WO2012145966A1 - 晶圆检测方法以及晶圆检测装置 - Google Patents

晶圆检测方法以及晶圆检测装置 Download PDF

Info

Publication number
WO2012145966A1
WO2012145966A1 PCT/CN2011/076624 CN2011076624W WO2012145966A1 WO 2012145966 A1 WO2012145966 A1 WO 2012145966A1 CN 2011076624 W CN2011076624 W CN 2011076624W WO 2012145966 A1 WO2012145966 A1 WO 2012145966A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
tested
scattered light
particles
spot
Prior art date
Application number
PCT/CN2011/076624
Other languages
English (en)
French (fr)
Inventor
陈鲁
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2012145966A1 publication Critical patent/WO2012145966A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • Wafer inspection method and wafer inspection device Wafer inspection method and wafer inspection device
  • the present invention relates to the field of semiconductor technology, and in particular, to a wafer inspection method and a wafer inspection apparatus. Background technique
  • the optical detection method is one of the most commonly used wafer inspection methods because it has the advantages of not cleaning the surface cleanliness of the wafer, and real-time detection.
  • the optical detection method uses optical scattering intensity measurement technology to detect the surface of the wafer. No, the spatial distribution of particles on the surface of the wafer, etc.
  • the detecting light emitted by the laser is grazing onto the wafer to be tested, and an elliptical spot is formed on the surface of the wafer, and the elliptical spot is formed by the movement and rotation of the wafer chuck. Scanning the entire wafer, detecting light is reflected on the surface of the wafer. If the detection light is projected onto the particles, it will be scattered by the particles. The scattered light beam has a spatial solid angle different from that of the reflected light beam, and the scattered light is finally photoelectrically The detector detects the particle information on the surface of the wafer.
  • the elliptical spot on the surface of the wafer is a small-sized spot, usually 3 micrometers ⁇ 9 micrometers, 5 x 15 micrometers, and the wafer has a diameter of 300 millimeters, so the elliptical spot scans the entire crystal. Round, it will take longer to detect Time.
  • An optical wafer inspection apparatus is disclosed in US Pat. No. 7,347,752, the wafer inspection apparatus comprising: a light source for emitting detection light; and a beam splitting component for dividing the detection light into a plurality of a light beam, the plurality of light beams are incident on the wafer to be tested to form a plurality of light spots, and the particles located in the light spot scatter the plurality of light beams to form a plurality of scattered light beams carrying the particle information; a plurality of scattered light beams; a plurality of photodetectors for respectively detecting respective scattered light beams; and a processing unit that acquires particle information on the surface of the wafer based on the information of the scattered light beams detected by the plurality of photodetectors.
  • each small-sized spot has an area of 3 ⁇ m ⁇ 9 ⁇ m and 5 ⁇ 15 ⁇ m.
  • a small size spot can increase the detection area, which improves detection efficiency and reduces detection time.
  • the technical solutions of the U.S. patent have many technical problems.
  • the beam splitting component in the patent is a Diffractive Optical Element (DOE). Since the light transmission efficiency of the DOE is between 60 and 70%, the detected light loses about 1/3 of the light intensity through the DOE. At the same time, DOE adds difficulty to the design of the wafer inspection device;
  • DOE Diffractive Optical Element
  • the daylighting component requires a high resolution imaging system, which requires the daylighting component to be a large aperture optical Device, which increases the design difficulty of the daylighting component;
  • the DOE is bulky and occupies a large space, which reduces the space of the daylighting component, the numerical aperture (NA) of the daylighting component is limited, and the mining The light component cannot be very close to the surface of the wafer. Since the intensity of the scattered light generated by the particles is mainly concentrated in the solid angle direction near the surface of the wafer, the intensity of the scattered light collected by the light-harvesting component with limited numerical aperture is reduced, correspondingly Ground, this reduces the detected signal strength of the photodetector, which in turn affects the detection accuracy.
  • the technical problem solved by the present invention is to provide a relatively simple wafer detecting method and a wafer detecting device.
  • the present invention provides a wafer inspection method, including: generating measurement light; forming the detection light on a wafer to be tested to form a detection spot; rotating and moving the wafer to be tested to make a detection spot Scanning the wafer to be tested; particles located within the range of the detection spot scatter the measurement light to form scattered light; measuring the scattered light to form a corresponding time-dependent scattered light signal; based on the time-dependent The light signal is scattered to obtain the distribution information of the particles on the wafer to be tested.
  • the present invention further provides a wafer detecting apparatus, comprising: a light source for providing measuring light; a moving rotating platform for carrying a wafer to be tested, and for moving or rotating the wafer to be tested; a photodetector that detects scattered light at a frequency that is formed by scattering the measurement light by particles located on a wafer to be tested; for obtaining a time-dependent scattered light signal detected by the photodetector
  • a data processing unit that distributes the information of the particles on the wafer to be tested.
  • FIG. 1 is a schematic flow chart of an embodiment of the invention wafer detecting method
  • FIG. 2 is a schematic view of the step S5 - the embodiment shown in FIG. 1
  • FIG. 3 is a schematic view of the step S6 - the embodiment shown in FIG. 1
  • Figure 7 is a schematic view of an embodiment
  • Figure 5 is a schematic view of another embodiment of the step S7 shown in Figure 1
  • Figure 6 is a schematic view of an embodiment of the wafer detecting device of the present invention
  • Figure 7 is a data processing of Figure 6.
  • the invention provides a wafer inspection method, comprising: generating measurement light; forming the detection light to form a detection spot on the wafer to be tested; rotating and moving the wafer to be tested, so that the detection spot is scanned by the wafer to be tested Particles located within the range of the detection spot scatter the measurement light to form scattered light; detecting the scattered light to form a corresponding time-dependent scattered light signal; based on the intensity of the time-dependent scattered light signal, Obtain the distribution information of the particles on the wafer to be tested.
  • the distribution information of the particles described herein on the wafer to be tested includes the presence or absence of particles on the wafer to be tested, the size of the particles, the position of the particles, and the particulate material.
  • the crystal circle detecting method generally includes the following steps:
  • Step S1 generating measurement light
  • Step S2 forming the measurement light to form a detection spot on the wafer to be tested
  • Step S3 the particles located in the detection spot range scatter the measurement light to form scattered light
  • Step S4 detecting the scattered light to form a corresponding time-dependent scattered light signal; Step S5, obtaining the presence or absence of particles on the wafer to be tested based on the presence or absence of the scattered light signal; Step S6, based on the scattering
  • the intensity of the optical signal obtains the material of the particles on the wafer to be tested, and the size of the particles;
  • step S7 the position of the particles on the wafer to be tested is obtained based on the time and duration of the scattered light signal and the moving position and the rotation rate of the wafer to be tested.
  • Step S1 is performed.
  • a laser or other parallel collimated light source is generally used to generate the measurement light.
  • the measurement light can be generated by a short-wavelength solid-state laser.
  • Step S2 is performed.
  • the detection spot adopts a clear-cut spot.
  • the clear-cut spot may be a "platform type" spot or a Gaussian spot. Specifically, the internal light intensity of the clear-cut spot is consistent, and the external light intensity is very weak and can be ignored.
  • the measurement light can preferably be adjusted by a spot adjustment assembly.
  • the spot adjusting component may be an aspherical lens, or may be an aperture stop or the like.
  • the measurement light is projected onto the wafer to be tested by grazing incidence to form a detection spot.
  • the measurement light is projected onto the wafer to be tested at a glancing angle, and preferably, the incident angle on the wafer to be tested is 70.
  • the incident angle on the wafer to be tested is 70.
  • an elliptical detection spot is formed on the surface of the wafer to be tested, and the ratio of the long and short axes of the elliptical detection spot is 3:1.
  • the diameter of the measurement light projected onto the wafer to be tested is greater than or equal to 100 micrometers.
  • the measurement light forms an elliptical spot on the wafer to be tested, and the ellipse is formed.
  • the short axis of the spot is greater than or equal to 100 micrometers, and the diameter of the detection spot formed by the present embodiment is 100 times that of the prior art detection spot area, so that the detection efficiency can be greatly improved.
  • Step S3 is performed to rotate and move the wafer to be tested, so that the detection spot is spirally scanned on the wafer to be tested to complete the detection of the entire wafer to be tested.
  • the wafer to be tested moves in a radial step, and a 360-degree rotation is performed at each step position, so that the detection spot completes the scanning of the wafer to be tested.
  • particles on the wafer to be tested within the detection spot range will scatter the measurement light to form scattered light.
  • Step S4 is performed to detect the scattered light according to a certain frequency by using a photodetector to form time-dependent scattered light data.
  • the photodetector is a high-spectrum photomultiplier tube.
  • the scattered light signal detected by the photodetector at different times is recorded throughout the period in which the spot is scanned for the wafer to be tested.
  • the time-dependent scattered light signal data described herein refers to the intensity of the scattered light signal (such as light intensity), the time at which the scattered light signal appears, the duration of the scattered light signal, and so on.
  • the scattered light signal detected by the photodetector can be recorded in a finer manner.
  • Step S5 is performed.
  • FIG. 2 a schematic diagram of the step S5-embodiment shown in FIG. 1 is shown.
  • the measuring light is scattered, and at this time, the photoelectric The detector detects the scattered light signal 105.
  • Step S6 is performed.
  • the wafer 111 to be tested has large particles 114 and small particles 113 at the same position.
  • the scattering surface is small, and only a small amount of measurement light can be scattered, and the photodetector detects the first scattered light signal.
  • the light intensity II of the first scattered light signal 115 is small.
  • the scattering surface of the large particles is larger, so that more measurement light can be scattered into the photodetector, so the light intensity 12 of the second scattered light signal 116 detected by the photodetector is higher. Big. Therefore, based on the size of the scattered signal detected by the photodetector, the size of the particles in the range of the detected spot can be obtained.
  • the scattering of the measured light is different for the particles of the different materials, and the scattering signals of silicon dioxide and silicon (metal) are of the order of magnitude. The difference, therefore, can also distinguish the intensity of the scattered signal, based on the range of different signal strength to obtain the material of the corresponding particle.
  • Step S7 is performed, in order to accurately obtain the position of the particle within the detection spot, preferably, based on the time and duration of the occurrence of the scattered light signal, combined with the moving position and the rotation rate of the wafer to be tested, the detection may be obtained.
  • the distribution of particles within the spot range.
  • the wafer to be tested 121 includes first particles 124 and second particles 123 on the same circumference.
  • a particle 124 and a second particle 123 sequentially enter the scanning range of the detection spot 122, thereby sequentially detecting the first scattered light signal 125 and the second scattered light signal 126 on the photodetector. Referring to the scattered light signal on the right side of FIG.
  • the start time of the first scattered light signal 125 is t1; corresponding to the time when the second particle 123 enters the detection spot 122
  • the starting moment of the second scattered light signal 126 is t2.
  • the starting time of the wafer 121 moving to the circumference of the first particles 124 and the second particles 123 is t0, and the circumferential distance of the first particles 124 from the starting scanning point of the circumference is (tl-tO) V , and the distance of the second particles 123 The circumferential distance of the starting scan point of the circumference is (t2-t0)v.
  • the position of the particles on the circumference of the wafer to be tested corresponds to the detected time-dependent scattered light signal.
  • the information of the wafer to be tested for movement, rotation, and the shape of the detection spot can be combined.
  • the position of the particles in the circumferential direction is obtained.
  • the wafer 131 to be tested includes third particles 134 and fourth particles 133 at the same radius and different circumferences. Since the third particles 134 and the fourth particles 133 are located at different positions of the detection spot 132,
  • the detection spot 132 is an elliptical spot
  • the third particle 134 is located at an edge region of the elliptical spot
  • the fourth particle 133 is located at a central region of the elliptical spot, thereby detecting the spot
  • the third particle passes through a narrower edge region of the detection spot 132
  • the fourth particle passes through a wider central region of the detection spot 132.
  • the movement of the particles in the range of the detection spot 132 can be approximated as a linear motion, and the rate at which the particles move linearly in different regions of the detection spot 132.
  • the motion time is proportional to the motion path, the time during which the fourth particle 133 passes through the wider central region is greater than the time when the third particle 134 passes through the narrower edge region, and accordingly, as shown on the right side of FIG.
  • the duration T2 of the fourth scattered light signal 136 corresponding to the fourth particle 133 detected by the device is greater than the duration T1 of the third scattered light signal 135 corresponding to the third particle 135.
  • the position of the third particles 134 and the fourth particles 133 in the detection spot 132 can be judged based on the duration.
  • the positional relationship of the third particles 134 and the fourth particles 133 in the radial direction of the wafer can be obtained.
  • the third particle can be calculated by comparing the sizes of B and Cl, C2, and the elliptic equation
  • the position of the fourth particle in the long axis direction (radial direction) of the elliptical spot, and in combination with the step position of the movement of the wafer to be tested, the position of the third particle and the fourth particle on the wafer to be tested can be calculated.
  • the step of the radial step of the wafer to be tested is the long axis of the half elliptical spot, so that during the scanning process, The wafer to be tested is actually scanned twice by the wafer to be tested, which increases the detection accuracy and reduces the false alarm rate.
  • the shape of the detection spot is an elliptical spot, but the invention is not limited thereto, and may be a triangle, a rectangle, etc., and those skilled in the art may perform corresponding according to the embodiment. Modify, deform, and replace. It can be seen that the present invention can obtain the distribution of particles on the surface of the wafer to be tested by measuring the time-dependent scattered light data, and the invention adopts a large-area (for example, a diameter larger than 100 micrometer) detection spot to improve the detection efficiency. .
  • the present invention also provides a detecting device for a wafer to be tested, and with reference to Fig. 6, a schematic view of an embodiment of the wafer detecting device to be tested of the present invention is shown.
  • the wafer detecting device to be tested includes: a light source 100, a convex lens 103, a moving rotating platform 102, a light reflecting component 104, a photodetector 106, and a data processing unit 107. among them,
  • the light source 100 is used to generate measurement light.
  • the light source 100 is usually a laser, such as a short-wavelength solid-state laser.
  • the present invention can adjust the measurement light generated by the light source 100 by the spot adjustment component.
  • the spot adjustment component is a convex lens 103, and the convex lens 103 is opposite to the light source 100.
  • the provided measurement light is concentrated to form a detection spot.
  • the measuring light is projected onto the wafer 101 to be tested at a grazing incidence of an incident angle of 70 degrees to form an elliptical detecting spot having a radius greater than or equal to 100 ⁇ m.
  • spot adjustment components can be selected to meet the design requirements to obtain the desired detection spot. If the measurement light provided by the light source 100 is projected onto the wafer to be tested, a detection spot that meets the design requirements can be obtained, or the spot adjustment component can be omitted. Corresponding modifications, alterations and variations will occur to those skilled in the art.
  • the rotating rotating platform 102 is configured to carry the wafer 101 to be tested, and the measuring light is projected onto the wafer 101 to be tested to form a detecting spot.
  • the particles 105 located in the range of the detecting spot scatter the measuring light to form scattered light.
  • the moving rotating platform 102 rotates and translates the wafer 101 to be tested on the moving rotating platform 102 by rotating, moving, etc., thereby enabling the detecting spot to scan the entire surface of the wafer 101 to be tested.
  • the light component 104 changes the direction of the scattered light to reflect the scattered light to the detecting surface of the photodetector 106 located above the moving rotating platform 102.
  • the present invention is not limited thereto, and other lighting components may be used according to design requirements.
  • the scattered light is reflected to the detection surface of the photodetector 106.
  • the light reflecting member 104 is disposed at a position close to the surface of the wafer 101 because the intensity of the scattered light generated by the particles is mainly concentrated in the direction of the body angle near the surface of the wafer.
  • the reflectivity of the retroreflective element 104 is generally large (close to 100%) and therefore does not diminish the intensity of the detected light.
  • the photodetector 106 is configured to detect scattered light at a certain frequency to form a time-dependent scattered optical signal.
  • the time-dependent scattered light signals described herein include the intensity of the scattered light signal (e.g., light intensity), the time at which the scattered light signal appears, the time at which the scattered light signal lasts, and the like.
  • the present invention employs a high frequency photodetector 106 (e.g., a photomultiplier tube) that detects scattered light at a higher frequency. Scattered light signals are more detailed time information.
  • the wafer detecting device of the present invention further includes a data processing unit 107 connected to the photodetector 106 and the moving rotating platform 102 for time-dependent scattered light signals detected by the photodetector 106. At the same time, combined with the movement and rotation information of the wafer to be tested on the moving rotary platform 102, the distribution of the surface particles of the wafer to be tested is obtained.
  • the data processing unit 107 includes a first processing unit 1071, a second processing unit 1072, and a third processing unit 1073, where
  • the first processing unit 1071 is connected to the photodetector 106 for obtaining information on whether or not particles are present on the wafer to be tested according to the presence or absence of the scattered light signal detected by the photodetector 106. Specifically, if the photodetector 106 detects the scattered light signal, it indicates that there is a particle that scatters the measurement light at the spot scanning position, and if the photodetector 106 does not detect the scattered light signal, it indicates the spot scanning position. There are no particles in the place and the measurement light cannot be scattered.
  • the second processing unit 1072 is coupled to the photodetector 106 for obtaining information on the material and particle size of the particles on the wafer to be tested according to the intensity of the scattered light signal detected by the photodetector 106.
  • the second processing unit 1072 is configured to distinguish the intensity of the scattered light signal detected by the photodetector 106 to form a scattered light signal of different intensity ranges, and obtain the scattered light signal according to different intensity ranges. Corresponding particulate material.
  • the photodetector 106 detects a strong scattered light signal, it means that the particle size at the scanning spot scanning position is larger, because the larger size particles have a larger area of the scattering surface, which can make more The scattered light reaches the photodetector 106. Conversely, if the photodetector 106 detects a weaker scattered light signal, it indicates that the particle size at the scanning spot scanning position is small.
  • the second processing unit 1072 acquires the size of the particles based on the strength of the scattered light signal.
  • the third processing unit 1073 is connected to the photodetector 106 and the moving rotating platform 102 for combining the time and duration of the scattered light signal detected by the photodetector 106, and simultaneously combining the wafer to be tested on the moving rotating platform 102. The rate of rotation, the position of the particles on the wafer to be tested.
  • the detecting spot scans the same circumference of the wafer to be tested on the moving rotating platform 102, and the photodetector 106 sequentially detects the scattered light signal, which indicates that the detecting light is located.
  • the different particles on the same circumference sequentially enter the detection spot, and the third processing unit 1073 obtains the circumferential distance of the different particles on the same circumference according to the occurrence time of the scattered light signal in combination with the rotation rate of the moving rotary platform 102.
  • the processing unit can also obtain distribution information of other particles on the wafer to be tested. Modifications, substitutions and variations of the embodiments described above will also be apparent to those skilled in the art.
  • the time-dependent scattered light signal is formed by the photodetector, thereby obtaining the particle distribution information with higher precision, so that it is not necessary to adopt a small-sized detecting spot, and the detection rate can be improved.
  • the detection optical path it is not necessary to use an imaging system to collect the scattered light, and the detection optical path system is compressed, which also reduces the cost.
  • the diffractive optical device is not required, thereby reducing the design difficulty of the incident optical system; on the other hand, since the diffractive optical device is not required, the numerical aperture of the incident optical path can be The design is smaller, which makes the solid angle of the incident optical path space small, and reserves a large space for the detecting optical path. Therefore, the detecting optical path can adopt an optical system with a larger numerical aperture, and thus more scattered light of the particles can be detected. Improve detection accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

晶圓检测方法以及晶圓检测装置
本申请要求于 2011 年 4 月 27 日提交中国专利局、 申请号为 201110106989.0、 发明名称为"晶圓检测方法以及晶圓检测装置"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及半导体技术领域,尤其涉及一种晶圓检测方法以及晶圓检测装 置。 背景技术
在半导体工艺中,晶圓表面的清洁度是影响半导体器件可靠性的重要因素 之一。如何清除晶圓表面的污染和异物质颗粒一直是半导体技术领域的研究热 点,而在清洁之后如何对晶圓表面的清洁度进行检测也成为半导体体技术人员 关心的问题。 光学检测方法, 由于具有不破坏晶圓表面的清洁度、可实时检测等的优点 成为最常用的晶圓检测方法之一,光学检测方法是使用光学散射强度测量技术 来探测晶圓表面颗粒的有无、 颗粒在晶圓表面的空间分布等。 通常地,在光学检测装置中,激光器发出的检测光会掠入射到待测晶圓上, 在晶圓表面会形成橢圓形光斑,通过晶圓卡盘的移动和旋转,使所述橢圓形光 斑扫描整片晶圓, 检测光在晶圓表面发生反射, 如果检测光投射到颗粒上, 会 被颗粒散射,被散射的光束具有和反射光束不相同的空间立体角, 所述散射光 最终被光电探测器探测, 以获取晶圓表面的颗粒信息。 具体地, 所述晶圓表面 的橢圓形光斑为小尺寸光斑, 通常尺寸为 3微米 χ 9微米、 5 x 15微米, 而晶圓 的直径为 300毫米, 因此所述橢圓形光斑如扫描整个晶圓, 会花费较长的检测 时间。
为了减少检测时间、提高检测的吞吐量,现有技术还对光学式晶圓检测方 法进行了改进。在专利号为 US7345752的美国专利中就公开了一种光学式的晶 圓检测装置, 所述晶圓检测装置包括: 光源, 用于发出检测光; 分束组件, 用 于将检测光分成多个光束, 所述多个光束掠入射到待测晶圓上形成多个光斑, 位于光斑内的颗粒使所述多个光束发生散射, 形成多个携带颗粒信息散射光 束; 采光组件, 用于采集所述多个散射光束; 多个光电探测器, 用于分别探测 相应的散射光束; 处理单元,基于所述多个光电探测器探测到的散射光束的信 息, 获取晶圓表面的颗粒信息。
在所述美国专利中, 由于采用了多束探测光, 因此在晶圓表面形成了多个 小尺寸光斑, 每个小尺寸光斑的面积为 3微米 X 9微米、 5 x 15微米, 所述多个 小尺寸光斑可以增大探测面积, 进而提高了检测效率、 减少检测时间。 然而, 所述美国专利的技术方案存在较多技术问题。
首先, 所述专利中的分束组件为衍射光学器件 ( Diffractive Optical Element, DOE ) , 由于 DOE的透光效率在 60~70%之间, 因此检测光经过 DOE 会损失 1/3左右的光强, 同时 DOE为晶圓检测装置的设计增加了难度;
其次, 为了使散射光进入相应地光电探测器通道, 而不是进入相邻散射光 对应的光电探测器通道, 所述采光组件需要高分辨率的成像系统, 这就要求采 光组件为大孔径的光学器件, 这增加了采光组件的设计难度;
此外,由于 DOE体积较大, 占据较大的空间,这就减小了采光组件的空间, 因此采光组件的数值孔径(Numerical Aperture, NA ) 受到限制, 并且所述采 光组件无法非常靠近晶圓的表面,由于颗粒产生散射光的光强主要集中在靠近 晶圓表面的立体角方向,因此数值孔径受到限制的采光组件采集的散射光的光 强会减小, 相应地, 这使光电探测器的探测到的信号强度减小, 进而影响了检 测精度。 发明内容
本发明解决的技术问题是提供一种较为筒单的晶圓检测方法以及晶圓检 测装置。 为解决上述技术问题,本发明提供一种晶圓检测方法, 包括:产生测量光; 使所述测量光在待测晶圓上形成探测光斑; 使待测晶圓进行旋转和移动,使探 测光斑对待测晶圓进行扫描;位于探测光斑范围内的颗粒使所述测量光发生散 射, 形成散射光; 测所述散射光, 形成对应的与时间相关的散射光信号; 基于 所述与时间相关的散射光信号, 获取颗粒在待测晶圓上的分布信息。 相应地,本发明还提供一种晶圓检测装置, 包括: 用于提供测量光的光源; 用于承载待测晶圓, 并用于使待测晶圓进行移动或旋转的移动旋转平台; 用于 按一定频率探测散射光的光电探测器,所述散射光由位于待测晶圓上的颗粒散 射所述测量光而形成; 用于根据光电探测器探测到的与时间相关的散射光信 号, 获得颗粒在待测晶圓上的分布信息的数据处理单元。 与现有技术相比, 本发明具有以下优点:
1.通过对与时间相关的散射光信号的数据处理获取颗粒在待测晶圓上的 分布信息, 而非直接以散射光信号确定所述分布信息, 无需采用小尺寸的探测 光斑, 可以提高检测速率。
2.无需采用小尺寸的探测光斑, 也就无需采用成像系统对散射光进行采 集, 筒化了探测光系统, 降低了成本。
3.无需采用小尺寸的探测光斑, 探测效率较高, 无需采用多光斑的方式, 因此, 无需采用衍射光学器件, 减小了入射光学系统的设计难度。
4.无需采用衍射光学器件, 可以减小入射光光路所占的空间, 可采用大 NA的探测光学系统, 提高检测精度。
附图说明 通过附图所示, 本发明的上述及其它目的、 特征和优势将更加清晰。 在全 部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘 制附图, 重点在于示出本发明的主旨。
图 1是发明晶圓检测方法一实施方式的流程示意图; 图 2是图 1所示步骤 S5—实施例的示意图; 图 3是图 1所示步骤 S6—实施例的示意图; 图 4是图 1所示步骤 S7—实施例的示意图; 图 5是图 1所示步骤 S7另一实施例的示意图; 图 6是本发明晶圓检测装置一实施例的示意图; 图 7是图 6所示数据处理单元一实施例的示意图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明 能够以艮多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背 本发明内涵的情况下做类似推广, 因此本发明不受下面公开的具体实施的限 制。 其次, 本发明利用示意图进行详细描述, 在详述本发明实施例时, 为便于 说明, 所述示意图只是实例, 其在此不应限制本发明保护的范围。
下面结合附图对本发明的具体实施方式做详细的说明。本发明提供一种晶 圓检测方法, 包括: 产生测量光; 使所述测量光在待测晶圓上形成探测光斑; 使待测晶圓进行旋转和移动,使探测光斑对待测晶圓进行扫描; 位于探测光斑 范围内的颗粒使所述测量光发生散射, 形成散射光; 探测所述散射光, 形成对 应的与时间相关的散射光信号;基于所述与时间相关的散射光信号的强度, 获 取颗粒在待测晶圓上的分布信息。此处所述的颗粒在待测晶圓上的分布信息包 括待测晶圓上颗粒的有无、 颗粒的大小、 颗粒的位置和颗粒材料等等。
参考图 1 , 示出了本发明晶圓检测方法一实施方式的流程示意图。 所述晶 圓检测方法大致包括以下步骤:
步骤 S1 , 产生测量光;
步骤 S2, 使所述测量光在待测晶圓上形成探测光斑;
步骤 S3 , 位于探测光斑范围内的颗粒使所述测量光发生散射, 形成散射 光;
步骤 S4, 探测所述散射光, 形成对应的与时间相关的散射光信号; 步骤 S5 , 基于所述散射光信号的有无获得待测晶圓上颗粒的有无; 步骤 S6, 基于所述散射光信号的强度获得待测晶圓上颗粒的材料、 颗粒 的大小;
步骤 S7 , 基于所述散射光信号出现的时间、 持续的时间, 同时结合待测 晶圓的移动位置、 旋转速率, 获得待测晶圓上颗粒的位置。
下面对各个步骤进行详细描述。
执行步骤 S1 , 本实施方式中, 通常采用激光器或者其他平行准直光源产 生测量光, 例如, 可以通过短波长的固体激光器产生测量光。 执行步骤 S2, 为了更精确地探测待测晶圓上的颗粒, 较佳地, 上所述探 测光斑采用界限清晰的光斑, 例如, 所述界限清晰的光斑可以是 "平台型"光斑 或高斯光斑, 具体地说, 界限清晰的光斑的内部光强均勾一致, 外部光强非常 弱, 可以忽略不计。
为了形成界限清晰的光斑,较佳地, 可以通过光斑调整组件调节所述测量 光。 具体地, 所述光斑调整组件可以是非球面的透镜, 还可以是孔径光阑等。
所述测量光通过掠入射方式投射至待测晶圓上, 以形成探测光斑。 例如, 测量光以掠射角投射至待测晶圓上,较佳地,待测晶圓上的入射角为 70。左右, 在待测晶圓表面形成橢圓形的探测光斑,所述橢圓形的探测光斑的长短轴比例 为 3: 1。
为了增加探测面积,较佳地,投射向待测晶圓的测量光的直径大于或等于 100微米, 本实施例中, 所述测量光在待测晶圓上形成橢圓形光斑, 所述橢圓 形光斑的短轴大于或等于 100微米,本实施方式形成的探测光斑的直径是现有 技术探测光斑面积的 100倍, 从而可以大大提高探测效率。
执行步骤 S3 , 通过旋转和移动所述待测晶圓, 使探测光斑在待测晶圓上 进行螺旋形扫描, 以完成对整片待测晶圓的检测。 例如, 待测晶圓沿径向步进 式移动,在每一步进的位置处进行 360度旋转,使探测光斑完成对待测晶圓的 扫描。在扫描过程中,探测光斑范围内的待测晶圓上的颗粒会使测量光发生散 射, 形成散射光。
执行步骤 S4, 采用光电探测器按照一定频率探测所述散射光, 形成与时 间相关的散射光数据。 为了提高测量精度, 较佳地, 所述光电探测器为高频谱 的光电倍增管。
在探测光斑对待测晶圓进行扫描的整个周期中,记录在不同时刻光电探测 器探测到的散射光信号。 具体地, 此处所述的与时间相关的散射光信号数据, 指的是散射光信号的强度(例如光强)、 散射光信号出现的时间, 散射光信号 持续的时间等。
由于本实施方式中采用高频谱的光电探测器, 因此, 可以较细致地记录不 同时刻光电探测器探测到的散射光信号。
执行步骤 S5, 参考图 2, 示出了图 1所示步骤 S5—实施例的示意图。 如 图所示,在探测光斑 102对待测晶圓 101进行扫描的过程中, 当位于待测晶圓 周边位置处的颗粒 103位于探测光斑范围内时, 会使测量光发生散射, 此时, 光电探测器会探测到散射光信号 105; 本实施例中, 待测晶圓 101中心位置不 存在颗粒, 因此探测光斑 102对待测晶圓 101中心位置进行扫描时, 测量光不 会发生散射, 相应地, 光电探测器探测到的信号 106中不包括散射光信号。 因 此,基于光电探测器探测到的散射光信号的有无, 可以获得探测光斑范围内是 否存在颗粒的情况。
执行步骤 S6, 参考图 3, 示出了图 1所示步骤 S6—实施例的示意图。 待 测晶圓 111同一位置处分别有大颗粒 114和小颗粒 113,对于小颗粒 113而言, 其散射面较小, 只能使少量测量光发生散射, 光电探测器探测到第一散射光信 号 115, 第一散射光信号 115的光强 II较小。 相应地, 对于大颗粒 114而言, 大颗粒的散射面较大, 可以使较多的测量光散射到光电探测器中, 因此光电探 测器探测到的第二散射光信号 116的光强 12较大。 因此, 基于光电探测器探 测到的散射信号的大小, 可以获得探测光斑范围内颗粒的大小。
由于待测晶圓上的颗粒的材料通常为二氧化硅、 有机物、 硅、 金属, 所述 不同材料的颗粒对测量光的散射率不同, 并且二氧化硅和硅(金属 )的散射信 号有数量级的差别, 因此还可以对散射信号强度进行区分,基于不同信号强度 的范围获得与其对应的颗粒的材料。
需要说明的是对颗粒的大小进行分析时, 需基于同一材料的颗粒进行比 较。
执行步骤 S7, 为了精确地获得颗粒在探测光斑内的位置, 较佳地, 基于 所述散射光信号出现的时间、 持续的时间, 同时结合待测晶圓的移动位置、 旋 转速率, 可以获得探测光斑范围内颗粒的分布情况。
参考图 4, 示出了图 1所示步骤 S7—实施例的示意图。 如图所示, 待测 晶圓 121上包括位于同一圓周上的第一颗粒 124和第二颗粒 123, 在探测光斑 122对第一颗粒 124和第二颗粒 123所在圓周进行扫描的过程中,第一颗粒 124 和第二颗粒 123依次进入探测光斑 122的扫描范围内,从而在光电探测器上依 次探测到第一散射光信号 125和第二散射光信号 126。 参考图 4右侧的散射光 信号, 对应于第一颗粒 124进入探测光斑 122的时刻, 所述第一散射光信号 125的起始时刻为 tl; 对应于第二颗粒 123进入探测光斑 122的时刻, 所述第 二散射光信号 126的起始时刻为 t2。同时结合待测晶圓 121的旋转和移动情况, 可以获得待测晶圓 121上第一颗粒 124和第二颗粒 123的位置, 例如: 待测晶 圓 121旋转时的线速度为 V ,待测晶圓 121移动至第一颗粒 124和第二颗粒 123 所在圓周的起始时间为 t0,第一颗粒 124距离所在圓周起始扫描点的圓周距离 为 ( tl-tO ) V , 第二颗粒 123距离所在圓周起始扫描点的圓周距离为(t2-t0 ) v。
由此可见,颗粒在在待测晶圓圓周上的位置与探测到的与时间相关的散射 光信号相对应, 在实际应用中, 可以结合待测晶圓移动、 旋转的信息以及探测 光斑的形状获得颗粒在圓周方向上的位置。
参考图 5, 示出了图 1所示步骤 S7另一实施例的示意图。 如图所示, 待 测晶圓 131上包括位于同一半径、 不同圓周的第三颗粒 134和第四颗粒 133, 由于所述第三颗粒 134和第四颗粒 133位于探测光斑 132的不同位置处,本实 施例中, 所述探测光斑 132为橢圓形光斑, 并且第三颗粒 134位于橢圓形光斑 的边缘区域, 第四颗粒 133 位于橢圓形光斑的中心区域, 因此, 在探测光斑 132对待测晶圓 131进行扫描的过程中, 第三颗粒经过探测光斑 132较窄的边 缘区域, 而第四颗粒经过探测光斑 132较宽的中心区域。 由于探测光斑 132 直径为几百微米, 而待测晶圓的半径为几百毫米,颗粒在探测光斑 132范围内 的运动可近似为直线运动,并且颗粒在探测光斑 132不同区域进行直线运动的 速率近似相同, 由于运动时间正比于运动路程, 第四颗粒 133经过较宽的中心 区域的时间大于第三颗粒 134 经过较窄的边缘区域的时间, 相应地, 如图 5 右侧所示,光电探测器探测到的第四颗粒 133对应的第四散射光信号 136的持 续时间 T2, 大于第三颗粒 135对应的第三散射光信号 135的持续时间 Tl。 根 据持续时间的不同, 可以判断出第三颗粒 134和第四颗粒 133在探测光斑 132 中的位置。 同时结合待测晶圓移动和旋转情况, 可以获得第三颗粒 134和第四 颗粒 133在晶圓半径方向的位置关系。
例如, 第三颗粒在光斑中移动的轨迹长度为 C1 , 那么 C1=VT1,第四颗粒 在光斑中移动的轨迹长度为 C2, 那么 C2=VT2, 其中 V为待测晶圓相对于探 测光斑旋转的线速度,由于所述颗粒沿橢圓形光斑短轴(圓周方向)方向移动, 并且橢圓形光斑短轴的长度 B, 通过比较 B和 Cl、 C2的大小, 并结合橢圓形 方程可以计算出第三颗粒和第四颗粒在橢圓形光斑长轴方向 (径向) 的位置, 进而结合待测晶圓移动的步进位置,可以计算出第三颗粒和第四颗粒在待测晶 圓上的位置。
需要说明的是, 待测晶圓旋转, 探测光斑对待测晶圓进行螺旋形扫描时, 待测晶圓径向步进的步长为半个橢圓形光斑的长轴, 这样在扫描过程中,待测 晶圓实际上会被待测晶圓扫描两次, 从而增加了检测精度, 减少误报率。
还需要说明的是, 本实施例中, 所述探测光斑的形状为橢圓形光斑, 但是 本发明并不限制与此, 还可以是三角形、 长方形等, 本领域技术人员可以 根 据本实施例进行相应地修改、 变形和替换。 由此可见, 本发明通过测量到的与时间相关的散射光数据, 可以获得待测 晶圓表面颗粒的分布情况, 本发明采用大面积(例如直径大于 100微米 )的探 测光斑, 提高了检测效率。
相应地, 本发明还提供一种待测晶圓的检测装置, 参考图 6, 示出了本发 明待测晶圓检测装置一实施例的示意图。 所述待测晶圓检测装置包括: 光源 100、 凸透镜 103、 移动旋转平台 102、 反光组件 104、 光电探测器 106、 数据 处理单元 107。 其中,
光源 100, 用于产生测量光, 本发明中, 所述光源 100通常为激光器, 例 如为短波长的固体激光器。
较佳地, 为了形成界限清晰的探测光斑, 本发明可以通过光斑调整组件对 光源 100 产生的测量光进行调整, 本实施例中, 所述光斑调整组件为凸透镜 103, 所述凸透镜 103对光源 100提供的测量光进行会聚, 以形成探测光斑。 具体地, 测量光以 70度入射角的掠入射方式投射至待测晶圓 101上, 形成半 径大于或等于 100微米的橢圓形探测光斑。
在其他的实施例中, 可以根据设计需求选择其他的光斑调整组件, 以获得 需要的探测光斑。如果光源 100提供的测量光投射至待测晶圓上即可获得符合 设计需求的探测光斑,也可以不设置光斑调整组件。本领域技术人员可以进行 相应的修改、 替换和变形。
移动旋转平台 102, 用于承载待测晶圓 101 , 测量光投射到待测晶圓 101 上形成探测光斑,位于探测光斑范围内的颗粒 105会使测量光发生散射, 形成 散射光。 所述移动旋转平台 102通过旋转、 移动等操作, 使位于移动旋转平台 102上的待测晶圓 101旋转和平移, 进而使探测光斑实现对整个待测晶圓 101 表面的扫描。
为了使本发明待测晶圓检测装置空间布局更加紧凑, 本实施例中,通过反 光组件 104改变散射光的方向,使散射光反射至位于移动旋转平台 102上方的 光电探测器 106的探测面上,但是本发明并不限制于此,还可以根据设计需求 采用其他的采光组件, 使散射光反射到光电探测器 106的探测面上。
需要说明的是,由于颗粒产生散射光的光强主要集中在靠近晶圓表面的立 体角方向, 所述反光组件 104设置于靠近晶圓 101表面的位置处。
此外, 通常反光组件 104的反射率较大(接近 100% ) , 因此不会减弱探 测光的光强。
光电探测器 106, 用于按照一定的频率探测散射光, 形成与时间相关的散 射光信号。此处所描述的与时间相关的散射光信号包括散射光信号的强度(例 如光强 )、 散射光信号出现的时间, 散射光信号持续的时间等。 为了获取与时 间相关的散射光信号, 较佳地, 本发明采用高频的光电探测器 106 (例如光电 倍增管 ) , 所述高频的光电探测器 106以较高频率探测散射光, 可以获得散射 光信号较为细致的时间信息。
本发明待测晶圓检测装置还包括一数据处理单元 107, 所述数据处理单元 107连接于光电探测器 106和移动旋转平台 102, 用于根据光电探测器 106探 测到的时间相关的散射光信号、同时结合移动旋转平台 102上待测晶圓的移动 和旋转信息, 获得待测晶圓表面颗粒的分布情况。
参考图 7, 示出了图 6所示数据处理单元一实施例的示意图。 所述数据处 理单元 107包括第一处理单元 1071 ,第二处理单元 1072,第三处理单元 1073, 其中,
第一处理单元 1071 , 连接于光电探测器 106, 用于根据所述光电探测器 106探测到的散射光信号的有无获得待测晶圓上是否存在颗粒的信息。 具体 地, 若光电探测器 106探测到散射光信号,表示光斑扫描位置处存在使测量光 发生散射的颗粒, 若光电探测器 106没有探测到散射光信号,表示光斑扫描位 置处不存在颗粒, 无法使测量光发生散射。
第二处理单元 1072, 连接于光电探测器 106, 用于根据所述光电探测器 106 探测到的散射光信号的强弱获得待测晶圓上颗粒的材料、 颗粒大小的信 息。
由于待测晶圓上的颗粒的材料通常为二氧化硅、 有机物、 硅、 金属, 所述 不同材料的颗粒对测量光的散射率不同, 并且二氧化硅和硅(金属 )的散射信 号有数量级的差别, 所述第二处理单元 1072, 用于对所述光电探测器 106探 测到的散射光信号的强度进行区分, 形成不同强度范围的散射光信号,根据不 同强度范围的散射光信号获得与其对应的颗粒材料。
对于同一材料的颗粒, 若光电探测器 106探测到较强的散射光信号,表示 探测光斑扫描位置处的颗粒尺寸较大,因为尺寸较大的颗粒具有较大面积的散 射面, 可使较多的散射光到达光电探测器 106, 反之, 若光电探测器 106探测 到较弱的散射光信号,表示探测光斑扫描位置处的颗粒尺寸较小。所述第二处 理单元 1072基于散射光信号的强弱获取颗粒的大小。
第三处理单元 1073, 连接于光电探测器 106和移动旋转平台 102, 用于根 据光电探测器 106探测到的散射光信号出现的时间、持续的时间, 同时结合移 动旋转平台 102上待测晶圓的旋转速率, 获得待测晶圓上颗粒的位置。
具体地, 当移动旋转平台 102移动至一固定位置进行旋转时,探测光斑对 移动旋转平台 102上的待测晶圓的同一圓周进行扫描,光电探测器 106先后探 测到散射光信号, 这表示位于同一圓周上的不同颗粒依次进入探测光斑内, 第 三处理单元 1073根据散射光信号的出现时间, 结合移动旋转平台 102的旋转 速率, 获得同一圓周上不同颗粒的圓周距离。
当待测晶圓上同一半径上的不同颗粒进入探测光斑时,由于位于同一半径 的不同颗粒从探测光斑的不同区域经过,同一半径的不同颗粒经过探测光斑的 距离不同, 因此光电探测器 106探测到的散射光信号的持续时间不同, 第三处 理单元 1073依据所述散射光信号的持续时间,同时结合移动旋转平台移动 102 使待测晶圓旋转和移动的信息, 获得位于同一半径的不同颗粒的位置信息。 需要说明的是, 上述实施例中, 只公开了数据处理单元的部分功能, 但是 本发明并不限制于此,通过对光电探测器探测到的与时间相关的散射光信号进 行分析, 所述数据处理单元还可以获得其他颗粒在待测晶圓上的分布信息。 本 领域技术人员还可以对上述实施例进行修改、 替换和变形。 本发明提供的待测晶圓检测装置中,通过光电探测器形成与时间相关的散 射光信号, 进而获得精度较高的颗粒分布信息, 因此无需采用小尺寸的探测光 斑, 可以提高检测速率。 此外, 在探测光路方向无需采用成像系统对散射光进行采集, 筒化了探测 光路系统, 同时也降低了成本。 更进一步地, 本发明待测晶圓检测装置中, 无需采用衍射光学器件, 因此 减小了入射光光学系统的设计难度; 另一方面, 由于无需采用衍射光学器件, 因此入射光路的数值孔径可以设计得较小, 这使入射光路空间立体角很小, 为 探测光路预留了较大的空间, 因此探测光路可采用较大数值孔径的光学系统, 进而可以探测到更多颗粒的散射光, 提高了检测精度。 虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此 本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1.一种晶圓检测方法, 其特征在于, 包括:
产生测量光;
使所述测量光在待测晶圓上形成探测光斑;
使待测晶圓进行旋转和移动, 使探测光斑对待测晶圓进行扫描; 位于探测光斑范围内的颗粒使所述测量光发生散射, 形成散射光; 探测所述散射光, 形成对应的与时间相关的散射光信号;
基于所述与时间相关的散射光信号的强度,获取颗粒在待测晶圓上的分 布信息。
2.如权利要求 1所述的晶圓检测方法, 其特征在于, 所述基于所述与时间 相关的散射光信号, 获取颗粒在待测晶圓上的分布信息的步骤包括: 基于所述 散射光信号的有无获得待测晶圓上颗粒的有无。
3.如权利要求 2所述的晶圓检测方法, 其特征在于, 所述基于所述与时间 相关的散射光信号, 获取颗粒在待测晶圓上的分布信息的步骤还包括: 对散射 信号强度进行区分,基于所述散射光信号的强度范围获得待测晶圓上颗粒的材 料。
4.如权利要求 3所述的晶圓检测方法, 其特征在于, 所述基于所述与时间 相关的散射光信号, 获取颗粒在待测晶圓上的分布信息的步骤还包括: 对于同 一颗粒材料, 基于所述散射光信号的大小获得待测晶圓上颗粒的大小。
5.如权利要求 2所述的晶圓检测方法, 其特征在于, 所述基于所述与时间 相关的散射光信号, 获取颗粒在待测晶圓上的分布信息的步骤还包括: 基于所 述散射光信号出现的时间、 持续的时间, 同时结合待测晶圓的移动位置、 旋转 速率, 获得待测晶圓上颗粒的位置。
6.如权利要求 5所述的晶圓检测方法, 其特征在于, 所述基于所述散射光 信号出现的时间、 持续的时间, 同时结合待测晶圓的旋转速率, 获得待测晶圓 上颗粒的位置的步骤包括: 基于散射光信号出现的时间, 同时结合待测晶圓的 移动位置、 旋转速率, 获得颗粒在待测晶圓圓周方向的位置信息。
7.如权利要求 6所述的晶圓检测方法, 其特征在于, 获取待测晶圓的线速 度; 获取颗粒散射光信号出现的时间与待测晶圓开始旋转时间的时间差值; 计 算所述线速度和时间差值的乘积,所述乘积为颗粒距待测晶圓开始旋转位置处 的圓周距离。
8.如权利要求 5所述的晶圓检测方法, 其特征在于, 所述基于所述散射光 信号出现的时间、 持续的时间, 同时结合待测晶圓的旋转速率, 获得待测晶圓 上颗粒的位置的步骤包括: 基于散射光信号持续的时间, 同时结合待测晶圓的 移动位置、 旋转速率, 获得颗粒在待测晶圓半径方向的位置信息。
9.如权利要求 8所述的晶圓检测方法, 其特征在于, 获取待测晶圓的线速 度; 获取散射光信号持续时间与所述线速度的乘积, 所述乘积为颗粒在探测光 斑中移动的轨迹; 根据待测光斑的形状获得待测光斑的位置方程; 结合所述光 斑的位置方程和所述轨迹,计算颗粒在待测光斑中的位置;基于所述颗粒在待 测光斑中的位置和待测晶圓移动的位置,获得颗粒在待测晶圓半径方向的位置 信息。
10. 如权利要求 1所述的晶圓检测方法, 其特征在于, 所述测量光按照 入射角为 70°掠入射至待测晶圓, 在待测晶圓上形成橢圓形探测光斑。
11. 如权利要求 10所述的晶圓检测方法, 其特征在于, 所述橢圓形探测 光斑的直径大于或等于 100微米。
12. 如权利要求 1所述的晶圓检测方法, 其特征在于, 所述使所述测量 光在待测晶圓上形成探测光斑的步骤中, 形成平台型光斑或高斯光斑。
13. 一种晶圓检测装置, 其特征在于, 包括:
用于提供测量光的光源;
用于承载待测晶圓, 并用于使待测晶圓进行移动或旋转的移动旋转平 台 - 用于按一定频率探测散射光的光电探测器,所述散射光由位于待测晶圓 上的颗粒散射所述测量光而形成;
用于根据光电探测器探测到的与时间相关的散射光信号,获得颗粒在待 测晶圓上的分布信息的数据处理单元。
14. 如权利要求 13所述的晶圓检测装置, 其特征在于, 所述数据处理单 元包括: 第一处理单元, 所述第一处理单元连接于光电探测器, 用于根据所述 光电探测器探测到的散射光信号的有无获得待测晶圓上是否存在颗粒的信息。
15. 如权利要求 14所述的晶圓检测装置, 其特征在于, 所述数据处理单 元还包括: 第二处理单元, 所述第二处理单元连接于光电探测器, 用于根据所 述光电探测器探测到的散射光信号强度的范围获得待测晶圓上颗粒的材料。
16. 如权利要求 15所述的晶圓检测装置, 其特征在于,对于同一材料的 颗粒,所述第二处理单元还根据所述光电探测器探测到的散射光信号强度的大 小获得待测晶圓上的颗粒大小。
17. 如权利要求 14或 15所述的晶圓检测装置, 其特征在于, 所述数据 处理单元还包括: 第三处理单元, 所述第三处理单元连接于光电探测器和移动 旋转平台,用于根据光电探测器探测到的散射光信号出现的时间、持续的时间, 同时结合移动旋转平台上待测晶圓的移动位置、旋转速率, 获得待测晶圓上颗 粒的位置。
18. 如权利要求 13所述的晶圓检测装置, 其特征在于,还包括位于光源 和移动旋转平台之间的光斑调整组件,所述光斑调整组件用于对光源提供的测 量光进行处理, 获得平台型光斑或高斯光斑。
19. 如权利要求 13所述的晶圓检测装置, 其特征在于,还包括位于移动 旋转平台和光电探测器之间的反光组件,所述反光组件用于使散射光反射到光 电探测器的探测面上。
20. 如权利要求 13所述的晶圓检测装置, 其特征在于, 所述光电探测器 为高频光电倍增管。
PCT/CN2011/076624 2011-04-27 2011-06-30 晶圆检测方法以及晶圆检测装置 WO2012145966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110106989.0 2011-04-27
CN201110106989.0A CN102759533B (zh) 2011-04-27 2011-04-27 晶圆检测方法以及晶圆检测装置

Publications (1)

Publication Number Publication Date
WO2012145966A1 true WO2012145966A1 (zh) 2012-11-01

Family

ID=47054061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076624 WO2012145966A1 (zh) 2011-04-27 2011-06-30 晶圆检测方法以及晶圆检测装置

Country Status (2)

Country Link
CN (1) CN102759533B (zh)
WO (1) WO2012145966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110990754A (zh) * 2019-11-25 2020-04-10 武汉科技大学 一种基于光散射的晶圆表面颗粒缺陷的散射场计算方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015114065A1 (de) * 2015-08-25 2017-03-02 Brodmann Technologies GmbH Verfahren und Einrichtung zur berührungslosen Beurteilung der Oberflächenbeschaffenheit eines Wafers
US10380728B2 (en) * 2015-08-31 2019-08-13 Kla-Tencor Corporation Model-based metrology using images
CN106323916A (zh) * 2016-08-18 2017-01-11 中国科学院嘉兴微电子仪器与设备工程中心 一种晶圆扫描检测定位方法
CN106226324B (zh) * 2016-08-30 2019-04-16 中国科学院嘉兴微电子仪器与设备工程中心 一种基于fpga的晶圆检测信号提取装置及系统
CN106248688B (zh) * 2016-08-30 2019-04-16 中国科学院嘉兴微电子仪器与设备工程中心 一种基于fpga的晶圆检测信号提取方法
CN106403851A (zh) * 2016-08-31 2017-02-15 上海华力微电子有限公司 一种检测光刻工艺曝光前晶圆背面水平度的方法及装置
US10481101B2 (en) * 2017-01-23 2019-11-19 Applied Materials Israel Ltd. Asymmetrical magnification inspection system and illumination module
CN115165758A (zh) 2018-07-06 2022-10-11 深圳中科飞测科技股份有限公司 一种检测设备及方法
CN110849900A (zh) * 2018-08-21 2020-02-28 深圳中科飞测科技有限公司 晶圆缺陷检测系统及方法
CN109473370A (zh) * 2018-11-16 2019-03-15 上海华力微电子有限公司 一种晶圆表面颗粒的脱机检测方法
CN111276411B (zh) * 2018-12-04 2024-01-26 台湾积体电路制造股份有限公司 辨识晶圆颗粒的方法、电子装置及计算机可读取记录媒体
CN112540082A (zh) * 2019-09-20 2021-03-23 深圳中科飞测科技股份有限公司 检测系统及检测方法
CN113109349B (zh) * 2021-03-23 2023-12-26 深圳中科飞测科技股份有限公司 检测方法、系统、设备及计算机可读存储介质
CN113048921A (zh) * 2021-03-24 2021-06-29 长江存储科技有限责任公司 一种晶圆表面粗糙度的测量方法和测量系统
CN115372375A (zh) * 2022-10-24 2022-11-22 苏州天准科技股份有限公司 晶圆检测装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018183A1 (en) * 2003-07-23 2005-01-27 Shortt David W. Method and apparatus for determining surface layer thickness using continuous multi-wavelength surface scanning
US20070182958A1 (en) * 2006-02-08 2007-08-09 Yuji Manabe Apparatus and method for wafer surface defect inspection
US20080013084A1 (en) * 2006-07-13 2008-01-17 Hitachi High-Technologies Corporation Surface Inspection Method and Surface Inspection Apparatus
US20080013076A1 (en) * 2006-07-13 2008-01-17 Hitachi High-Technologies Corporation Surface Inspection Method and Surface Inspection Apparatus
US7463349B1 (en) * 2006-06-02 2008-12-09 Kla-Tencor Technologies Corp. Systems and methods for determining a characteristic of a specimen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909500B2 (en) * 2001-03-26 2005-06-21 Candela Instruments Method of detecting and classifying scratches, particles and pits on thin film disks or wafers
US6122047A (en) * 1999-01-14 2000-09-19 Ade Optical Systems Corporation Methods and apparatus for identifying the material of a particle occurring on the surface of a substrate
JP4945181B2 (ja) * 2006-07-12 2012-06-06 株式会社日立ハイテクノロジーズ 表面検査方法および表面検査装置
NL2003263A (en) * 2008-08-20 2010-03-10 Asml Holding Nv Particle detection on an object surface.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018183A1 (en) * 2003-07-23 2005-01-27 Shortt David W. Method and apparatus for determining surface layer thickness using continuous multi-wavelength surface scanning
US20070182958A1 (en) * 2006-02-08 2007-08-09 Yuji Manabe Apparatus and method for wafer surface defect inspection
US7463349B1 (en) * 2006-06-02 2008-12-09 Kla-Tencor Technologies Corp. Systems and methods for determining a characteristic of a specimen
US20080013084A1 (en) * 2006-07-13 2008-01-17 Hitachi High-Technologies Corporation Surface Inspection Method and Surface Inspection Apparatus
US20080013076A1 (en) * 2006-07-13 2008-01-17 Hitachi High-Technologies Corporation Surface Inspection Method and Surface Inspection Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110990754A (zh) * 2019-11-25 2020-04-10 武汉科技大学 一种基于光散射的晶圆表面颗粒缺陷的散射场计算方法

Also Published As

Publication number Publication date
CN102759533A (zh) 2012-10-31
CN102759533B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2012145966A1 (zh) 晶圆检测方法以及晶圆检测装置
JP5355922B2 (ja) 欠陥検査装置
US7656519B2 (en) Wafer edge inspection
KR102362657B1 (ko) 웨이퍼 검사
JP5721070B2 (ja) 光学特性測定装置
KR100808702B1 (ko) 반도체 웨이퍼 표면 상의 결함을 검출하기 위한 픽셀-기초식 방법, 장치 및 광학 헤드
JP4797005B2 (ja) 表面検査方法及び表面検査装置
JP3709431B2 (ja) 微細構造化表面での角度依存回折効果の高速測定装置
TWI738788B (zh) 使用奇點光束之暗場晶圓奈米缺陷檢驗系統
CN106442565B (zh) 高速激光线扫描的表面缺陷检测装置
WO2020038360A1 (zh) 检测系统
CN109935531B (zh) 一种表面检测装置、系统及方法
US9568437B2 (en) Inspection device
WO2013040897A1 (zh) 晶圆检测方法以及晶圆检测装置
US9719943B2 (en) Wafer edge inspection with trajectory following edge profile
KR100900618B1 (ko) 표면 측정 장치
CN110763690B (zh) 一种表面检测装置及方法
KR100878425B1 (ko) 표면 측정 장치
CN110763689B (zh) 一种表面检测装置及方法
JP7304970B2 (ja) 表面検出装置及び方法
TW201602552A (zh) 體積的基板掃描器
JP2007178149A (ja) 光散乱式粒子計数装置
JP5668113B2 (ja) 欠陥検査装置
JP2003177103A (ja) 異物検査装置及びdramの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864497

Country of ref document: EP

Kind code of ref document: A1