WO2012146054A1 - 隐藏危险品检测方法及设备 - Google Patents

隐藏危险品检测方法及设备 Download PDF

Info

Publication number
WO2012146054A1
WO2012146054A1 PCT/CN2012/000513 CN2012000513W WO2012146054A1 WO 2012146054 A1 WO2012146054 A1 WO 2012146054A1 CN 2012000513 W CN2012000513 W CN 2012000513W WO 2012146054 A1 WO2012146054 A1 WO 2012146054A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
beam scanning
wavelength
measured
imaging
Prior art date
Application number
PCT/CN2012/000513
Other languages
English (en)
French (fr)
Inventor
赵自然
王迎新
陈志强
吴万龙
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to US14/008,903 priority Critical patent/US9194796B2/en
Priority to GB1316221.9A priority patent/GB2502239B/en
Priority to DE112012001926.1T priority patent/DE112012001926B4/de
Publication of WO2012146054A1 publication Critical patent/WO2012146054A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the invention belongs to the technical field of terahertz sensing, and particularly relates to a method and a device for remotely locating and identifying hidden dangerous goods by active continuous wave terahertz imaging and multi-wavelength spectral analysis. Background technique
  • Explosives detection has attracted much attention in the field of social public safety. Exploring fast and effective detection technology is of special significance for safeguarding the lives and property of the people and building a harmonious society. With the increase in anti-terrorism and the enhancement of security and explosive measures, the existing close-range explosive inspection and identification equipment is playing a huge role. However, the anti-investigation awareness of criminals is constantly increasing, and explosive equipment is also changing. Dangerous goods may explode during the inspection stage, posing a safety threat to inspectors and equipment. Therefore, the most ideal means is to carry out detection at a long distance.
  • the technologies that meet the needs of long-range explosives detection to some extent mainly include X-ray backscatter imaging, laser spectroscopy, thermal imaging, millimeter wave and terahertz technology.
  • X-ray backscatter imaging technology uses backscattered X-rays to image the object being detected.
  • the X-ray energy used is lower than that of fluoroscopic imaging.
  • the potential detection distance is 15 meters, which distinguishes the explosive from the background.
  • X-rays are ionized, they have certain damage to human health.
  • Laser spectroscopy mainly uses lasers of certain wavelengths absorbed or emitted by the object to be detected by laser to determine whether there are explosives, such as Raman spectroscopy, laser-induced fluorescence spectroscopy and photoacoustic spectroscopy.
  • the advantage of this technology lies in the laser. It has good transmission and is suitable for long-distance detection.
  • the limitation is that the laser can't pass through the opaque object, so it can't detect hidden explosives.
  • Thermal imaging technology mainly uses the temperature difference between hidden objects and the surface to detect.
  • the millimeter wave technology is imaged by detecting the millimeter wave band electromagnetic radiation emitted by the object itself or reflected by the object.
  • the millimeter wave has good penetration into the atmosphere and clothing, and can detect hidden weapons at a long distance, but does not have the object.
  • Terahertz radiation generally refers to electromagnetic waves with a frequency in the range of 0.1-10 THz.
  • terahertz radiation has a strong penetrating power for many non-metallic, polar substances, and can directly detect hidden dangerous goods; in addition, terahertz electromagnetic waves have no X-ray ionization properties, will not Materials and human body cause damage, so terahertz technology has a good application prospect in explosives detection.
  • the US Army RDECOM CERDEC Night Vision and Electronic Sensors Lab developed a 640 GHz active imager that detects hidden weapons (2. EL Jacobs, S. Moyer, CC Franck, et al. Concealed weapon identification using terahertz imaging sensors Pro of SPIE, 2006, 6212: 62120J ), with a detection range of approximately 1.5 m, the confocal imaging method used guarantees high resolution and signal-to-noise ratio, but the scanning speed is slower.
  • the German Aerospace Research Center carried out long-distance terahertz imaging research on hidden metal dangerous goods under human clothing for anti-terrorism needs. In 2007, it successfully developed a working frequency of 0.8 THz, a detection range of 20 m, and resolution.
  • Imaging system prototype less than 2 cm 3. H.-W. H u bers, AD Semenov, H. Richter, et al. Terahertz imaging system for stand-off detection of threats. Proc. of SPIE, 2007, 6549: 65490A ), and can achieve scanning speed close to real-time acquisition of images.
  • the above research work shows that it is feasible to use active terahertz radiation to image and locate long-distance suspicious objects.
  • the detection of explosives needs to be combined with spectral information to identify them.
  • these studies are still in the internal stage of the laboratory and are not really put into practical application. In, it needs further development.
  • the unit has proposed a new technique for generating pulsed terahertz radiation by a femtosecond laser-induced air plasma (5. J. Dai and X.-C. Zhang. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control Accuracy. Appl. Phys. Lett., 2009, 94: 021 1 17 ), this can transmit visible light with good transmission in the atmosphere to distant objects to generate terahertz radiation, to avoid the attenuation of terahertz radiation from the atmosphere, and then identify the explosion by spectral analysis.
  • the long-distance detection of reflected signals is also difficult, and the simple spectral analysis technology only detects one measurement point of the object, and does not have the spatial positioning capability. Therefore, it needs to be combined with imaging technology to meet the practical application. Summary of the invention
  • the present invention proposes a new remote hidden dangerous goods detection method, the core of which is based on the high power and frequency tuning characteristics of continuous wave terahertz radiation, first through terahertz The shape information reflected by the image quickly locates the suspicious object, and then selects some frequency bands with good atmospheric transmittance to perform terahertz spectral resolution measurement to further identify the presence or absence of dangerous goods.
  • distance as used in this application is generally defined as a range of approximately 5 meters to 20 meters from the object being measured.
  • apparatus and method of the present invention are equally applicable to the detection of hidden dangerous goods at closer or longer distances.
  • a method for detecting a hidden dangerous goods comprising the steps of: performing terahertz imaging on an object to be measured; determining whether a suspected region containing dangerous goods exists in a terahertz image of the measured object obtained by terahertz imaging Multi-wavelength spectroscopic measurement of the suspected area containing dangerous goods, identifying whether the dangerous area is contained in the suspicious area according to the multi-wavelength spectral analysis measurement result; and outputting the terahertz image of the measured object and the dangerous goods detection result.
  • the step of performing terahertz imaging on the measured object may include: adjusting a terahertz emitter to operate at an imaging wavelength; collimating, focusing, and terahertz radiation output from the terahertz emitter And transmitting to the object to be measured; collecting terahertz radiation reflected by the object to be measured by the terahertz detector to obtain information of one pixel of the object to be measured; and scanning the terahertz beam by the beam scanning control system Pixels to obtain a terahertz reflection image of the object being measured.
  • the step of determining whether a suspected region containing a dangerous article exists in the terahertz image of the measured object obtained by terahertz imaging may include: based on the terahertz reflection image by the data acquisition and processing system The obtained shape feature and gray value feature determine whether there is a suspicious area in the scanned image with dangerous goods, and at the same time The suspicious area is accurately positioned.
  • the step of performing multi-wavelength spectral analysis measurement on the suspected region containing the dangerous goods may further comprise selecting a point of interest in the suspect region, and performing multi-wavelength light on the point of interest Assisting analysis and measurement, establishing a terahertz multi-wavelength reflectance spectrum recognition model, and using pattern recognition methods to identify whether there is danger in the suspect area.
  • the step of adjusting the terahertz emitter to operate at an imaging wavelength may be Further comprising: a) selecting a well-transmitted frequency window based on the transmission characteristics of the terahertz radiation in the atmosphere, determining the operating wavelength range of the terahertz radiation source; b) comprehensively analyzing the terahertz radiation source transmission power, the wavelength versus imaging signal-to-noise ratio, and The effect of spatial resolution, taking into account the wavelength range defined by step a), determines the optimal imaging wavelength.
  • the beam scanning control system may include a terahertz beam scanning device and a terahertz beam scanning control unit that causes the terahertz beam to scan pixels in the field of view by the beam scanning control system
  • the step may further include: the terahertz beam scanning control unit sends a signal to the terahertz beam scanning device, and adjusts a beam scanning module in the terahertz beam scanning device to change a spot of the terahertz beam on the measured object. position.
  • the beam scanning module may be a galvanometer.
  • the beam scanning control system may include a terahertz beam scanning device and a terahertz beam scanning control unit, wherein the terahertz beam scans each pixel point in the field of view by the beam scanning control system
  • the step of the method further includes: the terahertz beam scanning device carrying a translational motion of the system including the terahertz transmitter, the terahertz detector, and the terahertz optical component, the terahertz beam scanning control unit transmitting Signaling to the terahertz beam scanning device adjusts the spatial position of the component to change the spot position of the incident terahertz beam on the object to be measured.
  • the step of performing multi-wavelength spectral analysis measurement on the suspected region containing the dangerous goods may further comprise selectively adjusting a radiation wavelength of the terahertz emitter by a wavelength tuning control unit, The terahertz emitter is operated at the wavelengths required for multi-wavelength spectroscopic analysis.
  • An apparatus for detecting a hidden dangerous goods comprising: a terahertz emitting device, the terahertz emitting device generating wavelength tunable continuous wave terahertz radiation for illuminating an object to be measured to interact with an object; Terahertz detector The device is configured to receive terahertz radiation reflected by the object to be measured; a terahertz optical component, wherein the terahertz optical component is used for collimating and focusing a beam generated by the terahertz transmitting device to the measured object while reflecting the measured object a returned terahertz beam is collected to the terahertz detector; a beam scanning control system for adjusting a spatial position of the terahertz beam incident on the object to be measured; and a data acquisition and processing system, a data acquisition and processing system coupled to the terahertz transmitting device, the terahertz detector, and the beam scanning control system for controlling a terahertz transmitting device, a terahertz
  • the terahertz transmitting device may include a terahertz transmitter and a wavelength tuning control unit, the wavelength tuning control unit being coupled to the terahertz transmitter, to the terahertz transmitter The wavelength of the radiation is selectively adjusted.
  • the terahertz transmitter may be a Gunn oscillator and a frequency multiplier, a return wave tube, a parametric oscillator, or a quantum cascade laser.
  • the terahertz detector may be a Schottky diode, a superconducting-insulator-superconducting junction mixer, or a thermal radiometer.
  • the beam scanning control system includes a terahertz beam scanning device and a terahertz beam scanning control unit, and the terahertz beam scanning control unit is connected to the terahertz beam scanning device.
  • the terahertz beam scanning device includes a beam scanning module, and the beam scanning module is adjusted and monitored in real time by the terahertz beam scanning device to complete setting and reading of beam space position information.
  • the beam scanning module may be a galvanometer.
  • the terahertz beam scanning device may be configured to carry a system including the terahertz transmitting device, the terahertz detector, and the terahertz optical component to the object to be measured.
  • a mechanical translation stage that scans the points by point to obtain an image of the object under test.
  • the terahertz optical component may include a terahertz beam that is responsible for collimating a beam generated by the terahertz transmitting device and reflecting back the measured object to the terahertz detector Beam splitter, plane mirror and the terahertz The beam is focused onto a parabolic or ellipsoidal mirror or lens on the object being measured.
  • the present invention has the following advantages over the prior art:
  • the device proposed by the invention firstly locates a suspicious region where dangerous goods may be hidden by terahertz imaging, and then selects only one point of interest in the region for further spectral analysis and identification, and does not need to perform spectral imaging on the entire scanning region. Therefore, the measurement speed is fast, and the detection efficiency can be greatly improved;
  • the continuous wave multi-wavelength spectroscopy method adopted by the present invention can avoid the influence of atmospheric absorption, ensure the feasibility of long-distance detection, and the proposed device uses a wavelength tunable continuous wave terahertz radiation source, and commonly used pulses. Compared with the source, the average output power is high, so the penetration of the shielding material is good, the signal-to-noise ratio is high, and the practicability is strong.
  • FIG. 1 is a schematic structural view of a first embodiment of an apparatus for remotely detecting an explosive using terahertz imaging and multi-wavelength spectroscopy;
  • Figure 2 is the atmospheric transmission spectrum of terahertz radiation (standard atmospheric pressure, temperature 20 ° C, relative humidity 40%, transmission distance 20 m);
  • Figure 3 is a schematic diagram of terahertz beam scanning
  • Figure 4 is a schematic diagram of the location and identification of suspicious regions in a terahertz image
  • Figure 5 is a sampling point selected by the terahertz absorption spectrum of the explosive RDX and the multi-wavelength spectral analysis;
  • FIG. 6 is a flow chart of a method of detecting a hidden explosive according to a first embodiment of the present invention.
  • FIG. 7 is a block diagram showing a second embodiment of an apparatus for remotely detecting explosives using terahertz imaging and multi-wavelength spectroscopy.
  • FIG. 1 is a block diagram showing the first embodiment of an apparatus for remotely detecting explosives using terahertz imaging and multi-wavelength pupil analysis.
  • the apparatus 101 of the first embodiment of the present invention includes a terahertz transmitter 102 and its wavelength tuning control unit 115, a terahertz detector 1 12; a beam scanning device 105 and its beam scanning control unit 1 14; Hertz collimating element 104, focusing element 106, beam splitter 1 10; and computer based data acquisition and processing system 1 13 .
  • the terahertz emitter 102 and its wavelength tuning control unit 1 15 constitute a terahertz emitting device capable of generating wavelength tunable continuous wave terahertz radiation for illuminating the object to be measured to interact with the object.
  • the beam scanning device 105 and its beam scanning control unit 1 14 constitute a beam scanning control system.
  • the terahertz collimating element 104, the focusing element 106, and the beam splitter 1 10 form a terahertz optical component for transmitting a radiation beam.
  • the terahertz transmitter 102 produces continuous wave terahertz radiation 103 having a wavelength of 4 (corresponding to a frequency of /.), passing through the beam splitter 1 10 and the terahertz collimating element 104 (which may be a parabolic mirror or a lens) to reach the beam scanning device 105, its subsequent propagation direction is controlled by the beam scanning device 105; the focusing element 106 (which may be a parabolic mirror or a lens) converges the terahertz incident beam 07 to a specific measurement point on the remote object 108; The beam 109 reflected by the object 108 returns along the propagation path of the incident beam and is then reflected by the beam splitter 10, and the intensity of the beam 1 1 1 reflected by the beam splitter is measured by the terahertz detector 1 12; the data acquisition and processing system 1 13 Read the terahertz reflected wave intensity at that particular measurement point.
  • the terahertz collimating element 104 which may be a parabolic mirror or
  • the beam scanning control unit 14 sends a signal to the beam scanning device 105, through which the beam scanning device 105 is adjusted to change the spot position of the incident beam 107 on the object 108 to be measured; the data acquisition and processing system 1 13 and the beam
  • the scanning control unit 14 and the terahertz detector 1 12 cooperate to obtain the terahertz reflected wave intensity at different positions in the area to be scanned of the object to be measured 108, and finally construct a terahertz reflection image of the object 108 to be measured.
  • the wavelength tuning control unit 15 15 adjusts the operating wavelength of the terahertz transmitter 102 to set the imaging wavelength ⁇ and the spectral analysis wavelength W, .
  • Figure 2 is the atmospheric transmission spectrum of terahertz radiation in the 0, 1-2.5 THz interval calculated from the HITRAN molecular absorption spectrum database.
  • the atmospheric conditions are standard atmospheric pressure, temperature 20 ° C, water vapor relative humidity 40%, terahertz radiation.
  • the transmission distance is assumed to be 20 m.
  • the attenuation law reflected by the transmission spectrum curve 201 indicates that the terahertz radiation is transmitted in the atmosphere with a series of frequency windows with higher transmittance, such as the frequency intervals 202 to 208 marked in the figure. These data are used as wavelength tuning control.
  • Unit 1 15 pairs of terahertz transmitter 102 operating waves Long basis for setting.
  • the system operates at a single wavelength of 4, and the wavelength value corresponding to any frequency in the interval 202 to 208 can be selected.
  • the system Working at a range of wavelengths ⁇ , ⁇ , . , ⁇ , can be selected in the interval 202 to 208, respectively, considering whether it corresponds to the spectral characteristics of the explosive, such as RDX explosives having an absorption peak near 0.8 ,, the frequency Located in interval 204 (transmittance greater than 80%).
  • FIG 3 is a schematic diagram of terahertz beam scanning.
  • the beam scanning module 301 can include two single axis galvanometers or one dual axis galvanometer. As shown in Fig. 3, the beam emitted by the terahertz transmitter is reflected and collimated by the parabolic mirror 302, reflected by the galvanometers 303, 304 in the beam scanning module 301, and then incident on the parabolic mirror 305, and then focused onto the object to be measured.
  • the galvanometers 303, 304 can be in the form of a mirror and operate under the action of mechanical components in the wave speed scanning device.
  • the galvanometer 303 rotates about the 'axis, so that the beam 306 moves in a plane, and the spot position of the incident beam on the object also moves, realizing the lateral (progressive) scanning of the beam; the galvanometer 304 is located at the focus of the parabolic mirror 305. And rotating around the axis, so that the beam 307 moves in the z-plane, realizing the longitudinal (column-by-column) scanning of the beam. Beams 308 and 309 correspond to scanning of galvanometer 304 at two different rotational angles.
  • the point-by-point fast scanning of the terahertz beam is achieved, and finally the reflected light intensity of each pixel in the two-dimensional region of the object to be measured is obtained.
  • Figure 4 is a schematic illustration of the location and identification of suspicious regions in a terahertz image.
  • a reflection image 401 is obtained which includes three different areas 402, 403 and 404.
  • the image is further processed by a computer, and each region is analyzed according to the shape feature and the gray value feature, and the suspicious region 404 is automatically searched, that is, the region may contain an explosive, and then a certain point 405 inside is selected for subsequent measurement.
  • the spatial coordinates corresponding to the measurement point are extracted, and the beam scanning device is adjusted to position the beam spot incident on the object at the point, and then multi-wavelength spectral analysis measurement is performed.
  • FIG. 5 shows the terahertz absorption spectrum 501 of the RDX explosive and seven representative sampling points 502 to 508 selected by the multi-wavelength spectral analysis, wherein the sampling points 502 to 508 correspond to 0.50, 0.66, 0.86, 1.02, 1.32, 1.50, respectively. , 1.99 ⁇ , they are at the center of each atmospheric transmission window (except the first point), And can reflect the main spectral characteristics of RDX.
  • the specific measurement method of reflectivity is to place a mirror on the object to be measured, record the reflected light intensity corresponding to a certain wavelength, record it as a reference signal, and then measure the reflected light intensity at the same wavelength when detecting a suspicious object.
  • the multi-wavelength spectral recognition model is established by using artificial neural network or pattern recognition method such as support vector machine. The model is used to determine the type of the measured pupil S to identify whether there is explosives in the area to be analyzed. So far, the long-distance positioning and identification of hidden explosives by means of continuous wave terahertz imaging combined with multi-wavelength optical analysis has been completed.
  • step S10 the user adjusts the operating wavelength of the terahertz transmitter 102 by the wavelength tuning control unit 15 to set the imaging wavelength ⁇ o.
  • step S11 the beam scanning device 105 is controlled by the beam scanning control unit 14 to adjust the spot position of the terahertz incident beam 107 on the object 108 to be measured, and the data acquisition and processing system 1 13 reads each The terahertz reflected wave intensity of the point is measured, thereby acquiring the terahertz reflection image 401 of the object 108 to be measured.
  • each region in the image 401 is analyzed. Since the explosive object may have a shape difference from the conventional object and the explosive object and the conventional object have different reflection intensity to the terahertz wave, the image gray value difference may be generated. Based on the shape feature and the gray value feature derived from the terahertz reflection image, it is empirically judged whether or not there is a suspicious region 404 in which an explosive may be present.
  • step S15 the image of the object to be measured is displayed to the user, and the result of the explosive detection is given.
  • step S13 If the result of the judgment is that the suspicious area exists, it is further adjusted in step S13.
  • the operating wavelength of the terahertz emitter 102 sets the spectral analysis wavelengths ⁇ A, ..., U, at which the reflected light intensity at a point 405 within the suspect region 404 is measured to obtain multi-wavelength spectral data.
  • step S14 the species in the suspect area is identified based on the measured multi-wavelength spectrum to determine whether or not the explosive is contained.
  • the obtained terahertz reflection image is displayed on the screen in step S15, and the explosive detection result is given.
  • FIG. 7 is a block diagram of a second embodiment of an apparatus for remotely detecting explosives using terahertz imaging and multi-wavelength optical analysis.
  • the apparatus of the second embodiment of the present invention includes a terahertz transmitter 702 and its wavelength tuning control unit 714, a terahertz detector 710, a beam scanning device 712 and its beam scanning control unit 713, and a terahertz focusing component. 704, beam splitter 708; and computer based data acquisition and processing system 71.
  • the terahertz emitter 702 and its wavelength tuning control unit 714 constitute a terahertz emitting device capable of generating wavelength tunable continuous wave terahertz radiation for illuminating the object under test to interact with the object.
  • the beam scanning device 712 and its beam scanning control unit 713 constitute a beam scanning control system.
  • Terahertz focusing element 704 and beam splitter 708 form a terahertz optical component for transmitting a beam of radiation.
  • the terahertz emitter 702 produces continuous wave terahertz radiation 703, which passes through the beam splitter 708 and reaches a focusing element 704 (which may be a lens or a parabolic mirror) to converge the terahertz beam 705 to a particular object 706 at a remote location.
  • a focusing element 704 which may be a lens or a parabolic mirror
  • the beam scanning device 712 performs a translational motion by a system 701 comprising a terahertz source, a detector and an optical component, and the beam scanning control unit 713 sends a signal to the beam scanning device 712 to adjust the spatial position of the system 701 to change the incident beam 705.
  • the position of the spot on the object 706 is measured; the data collection and processing system 71 1 cooperates with the beam scanning control unit 713 and the terahertz detector 710 to obtain the intensity of the terahertz reflected wave at different positions in the area to be scanned of the object 706 to be measured, Finally, a terahertz reflection image of the object 706 to be measured is constructed.
  • the multi-wavelength spectral analysis process and the explosives detection flow chart according to the second embodiment of the present invention are substantially the same as those of the first embodiment, and will not be described again.

Description

隐藏危险品检测方法及设备 技术领域
本发明属于太赫兹感测( terahertz sens ing )技术领域, 特别涉及一 种通过主动式连续波太赫兹成像和多波长光谱分析对隐藏危险品进行 远距离定位和识别的方法及设备。 背景技术
爆炸物检测在社会公共安全领域倍受瞩目, 探索快速有效的检测 技术对于保障人民群众的生命财产安全、 构建和谐社会具有特殊的重 要意义。 随着反恐力度加大和安检排爆措施的增强, 现有的近距离爆 炸物检查和识别设备正发挥着巨大作用。 然而, 犯罪分子反侦查意识 在不断增强, 爆炸器材也随之变化, 危险品有可能在检查阶段发生爆 炸, 对检查人员和设备造成安全威胁, 因此最理想的手段是在远距离 实施探测。
目前在一定程度上满足远距离爆炸物探测需求的技术主要有 X射 线背散射成像、 激光光谱、 热成像、 毫米波和太赫兹技术等( 1. 唐前 进, 邵杰. 远距离爆炸物探测技术的研究与应用. 中国安防, 2009, 9: 40-45 ) 。 X射线背散射成像技术利用背散射的 X射线对被检测物体进 行成像, 其使用的 X射线能量相对于透视成像较低, 潜在的探测距离 为 15米, 可将爆炸物和背景区分开来, 但由于 X射线具有致电离性, 对人体健康有一定的伤害。 激光光谱技术主要利用被检测物体受激光 照射时所吸收或发射的某些特定波长的激光来判定是否存在爆炸物, 如拉曼光谱、 激光诱导荧光光谙和光声光谱, 该技术的优点在于激光 具有较好的传输性, 适合远距离探测的需求, 局限性是激光无法穿过 不透明物体, 因而不能探测隐藏的爆炸物。 热成像技术主要是利用隐 藏物品与表面之间的温度差来进行探测, 这种技术在探测人体炸弹方 面优势显著, 但是空气的流动和其他热源都会对探测效果产生影响, 同时该技术只能提供隐藏物品的形状信息, 很难从物质成分的角度鉴 别爆炸物, 因而检测能力有限。 毫米波技术通过探测物体自身发射或 者由物体反射回来的毫米波波段电磁辐射而成像, 毫米波对大气和衣 物具有良好的穿透性, 能够在远距离探测隐藏的武器, 但是不具备物 质成分识别能力。 太赫兹辐射一般是指频率在 0.1-10 THz范围内的电 磁波, 它具有如下几方面的独特性质: 首先, 很多有机分子在太赫兹 频段内具有特征吸收和色散, 使得物质的太赫兹光谱表现出 "指紋,, 其次, 太赫兹辐射对于很多非金属、、 极性物质具有很强的穿透力, 能够直接探测隐藏的危险品; 此外, 太赫兹电磁波没有 X射线的致电 离性质, 不会对材料和人体造成伤害, 所以太赫兹技术在爆炸物检测 方面具有良好的应用前景。
2006年美国陆军 RDECOM CERDEC夜视与电子传感器实验室开 发了一套可探测隐藏武器的 640 GHz主动成像仪 (2. E. L. Jacobs, S. Moyer, C. C. Franck, et al. Concealed weapon identification using terahertz imaging sensors. Pro of SPIE, 2006, 6212: 62120J ), 探测距离 约为 1.5 m, 所采用的共焦成像方式保证了高分辨率和信噪比, 但扫描 速度较慢。 与此同时, 德国宇航研究中心针对反恐需求开展了用于人 体衣物下隐藏金属危险品的远距离太赫兹成像研究, 并于 2007年研制 成功工作频率为 0.8 THz、 探测距离达 20 m、 分辨率小于 2 cm的成像 系统样机 ( 3. H.-W. H u bers, A. D. Semenov, H. Richter, et al. Terahertz imaging system for stand-off detection of threats. Proc. of SPIE, 2007, 6549: 65490A ) , 且能达到接近实时采集图像的扫描速度。 以上研究工 作表明利用主动太赫兹辐射对远距离可疑物体进行成像定位具有可行 性, 但对于爆炸物探测还需联合光谱信息加以识别, 而且这些研究尚 处于实验室内部阶段, 没有真正投入到实际应用中, 有待进一步发展。
国内外针对远距离太赫兹光谱分析的研究很少, 而且均处于探索 阶段。 2006年美国 RPI太赫兹研究中心利用传统的太赫兹时域光谱分 析技术检测远处的炸药样品, 对于 30 m传播距离仍然观察到了 RDX 的 0.82 THz吸收峰,初步表明远距离爆炸物识别是可行的( 4. H. Zhong, A. Redo, Y. Chen, et al. THz wave standoff detection of explosive materials. Proc. of SPIE, 2006, 6212: 62120L ) , 但大气吸收使光谱失真 严重, 信噪比较差, 不利于实际应用。 该单位又提出了通过飞秒激光 诱导空气等离子体产生脉沖太赫兹辐射的新技术 (5. J. Dai and X.-C. Zhang. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Appl. Phys. Lett., 2009, 94: 021 1 17 ) , 这样可以将在大气中传输性好的可见光发送到远 处被测物体附近产生太赫兹辐射, 以避免大气对太赫兹辐射造成的衰 减, 然后通过光谱分析鉴别爆炸物, 但反射信号的远距离探测还面临 困难, 而且单纯的光谱分析技术只对物体的一个测量点进行检测, 不 具备空间定位能力, 因此需要与成像技术结合才能满足实际应用。 发明内容
为了克服上述现有技术中存在的不足, 本发明提出了一种新的远 距离隐藏危险品检测方法, 该方法的核心是基于连续波太赫兹辐射的 高功率和频率调谐特性, 先通过太赫兹成像反映的形状信息对可疑物 体进行快速定位, 然后选择对大气透射性好的某些频段进行太赫兹光 谱分辨测量以进一步识别是否存在危险品。
在本申请中所使用的术语 "远距离" 一般来讲被定义为距离被测 物体大致 5米- 20米的范围。 但是, 本发明的设备和方法同样适用于 更近距离或者更远距离的隐藏危险品的检测。
本发明的技术方案以如下方式实现:
一种对隐藏危险品进行检测的方法, 所述方法包括以下步骤: 对 被测物体进行太赫兹成像; 判断通过太赫兹成像得到的被测物体太赫 兹图像中是否存在藏有危险品的可疑区域; 对藏有危险品的可疑区域 进行多波长光谱分析测量, 根据多波长光谱分析测量结果鉴别所述可 疑区域中是否包含危险品; 以及输出被测物体太赫兹图像和危险品检 测结果。
根据本发明的方法的一个方面, 所述对被测物体进行太赫兹成像 的步骤可包括: 调节太赫兹发射器工作于成像波长下; 将太赫兹发射 器输出的太赫兹辐射准直、 聚焦, 并传输至被测物体; 通过太赫兹探 测器收集由被测物体反射回来的太赫兹辐射, 得到被测物体一个像素 点的信息; 以及通过波束扫描控制系统使太赫兹波束扫描视域中的各 像素点, 从而获取被测物体的太赫兹反射图像。
根据本发明的方法的另一个方面, 判断通过太赫兹成像得到的被 测物体太赫兹图像中是否存在藏有危险品的可疑区域的步骤可包括: 通过数据采集与处理系统基于由太赫兹反射图像得出的形状特征和灰 度值特征判断扫描图像中是否存在藏有危险品的可疑区域, 同时对所 述可疑区域进行精确定位。
根据本发明的方法的又一个方面, 对藏有危险品的可疑区域进行 多波长光谱分析测量的步骤可进一步包括选取所述可疑区域内某一感 兴趣点, 对该感兴趣点进行多波长光谘分析测量, 建立太赫兹多波长 反射光谱识别模型, 运用模式识别方法鉴别可疑区域内是否存在危险 根据本发明的方法的另一个方面, 所述调节太赫兹发射器工作于 成像波长下的步骤可进一步包括: a) 根据太赫兹辐射在大气中的传输 特性选择透射良好的频率窗口, 确定太赫兹辐射源的工作波长范围; b) 综合分析太赫兹辐射源发射功率、 波长对成像信噪比和空间分辨率 的影响, 同时考虑所述步骤 a)所限定的波长范围, 确定最佳成像波长。
根据本发明的方法的另一个方面, 所述波束扫描控制系统可包括 太赫兹波束扫描装置和太赫兹波束扫描控制单元, 所述通过波束扫描 控制系统使太赫兹波束扫描视域中的各像素点的步骤可进一步包括: 所述太赫兹波束扫描控制单元发送信号至所述太赫兹波束扫描装置, 调节所述太赫兹波束扫描装置中的波束扫描模块以改变太赫兹波束在 被测物体上的光斑位置。
根据本发明的方法的又一个方面, 所述波束扫描模块可以是振镜。 根据本发明的方法的又一个方面, 所述波束扫描控制系统可包括 太赫兹波束扫描装置和太赫兹波束扫描控制单元, 所述通过波束扫描 控制系统使太赫兹波束扫描视域中的各像素点的步骤可进一步包括: 所述太赫兹波束扫描装置承载包括所述太赫兹发射器、 所述太赫兹探 测器和所述太赫兹光学组件的系统进行平移运动, 所述太赫兹波束扫 描控制单元发送信号至所述太赫兹波束扫描装置, 调节所述组件的空 间位置从而改变入射太赫兹波束在被测物体上的光斑位置。
根据本发明的方法的又一个方面, 对藏有危险品的可疑区域进行 多波长光谱分析测量的步驟可进一步包括通过波长调谐控制单元对所 述太赫兹发射器的辐射波长进行有选择地调节, 使所述太赫兹发射器 工作于多波长光谱分析所需的波长下。
一种对隐藏危险品进行检测的设备, 所述设备包括: 太赫兹发射 装置, 所述太赫兹发射装置产生用于照射被测物体以与物体相互作用 的波长可调谐的连续波太赫兹辐射; 太赫兹探测器, 所述太赫兹探测 器用于接收由被测物体反射回来的太赫兹辐射; 太赫兹光学组件, 所 述太赫兹光学组件用于将太赫兹发射装置产生的波束准直、 聚焦至被 测物体, 同时将被测物体反射回来的太赫兹波束收集至所述太赫兹探 测器; 波束扫描控制系统, 所述波束扫描控制系统用于调节太赫兹波 束入射至被测物体上的空间位置; 和数据采集与处理系统, 所述数据 采集与处理系统与所述太赫兹发射装置、 所述太赫兹探测器和所述波 束扫描控制系统相连, 用以控制所述设备中的太赫兹发射装置、 太赫 兹探测器、 波束扫描控制系统的协调工作, 构建被测物体的太赫兹反 射图像, 基于由太赫兹反射图像得出的形状特征和灰度值特征判断被 测物体太赫兹反射图像中是否存在藏有危险品的可疑区域, 对可疑区 域进行搜索定位, 然后对该可疑区域内感兴趣测量点的多波长反射光 谱数据进行分析与处理, 并且给出危险品识别结果。
根据本发明的设备的一个方面, 所述太赫兹发射装置可包括太赫 兹发射器和波长调谐控制单元, 所述波长调谐控制单元与所述太赫兹 发射器相连接, 对所述太赫兹发射器的辐射波长进行有选择地调节。
根据本发明的设备的另一个方面, 所述太赫兹发射器可以是耿氏 振荡器及倍频器、 返波管、 参量振荡器、 或者量子级联激光器。
根据本发明的设备的另一个方面, 所述太赫兹探测器可以是肖特 基二极管、 超导 -绝缘体-超导结混频器、 或者测热辐射计。
根据本发明的设备的又一个方面, 所述波束扫描控制系统包括太 赫兹波束扫描装置和太赫兹波束扫描控制单元, 所述太赫兹波束扫描 控制单元与所述太赫兹波束扫描装置相连接, 所述太赫兹波束扫描装 置包括波束扫描模块, 通过所述太赫兹波束扫描装置实时调节和监测 所述波束扫描模块, 完成波束空间位置信息的设定和读取。
根据本发明的设备的又一个方面, 所述波束扫描模块可以是振镜。 根据本发明的设备的又一个方面, 所述太赫兹波束扫描装置可以 是承载着包括所述太赫兹发射装置、 所述太赫兹探测器和所述太赫兹 光学组件的系统对被测物体进行二维逐点扫描从而获取被测物体的图 像的机械平移台。
根据本发明的设备的又一个方面, 所述太赫兹光学组件可包括负 责将所述太赫兹发射装置产生的波束准直并且将被测物体反射回来的 太赫兹波束收集至所述太赫兹探测器的分束器、 平面镜和将所述太赫 兹波束聚焦至被测物体上的抛物面镜或椭球面镜或者透镜。
由于采用了上述的方法和结构, 本发明与现有技术相比具有如下 几方面的优势:
1 )本发明提出的连续波太赫兹成像和连续波多波长光谱分析相结 合的方法可同时从形状特征和物质成分的角度实现对隐藏危险品的鉴 另 ij , 检测准确性大大增加;
2 )本发明提出的装置先通过太赫兹成像快速定位可能藏有危险品 的可疑区域, 然后只选取该区域内某个感兴趣点做进一步的光谱分析 鉴别, 不需要对整个扫描区域进行光谱成像, 因而测量速度快, 能够 大大提高检测效率;
3 )本发明采用的连续波多波长光谱分析方法可避免大气吸收产生 的影响, 保证了远距离探测的可行性, 并且所提出的装置采用波长可 调谐的连续波太赫兹辐射源, 与常用的脉沖源相比, 其平均输出功率 高, 因而对遮挡材料的穿透力好, 信噪比高, 实用性强。 附图说明
从下面结合附图的详细描述中, 本发明的上述特征和优点将更加 明显, 其中:
图 1 是利用太赫兹成像和多波长光谱分析对爆炸物进行远距离探 测的设备第一实施例的结构示意图;
图 2是太赫兹辐射的大气透射谱 (标准大气压, 温度 20°C, 相对 湿度 40%, 传输距离 20 m ) ;
图 3是太赫兹波束扫描示意图;
图 4是对太赫兹图像中可疑区域定位和识别的示意图;
图 5是爆炸物 RDX的太赫兹吸收光谱以及多波长光谱分析选取的 采样点;
图 6是根据本发明第一实施例的检测隐藏爆炸物的方法的流程图; 和
图 7 是利用太赫兹成像和多波长光谱分析对爆炸物进行远距离探 测的设备第二实施例的结构示意图。 具体实施方式 下面, 参考附图详细说明本发明的优选实施方式。
图 1 是利用太赫兹成像和多波长光镨分析对爆炸物进行远距离探 测的设备第一实施例的结构示意图。 如图 1 所示, 本发明第一实施利 的设备 101 包括太赫兹发射器 102及其波长调谐控制单元 115、太赫兹 探测器 1 12; 波束扫描装置 105及其波束扫描控制单元 1 14; 太赫兹准 直元件 104、 聚焦元件 106、 分束器 1 10; 以及基于计算机的数据采集 与处理系统 1 13。太赫兹发射器 102及其波长调谐控制单元 1 15构成了 能够产生用于照射被测物体以与物体相互作用的波长可调谐的连续波 太赫兹辐射的太赫兹发射装置。 波束扫描装置 105 及其波束扫描控制 单元 1 14 构成了波束扫描控制系统。 太赫兹准直元件 104、 聚焦元件 106、 分束器 1 10构成了用于传输辐射波束的太赫兹光学组件。
太赫兹发射器 102产生波长为 4 (对应频率为 /。 )的连续波太赫 兹辐射 103 , 经过分束器 1 10以及太赫兹准直元件 104 (可以是抛物面 镜或透镜)后到达波束扫描装置 105, 其后续的传播方向由波束扫描装 置 105控制; 聚焦元件 106 (可以是抛物面镜或透镜)将太赫兹入射波 束 】07会聚至远处的被测物体 108上某一特定的测量点; 由物体 108 反射的波束 109沿入射波束的传播路径返回, 然后经分束器 1 10反射, 经分束器反射的波束 1 1 1 的强度由太赫兹探测器 1 12测量; 数据采集 与处理系统 1 13 读取该特定测量点的太赫兹反射波强度。 波束扫描控 制单元 1 14发送信号至波束扫描装置 105,通过其中的机械部件使波束 扫描装置 105得到调节从而改变入射波束 107在被测物体 108上的光 斑位置; 数据采集与处理系统 1 13与波束扫描控制单元 1 14、 太赫兹探 测器 1 12协调工作, 获取被测物体 108待扫描区域内不同位置处的太 赫兹反射波强度, 最后构建出被测物体 108 的太赫兹反射图像。 波长 调谐控制单元 1 15对太赫兹发射器 102的工作波长进行调节, 设定成 像波长^以及光谱分析波长 W, ,.
图 2是由 HITRAN分子吸收光谱数据库计算得出的 0, 1-2.5 THz区 间内太赫兹辐射的大气透射谱, 大气条件为标准大气压、 温度 20°C、 水蒸气相对湿度 40%, 太赫兹辐射的传输距离假设为 20 m。 如图 2所 示, 透射光谱曲线 201 反映的衰减规律表明太赫兹辐射在大气中传输 具有一系列透射率较高的频率窗口, 比如图中标记的频率区间 202 至 208 , 这些数据作为波长调谐控制单元 1 15对太赫兹发射器 102工作波 长进行设定的依据。 在成像模式下, 系统工作于单一波长 4, 可选取 区间 202至 208 内任意频率对应的波长值, 当然需要同时考虑太赫兹 发射器输出波长的可调谐范围; 在多波长光谱分析模式下, 系统工作 于一系列波长 {Α,Α,. ,^ϋ , 可分别在区间 202至 208内选取, 同时考 虑是否与爆炸物的光谱特征相对应, 比如 RDX炸药在 0.8 ΤΗζ附近具 有吸收峰, 该频率位于区间 204 (透射率大于 80% ) 。
图 3是太赫兹波束扫描示意图。 波束扫描模块 301 可以包括两个 单轴振镜或者一个双轴振镜。 如图 3 所示, 太赫兹发射器发出的波束 由抛物面镜 302反射并准直,通过波束扫描模块 301 中的振镜 303、 304 反射后入射至抛物面镜 305, 然后聚焦到被测物体上。 振镜 303、 304 可以呈平面镜的形式且在波速扫描装置中的机械部件的作用下进行动 作。 振镜 303绕 '轴转动, 使得波束 306在 平面内移动, 则入射 波束在物体上的光斑位置也随之移动, 实现波束的横向 (逐行)扫描; 振镜 304位于抛物面镜 305 的焦点处并且绕 ^轴转动, 使得波束 307 在 z平面内移动, 实现波束的纵向 (逐列) 扫描。 波束 308 和 309 对应振镜 304在两个不同转动角度下的扫描。通过控制振镜 303和 304 的协调工作实现太赫兹波束的逐点快速扫描, 最终获取被测物体二维 区域内各像素点的反射光强。
图 4是对太赫兹图像中可疑区域定位和识别的示意图。 如图 4所 示, 在通过本发明实施利的设备 101 对被测物体进行扫描成像后, 得 到一幅反射图像 401, 其中包含三个不同的区域 402、 403和 404。 通 过计算机对图像进行进一步处理, 根据形状特征和灰度值特征分析各 区域, 自动搜索到可疑区域 404, 即该区域可能藏有爆炸物, 然后选取 其内部某一点 405 做后续测量。 提取该测量点对应的空间坐标, 调节 波束扫描装置使入射至物体上的波束光斑定位于该点, 然后进行多波 长光谱分析测量。
在图 2 所示的透射窗口 内调谐太赫兹发射器的输出波长 {Λ,,^,. , .,Λ^ , 测量不同波长对应的感兴趣点 405的太赫兹反射率, 从 而获得可疑区域的多波长反射光谱数据。 图 5显示了 RDX炸药的太赫 兹吸收光谱 501 以及多波长光谱分析选取的七个代表性采样点 502至 508 , 其中采样点 502至 508依次对应 0.50、 0.66、 0.86、 1.02, 1.32、 1 .50、 1.99 ΤΗζ, 它们处于各个大气透射窗口中心 (第一个点除外) , 并且能够反映 RDX的主要光谱特征。 假设这些频率均位于太赫兹发射 器的可调谐范围内, 则依次测量它们对应的反射率, 得到长度为 7 的 一维向量
Figure imgf000011_0001
, 并将其作为可疑区域的多波长反射光谱。 反 射率的具体测量方法是在被测物体处放置一块反射镜, 记录某一波长 对应的反射光强, 记为参考信号 , 然后当检测某一可疑物体时, 测 量相同波长下的反射光强, 记为物体信号 则物体在该波长下的反 射率为 r = S^ 。 由于不同波长下太赫兹发射器的输出功率不同, 大气 对太赫兹辐射的衰减程度也不同, 因此通过参考信号计算反射率的操 作相当于对这两个因素的影响进行了校准。
接下来,根据测得的光谱 S鉴别可疑区域是否存在爆炸物。这需要 建立包含各种典型爆炸物光谱的数据库, 因此首先制作各种典型爆炸 物的标准测试样品, 然后用前述步骤测量它们的多波长反射光谱, 并 全部存储起来作为光谱数据库。 在此基础上, 运用人工神经网络或支 持向量机等模式识别方法建立多波长光谱识别模型, 通过该模型对实 测光镨 S进行种类判定, 从而鉴别待分析区域是否存在爆炸物。 至此, 完成了通过连续波太赫兹成像与多波长光语分析相结合的方式对隐藏 爆炸物进行远距离定位和识别。
图 6是根据本发明第一实施例的检测隐藏爆炸物的方法的流程图。 如图 6所示, 首先, 在步骤 S 10 中, 用户通过波长调谐控制单元 1 15 对太赫兹发射器 102的工作波长进行调节, 设定成像波长 ^o。
然后, 在步骤 S1 1 中, 通过波束扫描控制单元 1 14对波束扫描装 置 105进行控制, 调节太赫兹入射波束 107在被测物体 108上的光斑 位置, 同时数据采集与处理系统 1 13 读取各测量点的太赫兹反射波强 度, 从而采集被测物体 108的太赫兹反射图像 401。
接下来, 在步骤 S 12 中, 对图像 401 中各个区域进行分析, 由于 爆炸物与常规物体可能存在形状差异且爆炸物与常规物体对太赫兹波 反射强度不同而可能产生图像灰度值差异, 根据由太赫兹反射图像得 出的形状特征和灰度值特征基于经验判断是否存在可能藏有爆炸物的 可疑区域 404。
如果判断结果为没有所述可疑区域, 则直接转到步骤 S 15 , 向用户 显示被测物体的图像, 并给出爆炸物检测结果。
如果判断结果为存在所述可疑区域, 则在步骤 S 13 中进一步调节 太赫兹发射器 102的工作波长, 设定光谱分析波长 ^ A,..., U, 在这 些波长下测量可疑区域 404 内部某一点 405的反射光强, 获取多波长 光谱数据。 然后, 在步骤 S 14 中, 根据测得的多波长光谱鉴别可疑区 域内的物质种类, 判断是否包含爆炸物。 最后, 在步骤 S 15 中将所得 到的太赫兹反射图像显示在屏幕上, 并给出爆炸物检测结果。
图 Ί是利用太赫兹成像和多波长光语分析对爆炸物进行远距离探 测的设备第二实施例的结构示意图。 如图 7 所示, 本发明第二实施利 的设备包括太赫兹发射器 702及其波长调谐控制单元 714、太赫兹探测 器 710; 波束扫描装置 712及其波束扫描控制单元 713 ; 太赫兹聚焦元 件 704、 分束器 708; 以及基于计算机的数据采集与处理系统 71 1。 太 赫兹发射器 702及其波长调谐控制单元 714构成了能够产生用于照射 被测物体以与物体相互作用的波长可调谐的连续波太赫兹辐射的太赫 兹发射装置。 波束扫描装置 712及其波束扫描控制单元 713构成了波 束扫描控制系统。 太赫兹聚焦元件 704和分束器 708构成了用于传输 辐射波束的太赫兹光学组件。
太赫兹发射器 702产生连续波太赫兹辐射 703,经过分束器 708后 到达聚焦元件 704 (可以是透镜或抛物面镜 )将太赫兹波束 705会聚至 远处的被测物体 706上某一特定的测量点; 由物体 706反射的波束 707 沿入射波束的传播路径返回, 然后经分束器 708 反射, 经分束器反射 的波束 709的强度由探测器 710测量; 数据采集与处理系统 71 1读取 该特定测量点的太赫兹反射波强度。 波束扫描装置 712 承载太赫兹发 射源、 探测器和光学组件等组成的系统 701 做平移运动, 波束扫描控 制单元 713发送信号至波束扫描装置 712,调节系统 701的空间位置从 而改变入射波束 705在被测物体 706上的光斑位置; 数据釆集与处理 系统 71 1与波束扫描控制单元 713、 太赫兹探测器 710协调工作, 获取 被测物体 706待扫描区域内不同位置处的太赫兹反射波强度, 最后构 建出被测物体 706的太赫兹反射图像。
根据本发明第二实施例的多波长光谱分析过程和爆炸物检测流程 图与第一实施例实质上相同, 在此不再赘述。
上面的描述仅用于实现本发明的实施方式, 本领域的技术人员应 该理解, 在不脱离本发明的范围的任何修改或局部替换, 均应该属于 本发明的权利要求来限定的范围。 例如, 虽然在前述本发明实施例中 针对的是爆炸物的远距离检测方法及设备, 但是应该理解: 本发明同 样适用于易燃、 易爆、 有强烈腐蚀性的危险品的远距离检测方法及设 备。 另外, 本发明也完全适用于包含爆炸物的各种危险品的近距离检 测方法及设备。 因此, 本发明的保护范围应该以权利要求书所限定的 保护范围为准。

Claims

权 利 要 求
1. 一种对隐藏危险品进行检测的方法, 所述方法包括以下步骤: 对被测物体进行太赫兹成像;
判断通过太赫兹成像得到的被测物体太赫兹图像中是否存在藏有 危险品的可疑区域;
对藏有危险品的可疑区域进行多波长光谱分析测量, 根据多波长 光谱分析测量结果鉴别所述可疑区域中是否包含危险品; 以及
输出被测物体太赫兹图像和危险品检测结果。
2. 根据权利要求 1 所述的方法, 其中所述对被测物体进行太赫兹 成像的步骤包括:
调节太赫兹发射器工作于成像波长下;
将太赫兹发射器输出的太赫兹辐射准直、 聚焦, 并传输至被测物 体;
通过太赫兹探测器收集由被测物体反射回来的太赫兹辐射, 得到 被测物体一个像素点的信息; 以及
通过波束扫描控制系统使太赫兹波束扫描视域中的各像素点, 从 而获取被测物体的太赫兹反射图像。
3. 根据权利要求 1 所述的方法, 其中判断通过太赫兹成像得到的 被测物体太赫兹图像中是否存在藏有危险品的可疑区域的步骤包括: 通过数据采集与处理系统基于由太赫兹反射图像得出的形状特征 和灰度值特征判断扫描图像中是否存在藏有危险品的可疑区域, 同时 对所述可疑区域进行精确定位。
4. 根据权利要求 1 所述的方法, 其中对藏有危险品的可疑区域进 行多波长光谱分析测量的步骤进一步包括选取所述可疑区域内某一感 兴趣点, 对该感兴趣点进行多波长光谱分析测量, 建立太赫兹多波长 反射光谱识别模型, 运用模式识别方法鉴别可疑区域内是否存在危险
5. 根据权利要求 2所述的方法, 其中所述调节太赫兹发射器工作 于成像波长下的步骤进一步包括:
a) 根据太赫兹辐射在大气中的传输特性选择透射良好的频率窗 口, 确定太赫兹辐射源的工作波长范围; b) 综合分析太赫兹辐射源发射功率、 波长对成像信噪比和空间分 辨率的影响, 同时考虑所述步骤 a)所限定的波长范围, 确定最佳成像 波长。
6. 根据权利要求 2所述的方法, 其中所述波束扫描控制系统包括 太赫兹波束扫描装置和太赫兹波束扫描控制单元, 所述通过波束扫描 控制系统使太赫兹波束扫描视域中的各像素点的步骤进一步包括: 所 述太赫兹波束扫描控制单元发送信号至所述太赫兹波束扫描装置, 调 节所述太赫兹波束扫描装置中的波速扫描模块以改变太赫兹波束在被 测物体上的光斑位置。
7. 根据权利要求 6所述的方法, 其中所述波束扫描模块是振镜。
8. 根据权利要求 2所述的方法, 其中所述波束扫描控制系统包括 太赫兹波束扫描装置和太赫兹波束扫描控制单元, 所述通过波束扫描 控制系统使太赫兹波束扫描视域中的各像素点的步骤进一步包括: 所 述太赫兹波束扫描装置承载包括所述太赫兹发射器、 所述太赫兹探测 器和所述太赫兹光学组件的系统进行平移运动, 所述太赫兹波束扫描 控制单元发送信号至所述太赫兹波束扫描装置, 调节所述组件的空间 位置从而改变入射太赫兹波束在被测物体上的光斑位置。
9. 根据权利要求 1 所述的方法, 其中对藏有危险品的可疑区域进 行多波长光谱分析测量的步骤进一步包括通过波长调谐控制单元对所 述太赫兹发射器的辐射波长进行有选择地调节, 使所述太赫兹发射器 工作于多波长光谱分析所需的波长下。
10. 一种用于实施根据权利要求 1 所述的对隐藏危险品进行检测 的方法的设备, 所述设备包括:
太赫兹发射装置, 所述太赫兹发射装置产生用于照射被测物体以 与物体相互作用的波长可调谐的连续波太赫兹辐射;
太赫兹探测器, 所述太赫兹探测器用于接收由被测物体反射回来 的太赫兹辐射;
太赫兹光学组件, 所述太赫兹光学组件用于将太赫兹发射装置产 生的波束准直、 聚焦至被测物体, 同时将被测物体反射回来的太赫兹 波束收集至所述太赫兹探测器;
波束扫描控制系统, 所述波束扫描控制系统用于调节太赫兹波束 入射至被测物体上的空间位置; 和 数据采集与处理系统, 所述数据采集与处理系统与所述太赫兹发 射装置、 所述太赫兹探测器和所述波束扫描控制系统相连, 用以控制 所述设备中的太赫兹发射装置、 太赫兹探测器、 波束扫描控制系统的 协调工作, 构建被测物体的太赫兹反射图像, 基于由太赫兹反射图像 得出的形状特征和灰度值特征判断被测物体太赫兹反射图像中是否存 在藏有危险品的可疑区域, 对可疑区域进行搜索定位, 然后对该可疑 区域内感兴趣测量点的多波长反射光谱数据进行分析与处理, 并且给 出危险品识别结果。
1 1. 根据权利要求 10所述的设备, 其中所述太赫兹发射装置包括 太赫兹发射器和波长调谐控制单元, 所述波长调谐控制单元与所述太 赫兹发射器相连接, 对所述太赫兹发射器的辐射波长进行有选择地调
"F 。
12. 根据权利要求 1 1 所述的设备, 其中所述太赫兹发射器是耿氏 振荡器及倍频器、 返波管、 参量振荡器、 或者量子级联激光器。
13. 根据权利要求 1 1 所述的设备, 其中所述太赫兹探测器是肖特 基二极管、 超导 -绝缘体-超导结混频器、 或者测热辐射计。
14. 根据权利要求 10所述的设备, 其中所述波束扫描控制系统包 括太赫兹波束扫描装置和太赫兹波束扫描控制单元, 所述太赫兹波束 扫描控制单元与所述太赫兹波束扫描装置相连接, 所述太赫兹波束扫 描装置包括波束扫描模块, 通过所述太赫兹波束扫描装置实时调节和 监测所述波束扫描模块, 完成波束空间位置信息的设定和读取。
15. 根据权利要求 14所述的设备,其中所述波束扫描模块是振镜。
16. 根据权利要求 14所述的设备, 其中所述太赫兹波束扫描装置 是承载着包括所述太赫兹发射装置、 所述太赫兹探测器和所述太赫兹 光学组件的系统对被测物体进行二维逐点扫描从而获取被测物体的图 像的机械平移台。
17. 根据权利要求 10-16中任一项所述的设备, 其中所述太赫兹光 学组件包括负责将所述太赫兹发射装置产生的波束准直并且将被测物 体反射回来的太赫兹波束收集至所述太赫兹探测器的分束器、 平面镜 和将所述太赫兹波束聚焦至被测物体上的抛物面镜或椭球面镜或者透 镜。
PCT/CN2012/000513 2011-04-29 2012-04-13 隐藏危险品检测方法及设备 WO2012146054A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/008,903 US9194796B2 (en) 2011-04-29 2012-04-13 Concealed dangerous articles detection method and device
GB1316221.9A GB2502239B (en) 2011-04-29 2012-04-13 Method and Apparatus for detecting hidden hazardous substance
DE112012001926.1T DE112012001926B4 (de) 2011-04-29 2012-04-13 Verfahren und Vorrichtung zur Detektion einer verborgenen gefährlichen Substanz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110110590.XA CN102759753B (zh) 2011-04-29 2011-04-29 隐藏危险品检测方法及设备
CN201110110590.X 2011-04-29

Publications (1)

Publication Number Publication Date
WO2012146054A1 true WO2012146054A1 (zh) 2012-11-01

Family

ID=47054262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000513 WO2012146054A1 (zh) 2011-04-29 2012-04-13 隐藏危险品检测方法及设备

Country Status (6)

Country Link
US (1) US9194796B2 (zh)
CN (1) CN102759753B (zh)
DE (1) DE112012001926B4 (zh)
GB (1) GB2502239B (zh)
HK (1) HK1173226A1 (zh)
WO (1) WO2012146054A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501207A (zh) * 2016-12-28 2017-03-15 中国科学院上海微系统与信息技术研究所 太赫兹二维成像系统及成像方法
CN110426351A (zh) * 2019-08-28 2019-11-08 广东成丰环保工程有限公司 一种基于太赫兹的材料识别装置和垃圾分选系统
CN116794742A (zh) * 2023-06-29 2023-09-22 赛那德科技有限公司 一种基于太赫兹技术的快递包裹危险品检测系统
CN110426351B (zh) * 2019-08-28 2024-04-30 广东成丰环保工程有限公司 一种基于太赫兹的材料识别装置和垃圾分选系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038707B (zh) * 2013-03-07 2017-08-01 北京理工大学 一种便携式太赫兹被动式彩色照相机
CN103868588B (zh) * 2014-04-01 2016-01-20 中国计量科学研究院 绝对型太赫兹辐射计
CN103926199B (zh) * 2014-04-16 2016-08-31 黄晓鹏 危险品检测方法
CN104316488B (zh) * 2014-09-30 2017-06-16 北京环境特性研究所 违禁物品检测方法和装置
CN104849294A (zh) * 2015-06-05 2015-08-19 公安部第三研究所 一种基于极高频脉冲电磁波的物品查探装置
CN105181623B (zh) * 2015-08-04 2017-11-28 深圳市太赫兹科技创新研究院有限公司 一种邮件检测装置和方法
WO2017099661A1 (en) * 2015-12-10 2017-06-15 Swedish Adrenaline Ab Radar detector for monitoring of bodily functions
CN105486644B (zh) * 2016-01-18 2019-02-26 中国工程物理研究院流体物理研究所 一种基于带通滤光片的安全检查系统及方法
CN106094050A (zh) * 2016-06-15 2016-11-09 中国工程物理研究院应用电子学研究所 一种太赫兹主动式安检仪
CN106199751B (zh) * 2016-07-08 2019-03-01 中国科学院电子学研究所 太赫兹电控波束扫描光学链路
CN106291740B (zh) * 2016-09-07 2017-09-15 华讯方舟科技有限公司 功率调节方法、装置以及人体安检设备
CN106442379B (zh) * 2016-10-09 2018-11-13 上海理工大学 基于太赫兹波的背向激光远距离检测危险物品的装置
DE102016226212A1 (de) * 2016-12-23 2018-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Analyseeinrichtung
CN108072909A (zh) * 2016-11-17 2018-05-25 富士通株式会社 物品检测方法、装置和系统
CN109765549B (zh) * 2017-11-10 2022-09-27 富士通株式会社 数据切割方法和装置、物品检测方法和装置
CN108051868A (zh) * 2017-11-16 2018-05-18 欧必翼太赫兹科技(北京)有限公司 太赫兹人体安检成像系统
KR20190056771A (ko) * 2017-11-17 2019-05-27 현대자동차주식회사 수밀 검사 장치 및 방법
CN107907499B (zh) * 2017-12-28 2020-09-04 深圳市太赫兹科技创新研究院 多频太赫兹检测装置、系统及其方法
CN108279671B (zh) * 2018-01-08 2021-12-14 深圳市易成自动驾驶技术有限公司 基于太赫兹的环境感知方法、装置及计算机可读存储介质
US10571393B2 (en) 2018-04-13 2020-02-25 Tsinghua University Terahertz gas detection method and device based on Gregory double reflection antenna
CN108760673B (zh) * 2018-04-13 2020-01-21 清华大学 基于太赫兹的高危化学品探测的装置和方法
CN108491895A (zh) * 2018-05-21 2018-09-04 深圳市神飞电子科技有限公司 一种太赫兹透视成像识别系统
CN108898132B (zh) * 2018-05-25 2022-08-12 广东工业大学 一种基于形状上下文描述的太赫兹图像危险品识别方法
CN109297932A (zh) * 2018-08-29 2019-02-01 北京遥感设备研究所 一种太赫兹准光伺服镜扫描连续波反射成像系统
CN109241937B (zh) * 2018-09-26 2020-01-07 武汉夏宇信息技术有限公司 基于太赫兹波的识别方法、装置及存储介质
CN109120801B (zh) * 2018-10-30 2021-12-03 Oppo(重庆)智能科技有限公司 一种危险物品检测的方法、装置及移动终端
WO2020123505A1 (en) * 2018-12-10 2020-06-18 Saudi Arabian Oil Company Inspection and failure detection of corrosion under fireproofing insulation using a hybrid sensory system
DE102018222001B4 (de) 2018-12-18 2024-03-28 Audi Ag Verfahren zum Beurteilen einer Beförderungssituation bei einer angebotenen Beförderungsfahrt, sowie ein elektronisches Überprüfungssystem
CN109870736A (zh) * 2018-12-29 2019-06-11 同方威视技术股份有限公司 毫米波/太赫兹安检设备及人体或物品检查方法
CN109655928A (zh) * 2019-01-30 2019-04-19 成都智元汇信息技术股份有限公司 一种基于云处理的安检门金属物品分析系统及方法
US20200296265A1 (en) * 2019-03-14 2020-09-17 Canon Kabushiki Kaisha Processing system
CN109948527B (zh) * 2019-03-18 2022-12-02 西安电子科技大学 基于集成深度学习的小样本太赫兹图像异物检测方法
CN110045349B (zh) * 2019-04-28 2021-07-27 软通智慧科技有限公司 一种鉴定方法、装置、设备及存储介质
CN110161569A (zh) * 2019-06-06 2019-08-23 北京卫星环境工程研究所 探测地下金属氧化物的装置和方法
CN111157487A (zh) * 2020-01-08 2020-05-15 天津大学 基于双光路的太赫兹光谱与成像快速同步检测装置
CN112285795A (zh) * 2020-09-30 2021-01-29 中国科学技术大学先进技术研究院 一种非接触式激光爆炸物快速检测系统及方法
US20220114769A1 (en) * 2020-10-08 2022-04-14 Shimadzu Corporation Imaging Apparatus and Imaging Method
CN113205516A (zh) * 2021-05-27 2021-08-03 清华大学 一种实现物品检测的方法和系统
CN113537343A (zh) * 2021-07-14 2021-10-22 厦门熵基科技有限公司 一种金属分类方法、装置、设备及存储介质
CN113591677A (zh) * 2021-07-28 2021-11-02 厦门熵基科技有限公司 违禁品识别方法、装置、存储介质及计算机设备
US11754503B1 (en) * 2022-10-28 2023-09-12 Ncs Testing Technology Co., Ltd Measurement deviation correction method and system for spark discharge analysis of large-size metal material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102518A2 (en) * 2002-05-31 2003-12-11 New Jersey Institute Of Technology Terahertz imaging system and method
US20060056586A1 (en) * 2004-09-15 2006-03-16 Naohito Uetake Method and equipment for detecting explosives, etc.
CN1940542A (zh) * 2006-09-27 2007-04-04 中国计量学院 具有谱特征的太赫兹快速成像装置及其方法
US20070085009A1 (en) * 2005-07-20 2007-04-19 The Boeing Company Terahertz imaging system and associated method
CN101251492A (zh) * 2008-01-02 2008-08-27 阮双琛 一种连续波太赫兹实时成像装置及其方法
US20090180122A1 (en) * 2008-01-14 2009-07-16 New Jersey Institute Of Technology Methods and apparatus for rapid scanning continuous wave terahertz spectroscopy and imaging
CN202196176U (zh) * 2011-04-29 2012-04-18 同方威视技术股份有限公司 隐藏危险品检测设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368082B2 (ja) * 1999-06-21 2009-11-18 浜松ホトニクス株式会社 テラヘルツ波分光器
US7365672B2 (en) * 2001-03-16 2008-04-29 Battelle Memorial Institute Detection of a concealed object
WO2005112130A2 (en) 2004-01-16 2005-11-24 New Jersey Institute Of Technology Terahertz imaging for near field objects
US7205926B2 (en) 2004-04-14 2007-04-17 Safeview, Inc. Multi-source surveillance system
CN101203742B (zh) * 2004-05-26 2011-10-19 派克米瑞斯有限责任公司 用于行李和人员检查的以反射和透射方式进行兆兆赫成像
US20060022140A1 (en) * 2004-05-27 2006-02-02 L-3 Communications Security And Detection Systems, Inc. Methods and apparatus for detection of contraband using terahertz radiation
GB0417394D0 (en) * 2004-08-04 2004-09-08 Council Cent Lab Res Councils Scanning imaging device
US7378658B2 (en) 2005-09-20 2008-05-27 Coherent, Inc. Security portal with THz trans-receiver
US7888646B2 (en) 2007-06-04 2011-02-15 Morpho Detection, Inc. System and method for detecting contraband
US7745792B2 (en) 2007-08-15 2010-06-29 Morpho Detection, Inc. Terahertz detectors for use in terahertz inspection or imaging systems
US7767968B2 (en) * 2007-09-18 2010-08-03 Honeywell International Inc. Correlated ghost imager
US8113427B2 (en) 2008-12-18 2012-02-14 Ncr Corporation Methods and apparatus for automated product identification in point of sale applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102518A2 (en) * 2002-05-31 2003-12-11 New Jersey Institute Of Technology Terahertz imaging system and method
US20060056586A1 (en) * 2004-09-15 2006-03-16 Naohito Uetake Method and equipment for detecting explosives, etc.
US20070085009A1 (en) * 2005-07-20 2007-04-19 The Boeing Company Terahertz imaging system and associated method
CN1940542A (zh) * 2006-09-27 2007-04-04 中国计量学院 具有谱特征的太赫兹快速成像装置及其方法
CN101251492A (zh) * 2008-01-02 2008-08-27 阮双琛 一种连续波太赫兹实时成像装置及其方法
US20090180122A1 (en) * 2008-01-14 2009-07-16 New Jersey Institute Of Technology Methods and apparatus for rapid scanning continuous wave terahertz spectroscopy and imaging
CN202196176U (zh) * 2011-04-29 2012-04-18 同方威视技术股份有限公司 隐藏危险品检测设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, HAITAO ET AL.: "Experimental Studies on Terahertz Continuous Wave Related to Security Inspection", LASER & INFRARED, vol. 37, no. 9, September 2007 (2007-09-01), pages 876 - 878 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501207A (zh) * 2016-12-28 2017-03-15 中国科学院上海微系统与信息技术研究所 太赫兹二维成像系统及成像方法
CN106501207B (zh) * 2016-12-28 2023-12-29 中国科学院上海微系统与信息技术研究所 太赫兹二维成像系统及成像方法
CN110426351A (zh) * 2019-08-28 2019-11-08 广东成丰环保工程有限公司 一种基于太赫兹的材料识别装置和垃圾分选系统
CN110426351B (zh) * 2019-08-28 2024-04-30 广东成丰环保工程有限公司 一种基于太赫兹的材料识别装置和垃圾分选系统
CN116794742A (zh) * 2023-06-29 2023-09-22 赛那德科技有限公司 一种基于太赫兹技术的快递包裹危险品检测系统

Also Published As

Publication number Publication date
US9194796B2 (en) 2015-11-24
CN102759753A (zh) 2012-10-31
GB2502239A (en) 2013-11-20
GB2502239B (en) 2017-03-01
US20140231649A1 (en) 2014-08-21
DE112012001926T5 (de) 2014-02-13
GB201316221D0 (en) 2013-10-30
CN102759753B (zh) 2015-08-26
HK1173226A1 (zh) 2013-05-10
DE112012001926B4 (de) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2012146054A1 (zh) 隐藏危险品检测方法及设备
CN202196176U (zh) 隐藏危险品检测设备
Baker et al. Detection of concealed explosives at a distance using terahertz technology
JP5166024B2 (ja) 荷物及び人を検査するための反射及び透過モードのテラヘルツ画像化
Mukherjee et al. Standoff detection of explosive substances at distances of up to 150 m
CN107728222B (zh) 主动式太赫兹安检成像方法及系统
WO2020134320A1 (zh) 便携式太赫兹安检设备
US5294796A (en) Remote vapor detection system and method thereof
CN110300883A (zh) 用于增强光热成像和光谱的方法和设备
US8134128B2 (en) Method and system for plasma-induced terahertz spectroscopy
US20070114419A1 (en) Apparatus and method for detecting a designated group of materials and apparatus and method for determining if a designated group of materials can be distinguished from one or more other materials
Bernacki et al. Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination
Zhang Three-dimensional terahertz wave imaging
GB2507959A (en) Characterising hydrocarbon fluids using mid infrared absorption
CN105738315A (zh) 实时监测生物分子成分和含量的太赫兹装置及其测量方法
Baker et al. People screening using terahertz technology
KR101863378B1 (ko) 물질 탐지 방법 및 시스템
CN105911022B (zh) 基于宽调谐外腔式量子级联激光器的危化品遥感探测方法和装置
WO2019196202A1 (zh) 基于太赫兹的高危化学品探测的装置和方法
Zhong et al. Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz-TDS
KR102373676B1 (ko) 테라헤르츠 센서 및 그 측정 방법
Andrews et al. Detection of concealed explosives at stand-off distances using wide band swept millimetre waves
JPH07503532A (ja) Ftirリモートセンサー装置及び方法
Zhigang et al. Experimental study on terahertz imaging technique in nondestructive inspection
CN104880419B (zh) 光声联用光谱法的食品药品组分含量快速检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1316221

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120413

WWE Wipo information: entry into national phase

Ref document number: 1316221.9

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120120019261

Country of ref document: DE

Ref document number: 112012001926

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14008903

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12776277

Country of ref document: EP

Kind code of ref document: A1