WO2012147378A1 - 太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル - Google Patents

太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル Download PDF

Info

Publication number
WO2012147378A1
WO2012147378A1 PCT/JP2012/051235 JP2012051235W WO2012147378A1 WO 2012147378 A1 WO2012147378 A1 WO 2012147378A1 JP 2012051235 W JP2012051235 W JP 2012051235W WO 2012147378 A1 WO2012147378 A1 WO 2012147378A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
forming
bus bar
conductive
Prior art date
Application number
PCT/JP2012/051235
Other languages
English (en)
French (fr)
Inventor
奈央 佐藤
石川 和憲
一雄 荒川
愛美 金
浩一 上迫
マルワン ダムリン
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112012001862.1T priority Critical patent/DE112012001862T5/de
Priority to CN201280003092.8A priority patent/CN103140932B/zh
Publication of WO2012147378A1 publication Critical patent/WO2012147378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for forming a solar cell collecting electrode, a conductive composition for forming a solar cell collecting electrode, and a solar cell having an electrode formed using these.
  • Solar cells that convert light energy such as sunlight into electrical energy have been actively developed in various structures and configurations as interest in global environmental issues increases.
  • solar cells using a semiconductor substrate such as silicon are most commonly used due to advantages such as conversion efficiency and manufacturing cost.
  • Patent Document 1 discloses that “an organic binder, a solvent, conductive particles, glass frit, a metal oxide, and a temperature of 150 to 800 ° C.
  • Patent Document 2 discloses that “a zinc oxide particle having a specific surface area of 6 m 2 / g or less, which is an electrode paste for a solar cell containing conductive particles, a lead-free glass frit, a resin binder, and zinc oxide particles.
  • the electrode paste for solar cells is contained in an amount of 10% by weight or more based on the total amount of zinc oxide ”([Claim 1]), and it is described that zinc oxide is known as an additive for the electrode paste. ([0005]).
  • Patent Document 3 the present applicant states that “silver powder (A), silver oxide (B), and organic solvent (D) are contained, and the silver powder (A) is contained in the composition.
  • a conductive composition that is 50% by mass or more in a simple substance and a silver compound ” has been proposed ([Claim 1]), and includes an embodiment containing silver carboxylate as an optional component, glass frit, metal additives, and the like. (2) [0030] [0033] [0034] and the like.
  • the present inventor examined the pastes and conductive compositions described in Patent Documents 1 to 3, and found that the solar cell fill factor (FF) obtained by the effect of addition of metal oxide (zinc oxide) and Although the photoelectric conversion efficiency (Eff) is improved, depending on the addition amount of the metal oxide, the solder adhesion to the bus bar electrode (bus electrode) formed in the solar battery cell is inferior, and the interconnector in which the metal ribbon is coated with solder is used. It became clear that it was difficult to modularize the solar battery cells.
  • FF solar cell fill factor
  • Eff photoelectric conversion efficiency
  • the present invention provides a method for forming a solar cell current collecting electrode and a conductive composition for forming a solar cell current collecting electrode that can form an electrode having excellent solder adhesion, and is produced using these. It is an object of the present invention to provide a solar cell excellent in fill factor (FF) and photoelectric conversion efficiency (Eff).
  • FF fill factor
  • Eff photoelectric conversion efficiency
  • the present inventor has formed solder adhesion by forming each of the finger electrode and the bus bar electrode using two kinds of conductive compositions having different metal oxide contents. It was found that an excellent electrode can be formed, and a solar cell excellent in fill factor (FF) and photoelectric conversion efficiency (Eff) can be produced, and the present invention has been completed. That is, the present invention provides the following (1) to (4).
  • An electrode forming method comprising: A finger electrode forming step of forming a finger electrode using a conductive composition for forming a finger electrode containing 3 to 10 parts by mass of a metal oxide (D) with respect to 100 parts by mass of the conductive particles (A); After the finger electrode forming step, a bus bar electrode is formed by using a bus bar electrode forming conductive composition containing less than 3 parts by mass of the metal oxide (D) with respect to 100 parts by mass of the conductive particles (A). And a bus bar electrode forming step.
  • a set of conductive compositions for forming a solar cell collecting electrode comprising at least conductive particles (A), glass frit (B) and solvent (C), A conductive composition for forming a finger electrode containing 3 to 10 parts by mass of a metal oxide (D) with respect to 100 parts by mass of the conductive particles (A); A conductive composition for forming a solar cell collector electrode, comprising: a conductive composition for forming a bus bar electrode containing less than 3 parts by mass of a metal oxide (D) with respect to 100 parts by mass of the conductive particles (A). set.
  • a solar cell module in which the solar cells described in (3) above are joined in series using an interconnector whose surface is coated with solder.
  • a method of forming a solar cell collector electrode and a conductive composition for forming a solar cell collector electrode capable of forming an electrode excellent in solder adhesion, and these The solar cell excellent in the fill factor (FF) and photoelectric conversion efficiency (Eff) produced using can be provided.
  • FIG. 1 is a schematic cross-sectional view of a solar battery cell.
  • FIG. 2 is a schematic top view as seen from the surface electrode side of the solar battery cell and a schematic bottom view as seen from the back electrode side.
  • FIG. 3 is a schematic perspective view of the solar cell module and an enlarged cross-sectional view of the joint.
  • the set of the conductive composition for forming a solar cell collecting electrode of the present invention includes at least conductive particles (A), glass frit (B) and solvent (C And a finger electrode containing 3 to 10 parts by mass of the metal oxide (D) with respect to 100 parts by mass of the conductive particles (A).
  • a bus bar electrode containing less than 3 parts by mass of the metal oxide (D) with respect to 100 parts by mass of the conductive composition for formation (hereinafter also referred to as “finger electrode composition”) and the conductive particles (A).
  • a conductive composition for forming a solar cell current collecting electrode having a conductive composition for formation (hereinafter, also referred to as “bus bar electrode composition”).
  • Good other components will be described in detail. In addition, it explains in full detail as a component of the set composition of this invention about the component which is common in the said composition for finger electrodes, and the said composition for bus bar electrodes.
  • the conductive particles (A) used in the set composition of the present invention are not particularly limited.
  • a metal material having an electrical resistivity of 20 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less can be used.
  • Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like.
  • One species may be used alone, or two or more species may be used in combination.
  • gold, silver, and copper are used because an electrode having a small volume resistivity can be formed and a solar cell having a better fill factor (FF) and photoelectric conversion efficiency (Eff) can be produced. Is preferred, and silver is more preferred.
  • FF fill factor
  • Eff photoelectric conversion efficiency
  • an average particle diameter means the average value of the particle diameter of a metal powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus.
  • the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
  • the spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
  • the average particle diameter of the conductive particles (A) is preferably 0.7 to 5 ⁇ m because the printability is better, and the sintering speed is appropriate and the workability is improved.
  • the thickness is more preferably 1 to 3 ⁇ m.
  • a commercially available product can be used as the conductive particles (A).
  • Specific examples thereof include AgC-102 (shape: spherical, average particle size: 1.5 ⁇ m, Fukuda Metal Foil Powder Industry).
  • AGC-103 shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Co., Ltd.
  • AG4-8F shape: spherical, average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics
  • AG2-1C shape: spherical, average particle size: 1.0 ⁇ m, manufactured by DOWA Electronics
  • AG3-11F shape: spherical, average particle size: 1.4 ⁇ m, manufactured by DOWA Electronics
  • SPN5J shape: spherical
  • EHD shape: spherical, average particle size
  • the glass frit (B) used in the set composition of the present invention is not particularly limited, and it is preferable to use one having a softening temperature of 300 ° C. or higher and a firing temperature (heat treatment temperature) or lower.
  • Specific examples of the glass frit (B) include borosilicate glass frit having a softening temperature of 300 to 800 ° C.
  • the shape of the glass frit (B) is not particularly limited, and may be spherical or crushed powder.
  • the average particle diameter (D50) of the spherical glass frit is preferably 0.1 to 20 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the content of the glass frit (B) is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the conductive particles (A).
  • the solvent (C) used in the set composition of the present invention is not particularly limited as long as it can apply the finger electrode composition and the bus bar electrode composition onto a substrate.
  • Specific examples of the solvent (C) include butyl carbitol, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, diethylene glycol dibutyl ether, methyl ethyl ketone, isophorone, Examples thereof include ⁇ -terpineol, and these may be used alone or in combination of two or more.
  • the content of the solvent (C) is preferably 2 to 20 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the conductive particles (A).
  • the metal oxide (D) used in the set composition of the present invention is not particularly limited as long as it is an oxide formed by bonding oxygen atoms and metal elements directly or indirectly.
  • Specific examples of the metal oxide (D) include, for example, zinc oxide, titanium oxide, silicon oxide, cerium oxide, bismuth oxide, tin oxide, and ABO 3 (wherein A consists of Ba, Ca, and Sr). Represents at least one element selected from the group, and B represents at least one element selected from the group consisting of Ti, Zr and Hf and represents Ti). These may be used alone or in combination of two or more.
  • the average particle diameter of the metal oxide (D) can form an electrode with a small volume resistivity, and has a better fill factor (FF) and photoelectric conversion efficiency (Eff). Is preferably 10 ⁇ m or less.
  • the average particle diameter means an average value of the particle diameter of the metal oxide, and all the metals existing at a viewing angle of 1 mm 2 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the particle diameter of the oxide can be measured and calculated from the average value. Moreover, it can also calculate using the specific surface area calculated
  • an electrode having a smaller volume resistivity can be formed with an average particle diameter of the metal oxide (D), and a solar cell having a better fill factor (FF) and photoelectric conversion efficiency (Eff) is produced.
  • D metal oxide
  • FF fill factor
  • Eff photoelectric conversion efficiency
  • it is preferably 10 nm or more and less than 100 nm, more preferably 30 to 50 nm, except for zinc oxide having aluminum or gallium described later.
  • the said metal oxide (D) can form an electrode with small volume resistivity, and produces a photovoltaic cell with a better fill factor (FF) and photoelectric conversion efficiency (Eff).
  • FF fill factor
  • Eff photoelectric conversion efficiency
  • it is preferably conductive zinc oxide (hereinafter, referred to as “conductive zinc oxide”) partially containing aluminum or gallium (hereinafter, abbreviated as “aluminum or the like” in this paragraph).
  • conductive zinc oxide partially containing aluminum or gallium
  • having aluminum or the like partially means a state in which zinc oxide is doped with aluminum or the like, and can be formed by mixing an oxide such as aluminum with zinc oxide and baking.
  • the average particle diameter of the said conductive zinc oxide can form an electrode with smaller volume resistivity, and can produce a photovoltaic cell with still more favorable fill factor (FF) and photoelectric conversion efficiency (Eff) Therefore, the thickness is preferably 0.02 to 10 ⁇ m, and more preferably 0.02 to 3.5 ⁇ m.
  • the said metal oxide (D) can form an electrode with small volume resistivity, and produces a photovoltaic cell with a better fill factor (FF) and photoelectric conversion efficiency (Eff).
  • the perovskite is preferable for the reason that it can be used.
  • Specific examples of the perovskite include perovskites represented by BaTiO 3 , SrTiO 3 , CaTiO 3 and BrZrO 3 , and among them, SrTiO 3 is more preferable.
  • the content of the metal oxide (D) in the finger electrode composition is 3 to 10 parts by mass with respect to 100 parts by mass of the conductive particles (A).
  • the content of the metal oxide (D) in the bus bar electrode composition is less than 3 parts by mass with respect to 100 parts by mass of the conductive particles (A).
  • the metal oxide (D) is an optional component.
  • the metal oxide (D) contributes to a reduction in volume resistivity while adversely affecting the solder adhesion. That is, when a solar battery cell is modularized, a bus bar electrode that comes into contact with an interconnector coated with solder is formed by using the bus bar electrode composition having a low content of the metal oxide (D), so that the solder adhesion is achieved. It is considered that the low volume resistivity could be secured by forming the finger electrode using the finger electrode composition having a high content of the metal oxide (D).
  • the content of the metal oxide (D) in the finger electrode composition is because a solar cell having a better fill factor (FF) and photoelectric conversion efficiency (Eff) can be produced.
  • the amount is preferably 5 to 10 parts by mass, more preferably 5 to 8 parts by mass with respect to 100 parts by mass of the conductive particles (A).
  • the content of the metal oxide (D) in the bus bar electrode composition is such that the conductive particles (A) 100 can be formed because an electrode (bus bar electrode) superior in solder adhesion can be formed.
  • the amount is preferably 0 to 2 parts by mass, more preferably 0 to 1 part by mass with respect to parts by mass.
  • the set composition of the present invention can form an electrode with a small volume resistivity, and can produce a solar cell with a better fill factor (FF) and photoelectric conversion efficiency (Eff). It is preferable that the composition contains a fatty acid silver salt (E).
  • the fatty acid silver salt (E) is not particularly limited as long as it is a silver salt of an organic carboxylic acid (fatty acid), and is described, for example, in paragraphs [0063] to [0068] of JP-A-2008-198595.
  • JP 2010-92684 A Fatty acid silver salts having one or more hydroxyl groups, secondary fatty acid silver salts described in paragraphs [0046] to [0056] of the same publication, and [0022] to [0026] of JP 2011-35062 A
  • a silver carboxylate or the like can be used.
  • carbon has excellent printability, can form an electrode with a smaller volume resistivity, and can produce a solar cell with a better fill factor (FF) and photoelectric conversion efficiency (Eff).
  • a polycarboxylic acid silver salt (E3) having 3 or more carboxy silver bases (—COOAg) without having a hydroxyl group (—OH) is used because an electrode having a smaller volume resistivity can be formed. Is particularly preferred.
  • examples of the fatty acid silver salt (E2) include compounds represented by any one of the following formulas (I) to (III).
  • n represents an integer of 0 to 2
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 6 carbon atoms.
  • the plurality of R 2 may be the same or different
  • the plurality of R 1 may be the same or different.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • a plurality of R 1 may be the same or different.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 3 represents an alkylene group having 1 to 6 carbon atoms.
  • the plurality of R 1 may be the same or different.
  • Examples of the polycarboxylic acid silver salt (E3) include a compound represented by the following formula (IV).
  • m represents an integer of 2 to 6
  • R 4 represents an m-valent saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms
  • an m-valent unsaturated fat having 2 to 12 carbon atoms.
  • fatty acid silver salt (E1) examples include 2-methylpropanoic acid silver salt (also known as isobutyric acid silver salt) and 2-methylbutanoic acid silver salt.
  • fatty acid silver salt (E2) examples include 2-hydroxyisobutyric acid silver salt and 2,2-bis (hydroxymethyl) -n-butyric acid silver salt.
  • polycarboxylic acid silver salt (E3) examples include 1,3,5-pentanetricarboxylic acid silver salt and 1,2,3,4-butanetetracarboxylic acid silver salt. Is done.
  • the content when the fatty acid silver salt (E) is contained, the content is 0.1 to 10 with respect to 100 parts by mass of the conductive particles (A) because the printing property is better.
  • the amount is preferably part by mass, more preferably 1 to 10 parts by mass.
  • the set composition of this invention may contain the resin binder as needed from a printable viewpoint.
  • the resin binder is obtained by dissolving a resin having a binder function in a solvent.
  • Specific examples of the resin include ethyl cellulose resin, nitrocellulose resin, alkyd resin, acrylic resin, styrene resin, phenol resin and the like, and these may be used alone or in combination of two or more. May be. Among these, it is preferable to use ethyl cellulose resin from the viewpoint of thermal decomposability.
  • the solvent examples include ⁇ -terpineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol, methyl isobutyl ketone, and the like. You may use the above together.
  • the solvent may be a part of the solvent (C) described above.
  • the set composition of this invention may contain additives, such as a reducing agent, as needed.
  • a reducing agent include ethylene glycols.
  • the content of silver oxide is preferably 5 parts by mass or less with respect to 100 parts by mass of the solvent (C) described above, because the thixotropy becomes better and the aspect ratio can be further increased. It is more preferable that the amount is less than or equal to parts, and an embodiment that does not substantially contain silver oxide is most preferable.
  • the method for producing the set composition of the present invention that is, the method for preparing the finger electrode composition and the bus bar electrode composition is not particularly limited, and the conductive particles (A), the glass frit (B), The solvent (C), the metal oxide (D), and the fatty acid silver salt (E) which may be optionally contained, the resin binder and additives are mixed by a roll, a kneader, an extruder, a universal agitator, etc. The method of doing is mentioned.
  • the solar cell collector electrode forming method of the present invention is a solar cell collector electrode forming method for forming a solar cell collector electrode, wherein the composition for finger electrodes is described above.
  • a solar cell current collecting electrode comprising: a finger electrode forming step for forming a finger electrode using an object; and a bus bar electrode forming step for forming a bus bar electrode using the bus bar electrode composition after the finger electrode forming step. It is a forming method. Below, a finger electrode formation process and a bus-bar electrode formation process are explained in full detail.
  • the finger electrode formation process which the electrode formation method of this invention has is a process of forming a finger electrode using the said composition for finger electrodes.
  • a finger electrode forming step for example, a wiring forming step of forming the wiring (finger electrode precursor) by applying the composition for finger electrodes on a silicon substrate (an antireflection film when an antireflection film is provided). And a method including a heat treatment step of forming a finger electrode by heat-treating (firing) the obtained wiring.
  • the antireflection film can be formed by a known method such as a plasma CVD method.
  • the wiring is fired through the antireflection film during the heat treatment in the heat treatment step so that the electrode contacts the silicon substrate. Can be formed.
  • a wiring formation process and a heat treatment process are explained in full detail.
  • the said wiring formation process is a process of apply
  • specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
  • the finger electrode composition is applied.
  • the object may be applied not only to the part that forms the finger electrode, but also to the part that forms the bus bar electrode.
  • the heat treatment step is a step of obtaining finger electrodes by heat-treating the wiring obtained in the wiring formation step.
  • the heat treatment is not particularly limited, but it is preferably a heat treatment (baking) at a temperature of 150 to 860 ° C. for several seconds to several tens of minutes.
  • the temperature and time are within this range, even when an antireflection film is formed on the silicon substrate, the electrode can be easily formed by the fire-through method.
  • the heat treatment step may be performed by irradiation with ultraviolet rays or infrared rays.
  • the bus bar electrode forming step of the electrode forming method of the present invention is a step of forming a bus bar electrode using the bus bar electrode composition.
  • a method including a heat treatment step of forming a bus bar electrode by heat-treating (firing) the obtained wiring is basically the same as the steps described in the finger electrode formation step.
  • the solar cell of the present invention comprises a surface electrode on the light-receiving surface side, a semiconductor substrate and a back electrode, and at least the surface electrode uses the set composition of the present invention described above, and the electrode forming method of the present invention described above. It is a solar battery cell formed using.
  • the solar battery cell of the present invention can be applied to the formation of the back electrode of the all back electrode type (so-called back contact type) solar cell, the above-described set composition of the present invention can be applied to the all back electrode type. This can also be applied to solar cells.
  • the solar cell of the present invention will be described by taking a crystalline silicon solar cell as an example.
  • the present invention is not limited to this.
  • a solar cell 10 of the present invention includes a surface electrode 1 (finger electrode 1a) on the light receiving surface side, a pn junction silicon substrate 4 in which an n layer 3 and a p layer 5 are joined (hereinafter referred to as these). In addition, it is also referred to as “crystalline silicon substrate 7”) and a back electrode 6 (full surface electrode 6a).
  • FIG. 1 is a schematic cross-sectional view taken along the line II of FIG.
  • the photovoltaic cell 10 of this invention comprises the anti-reflective film 2 in which the pyramid-like texture was formed for the reflectance reduction.
  • the solar battery cell 10 of the present invention includes a finger electrode 1a and a bus bar electrode 1b as the surface electrode 1 on the light receiving surface side. Moreover, as shown in FIG. 2B and FIG. 1, the solar battery cell 10 of the present invention includes a full-surface electrode 6 a and a connecting portion 6 b as the back electrode 6.
  • the surface electrode and / or back electrode which the photovoltaic cell of this invention comprises is at least the surface electrode formed using the set composition of this invention, arrangement
  • positioning (pitch), shape, height, width of an electrode Etc. are not particularly limited.
  • positioning (pitch), shape, height, width of an electrode Etc. are not particularly limited.
  • the surface electrode 1 having the finger electrodes 1a and the bus bar electrodes 1b is formed using the set composition of the present invention.
  • the back electrode 6 may be formed using the set composition of the present invention, but it is preferable to form the entire surface electrode 6a with an aluminum electrode and the connecting portion 6b with a silver electrode.
  • the antireflection film that the solar battery cell of the present invention may have is a film (film thickness: about 0.05 to 0.1 ⁇ m) formed on a portion of the light receiving surface where the surface electrode is not formed.
  • a film film thickness: about 0.05 to 0.1 ⁇ m
  • the crystalline silicon substrate included in the solar battery cell of the present invention is not particularly limited, and a known silicon substrate (plate thickness: about 100 to 450 ⁇ m) for forming a solar battery can be used. Any polycrystalline silicon substrate may be used.
  • the crystalline silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate.
  • the second conductivity type is p-type.
  • the impurity imparting p-type include boron and aluminum
  • examples of the impurity imparting n-type include phosphorus and arsenic.
  • the solar cell module of the present invention is a solar cell module in which the solar cells of the present invention are joined in series using an interconnector whose surface is coated with solder. Below, the structure of the solar cell module of this invention is demonstrated using FIG.
  • the solar cell module 20 of the present invention is obtained by joining solar cells 10 in series using an interconnector 8 in which the surface of a metal ribbon 8b is covered with solder 8a.
  • solder 8a copper or aluminum ribbon coated with a conductive adhesive can be suitably used as the metal ribbon.
  • the bus bar electrode 1b of the front surface electrode 1 and the solder 8a of the interconnector 8 are in close contact with each other, and the connecting portion 6b of the back electrode 6 and the solder of the interconnector 8 are in contact with each other. 8a is in close contact.
  • the bus bar electrode (and the connection portion of the back electrode) is formed using the above-mentioned bus bar electrode composition, the adhesion with the solder of the interconnector is good, and it is easily modularized. can do.
  • a conductive composition for finger electrodes was prepared by adding conductive particles shown in Table 1 below to the ball mill so as to have the composition ratio shown in Table 1 and mixing them.
  • Silver powder AgC-103 (shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Industry)
  • Solvent ⁇ -terpineol Zinc oxide: ZnO (average particle size 20-40 nm, manufactured by Teica)
  • -Bismuth oxide Bi 2 O 3 (average particle size 51 nm, manufactured by CI Kasei Co., Ltd.)
  • Conductive zinc oxide: ZnO: Al average particle size: 3.5 ⁇ m, manufactured by Honjo Chemical Co., Ltd.
  • Resin binder EC-100FTP (ethyl cellulose resin solid content: 9%, manufactured by Nisshin Kasei Co., Ltd.)
  • Glass frit lead borosilicate glass powder
  • bus bar electrode compositions B1 to B4 To the ball mill, conductive particles shown in Table 2 below were added so as to have the composition ratio shown in Table 2 below, and these were mixed to prepare a conductive composition for a bus bar electrode.
  • each component in the following 2nd table used the same thing as the said 1st table
  • Examples 1-7 Comparative Examples 1-2
  • a silicon substrate single crystal silicon wafer, LS-25TVA, 156 mm ⁇ 156 mm ⁇ 200 ⁇ m, manufactured by Shin-Etsu Chemical Co., Ltd.
  • an aluminum paste was applied to the entire back surface by screen printing and dried.
  • a predetermined wiring pattern of finger electrodes and a predetermined wiring pattern of bus bar electrodes are formed on the surface of the silicon substrate by applying the prepared conductive compositions by screen printing according to the combinations shown in Table 3 below. did.
  • a sample of a solar battery cell in which conductive wiring (finger electrodes and bus bar electrodes) was formed by baking for 60 seconds in a baking furnace at a peak temperature of 740 ° C. was produced.
  • solder adhesion> A solder ribbon (composition: Sn-3Ag-0.5Cu) was mounted on the bus bar electrode of the solar cell sample produced using a soldering iron. Thereafter, according to JIS K6850: 1999, a tensile shear test was performed at a tensile speed of 50 mm / min, and the load at break (MPa) was measured. The results are shown in Table 3 below. Here, when the load at the time of breakage is 15 MPa or more, it can be evaluated that it has solder adhesion necessary for modularization of the solar battery cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明の目的は、半田密着性に優れた電極を形成することができる太陽電池集電電極形成方法を提供することである。本発明の太陽電池集電電極形成方法は、少なくとも導電性粒子(A)、ガラスフリット(B)および溶媒(C)を含有する太陽電池集電電極形成用導電性組成物を用いて太陽電池集電電極を形成する太陽電池集電電極形成方法であって、前記導電性粒子(A)100質量部に対して金属酸化物(D)を3~10質量部含有するフィンガー電極形成用導電性組成物を用いてフィンガー電極を形成するフィンガー電極形成工程と、前記フィンガー電極形成工程の後に、前記導電性粒子(A)100質量部に対して金属酸化物(D)を3質量部未満含有するバスバー電極形成用導電性組成物を用いてバスバー電極を形成するバスバー電極形成工程と、を有する太陽電池集電電極形成方法である。

Description

太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル
 本発明は、太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物およびこれらを用いて形成した電極を有する太陽電池セルに関する。
 太陽光のような光エネルギーを電気エネルギーに変換する太陽電池は、地球環境問題に対する関心が高まるにつれ、積極的に種々の構造・構成のものが開発されている。その中でも、シリコンなどの半導体基板を用いた太陽電池は、その変換効率、製造コストなどの優位性により最も一般的に用いられている。
 このような太陽電池の電極を形成する材料としては、例えば、特許文献1には、「有機バインダと、溶剤と、導電性粒子と、ガラスフリットと、金属酸化物と、150~800℃の温度範囲で気体に変化する物質とを含む、太陽電池電極用導電性ペースト。」が記載されており([請求項1])、上記金属酸化物として酸化亜鉛等が記載されており([請求項2])、上記気体に変化する物質として有機金属化合物が記載されている([請求項3][請求項4])。
 更に、特許文献2には、「導電性粒子、無鉛ガラスフリット、樹脂バインダー、および酸化亜鉛粒子を含む太陽電池用電極ペーストであって、比表面積が6m2/g以下である酸化亜鉛粒子が、酸化亜鉛の総量に対して10重量%以上含まれる、太陽電池用電極ペースト。」が記載されており([請求項1])、電極ペーストの添加剤として酸化亜鉛が公知である旨が記載されている([0005])。
 一方、特許文献3には、本出願人により、「銀粉(A)と、酸化銀(B)と、有機溶媒(D)とを含有し、該銀粉(A)が組成物に含有される銀単体および銀化合物中50質量%以上である導電性組成物」が提案されており([請求項1])、任意成分としてカルボン酸銀を含む態様や、ガラスフリット、金属系添加剤等の他の添加剤を含む態様が記載されている([請求項2][0030][0033][0034]等)。
特開2007-294677号公報 特表2011-501444号公報 特開2011-35062号公報
 しかしながら、本発明者が、特許文献1~3に記載されたペーストや導電性組成物について検討したところ、金属酸化物(酸化亜鉛)の添加効果によって得られる太陽電池セルの曲線因子(FF)および光電変換効率(Eff)は向上するものの、金属酸化物の添加量によっては、太陽電池セルに形成されるバスバー電極(バス電極)に対する半田密着性が劣り、金属リボンを半田で被覆したインターコネクタを用いて太陽電池セルをモジュール化することが困難であることが明らかとなった。
 そこで、本発明は、半田密着性に優れた電極を形成することができる太陽電池集電電極形成方法および太陽電池集電電極形成用導電性組成物のセット、ならびに、これらを用いて作製される曲線因子(FF)および光電変換効率(Eff)に優れた太陽電池セルを提供することを課題とする。
 本発明者は、上記課題を解決するため鋭意検討した結果、フィンガー電極およびバスバー電極の各々を金属酸化物の含有量が異なる2種の導電性組成物を用いて形成することにより、半田密着性に優れた電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)に優れた太陽電池セルを作製できることを見出し、本発明を完成させた。即ち、本発明は、下記(1)~(4)を提供する。
 (1)少なくとも導電性粒子(A)、ガラスフリット(B)および溶媒(C)を含有する太陽電池集電電極形成用導電性組成物を用いて太陽電池集電電極を形成する太陽電池集電電極形成方法であって、
 上記導電性粒子(A)100質量部に対して金属酸化物(D)を3~10質量部含有するフィンガー電極形成用導電性組成物を用いてフィンガー電極を形成するフィンガー電極形成工程と、
 上記フィンガー電極形成工程の後に、上記導電性粒子(A)100質量部に対して金属酸化物(D)を3質量部未満含有するバスバー電極形成用導電性組成物を用いてバスバー電極を形成するバスバー電極形成工程と、を有する太陽電池集電電極形成方法。
 (2)少なくとも導電性粒子(A)、ガラスフリット(B)および溶媒(C)を含有する太陽電池集電電極形成用導電性組成物のセットであって、
 上記導電性粒子(A)100質量部に対して金属酸化物(D)を3~10質量部含有するフィンガー電極形成用導電性組成物と、
 上記導電性粒子(A)100質量部に対して金属酸化物(D)を3質量部未満含有するバスバー電極形成用導電性組成物と、を有する太陽電池集電電極形成用導電性組成物のセット。
 (3)受光面側の表面電極、半導体基板および裏面電極を具備し、
 少なくとも上記表面電極が、上記(2)に記載の太陽電池集電電極形成用導電性組成物のセットを使用し、上記(1)に記載の太陽電池集電電極形成方法を用いて形成される太陽電池セル。
 (4)表面が半田で被覆されたインターコネクタを用いて上記(3)に記載の太陽電池セルを直列に接合した太陽電池モジュール。
 以下に示すように、本発明によれば、半田密着性に優れた電極を形成することができる太陽電池集電電極形成方法および太陽電池集電電極形成用導電性組成物のセット、ならびに、これらを用いて作製される曲線因子(FF)および光電変換効率(Eff)に優れた太陽電池セルを提供することができる。
図1は太陽電池セルの模式断面図である。 図2は太陽電池セルの表面電極側からみた模式上面図および裏面電極側からみた模式下面図である。 図3は太陽電池モジュールの模式斜視図および接合部の拡大断面図である。
 〔太陽電池集電電極形成用導電性組成物のセット〕
 本発明の太陽電池集電電極形成用導電性組成物のセット(以下、「本発明のセット組成物」と略す。)は、少なくとも導電性粒子(A)、ガラスフリット(B)および溶媒(C)を含有する太陽電池集電電極形成用導電性組成物のセットであって、上記導電性粒子(A)100質量部に対して金属酸化物(D)を3~10質量部含有するフィンガー電極形成用導電性組成物(以下、「フィンガー電極用組成物」ともいう。)と、上記導電性粒子(A)100質量部に対して金属酸化物(D)を3質量部未満含有するバスバー電極形成用導電性組成物(以下、「バスバー電極用組成物」ともいう。)と、を有する太陽電池集電電極形成用の導電性組成物のセットである。
 以下に、上記フィンガー電極用組成物および上記バスバー電極用組成物が含有する導電性粒子(A)、ガラスフリット(B)、溶媒(C)および金属酸化物(D)ならびに所望により含有してもよい他の成分等について詳述する。なお、上記フィンガー電極用組成物および上記バスバー電極用組成物で共通する成分については、本発明のセット組成物の成分として詳述する。
 <導電性粒子(A)>
 本発明のセット組成物で用いる導電性粒子(A)は特に限定されず、例えば、電気抵抗率が20×10-6Ω・cm以下の金属材料を用いることができる。
 上記金属材料としては、具体的には、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、体積抵抗率の小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、金、銀、銅であるのが好ましく、銀であるのがより好ましい。
 本発明においては、上記導電性粒子(A)は、印刷性が良好となる理由から、平均粒子径が0.5~10μmの金属粉末を用いるのが好ましい。
 上記金属粉末のうち、体積抵抗率の小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、球状の銀粉末を用いるのがより好ましい。
 ここで、平均粒子径とは、金属粉末の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、金属粉末の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
 また、球状とは、長径/短径の比率が2以下の粒子の形状をいう。
 また、本発明においては、上記導電性粒子(A)の平均粒子径は、印刷性がより良好となる理由から、0.7~5μmであるのが好ましく、焼結速度が適当となり作業性に優れる理由から、1~3μmであるのがより好ましい。
 更に、本発明においては、上記導電性粒子(A)として市販品を用いることができ、その具体例としては、AgC-102(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)、AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)、AG4-8F(形状:球状、平均粒子径:2.2μm、DOWAエレクトロニクス社製)、AG2-1C(形状:球状、平均粒子径:1.0μm、DOWAエレクトロニクス社製)、AG3-11F(形状:球状、平均粒子径:1.4μm、DOWAエレクトロニクス社製)、SPN5J(形状:球状、平均粒子径:1.2μm、三井金属社製)、EHD(形状:球状、平均粒子径:0.5μm、三井金属社製)、AgC-2011(形状:フレーク状、平均粒子径:2~10μm、福田金属箔粉工業社製)、AgC-301K(形状:フレーク状、平均粒子径:3~10μm、福田金属箔粉工業社製)等が挙げられる。
 <ガラスフリット(B)>
 本発明のセット組成物で用いるガラスフリット(B)は特に限定されず、軟化温度が300℃以上で、焼成温度(熱処理温度)以下のものを用いるのが好ましい。
 上記ガラスフリット(B)としては、具体的には、例えば、軟化温度300~800℃のホウケイ酸ガラスフリット等が挙げられる。
 上記ガラスフリット(B)の形状は特に限定されず、球状でも破砕粉状でもよい。球状のガラスフリットの平均粒子径(D50)は、0.1~20μmであることが好ましく、1~10μmであることがより好ましい。さらに、15μm以上の粒子を除去した、シャープな粒度分布を持つガラスフリットを用いることが好ましい。
 上記ガラスフリット(B)の含有量は、上記導電性粒子(A)100質量部に対して0.1~10質量部であるのが好ましく、1~5質量部であるのがより好ましい。
 <溶媒(C)>
 本発明のセット組成物で用いる溶媒(C)は、上記フィンガー電極用組成物および上記バスバー電極用組成物を基材上に塗布することができるものであれば特に限定されない。
 上記溶媒(C)としては、具体的には、例えば、ブチルカルビトール、ブチルカルビトールアセテート、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート、ジエチレングリコールジブチルエーテル、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、上記溶媒(C)の含有量は、上記導電性粒子(A)100質量部に対して、2~20質量部であるのが好ましく、5~15重量部であるのがより好ましい。
 <金属酸化物(D)>
 本発明のセット組成物で用いる金属酸化物(D)は、酸素原子と金属元素とが直接または間接に結合して形成された酸化物であれば特に限定されない。
 上記金属酸化物(D)としては、具体的には、例えば、酸化亜鉛、酸化チタン、酸化ケイ素、酸化セリウム、酸化ビスマス、酸化スズ、ABO3(式中、AはBa、CaおよびSrからなる群から選択される少なくとも1種の元素を表し、BはTi、ZrおよびHfからなる群から選択される少なくとも1種の元素であってTiを含むものを表す。)で表されるペロブスカイト等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 本発明においては、上記金属酸化物(D)の平均粒子径は、体積抵抗率の小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、10μm以下であるのが好ましい。
 ここで、平均粒子径とは、金属酸化物の粒子径の平均値をいい、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて1mm2の視野角に存在する全ての金属酸化物の粒子径を測定し、その平均値から算出することができる。また、BET法から求めた比表面積と下記式(式中、Sは金属酸化物の比表面積を表し、ρは金属酸化物の密度を表す)を用いて算出することもできる。
 平均粒子径=6/(ρ×S)
 また、上記金属酸化物(D)の平均粒子径は、体積抵抗率のより小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)が更に良好な太陽電池セルを作製できる理由から、後述するアルミニウムまたはガリウムを有する酸化亜鉛を除き、10nm以上100nm未満であるのが好ましく、30~50nmであるのがより好ましい。
 また、本発明においては、上記金属酸化物(D)は、体積抵抗率の小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、アルミニウムまたはガリウム(以下、本段落においては「アルミニウム等」と略す。)を一部に有する導電性の酸化亜鉛(以下、「導電性酸化亜鉛」という。)であるのが好ましい。
 ここで、アルミニウム等を一部に有するとは、酸化亜鉛がアルミニウム等によりドープされた状態をいい、酸化亜鉛に対してアルミニウム等の酸化物を混合し、焼成することにより形成することができる。
 また、上記導電性酸化亜鉛の平均粒子径は、体積抵抗率のより小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)が更に良好な太陽電池セルを作製できる理由から、0.02~10μmであるのが好ましく、0.02~3.5μmであるのがより好ましい。
 更に、本発明においては、上記金属酸化物(D)は、体積抵抗率の小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、上記ペロブスカイトであるのが好ましい。
 上記ペロブスカイトとしては、具体的には、BaTiO3、SrTiO3、CaTiO3、BrZrO3で表されるペロブスカイトが好適に例示され、中でも、SrTiO3であるのがより好ましい。
 本発明においては、上記フィンガー電極用組成物における上記金属酸化物(D)の含有量は、上記導電性粒子(A)100質量部に対して3~10質量部である。
 同様に、上記バスバー電極用組成物における上記金属酸化物(D)の含有量は、上記導電性粒子(A)100質量部に対して3質量部未満である。なお、バスバー電極形成用導電性組成物においては、上記金属酸化物(D)は任意成分である。
 上記金属酸化物(D)の含有量が上記範囲であると、半田密着性に優れた電極(バスバー電極)を形成することができ、曲線因子(FF)および光電変換効率(Eff)が良好な太陽電池セルを作製することができる。
 これは、詳細には明らかではないが、本発明者らは上記金属酸化物(D)が体積抵抗率の低減に寄与する一方で、半田密着性に悪い影響を与えるためであると考えている。すなわち、太陽電池セルをモジュール化する際に半田で被覆されたインターコネクタと接触するバスバー電極を上記金属酸化物(D)の含有量の少ないバスバー電極用組成物を用いて形成することにより半田密着性を確保し、かつ、フィンガー電極を上記金属酸化物(D)の含有量の多いフィンガー電極用組成物を用いて形成することにより低い体積抵抗率を確保できたためと考えられる。
 また、本発明においては、上記フィンガー電極用組成物における上記金属酸化物(D)の含有量は、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、上記導電性粒子(A)100質量部に対して5~10質量部であるのが好ましく、5~8質量部であるのがより好ましい。
 同様に、上記バスバー電極用組成物における上記金属酸化物(D)の含有量は、半田密着性により優れた電極(バスバー電極)を形成することができる理由から、上記導電性粒子(A)100質量部に対して0~2質量部であるのが好ましく、0~1質量部であるのがより好ましい。
 <脂肪酸銀塩(E)>
 本発明のセット組成物は、体積抵抗率の小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)がより良好な太陽電池セルを作製できる理由から、上記フィンガー電極用組成物が脂肪酸銀塩(E)を含有しているのが好ましい。
 ここで、上記脂肪酸銀塩(E)は、有機カルボン酸(脂肪酸)の銀塩であれば特に限定されず、例えば、特開2008-198595号公報の[0063]~[0068]段落に記載された脂肪酸金属塩(特に3級脂肪酸銀塩)、特許第4482930号公報の[0030]段落に記載された脂肪酸銀塩、特開2010-92684号公報の[0029]~[0045]段落に記載された水酸基を1個以上有する脂肪酸銀塩、同公報の[0046]~[0056]段落に記載された2級脂肪酸銀塩、特開2011-35062号公報の[0022]~[0026]に記載されたカルボン酸銀等を用いることができる。
 これらのうち、印刷性が良好となり、体積抵抗率のより小さい電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)が更に良好な太陽電池セルを作製できる理由から、炭素数18以下の脂肪酸銀塩(E1)、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有する脂肪酸銀塩(E2)、および、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を2個以上有するポリカルボン酸銀塩(E3)からなる群から選択される少なくとも1種の脂肪酸銀塩を用いるのが好ましい。
 中でも、体積抵抗率の更に小さい電極を形成することができる理由から、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を3個以上有するポリカルボン酸銀塩(E3)を用いるのが特に好ましい。
 ここで、上記脂肪酸銀塩(E2)としては、例えば、下記式(I)~(III)のいずれかで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001

(式(I)中、nは0~2の整数を表し、R1は水素原子または炭素数1~10のアルキル基を表し、R2は炭素数1~6のアルキレン基を表す。nが0または1である場合、複数のR2はそれぞれ同一であっても異なっていてもよい。nが2である場合、複数のR1はそれぞれ同一であっても異なっていてもよい。
 式(II)中、R1は水素原子または炭素数1~10のアルキル基を表し、複数のR1はそれぞれ同一であっても異なっていてもよい。
 式(III)中、R1は水素原子または炭素数1~10のアルキル基を表し、R3は炭素数1~6のアルキレン基を表す。複数のR1はそれぞれ同一であっても異なっていてもよい。)
 また、上記ポリカルボン酸銀塩(E3)としては、例えば、下記式(IV)で表される化合物であるが挙げられる。
Figure JPOXMLDOC01-appb-C000002

(式(IV)中、mは、2~6の整数を表し、R4は、炭素数1~24のm価の飽和脂肪族炭化水素基、炭素数2~12のm価の不飽和脂肪族炭化水素基、炭素数3~12のm価の脂環式炭化水素基、または、炭素数6~12のm価の芳香族炭化水素基を表す。R4の炭素数をpとすると、m≦2p+2である。)
 上記脂肪酸銀塩(E1)としては、具体的には、2-メチルプロパン酸銀塩(別名:イソ酪酸銀塩)、2-メチルブタン酸銀塩等が好適に例示される。
 また、上記脂肪酸銀塩(E2)としては、具体的には、2-ヒドロキシイソ酪酸銀塩、2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩等が好適に例示される。
 また、上記ポリカルボン酸銀塩(E3)としては、具体的には、1,3,5-ペンタントリカルボン酸銀塩、1,2,3,4-ブタンテトラカルボン酸銀塩等が好適に例示される。
 本発明においては、上記脂肪酸銀塩(E)を含有する場合の含有量は、印刷性がより良好となる理由から、上記導電性粒子(A)100質量部に対して、0.1~10質量部であるのが好ましく、1~10質量部であるのがより好ましい。
 <樹脂バインダー>
 本発明のセット組成物は、印刷性の観点から、必要に応じて樹脂バインダーを含有していてもよい。
 上記樹脂バインダーは、バインダー機能を有する樹脂を溶媒に溶解したものである。
 上記樹脂としては、具体的には、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アルキド樹脂、アクリル樹脂、スチレン樹脂、フェノール樹脂等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。これらのうち、熱分解性の観点から、エチルセルロース樹脂を用いるのが好ましい。
 また、上記溶媒としては、具体的には、例えば、α-テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、ジアセトンアルコール、メチルイソブチルケトン等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。なお、本発明においては、上記溶媒は、上述した溶媒(C)の一部であってもよい。
 本発明のセット組成物は、必要に応じて、還元剤等の添加剤を含有していてもよい。
 上記還元剤としては、具体的には、例えば、エチレングリコール類等が挙げられる。
 一方、チクソ性がより良好となり、アスペクト比をより高くすることができる理由から酸化銀の含有量は上述した溶媒(C)100質量部に対して5質量部以下であるのが好ましく、1質量部以下であるのがより好ましく、実質的に酸化銀を含有していない態様が最も好ましい。
 本発明のセット組成物の製造方法、すなわち、上記フィンガー電極用組成物および上記バスバー電極用組成物の調製方法は特に限定されず、それぞれ、上記導電性粒子(A)、ガラスフリット(B)、上記溶媒(C)および上記金属酸化物(D)ならびに所望により含有していてもよい上記脂肪酸銀塩(E)、樹脂バインダーおよび添加剤を、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。
 〔太陽電池集電電極形成方法〕
 本発明の太陽電池集電電極形成方法(以下、「本発明の電極形成方法」という。)は、太陽電池集電電極を形成する太陽電池集電電極形成方法であって、上記フィンガー電極用組成物を用いてフィンガー電極を形成するフィンガー電極形成工程と、上記フィンガー電極形成工程の後に、上記バスバー電極用組成物を用いてバスバー電極を形成するバスバー電極形成工程と、を有する太陽電池集電電極形成方法である。
 以下に、フィンガー電極形成工程およびバスバー電極形成工程について詳述する。
 <フィンガー電極形成工程>
 本発明の電極形成方法が有するフィンガー電極形成工程は、上記フィンガー電極用組成物を用いてフィンガー電極を形成する工程である。
 上記フィンガー電極形成工程としては、例えば、上記フィンガー電極用組成物をシリコン基板(反射防止膜を具備する場合は反射防止膜)上に塗布して配線(フィンガー電極前駆体)を形成する配線形成工程と、得られた配線を熱処理(焼成)してフィンガー電極を形成する熱処理工程とを有する方法等が挙げられる。
 また、反射防止膜は、プラズマCVD法等の公知の方法により形成することができる。
 なお、本発明の太陽電池セルが反射防止膜を具備する場合、上記配線が上記熱処理工程における熱処理の際に上記反射防止膜をファイヤースルーすることにより、上記電極がシリコン基板上に接触するように形成することができる。
 以下に、配線形成工程、熱処理工程について詳述する。
 (配線形成工程)
 上記配線形成工程は、上記フィンガー電極用組成物をシリコン基板(反射防止層を具備する場合は反射防止膜)上に塗布して配線(フィンガー電極前駆体)を形成する工程である。
 ここで、塗布方法としては、具体的には、例えば、インクジェット、スクリーン印刷、グラビア印刷、オフセット印刷、凸版印刷等が挙げられる。
 なお、本発明においては、後述するバスバー電極形成工程においてバスバー電極を形成する部分に上記バスバー電極用組成物を塗布することから、その前工程である上記配線形成工程においては、上記フィンガー電極用組成物は、フィンガー電極を形成する部分だけでなく、バスバー電極を形成する部分にも塗布されていてもよい。
 (熱処理工程)
 上記熱処理工程は、上記配線形成工程で得られた配線を熱処理してフィンガー電極を得る工程である。
 本発明においては、上記熱処理は特に限定されないが、150~860℃の温度で、数秒~数十分間、加熱(焼成)する処理であるのが好ましい。温度および時間がこの範囲であると、シリコン基板上に反射防止膜を形成した場合であっても、ファイヤースルー法により容易に電極を形成することができる。
 また、上記配線形成工程で得られた配線は、紫外線または赤外線の照射でも電極を形成することができるため、上記熱処理工程は、紫外線または赤外線の照射によるものであってもよい。
 <バスバー電極形成工程>
 本発明の電極形成方法が有するバスバー電極形成工程は、上記バスバー電極用組成物を用いてバスバー電極を形成する工程である。
 上記バスバー電極形成工程としては、例えば、上記バスバー電極用組成物をシリコン基板(反射防止層を具備する場合は反射防止膜)上に塗布して配線(バスバー電極前駆体)を形成する配線形成工程と、得られた配線を熱処理(焼成)してバスバー電極を形成する熱処理工程とを有する方法等が挙げられる。
 ここで、上記配線形成工程および上記熱処理工程における塗布方法や熱処理方法は、いずれも、上記フィンガー電極形成工程において説明した工程と基本的に同様である。
 〔太陽電池セル〕
 本発明の太陽電池セルは、受光面側の表面電極、半導体基板および裏面電極を具備し、少なくとも上記表面電極が、上述した本発明のセット組成物を使用し、上述した本発明の電極形成方法を用いて形成される太陽電池セルである。
 ここで、本発明の太陽電池セルは、上述した本発明のセット組成物を全裏面電極型(いわゆるバックコンタクト型)太陽電池の裏面電極の形成にも適用することができるため、全裏面電極型の太陽電池にも適用することができる。
 以下に、本発明の太陽電池セルの構成について図1および図2を用いて説明する。なお、図1では、結晶系シリコン太陽電池を例に挙げて、本発明の太陽電池セルを説明するが、これに限られることはなく、例えば、薄膜系のアモルファスシリコン太陽電池、ハイブリッド型(HIT)太陽電池等であってもよい。
 図1に示すように、本発明の太陽電池セル10は、受光面側の表面電極1(フィンガー電極1a)と、n層3およびp層5が接合したpn接合シリコン基板4(以下、これらを併せて「結晶系シリコン基板7」ともいう。)と、裏面電極6(全面電極6a)とを具備するものである。なお、図1は、図2のI-I線における模式的な断面図である。
 また、図1に示すように、本発明の太陽電池セル10は、反射率低減のためピラミッド状のテクスチャが形成された反射防止膜2を具備するのが好ましい。
 図2(A)に示すように、本発明の太陽電池セル10は、受光面側の表面電極1として、フィンガー電極1aとバスバー電極1bとを具備するものである。
 また、図2(B)および図1に示すように、本発明の太陽電池セル10は、裏面電極6として、全面電極6aと接続部6bとを具備するものである。
 <表面電極/裏面電極>
 本発明の太陽電池セルが具備する表面電極および/または裏面電極は、少なくとも表面電極が本発明のセット組成物を用いて形成されていれば、電極の配置(ピッチ)、形状、高さ、幅等は特に限定されない。
 ここで、図1および図2に示す態様においては、少なくとも、フィンガー電極1aおよびバスバー電極1bを有する表面電極1を本発明のセット組成物を用いて形成することになる。
 一方、裏面電極6は、本発明のセット組成物を用いて形成してもよいが、アルミニウム電極で全面電極6aを形成し、銀電極で接続部6bを形成するのが好ましい。
 <反射防止膜>
 本発明の太陽電池セルが具備していてもよい反射防止膜は、受光面の表面電極が形成されていない部分に形成される膜(膜厚:0.05~0.1μm程度)であって、例えば、シリコン酸化膜、シリコン窒化膜、酸化チタン膜、これらの積層膜等から構成されるものである。
 <結晶系シリコン基板>
 本発明の太陽電池セルが具備する結晶系シリコン基板は特に限定されず、太陽電池を形成するための公知のシリコン基板(板厚:100~450μm程度)を用いることができ、また、単結晶または多結晶のいずれのシリコン基板であってもよい。
 また、上記結晶系シリコン基板はpn接合を有するが、これは、第1導電型の半導体基板の表面側に第2導電型の受光面不純物拡散領域が形成されていることを意味する。なお、第1導電型がn型の場合には、第2導電型はp型であり、第1導電型がp型の場合には、第2導電型はn型である。
 ここで、p型を与える不純物としては、ホウ素、アルミニウム等が挙げられ、n型を与える不純物としては、リン、砒素などが挙げられる。
 〔太陽電池モジュール〕
 本発明の太陽電池モジュールは、表面が半田で被覆されたインターコネクタを用いて本発明の太陽電池セルを直列に接合した太陽電池モジュールである。
 以下に、本発明の太陽電池モジュールの構成について図3を用いて説明する。
 図3に示すように、本発明の太陽電池モジュール20は、金属リボン8bの表面を半田8aで被覆したインターコネクタ8を用いて、太陽電池セル10を直列に接合したものである。
 ここで、金属リボンとしては、具体的には、例えば、導電性接着剤をコートした銅やアルミニウムリボン等を好適に用いることができる。
 また、図3における接合部の拡大断面図に示すように、表面電極1のバスバー電極1bとインターコネクタ8の半田8aとが密着しており、裏面電極6の接続部6bとインターコネクタ8の半田8aとが密着している。
 本発明の太陽電池モジュールは、バスバー電極(および裏面電極の接続部)が上記バスバー電極用組成物を用いて形成されているため、インターコネクタの半田との密着性が良好となり、容易にモジュール化することができる。
 以下、実施例を用いて、本発明のセット組成物および太陽電池セルについて詳細に説明する。ただし、本発明はこれに限定されるものではない。
 (フィンガー電極用組成物A1~A5の調製)
 ボールミルに、下記第1表に示す導電性粒子等を下記第1表中に示す組成比となるように添加し、これらを混合することによりフィンガー電極用の導電性組成物を調製した。
Figure JPOXMLDOC01-appb-T000003
 第1表中の各成分は、以下のものを使用した。
 ・銀粉:AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)
 ・溶媒:α-テルピネオール
 ・酸化亜鉛:ZnO(平均粒子径20~40nm、テイカ社製)
 ・酸化ビスマス:Bi23(平均粒子径51nm、シーアイ化成社製)
 ・ペロブスカイト化合物:SrTiO3(平均粒子径:0.8μm、日本化学工業社製
 ・導電性酸化亜鉛:ZnO:Al(平均粒子径3.5μm、本荘ケミカル社製)
 ・樹脂バインダー:EC-100FTP(エチルセルロース樹脂固形分:9%、日新化成社製)
 ・ガラスフリット:硼珪酸鉛ガラス粉末
 (バスバー電極用組成物B1~B4の調製)
 ボールミルに、下記第2表に示す導電性粒子等を下記第2表中に示す組成比となるように添加し、これらを混合することによりバスバー電極用の導電性組成物を調製した。
 なお、下記第2表中の各成分は、上記第1表と同じものを使用した。
Figure JPOXMLDOC01-appb-T000004
 (実施例1~7、比較例1~2)
 まず、シリコン基板(単結晶シリコンウェハー、LS-25TVA、156mm×156mm×200μm、信越化学工業社製)を準備し、裏面の全面にアルミニウムペーストをスクリーン印刷で塗布し、乾燥させた。
 次いで、シリコン基板の表面に、調製した各導電性組成物を下記第3表に示す組み合わせに従って、スクリーン印刷で塗布することにより、フィンガー電極の所定の配線パターンおよびバスバー電極の所定の配線パターンを形成した。
 スクリーン印刷で配線を形成した後、焼成炉にてピーク温度740℃の条件で60秒間焼成し、導電性の配線(フィンガー電極およびバスバー電極)を形成させた太陽電池セルのサンプルを作製した。
 <半田密着性>
 作製した太陽電池セルのサンプルのバスバー電極上に、半田ゴテを用いて半田リボン(組成:Sn-3Ag-0.5Cu)を実装した。
 その後、JIS K6850:1999に準じて、引張速度50mm/分で引張せん断試験を行い、破断時の荷重(MPa)を測定した。結果を下記第3表に示す。
 ここで、破断時の荷重が15MPa以上であると、太陽電池セルのモジュール化に必要な半田密着性を有していると評価できる。
 <曲線因子(FF),光電変換効率(Eff)>
 作製した各太陽電池セルのサンプルの電気特性(I-V特性)をセルテスター(山下電送社製)用いて評価し、曲線因子(FF)および光電変換効率(Eff)を求めた。結果を下記第3表に示す。なお、下記第3表中の数値は、比較例2で作製した太陽電池セルのサンプルの結果を100とした時の相対評価で表す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 第1表~第3表に示す結果から、バスバー電極の形成にも金属酸化物の含有量の多い導電性組成物(A1)を用いると、基準となる比較例2の太陽電池セルのサンプルと比較して、曲線因子(FF)および光電変換効率(Eff)は改善するものの、半田密着性が極めて劣ることが分かった(比較例1)。
 これに対し、フィンガー電極に形成に金属酸化物の含有量の多い導電性組成物(A1~A5)を用い、バスバー電極の形成に金属酸化物の含有量の少ない導電性組成物(B1~B4)を用いると、半田密着性に優れた電極を形成することができ、曲線因子(FF)および光電変換効率(Eff)に優れた太陽電池セルを作製できることが分かった(実施例1~7)。
 1 表面電極
 1a フィンガー電極
 1b バスバー電極
 2 反射防止膜
 3 n層
 4 pn接合シリコン基板
 5 p層
 6 裏面電極
 6a 全面電極(アルミニウム電極)
 6b 接続部(銀電極)
 7 結晶系シリコン基板
 8 インターコネクタ
 8a 半田
 8b 金属リボン
 10 太陽電池セル
 20 太陽電池モジュール

Claims (4)

  1.  少なくとも導電性粒子(A)、ガラスフリット(B)および溶媒(C)を含有する太陽電池集電電極形成用導電性組成物を用いて太陽電池集電電極を形成する太陽電池集電電極形成方法であって、
     前記導電性粒子(A)100質量部に対して金属酸化物(D)を3~10質量部含有するフィンガー電極形成用導電性組成物を用いてフィンガー電極を形成するフィンガー電極形成工程と、
     前記フィンガー電極形成工程の後に、前記導電性粒子(A)100質量部に対して金属酸化物(D)を3質量部未満含有するバスバー電極形成用導電性組成物を用いてバスバー電極を形成するバスバー電極形成工程と、を有する太陽電池集電電極形成方法。
  2.  少なくとも導電性粒子(A)、ガラスフリット(B)および溶媒(C)を含有する太陽電池集電電極形成用導電性組成物のセットであって、
     前記導電性粒子(A)100質量部に対して金属酸化物(D)を3~10質量部含有するフィンガー電極形成用導電性組成物と、
     前記導電性粒子(A)100質量部に対して金属酸化物(D)を3質量部未満含有するバスバー電極形成用導電性組成物と、を有する太陽電池集電電極形成用導電性組成物のセット。
  3.  受光面側の表面電極、半導体基板および裏面電極を具備し、
     少なくとも前記表面電極が、請求項2に記載の太陽電池集電電極形成用導電性組成物のセットを使用し、請求項1に記載の太陽電池集電電極形成方法を用いて形成される太陽電池セル。
  4.  表面が半田で被覆されたインターコネクタを用いて請求項3に記載の太陽電池セルを直列に接合した太陽電池モジュール。
PCT/JP2012/051235 2011-04-25 2012-01-20 太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル WO2012147378A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012001862.1T DE112012001862T5 (de) 2011-04-25 2012-01-20 Verfahren zum Ausbilden einer Solarzellenkollektorelektrode, Satz leitfähiger Zusammensetzungen zum Ausbilden einer Solarzellenkollektorelektrode und Solarzelle
CN201280003092.8A CN103140932B (zh) 2011-04-25 2012-01-20 太阳能电池集电电极形成方法、太阳能电池集电电极形成用导电性组合物的套组以及太阳能电池单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011096880A JP5338846B2 (ja) 2011-04-25 2011-04-25 太陽電池集電電極形成方法、太陽電池セルおよび太陽電池モジュール
JP2011-096880 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012147378A1 true WO2012147378A1 (ja) 2012-11-01

Family

ID=47071908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051235 WO2012147378A1 (ja) 2011-04-25 2012-01-20 太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル

Country Status (5)

Country Link
JP (1) JP5338846B2 (ja)
CN (1) CN103140932B (ja)
DE (1) DE112012001862T5 (ja)
TW (1) TWI534869B (ja)
WO (1) WO2012147378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025920A1 (ja) 2016-08-02 2018-02-08 積水化学工業株式会社 固体接合型光電変換素子、ペロブスカイト膜及び光電変換モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955791B2 (ja) * 2013-02-12 2016-07-20 株式会社ノリタケカンパニーリミテド ペースト組成物と太陽電池
KR20180063750A (ko) 2016-12-02 2018-06-12 삼성에스디아이 주식회사 태양전지용 핑거 전극의 제조방법
CN110176506B (zh) * 2019-05-31 2024-05-07 信利半导体有限公司 薄膜光伏电池串联结构及薄膜光伏电池串联的制备工艺
CN114093552A (zh) * 2021-10-29 2022-02-25 江苏正能电子科技有限公司 一种用于钙钛矿与hjt叠层太阳能电池的正面银浆及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198547A (ja) * 2000-12-27 2002-07-12 Kyocera Corp 太陽電池の製造方法
JP2007294677A (ja) * 2006-04-25 2007-11-08 Sharp Corp 太陽電池電極用導電性ペースト
JP2008135565A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 太陽電池素子、及びそれを用いた太陽電池モジュール
WO2010016186A1 (ja) * 2008-08-07 2010-02-11 京都エレックス株式会社 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771071B2 (ja) * 2006-01-24 2011-09-14 信越化学工業株式会社 スクリーン印刷用樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198547A (ja) * 2000-12-27 2002-07-12 Kyocera Corp 太陽電池の製造方法
JP2007294677A (ja) * 2006-04-25 2007-11-08 Sharp Corp 太陽電池電極用導電性ペースト
JP2008135565A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 太陽電池素子、及びそれを用いた太陽電池モジュール
WO2010016186A1 (ja) * 2008-08-07 2010-02-11 京都エレックス株式会社 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025920A1 (ja) 2016-08-02 2018-02-08 積水化学工業株式会社 固体接合型光電変換素子、ペロブスカイト膜及び光電変換モジュール

Also Published As

Publication number Publication date
CN103140932B (zh) 2016-04-13
TWI534869B (zh) 2016-05-21
JP5338846B2 (ja) 2013-11-13
TW201243920A (en) 2012-11-01
DE112012001862T5 (de) 2014-02-20
CN103140932A (zh) 2013-06-05
JP2012230950A (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5853541B2 (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
JP2013074165A (ja) 太陽電池集電電極形成用導電性組成物、太陽電池セル、および太陽電池モジュール
US10109750B2 (en) Lead-free conductive paste composition and semiconductor devices made therewith
WO2016084915A1 (ja) 導電性組成物
JP7173960B2 (ja) 太陽電池用ペースト組成物
JP6378313B2 (ja) 導電性ペースト及び太陽電池調製物におけるAl及びAgを含む粒子
JP5338846B2 (ja) 太陽電池集電電極形成方法、太陽電池セルおよび太陽電池モジュール
TW201737502A (zh) 導電性膏及太陽能電池
JP2017092253A (ja) 導電性組成物
WO2012153553A1 (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
WO2018221578A1 (ja) 太陽電池用ペースト組成物
TW201529655A (zh) 用於導電性糊料之含有丙烯酸系樹脂之有機載體
JP5844091B2 (ja) 導電性組成物、太陽電池セルおよび太陽電池モジュール
JP6431041B2 (ja) 導電性ペースト及び太陽電池調製物におけるAl、Si及びMgを含む粒子
JP5327069B2 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP2013073890A (ja) 導電性組成物、太陽電池セルおよび太陽電池モジュール
JP5630111B2 (ja) 太陽電池電極用ペーストおよび太陽電池セル
WO2012111479A1 (ja) 導電性ペースト、太陽電池、及び太陽電池の製造方法
JP2012248790A (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
WO2016193209A1 (en) Conductive paste and process for forming an electrode on a p-type emitter on an n-type base semiconductor substrate
TW201701298A (zh) 包含氧化物添加劑之導電膏
JP2016103627A (ja) 導電性組成物
TWI447181B (zh) Paste and solar cell for solar cell electrodes
JP4743350B1 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP2012238754A (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003092.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120018621

Country of ref document: DE

Ref document number: 112012001862

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777368

Country of ref document: EP

Kind code of ref document: A1