |
Also Published As
Publication number | Publication date |
---|---|
EP2703855A4 (en) | 2014-12-17 |
JP5691808B2 (ja) | 2015-04-01 |
US20140050440A1 (en) | 2014-02-20 |
CN103492919A (zh) | 2014-01-01 |
US9002165B2 (en) | 2015-04-07 |
JP2012234037A (ja) | 2012-11-29 |
EP2703855A1 (en) | 2014-03-05 |
CN103492919B (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7502530B2 (en) | Optical waveguide devices and traveling wave type optical modulators | |
US8923658B2 (en) | Optical waveguide device | |
US6978056B2 (en) | Waveguide modulators having bias control with reduced temperature dependence | |
JP2016103002A (ja) | 電気光学位相変調器及び変調方法 | |
JP5691808B2 (ja) | 光導波路デバイス | |
JP4691428B2 (ja) | 光変調器 | |
JP5262186B2 (ja) | 光導波路デバイス | |
JP2010085789A (ja) | 光導波路素子 | |
JP4544474B2 (ja) | 光変調器 | |
JP2007304424A (ja) | 光変調器 | |
US11656486B2 (en) | Optical waveguide device | |
WO2022138845A1 (ja) | 光導波路素子、光変調器、光変調モジュール、及び光送信装置 | |
JP4961372B2 (ja) | 光導波路デバイス | |
JP2009086336A (ja) | 光導波路型デバイス | |
JP2019174588A (ja) | 光導波路素子 | |
US20070081755A1 (en) | Optical modulator | |
CN113646694B (zh) | 光调制器 | |
WO2022249234A1 (ja) | 波長変換装置及び波長変換装置の製造方法 | |
JP4161897B2 (ja) | 光導波路素子の位相差調整方法 | |
JP2000249995A (ja) | 導波路型光デバイス | |
WO2021131272A1 (ja) | 光導波路素子および光変調器 | |
JP5244869B2 (ja) | 光変調器モジュール | |
Yamaguchi et al. | Precise chirp parameter measurement of asymmetric Mach-Zehnder modulators with active Y-branch | |
Fox et al. | Fiber Optic Modulator | |
JP2002049016A (ja) | 光変調器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12777019 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14114449 Country of ref document: US Ref document number: 2012777019 Country of ref document: EP |