WO2012147422A1 - マットとその製造方法 - Google Patents

マットとその製造方法 Download PDF

Info

Publication number
WO2012147422A1
WO2012147422A1 PCT/JP2012/056245 JP2012056245W WO2012147422A1 WO 2012147422 A1 WO2012147422 A1 WO 2012147422A1 JP 2012056245 W JP2012056245 W JP 2012056245W WO 2012147422 A1 WO2012147422 A1 WO 2012147422A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
mat
pulverized
pulverized product
density
Prior art date
Application number
PCT/JP2012/056245
Other languages
English (en)
French (fr)
Inventor
中尾 浩
敦彦 板倉
Original Assignee
株式会社イノアックコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イノアックコーポレーション filed Critical 株式会社イノアックコーポレーション
Priority to JP2013511969A priority Critical patent/JP5478779B2/ja
Priority to CN201280020823.XA priority patent/CN103501663B/zh
Priority to EP12777349.7A priority patent/EP2702906B1/en
Publication of WO2012147422A1 publication Critical patent/WO2012147422A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G27/00Floor fabrics; Fastenings therefor
    • A47G27/04Carpet fasteners; Carpet-expanding devices ; Laying carpeting; Tools therefor
    • A47G27/0437Laying carpeting, e.g. wall-to-wall carpeting
    • A47G27/0468Underlays; Undercarpets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/042Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets of carpets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/044Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets of removable mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/048Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets characterised by their structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/33Agglomerating foam fragments, e.g. waste foam
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0063Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf
    • D06N7/0089Underlays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2061/00Use of condensation polymers of aldehydes or ketones or derivatives thereof, as moulding material
    • B29K2061/20Aminoplasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2461/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2461/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/04Foam
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/10Particulate form, e.g. powder, granule
    • D06N2205/106Scrap or recycled particles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/02Properties of the materials having acoustical properties
    • D06N2209/025Insulating, sound absorber
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/067Flame resistant, fire resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the present invention relates to a carpet that can be used as a carpet underlay as a building material, a parcel shelf as a vehicle interior material, a trunk mat, a floor mat, a floor bulking material, a spacer, and the like.
  • the thing of patent document 1 is known as a carpet cutting waste recycling material for motor vehicles.
  • This automobile carpet cutting waste recycling material is obtained by combining an automotive carpet backing material composition using a cutting waste recycling material containing an ethylene-vinyl acetate copolymer, a high-pressure low-density polyethylene and an inorganic filler masterbatch.
  • the base material is lined with a basis weight of 400 to 1200 g / m 2 , the carpet base material is fused to a cushioning material, and then molded with a mold that matches the floor of an automobile.
  • this automobile carpet is excellent in rigidity and hardness, but is heavy.
  • Patent Document 2 proposes a carpet called a molded silencer in which felt is laminated on a mixed layer of a pulverized piece of urethane resin foam and a binder and molded into a required shape.
  • the weight of this carpet cannot be reduced because it uses felt.
  • the pulverized piece of the urethane resin foam, the mixed layer of the binder, and the felt are laminated, it takes time and labor for molding.
  • Patent Document 3 proposes an automotive interior material in which a foamed plastic core material is covered with a skin material manufactured from a recycled material. Recycled materials used are those obtained by separating, cutting, and pulverizing automobile interior materials that have been scrapped. However, since the core material of the foamed plastic is not recycled, the recyclability of the waste was not sufficient.
  • Patent Document 4 proposes a polyurethane foam in which melamine foam powder is uniformly dispersed by previously mixing melamine foam fragments in a polyurethane foam stock solution and foam-curing the polyurethane foam.
  • the melamine foam fragments are bulky, mixing and stirring the melamine foam fragments at the mass production level in the polyurethane foam undiluted solution is troublesome and labor-intensive.
  • the finer the melamine foam fragments the easier it is to mix uniformly with the polyurethane foam stock solution.
  • the carpet undertray for building materials and the mat for interior materials for vehicles are preferably those with good heat insulation, flame retardancy and sound absorption, but the above-mentioned mats can be used with light weight, moderate hardness, and waste materials. At least one of property, heat insulation, flame retardancy and sound absorption is not sufficient.
  • Japanese Unexamined Patent Publication No. 2000-52836 Japanese Unexamined Patent Publication No. 9-202169 Japanese Laid-Open Patent Publication No. 2003-063319 Japanese Unexamined Patent Publication No. 2005-8714
  • the present invention has been made in view of the above points, and is a lightweight carpet that can be used as a carpet underlay as a building material, a parcel shelf as a vehicle interior material, a trunk mat, a floor mat, a floor bulking material, a spacer, and the like.
  • Another object of the present invention is to provide a mat having a suitable hardness, good heat insulating properties, flame retardancy, and sound absorption, and capable of using waste materials, and a method for producing the mat.
  • a mat formed by adhering a resin foam pulverized product including a melamine resin foam pulverized product with a moisture-curable isocyanate compound.
  • the pulverized product of the polyurethane foam may be included in the pulverized product of the resin foam.
  • the ratio of the pulverized product of the melamine resin foam in the pulverized product of the resin foam may be 10% by weight or more.
  • the density of the melamine resin foam is 5 kg / m 3 or more 18 kg / m 3 or less
  • the density of the polyurethane resin foam may be 13 kg / m 3 or more and 40 kg / m 3 or less
  • the density of the mat may be 23 kg / m 3 or more and 110 kg / m 3 or less.
  • the resin foam pulverized product may have a particle size of 3 mm to 30 mm.
  • a moisture curable isocyanate compound is attached to a resin foam pulverized product including a melamine resin foam pulverized product, and the moisture curable isocyanate compound is cured to adhere the resin foam pulverized product.
  • a method for manufacturing a mat is provided.
  • the moisture curable isocyanate compound may be cured in a state where the pulverized resin foam to which the moisture curable isocyanate compound is attached is compressed.
  • the resin foam pulverized product may contain a polyurethane resin foam pulverized product.
  • the ratio of the pulverized product of the melamine resin foam in the pulverized product of the resin foam may be 10% by weight or more.
  • the density of the melamine resin foam is 5 kg / m 3 or more and 18 kg / m 3 or less
  • the density of the polyurethane resin foam is 13 kg / m 3 or more and 40 kg / m 3 or less
  • the density of the mat is 23 kg / m m 3 or more 110 kg / m 3 may be less.
  • the resin foam pulverized product may have a particle diameter of 3 mm or more and 30 mm or less.
  • the resin foam pulverized material including the melamine resin foam pulverized material is bonded to the moisture-curing isocyanate compound to obtain a mat.
  • the sound absorbing property is good, and the material has an appropriate hardness.
  • the melamine resin foam has good flame retardancy, the flame retardant of the mat containing the pulverized product of the melamine resin foam is also good.
  • the resin foam pulverized product including the melamine resin foam pulverized product can be obtained by pulverizing the resin foam waste, industrial waste can be reduced and resources can be saved.
  • the hardness of the mat can be adjusted by including the pulverized product of the polyurethane resin foam in the pulverized resin foam, and the waste of the polyurethane resin foam can also be used.
  • the ratio of the pulverized product of the melamine resin foam is 10% by weight or more, the flame retardancy of the mat becomes good.
  • the mat can be made light and have an appropriate hardness by setting the density of the melamine resin foam and the density of the polyurethane resin foam within a specific range.
  • the pulverized resin foam it is possible to prevent the pulverized resin foam from being too small to make it difficult to attach the moisture-curable isocyanate compound, or to prevent the working environment from becoming powdery. Further, the pulverized resin foam is too large, and the pulverized resin foam cannot withstand the stress concentration when the mat is used. As a result, the mat can be prevented from being partially depressed or damaged. . “The particle diameter of the resin foam pulverized product is 3 mm or more and 30 mm or less” can be rephrased as “the size of the largest part of the resin foam pulverized product particle is 3 mm or more and 30 mm or less”. It means that the diameter (dimension) is the maximum in the pulverized product of 3 to 30 mm.
  • a mat that is lightweight and has an appropriate hardness and that has good heat insulating properties, flame retardancy, and sound absorption properties, and that can be used as waste material can reduce the working environment. It can be manufactured easily while suppressing.
  • the moisture curable isocyanate compound is cured in a compressed state of the resin foam pulverized product to which the moisture curable isocyanate compound is adhered, the resin foam pulverized product can be reliably adhered.
  • the hardness of the mat can be adjusted by including the pulverized product of the polyurethane resin foam in the pulverized resin foam, and the waste of the polyurethane resin foam can also be used.
  • the ratio of the pulverized product of the melamine resin foam is 10% by weight or more, the flame retardancy of the mat becomes good.
  • the mat can be made light and have an appropriate hardness by setting the density of the melamine resin foam and the density of the polyurethane resin foam within a specific range.
  • the pulverized resin foam it is possible to prevent the pulverized resin foam from being too small to make it difficult to attach the moisture-curable isocyanate compound, or to prevent the working environment from becoming powdery. Moreover, since the pulverized product of the resin foam is too large, the pulverized product of the resin foam cannot withstand stress concentration when the resulting mat is used, and the mat can be prevented from being partially depressed or damaged.
  • a mat 10 shown in FIG. 1 can be used as a carpet underlay as a building material, a parcel shelf as a vehicle interior material, a trunk mat, a floor mat, a floor bulking material, or the like.
  • the mat 10 is made of a resin foam pulverized material 11 including a melamine resin foam pulverized material bonded with a moisture-curable isocyanate compound.
  • the thickness of the mat 10 is appropriately determined depending on the use of the mat 10 and the like.
  • the thickness of the mat 10 can be about 10 to 50 mm.
  • the density of the mat 10 (based on JIS K 7222) is preferably 23 kg / m 3 or more and 110 kg / m 3 or less in order to obtain an appropriate rigidity as the mat.
  • the mat 10 is not limited to the flat plate shape shown in FIG.
  • it can be made into the shape represented by the floor mat etc. of the interior material for vehicles which has an unevenness
  • the block may be subjected to skid processing, tapping processing, or the like to form a flat plate shape.
  • Melamine resin foam is a resin composition containing a melamine formaldehyde condensate and a foaming agent, added with components such as emulsifiers and curing agents, and heated and foamed above the boiling point of the foaming agent to cure the resulting foam. Can be obtained.
  • a method for producing a melamine resin foam is known, and is described in JP-A Nos. 55-142628 and 56-152848.
  • the density of the melamine resin foam may be a 5 kg / m 3 or more 18 kg / m 3 or less, 7 kg / m 3 or more 13 kg / m 3 or less is more preferable.
  • the density value is less than 5 kg / m 3 , the production of the melamine resin foam itself becomes difficult, and the hardness is lowered.
  • it exceeds 18 kg / m 3 the production is possible, but the light weight of the melamine resin foam cannot be utilized.
  • the pulverized product of the melamine resin foam is obtained by pulverizing a newly produced melamine resin foam or waste of the melamine resin foam using a known pulverizer.
  • the waste of the melamine resin foam may be a waste of a product made of a melamine resin foam, or a waste made up of a remaining part of a product of a predetermined shape cut from a melamine resin foam. it can.
  • the particle diameter of the resin foam pulverized product 11 including the melamine resin foam pulverized product is preferably 3 mm or more and 30 mm or less (the maximum dimension is 3 mm or more and 30 mm or less).
  • the pulverized resin foam becomes powdery, making it difficult to attach the moisture-curable isocyanate compound.
  • it exceeds 30 mm the pulverized product of the resin foam cannot withstand the stress concentration when the mat is used, and the region including the pulverized product 11 of the melamine resin foam of the mat 10 is bent to become a dent and the mat is damaged. There is a fear.
  • the particle diameter of the resin foam pulverized product is 3 mm or more and 30 mm or less
  • the size of the maximum part of the resin foam pulverized product particle is 3 mm or more and 30 mm or less. That is, it means 3 mm or more and 30 mm or less in the part where the diameter (dimension) is maximum in one pulverized product of the resin foam. Therefore, for example, as shown in FIG. 5, when the resin foam pulverized product 21 is elliptical, the maximum particle diameter of the resin foam pulverized product 21 is 3 mm or more and 30 mm or less. Rather, it means that the value of the major axis b, which is the portion with the largest dimension, is 3 mm or more and 30 mm or less.
  • the ratio of the pulverized melamine resin foam to the pulverized resin foam is preferably 10% by weight or more.
  • the pulverized product of the resin foam may be composed of the pulverized product of the melamine resin foam alone. That is, the ratio of the pulverized melamine resin foam to the pulverized resin foam is preferably 10% by weight or more and 100% by weight or less. When the proportion of the melamine resin foam is less than 10% by weight, the lightness and flame retardancy of the mat become inferior.
  • the resin foam pulverized product may include other resin foam pulverized products such as a polyolefin resin foam or a polyurethane resin foam.
  • a pulverized product of polyurethane resin foam is preferable for improving the durability of the mat.
  • Other resin foams for example, a pulverized product of a polyurethane resin foam, preferably have a particle diameter of 3 mm or more and 30 mm or less (the maximum portion has a size of 3 mm or more and 30 mm or less), similarly to the pulverized product of melamine resin foam.
  • a polyurethane resin foam is obtained by adding a catalyst, a foam stabilizer, a foaming agent, etc. to a polyol and isocyanate, mixing and stirring, and heat-curing.
  • the polyurethane resin foam may be produced by any method such as a one-shot method or a prepolymer method.
  • any of a polyester-type polyurethane resin foam and a polyether-type polyurethane resin foam may be sufficient.
  • the polyurethane resin foam may be a rigid polyurethane resin foam, a semi-rigid polyurethane resin foam, or a polyurethane resin foam formed by molding.
  • a soft slab foam is preferable because it is easily pulverized, can be compression-molded at a high compression rate, and has a track record of being used as an interior material for vehicles in which a pulverized product is compression-cured.
  • the density (based on JIS K 7222) of the polyurethane resin foam is preferably 13 kg / m 3 or more and 40 kg / m 3 or less. If it is less than 13 kg / m 3, the hardness decreases. On the other hand, when it exceeds 40 kg / m 3 , it becomes heavy.
  • the pulverized product of the polyurethane resin foam is obtained by pulverizing a newly produced polyurethane resin foam or waste of the polyurethane resin foam using a known pulverizer.
  • the waste of polyurethane resin foam may be waste of products made of polyurethane resin foam or waste composed of the remaining part of a product of a predetermined shape cut from polyurethane resin foam. it can.
  • Moisture curable isocyanate compounds are those that cure with moisture, and include methylene diphenyl diisocyanate (MDI) or its prepolymer (MDI prepolymer), or toluene diisocyanate (TDI) or its prepolymer (TDI prepolymer). it can.
  • MDI methylene diphenyl diisocyanate
  • TDI toluene diisocyanate
  • TDI prepolymer TDI prepolymer
  • the amount of the moisture-curable isocyanate compound with respect to the resin foam pulverized product is preferably 5 parts by weight or more and less than 40 parts by weight, more preferably 10 parts by weight or more and less than 20 parts by weight with respect to 100 parts by weight of the resin foam pulverized product. It is. When the amount is less than 5 parts by weight, the adhesive strength between the pulverized resin foams may be low, and the pulverized resin foams may be separated when the mat 10 is used. On the other hand, if it is 40 parts by weight or more, the moisture curable isocyanate compound is too much for the resin foam, and there is a moisture curable isocyanate compound that does not contribute to the adhesion between the pulverized resin foams. Therefore, it is difficult to reduce the weight of the mat, and the cost increases. In addition, the sound absorbing property, particularly the sound absorbing property in the middle and high frequency region (2000 to 4000 Hz) is inferior.
  • the moisture-curing isocyanate compound is adhered to the pulverized product of the resin foam, and the moisture-curable isocyanate compound is cured with moisture, whereby the pulverized product of the resin foam is adhered to each other, and the mat 10 is obtained.
  • the manufacturing method of the mat 10 is performed by a pulverization process, an adhesion process, and an adhesion process.
  • the melamine resin foam is pulverized with a known pulverizer until the particle diameter reaches a predetermined particle size, preferably 3 mm to 30 mm (maximum dimension is 3 mm to 30 mm).
  • a predetermined particle size preferably 3 mm to 30 mm
  • other resin foams such as polyurethane resin foams also have a predetermined particle diameter, preferably 3 mm or more and 30 mm or less (maximum portion Pulverize until the dimension becomes 3 mm or more and 30 mm or less.
  • the pulverized product can be obtained in a predetermined particle size by setting the value of the pulverized particle size in advance with a pulverizer, or by using a filter after pulverization.
  • a moisture-curable isocyanate compound is adhered to the pulverized resin foam.
  • the operation of attaching the moisture curable isocyanate compound to the pulverized resin foam is, for example, (1) a method of spray-coating a moisture curable isocyanate compound on the pulverized resin foam, or (2) a moisture curable isocyanate compound. Spraying the pulverized product of the resin foam and then mixing the moisture curable isocyanate compound and the pulverized resin foam with a blender, or (3) pulverizing the moisture curable isocyanate compound and the resin foam. A method of mixing in a blender can be employed.
  • the pulverized resin foam is composed of a melamine resin foam pulverized product and another resin foam pulverized product (for example, a polyurethane resin foam pulverized product), the melamine resin foam crushed product is And 10% by weight or more of 100% by weight of the pulverized resin foam.
  • the addition amount of the moisture curable isocyanate compound to the pulverized resin foam is preferably 5 parts by weight or more and less than 40 parts by weight, more preferably 10 parts by weight or more and 20 parts by weight with respect to 100 parts by weight of the resin foam pulverized product. Less than parts by weight.
  • a resin foam pulverized product 15 in which the moisture-curable isocyanate compound 13 is adhered to the resin foam pulverized product 11 is obtained by the attaching step.
  • the moisture-curing isocyanate compound adhering to the pulverized product of the resin foam is cured with moisture to bond the pulverized product of the resin foam to each other to form a mat.
  • the resin foam pulverized product 15 to which the moisture-curable isocyanate compound obtained in the adhering step is adhered is weighed, and a necessary amount is put into the mold 70 as shown in FIG.
  • the mold 70 can be moved up and down with respect to a frame 74 having a water vapor inlet 73 formed on the lower surface, a bottom plate 71 arranged and fixed in the frame 74, and the bottom plate 71. And a pressing die 75 (shown in FIG. 4). Water vapor passages 72 and 77 are formed through the bottom plate 71 and the pressing die 75 in the vertical direction, respectively.
  • the frame body 74 is provided with a stopper (not shown) that regulates the lowest position of the pressing die 75.
  • a stopper (not shown) that regulates the lowest position of the pressing die 75.
  • the pressing die 75 is lowered by a predetermined amount, the pressing die 75 collides with the stopper, and the stopper restricts the pressing die 75 from further lowering.
  • the vertical position of this stopper By adjusting the vertical position of this stopper, the lowest position of the pressing die 75, that is, the distance between the bottom plate 71 and the pressing die 75 (corresponding to the thickness of the molded product) can be adjusted.
  • the pressing die 75 is lowered by the pressing device 76, and the pulverized resin foam 15 to which the moisture-curable isocyanate compound is adhered is compressed between the bottom plate 71 and the pressing die 75.
  • steam Vp is supplied into the mold 70 from an external steam supply device (not shown) via a steam inlet 73 on the lower surface of the mold 70.
  • the steam Vp supplied in this way enters between the bottom plate 71 and the pressing die 75 through the steam passage 72 of the bottom plate 71.
  • the moisture curable isocyanate compound is cured by contact with the moisture curable isocyanate compound.
  • the pulverized resin foams 11 are bonded together.
  • the water vapor Vp is discharged to the outside through the water vapor passage 77 of the pressing die 75.
  • a plate-shaped molded product is formed between the bottom plate 71 and the stamping die 75 by bonding the pulverized resin foams together.
  • the mold 70 is opened to take out the molded product, and the mat 10 made of the molded product is obtained.
  • the distance between the bottom plate 71 and the pressing die 75 of the mold 70 is adjusted so that the volume between the bottom plate 71 and the pressing mold 75 is a predetermined value, and the input weight of the pulverized resin foam to the mold 70 is adjusted.
  • the density of the obtained mat can be set to a target value.
  • the taken out molded product may be cut into a predetermined thickness or outer dimension to form the mat 10.
  • the shape of the mat to be manufactured is not limited to a flat plate shape, and may be bent at a predetermined position or may have unevenness.
  • a melamine resin foam 1 having a density of 9.5 kg / m 3 (trade name “Basotect”, manufactured by BASF), a melamine resin foam 2 having a density of 7.0 kg / m 3 (Japanese Patent Laid-Open No.
  • polyurethane resin foam 1 with a density of 25 kg / m 3 (trade name “ECA”, manufactured by INOAC Corporation)
  • polyurethane resin foam 2 with a density of 35 kg / m 3 (trade name) “ER-26” (manufactured by INOAC CORPORATION)
  • ECA Evolved by INOAC CORPORATION
  • a pulverizer having a cutting blade having a predetermined pulverization size is pulverized products having a maximum particle diameter of 3 mm, 5 mm, 10 mm, 15 mm, and 30 mm, respectively.
  • the particle size of the pulverized product was previously set in a pulverizer.
  • the density of each resin foam in Table 1 and Table 2 represents the density of the material before pulverization.
  • the above pulverized product is put into a container having a stirring device. Furthermore, the liquid of the moisture curable isocyanate compound was sprayed into the container in the form of a mist using a spray device, mixed and stirred, and the moisture curable isocyanate compound was adhered to the pulverized product.
  • the ratio of the liquid of a ground material and a moisture hardening type isocyanate compound was made into the ratio shown in Table 1 and Table 2.
  • the used moisture curable isocyanate compounds are two types of TDI type and MDI type prepared as follows.
  • TDI moisture-curing isocyanate compound is toluene diisocyanate (TDI); manufactured by Sumika Bayer Urethane Co., Ltd., trade name “Sumijoule T-80”, 20 parts by weight of isocyanate group content 48%, polyether polyol; Sanyo Made by Kasei Kogyo Co., Ltd., trade name “SANNICS GP-3000”, hydroxyl group value 56, 100 parts by weight of functional group 3, methylene chloride as diluent; Tokuyama Co., Ltd., molecular weight 85, boiling point 40 ° C. 40 weight Parts were used.
  • TDI toluene diisocyanate
  • TDI is put into a reaction kettle capable of adjusting the temperature, and while maintaining the liquid temperature at 30 ⁇ 5 ° C., a polyol and a diluent are added little by little over 30 minutes while stirring to obtain a prepolymer, A TDI moisture-curing isocyanate compound was prepared.
  • MDI-based moisture-curable isocyanate compound is polymer-methylene diisocyanate (p-MDI) manufactured by BASF, trade name “Lupranate M-12S”, isocyanate group content 30.7%, viscosity at 25 ° C. with a viscosity of 111 mPa ⁇ s 100 weight Parts, polyether polyol; manufactured by Sanyo Chemical Industries, Ltd., trade name "SANNICS PP2000”, hydroxyl value 56, functional group number 2 30 parts by weight, diisononyl adipate as diluent; 20 parts by weight of “DINA”, molecular weight 398, boiling point 227 ° C. (however, the pressure is 0.27 kPa) were used.
  • p-MDI polymer-methylene diisocyanate
  • BASF trade name “Lupranate M-12S”
  • isocyanate group content 30.7%, viscosity at 25 ° C. with a viscosity of 111
  • MDI was put into a reaction kettle capable of adjusting the temperature, and while maintaining the liquid temperature at 30 ⁇ 5 ° C., a polyol and a diluent were added little by little over 30 minutes while stirring to obtain a prepolymer, An MDI moisture-curing isocyanate compound was prepared.
  • the pulverized material to which the moisture-curable isocyanate compound was added and adhered in the ratios of Table 1 and Table 2 was charged into the mold of FIG. After the introduction, the mold pressing die was lowered, and in this state, water vapor was supplied into the mold. Water vapor supply and compression by pressing were continued for 5 minutes to cure the moisture curable isocyanate compound, thereby bonding the pulverized products to form a molded body.
  • the molded body was taken out from the mold and naturally dried at room temperature to obtain mats of examples and comparative examples.
  • the opposing surfaces of the bottom plate and the pressing plate in the mold are each made of a rectangular plane of 450 mm ⁇ 450 mm.
  • Input density ⁇ (density of melamine resin foam) ⁇ (input weight of melamine resin foam) + (density of urethane resin foam) ⁇ (input weight of urethane resin foam) ⁇ ⁇ ⁇ (of melamine resin foam Input weight) + (input weight of urethane resin foam) ⁇
  • the input density is a density calculated when the melamine resin foam and the polyurethane foam are mixed, and the density of the final product can be estimated by compressing the calculated density at a predetermined magnification. .
  • the material compression rate is obtained by dividing by the input density.
  • Examples 1 and 2 are examples in which the pulverized product of the resin foam is composed only of the pulverized product of the melamine resin foam 1, and the material compression ratios thereof are different from each other.
  • Examples 3 and 4 are examples in which the set target density is set to 30 kg / m 3 and the pulverized product of the melamine resin foam 1 and the pulverized product of the polyurethane resin foam 1 are used, and the ratios thereof are different from each other. This is an example.
  • Comparative Example 1 is an example in which the pulverized product of the resin foam is composed only of the pulverized product of the polyurethane resin foam 1.
  • Examples 5 and 6 are examples in which the set target density is set to 50 kg / m 3 and the ratio of the pulverized product of the melamine resin foam 1 and the pulverized product of the polyurethane resin foam 1 is made different from each other.
  • Example 7 is an example in which a pulverized product of melamine resin foam 2 was used in place of the pulverized product of melamine resin foam 1 in Example 6.
  • the material of the mixed material is the same as in Example 6, but the particle diameter of the melamine resin foam 1 is set to a maximum of 30 mm, and the particle diameter of the polyurethane resin foam 1 is set to a maximum of 10 mm. It is.
  • Example 9 the same melamine resin foam as in Example 8 was used, but the polyurethane resin foam 1 was changed to the polyurethane resin foam 2 and the maximum particle diameter was 15 mm.
  • Example 10 is an example in which the pulverized product of the melamine resin foam 1 is 10 parts by weight and the pulverized product of the polyurethane resin foam 1 is 90 parts by weight.
  • Comparative Example 2 is an example in which the set target density is set to be substantially equal to that in Example 10 and the pulverized product is composed only of the pulverized product of the polyurethane resin foam 1.
  • Comparative Example 3 is an example in which a pulverized product of polyurethane resin foam 2 was used instead of the pulverized product of polyurethane resin foam 1 in Comparative Example 2.
  • Example 11 the material composition of the pulverized product is the same as in Example 6, but the maximum value of the particle diameter of the melamine resin foam 1 is set to 10 mm, and the moisture curable isocyanate compound is changed from TDI to MDI. It is an example changed to.
  • Examples 12 and 14 are examples in which the material composition of the pulverized material is the same as in Example 6, but the set target density is set to 80 kg / m 3 and 100 kg / m 3 , respectively.
  • Example 13 is an example in which the material configuration of the pulverized material is the same as Example 11, but the set target density is set to 80 kg / m 3 .
  • Comparative Example 4 is an example in which only the polyurethane resin foam 1 was used as the pulverized product in Example 14.
  • Example 15 is an example in which the pulverized product of polyurethane resin foam 2 was used in place of the pulverized product of polyurethane resin foam 1 in Example 10 and the material compression ratio was set to 308%.
  • Comparative Example 5 is an example in which only the pulverized product of the polyurethane resin foam 2 was used as the pulverized product of the resin foam.
  • Comparative Example 6 shows the general physical properties of the sheet of melamine resin foam 1 (thickness 50 mm).
  • Example 16 the material composition of the pulverized product is the same as in Example 8, but the blending amount of the moisture-curable isocyanate compound is changed. 40 parts by weight of a TDI moisture-curing isocyanate compound was added to 100 parts by weight of the pulverized resin foam. Since the amount of the moisture-curable isocyanate compound added is large, when spray coating is used, it takes time to attach the moisture-curable isocyanate compound to the pulverized product. For this reason, the sprayed resin foam was directly put into the blender without spray coating, and then the moisture-curable isocyanate compound was added little by little and mixed while paying attention to partial penetration. Other conditions were the same as in Example 8.
  • Example 17 the material composition of the pulverized product is the same as that of Example 11, except that 40 parts by weight of the MDI-based moisture-curable isocyanate compound is used per 100 parts by weight of the pulverized resin foam. Similarly, after a pulverized product is put into a blender, a moisture-curable isocyanate compound is directly added and mixed. Other conditions were the same as in Example 11.
  • productivity For the mats of the examples and comparative examples thus obtained, productivity, density (JIS K 7222), 25% compression hardness (25% CLD unit: kPa, JIS K6400 compliant), impact resilience (Unit:%, JIS K 6400-3 compliant), sound absorption rate (JIS A 1405-2, transfer function method), thermal conductivity at normal temperature (JIS A 1412-2: heat flow meter method), flame retardancy (FMVSS- 302).
  • productivity JIS K 7222
  • impact resilience Unit:%, JIS K 6400-3 compliant
  • sound absorption rate JIS A 1405-2, transfer function method
  • thermal conductivity at normal temperature JIS A 1412-2: heat flow meter method
  • FMVSS- 302 flame retardancy
  • Productivity is ⁇ when the mold shape has a large gap between the molded bodies and the product shape cannot be maintained without sufficient adhesion between the pulverized products, while the product shape can be maintained, but the crushed product becomes dense. ⁇ Parts with voids or parts with low adhesion of pulverized product can maintain product shape, and at the same time, pulverized product is almost evenly distributed, and significant voids and pulverized product are easily removed The one without is marked as “ ⁇ ”.
  • the sound absorption rate was evaluated by the transfer function method based on the sound absorption rate specified by JIS A 1405-2. In a mat having a thickness of 20 mm, how much sound of a sound source having frequencies of 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz was absorbed by each mat was measured.
  • the flame retardancy was Pass (passed) when the burning rate was less than 100 mm / min in a mat having a thickness of 10 mm, and NG (failed) when the burning rate was 100 mm / min or more.
  • the mats of Examples 1 to 15 had a pulverized product distributed almost uniformly, no significant voids or pulverized product falling off, and a good product shape.
  • the pulverized material was coarse and dense, and there were voids partially, and the adhesive strength of the pulverized material was partially low.
  • the mats of Comparative Examples 1 and 3 had large gaps between the pulverized products, and the pulverized products did not sufficiently adhere to each other, so that the product shape could not be formed.
  • the sound absorption coefficient and the thermal conductivity could not be evaluated. Therefore, in Tables 3 and 4, “ND (Not Detected)” is entered in the sound absorption coefficient and thermal conductivity of Comparative Example 1.
  • Examples 1-15 are set the set target density 25 ⁇ 100kg / m 3, even in the measured density of the product, 24.5 ⁇ 103.1kg / m 3 of product close to the set target density Is obtained.
  • the weight is reduced, the variation in the weight of the product is increased, but a stable molded body is obtained even in a lightweight product of 50 kg / m 3 or less.
  • Comparative Example 3 composed of only the pulverized material of the polyurethane resin foam, poured density 35 kg / but the m 3 of ground material was compressed to a set target density 50 kg / m 3, the contact less gap between the pulverized product Occurred and a product of a certain quality could not be obtained.
  • the moisture curable isocyanate compound is preferably 10 parts by mass or more and less than 40 parts by mass, and more preferably 10 parts by mass or more and 20 parts by mass or less.
  • the sound absorption rate increases as the mat density increases.
  • Examples 5 to 11 having a density of about 50 kg / m 3 are compared with Comparative Examples 2 and 3
  • Examples 5 to 11 show a higher sound absorption rate at any frequency than Comparative Examples 2 and 3.
  • the sound absorption rate was 83% or more
  • the sound absorption rate was 94% or more.
  • Examples 14 and 15 having a density of about 100 kg / m 3 and Comparative Examples 4 and 5 are compared, Examples 14 and 15 have a higher frequency than Comparative Examples 4 and 5 at any frequency. The sound absorption rate was almost high.
  • Examples 16 and 17 which contains a melamine resin foam as a ground material, it has confirmed that the mat
  • thermal conductivity when Examples 5 to 11 having a density of about 50 kg / m 3 were compared with Comparative Example 3, Examples 5 to 11 showed lower thermal conductivity than Comparative Example 3. Further, even when Examples 14 and 15 having a density of about 100 kg / m 3 and Comparative Examples 4 and 5 are compared, Examples 14 and 15 have lower thermal conductivity than Comparative Examples 4 and 5. Indicated. Thereby, according to this invention which contains a melamine resin foam as a ground material, it has confirmed that the mat
  • Comparative Example 6 made of a melamine resin foam sheet was inferior in sound absorbing properties to Examples 1 to 15. Further, in the case of a design shape such as a vehicle floor mat, chip mold molding in which the pulverized product is hardened is superior in shape imparting property. Therefore, the melamine resin foam sheet of Comparative Example 6 is inferior in moldability as compared with Examples 1-15.
  • Example 8 and Example 16 are compared with respect to the addition amount of the moisture-curable isocyanate compound, 40% of the TDI-based moisture-curable isocyanate compound is used as in Example 16 with respect to 100 parts by weight of the resin foam. If it is a part by weight, the density of the mat becomes larger than the set target density, and the weight increases. Moreover, it becomes hard too much and a resilience elasticity will be impaired. Furthermore, the sound absorption characteristics are degraded. Further, when Example 11 and Example 17 are compared with each other, even if the MDI moisture-curable isocyanate compound is 40 parts by weight as in Example 17 with respect to 100 parts by weight of the resin foam, the same as above. It is not preferable. Therefore, the moisture curable isocyanate compound is preferably set to 10 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the resin foam.
  • the mats are formed by mixing a plurality of resin foams having different densities. You may shape
  • the mats of the examples are lightweight and have an appropriate hardness, and have good sound absorption and flame retardancy.
  • Carpet underlays as building materials, parcel shelves and trunks as interior materials for vehicles. It is suitable as a mat, a floor mat, a floor bulking material, a spacer or the like.
  • waste can be used as the melamine resin foam and other resin foams during production, and the recyclability is good. Moreover, since it is not necessary to use powder, there is no possibility of deteriorating the working environment.
  • the melamine resin foam and polyurethane resin foam pulverized product are mixed, and the input density is calculated from the density before pulverization of each foam, and the target
  • the material compression rate was determined by dividing the set density by the input density.
  • the input weight was determined by multiplying the target set density by the volume in the mold. By molding the input weight at the material compression rate, a mat having a desired density with little variation can be obtained.
  • a mat superior in sound absorption characteristics, flame retardancy, and thermal conductivity was obtained as compared with the molded article of urethane resin foam.
  • the pulverized resin foam it is possible to prevent the pulverized resin foam from being too small to make it difficult to attach the moisture-curable isocyanate compound, or to prevent the working environment from becoming powdery. Further, the pulverized resin foam is too large, and the pulverized resin foam cannot withstand the stress concentration when the mat is used. As a result, the mat can be prevented from being partially depressed or damaged. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Passenger Equipment (AREA)
  • Carpets (AREA)
  • Laminated Bodies (AREA)

Abstract

 軽量で適度な硬度を有し、かつ断熱性、難燃性及び吸音性が良好であって、しかも廃材が利用可能なマットを提供する。メラミン樹脂発泡体の粉砕物を10重量%以上含む樹脂発泡体粉砕物に湿気硬化型イソシアネート化合物を付着させた樹脂発泡体の粉砕物15を、金型70に投入し、樹脂発泡体の粉砕物に付着している湿気硬化型イソシアネート化合物を湿気により硬化させることにより、樹脂発泡体の粉砕物を接着させて密度23kg/m以上110kg/m以下のマット11を形成する。

Description

マットとその製造方法
 本発明は、建築材としてのカーペットアンダーレイ、車両用内装材としてのパーセルシェルフ、トランクマット、フロアマット、フロア嵩上材、スペーサー等として使用可能なマットに関する。
 自動車用カーペット裁断屑再生材として、特許文献1に記載のものが知られている。この自動車用カーペット裁断屑再生材は、エチレン-酢酸ビニル共重合体と高圧法低密度ポリエチレンと無機充填剤マスターバッチとを配合した裁断屑再生材を使用した自動車用カーペット裏打ち材組成物を、カーペット基材に目付け量400~1200g/m2で裏打ちし、このカーペット基材をクッション材に融着し、その後、自動車の床面に合わせた型で成形加工している。
 しかし、この自動車用カーペットは、剛性、硬度に優れるが、重量が重い。
 特許文献2は、ウレタン樹脂発泡体の粉砕片とバインダーの混合層の上に、フェルトを重ね、所要形状に成形した成形サイレンサーといわれるカーペットを提案している。
 しかし、このカーペットはフェルトを使用していることから重量を軽減できない。さらに、ウレタン樹脂発泡体の粉砕片と、バインダーの混合層と、フェルトとを積層しているので、成形工数、手間がかかる。
 特許文献3は、発泡プラスチックの芯材を、リサイクル材料から製造された表皮材で覆った自動車内装材を提案している。リサイクル材料は、廃車となった自動車の内装材を分離し、裁断、粉砕したものが用いられる。しかし、発泡プラスチックの芯材は、リサイクルされていないため、廃棄物のリサイクル性が十分ではなかった。
 特許文献4は、メラミンフォームの砕片をポリウレタン発泡用の原液中に予め混合してポリウレタン発泡体を発泡硬化させることにより、メラミンフォームの粉末を均一に分散させたポリウレタンフォームを提案している。
 しかし、メラミンフォームの砕片は嵩高なため、ポリウレタン発泡用の原液にメラミンフォームの砕片を量産レベルで混合撹拌させることは手間と工数がかかる問題がある。また、メラミンフォームの破片は、細かいほどポリウレタン発泡用の原液に均一に混合させ易くなるが、細かく粉砕すると粉塵となりやすいため、作業環境を悪化させる。
 さらに、建築材のカーペットアンダートレイや車両用内装材のマットは、断熱性、難燃性及び吸音性の良好なものが好ましが、上記したマットは、軽量性、適度な硬度、廃材利用可能性、断熱性、難燃性及び吸音性の少なくとも1つが十分なものではなかった。
日本国特開2000-52836号公報 日本国特開平9-202169号公報 日本国特開2003-063319号公報 日本国特開2005-8714号公報
 本発明は前記の点に鑑みなされたものであって、建築材としてのカーペットアンダーレイ、車両用内装材としてのパーセルシェルフ、トランクマット、フロアマット、フロア嵩上材、スペーサー等として使用可能な軽量で適度な硬度を有し、かつ断熱性、難燃性及び吸音性が良好であって、しかも廃材が利用可能なマット及びその製造方法の提供を目的とする。
 本発明によれば、メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物を、湿気硬化型イソシアネート化合物で接着してなるマットが提供される。
 上記マットにおいて、前記樹脂発泡体粉砕物にポリウレタン樹脂発泡体の粉砕物を含んでいてもよい。
 上記マットにおいて、前記樹脂発泡体粉砕物における前記メラミン樹脂発泡体の粉砕物の割合が10重量%以上であってもよい。
 上記マットにおいて、前記メラミン樹脂発泡体の密度が5kg/m以上18kg/m以下、
前記ポリウレタン樹脂発泡体の密度が13kg/m以上40kg/m以下、前記マットの密度が23kg/m以上110kg/m以下であってもよい。
 上記マットにおいて、前記樹脂発泡体粉砕物の粒子径が3mm以上30mm以下であってもよい。
 本発明によれば、メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物に湿気硬化型イソシアネート化合物を付着させ、前記湿気硬化型イソシアネート化合物を硬化させることにより、前記樹脂発泡体粉砕物を接着してマットにすることを特徴とするマットの製造方法が提供される。
 上記製造方法において、前記湿気硬化型イソシアネート化合物が付着した樹脂発泡体粉砕物を圧縮した状態で、該湿気硬化型イソシアネート化合物を硬化させてもよい。
 上記製造方法において、前記樹脂発泡体粉砕物にポリウレタン樹脂発泡体の粉砕物を含んでいてもよい。
 上記製造方法において、前記樹脂発泡体粉砕物における前記メラミン樹脂発泡体の粉砕物の割合が10重量%以上であってもよい。
 上記製造方法において、前記メラミン樹脂発泡体の密度が5kg/m以上18kg/m以下、前記ポリウレタン樹脂発泡体の密度が13kg/m以上40kg/m以下、前記マットの密度が23kg/m以上110kg/m以下であってもよい。
 上記製造方法において、前記樹脂発泡体粉砕物の粒子径が3mm以上30mm以下であってもよい。
 本発明に係るマットによれば、メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物を、湿気硬化型イソシアネート化合物で接着してマットとしたため、樹脂発泡体粉砕物によりマットは軽量で断熱性及び吸音性が良好なものとなり、さらに適度な硬度を有するものとなる。また、メラミン樹脂発泡体は難燃性が良好であるため、メラミン樹脂発泡体の粉砕物を含むマットの難燃性も良好となる。さらに、メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物は、樹脂発泡体の廃棄物を粉砕したものを使用できるため、産業廃棄物を低減し、資源を節約することができる。
 また、本発明によれば、樹脂発泡体粉砕物にポリウレタン樹脂発泡体の粉砕物を含むことにより、マットの硬さを調節することができ、しかもポリウレタン樹脂発泡体の廃棄物も使用可能となる。
 また、本発明によれば、メラミン樹脂発泡体の粉砕物の割合を10重量%以上としたことにより、マットの難燃性が良好なものになる。
 また、本発明によれば、メラミン樹脂発泡体の密度及びポリウレタン樹脂発泡体の密度を特定の範囲とすることにより、マットを軽量でかつ適度な硬度のものとすることができる。
 また、本発明によれば、樹脂発泡体の粉砕物が小さすぎて湿気硬化型イソシアネート化合物の付着が困難となったり、粉末状となって作業環境が悪化したりするのを防ぐことができる。また、樹脂発泡体の粉砕物が大きすぎて、マットの使用時に樹脂発泡体の粉砕物が応力集中に耐えられなくなり、その結果、マットが部分的に窪んだり、損傷するのを防ぐことができる。なお、「樹脂発泡体粉砕物の粒子径が3mm以上30mm以下である」とは、「樹脂発泡体粉砕物の粒子の最大部分の寸法が3mm以上30mm以下」と言い換えることができ、樹脂発泡体の1粉砕物において径(寸法)が最大となる部分で3mm以上30mm以下を意味する。
 本発明に係るマットの製造方法によれば、軽量で適度な硬度を有し、かつ断熱性、難燃性及び吸音性が良好であって、しかも廃材が利用可能なマットを作業環境の悪化を抑えて容易に製造することができる。
 また、本発明によれば、湿気硬化型イソシアネート化合物が付着した樹脂発泡体粉砕物を圧縮した状態で湿気硬化型イソシアネート化合物を硬化させるため、樹脂発泡体粉砕物を確実に接着させることができる。
 また、本発明によれば、樹脂発泡体粉砕物にポリウレタン樹脂発泡体の粉砕物を含むことにより、マットの硬さを調節することができ、しかもポリウレタン樹脂発泡体の廃棄物も使用可能となる。
 また、本発明によれば、メラミン樹脂発泡体の粉砕物の割合を10重量%以上としたことにより、マットの難燃性が良好なものになる。
 また、本発明によれば、メラミン樹脂発泡体の密度及びポリウレタン樹脂発泡体の密度を特定の範囲とすることにより、マットを軽量でかつ適度な硬度のものとすることができる。
 また、本発明によれば、樹脂発泡体の粉砕物が小さすぎて湿気硬化型イソシアネート化合物の付着が困難となったり、粉末状となって作業環境が悪化したりするのを防ぐことができる。また、樹脂発泡体の粉砕物が大きすぎて、得られるマットの使用時に樹脂発泡体の粉砕物が応力集中に耐えられず、マットが部分的に窪んだり、損傷するのを防ぐことができる。
本発明の一実施形態に係るマットの斜視図である。 湿気硬化型イソシアネート化合物が付着した樹脂発泡体の粉砕物の概略断面図である。 湿気硬化型イソシアネート化合物が付着した樹脂発泡体の粉砕物を投入した金型の一例の断面図である。 圧縮・加熱工程時の金型の一例の断面図及び得られたマットの断面図である。 樹脂発泡体の粉砕物の最大寸法を説明する図である。
 以下に、本発明の一実施形態のマットについて説明する。図1に示すマット10は、建築材としてのカーペットアンダーレイ、車両用内装材としてのパーセルシェルフ、トランクマット、フロアマット、フロア嵩上材等として使用可能なものである。このマット10は、メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物11を、湿気硬化型イソシアネート化合物で接着したものからなる。
 マット10の厚みは、マット10の用途等によって適宜決定される。例えば、マット10の厚みは10~50mm程度とすることができる。また、マット10の密度(JIS K 7222準拠)は、マットとしての適度な剛性を得るためには23kg/m以上110kg/m以下が好ましい。
 マット10は、図1に示す平坦な平板状のものに限られず、あらゆる形状のものとすることができる。例えば、金型を用いて、凹凸や屈曲等を有する車両用内装材のフロアマット等に代表される形状とすることができる。あるいは、ブロック状(例えば幅1000×長さ1500×高さ400mm)の製品を作成した後に、このブロックにスキ加工、タチ加工等を施し、平板状の形状としてもよい。
 メラミン樹脂発泡体は、メラミンホルムアルデヒド縮合物及び発泡剤を含んだ樹脂組成物に、乳化剤及び硬化剤等の成分を添加し、発泡剤の沸点以上に加熱、発泡させ、得られた発泡体を硬化させることで得られる。メラミン樹脂発泡体の製造方法は公知であり、特開昭55-142628号公報や特開昭56-152848号公報に記載がある。
 メラミン樹脂発泡体の密度(JIS K 7222準拠)は、5kg/m以上18kg/m以下とすることができ、7kg/m以上13kg/m以下がより好ましい。密度の値が5kg/m未満の場合は、メラミン樹脂発泡体の製造自体が困難となり、また硬さも低くなる。一方、18kg/mを越える場合には製造は可能であるが、メラミン樹脂発泡体の軽量さを生かすことができなくなる。
 メラミン樹脂発泡体の粉砕物は、新たに製造したメラミン樹脂発泡体、あるいはメラミン樹脂発泡体の廃棄物を、公知の粉砕装置を用いて粉砕することにより得られる。なお、メラミン樹脂発泡体の廃棄物は、メラミン樹脂発泡体からなる製品の廃棄物、あるいはメラミン樹脂発泡体から所定形状の製品を裁断した残りの部分で構成される廃棄物等を利用することができる。
 メラミン樹脂発泡体の粉砕物を含む樹脂発泡体の粉砕物11の粒子径は、3mm以上30mm以下(最大部分の寸法が3mm以上30mm以下)が好ましい。3mm未満の場合には樹脂発泡体の粉砕物が粉状になって、湿気硬化型イソシアネート化合物の付着が困難になる。一方、30mmを越える場合、マットの使用時に樹脂発泡体の粉砕物が応力集中に耐えられず、マット10のメラミン樹脂発泡体の粉砕物11を含む領域が屈曲して窪みとなり、マットが損傷するおそれがある。
 なお、「樹脂発泡体粉砕物の粒子径が3mm以上30mm以下である」とは、「樹脂発泡体粉砕物の粒子の最大部分の寸法が3mm以上30mm以下」と言い換えることができる。すなわち、樹脂発泡体の1粉砕物において径(寸法)が最大となる部分で3mm以上30mm以下を意味する。従って、例えば、図5に示すように、樹脂発泡体の粉砕物21が楕円形の場合、樹脂発泡体粉砕物21の粒子径が最大で3mm以上30mm以下であるとは、短径aの値ではなく、寸法が最大となる部分である長径bの値が3mm以上30mm以下であることを言う。
 樹脂発泡体の粉砕物におけるメラミン樹脂発泡体の粉砕物の割合は、10重量%以上が好ましい。樹脂発泡体の粉砕物をメラミン樹脂発泡体の粉砕物単独で構成してもよい。つまり、樹脂発泡体の粉砕物におけるメラミン樹脂発泡体の粉砕物の割合は、10重量%以上100重量%以下が好ましい。メラミン樹脂発泡体の割合が10重量%未満の場合、マットの軽量性、難燃性が劣るようになる。
 樹脂発泡体の粉砕物には、メラミン樹脂発泡体の他に、ポリオレフィン系樹脂発泡体、あるいはポリウレタン樹脂発泡体等、他の樹脂発泡体の粉砕物を含んでも良い。特にポリウレタン樹脂発泡体の粉砕物は、マットの耐久性向上に好ましいものである。他の樹脂発泡体、例えば、ポリウレタン樹脂発泡体の粉砕物も、メラミン樹脂発泡体の粉砕物と同様に、粒子径は3mm以上30mm以下(最大部分の寸法が3mm以上30mm以下)が好ましい。
 なお、ポリウレタン樹脂発泡体は、ポリオールとイソシアネートに触媒、整泡剤、発泡剤等を添加して、混合撹拌し、加熱硬化させることで得られる。ポリウレタン樹脂発泡体は、ワンショット法、プレポリマー法等いずれの方法で製造されたものでもよい。また、ポリエステル系ポリウレタン樹脂発泡体、ポリエーテル系ポリウレタン樹脂発泡体のいずれでもよい。また、ポリウレタン樹脂発泡体は、硬質ポリウレタン樹脂発泡体、半硬質ポリウレタン樹脂発泡体、モールド成形によるポリウレタン樹脂発泡体のいずれでもよい。
 なかでも、粉砕しやすく、高い圧縮率で圧縮成形することができ、粉砕物を圧縮硬化させた車両用内装材として利用される実績があることから、軟質スラブ発泡体が好ましい。ポリウレタン樹脂発泡体の密度(JIS K 7222準拠)は13kg/m以上40kg/m以下が好ましい。13kg/m未満の場合、硬さが低くなる。一方40kg/mを越える場合には重くなる。
 ポリウレタン樹脂発泡体の粉砕物は、新たに製造したポリウレタン樹脂発泡体、あるいはポリウレタン樹脂発泡体の廃棄物を、公知の粉砕装置を用いて粉砕することにより得られる。なお、ポリウレタン樹脂発泡体の廃棄物は、ポリウレタン樹脂発泡体からなる製品の廃棄物、あるいはポリウレタン樹脂発泡体から所定形状の製品を裁断した残りの部分で構成される廃棄物等を利用することができる。
 湿気硬化型イソシアネート化合物は、湿気で硬化するものであり、メチレンジフェニルジイソシアネート(MDI)もしくはそのプレポリマー(MDIプレポリマー)、またはトルエンジイソシアネート(TDI)もしくはそのプレポリマー(TDIプレポリマー)を挙げることができる。
 樹脂発泡体の粉砕物に対する湿気硬化型イソシアネート化合物の量は、樹脂発泡体の粉砕物100重量部に対して5重量部以上40重量部未満が好ましく、より好ましくは10重量部以上20重量部未満である。5重量部未満の場合には、樹脂発泡体の粉砕物同士の接着強度が低くなり、マット10の使用時に樹脂発泡体の粉砕物が分離するおそれがある。一方、40重量部以上では、湿気硬化型イソシアネート化合物が樹脂発泡体に対して多すぎて、樹脂発泡体の粉砕物同士の接着に寄与しない湿気硬化型イソシアネート化合物が存在することになる。したがって、マットの軽量化が得られにくいと同時に、コストが嵩む。また、吸音性、特に中高周波領域(2000~4000Hz)での吸音性が劣ったものとなってしまう。
 湿気硬化型イソシアネート化合物を樹脂発泡体の粉砕物に付着させ、湿気硬化型イソシアネート化合物を湿気で硬化させることにより、樹脂発泡体の粉砕物同士が接着され、マット10が得られる。
 マット10の製造方法について詳述する。マット10の製造方法は、粉砕工程、付着工程、接着工程により行われる。
 粉砕工程では、メラミン樹脂発泡体を、公知の粉砕装置で所定の粒子径、好ましくは3mm以上30mm以下(最大部分の寸法が3mm以上30mm以下)になるまで粉砕する。なお、メラミン樹脂発泡体の他にも、他の樹脂発泡体を併用する場合には他の樹脂発泡体、例えばポリウレタン樹脂発泡体についても、所定の粒子径、好ましくは3mm以上30mm以下(最大部分の寸法が3mm以上30mm以下)になるまで粉砕する。
 メラミン樹脂発泡体とポリウレタン樹脂発泡体等の他の樹脂発泡体を使用する場合は、それぞれ別々に粉砕して互いに混ざらないようにするのが好ましい。また、粉砕物は、予め粉砕粒子径の値を粉砕装置で設定し、あるいは粉砕後にフィルターを用いて分けることによって所定の粒子径のものが得られる。
 付着工程では、樹脂発泡体の粉砕物に湿気硬化型イソシアネート化合物を付着させる。樹脂発泡体の粉砕物に湿気硬化型イソシアネート化合物を付着させる作業は、例えば、(1)樹脂発泡体の粉砕物に湿気硬化型イソシアネート化合物をスプレー塗布する方法、あるいは(2)湿気硬化型イソシアネート化合物を樹脂発泡体の粉砕物にスプレー塗布した後、ブレンダーで湿気硬化型イソシアネート化合物と樹脂発泡体の粉砕物を混合する方法、または、(3)湿気硬化型イソシアネート化合物と樹脂発泡体の粉砕物をブレンダーに投入して混合する方法を採用することができる。
 その際、樹脂発泡体の粉砕物が、メラミン樹脂発泡体の粉砕物と他の樹脂発泡体の粉砕物(例えばポリウレタン樹脂発泡体の粉砕物)とからなる場合、メラミン樹脂発泡体の粉砕物は、樹脂発泡体の粉砕物の100重量%中10重量%以上とする。また、樹脂発泡体の粉砕物に対する湿気硬化型イソシアネート化合物の添加量は、樹脂発泡体の粉砕物100重量部に対して5重量部以上40重量部未満が好ましく、より好ましくは10重量部以上20重量部以下である。付着工程によって、図2に示すように樹脂発泡体の粉砕物11に湿気硬化型イソシアネート化合物13が付着した樹脂発泡体の粉砕物15が得られる。
 接着工程では、樹脂発泡体の粉砕物に付着した湿気硬化型イソシアネート化合物を湿気で硬化させることにより、樹脂発泡体の粉砕物同士を接着させてマットを形成する。接着工程においては、付着工程で得られた湿気硬化型イソシアネート化合物が付着した樹脂発泡体の粉砕物15を計量し、図3に示すように金型70内に必要な量を投入する。
 図3および図4に示すように、金型70は、下面に水蒸気導入口73が形成された枠体74と、枠体74内に配置固定された底板71と、底板71に対して昇降可能とされた押型75(図4に示す)とからなる。底板71と押型75には、それぞれ水蒸気通路72、77が上下方向に貫通形成されている。
 枠体74には、押型75の最下降位置を規制するストッパー(図示せず)が設けられている。押型75が所定量下降すると、押型75がストッパーに衝突し、ストッパーはそれ以上押型75が下降することを規制する。このストッパーの上下位置を調節することにより、押型75の最下降位置、すなわち底板71と押型75間の距離(成形品の厚みに相当する)を調節することができる。
 次に、図4に示すように、押型75をプレス装置76により下降させて、湿気硬化型イソシアネート化合物が付着した樹脂発泡体の粉砕物15を、底板71と押型75間で圧縮する。
 圧縮時には、金型70における下面の水蒸気導入口73を介して、外部の水蒸気供給装置(図示せず)から水蒸気Vpを当該金型70内に供給する。このように供給された水蒸気Vpは、底板71の水蒸気通路72を通って底板71と押型75間に進入する。この水蒸気Vpが、底板71と押型75間の湿気硬化型イソシアネート化合物が付着した樹脂発泡体の粉砕物15間を通る際に、湿気硬化型イソシアネート化合物と接触して湿気硬化型イソシアネート化合物を硬化させ、樹脂発泡体の粉砕物11同士を接着させる。そして、水蒸気Vpは押型75の水蒸気通路77を経て外部へ放出される。樹脂発泡体の粉砕物同士の接着によって、底板71と押型75間に、板状の成形品が形成される。その後、金型70を開放して成形品を取り出し、成形品からなるマット10が得られる。
 なお、金型70の底板71と押型75間の距離を調節して底板71と押型75間の容積を所定の値とし、かつ樹脂発泡体の粉砕物の金型70への投入重量を調節することにより、得られるマットの密度を目的の値とすることができる。
 金型70の形状及び大きさによっては、取り出した成形品を所定の厚みあるいは外形寸法に裁断してマット10とする場合もある。また、製造するマットの形状は平坦な平板状に限られず、所定位置で屈曲したものや凹凸を有するものであってもよい。底板71と押型75の対向する面の形状を目的とするマットの形状とすることにより、所望の形状のマットを成形することができる。
 次に、上述した本発明の実施例1~17に係るマットと、比較例1~8に係るマットを作成した。その特性を評価した結果を表1,2に示す。
 まず、密度9.5kg/mのメラミン樹脂発泡体1(商品名「バソテクト」、BASF社製)、密度7.0kg/mのメラミン樹脂発泡体2(特開昭56-152848号等に開示の技術を用いた自社試作品)、密度25kg/mのポリウレタン樹脂発泡体1(商品名「ECA」、株式会社イノアックコーポレーション製)、密度35kg/mのポリウレタン樹脂発泡体2(商品名「ER-26」、株式会社イノアックコーポレーション製)を、それぞれ所定の粉砕サイズの幅を有する裁断刃をもつ粉砕装置により粉砕し、それぞれ最大粒子径3mm、5mm、10mm、15mm、30mmの粉砕物を形成した。なお、粉砕物の粒子径は予め粉砕装置において設定した。なお、表1および表2中のそれぞれの樹脂発泡体の密度は、粉砕前の材料の密度を表す。
 次に上記の粉砕物を、攪拌装置を有する容器に投入する。更に、この容器中に、湿気硬化型イソシアネート化合物の液体を、スプレー装置を用いて霧状に噴霧し、混合・攪拌し、粉砕物に湿気硬化型イソシアネート化合物を付着させた。なお、粉砕物と湿気硬化型イソシアネート化合物の液体の割合は、表1および表2に示す割合とした。なお、用いた湿気硬化型イソシアネート化合物は、以下のように調製したTDI系、MDI系の2種類である。
 TDI系の湿気硬化型イソシアネート化合物は、トルエンジイソシアネート(TDI);住化バイエルウレタン株式会社製、商品名「スミジュールT-80」、イソシアネート基含量48%の20重量部と、ポリエーテルポリオール;三洋化成工業株式会社製、商品名「サンニックスGP-3000」、水酸基価56、官能基数3の100重量部と、希釈剤としてメチレンクロライド;株式会社トクヤマ社製、分子量85、沸点40℃の40重量部を用いた。
 まず、調温することができる反応釜にTDIを投入し、液温を30±5℃に保持しつつ、攪拌しながらポリオールと希釈剤とを少量ずつ30分間かけて添加してプレポリマーとし、TDI系の湿気硬化型イソシアネート化合物を調製した。
 MDI系の湿気硬化型イソシアネート化合物は、ポリメリック-メチレンジイソシアネート(p-MDI)BASF社製、商品名「ルプラネートM-12S」、イソシアネート基含量30.7%、25℃における粘度111mPa・sの100重量部と、ポリエーテルポリオール;三洋化成工業株式会社製、商品名「サンニックスPP2000」、水酸基価56、官能基数 2の30重量部と、希釈剤としてジイソノニルアジペート;大八化学株式会社製、商品名「DINA」、分子量398、沸点 227℃(但し、圧力は0.27kPaである。)の20重量部を用いた。
 まず、調温することができる反応釜にMDIを投入し、液温を30±5℃に保持しつつ、攪拌しながらポリオールと希釈剤とを少量ずつ30分間かけて添加してプレポリマーとし、MDI系の湿気硬化型イソシアネート化合物を調製した。
 湿気硬化型イソシアネート化合物を表1および表2の割合で添加され付着された粉砕物を、450×450×50mmからなる図3の金型に、後述する金型への投入重量で投入した。投入した後、金型の押型を下降させ、その状態で、金型内に水蒸気を供給した。水蒸気の供給と押型による圧縮を5分間続けて湿気硬化型イソシアネート化合物を硬化させ、それにより粉砕物同士を接着して成形体を形成した。
 その後、成形体を金型から取り出し、常温下自然乾燥させて実施例および比較例のマットを得た。なお、金型における底板と押板の対向面は、それぞれ450mm×450mmの四角形の平面からなる。
 湿気硬化型イソシアネート化合物が付着した粉砕物の金型への投入重量は、下式で示すように設計時に想定する製品密度(以下、設定目標密度という)に金型内の容積を乗じて求められる。
  金型への投入重量=(設定目標密度)×(金型内の容積)
 さらに、表1および表2に記載の投入密度とは、メラミン樹脂発泡体の密度と、ウレタン樹脂発泡体の密度等を次式に基づいて計算される値とした。
 投入密度={(メラミン樹脂発泡体の密度)×(メラミン樹脂発泡体の投入重量)+ (ウレタン樹脂発泡体の密度)×(ウレタン樹脂発泡体の投入重量)}÷{(メラミン樹脂発泡体の投入重量)+(ウレタン樹脂発泡体の投入重量)}
 さらに、素材圧縮率とは、設定目標密度を投入密度で除した百分率をいう。
  素材圧縮率=(設定目標密度)÷(投入密度)×100
 すなわち、投入密度は、メラミン樹脂発泡体とポリウレタン発泡体を混合させた時の計算した密度であり、この計算した密度に対して所定倍率で圧縮することで最終製品の密度を推定することができる。もしくは、設定目標密度を決定した後、投入密度で除することで素材圧縮率が得られる。
 実施例1及び2は、樹脂発泡体の粉砕物がメラミン樹脂発泡体1の粉砕物のみで構成されたものであって、互いにその素材圧縮率を異ならせた例である。
 実施例3及び4は、設定目標密度を30kg/mに設定し、メラミン樹脂発泡体1の粉砕物とポリウレタン樹脂発泡体1の粉砕物を用いた例であって、その割合を互いに異ならせた例である。
 比較例1は樹脂発泡体の粉砕物をポリウレタン樹脂発泡体1の粉砕物のみで構成した例である。
 実施例5及び6は、設定目標密度を50kg/mに設定し、メラミン樹脂発泡体1の粉砕物とポリウレタン樹脂発泡体1の粉砕物の割合を互いに異ならせた例である。
 実施例7は、実施例6におけるメラミン樹脂発泡体1の粉砕物に代えてメラミン樹脂発泡体2の粉砕物を用いた例である。
 実施例8は、実施例6と混合材料の素材は同じであるが、メラミン樹脂発泡体1の粒子径を、最大30mmに設定し、ポリウレタン樹脂発泡体1の粒子径を最大10mmに設定したものである。
 実施例9は、実施例8と同じメラミン樹脂発泡体を用いたが、ポリウレタン樹脂発泡体1をポリウレタン樹脂発泡体2に変更し、粒子径の最大径を15mmにしたものである。
 実施例10は、メラミン樹脂発泡体1の粉砕物を10重量部、ポリウレタン樹脂発泡体1の粉砕物を90重量部とした例である。
 比較例2は実施例10と設定目標密度を略等しく設定し、粉砕物をポリウレタン樹脂発泡体1の粉砕物のみで構成した例である。
 比較例3は比較例2におけるポリウレタン樹脂発泡体1の粉砕物に代えてポリウレタン樹脂発泡体2の粉砕物を用いた例である。
 実施例11は、実施例6と粉砕物の素材構成は同じであるが、メラミン樹脂発泡体1の粒子径の最大値を10mmに設定し、さらに、湿気硬化型イソシアネート化合物をTDI系からMDI系に変更した例である。
 実施例12、14は、実施例6と粉砕物の素材構成は同じであるが、設定目標密度を80kg/mと100kg/mに各々設定した例である。
 実施施例13は、実施例11と粉砕物の素材構成は同じであるが、設定目標密度を80kg/mに設定した例である。
 比較例4は、実施例14において粉砕物をポリウレタン樹脂発泡体1のみとした例である。
 実施例15は、実施例10におけるポリウレタン樹脂発泡体1の粉砕物に代えてポリウレタン樹脂発泡体2の粉砕物を使用し、素材圧縮率を308%に設定した例である。
 比較例5は樹脂発泡体の粉砕物としてポリウレタン樹脂発泡体2の粉砕物のみを使用した例である。
 比較例6は、メラミン樹脂発泡体1のシート(厚み50mm)の一般物性を示す。
 実施例16は、実施例8と粉砕物の素材構成は同じであるが、湿気硬化型イソシアネート化合物の配合量を変更したものである。樹脂発泡体の粉砕物100重量部に対してTDI系の湿気硬化型イソシアネート化合物を40重量部とした。湿気硬化型イソシアネート化合物の添加量が多いため、スプレー塗布を用いると、粉砕物に湿気硬化型イソシアネート化合物を付着させるために時間を要した。このため、スプレー塗布をせずに、直接ブレンダーに、樹脂発泡体の粉砕物を投入後、少量ずつ湿気硬化型イソシアネート化合物を投入して、部分的なしみ込みに注意しながら混合した。その他の条件は、実施例8と同じにした。
 実施例17は、実施例11と粉砕物の素材構成は同じであるが、樹脂発泡体の粉砕物100重量部に対してMDI系の湿気硬化型イソシアネート化合物を40重量部とし、実施例16と同じようにブレンダーに粉砕物を入れた後、直接、湿気硬化型イソシアネート化合物を投入して混合したものである。他の条件は実施例11と同じにした。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた各実施例及び各比較例のマットに対して、生産性、密度(JIS K 7222)、25%圧縮硬さ(25%CLD 単位:kPa、JIS K6400準拠)、反発弾性(単位:%、JIS K 6400-3 準拠)、吸音率(JIS A 1405-2、伝達関数法)、常温における熱伝導率(JIS A 1412-2:熱流計法)、難燃性(FMVSS-302)について測定した。測定結果を表3及び表4に示す。
 生産性は、脱金型時に、成型体の隙間が大きく、粉砕物同士が十分接着せずに製品形状が保持できない場合を×、製品形状は保持できているものの、粉砕物の粗密が発生し、部分的に空隙があるものや、粉砕物の接着が部分的に低いものを△、製品形状が保持できると同時に、粉砕物がほぼ均一に分布し、顕著な空隙や粉砕物の容易な脱落がないものを○とした。
 吸音率は、JIS A 1405-2で規定されている、音響管による吸音率を伝達関数法により評価した。厚みが20mmのマットにおいて、それぞれ周波数が500Hz,1000Hz,2000Hz,4000Hzの音源の音がそれぞれのマットでどれほど吸音されるかを測定した。
 難燃性は、厚みが10mmのマットにおいて、燃焼速度が100mm/min未満の場合はPass(合格)とし、燃焼速度が100mm/min以上の場合はNG(不合格)とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 生産性について、実施例1~15のマットは、粉砕物がほぼ均一に分布し、顕著な空隙や粉砕物の脱落がなく、製品形状が良好に形成できた。しかし、比較例2のマットでは、製品形状は保持できているものの、粉砕物の粗密が発生し、部分的に空隙があったり、粉砕物の接着強度が部分的に低かった。さらに、比較例1,3のマットは、粉砕物間の隙間が大きく、粉砕物同士が十分接着せずに製品形状が形成できなかった。なお、比較例1は、マット形状が形成できなかったので、吸音率と熱伝導率を評価できなかった。そこで表3,4において比較例1の吸音率および熱伝導率には「N.D.(Not・Detected(未検出))を記入している。
 密度について、実施例1~15は、設定目標密度を25~100kg/mに設定しており、製品の実測密度においても、設定目標密度に近い24.5~103.1kg/mの製品が得られている。軽量になると製品の重量ばらつきが大きくなるが、50kg/m以下の軽量品においても安定した成形体が得られた。これに対し、ポリウレタン樹脂発泡体の粉砕物のみからなる比較例3では、投入密度35kg/mの粉砕物を設定目標密度50kg/mに圧縮したが、粉砕物間の接触が少なく隙間が発生して一定品質の製品が得られなかった。

 また、実施例16、実施例17では、湿気硬化型イソシアネート化合物の量が多すぎ、設定目標密度より算出してなる素材圧縮率で圧縮して成形しても、設定目標の密度よりも高い密度となり、目標とのズレが生じた。したがって、湿気硬化型イソシアネート化合物は、10質量部以上40質量部未満とすることが好ましく、10質量部以上20質量部以下とすることがより好ましい。
 硬さに関して、50kg/m程度の密度を有する実施例5~11と比較例2,3とを比較すると、実施例5~11は比較例2,3よりも硬かった。また、100kg/m程度の密度を有する実施例14,15と比較例4,5とを比較しても、実施例14,15の方が比較例4,5よりも硬いマットが得られた。これにより、本発明によれば、粉砕物としてメラミン樹脂発泡体を含む高硬度のマットが得られることが確認できた。
 吸音性に関して、マットの密度が高くなると吸音率も高くなる。50kg/m程度の密度を有する実施例5~11と比較例2,3とを比較すると、実施例5~11は比較例2,3よりも、いずれの周波数においても高い吸音率を示し、特に2000Hzでは吸音率が83%以上であり、4000Hzでは吸音率が94%以上で、優れていた。また、100kg/m程度の密度を有する実施例14,15と比較例4,5とを比較しても、実施例14,15の方が比較例4,5よりも、いずれの周波数においてもほぼ高い吸音率を示した。これにより、粉砕物としてメラミン樹脂発泡体を含む本発明によれば、吸音性の高いマットが得られることが確認できた。

 また、実施例16,17では、それぞれ実施例8,11と比べ、湿気硬化型イソシアネート化合物の量が多すぎて多孔質性が損なわれ、特に中高周波領域(2000~4000Hz)において、吸音率が78%を下回り、劣ったものとなっている。特に、実施例16,17では実施例8,11に比べて4000Hzの高周波領域の吸音性に劣っている。
 難燃性に関して、実施例1~17の何れもFMVSS-302にPass(合格)し、良好な難燃性を有している。それに対してポリウレタン樹脂発泡体の粉砕物のみからなる比較例2、3及び、比較例4,5はいずれもNG(不合格)であった。したがって、粉砕物としてメラミン樹脂発泡体を含む本発明によれば、燃えにくいマットが得られることが確認できた。
 熱伝導率に関して、50kg/m程度の密度を有する実施例5~11と比較例3とを比較すると、実施例5~11は比較例3よりも、低い熱伝導率を示した。また、100kg/m程度の密度を有する実施例14,15と比較例4,5とを比較しても、実施例14,15の方が比較例4,5よりも、低い熱伝導率を示した。これにより、粉砕物としてメラミン樹脂発泡体を含む本発明によれば、断熱性に優れたマットが得られることが確認できた。
 なお、メラミン樹脂発泡体シートからなる比較例6は、実施例1~15よりも吸音性に劣っていた。また車両用フロアマット等の意匠形状の場合、粉砕物を固めるチップモールド成形のほうが、形状付与性に優れる。したがって、比較例6のメラミン樹脂発泡体シートは、実施例1~15に比べて成形性に劣る。
 なお、湿気硬化型イソシアネート化合物の添加量に関して、実施例8と実施例16とを比較すると、樹脂発泡体100重量部に対して、実施例16のようにTDI系の湿気硬化型イソシアネート化合物が40重量部であると、マットの密度が設定目標密度より大きくなり、重量が嵩んでしまう。また、硬くなりすぎて反発弾性が損なわれてしまう。さらには、吸音特性が低下してしまう。また、実施例11と実施例17とを比較すると、樹脂発泡体100重量部に対して、実施例17のようにMDI系の湿気硬化型イソシアネート化合物が40重量部であっても上記と同様に好ましくない。そこで、湿気硬化型イソシアネート化合物は、樹脂発泡体100重量部に対して、10重量部以上20重量部以下に設定することが好ましい。
 なお、以上に説明した実施例では、メラミン樹脂発泡体、ポリウレタン樹脂発泡体を各1種類ずつ使用した例を示したが、それぞれの樹脂発泡体で各々異なる密度のものを複数混合してマットを成形してもよい。
 このように、実施例のマットは、軽量で適度な硬さを有し、しかも吸音性、難燃性が良好であり、建築材としてのカーペットアンダーレイ、車両用内装材としてのパーセルシェルフ、トランクマット、フロアマット、フロア嵩上材、スペーサー等として好適なものである。さらに、製造に際してはメラミン樹脂発泡体及び他の樹脂発泡体として廃棄物を使用することができ、リサイクル性が良好である。また、粉末にする必要がないため、作業環境を悪化させるおそれがない。
 また、所望密度のマットを高い工程能力で生産するため、メラミン樹脂発泡体とポリウレタン樹脂発泡体の粉砕物を混合するのに、各々の発泡体の粉砕前の密度から投入密度を計算し、目標設定密度を上記投入密度で除して素材圧縮率を求めた。一方、投入重量は、目標設定密度に金型内容積を乗じて求めた。上記投入重量を上記素材圧縮率で成形することで、ばらつきの少ない所望密度のマットを得ることができる。
 以上のように、メラミン樹脂発泡体と他の樹脂発泡体が混在することで、ウレタン樹脂発泡体の成形体に比べて吸音特性、難燃性、熱伝導性に優れたマットが得られた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2011年4月27日出願の日本特許出願(特願2011-099093)に基づくものであり、その内容はここに参照として取り込まれる。
 また、本発明によれば、樹脂発泡体の粉砕物が小さすぎて湿気硬化型イソシアネート化合物の付着が困難となったり、粉末状となって作業環境が悪化したりするのを防ぐことができる。また、樹脂発泡体の粉砕物が大きすぎて、マットの使用時に樹脂発泡体の粉砕物が応力集中に耐えられなくなり、その結果、マットが部分的に窪んだり、損傷するのを防ぐことができる。
 10 マット
 11 樹脂発泡体の粉砕物
 13 湿気硬化型イソシアネート化合物
 15 湿気硬化型イソシアネート化合物が付着した樹脂発泡体の粉砕物
 70 金型
 71 底板
 75 押型
 

Claims (11)

  1.  メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物を、湿気硬化型イソシアネート化合物で接着してなるマット。
  2.  前記樹脂発泡体粉砕物にポリウレタン樹脂発泡体の粉砕物を含むことを特徴とする請求項1に記載のマット。
  3.  前記樹脂発泡体粉砕物における前記メラミン樹脂発泡体の粉砕物の割合が10重量%以上であることを特徴とする請求項1または2に記載のマット。
  4.  前記メラミン樹脂発泡体の密度が5kg/m以上18kg/m以下、前記ポリウレタン樹脂発泡体の密度が13kg/m以上40kg/m以下、前記マットの密度が23kg/m以上110kg/m以下であることを特徴とする請求項1から3の何れか一項に記載のマット。
  5.  前記樹脂発泡体粉砕物の粒子径が最大で3mm以上30mm以下であることを特徴とする請求項1から4の何れか一項に記載のマット。
  6.  メラミン樹脂発泡体の粉砕物を含む樹脂発泡体粉砕物に湿気硬化型イソシアネート化合物を付着させ、前記湿気硬化型イソシアネート化合物を硬化させることにより、前記樹脂発泡体粉砕物を接着してマットを得ることを特徴とするマットの製造方法。
  7.  前記湿気硬化型イソシアネート化合物が付着した樹脂発泡体粉砕物を圧縮した状態で、該湿気硬化型イソシアネート化合物を硬化させることを特徴とする請求項6に記載のマットの製造方法。
  8.  前記樹脂発泡体粉砕物にポリウレタン樹脂発泡体の粉砕物を含むことを特徴とする請求項6または7に記載のマットの製造方法。
  9.  前記樹脂発泡体粉砕物における前記メラミン樹脂発泡体の粉砕物の割合が10重量%以上であることを特徴とする請求項6から8の何れか一項に記載のマットの製造方法。
  10.  前記メラミン樹脂発泡体の密度が5kg/m以上18kg/m以下、前記ポリウレタン樹脂発泡体の密度が13kg/m以上40kg/m以下、前記マットの密度が23kg/m以上110kg/m以下であることを特徴とする請求項6から9の何れか一項に記載のマットの製造方法。
  11.  前記樹脂発泡体粉砕物の粒子径が最大で3mm以上30mm以下であることを特徴とする請求項6から10の何れか一項に記載のマットの製造方法。
     
PCT/JP2012/056245 2011-04-27 2012-03-12 マットとその製造方法 WO2012147422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013511969A JP5478779B2 (ja) 2011-04-27 2012-03-12 マットとその製造方法
CN201280020823.XA CN103501663B (zh) 2011-04-27 2012-03-12 垫子和用于制造垫子的方法
EP12777349.7A EP2702906B1 (en) 2011-04-27 2012-03-12 Mat and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-099093 2011-04-27
JP2011099093 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147422A1 true WO2012147422A1 (ja) 2012-11-01

Family

ID=47071948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056245 WO2012147422A1 (ja) 2011-04-27 2012-03-12 マットとその製造方法

Country Status (4)

Country Link
EP (1) EP2702906B1 (ja)
JP (1) JP5478779B2 (ja)
CN (1) CN103501663B (ja)
WO (1) WO2012147422A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028040A (ko) * 2017-09-08 2019-03-18 에스와이화학 주식회사 열수축필름 포장된 폐 경질 폴리우레탄 폼의 제조방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518345B1 (ko) * 2014-12-05 2015-05-07 강민석 멜라민 재생폼의 제조 방법과 멜라민 재생폼을 이용한 단열재 및 단열재 제조방법
CN106004606B (zh) * 2016-08-10 2019-04-30 广德天运新技术股份有限公司 一种带有防虫蛀功能的汽车脚垫
ES2936986A1 (es) * 2022-10-25 2023-03-23 Hernandez Alberto Dominguez Bloque reciclado acustico e ignifugo

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142628A (en) 1979-04-17 1980-11-07 Basf Ag Elastic foaming body which use condensed product of melamine and formaldehyde as base and its preparation
JPS56152848A (en) 1980-03-27 1981-11-26 Basf Ag Elastic foam based on melamine/formaldehyde condensate and manufacture thereof
JPH09125040A (ja) * 1995-10-27 1997-05-13 Koyo Sangyo Kk 通気性被着体用接着剤及びこれを用いた接着方法
JPH09202169A (ja) 1996-01-25 1997-08-05 Hayashi Gijutsu Kenkyusho:Kk 成形サイレンサー及び該成形サイレンサーを貼着した自動車用カーペット並びにその製造方法
JP2000052836A (ja) 1998-08-05 2000-02-22 Ikeda Bussan Co Ltd 裁断屑再生材を使用した自動車用カーペット裏打ち材組成物並びに自動車用カーペット及びその製造方法
JP2003063319A (ja) 2001-08-27 2003-03-05 Nippon Tokushu Toryo Co Ltd リサイクル材料による自動車内装材及びその製法
JP2005008714A (ja) 2003-06-18 2005-01-13 Kiyotake Morimoto メラミンフォームの砕片を含有するポリウレタンフォーム及びその製造方法
JP2008525289A (ja) * 2004-12-29 2008-07-17 ハンター ペイン エンタープライゼズ エルエルシー 複合構造材料および複合構造材料の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333330A1 (de) * 1993-09-30 1995-04-06 Basf Ag Verfahren zur Herstellung von Schaumstoff-Formteilen
AU2001265249B2 (en) * 2000-06-05 2005-12-15 Milliken & Company Low weight cushioned carpet, carpet tile and method
DE20320102U1 (de) * 2003-12-23 2005-05-12 Carcoustics Tech Center Gmbh Mehrschichtiges, schallabsorbierendes Leichtbauteil, insbesondere für Kraftfahrzeuge
KR100701282B1 (ko) * 2006-02-23 2007-03-29 주식회사 효성 카펫 층을 가진 실내 건축용 소재
JP4836678B2 (ja) * 2006-06-16 2011-12-14 株式会社イノアックコーポレーション クッション体の製造方法
DE102007026266A1 (de) * 2007-06-05 2008-12-11 Metzeler Schaum Gmbh Verfahren zur Herstellung eines Schaumstoffverbundteiles und ein solches Schaumstoffverbundteil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142628A (en) 1979-04-17 1980-11-07 Basf Ag Elastic foaming body which use condensed product of melamine and formaldehyde as base and its preparation
JPS56152848A (en) 1980-03-27 1981-11-26 Basf Ag Elastic foam based on melamine/formaldehyde condensate and manufacture thereof
JPH09125040A (ja) * 1995-10-27 1997-05-13 Koyo Sangyo Kk 通気性被着体用接着剤及びこれを用いた接着方法
JPH09202169A (ja) 1996-01-25 1997-08-05 Hayashi Gijutsu Kenkyusho:Kk 成形サイレンサー及び該成形サイレンサーを貼着した自動車用カーペット並びにその製造方法
JP2000052836A (ja) 1998-08-05 2000-02-22 Ikeda Bussan Co Ltd 裁断屑再生材を使用した自動車用カーペット裏打ち材組成物並びに自動車用カーペット及びその製造方法
JP2003063319A (ja) 2001-08-27 2003-03-05 Nippon Tokushu Toryo Co Ltd リサイクル材料による自動車内装材及びその製法
JP2005008714A (ja) 2003-06-18 2005-01-13 Kiyotake Morimoto メラミンフォームの砕片を含有するポリウレタンフォーム及びその製造方法
JP2008525289A (ja) * 2004-12-29 2008-07-17 ハンター ペイン エンタープライゼズ エルエルシー 複合構造材料および複合構造材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2702906A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028040A (ko) * 2017-09-08 2019-03-18 에스와이화학 주식회사 열수축필름 포장된 폐 경질 폴리우레탄 폼의 제조방법
KR102029917B1 (ko) 2017-09-08 2019-10-08 에스와이화학 주식회사 열수축필름 포장된 폐 경질 폴리우레탄 폼의 제조방법

Also Published As

Publication number Publication date
CN103501663A (zh) 2014-01-08
EP2702906B1 (en) 2016-03-02
EP2702906A1 (en) 2014-03-05
EP2702906A4 (en) 2014-12-31
JP5478779B2 (ja) 2014-04-23
CN103501663B (zh) 2015-04-01
JPWO2012147422A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
KR102368323B1 (ko) 경질 폴리우레탄 발포체
EP1966266B1 (en) Method for making automotive headliners
JP7391856B2 (ja) 熱絶縁材料、接着剤および外層の複合要素
US20090001626A1 (en) Process for the production of polyurethane molded articles
JP2014237320A (ja) フォーム積層製品及びそれの製造方法
JP5478779B2 (ja) マットとその製造方法
JP2011178169A (ja) フォーム積層体製品及びその製造方法
US20110305865A1 (en) Sound-dampening polyurethane-based composite
CN102026803B (zh) 泡沫层压产品及其生产方法
KR20110095663A (ko) 압축 성형을 이용한 자동차용 내장재의 제조방법
US20200231735A1 (en) Methods of making foams exhibiting desired properties from aromatic polyester polyether polyols derived from polyethylene terephthalates and foams made therefrom
WO2012091557A1 (en) Composite materials and shaped articles
US20040000736A1 (en) Process for the production of polyurethane molded parts and their use
RU2743348C1 (ru) Полые частицы из термопластичных эластомеров и пористые формованные изделия
JP2008087406A (ja) 自動車における吸音内装材の製造方法
EP2657280A1 (de) Mineralstoffpartikel enthaltender Polyurethan-Verbundwerkstoff
US20080161437A1 (en) Novel polyisocyanurate foam materials containing CaCO3 filler
JP6121159B2 (ja) 植物繊維で補強された発泡ポリウレタン成形品およびその製造方法
JP2003340913A (ja) 自動車用成形天井並びにその製造方法
US20080161434A1 (en) Novel polyisocyanurate foam materials
JP4666361B2 (ja) モールド成形品の製造方法
JPH0542935Y2 (ja)
JPH07275107A (ja) カーペット用ポリウレタン系裏打材及びその製造方法
JP2007176990A (ja) ポリウレタン系発泡体の製造方法
KR101259201B1 (ko) 기능성 보드 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511969

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012777349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE