WO2012146860A1 - Dispositif de cuisson par induction - Google Patents

Dispositif de cuisson par induction Download PDF

Info

Publication number
WO2012146860A1
WO2012146860A1 PCT/FR2012/050880 FR2012050880W WO2012146860A1 WO 2012146860 A1 WO2012146860 A1 WO 2012146860A1 FR 2012050880 W FR2012050880 W FR 2012050880W WO 2012146860 A1 WO2012146860 A1 WO 2012146860A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
plate
mpa
oxides
reinforcement
Prior art date
Application number
PCT/FR2012/050880
Other languages
English (en)
Inventor
Mathilde BROCQ
René Gy
Stéphanie PELLETIER
Gaëlle FERRIZ
Emmanuel Lecomte
Original Assignee
Eurokera S.N.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46197603&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012146860(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eurokera S.N.C. filed Critical Eurokera S.N.C.
Priority to CN201280020922.8A priority Critical patent/CN103608308B/zh
Priority to ES12724678T priority patent/ES2813352T3/es
Priority to JP2014506918A priority patent/JP6050321B2/ja
Priority to KR1020137028044A priority patent/KR101926890B1/ko
Priority to EP12724678.3A priority patent/EP2702015B1/fr
Priority to US14/114,673 priority patent/US10542590B2/en
Publication of WO2012146860A1 publication Critical patent/WO2012146860A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/72Decorative coatings

Definitions

  • the invention relates to the field of induction cooking devices.
  • the induction cooking devices comprise at least one inductor arranged under a glass-ceramic plate. These devices are embedded in a worktop or in the frame of a stove.
  • the plate serves as a support for cooking utensils (pots, pans ...), which are heated thanks to the electric current induced within them by the magnetic field generated by the inductors.
  • Lithium aluminosilicate glass ceramics are used for this purpose because of their resistance to thermal shock, as a consequence of their coefficient of thermal expansion, which is zero or almost zero.
  • Vitroceramics are produced by high-temperature heat treatment of lithium aluminosilicate glass plates, which generates crystals of beta-quartz or beta-spodumene structure within the plate and whose coefficient of thermal expansion is negative. .
  • the invention relates to an induction cooking device comprising at least one inductor disposed under a heat-strengthened glass plate whose composition is not of the lithium aluminosilicate type, characterized in that the glass has the following characteristics:
  • the ratio c / a of the glass before reinforcement is at most 3.0 after Vickers indentation under a load of 1 kg, c being the length of the radial cracks and a being the half-diagonal of the Vickers footprint,
  • the ratio ⁇ / (eEa) is at least 20 K.mm -1 , or even 25 or 30 K.mm -1 , ⁇ being the maximum stress generated at the core of the glass by the thermal reinforcement in Pa, e being the thickness of the glass in mm, where E is the Young's modulus in Pa and a is the linear thermal expansion coefficient of the glass in K "1 .
  • Thermal reinforcement is also called quenching or hardening. It consists in heating the glass beyond its glass transition temperature and then cooling it sharply, generally by means of nozzles sending air on the surface of the glass. As the surface cools faster than the core of the glass, compressive stresses form on the surface of the glass plate, balanced by tension stresses at the core of the plate.
  • the performance related to these properties is such that it is possible to use them to form thin plates and / or large lateral dimensions, plates which are most likely to break.
  • the thickness of the plate is preferably at most 4.5 mm, especially 4 mm and even 3.5 mm.
  • the thickness is usually at least 2 mm.
  • the glass plate preferably has a lateral dimension of at least 0.5 m, even 0.6 m.
  • the largest dimension is usually at most 1.50 m.
  • the number of inductors is preferably at least 2, especially 3 or 4. It is indeed for this type of device that the choice of glass becomes particularly crucial.
  • the glass used in the device according to the invention preferably has at least one of the following 6 properties, according to all the possible combinations: 1.
  • the E.CC product of the Young's modulus (in Pa) and the linear thermal expansion coefficient of the glass (in K “1 ) is between 0.1 and 0.8 MPa.K -1 , in particular between 0.2 and 0.5 MPa.K -1 , in particular between 0.2 and 0.4 MPa. K "1 .
  • Too low a E.CC product makes thermal quenching more difficult, while a too high E.CC product decreases the thermal shock resistance.
  • the coefficient of linear thermal expansion of the glass is not more than 50.10 "7 / K, in particular is between 30 and 45.10 "7 / K, or even between 32 (or 35) and 45.10 " 7 / K.
  • the high coefficients of thermal expansion do not make it possible to obtain a sufficient thermal shock resistance.
  • a coefficient of thermal expansion that is too low makes it difficult to obtain sufficient reinforcement.
  • the ratio c / a of the glass before reinforcement is at most 2.8, in particular 2.7, or 2.5, and even 0.5, even 0.2, or even 0.1. This ratio is even preferably zero. Surprisingly, this property, although measured before reinforcement, has been found to have a major impact on the resistance of the plates during the actual operation of the cooking devices according to the invention. 5.
  • the ratio o / (eEa) of the glass is at least 20, especially 30 mm -1 .
  • the ratio ⁇ / (eEa) is normally at most 200 K.mm -1 , or even 100 K.mm -1 . This property has been shown to have a significant impact in eliminating the risk of breakage of the plate during operation of the cooking device.
  • the maximum stress generated at the core of the glass by the thermal reinforcement is preferably at least 20 MPa, especially 25 or 30 MPa, and even 40 MPa.
  • the glass used according to the invention preferably has all these preferred characteristics in combination.
  • Other combinations are possible, including combinations of properties 1 + 2, 1 + 3, 1 + 4, 1 + 5, 1 + 6, 2 + 3, 2 + 4, 2 + 5, 2 + 6, 3+ 4, 3 + 5, 3 + 6, 4 + 5, 4 + 6, 5 + 6, 1 + 2 + 3, 1 + 2 + 4, 1 + 2 + 5, 1 + 2 + 6, 1 + 3 + 4, 1 + 3 + 5, 1 + 3 + 6, 1 + 4 + 5, 1 + 4 + 6, 1 + 5 + 6, 1 + 2 + 3 + 4, 1 + 2 + 3 + 5, 1+ 2 + 3 + 6, 1 + 3 + 4, 1 + 2 + 3 + 5, 1+ 2 + 3 + 6, 1 + 3 + 4 + 5, 1 + 3 + 4 + 6, 1 + 3 + 5 + 6, 1 + 4 + 5 + 6, 1 + 2 + 3 + 4 + 5, 1 + 2 + 3 + 4 + 6, 1 + 2 + 3 + 5 + 6, 1 + 2 + 3 + 4 + 5, 1 + 2 + 3 + 4 + 6, 1 + 2 + 3 + 5 + 6, 1 + 2 + 3 + 4 + 5,
  • the glass used is preferably thermally tempered and preferably has the following characteristics: its thickness is at most 4.5 mm, the ratio c / a is at most 2.5, and the ratio ⁇ / ( eEa) is at least 20 K.mm -1 , or even 30 K.mm -1 .
  • the coefficient of linear thermal expansion is measured according to ISO standard 7991: 1987 between 20 and 300 ° C and expressed in K -1 .
  • the lower annealing temperature is measured according to ISO 7884-7: 1987.
  • the Young modulus (or modulus of elasticity) E is measured by four-point bending on a 100 * 10 * 4 mm 3 glass specimen.
  • the two lower supports are located at a distance of 90 mm from each other, while the two upper supports are located at a distance of 30 mm from each other.
  • the upper supports are centered relative to the lower supports.
  • the force is applied to the middle of the test piece, from above.
  • Deformation is measured using a strain gauge, and Young's modulus is calculated as the ratio of stress to deformation. The uncertainty of measurement is generally of the order of 3% in relative.
  • the Young's modulus is expressed in Pa.
  • the c / a ratio is measured as detailed below.
  • the measurements of a (half-diagonal of the Vickers impression) and c (length of the radial cracks, starting from the corners of the impression, in the diagonal direction) are made using a optical microscope 1 h after the experiment. The result is the arithmetic mean from a set of 10 measurements.
  • the core stress ⁇ (maximum voltage stress generated at the core of the glass by thermal reinforcement) is measured by photoelasticimetry using a polariscope, for example the polariscope marketed by GlasStress Ltd under the name SCALP-04. From a plate, the stress is generally measured at the center of the plate (2 measurements), and at the 4 corners, at least 10 cm from the edges. The result is an average of these 6 measurements, expressed in Pa.
  • the composition of the glass is of the borosilicate type.
  • the chemical composition of the glass preferably comprises silica S1O 2 in a content by weight ranging from 70 to 85%, boron oxide B 2 O 3 in a weight content ranging from 8% to 20%, and less an alkaline oxide, the total weight content of alkaline oxides ranging from 1 to 10%.
  • the chemical composition of the borosilicate glass preferably comprises (or consists essentially of) the following constituents, varying within the weight limits defined below:
  • AI2O3 0 - 5%, especially 0 - 3% or 2 - 5%
  • the composition may further comprise at least one of the following oxides: MgO, CaO, SrO, BaO, ZnO, in a total weight content ranging from 0 to 10%, in particular CaO in a weight content ranging from 1 to 2% .
  • the composition of the glass is of the alumino-borosilicate type, in particular free of alkaline oxides.
  • the chemical composition of the glass preferably comprises silica S1O 2 in a content by weight ranging from 45% to 68%, Al 2 O 3 alumina in a weight content ranging from 8% to 20% by weight.
  • free of alkali oxides is meant that the total weight content of alkaline oxides is at most 1%, especially 0.5%, and even 0.1%.
  • the chemical composition of the aluminosilicate glass preferably comprises (or consists essentially of) the following constituents, varying within the weight limits defined below:
  • R 2 O at most 10%, especially 1%.
  • RO refers to the alkaline earth oxides MgO, CaO, SrO and BaO
  • R 2 O refers to alkaline oxides
  • the expression "essentially consists of” must be understood in that the aforementioned oxides constitute at least 96% or even 98% of the weight of the glass.
  • the composition usually comprises additives for refining glass or coloring glass.
  • the refining agents are typically selected from oxides of arsenic, antimony, tin, cerium, halogens, metal sulfides, especially zinc sulfide.
  • the weight content of refining agents is normally at most 1%, preferably between 0.1 and 0.6%.
  • the coloring agents are iron oxide, present as impurity in most raw materials, cobalt oxide, chromium, copper, vanadium, nickel, selenium.
  • the total weight content of coloring agents is normally at most 2%, or even 1%.
  • the plates can be manufactured in a known manner by melting pulverulent raw materials and then forming the glass obtained.
  • the melting is typically performed in refractory furnaces using burners using as the oxidizer air or, better, oxygen, and as a fuel of natural gas or fuel oil.
  • Resistors of molybdenum or platinum immersed in the molten glass may also provide all or part of the energy used to obtain a molten glass.
  • Subjects raw materials (silica, borax, colemanite, hydrated alumina, limestone, dolomite, etc.) are introduced into the furnace and undergo, under the effect of high temperatures, various chemical reactions, such as decarbonation reactions, of actual fusion ...
  • the maximum temperature reached by the glass is typically at least 1500 ° C, especially between 1600 and 1700 ° C.
  • the forming of the plate glass can be done in known manner by rolling the glass between metal or ceramic rollers, or by floating, technique of pouring the molten glass on a bath of molten tin.
  • the glass plate is capable of concealing the inductors, the electrical wiring, as well as the control and control circuits of the cooking device. Preferably, only the display devices are visible to the user. Especially when the transmission of the glass plate as such is too high (typically above 3%), it is possible to provide a portion of the surface of the plate (the one in the cooking device is located at view of the elements to be concealed) a coating deposited on and / or under the plate, said coating having the ability to absorb and / or reflect and / or diffuse the light radiation.
  • the coating can be deposited under the plate, that is to say on the surface facing the internal elements of the device, also called “lower face", and / or on the plate, that is to say opposite superior.
  • the coating may be continuous or discontinuous, for example having patterns, or a grid pattern or stitching or speckling. It may especially be a screen enamel disposed on the upper face of the plate. In some cases, the coating may be continuous in some areas, and discontinuous in other areas. Thus, it is possible to have a discontinuous coating at the level of the heating elements and a continuous coating elsewhere, while reserving an uncoated area with respect to the light-emitting devices.
  • the light transmittance of the coated plate in the coated areas is preferably at most 0.5% and even 0.2%.
  • the coating can be completely opaque.
  • the area facing the light emitting devices may also be coated, provided that the coating is not opaque.
  • the plate also has an upper face decoration, generally enamel, whose function is decorative, and not intended to mask the internal elements of the cooking device.
  • the decoration generally allows to identify the heating zones (for example by representing them in the form of a circle), the control zones (in particular the sensory keys), to bring information, to represent a logo.
  • This decoration is to differentiate from the coating described above and more specifically in what follows, which is a real means of masking.
  • the coating may be an organic-based layer, such as a layer of paint or lacquer, or a mineral-based layer, such as an enamel or a metal layer, or an oxide, nitride or oxynitride. , oxycarbide of a metal.
  • the organic layers will be deposited on the lower face, while the mineral layers, including enamels, will be deposited on the upper face.
  • the paint that can be used is advantageously chosen so as to withstand high temperatures and have a stability in time in its color and cohesion with the plate, and so as not to affect the mechanical properties of the plate.
  • the paint used advantageously has a degradation temperature greater than 300 ° C., in particular between 350 ° C. and 700 ° C. It is generally based on resin (s), if appropriate loaded (for example in pigment (s) or dye (s)) and optionally diluted to adjust its viscosity for application to the plate, thinner or solvent (for example, white spirit, toluene, solvents of the aromatic hydrocarbon type, such as the solvent sold under the trademark Solvesso 100® by Exxon, etc.) being optionally removed during the subsequent curing of the paint.
  • resin (s) if appropriate loaded (for example in pigment (s) or dye (s)) and optionally diluted to adjust its viscosity for application to the plate, thinner or solvent (for example, white spirit, toluene, solvents of the aromatic hydrocarbon type, such as the solvent sold under the trademark Solvesso 100® by Exxon, etc.) being optionally removed during the subsequent curing of the paint.
  • the paint may be a paint based on at least one silicone resin, in particular a silicone resin modified by the incorporation of at least one radical such as an alkyd or phenyl or methyl radical, etc.
  • pigments as colorants such as enamel pigments (chosen for example from components containing metal oxides, such as chromium oxides, copper oxides, iron oxides, cobalt oxides, nickel oxides, or among copper chromates, cobalt chromates, etc.), TiO 2 , etc.
  • pigments particles of one or more metals such as aluminum, copper, iron, etc., or alloys based on at least one of these metals.
  • the pigments may also be "effect” (pigments with a metallic effect, interference pigments, pearlescent pigments, etc.), advantageously in the form of flakes of aluminum oxide (Al 2 O 3) coated with metal oxides; we can mention by for example, the pigments marketed by MERCK under the trademark "Xirallic®", such as pigments or interference pigments Ti0 2 / Al 2 O 3 (Xirallic® T-50-10SW Crystal Silver or Xirallic® T-60-23SW Galaxy Blue or Xirallic® T-60-24SW Stellar Green), or Fe 2 0 3 / Al 2 O 3 pigments (Xirallic® T-60-50SW Fireside Copper or Xirallic® F-60-51 Radiant Red).
  • effect pigments with a metallic effect, interference pigments, pearlescent pigments, etc.
  • Xirallic® such as pigments or interference pigments Ti0 2 / Al 2 O 3 (Xirallic® T-50-10SW Crystal Silver or Xirallic® T-60-23SW Galaxy Blue or
  • effect pigments that may be used are, for example, nacreous pigments based on mica particles coated with oxides or combination of oxides (chosen for example from TiO 2 , Fe 2 O 3 , Cr 2 O 3 , etc.), such as than those marketed under the trade name IRIODIN® by Merck, or based on oxide platelets coated with oxides or combination of oxides (such as those above), such as those marketed under the trade name Colorstream® by Merck. . Charges or other conventional coloring pigments may also be incorporated into the aforementioned effect pigments.
  • the paint used comprises at least (or is based on) a high temperature resistant (co) polymer (in particular having a degradation temperature greater than 400 ° C.), this paint may or may not contain at least a mineral filler to ensure cohesion or mechanical reinforcement and / or coloring.
  • This (co) polymer or resin may in particular be one or more of the following resins: polyimide resin, polyamide, polyfluorinated, polysilsesquioxane and / or polysiloxane.
  • Polysiloxane resins are particularly preferred: they are colorless and therefore capable of being colored (for example with fillers or pigments giving them the desired color); they can be used in the crosslinkable state (generally by the presence of SiOH and / or SiOMe groups in their formula, these groups most often involved up to 1 to 6% by weight of their total mass), or transformed (crosslinked or pyrolyzed). They advantageously have, in their formula, phenyl, ethyl, propyl and / or vinyl units, very advantageously phenyl and / or methyl units. They are preferably chosen from polydimethylsiloxanes, polydiphenylsiloxanes, phenylmethylsiloxane polymers and dimethylsiloxane-diphenylsiloxane copolymers.
  • the crosslinkable polysiloxane resins preferably used generally have a weight average molecular weight (Mw) of between 2000 and 300 000 Daltons.
  • Dow Corning® resins 804, 805, 806, 808, 840, 249, 409 HS and 418 HS, Rhodorsil® 6405 and 6406 from Rhodia, Triplus® from General Electric Silicone and SILRES® 604 from Wacker Chemie GmbH, used alone or as a mixture, are ideally suited.
  • the resins thus selected are particularly resistant to induction heating.
  • the paint may be free of mineral fillers, especially if its thickness remains low.
  • mineral fillers are generally used, for example to mechanically reinforce the layer of paint deposited, contribute to the cohesion of said layer, its attachment to the plate, to fight against the appearance and propagation of cracks within it etc.
  • at least a fraction of said mineral fillers preferably has a lamellar structure.
  • Charges can also intervene for coloring. Where appropriate, several types of additional charges may intervene (eg non-colored fillers for mechanical reinforcement and other fillers such as pigments for coloring).
  • the effective amount of mineral fillers generally corresponds to a volume ratio of 10 to 60%, more particularly 15 to 30% (volume ratio based on the total volume of the charges and paint).
  • each layer of paint deposited may be between 1 and 100 microns, especially between 5 and 50 microns.
  • the application of the paint or resin can be carried out by any suitable technique, such as deposition by brush, squeegee, spraying, electrostatic deposition, dipping, curtain deposition, silk screening, inkjet etc. . and is preferably by screen printing (or possibly squeegee deposit).
  • the screen printing technique is particularly advantageous in that it makes it easy to reserve certain areas of the plate, in particular the areas that will be opposite the light-emitting devices, or even the zones situated opposite the radiant heating means. When other techniques are used, the reserves can be obtained by arranging adequate masks on the areas that one does not wish to cover.
  • the deposit may be followed by a heat treatment intended to ensure, depending on the case, drying, crosslinking, pyrolysis, etc. of the layer or layers deposited.
  • At least one paint layer is chosen in which the resin has been at least partly cross-linked and / or pyrolyzed, partially or totally, and / or has not been heat-treated (the resin may optionally be intended to be removed from places where it has not been heat treated), said of paint consisting, in part or in whole, of a mixture of a) mineral fillers and b) at least one crosslinkable polysiloxane resin (almost) free of precursor (s) of carbonaceous material (s) and / or at least one crosslinked polysiloxane resin (substantially) free of carbonaceous material (s) and precursor (s) of carbonaceous material (s) and / or a porous silica-based mineral matrix (the resin having for example been pyrolyzed and thus being mineralized), (almost) free of carbonaceous material (s), the mineral fillers being distributed in the resin or the matrix.
  • the paint layer is preferably covered with a protective layer, for example made of silicone resin modified with alkyl radicals or polysiloxane resin.
  • the coating can also be an enamel.
  • the enamel is formed from a powder comprising a glass frit and pigments (these pigments can also be part of the frit), and a medium for application to the substrate.
  • the glass frit is preferably obtained from a vitrifiable mixture generally comprising oxides chosen in particular from oxides of silicon, zinc, sodium, boron, lithium, potassium, calcium, aluminum, magnesium, barium, strontium, antimony, titanium, zirconium, bismuth. Particularly suitable glass frits are described in applications FR 2782318 or WO 2009/092974.
  • the pigments may be chosen from compounds containing metal oxides such as chromium, copper, iron, cobalt, nickel oxides, etc., or may be chosen from copper or cobalt chromates, etc., the rate of pigment (s) overall sinter (s) / pigment (s) being for example between 30 and 60% by weight.
  • the pigments may also be "effect" (metallic effect pigments, interference pigments, pearlescent pigments, etc.), such as those mentioned above in connection with a paint.
  • effect pigments metallic effect pigments, interference pigments, pearlescent pigments, etc.
  • the amount of effect pigments may be for example of the order of 30 to 60% by weight relative to the base (glass frit) in which they are incorporated.
  • the layer may in particular be deposited by screen printing
  • this medium may include in particular solvents, diluents, oils, resins, etc.), thickness of the layer being for example of the order of 1 to 6 ⁇ m.
  • the screen printing technique is particularly advantageous in that it makes it easy to reserve certain areas of the plate, especially the areas that will be opposite the light-emitting devices.
  • the or each layer of enamel used to form the coating is preferably a single layer, isolated from other layer (s) possible enamel (s), and thickness generally not exceeding 6 ⁇ , preferably not exceeding 3 ⁇ .
  • the enamel layer is generally deposited by screen printing.
  • the coating may further be a metal layer or an oxide, nitride, oxynitride, oxycarbide of a metal.
  • This layer may be absorbent and / or reflective.
  • This layer may therefore be, for example, at least one metallic or essentially metallic single layer (for example a thin layer of Ag, W, Ta, Mo, Ti, Al, Cr, Ni, Zn, Fe, or an alloy with base of several of these metals, or a thin layer based on stainless steels, etc.), or may be a stack of (sub) layers comprising one or more metal layers, for example a metallic (or essentially metallic) layer advantageously protected (coated on at least one face and preferably on its two opposite sides) by at least one layer of dielectric material (for example at least one layer of silver or aluminum coated with at least one protective layer in S1 3 N 4 - in particular a stack Si 3 N 4 / metal / Si 3 N 4 - or SiO 2 ).
  • the layer may be formed of a stack of (sub) thin layers based on dielectric material (s) alternatively to strong (preferably greater than 1.8, or even 1.95 , or 2, as explained above) and weak (preferably less than 1.65) refractive indices, in particular material (x) of metal oxide type (or metal nitride or oxynitride), such as T1O2, S1O2 or mixed oxide (tin-zinc, zinc-titanium, silicon-titanium, etc.) or alloy, etc., the (sub) layer deposited where appropriate first and thus being against the inner face of the plate being advantageously a layer of strong refractive index.
  • the material (sub) layer with a high refractive index there may be mentioned for example T1O 2 or optionally SNU 2, S1 3 N 4, Sn x Zn y O z, TiO x or Si x Ti y O z, ZnO, Zr0 2 , b 2 ⁇ 5 etc.
  • a low refractive index (sub) layer material there may be mentioned, for example, S10 2 , or optionally an oxynitride and / or a silicon oxycarbide, or a mixed oxide of silicon and aluminum, or a fluorinated compound, for example of type MgF 2 or AIF 3 , etc.
  • the stack may comprise, for example, at least three (sub) layers, the layer closest to the substrate being a layer of high refractive index, the intermediate layer being a layer with a low refractive index, and the outer layer being a layer. with a high refractive index (for example a stack comprising the following alternating oxide layers: (substrate) - Ti0 2 / Si0 2 / Ti0 2 ).
  • the thickness (geometric) of each layer based on thin layer (s) deposited is generally between 15 and 1000 nm, in particular 20 and 1000 nm (the thickness of the substrate being generally a few millimeters, the most often around 4 mm), the thickness of each of the (sub) layers (in the case of a stack) may vary between 5 and 160 nm, generally between 20 and 150 nm (for example in the case of stacking TiO 2 / SiO 2 / TiO 2, it may be of the order of a few tens of nanometers, for example of the order of 60-80 nm, for the layers of T1O 2 and of the order of 60 -80 or 130-150 nm for the S1O 2 layer according to the aspect, for example rather silvery or rather golden, which one wishes to obtain).
  • the layer based on thin layer (s) may be applied to the plate in line or in recovery (for example after cutting and / or shaping of said plate). It can be applied in particular by pyrolysis (powder, liquid, gaseous), by evaporation, or by spraying. Preferably, it is deposited by spraying and / or by a vacuum deposition method and / or assisted by plasma; in particular, the mode of deposition of layer (s) by cathodic sputtering (for example by magnetron sputtering), in particular assisted by a magnetic field (and direct or alternating current) is used, the oxides or nitrides being deposited from the target ( s) metal or alloy or silicon or ceramic (s), etc.
  • the oxide layers can be deposited by reactive sputtering of the metal in question in the presence of oxygen and the nitride layers in the presence of nitrogen.
  • S1O 2 or S1 3 N 4 we can start from a silicon target that is doped slightly with a metal like aluminum to make it sufficiently conductive.
  • the or (sub) layers chosen according to the invention condense on the substrate in a particularly homogeneous manner, without any separation or delamination occurring.
  • the cooking device may comprise at least one light emitting device, at least one control and control device, the assembly being included in a box.
  • the or each light-emitting device is advantageously chosen from light-emitting diodes (for example forming part of 7-segment displays), liquid crystal (LCD), light-emitting diode (OLED) and optionally organic (OLED) displays.
  • the colors seen through the plate are various: red, green, blue, and all possible combinations, including yellow, purple, white ...
  • These devices emitting light can be purely decorative, for example visually separate different areas of the plate. Most often, however, they will have a functional role by displaying various useful information for the user, including indication of the heating power, temperature, cooking programs, cooking time, areas of the plate exceeding a predetermined temperature .
  • the control and control devices generally comprise sensitive keys, for example of the capacitive or infrared type.
  • the set of internal elements is usually attached to a box, often metal, which is therefore the lower part of the cooking device, normally hidden in the worktop or in the body of the stove.
  • a sheet of borosilicate glass called Bl, 3.8 mm thick and having the weight composition defined below is produced in known manner by melting and float forming. 590 * 590 mm 2 plates are cut from this sheet of glass.
  • the ratio c / a is 1.7.
  • the glass sheet is then thermally quenched by heating at 730 ° C and cooling in air, so that the maximum core stress is 30 MPa.
  • the properties of the glass sheet are as follows:
  • Lower annealing temperature 500 ° C. ⁇ / (e.E.a): 39 K / mm.
  • a sheet of borosilicate glass called B2, 4.0 mm thick and having the weight composition defined below is produced in known manner by melting and float forming. 590 * 590 mm 2 plates are cut from this sheet of glass.
  • the ratio c / a is 1.9.
  • the glass sheet is then thermally quenched by heating at 730 ° C and cooling in air, so that the maximum core stress is 20 MPa.
  • the properties of the glass sheet are as follows: Young's modulus (E): 61 GPa.
  • plates B1 and B2 are compared to two comparative plates of the same size, one being a glass plate called C, of soda-lime-calcium composition, the other a glass plate called B3, borosilicate composition.
  • the glass C has the following weight composition:
  • the thickness is 4 mm.
  • the ratio c / a is 3.4.
  • the glass sheet is thermally quenched so that the maximum core stress is 70 MPa.
  • Lower annealing temperature 582 ° C. ⁇ / (e.E.A): 30 K / mm.
  • Borosilicate glass B3 has the following weight composition:
  • the thickness of the glass is 3.8 mm.
  • the ratio c / a is 1.7.
  • the glass sheet is thermally reinforced so that the maximum core stress is 4 MPa.
  • the so-called "empty pan” test is performed as follows.
  • the center of the plate is positioned on the hearth of an induction table equipped with a reference inductor EGO A2, without clamping the edges of the plate.
  • Two hundred milliliters of water are boiled at maximum power in a Lagostina Pandora pan 20 cm in diameter. Once all the water has evaporated, the table is extinguished after 10 to 15 minutes of empty pan.
  • the maximum temperature reached by the lower face plate reaches 390 ° C.
  • the plate is considered satisfactory if no breakage is observed after this test cycle.
  • the glass plates B1 and B2 thus prove to be useful substitutes for lithium aluminosilicate glass ceramics in induction cooking devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Glass Compositions (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

L'invention a pour objet un dispositif de cuisson par induction comprenant au moins un inducteur disposé sous une plaque en verre renforcé thermiquement dont la composition n'est pas du type aluminosilicate de lithium, caractérisé en ce que le verre présente les caractéristiques suivantes : - son épaisseur est d'au plus 4,5 mm, - le rapport c/a du verre avant renforcement est d'au plus 3,0 après indentation Vickers sous une charge de 1kg, c étant la longueur des fissures radiales et a étant la demi-diagonale de l'empreinte Vickers, - le rapport σ/ (e.E.α) est d'au moins 20 K.mm-1, voire 30 K.mm-1, σ étant la contrainte maximale générée au cœur du verre par le renforcement thermique en Pa, e étant l'épaisseur du verre en mm, E étant le module de Young en Pa et α étant le coefficient de dilatation thermique linéaire du verre en K-1.

Description

DISPOSITIF DE CUISSON PAR INDUCTION
L' invention se rapporte au domaine des dispositifs de cuisson par induction.
Les dispositifs de cuisson par induction comprennent au moins un inducteur disposé sous une plaque en vitrocéramique . Ces dispositifs sont encastrés dans un plan de travail ou dans le bâti d'une cuisinière. La plaque sert de support aux ustensiles de cuisson (casseroles, poêles...) , lesquels sont chauffés grâce au courant électrique induit en leur sein par le champ magnétique généré par les inducteurs. Les vitrocéramiques d' aluminosilicate de lithium sont employées à cet effet grâce à leur résistance au choc thermique, conséquence de leur coefficient de dilatation thermique nul ou quasi-nul. Les vitrocéramiques sont produites en soumettant à un traitement thermique à haute température des plaques de verre d' aluminosilicate de lithium, traitement qui génère au sein de la plaque des cristaux de structure beta-quartz ou beta-spodumène dont le coefficient de dilatation thermique est négatif.
Il a été proposé en 1980, par la demande de brevet GB 2 079 119, d'utiliser en lieu et place de la vitrocéramique des plaques de verre épaisses (de 5 ou 6 mm d'épaisseur) éventuellement trempées. Ces plaques n'ont toutefois jamais été commercialisées, car leur résistance thermomécanique s'est révélée insuffisante pour une utilisation pratique et quotidienne, si bien que les dispositifs de cuisson par induction sont, 30 ans après, toujours à base de vitrocéramique.
Les inventeurs ont pu mettre en évidence que certaines plaques de verre pouvaient se prêter à une utilisation concrète dans des dispositifs de cuisson par induction, en satisfaisant les tests les plus sévères.
L'invention a pour objet un dispositif de cuisson par induction comprenant au moins un inducteur disposé sous une plaque en verre renforcé thermiquement dont la composition n'est pas du type aluminosilicate de lithium, caractérisé en ce que le verre présente les caractéristiques suivantes :
- son épaisseur est d'au plus 4,5 mm,
- le rapport c/a du verre avant renforcement est d'au plus 3,0 après indentation Vickers sous une charge de lkg, c étant la longueur des fissures radiales et a étant la demi-diagonale de l'empreinte Vickers,
- le rapport σ/ (e.E.a) est d'au moins 20 K.mm-1, voire 25 ou 30 K.mm-1, σ étant la contrainte maximale générée au cœur du verre par le renforcement thermique en Pa, e étant l'épaisseur du verre en mm, E étant le module de Young en Pa et a étant le coefficient de dilatation thermique linéaire du verre en K"1.
Le renforcement thermique est aussi appelé trempe ou durcissement. Il consiste à réchauffer le verre au-delà de sa température de transition vitreuse, puis à le refroidir brutalement, généralement au moyen de buses envoyant de l'air sur la surface du verre. Comme la surface se refroidit plus vite que le cœur du verre, des contraintes en compression se forment à la surface de la plaque de verre, équilibrées par des contraintes en tension au cœur de la plaque.
Les performances liées à ces propriétés sont telles qu' il est possible de les utiliser pour former des plaques minces et/ou de grande dimensions latérales, plaques qui sont les plus susceptibles de casser. L'épaisseur de la plaque est de préférence d'au plus 4,5 mm, notamment 4 mm et même 3,5 mm. L'épaisseur est généralement d'au moins 2 mm. La plaque en verre présente de préférence une dimension latérale d'au moins 0,5 m, voire 0,6 m. La dimension la plus grande est généralement d'au plus 1,50 m. Le nombre d'inducteurs est de préférence d'au moins 2, notamment 3 ou 4. C'est en effet pour ce type de dispositifs que le choix du verre devient tout particulièrement crucial.
Le verre utilisé dans le dispositif selon l'invention présente de préférence au moins une des 6 propriétés suivantes, selon toutes les combinaisons possibles : 1. le produit E.CC du module de Young (en Pa) et du coefficient de dilatation thermique linéaire du verre (en K"1) est compris entre 0,1 et 0,8 MPa.K"1, notamment entre 0,2 et 0,5 MPa.K"1, en particulier entre 0,2 et 0,4 MPa.K"1. Un produit E.CC trop faible rend la trempe thermique plus difficile, tandis qu'un produit E.CC trop élevé diminue la résistance au choc thermique.
2. la température inférieure de recuit du verre est d' au moins 500°C, notamment 600°C et même 630°C. Cette température est de préférence d'au plus 800 °C, notamment 700 °C. Fréquemment appelée « Strain point » dans la technique, elle correspond à la température à laquelle la viscosité du verre est de 1014'5 Poises (1 Poise = 0,1 Pa.s) . Des températures inférieures de recuit élevées permettent d'éviter toute détrempe du verre pendant le fonctionnement du dispositif de cuisson.
3. le coefficient de dilatation thermique linéaire du verre est d'au plus 50.10"7/K, notamment est compris entre 30 et 45.10"7/K, voire entre 32 (ou 35) et 45.10"7/K. Les coefficients de dilatation thermique élevés ne permettent pas d'obtenir une résistance au choc thermique suffisante. En revanche, un coefficient de dilatation thermique trop faible rend difficile l'obtention d'un renforcement suffisant .
4. le rapport c/a du verre avant renforcement est d'au plus 2,8, notamment 2,7, ou 2,5, et même 0,5, voire 0,2, ou encore 0,1. Ce rapport est même de préférence nul. De manière surprenante, cette propriété, pourtant mesurée avant renforcement, s'est révélée avoir un impact de première importance sur la résistance des plaques durant le fonctionnement effectif des dispositifs de cuisson selon 1 ' invention . 5. le rapport o/(e.E.a) du verre est d'au moins 20, notamment 30 K.mm-1. Le rapport σ/ (e.E.a) est normalement d'au plus 200 K.mm-1, voire 100 K.mm-1. Cette propriété s'est révélée avoir un impact important pour éliminer le risque de casse de la plaque pendant le fonctionnement du dispositif de cuisson.
6. la contrainte maximale générée au cœur du verre par le renforcement thermique est de préférence d'au moins 20 MPa, notamment 25 ou 30 MPa, et même 40 MPa.
Afin d'optimiser sa résistance thermomécanique, le verre utilisé selon l'invention présente de préférence toutes ces caractéristiques préférées en combinaison. D'autres combinaisons sont possibles, notamment les combinaisons des propriétés 1+2, 1+3, 1+4, 1+5, 1+ 6, 2+3, 2+4, 2+5, 2+6, 3+4, 3+5, 3+6, 4+5, 4+6, 5+6, 1+2+3, 1+2+4, 1+2+5, 1+2+6, 1+3+4, 1+3+5, 1+3+6, 1+4+5, 1+4+6, 1+5+6, 1+2+3+4, 1+2+3+5, 1+2+3+6, 1+3+4+5, 1+3+4+6, 1+3+5+6, 1+4+5+6, 1+2+3+4+5, 1+2+3+4+6, 1+2+3+5+6, 1+2+4+5+6, 1+3+4+5+6.
En particulier, le verre utilisé est de préférence trempé thermiquement et présente préférentiellement les caractéristiques suivantes : son épaisseur est d'au plus 4,5 mm, le rapport c/a est d'au plus 2,5, et le rapport σ/ (e.E.a) est d'au moins 20 K.mm-1, voire 30 K.mm-1.
Le coefficient de dilatation thermique linéaire est mesuré selon la norme ISO 7991 :1987 entre 20 et 300°C et exprimé en K-1. La température inférieure de recuit est mesurée selon la norme ISO 7884-7 :1987.
Le module de Young (ou module d'élasticité) E est mesuré par flexion quatre points sur une éprouvette de verre de 100*10*4 mm3. Les deux appuis inférieurs sont situés à une distance de 90 mm l'un de l'autre, tandis que les deux appuis supérieurs sont situés à une distance de 30 mm l'un de l'autre. Les appuis supérieurs sont centrés par rapport aux appuis inférieurs. La force est appliquée au milieu de l' éprouvette, par au-dessus. La déformation est mesurée à l'aide d'une jauge de contrainte, et le module de Young est calculé comme étant le rapport entre la contrainte et la déformation. L'incertitude de mesure est généralement de l'ordre de 3% en relatif. Le module de Young est exprimé en Pa.
Le rapport c/a est mesuré comme détaillé ci-après.
Un indenteur Vickers de type TestWell FM7 est chargé à P=1000 g à température ambiante, pendant 30 s, la vitesse de descente étant égale à 50 ym/s . Les mesures de a (demi- diagonale de l'empreinte Vickers) et c (longueur des fissures radiales, partant des coins de l'empreinte, dans la direction de la diagonale) sont effectuées à l'aide d'un microscope optique 1 h après l'expérience. Le résultat est la moyenne arithmétique issue d'un ensemble de 10 mesures.
La contrainte à cœur σ (contrainte maximale en tension générée au cœur du verre par le renforcement thermique) est mesurée par photoélasticimétrie à l'aide d'un polariscope, par exemple le polariscope commercialisé par la société GlasStress Ltd sous la dénomination SCALP- 04. A partir d'une plaque, on mesure généralement la contrainte au niveau du centre de la plaque (2 mesures) , et au niveau des 4 coins, à au moins 10 cm des bords. Le résultat est une moyenne de ces 6 mesures, exprimé en Pa.
Selon un mode de réalisation préféré, la composition du verre est du type borosilicate.
Dans ce cas la composition chimique du verre comprend de préférence de la silice S1O2 en une teneur pondérale allant de 70 à 85%, de l'oxyde de bore B2O3 en une teneur pondérale allant de 8% à 20% et au moins un oxyde alcalin, la teneur pondérale totale en oxydes alcalins allant de 1 à 10%.
La composition chimique du verre borosilicate comprend de préférence (ou consiste essentiellement en) les constituants suivants, variant dans les limites pondérales ci-après définies :
Si02 70 - 85 %, notamment 75 - 85 %
B203 8 - 16%, notamment 10 - 15 % ou 9 - 12%
AI2O3 0 - 5 %, notamment 0 - 3% ou 2 - 5%
K20 0 - 2 %, notamment 0 -1 %
Na2<0 1 - 8 %, notamment 2 - 6 %.
De préférence, la composition peut en outre comprendre au moins un des oxydes suivants : MgO, CaO, SrO, BaO, ZnO, en une teneur pondérale totale allant de 0 à 10%, notamment CaO en une teneur pondérale allant de 1 à 2%. Selon un autre mode de réalisation préféré, la composition du verre est du type alumino-boro-silicate, notamment dépourvu d'oxydes alcalins.
Dans ce cas la composition chimique du verre comprend de préférence de la silice S1O2 en une teneur pondérale allant de 45% à 68%, de l'alumine AI2O3 en une teneur pondérale allant de 8 à 20%, de l'oxyde de bore B2O3 en une teneur pondérale allant de 4% à 18%, des oxydes alcalino-terreux choisis parmi MgO, CaO, SrO et BaO, en une teneur totale allant de 5 à 30%, la teneur pondérale totale en oxydes alcalins ne dépassant pas 10%, notamment 1%, voire 0,5%. Par « dépourvu d'oxydes alcalins », on entend que la teneur totale pondérale en oxydes alcalins est d'au plus 1%, notamment 0,5%, et même 0,1%.
La composition chimique du verre alumino-boro- silicate comprend de préférence (ou consiste essentiellement en) les constituants suivants, variant dans les limites pondérales ci-après définies :
Si02 45 - 68 %, notamment 55 - 65 % AI2O3 8 - 20 %, notamment 14 - 18 %
B203 4 - 18 %, notamment 5 - 10 %
RO 5 - 30 %, notamment 5 - 17 %
R2O au plus 10 %, notamment 1 %.
Comme il est d'usage dans la technique, l'expression « RO » désigne les oxydes alcalino-terreux MgO, CaO, SrO et BaO, tandis que l'expression « R2O » désigne les oxydes alcalins. De telles composition permettent d'obtenir des rapports c/a très faibles, notamment d'au plus 1, voire 0, 6.
L'expression « consiste essentiellement en » doit être comprise en ce sens que les oxydes précités constituent au moins 96%, voire 98% du poids du verre. La composition comprend usuellement des additifs servant à l'affinage du verre ou à la coloration du verre. Les agents d'affinage sont typiquement choisis parmi les oxydes d'arsenic, d'antimoine, d'étain, de cérium, les halogènes, les sulfures métalliques, notamment le sulfure de zinc. La teneur pondérale en agents d' affinage est normalement d' au plus 1%, de préférence entre 0,1 et 0,6%. Les agents de coloration sont l'oxyde de fer, présent comme impureté dans la plupart des matières premières, l'oxyde de cobalt, de chrome, de cuivre, de vanadium, de nickel, le sélénium. La teneur pondérale totale en agents de coloration est normalement d'au plus 2%, voire 1%. L'introduction d'un ou de plusieurs de ces agents peut conduire à obtenir une plaque de verre sombre, de très faible transmission lumineuse (typiquement d'au plus 3%, notamment 2% et même 1%), qui présentera l'avantage de dissimuler les inducteurs, le câblage électrique, ainsi que les circuits de commande et de contrôle du dispositif de cuisson. Une autre alternative, décrite plus loin dans le texte, consiste à munir une partie de la surface de la plaque d'un revêtement opaque ou substantiellement opaque, ou à disposer un matériau opaque, de préférence de couleur sombre, entre la plaque et les éléments internes du dispositif .
Les plaques peuvent être fabriquées de manière connue par fusion de matières premières pulvérulentes puis formage du verre obtenu. La fusion est typiquement réalisée dans des fours réfractaires à l'aide de brûleurs utilisant comme comburant de l'air ou, mieux, de l'oxygène, et comme combustible du gaz naturel ou du fioul. Des résistances en molybdène ou en platine immergées dans le verre en fusion peuvent également apporter toute ou partie de l'énergie utilisée pour obtenir un verre fondu. Des matières premières (silice, borax, colémanite, alumine hydratée, calcaire, dolomie etc.) sont introduites dans le four et subissent sous l'effet des hautes températures diverses réactions chimiques, telles que des réactions de décarbonatation, de fusion proprement dite... La température maximale atteinte par le verre est typiquement d'au moins 1500°C, notamment comprise entre 1600 et 1700°C. Le formage du verre en plaques peut se faire de manière connue par laminage du verre entre des rouleaux métalliques ou céramiques, ou encore par flottage, technique consistant à déverser le verre fondu sur un bain d' étain en fusion.
Comme indiqué supra, il est préférable que la plaque de verre soit apte à dissimuler les inducteurs, le câblage électrique, ainsi que les circuits de commande et de contrôle du dispositif de cuisson. De préférence, seuls les dispositifs d'affichage sont visibles par l'utilisateur. Notamment lorsque la transmission de la plaque de verre en tant que telle est trop élevée (typiquement au-delà de 3%) , il est possible de munir une partie de la surface de la plaque (celle qui dans le dispositif de cuisson est située au regard des éléments à dissimuler) d'un revêtement déposé sur et/ou sous la plaque, ledit revêtement ayant la capacité d'absorber et/ou de réfléchir et/ou de diffuser le rayonnement lumineux. Le revêtement peut être déposé sous la plaque, c'est-à-dire sur la surface en regard des éléments internes du dispositif, aussi appelée « face inférieure », et/ou sur la plaque, c'est-à-dire en face supérieure .
Le revêtement peut être continu ou discontinu, par exemple présenter des motifs, ou une trame à maillage ou à piquetage ou moucheture. Il peut notamment s'agir d'un émail tramé disposé en face supérieure de la plaque. Dans certains cas, le revêtement peut être continu dans certaines zones, et discontinu dans d'autres zones. Ainsi, il est possible de disposer un revêtement discontinu au niveau des éléments chauffants et un revêtement continu ailleurs, tout en réservant une zone non revêtue au regard des dispositifs émettant de la lumière. La transmission lumineuse de la plaque munie de son revêtement, dans les zones revêtues, est de préférence d'au plus 0,5% et même 0,2%. Le revêtement peut être totalement opaque.
La zone en regard des dispositifs émettant de la lumière peut également être dotée d'un revêtement, à la condition que ce revêtement ne soit pas opaque.
Avantageusement, la plaque comporte également un décor en face supérieure, généralement en émail, dont la fonction est décorative, et non destiné à masquer les éléments internes du dispositif de cuisson. Le décor permet généralement d' identifier les zones de chauffe (par exemple en les représentant sous forme de cercle) , les zones de commande (notamment les touches sensitives) , d'apporter des informations, de représenter un logo. Ce décor est à différencier du revêtement décrit précédemment et plus précisément dans ce qui suit, qui constitue un réel moyen de masquage.
De manière préférée, le revêtement peut être une couche à base organique, telle qu'une couche de peinture ou de laque, ou une couche à base minérale, telle qu'un émail ou une couche métallique ou d'un oxyde, nitrure, oxynitrure, oxycarbure d'un métal. De préférence, les couches organiques seront déposées en face inférieure, tandis que les couches minérales, notamment les émaux, seront déposées en face supérieure.
La peinture pouvant être utilisée est avantageusement choisie de façon à résister à de hautes températures et à présenter une stabilité, dans le temps au niveau de sa couleur et de sa cohésion avec la plaque, et de façon à ne pas affecter les propriétés mécaniques de la plaque.
La peinture utilisée présente avantageusement une température de dégradation supérieure à 300 °C, en particulier comprise entre 350°C et 700°C. Elle est généralement à base de résine (s), le cas échéant chargée (par exemple en pigment (s) ou colorant ( s )) , et éventuellement diluée pour ajuster sa viscosité en vue de son application sur la plaque, le diluant ou le solvant (par exemple du white spirit, du toluène, des solvants de type hydrocarbures aromatiques, comme le solvant commercialisé sous la marque Solvesso 100® par la société Exxon, etc.) étant le cas échéant éliminé lors de la cuisson ultérieure de la peinture.
Par exemple, la peinture peut être une peinture à base d'au moins une résine silicone, en particulier une résine silicone modifiée par l'incorporation d'au moins un radical tel qu'un radical alkyde ou phényle ou méthyle, etc. On peut également ajouter des pigments comme colorants, tels que des pigments pour émaux (choisis par exemple parmi les composants contenant des oxydes métalliques, tels que des oxydes de chrome, des oxydes de cuivre, des oxydes de fer, des oxydes de cobalt, des oxydes de nickel, ou parmi les chromâtes de cuivre, les chromâtes de cobalt, etc.), Ti02, etc. On peut également utiliser comme pigments des particules d'un ou de métaux tels que l'aluminium, le cuivre, le fer, etc, ou des alliages à base d'au moins un de ces métaux. Les pigments peuvent aussi être « à effet » (pigments à effet métallique, pigments interférentiels , pigments nacrés, etc.), avantageusement sous forme de paillettes d'oxyde d'aluminium (AI2O3) revêtues par des oxydes métalliques ; on peut citer par exemple les pigments commercialisés par la Société MERCK sous la marque « Xirallic® », tels que des pigments ou pigments interférentiels Ti02/Al203 (Xirallic® T-50-10SW Crystal Silver ou Xirallic® T-60-23SW Galaxy Blue ou Xirallic® T-60-24SW Stellar Green) , ou des pigments Fe203/Al203 (Xirallic® T-60-50SW Fireside Copper ou Xirallic® F-60-51 Radiant Red) . D'autres pigments à effet pouvant être utilisés sont par exemple les pigments nacrés à base de particules de mica revêtues par des oxydes ou combinaison d'oxydes (choisis par exemple parmi Ti02, Fe2Û3, Cr203, etc) , tels que ceux commercialisés sous la marque IRIODIN® par la Société Merck, ou à base de plaquettes de silice revêtues par des oxydes ou combinaison d'oxydes (comme ceux ci-dessus) , tels que ceux commercialisés sous la marque Colorstream® par la Société Merck. Des charges ou autres pigments de coloration classiques peuvent également être incorporés aux pigments à effet précités.
De façon particulièrement préférée, la peinture utilisée comprend au moins (ou est à base de) un (co) polymère résistant à haute température (en particulier présentant une température de dégradation supérieure à 400°C), cette peinture pouvant ou non renfermer au moins une charge minérale pour assurer sa cohésion ou son renforcement mécanique et/ou sa coloration. Ce (co) polymère ou résine peut notamment être une ou plusieurs des résines suivantes : résine polyimide, polyamide, polyfluorée, polysilsesquioxane et/ou polysiloxane .
Les résines polysiloxanes sont particulièrement préférées : elles sont incolores, et donc susceptibles d'être colorées (par exemple avec des charges ou pigments leur conférant la couleur souhaitée) ; elles peuvent être utilisées en l'état réticulable (généralement de par la présence de groupements SiOH et/ou SiOMe dans leur formule, ces groupements intervenant le plus souvent jusqu'à 1 à 6% en masse de leur masse totale) , ou transformées (réticulées ou pyrolysées) . Elles présentent avantageusement dans leur formule, des motifs phényle, éthyle, propyle et/ou vinyle, très avantageusement des motifs phényle et/ou méthyle. Elles sont de préférence choisies parmi les polydiméthylsiloxanes , les polydiphénylsiloxanes , les polymères de phénylméthylsiloxane et les copolymères de diméthylsiloxane-diphénylsiloxane .
Les résines polysiloxanes réticulables utilisées préférentiellement présentent généralement une masse moléculaire moyenne en poids (Mw) comprise entre 2000 et 300 000 Daltons.
De façon non limitative on peut indiquer que des résines Dow Corning® 804, 805, 806, 808, 840, 249, 409 HS et 418 HS, Rhodorsil® 6405 et 6406 de Rhodia, Triplus® de General Electric Silicone et SILRES® 604 de Wacker Chemie GmbH, utilisées seules ou en mélange conviennent parfaitement .
Les résines ainsi choisies sont notamment aptes à résister au chauffage par induction.
La peinture peut être exempte de charges minérales, notamment si son épaisseur reste faible. Toutefois, de telles charges minérales sont généralement utilisées, par exemple pour renforcer mécaniquement la couche de peinture déposée, contribuer à la cohésion de ladite couche, à son accrochage à la plaque, pour lutter contre l'apparition et la propagation de fissures en son sein, etc. A de telles fins, au moins une fraction desdites charges minérales présente préférentiellement une structure lamellaire. Les charges peuvent aussi intervenir pour la coloration. Le cas échéant, plusieurs types de charges complémentaires peuvent intervenir (par exemple des charges non colorées pour le renforcement mécanique et d'autres charges telles que des pigments pour la coloration) . La quantité efficace de charges minérales correspond généralement à un taux volumique de 10 à 60%, plus particulièrement de 15 à 30% (taux volumiques basés sur le volume total des charges et de la peinture) .
L'épaisseur de chaque couche de peinture déposée peut être comprise entre 1 et 100 microns, notamment entre 5 et 50 microns. L'application de la peinture ou résine peut s'effectuer par toute technique adaptée, telle que le dépôt à la brosse, à la raclette, par pulvérisation, dépôt électrostatique, trempage, dépôt au rideau, dépôt par sérigraphie, jet d'encre etc. et se fait de préférence par sérigraphie (ou éventuellement dépôt à la raclette) . La technique de sérigraphie est particulièrement avantageuse en ce qu'elle permet aisément de réserver certaines zones de la plaque, notamment les zones qui seront en regard des dispositifs émettant de la lumière, voire les zones situées en regard des moyens de chauffage par rayonnement. Lorsque d'autres techniques sont employées, les réserves peuvent être obtenues en disposant des masques adéquats sur les zones que l'on ne souhaite pas recouvrir.
Le dépôt peut être suivi par un traitement thermique destiné à assurer selon les cas le séchage, la réticulation, la pyrolyse, etc. de la ou des couches déposées .
De préférence, on choisit au moins une couche de peinture dans laquelle la résine a été, au moins en partie, réticulée et/ou pyrolysée, partiellement ou en totalité, et/ou n'a pas été traitée thermiquement (la résine peut éventuellement être destinée à être éliminée des endroits où elle n'a pas été traitée thermiquement), ladite couche de peinture consistant, en partie ou en totalité, en un mélange a) de charges minérales et b) d'au moins une résine polysiloxane réticulable (quasi) exempte de précurseur ( s ) de matériau (x) carboné (s) et/ou d'au moins une résine polysiloxane réticulée (quasi) exempte de matériau (x) carboné (s) et de précurseur ( s ) de matériau (x) carboné (s) et/ou d'une matrice minérale poreuse à base de silice (la résine ayant par exemple été pyrolysée et se trouvant donc minéralisée), (quasi) exempte de matériau (x) carboné (s), les charges minérales étant distribuées dans la résine ou la matrice.
La couche de peinture est de préférence recouverte d'une couche de protection, par exemple en résine silicone modifiée par des radicaux alkyles ou résine polysiloxane.
Comme indiqué précédemment, le revêtement peut également être un émail. L'émail est formé à partir d'une poudre comprenant une fritte de verre et des pigments (ces pigments pouvant également faire partie de la fritte) , et d'un médium pour l'application sur le substrat.
La fritte de verre est de préférence obtenue à partir d'un mélange vitrifiable comprenant généralement des oxydes choisis notamment parmi les oxydes de silicium, de zinc, de sodium, de bore, de lithium, de potassium, de calcium, d'aluminium, de magnésium, de baryum, de strontium, d'antimoine, de titane, de zirconium, de bismuth. Des frittes de verre particulièrement adaptées sont décrites dans les demandes FR 2782318 ou WO 2009/092974.
Les pigments peuvent être choisis parmi les composés contenant des oxydes métalliques tels que des oxydes de chrome, de cuivre, de fer, de cobalt, de nickel, etc, ou peuvent être choisis parmi les chromâtes de cuivre ou de cobalt, etc, le taux de pigment (s) dans l'ensemble fritte (s) /pigment (s) étant par exemple compris entre 30 et 60 % en poids.
Les pigments peuvent aussi être « à effet » (pigments à effet métallique, pigments interférentiels , pigments nacrés, etc.), tels que ceux cités précédemment en relation avec une peinture. Le taux de pigments à effet peut être par exemple de l'ordre de 30 à 60% en poids par rapport à la base (fritte de verre) dans laquelle ils sont incorporés .
La couche peut être notamment déposée par sérigraphie
(la base et les pigments étant le cas échéant mis en suspension dans un médium approprié généralement destiné à se consumer dans une étape de cuisson ultérieure, ce médium pouvant notamment comporter des solvants, des diluants, des huiles, des résines, etc) , l'épaisseur de la couche étant par exemple de l'ordre de 1 à 6 ym.
La technique de sérigraphie est particulièrement avantageuse en ce qu'elle permet aisément de réserver certaines zones de la plaque, notamment les zones qui seront en regard des dispositifs émettant de la lumière.
La ou chaque couche d'émail utilisée pour former le revêtement est de préférence une couche simple, isolée d'autre (s) couche (s) d'émail éventuelle ( s ) , et d'épaisseur n'excédant généralement pas 6 μιτι, de préférence n'excédant 3 μιη. La couche d'émail est en général déposée par sérigraphie .
Le revêtement peut encore être une couche métallique ou d'un oxyde, nitrure, oxynitrure, oxycarbure d'un métal. Par « couche » on doit également comprendre les empilements de couches. Cette couche peut être absorbante et/ou réfléchissante . Cette couche peut donc être par exemple au moins une couche simple métallique ou essentiellement métallique (par exemple une couche mince d'Ag, W, Ta, Mo, Ti, Al, Cr, Ni, Zn, Fe, ou d'un alliage à base de plusieurs de ces métaux, ou une couche mince à base d'aciers inoxydables, etc.), ou peut être un empilement de (sous) couches comprenant une ou plusieurs couches métalliques, par exemple une couche métallique (ou essentiellement métallique) avantageusement protégée (revêtue sur au moins une face et de préférence sur ses deux faces opposées) par au moins une couche à base de matériau diélectrique (par exemple au moins une couche en argent ou en aluminium revêtue d' au moins une couche de protection en S13N4 - en particulier un empilement Si3N4/métal/Si3N4 - ou en Si02) .
II peut alternativement s'agir d'un revêtement monocouche à base de matériau diélectrique à fort indice de réfraction n, c'est-à-dire supérieur à 1,8, de préférence supérieur à 1,95, de façon particulièrement préférée supérieur à 2, par exemple une monocouche de T1O2, ou de S13N4, ou de SnÛ2, etc.
Dans un autre mode de réalisation avantageux, la couche peut être formée d'un empilement de (sous) couches minces à base de matériau (x) diélectrique ( s ) alternativement à forts (de préférence supérieur à 1,8, voire 1,95, voire 2, comme explicité précédemment) et faibles (de préférence inférieur à 1,65) indices de réfraction, notamment de matériau (x) de type oxyde métallique (ou nitrure ou oxynitrure de métaux) , tel que T1O2, S1O2 ou oxyde mixte (étain-zinc, zinc-titane, silicium-titane, etc.) ou alliage, etc., la (sous) couche déposée le cas échéant en premier et se trouvant donc contre la face intérieure de la plaque étant avantageusement une couche de fort indice de réfraction. Comme matériau de (sous) couche à fort indice de réfraction, on peut citer par exemple T1O2 ou éventuellement SnÛ2, S13N4, SnxZnyOz, TiOx ou SixTiyOz, ZnO, Zr02, b2Û5 etc. Comme matériau de (sous) couche à faible indice de réfraction, on peut citer par exemple S1O2, ou éventuellement un oxynitrure et/ou un oxycarbure de silicium, ou un oxyde mixte de silicium et d'aluminium, ou un composé fluoré par exemple de type MgF2 ou AIF3, etc.
L'empilement peut comprendre par exemple au moins trois (sous) couches, la couche la plus proche du substrat étant une couche de fort indice de réfraction, la couche intermédiaire étant une couche à faible indice de réfraction, et la couche extérieure étant une couche à fort indice de réfraction (par exemple un empilement comprenant l'alternance de couches d'oxydes suivante : (substrat) - Ti02/Si02/Ti02) .
L'épaisseur (géométrique) de chaque couche à base de couche (s) mince (s) déposée est généralement comprise entre 15 et 1000 nm, en particulier 20 et 1000 nm (l'épaisseur du substrat étant généralement de quelques millimètres, le plus souvent autour de 4 mm), l'épaisseur de chacune des (sous) couches (dans le cas d'un empilement) pouvant varier entre 5 et 160 nm, généralement entre 20 et 150 nm (par exemple dans le cas de l'empilement Ti02/Si02/Ti02, elle peut être de l'ordre de quelques dizaines de nanomètres, par exemple de l'ordre de 60-80 nm, pour les couches de T1O2 et de l'ordre de 60 -80 ou 130-150 nm pour la couche de S1O2 selon l'aspect, par exemple plutôt argenté ou plutôt doré, que l'on souhaite obtenir) .
La couche à base de couche (s) mince (s) peut être appliquée sur la plaque en ligne ou en reprise (par exemple après découpe et/ou façonnage de ladite plaque) . Elle peut être appliquée notamment par pyrolyse (poudre, liquide, gazeuse), par évaporation, ou par pulvérisation. De préférence, elle est déposée par pulvérisation et/ou par une méthode de dépôt sous vide et/ou assistée par plasma ; on utilise en particulier le mode de dépôt de couche (s) par pulvérisation cathodique (par exemple par pulvérisation cathodique magnétron) , notamment assistée par champ magnétique (et en courant continu ou alternatif) , les oxydes ou nitrures étant déposés à partir de cible (s) de métal ou d'alliage ou de silicium ou céramique ( s ) , etc. appropriées, si nécessaire dans des conditions oxydantes ou nitrurantes (mélanges le cas échéant d'argon/oxygène ou d'argon/azote) . On peut déposer par exemple les couches d'oxyde par pulvérisation réactive du métal en question en présence d' oxygène et les couches de nitrures en présence d'azote. Pour faire du S1O2 ou du S13N4 on peut partir d'une cible en silicium que l'on dope légèrement avec un métal comme l'aluminium pour la rendre suffisamment conductrice. La ou les (sous) couches choisies selon l'invention se condensent sur le substrat de façon particulièrement homogène, sans qu'il ne se produise de séparation ou délaminage .
Outre la plaque en verre et au moins un inducteur (de préférence trois voire quatre et même cinq) , le dispositif de cuisson peut comprendre au moins un dispositif émettant de la lumière, au moins un dispositif de commande et de contrôle, l'ensemble étant compris dans un caisson.
Un, le ou chaque dispositif émettant de la lumière est avantageusement choisi parmi les diodes électroluminescentes (par exemple faisant partie d'afficheurs à 7 segments), les afficheurs à cristaux liquides (LCD) , à diodes électroluminescentes, éventuellement organiques (OLED) , les afficheurs fluorescents (VFD) . Les couleurs vues au travers de la plaque sont diverses : rouge, vert, bleu, et toutes les combinaisons possibles, dont le jaune, le violet, le blanc... Ces dispositifs émettant de la lumière peuvent être purement décoratifs, par exemple séparer visuellement différentes zones de la plaque. Le plus souvent toutefois ils auront un rôle fonctionnel en affichant diverses informations utiles pour l'utilisateur, notamment indication de la puissance de chauffe, de la température, de programmes de cuisson, de temps de cuisson, de zones de la plaque dépassant une température prédéterminée.
Les dispositifs de commande et de contrôle comprennent généralement des touches sensitives, par exemple du type capacitif ou à infrarouge.
L'ensemble des éléments internes est généralement fixé à un caisson, souvent métallique, qui constitue donc la partie inférieure du dispositif de cuisson, normalement dissimulé dans le plan de travail ou dans le corps de la cuisinière .
Les exemples qui suivent illustrent l'invention sans toutefois la limiter.
Une feuille de verre borosilicate appelée Bl, de 3,8 mm d'épaisseur et présentant la composition pondérale ci-après définie est produite de manière connue par fusion et formage par flottage. Des plaques de 590*590 mm2 sont découpées à partir de cette feuille de verre.
Si02 80, 5 %
A1203 2, 5 %
B2O3 13,0 %
Na20 3, 4 %
K20 0, 6 %
Le rapport c/a est de 1,7. La feuille de verre est ensuite trempée thermiquement , par chauffage à 730 °C et refroidissement à l'air, de manière à ce que la contrainte maximale à cœur soit de 30 MPa.
Les propriétés de la feuille de verre sont les suivantes :
Module de Young (E) : 60 GPa.
Coefficient de dilatation linéaire (a) : 34.10~7/K. E. : 0,20 MPa/K .
Température inférieure de recuit : 500°C. σ/ (e.E.a) : 39 K/mm.
Une feuille de verre borosilicate appelée B2, de 4,0 mm d'épaisseur et présentant la composition pondérale ci-après définie est produite de manière connue par fusion et formage par flottage. Des plaques de 590*590 mm2 sont découpées à partir de cette feuille de verre.
Si02 80, 6 %
A1203 2, 2 %
B2O3 12, 9 %
Na20 4, 1 %
K20 0, 2 %
Le rapport c/a est de 1,9.
La feuille de verre est ensuite trempée thermiquement, par chauffage à 730 °C et refroidissement à l'air, de manière à ce que la contrainte maximale à cœur soit de 20 MPa.
Les propriétés de la feuille de verre sont les suivantes : Module de Young (E) : 61 GPa.
Coefficient de dilatation linéaire (a) : 35.10~7/K. E. : 0,21 MPa/K .
Température inférieure de recuit : 509°C. σ/ (e. E.a) : 23 K/mm.
Ces plaques Bl et B2 sont comparées à deux plaques comparatives de même taille, l'une étant une plaque de verre appelée C, de composition silico-sodo-calcique, l'autre une plaque de verre appelée B3, de composition borosilicate .
Le verre C présente la composition pondérale suivante :
Si02 69 %
A1203 0, 5 %
CaO 10,0 %
Na20 4,5 %
K20 5, 5 %
SrO 7,0 %
Zr02 3, 5 %.
Ses propriétés sont les suivantes.
L'épaisseur est de 4 mm.
Le rapport c/a est de 3,4.
La feuille de verre est trempée thermiquement de manière à ce que la contrainte maximale à cœur soit de 70 MPa.
Module de Young (E) : 76 GPa. Coefficient de dilatation linéaire (a) : 76.10~7/K. E. : 0,58 MPa/K .
Température inférieure de recuit : 582°C. σ/ (e. E.a) : 30 K/mm.
Le verre de borosilicate B3 présente la composition pondérale suivante :
Si02 79 %
A1203 2, 5 %
B203 14, 2 %
Fe203 0, 012 %
Na20 3, 6 %
K20 0, 6 % .
Ses propriétés sont les suivantes.
L'épaisseur du verre est de 3,8 mm.
Le rapport c/a est de 1,7.
La feuille de verre est renforcée thermiquement de manière à ce que la contrainte maximale à cœur soit de 4 MPa.
Module de Young (E) : 64 GPa.
Coefficient de dilatation linéaire (a) : 32.10~7/K. E.a : 0,20 MPa/K.
Température inférieure de recuit : 518°C. σ/ (e.E.a) : 5 K/mm. Le tableau 1 ci-après récapitule les différentes propriétés des verres testés.
Figure imgf000025_0001
Tableau 1
Les tests d'utilisation de la plaque sont décrits ci-après.
Chaque plaque de verre subit un cycle d'essai comprenant successivement les étapes suivantes :
2 passages de sable, avec une charge de 3,9 g/cm2, un test dit de « casserole vide », puis, si la plaque n'a pas cassé,
5 passages d'un tampon à récurer commercialisé sous la dénomination Scotch Brite Vert, sous une charge de lkg/cm2 , un test dit de « casserole vide », puis, si la plaque n'a pas cassé,
10 passages d'une casserole de 4,5 kg à triple fond inox,
un test dit de « casserole vide ».
Le test dit de « casserole vide » est effectué comme suit. Le centre de la plaque est positionné sur le foyer d'une table à induction muni d'un inducteur de référence E.G.O. A2, sans bridage des bords de la plaque. Deux cents millilitres d'eau sont portés à ébullition à puissance maximale, dans une casserole Lagostina Pandora de 20 cm de diamètre. Une fois la totalité de l'eau évaporée, la table n'est éteinte qu'après 10 à 15 minutes de casserole vide. La température maximale atteinte par la plaque en face inférieure atteint 390°C.
La plaque est jugée satisfaisante si aucune casse n'est observée après ce cycle d'essais.
Aucune des 10 plaques de verre borosilicate Bl ou B2 testées ne casse après ce cycle d'essais.
Pour ce qui est de la plaque de verre borosilicate
B3 en revanche, les 10 plaques testées ont cassé. Pour le verre silico-sodo-calcique C, 5 plaques sur les 10 testées ont cassé.
Les plaques de verre Bl et B2 se révèlent donc des substituts intéressants aux vitrocéramiques d' aluminosilicate de lithium dans des dispositifs de cuisson par induction.
D'autres plaques de verre Al et A2 utilisables dans un dispositif selon l'invention sont détaillées dans le tableau 2 ci-après.
Figure imgf000027_0001
recuit (°C)
Tableau 2

Claims

REVENDICATIONS
1. Dispositif de cuisson par induction comprenant au moins un inducteur disposé sous une plaque en verre renforcé thermiquement dont la composition n'est pas du type aluminosilicate de lithium, caractérisé en ce que le verre présente les caractéristiques suivantes :
- son épaisseur est d'au plus 4,5 mm,
- le rapport c/a du verre avant renforcement est d'au plus 3,0 après indentation Vickers sous une charge de lkg, c étant la longueur des fissures radiales et a étant la demi-diagonale de l'empreinte Vickers,
- le rapport σ/ (e.E. a) est d'au moins 20 K.mm-1, voire 30 K.mm-1, σ étant la contrainte maximale générée au cœur du verre par le renforcement thermique en Pa, e étant l'épaisseur du verre en mm, E étant le module de Young en Pa et a étant le coefficient de dilatation thermique linéaire du verre en K"1.
2. Dispositif selon l'une des revendications précédentes, tel que l'épaisseur de la plaque est d'au plus 4 mm.
3. Dispositif selon l'une des revendications précédentes, tel que la plaque en verre présente une dimension latérale d'au moins 0,5 m.
4. Dispositif selon l'une des revendications précédentes, tel que le produit E.CC du module de Young et du coefficient de dilatation thermique linéaire du verre est compris entre 0,1 et 0,8 MPa.K-1, notamment entre 0,2 et 0,5 MPa.K"1.
5. Dispositif selon l'une des revendications précédentes, tel que la température inférieure de recuit du verre est d'au moins 500°C, notamment 600°C.
6. Dispositif selon l'une des revendications précédentes, tel que le coefficient de dilatation thermique linéaire du verre est d'au plus 50.10~7/K, notamment est compris entre 30 et 45.10~7/K.
7. Dispositif selon l'une des revendications précédentes, tel que le rapport c/a du verre avant renforcement est d'au plus 2,8, notamment 2,5.
8. Dispositif selon l'une des revendications précédentes, tel que la contrainte maximale générée au cœur du verre par le renforcement thermique est d'au moins 20 MPa, notamment 25 MPa.
9. Dispositif selon l'une des revendications précédentes, tel que la composition du verre est du type borosilicate .
10. Dispositif selon la revendication précédente, tel que la composition chimique du verre comprend de la silice S1O2 en une teneur pondérale allant de 70 à 85%, de l'oxyde de bore B2O3 en une teneur pondérale allant de 8% à 20% et au moins un oxyde alcalin, la teneur pondérale totale en oxydes alcalins allant de 1 à 10%.
11. Dispositif selon la revendication précédente, tel que la composition chimique du verre borosilicate comprend les constituants suivants, variant dans les limites pondérales ci-après définies :
Si02 70 - 85 %
B203 8 - 16% A1203 0 - 5 %
K20 0 - 2 %
Na20 1 - 8 %.
12. Dispositif selon l'une des revendications 1 à 8, tel que la composition du verre est du type alumino-boro- silicate, notamment dépourvu d'oxydes alcalins.
13. Dispositif selon la revendication précédente, tel que la composition chimique du verre comprend les constituants suivants, variant dans les limites pondérales ci-après définies :
Si02 45 - 68 %, notamment 55 - 65 %
AI2O3 8 - 20 %, notamment 14 - 18%
B203 4 - 18 %, notamment 5 - 10%
RO 5 - 30 %, notamment 5 - 17 %
R2O au plus 10%, notamment 1%, l'expression « RO » désignant les oxydes alcalino-terreux MgO, CaO, SrO et BaO, et l'expression « R2O » désignant les oxydes alcalins.
14. Dispositif selon l'une des revendications précédentes, tel qu'une partie de la surface de la plaque est munie d'un revêtement opaque ou substantiellement opaque, ou tel que l'on dispose un matériau opaque, de préférence de couleur sombre, entre la plaque et les éléments internes du dispositif.
PCT/FR2012/050880 2011-04-29 2012-04-23 Dispositif de cuisson par induction WO2012146860A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280020922.8A CN103608308B (zh) 2011-04-29 2012-04-23 感应烹饪装置
ES12724678T ES2813352T3 (es) 2011-04-29 2012-04-23 Dispositivo de cocción por inducción
JP2014506918A JP6050321B2 (ja) 2011-04-29 2012-04-23 電磁調理器具
KR1020137028044A KR101926890B1 (ko) 2011-04-29 2012-04-23 인덕션 조리 장치
EP12724678.3A EP2702015B1 (fr) 2011-04-29 2012-04-23 Dispositif de cuisson par induction
US14/114,673 US10542590B2 (en) 2011-04-29 2012-04-23 Induction cooking device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153670 2011-04-29
FR1153670A FR2974700B1 (fr) 2011-04-29 2011-04-29 Dispositif de cuisson par induction

Publications (1)

Publication Number Publication Date
WO2012146860A1 true WO2012146860A1 (fr) 2012-11-01

Family

ID=46197603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050880 WO2012146860A1 (fr) 2011-04-29 2012-04-23 Dispositif de cuisson par induction

Country Status (8)

Country Link
US (1) US10542590B2 (fr)
EP (1) EP2702015B1 (fr)
JP (1) JP6050321B2 (fr)
KR (1) KR101926890B1 (fr)
CN (1) CN103608308B (fr)
ES (1) ES2813352T3 (fr)
FR (1) FR2974700B1 (fr)
WO (1) WO2012146860A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018172A1 (fr) * 2014-03-10 2015-09-11 Eurokera Plan de travail en vitroceramique
WO2015136204A1 (fr) 2014-03-10 2015-09-17 Eurokera S.N.C. Plan de travail en vitroceramique de grande taille
DE102014119594A1 (de) 2014-12-23 2016-06-23 Schott Ag Borosilikatglas mit niedriger Sprödigkeit und hoher intrinsischer Festigkeit, seine Herstellung und seine Verwendung
DE202016008272U1 (de) 2015-09-08 2017-06-06 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008270U1 (de) 2015-09-08 2017-06-06 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008271U1 (de) 2015-09-08 2017-06-06 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008266U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008269U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008268U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008265U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
WO2017216487A1 (fr) 2016-06-17 2017-12-21 Eurokera S.N.C. Article verrier de type vitroceramique et procede d'obtention
EP3569577A1 (fr) 2018-05-18 2019-11-20 Schott Ag Verre plat, son procédé de fabrication et son utilisation
EP3569578A1 (fr) 2018-05-18 2019-11-20 Schott Ag Utilisation d'un verre plat dans des composants électroniques
DE202022104982U1 (de) 2022-09-05 2023-02-01 Schott Ag Nicht flaches Formglas

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018171B1 (fr) * 2014-03-10 2017-01-27 Eurokera Plan de travail en vitroceramique
CN107001115A (zh) * 2014-12-02 2017-08-01 旭硝子株式会社 玻璃板及使用其的加热器
JP6506568B6 (ja) * 2015-02-20 2019-06-05 日立グローバルライフソリューションズ株式会社 誘導加熱調理器
JP6488144B2 (ja) * 2015-02-20 2019-03-20 日立アプライアンス株式会社 誘導加熱調理器
JP2016154075A (ja) * 2015-02-20 2016-08-25 日立アプライアンス株式会社 誘導加熱調理器
JP6512689B2 (ja) * 2015-02-24 2019-05-15 日立グローバルライフソリューションズ株式会社 誘導加熱調理器
JP6506569B6 (ja) * 2015-02-24 2019-06-05 日立グローバルライフソリューションズ株式会社 誘導加熱調理器
JP2016157544A (ja) * 2015-02-24 2016-09-01 日立アプライアンス株式会社 誘導加熱調理器
FR3040699A1 (fr) * 2015-09-08 2017-03-10 Eurokera Surface de mobilier en vitroceramique
CN105481247B (zh) * 2015-12-30 2018-06-08 东旭科技集团有限公司 一种铝硅酸盐玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN107500530A (zh) * 2017-10-10 2017-12-22 湖北华强日用玻璃有限公司 高强度防裂耐高温玻璃的制备方法及其应用
JP2018186106A (ja) * 2018-09-03 2018-11-22 日立アプライアンス株式会社 誘導加熱調理器
JP2021091571A (ja) * 2019-12-10 2021-06-17 日本電気硝子株式会社 アルカリ土類アルミノホウケイ酸ガラスの製造方法
KR20210122556A (ko) * 2020-04-01 2021-10-12 삼성전자주식회사 유도 가열 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079119A (en) 1980-06-17 1982-01-13 Bfg Glassgroup Vitreous cooking hob
WO1998040320A1 (fr) * 1997-03-13 1998-09-17 Saint-Gobain Vitrage Compositions de verre silico-sodo-calciques et leurs applications
US5958812A (en) * 1994-10-13 1999-09-28 Saint-Gobain Vitrage Compositions of silico-sodo-calcic glasses and their applications
FR2782318A1 (fr) 1998-08-13 2000-02-18 En Nom Collectif Eurokera Soc Plaque de vitroceramique decoree et procede de decoration correspondant
EP1314704A1 (fr) * 2001-10-16 2003-05-28 Schott Glas Verre de alcali-boro-silicate à tremper, sa production et son utilisation
WO2009092974A2 (fr) 2008-01-18 2009-07-30 Eurokera S.N.C. Article vitroceramique renforce et email adapte pour son revetement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325656C2 (de) 1993-07-30 1996-08-29 Schott Glaswerke Verwendung eines Glaskörpers zur Erzeugung eines als Brandschutzsicherheitsglas geeigneten vorgespannten Glaskörpers auf einer herkömmlichen Luftvorspannanlage
JP2000310427A (ja) 1999-04-26 2000-11-07 Mitsubishi Electric Corp 加熱調理器
JP2001172042A (ja) 1999-10-08 2001-06-26 Ohara Inc 透明性ガラスとその製造方法
JP3968311B2 (ja) * 2003-01-20 2007-08-29 株式会社東芝 誘導加熱調理器
JP4128102B2 (ja) * 2003-04-14 2008-07-30 シャープ株式会社 無線送受信カード
DE102004022629B9 (de) * 2004-05-07 2008-09-04 Schott Ag Gefloatetes Lithium-Aluminosilikat-Flachglas mit hoher Temperaturbeständigkeit, das chemisch und thermisch vorspannbar ist und dessen Verwendung
DE102006027739B4 (de) 2006-06-16 2008-05-29 Schott Ag Kochfeld mit einer Glaskeramikplatte als Kochfläche
FR2911335B1 (fr) * 2007-01-12 2009-09-04 Saint Gobain Composition de verre silico-sodo-calcique pour ecran de visualisation
TWI394732B (zh) * 2008-02-28 2013-05-01 Corning Inc 密封玻璃包封之方法
DE102008058318B3 (de) 2008-11-21 2010-06-17 Schott Ag Kratzfeste Silikonbeschichtung für Kochflächen aus Glas oder Glaskeramik
FR2964655B1 (fr) 2010-09-13 2017-05-19 Saint Gobain Feuille de verre
FR2969460B1 (fr) 2010-12-17 2012-12-28 Eurokera Dispositif de cuisson par induction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079119A (en) 1980-06-17 1982-01-13 Bfg Glassgroup Vitreous cooking hob
US5958812A (en) * 1994-10-13 1999-09-28 Saint-Gobain Vitrage Compositions of silico-sodo-calcic glasses and their applications
WO1998040320A1 (fr) * 1997-03-13 1998-09-17 Saint-Gobain Vitrage Compositions de verre silico-sodo-calciques et leurs applications
FR2782318A1 (fr) 1998-08-13 2000-02-18 En Nom Collectif Eurokera Soc Plaque de vitroceramique decoree et procede de decoration correspondant
EP1314704A1 (fr) * 2001-10-16 2003-05-28 Schott Glas Verre de alcali-boro-silicate à tremper, sa production et son utilisation
WO2009092974A2 (fr) 2008-01-18 2009-07-30 Eurokera S.N.C. Article vitroceramique renforce et email adapte pour son revetement

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018172A1 (fr) * 2014-03-10 2015-09-11 Eurokera Plan de travail en vitroceramique
WO2015136204A1 (fr) 2014-03-10 2015-09-17 Eurokera S.N.C. Plan de travail en vitroceramique de grande taille
WO2015136205A1 (fr) 2014-03-10 2015-09-17 Eurokera S.N.C. Plan de travail de grande dimension en vitroceramique
DE202015006354U1 (de) 2014-03-10 2015-11-03 Eurokera S.N.C. Handhabungsvorrichtung, insbesondere Arbeitsplatte aus Glaskeramik
DE202015006353U1 (de) 2014-03-10 2016-01-18 Eurokera S.N.C. Handhabungsvorrichtung, insbesondere Arbeitsplatte aus Glaskeramik
JP7150780B2 (ja) 2014-03-10 2022-10-11 ユーロケラ ソシエテ オン ノーム コレクティフ ガラスセラミックワークトップ
JP2020128864A (ja) * 2014-03-10 2020-08-27 ユーロケラ ソシエテ オン ノーム コレクティフ ガラスセラミックワークトップ
US10663176B2 (en) 2014-03-10 2020-05-26 Eurokera S.N.C. Glass-ceramic worktop
DE102014119594A1 (de) 2014-12-23 2016-06-23 Schott Ag Borosilikatglas mit niedriger Sprödigkeit und hoher intrinsischer Festigkeit, seine Herstellung und seine Verwendung
DE102014119594B9 (de) 2014-12-23 2020-06-18 Schott Ag Borosilikatglas mit niedriger Sprödigkeit und hoher intrinsischer Festigkeit, seine Herstellung und seine Verwendung
US10442723B2 (en) 2014-12-23 2019-10-15 Schott Ag Borosilicate glass with low brittleness and high intrinsic strength, the production thereof, and the use thereof
DE102014119594B4 (de) 2014-12-23 2019-02-07 Schott Ag Borosilikatglas mit niedriger Sprödigkeit und hoher intrinsischer Festigkeit, seine Herstellung und seine Verwendung
DE202016008265U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008268U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008269U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008266U1 (de) 2015-09-08 2017-06-07 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008271U1 (de) 2015-09-08 2017-06-06 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008270U1 (de) 2015-09-08 2017-06-06 Eurokera S.N.C. Glaskeramikarbeitsfläche
DE202016008272U1 (de) 2015-09-08 2017-06-06 Eurokera S.N.C. Glaskeramikarbeitsfläche
WO2017216487A1 (fr) 2016-06-17 2017-12-21 Eurokera S.N.C. Article verrier de type vitroceramique et procede d'obtention
DE202017006418U1 (de) 2016-06-17 2018-01-29 Eurokera S.N.C. Gegenstand aus Glas, insbesondere Glaskeramik
EP3569577A1 (fr) 2018-05-18 2019-11-20 Schott Ag Verre plat, son procédé de fabrication et son utilisation
EP3569578A1 (fr) 2018-05-18 2019-11-20 Schott Ag Utilisation d'un verre plat dans des composants électroniques
US11465929B2 (en) 2018-05-18 2022-10-11 Schott Ag Flat glass, method for producing same, and use thereof
DE202022104982U1 (de) 2022-09-05 2023-02-01 Schott Ag Nicht flaches Formglas

Also Published As

Publication number Publication date
KR101926890B1 (ko) 2018-12-07
EP2702015A1 (fr) 2014-03-05
FR2974700B1 (fr) 2013-04-12
JP2014519464A (ja) 2014-08-14
CN103608308B (zh) 2017-08-15
US10542590B2 (en) 2020-01-21
JP6050321B2 (ja) 2016-12-21
CN103608308A (zh) 2014-02-26
US20140061186A1 (en) 2014-03-06
KR20140029416A (ko) 2014-03-10
ES2813352T3 (es) 2021-03-23
FR2974700A1 (fr) 2012-11-02
EP2702015B1 (fr) 2020-06-10

Similar Documents

Publication Publication Date Title
EP2702015B1 (fr) Dispositif de cuisson par induction
EP2651838B1 (fr) Dispositif de cuisson par induction
EP2588426B1 (fr) Dispositif de cuisson
EP3083516B1 (fr) Plaque de cuisson par induction et procédé d&#39;obtention
EP1885659B1 (fr) Plaque vitroceramique et son procede de fabrication
EP2914555B1 (fr) Plaque en verre pour dispositif de cuisson par induction
EP1958481B1 (fr) Plaque vitrocéramique transparente ou translucide et son procédé de fabrication
WO2009092974A2 (fr) Article vitroceramique renforce et email adapte pour son revetement
EP2953909B1 (fr) Article vitroceramique et email adapte pour son revetement
WO2008047034A2 (fr) Plaque vitroceramique et son procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12724678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012724678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028044

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014506918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14114673

Country of ref document: US