WO2012145863A1 - 太阳电池、太阳电池组件及其制备方法 - Google Patents

太阳电池、太阳电池组件及其制备方法 Download PDF

Info

Publication number
WO2012145863A1
WO2012145863A1 PCT/CN2011/000754 CN2011000754W WO2012145863A1 WO 2012145863 A1 WO2012145863 A1 WO 2012145863A1 CN 2011000754 W CN2011000754 W CN 2011000754W WO 2012145863 A1 WO2012145863 A1 WO 2012145863A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
gate electrode
main gate
metal
wound
Prior art date
Application number
PCT/CN2011/000754
Other languages
English (en)
French (fr)
Inventor
周杰
温建军
蔡昭
周豪浩
王玉林
藏智毅
艾凡凡
刘皎彦
杨健
陈如龙
严婷婷
唐应堂
张光春
Original Assignee
无锡尚德太阳能电力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡尚德太阳能电力有限公司 filed Critical 无锡尚德太阳能电力有限公司
Priority to PCT/CN2011/000754 priority Critical patent/WO2012145863A1/zh
Publication of WO2012145863A1 publication Critical patent/WO2012145863A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of photovoltaic technology, and relates to a metal Wrap Through (MWT) back contact solar cell which is electrically isolated between a main gate electrode and a back electric field by an isolation trench, and particularly relates to a backside of the solar cell.
  • MMWT metal Wrap Through
  • a solar cell includes a pn junction formed on a bottom of a battery (e.g., monocrystalline or polycrystalline silicon), and an electrode for collecting photocurrent generated by solar irradiation on the battery substrate and collecting it.
  • the solar cell includes a front side and a back side, wherein a side illuminated by sunlight when the battery is in operation is defined as a front side of the solar cell, and a side opposite to the front side is defined as a back side.
  • a sub-gate electrode or a sub-gate line
  • a main gate electrode for collecting current of the sub-gate electrode are formed on the front surface thereof; a back electric field and a back electrode are formed on the back surface thereof to extract current.
  • one end of one interconnecting strip needs to be soldered to the back electrode on the back side of the solar cell, and the other end of the solar cell needs to be soldered to the main gate electrode on the front side of the other solar cell.
  • the interconnect strips are not on the same plane, which is detrimental to the automated production of solar cell modules; and, as the battery substrate continues to thin, there is a greater risk of cracking at the solder joints at the edges of the solar cells.
  • MWT back contact solar cell In which a main gate electrode of a front surface of a battery is placed on the back surface of a battery substrate has been proposed in recent years.
  • An MWT back contact solar cell is specifically disclosed in U.S. Patent No. 6,384,317, the entire disclosure of which is incorporated herein by reference.
  • MWT back contact solar cells have high conversion efficiency and beautiful appearance compared with conventional solar cells.
  • FIG. 1 is a schematic view showing a structural change of a prior art MWT back contact solar cell packaged as a solar cell module, wherein FIG. 1( a ) is a schematic view of the back structure of the MWT back contact solar cell, and FIG. 1 ( b ) is a MWT
  • the electrical connection diagram of the back sheet is interconnected when the conductive adhesive bonding process is used.
  • the back plate is generally used to realize the conductive adhesive bonding process. As shown in Fig.
  • 900 is the substrate of the MWT back contact solar cell
  • 910 is the back electrode in the back electric field (for example, formed by silver paste)
  • 920 is the main gate electrode formed on the back surface.
  • an integrated backplane 930 is used on the back of the MWT back-contact solar cell to package the solar cell module.
  • a layer in contact with the MWT back contact solar cell is a weather resistant insulating substrate plate material and a sealing material; the intermediate layer is a metal thin film layer, and the corresponding main gate electrode and the back electrode can be connected by patterning the metal thin film layer.
  • the outermost layer of the back plate 930 is also covered with an insulating layer which does not cover the electrode contact hole 931 shown in the drawing.
  • the electrode contact hole 931 on the corresponding region is filled with a conductive paste (for example, silver powder conductive paste). Therefore, the electrode contact holes 931 are required to be aligned with the respective electrodes.
  • the interconnection between two solar cells is illustrated in Figure 1, and is also applicable for multiple solar cells. Therefore, the interconnection shown in Figure 1 does not use conventional soldering methods to solder interconnect strips.
  • the solar cell module is formed by the interconnection method shown in FIG. 1, the following disadvantages exist: (1) The electrode and the metal film layer are connected by a conductive adhesive, and the reliability is low; ( 2 ) the electrode on the back side of the MWT battery needs Accurately align with the corresponding electrode contact holes on the metal film, precise control in the process, complicated manufacturing process and high difficulty; (3) The equipment required to complete the above interconnection process is expensive, and the cost of the solar cell module is invisibly increased. (4) The weather-resistant insulating back sheet, sealing material and silver powder conductive adhesive covering the metal film (such as copper film material) have a higher price, which increases the cost of the solar cell module. Summary of the invention
  • One object of the present invention is to provide an MWT back contact solar cell having good insulation isolation characteristics and facilitating assembly into a solar cell module by interconnecting strips.
  • a second object of the present invention is to provide a conventional welding method or guide
  • the electric tape bonding method realizes the interconnecting strip interconnecting the MWT back contact solar cell to form the solar cell module.
  • an MWT back contact solar cell comprising: a battery substrate including a first conductive type region for forming a PN junction; a second conductive type region, the first conductive type region is located on a back surface of the battery substrate, and a portion of the second conductive type region is located on a front surface of the battery substrate;
  • a secondary gate electrode disposed on a front surface of the battery substrate
  • a back electric field which is disposed on a back surface of the battery substrate
  • a first insulating interlayer disposed on a back surface of the battery substrate; wherein, the plurality of rows/column main gate electrodes and the plurality of rows/column of back electrodes are substantially parallel to each other, and each row/column of main gate electrodes is along The center lines of the parallel battery substrates are arranged symmetrically with the corresponding row/column back electrodes;
  • the first insulating dielectric layer for preventing the interconnecting strips from being electrically connected to the main gate electrode and the same solar cell at the same time Describe the back electric field.
  • an MWT back contact solar cell wherein the solar cell further includes a first isolation trench disposed on a back surface of the battery, the first isolation trench C for implementing the main gate electrode Electrical isolation from the back electric field.
  • the second conductive type region substantially covers the first conductive type region, and the back electric field is used for the second contact
  • the conductive type region self-aligned compensation doping forms a compensation doped region, and a current generated by the first conductive type region is output to the back electric field through the compensated doped region.
  • the first isolation trench is formed by laser scribing or quasi-wet etching.
  • each row/column The main gate electrode is segmented, and each of the main gate electrodes is surrounded by the first isolation trench.
  • the first isolation trench is filled with the first insulating dielectric layer.
  • the through holes are equally spaced on the sub-gate electrodes, and m through holes respectively located on the m sub-gate electrodes are substantially Arranged in a line on a row/column, where m is an integer greater than or equal to 3.
  • the solar cell further includes a through hole connection line disposed on a front surface of the battery substrate, and the through hole connection line is arranged in rows/columns.
  • the through hole preferably, the solar cell further includes a through hole connection line disposed on a front surface of the battery substrate, and the through hole connection line is arranged in rows/columns. The through hole.
  • one or more through holes are provided between the adjacent sub-gate electrodes on the via connection line.
  • the through-hole connection has a line width ranging from 100 ⁇ m to 1 mm.
  • the number of the sub-gate electrodes is n, n is greater than m, and the m via holes arranged in rows/columns are non-continuously arranged on the n-side sub-gate electrodes.
  • the hollow gate region is provided in the main gate electrode.
  • the back electric field is an aluminum or aluminum alloy material.
  • the solar cell further includes a second isolation formed on the front surface and/or the back surface of the battery substrate and located at four peripheral regions of the solar cell. a trench, the second isolation trench for electrically isolating between the sub-gate electrode and the back electric field.
  • the solar cell further includes an antireflection layer formed on a front surface of the battery substrate.
  • the main gate electrode and the back electrode are simultaneously screen printed or stencil printed.
  • the first insulating dielectric layer is in a strip shape, and the first insulating dielectric layer is located in the row/column main gate electrode and the back electric field.
  • the battery substrate and the edge of the main gate electrode and a portion of the back electric field are partially covered.
  • the width of the first insulating dielectric layer is greater than the width of the interconnecting strip.
  • the plurality of rows/column main gate electrodes are equally spaced at a first pitch, and the plurality of rows/columns are equally spaced by a second pitch Distribution, the first spacing is equal to the second spacing.
  • the first insulating interlayer layer is made of a low temperature curing type organic material or a high temperature sintered type inorganic non-metal oxide material.
  • a first insulating dielectric layer is patterned on the back side of the battery substrate.
  • the step is performed before or after the back surface of the battery substrate is patterned to form the first insulating dielectric layer: forming the main gate electrode and the back electric field by laser scribing or quasi-wet etching The first isolation trench electrically isolated.
  • the front surface of the solar cell is simultaneously etched by laser scribing or quasi-wet etching.
  • a second isolation trench is formed along the four peripheral regions of the back surface.
  • the method further includes the steps of: performing the process of napping and cleaning the battery substrate, and removing the damage formed by the through hole. And residue.
  • the method further comprises the step of: removing the phosphosilicate glass.
  • the method further comprises the step of: on the front side of the battery substrate An antireflection layer is deposited.
  • a via connection is formed on the front side of the battery substrate.
  • the patterning of the main gate electrode, the back electrode, the back electric field, and the sub-gate electrode is achieved by screen printing or stencil printing, the main The gate electrode and the back electrode are formed by the same paste.
  • a solar cell module comprising a plurality of metal-wound-type back contact strips arranged in rows/columns as described above, each of which is interconnected The strips are simultaneously connected to the main gate electrode of a respective row/column of the solar cell and the back electrode of the corresponding row/column of the other solar cell on substantially the same plane, substantially the same straight line.
  • one of the two solar cells in the same row/column of the solar cells rotates one of the solar cells relative to the other of the solar cells 180 degree setting.
  • the interconnection of the interconnection strips is a solder joint or a conductive tape bond.
  • the solar cell module further includes a front transparent substrate, a front sealing adhesive layer, a back sealing adhesive layer, and a back substrate, wherein the front sealing adhesive layer and the back sealing adhesive layer cover the solar cell String.
  • one of the two adjacent solar cells rotates 180 degrees with respect to the other of the solar cells.
  • connection of the interconnecting strips is achieved by means of bonding or bonding of conductive tape.
  • each row/column main gate electrode is along a center line and a corresponding row of the battery substrate parallel thereto / column back electrodes are symmetrically arranged; thus, it is convenient to connect the interconnecting strips to assemble the solar cell module, and the cost of connecting the interconnecting strips is low; each interconnecting strip connects two solar cells on the same plane and on the same straight line, which is not easy Cracks occur at the edges of solar cells, providing high reliability, low cost, high production efficiency, and high solar cell conversion efficiency.
  • the solar cell has good insulation isolation characteristics.
  • FIG. 1 is a schematic view showing a structural change of a prior art MWT back contact solar cell packaged as a solar cell module, wherein FIG. 1(a) is a schematic view of the back surface of the MWT back contact solar cell, and FIG. 1(b) is a MWT back contact.
  • FIG. 1(a) is a schematic view of the back surface of the MWT back contact solar cell
  • FIG. 1(b) is a MWT back contact.
  • a schematic diagram of electrical connections after the backsheet is interconnected by using a conductive adhesive bonding process in the manufacturing process of the solar cell module;
  • FIG. 2 is a partial schematic view showing the structure of the back surface of the MWT back contact solar cell according to an embodiment of the present invention, wherein FIG. 2(a) is a schematic view of the back surface of the solar cell, and FIG. 2(b) is a front structure of the solar cell.
  • FIG. 2(a) is a schematic view of the back surface of the solar cell
  • FIG. 2(b) is a front structure of the solar cell.
  • FIG. 3 is a schematic enlarged view showing a portion A of the MWT back contact solar cell of the embodiment shown in FIG. 2;
  • FIG. 4 is a schematic enlarged view showing a portion B of the MWT back contact solar cell of the embodiment shown in FIG. 2;
  • Figure 5 is a cross-sectional view showing the C-C cross-section of the MWT back contact solar cell of the embodiment shown in Figure 2;
  • FIG. 6 is a schematic diagram of a process of interconnecting a plurality of MWT back contact solar cells shown in FIG. 2 to form a solar cell string of a solar cell module, wherein FIG. 6( a ) is a schematic diagram of an arrangement of a plurality of solar cells 100 , 6(b) is a schematic structural view of a solar cell string formed by soldering and connecting a plurality of solar cells 100 through interconnecting strips;
  • FIG. 7 is a schematic exploded view of a solar cell module according to an embodiment of the invention.
  • FIG. 8 is a schematic flow chart showing a method of preparing a solar cell of the embodiment shown in FIG. 2; and FIG. 9 to FIG. 17 are schematic structural views showing a process of the preparation method shown in FIG.
  • Figure 18 is a partial schematic view showing the cross-sectional structure of an MWT back contact solar cell according to still another embodiment of the present invention.
  • Figure 19 is a partial schematic view showing the cross-sectional structure of a M WT back contact solar cell in accordance with still another embodiment of the present invention. detailed description
  • the "front surface of the solar cell” in the present invention refers to the side that receives the sunlight when the battery is operated, that is, the light receiving surface, and the “back surface of the solar cell” in the present invention refers to the side opposite to the "front surface of the solar cell”. .
  • FIG. 2 is a partial schematic view showing the structure of the back surface of the MWT back contact solar cell according to an embodiment of the present invention, wherein FIG. 2( a ) is a schematic view of the back surface structure of the solar cell, and FIG. 2 ( b ) is the solar cell Schematic diagram of the front structure.
  • Fig. 3 is a schematic enlarged view showing a portion A of the MWT back contact solar cell of the embodiment shown in Fig. 2.
  • Fig. 4 is a schematic enlarged view showing the portion B of the MWT back contact solar cell of the embodiment shown in Fig. 2.
  • Fig. 5 is a view showing the C-C cross-sectional structure of the MWT back contact solar cell of the embodiment shown in Fig. 2.
  • the MWT back contact solar cell of this embodiment will be described in detail with reference to Figs. 2 to 5.
  • the MWT back contact solar cell 100 of this embodiment is formed based on the battery substrate 1 10.
  • a p-type single crystal silicon wafer or a polycrystalline silicon wafer is selected as the battery substrate, such that In this embodiment, the first conductivity type region is p-type and the second conductivity type region is n-type.
  • the type of material of the battery substrate is not limited.
  • the battery substrate 1 10 may also be a polysilicon material or other type of solar cell base material.
  • the battery substrate 1 10 of the solar cell may be selected to have a shape of a symmetrical structure, for example, may be approximately rectangular or square, and its specific shape is also not limited by the illustrated embodiment (for example, it may also be a parallelogram), and the battery is determined.
  • the battery substrate 1 10 includes a p-type semiconductor region 12 provided by the substrate itself and an n-type semiconductor region 11 formed by doping the battery substrate 10.
  • the n-type semiconductor region 1 1 1 covers the p-type semiconductor region 1 12 .
  • the thickness of the n-type semiconductor region 111 may range from 0.1 micrometers to 1 micrometer.
  • the p-type semiconductor region 1 12 and the n-type semiconductor region 1 1 1 together form a pn junction of the solar cell, and the current of the n-type semiconductor region is collected by the sub-gate electrode 130 of the front surface of the solar cell (that is, the front surface of the battery substrate 1 10). Further, the main gate electrode 150 is collected by the back surface, and the current of the p-type semiconductor region 12 is collected by the back electric field 160 of the solar cell and taken out through the back electrode 161.
  • a plurality of sub-gate electrodes 130 are formed on the front surface 120 of the solar cell.
  • the sub-gate electrodes 130 are disposed in a line shape, and the line width of the sub-gate electrode 130 is about 30 micrometers to 140 micrometers.
  • the plurality of sub-gate electrodes are regularly arranged uniformly, which is advantageous for collecting the current of the n-type semiconductor region 11 1 , for example, the parallel and equidistant arrangement between the sub-gate electrodes.
  • the pitch between the sub-gate electrodes 130 and the line width of the sub-gate electrode 130 itself are not limited by the present invention.
  • the sub-gate electrode 130 is formed by printing a conductive silver paste on a wire mesh (or stencil) and then sintering it at a high temperature.
  • the sub-gate electrode 130 is formed on the surface of the front-side n-type semiconductor region 111 and The n-type semiconductor regions are electrically connected so that their photo-generated current can be collected.
  • a plurality of penetrating cell substrates 1 10 may be formed on the cell substrate at the position where the sub-gate electrode 130 corresponds. ) through hole 190.
  • Each of the plurality of sub-gate electrodes 130 is cross-connected with the main gate electrode 150 after being separated by a certain distance, so that the main gate electrode 150 can efficiently collect and draw the current collected by the sub-gate electrode 130.
  • a plurality of via holes 190 may be formed on a plurality of sub-gate electrodes 130.
  • the via holes on each of the sub-gate electrodes 130 are laterally Arranged in a straight line, a plurality of substantially perpendicular to the surface of the n-type semiconductor region 1 11 are disposed a via connection line 155 of the sub-gate electrode, the via connection line 155 can connect the vias in a straight line (ie, the same row) together, and therefore, some of the sub-gate electrodes not provided with the via 190 are also
  • the main gate electrode 150 can be collected to the back surface through the via connection line 155.
  • the positional accuracy requirement of the via hole is reduced (the through hole is not disposed at the intersection of the via connection line 155 and the sub-gate electrode 130)
  • the electrical connection between the sub-gate electrode and the back main gate electrode is realized).
  • a total of 57 sub-gate electrodes 130 are disposed in FIG.
  • via holes 190 are formed on the 28 sub-gate electrodes, wherein through-holes are disposed on the four sub-gate electrodes arranged in series, and are further arranged in series There are no through holes on the four sub-gate electrodes, and four sub-gate electrodes for providing the through holes and four sub-gate electrodes not provided with the through holes are arranged at intervals, that is, the through holes are not completely continuously arranged on all the sub-gate electrodes; On the sub-gate electrode of the through hole, three through holes are equally spaced, and three through hole connecting lines 155 are arranged in parallel at equal intervals and vertically intersect with the sub-gate electrode 130. The through hole is disposed at the sub-gate electrode 130 and the through hole. Correspondingly, as shown in FIG.
  • the main gate electrode 150 is segmentally disposed, and the four continuous via holes on the via connection line 155 correspond to a segment of the main gate electrode disposed on the back surface, thus Corresponding to the non-complete continuous arrangement of the via holes on the same row, the main gate electrode 150 is divided into 7 segments, which are arranged in rows and 7 segments, for a total of three rows. Therefore, with the above specific arrangement, the current of the front n-type semiconductor region 11 1 is collected and drawn in a relatively low series resistance. Since the via connection lines 155 are disposed in parallel at equal intervals, the three rows of main gate electrodes 150 are also disposed in parallel at substantially equal intervals.
  • the through hole 190 can be formed by chemical etching, machine punching, punching, laser drilling, electron beam punching, and the like.
  • Both the via connection line 155' and the sub-gate electrode 130 may be formed by screen printing or the like, and the width of the via connection line 155 is much smaller than the width of the conventional main gate electrode disposed on the front surface, for example, the width thereof is in the range of Between 100 microns and 1 mm. ' —— ⁇
  • a plurality of via holes may be equally spaced on each of the sub-gate electrodes, and the via holes on the different sub-gate electrodes are continuously arranged in a straight line in the lateral direction, so that all the sub-gate electrodes are drained to the same on the back side.
  • On the main gate electrode (when the main gate electrode is not segmented and the via connection line 155 is no longer disposed on the front side), each of the main gate electrodes is also arranged in parallel at substantially equal intervals.
  • two sub-gate electrodes share a through hole or the like, and the position of the main gate electrode is determined by arranging the positions of the via holes, so that the main gate electrodes arranged in rows (or columns) are equally spaced (refer to The spacing between the columns or columns) is set in parallel. It should be noted that, in the above example, when a row (or a column) of main gate electrodes is segmented, the spacing between segments is not necessarily required to be equal, which is not limitative.
  • one via hole may be further added (as shown in the figure In this way, eight consecutively arranged vias can be simultaneously connected to the same main gate electrode, which can more reliably pull the current on the via connection line 155 to the back gate main gate electrode, thereby improving the current conduction capability. , reduce the series resistance of the battery.
  • the number of via holes to be added may be two or more.
  • main gate electrodes 150 are arranged in parallel with each other in parallel, which may be disposed in parallel at substantially equal intervals, and the main gate electrode 150 includes a back surface portion 150a and a winding portion 150b. Both are formed by integrated printing.
  • the n-type semiconductor region 111 is formed on the surface of the p-type semiconductor region 126 and substantially covers the p-type semiconductor region 126.
  • the main gate electrode 150 is in direct contact with the n-type semiconductor region 11 1 (including the inner surface of the via hole and the back surface of the solar cell), wherein the back surface portion 150a is disposed over the n-type semiconductor region 1 11 on the back surface, and the bypass portion 15()b is disposed on the n-type semiconductor region 111 in the via hole.
  • the main gate electrode 150 can form an ohmic contact with the n-type semiconductor region 11 1 , and the contact resistance is low, which is more advantageous for current collection. Lead out.
  • a hollow region may be disposed on the main gate electrode 150 to reduce the contact area between the metal and the silicon, effectively reduce the recombination ratio of the metal and the silicon, and reduce the consumption and reduction of the metal paste. cost.
  • the back electric field 160 is formed over a large area on the back side of the solar cell for collecting and extracting the photo-generated current of the p-type semiconductor region 12 (i.e., the current at the p-side of the pn junction).
  • the back electric field 160 is formed directly over the n-type semiconductor region 11 1 covering the p-type semiconductor region 126 to be in contact with the local n-type semiconductor region 1 11 .
  • the type of the electrode can be selected such that it can compensate the doping of the n-type semiconductor region 11 1 that it contacts, for example, the metal element of the III A cluster is selected as the back electric field material; preferably, the back electric field 160 is aluminum or aluminum.
  • the alloy therefore, can be p-type doped with the n-type semiconductor region 11 1 it contacts (especially during metallization of the aluminum electrode).
  • a compensation doping region 180 is formed on the battery substrate adjacent to each of the back electric fields 160.
  • the compensation doping region 180 is a p-type semiconductor region, and the p-type doping concentration thereof may be greater than the doping concentration of the p-type semiconductor region 12, thereby facilitating ohmic contact with the back electric field 160, reducing the electrode 160 and Contact resistance between battery substrates.
  • the compensation doping region 180 and the p-type semiconductor region 112 are generally not clearly defined as shown in FIG. 6 because the doping of the battery substrate is performed when the back electric field is used as a doping source. The impurity characteristic, the doping element aluminum will always diffuse into the p-type semiconductor region 1 12 .
  • a back electrode 161 is also provided, one of which functions to realize the connection between the back electric field and the interconnecting strip, and the second function is to further extract the current of the back electric field 160 to the interconnecting strip.
  • the back electrode 161 is surrounded by the back electric field 160, so that the n-type semiconductor region corresponding to the back electrode 161 is also isolated by the complementary doping region 180, so that it does not cause shorting of the positive and negative electrodes of the pn junction.
  • the battery substrate 110 of the solar cell is square, and the back electrode 161 is also arranged in a row as the main gate electrode 150. One row of each side of the main gate electrode 150 is disposed correspondingly in a row.
  • each row of main gate electrodes can be substantially aligned with the back electrodes of the corresponding rows of another adjacent solar cell, and each row of back electrodes can also correspond to another adjacent solar cell.
  • the main gate electrodes of the rows are substantially aligned, and each row of back electrodes is symmetrically arranged along the center line 1 1 of the battery substrate 1 10 with each row of main gate electrodes, and the center line 11 1 is parallel to the main gate electrode 150. Therefore, each row of the back electrodes 161 is also parallel to each other, and the number of rows (or the number of columns) of the back electrode 161 is equal to the number of rows (or the number of columns) of the main gate electrode 150.
  • a single back electrode 161 is generally punctiform (for connection to an interconnect strip) and a multi-point back electrode 161 (e.g., 11 shown) is arranged to form a row.
  • a multi-point back electrode 161 e.g., 11 shown
  • the current of the back electric field 160 on one side of the main gate electrode 150 can pass through the back electric field between the segment gaps of the main gate electrode. It is drained onto the back electrode 161 on the other side thereof.
  • a first insulating dielectric layer 140 is disposed on the back surface of the solar cell 100 (ie, the battery cell 1 10), in this embodiment, The first insulating dielectric layer 140 fills the first isolation trench 145, and the first isolation trench 145 may be specifically formed by laser scribing or other methods such as quasi-wet etching.
  • the first isolation trench 145 can physically isolate the main gate electrode 150 from the back electric field 160 (separating the backside n-type semiconductor region 11 1 ), thereby also achieving electrical isolation.
  • the specific arrangement and function of the first insulating dielectric layer 140 will be described in the solar cell module.
  • FIG. 6 shows a plurality of MWT back contact solar cells shown in Figure 2 interconnected to form A schematic diagram of a solar cell string of a solar cell module, wherein FIG. 6( a ) is a schematic diagram of a arrangement of a plurality of solar cells 100 , and FIG. 6 ( b ) is a process in which a plurality of solar cells 100 are connected by an interconnecting strip Schematic diagram of the solar cell string.
  • a solar battery string is formed by sequentially connecting a plurality of solar cells in series with a positive and negative electrode (ie, a main gate electrode of one solar cell is connected to a back electrode of another solar cell).
  • a positive and negative electrode ie, a main gate electrode of one solar cell is connected to a back electrode of another solar cell.
  • three solar cells 100 shown in Fig. 2 are connected in series to form a solar battery string 1000 for schematic explanation.
  • the three solar cells are 100A, 100B, and 100C, respectively.
  • they are first arranged in rows (also in columns), wherein the solar cell 100B is rotated 180 degrees with respect to the solar cell 100A or 100C, so that A row of main gate electrodes of one solar cell (e.g., solar cell 100A) is substantially aligned with a row of back electrodes of another adjacent solar cell (e.g., solar cell 100B) in a straight line (since each row of back electrodes 161 is lined along the cell)
  • the center line 1 1 1 of the bottom 1 10 is symmetrically arranged with each row of main gate electrodes).
  • the solar cells are basically set to a square shape (or when they are rectangular), the edges of the solar cells arranged in rows can also be aligned.
  • each interconnecting strip 940 connects one row of main gate electrodes of one solar cell (eg, 100A), and the other end aligns another adjacent block of solar cells (eg, 100B)
  • a row of back electrodes connected in a straight line specifically, the connection between the interconnect strip 940 and the main gate electrode or the back electrode may be a solder connection method or other connection methods (for example, bonding by using conductive tape)
  • the welding connection method it can be completed by using existing welding equipment, and the connection reliability is high and the equipment requirements are low, so the preparation cost is low. As shown in FIG.
  • three interconnecting strips are welded to the solar cells 100A and 100B, which connect the main gate electrode of the solar cell 100A and the back electrode of the solar cell 100B in series; three interconnecting strips are soldered to the solar cell 100B and 100C, which connects the main gate electrode of the solar cell 100B and the back electrode of the solar cell 100C in series; the solar cells of the same colloidal arrangement are sequentially arranged, so that the interconnection can be conveniently realized.
  • Each splicing strip is welded to the solar cell substantially in the same plane and on the same straight line.
  • connection is convenient (for example, conventional Welding method to connect), it is not easy to crack at the edge of the solar cell, high reliability, low cost, ensuring mass production of solar cell modules (high production efficiency), and ensuring high rotation of solar cells Change efficiency.
  • the interconnect strip 940 When the interconnect strip 940 is connected to the main gate electrode of the solar cell, the interconnect strip 940 must be electrically connected to the battery substrate or the back field of the solar cell; likewise, the interconnect strip 940 is soldered to the back of the solar cell. In the case of an electrode, the interconnection strip 940 must be prevented from being electrically connected to the main gate electrode of the solar cell. Therefore, as shown in FIG. 6 and FIG. 2, the above object is achieved by the first insulating dielectric layer 140. Specifically, the first insulating dielectric layer 140 is disposed in a strip shape, and a strip-shaped first insulating medium is disposed corresponding to each row of the main gate electrode 150.
  • the layer 140, the bottom region of the battery between the main gate electrode 150 and the back electric field 160 is covered by the strip-shaped first insulating dielectric layer 140, and the first insulating dielectric layer 140 also partially covers the edge of the main gate electrode 150, and is partially covered.
  • Part of the back electric field 160 eg, the back electric field portion between the gaps covering the segmented main gate electrode 150, the edge of the back electric field, etc.
  • the first insulating dielectric layer 140 may be insulated from the back electric field 160 of the same solar cell; when the other end of the interconnecting strip 940 is connected to the back electrode 161, The first insulating dielectric layer 140 may further reduce the probability of the interconnect strips 940 being shorted to the main gate electrode 150 of the same cell. Therefore, the battery assembly shown in Fig. 6 has good isolation characteristics.
  • the width of the interconnect strip 940 is less than the width of the strip-shaped first insulating dielectric layer 140.
  • Fig. 7 is a schematic view showing the structure of a solar cell module according to an embodiment of the present invention.
  • the solar cell module of this embodiment includes the solar cell string 1000 of the embodiment shown in FIG. 6, and further includes a front transparent substrate 1100 and a front sealing adhesive layer 1200A.
  • the back sealing bonding layer 1200B and the back substrate 1300 are sequentially disposed from the top to the bottom, and the front sealing adhesive layer 1200A and the back sealing bonding layer
  • the 1200B substantially covers the solar battery string 1000.
  • the front transparent substrate 1100 may be a high-strength tempered glass plate
  • the sealing bonding layers 1200A and 1200B may select an adhesive material having better impact resistance and durability.
  • a plasma sealing material may be selected.
  • PVB Polyvinyl Butyral
  • EVA EVA
  • the back substrate 1300 can be selected from a TPT (polyvinyl fluoride composite film) substrate or a tempered glass plate.
  • TPT polyvinyl fluoride composite film
  • FIG. 8 is a flow chart showing the method of preparing the solar cell of the embodiment shown in FIG. 9 to 17 are schematic views showing the structural changes of the process according to the preparation method shown in Fig. 8. The process of the solar cell preparation method will be described below with reference to FIGS. 2 and 8 to 17.
  • step S10 a battery substrate having a first conductivity type region is provided.
  • the solar cell is formed based on the preparation of the battery substrate 110, and p-type single crystal silicon or polycrystalline silicon is selected as the battery substrate 110 (i.e., the first conductivity type is p-type).
  • the p-type single crystal silicon original silicon substrate
  • the p-type battery substrate 110 may be directly used for forming the first A conductive type region 112.
  • the front surface 120 of the battery substrate 110 is illuminated by sunlight when the solar cell is in operation, and the battery substrate is selected to have a symmetrical structure, for example, a square or a rectangle.
  • step S20 a through hole is formed in the battery substrate.
  • a plurality of through holes 190 are formed in the battery substrate 110, and the through holes 190 penetrate from the front surface of the battery substrate to the back surface of the battery substrate.
  • the through hole 190 can be formed by chemical etching, mechanical drilling, laser drilling, electron beam drilling, etc. Generally, laser drilling is selected.
  • the through holes can be selected to be substantially cylindrical holes having diameters ranging from about 10 microns to about 1000 microns.
  • the position layout and number of the via holes 190 in the battery substrate can be referred to the relevant descriptions of Figs. 2 and 4 and above.
  • step 25 (not shown) is generally included, that is, the battery substrate is subjected to texturing and cleaning, and the damage and residue formed by the through holes are removed.
  • the specific process of the texturing process and the cleaning process in this step is substantially the same as the conventional process.
  • texturing for example, a suede (not shown) such as a pyramid shape can be formed on the surface of the battery substrate, thereby contributing to an improvement in conversion efficiency of the battery; and the through hole 190 is also roughened by the formed pile surface, which It is beneficial to improve the reliability of slurry filling.
  • step S30 the surface of the battery substrate is doped with a second conductivity type.
  • the surface of the battery substrate 110 is n-type doped to form an n-type semiconductor region 111 on the surface of the battery substrate 110.
  • methods such as diffusion doping, ion implantation doping, and the like can be selected.
  • the n-type semiconductor region 111 is substantially coated with the original p-type semiconductor region 112. of.
  • the step of removing the phosphosilicate glass (not shown) is usually performed after the doping of the second conductivity type, wherein The dephosphorus glass can be removed by chemical cleaning.
  • an anti-reflection layer is deposited on the front side of the battery base.
  • an anti-reflection layer 1 13 deposited on the front surface of the n-type semiconductor region may be formed by a method such as PECVD, LPCVD or APCVD, and the anti-reflection layer 113 may be selected as a material such as silicon nitride. Its specific thickness can range from 50-; 120 nm. By providing the anti-reflection layer 1 13 , the conversion efficiency of the solar cell can be effectively improved.
  • step S50 the filling via hole is patterned and printed on the back side of the battery to form a main gate electrode, and simultaneously printed to form a back electrode.
  • the main gate electrode 150 and the back electrode 161 may be patterned by screen printing or stencil printing.
  • the slurry for example, silver paste
  • the back surface portion 150a and the winding-through portion 150b of the main gate electrode 150 are formed.
  • the type of slurry e.g., using a special type of hole-filling paste
  • a sintering process or the like may be selected such that the main gate electrode 150 is substantially in ohmic contact with the n-type semiconductor region 110.
  • the specific position layout of the main gate electrode 150 and the back electrode 161 can be referred to the relevant descriptions of Figs. 2, 3, 6, and above.
  • a plurality of hollow regions may be formed by forming a pattern of the screen and forming the main gate electrode 150 during printing, thereby being greatly reduced.
  • the contact area between the main gate electrode metal and silicon that is, the n-type semiconductor region 1 1 1 ) effectively reduces the recombination of the metal and silicon, thereby improving the conversion efficiency of the solar energy.
  • setting the hollowed out area can also greatly reduce the amount of metal used in the main gate electrode (for example, 4 ⁇ slurry), thereby reducing the cost of the solar cell.
  • the position and shape of the cutout region on the main gate electrode are not limited, and the principle is that the connection between the main gate electrode and the metal in the via hole is not affected.
  • step S60 a back electric field is formed on the back surface of the battery substrate.
  • the back electric field 160 can be screen printed aluminum paste on the back side of the battery substrate 110, and the process sequence can be between forming the formation of the main gate electrode 150 and the formation of the sub-gate electrode 130.
  • aluminum which belongs to the metal element of the bismuth cluster
  • aluminum may p-type doping the n-type semiconductor region 11 1 to which it is contacted (especially during metallization in which an aluminum electrode is formed).
  • a compensation doping region 180 is formed on the battery substrate adjacent to each of the back electric fields 160, so that the back electric field 160 collects the photo-generated current of the p'-type semiconductor region 112 and reduces the back electric field 160 and Contact resistance of the p-type semiconductor region 112.
  • a front gate electrode is patterned on the front side of the battery substrate.
  • the patterning forms the sub-gate electrode 130.
  • the type of the paste for example, silver paste
  • the sintering process can be selected to form the sub-gate electrode 130 into good electrical contact with the n-type semiconductor region 11 (eg, Ohmic contact).
  • the via connection line 155 (shown in FIG. 2) is also patterned at the same time, and the sub-gate electrode 130 and the via connection line 155 may be made of the same paste.
  • the patterning requirements of the sub-gate electrode 130 and the via connection line 155 can be referred to FIG. 2 and the related description above.
  • the sintering process in the above steps S50, S60, and S70 may be simultaneously sintered after printing the sub-gate electrode.
  • step S80 the laser scribing forms a first isolation trench.
  • the laser scribing forms a first isolation trench 145 , and the bottom of the laser isolation trench 145 reaches at least the p-type semiconductor layer 112, thereby achieving good insulation isolation between the main gate electrode 150 and the back electric field 160 by laser isolation.
  • a first isolation trench 145 is formed surrounding each segment of the main gate electrode 150.
  • a second isolation trench (not shown) is etched on the front and/or back peripheral regions of the battery substrate by laser scribing at the same time, the second isolation.
  • the trench is formed at the edge of the battery substrate to substantially enclose the entire front and/or back surface of the battery substrate, which facilitates insulating isolation between the back electric field 160 and the secondary gate electrode 130.
  • step S90 a first insulating dielectric layer is patterned on the back surface of the battery substrate.
  • the first insulating dielectric layer 140 may be patterned by photolithography, screen printing, spraying, etc., and the first insulating dielectric layer 140 may be a low-temperature curing organic material or a high-temperature sintering inorganic material.
  • Non-metal oxide materials such as polyimide (Polyimide, PI), epoxy resin, solder resist ink, etc.
  • the thickness can range from 2 microns to 100 microns.
  • the patterning requirements of the first insulating dielectric layer 140 can be referred to FIG. 2, FIG. 6 and the related description.
  • the first insulating dielectric layer 140 is simultaneously filled with the first isolation trench 145, which is more advantageous for improving the insulation isolation between the main gate electrode 150 and the back electric field 160.
  • the MWT back contact solar cell 100 shown in Fig. 2 is basically formed.
  • step S70 may also be completed before step S60; in addition, the sub-gate electrode 130 may also be in the An insulating dielectric layer 140 is formed and then patterned In other words, step S70 can also be completed after step S90.
  • Figure 18 is a partial schematic view showing a cross-sectional structure of an MWT back contact solar cell according to still another embodiment of the present invention.
  • the main difference is the first isolation trench, and the first isolation trench 245 is different from the first isolation trench 145 in that the first isolation trench 245 passes. Quasi-wet etching is formed. Therefore, in the preparation method shown in FIG. 8, the MWT back of the embodiment shown in FIG. 18 can be prepared by forming the first isolation trench 245 by quasi-wet etching before the deposition subtractive reflection step (S40). Contact the solar cell 200.
  • FIG. 19 is a partial schematic view showing a cross-sectional structure of a M WT back contact solar cell according to still another embodiment of the present invention.
  • the main difference is the first isolation trench, and the first isolation trench 345 is different from the first isolation trench 145 in that the first isolation trench 345
  • the first insulating dielectric layer 140 is not filled, that is, the first insulating dielectric layer 140 is patterned and deposited, and then laser-etched to form the first isolation trench 345. Therefore, in the preparation method shown in FIG. 8, the MWT back contact solar cell 300 of the embodiment shown in FIG. 19 can be prepared by changing the sequence of step S80 and step S90, that is, performing step S90 and then performing step S80.
  • the other steps of preparing the MWT back contact solar cell 300 are the same as the corresponding other steps shown in Figure 8, and will not be described herein.
  • main gate electrode and the back electrode are arranged in a row is described in the above embodiment, those skilled in the art may design a corresponding solar cell in which the main gate electrode and the back electrode are arranged in columns according to the above teachings or teachings. And an embodiment of a solar cell assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

太阳电池、 太阳电池组件及其制备方法 技术领域
本发明属于光伏技术领域, 涉及通过隔离沟槽实现主栅电极和背 电场之间电性隔离的金属绕穿型( Metal Wrap Through, MWT )背接触 太阳电池, 尤其涉及太阳电池的背面设置绝缘介盾层的 MWT背接触 太阳电池、 该太阳电池的制备方法、 通过互连条将多个 MWT背接触 太阳电池在基本同一平面上连接的太阳电池组件以及该太阳电池组 件的制备方法。 背景技术
利用半导体的光生伏特效应将太阳能转变为电能的应用越来越 广泛。 而太阳电池就是其中最为普遍的被用来将太阳能转换为电能的 器件。 在实际应用中, 一般是以由多个太阳电池串联(以互连条焊接 串联连接) 而成的太阳电池組件作为基本的应用模块。
通常地 , 太阳电池包括形成在电池村底 (如单晶石圭或多晶硅)上 的 pn结, 以及收集电池衬底上因太阳照射所产生的光生电流并将其 汇集引出的电极。 太阳电池包括正面以及背面, 其中电池工作时被太 阳光所照射的一面定义为太阳电池的正面, 与该正面相反的一面定义 为背面。 常规地, 在其正面形成用于收集电流的副栅电极(或次栅线) 以及用于汇集副栅电极的电流的主栅电极; 在其背面上形成背电场和 背电极以引出电流。 这种太阳电池通过互连条串联形成太阳电池组件 时, 一条互连条的一端需要在一太阳电池的背面焊接连接背电极、 其 另一端需要在另一太阳电池的正面焊接连接主栅电极, 互连条并不是 在同一平面上, 这不利于太阳电池组件的自动化生产; 并且, 随着电 池衬底的不断减薄, 在太阳电池的边沿处的焊接点处存在较大的隐裂 风险。
随着太阳电池技术的发展, 近年来提出了将电池正面的主栅电极 置于电池衬底背面的背接触型太阳电池。美国专利号为 US6,384,317B1 ό 、题为 "Solar Cell and Process of Manufacturing the Same (太阳电池及 其制备方法)"的专利中具体公开了一种 MWT背接触太阳电池。 MWT 背接触太阳电池相对常规的太阳电池具有转换效率高、 美观的特点,
确认本 并且避免了在正面和背面需要同时悍接互连条的情形, 提高了太阳电 池组件的转换效率并易于将太阳电池封装成太阳电池组件。
图 1所示为现有技术的将 MWT背接触太阳电池封装为太阳电池 组件的结构变化示意图, 其中, 图 1 ( a ) 为 MWT背接触太阳电池的 背面结构示意图, 图 1 ( b )为 MWT背接触太阳电池组件的制作过程 中采用导电胶粘接工艺时置放背板(Back Sheet ) 互连后的电性连接 示意图。 现有技术中, MWT背接触太阳电池互连为太阳电池组件时, 一般采用背板来实现导电胶粘接工艺。 如图 1 ( a )所示, 900为 MWT 背接触太阳电池的衬底, 910为背电场中的背电极(例如通过银浆形 成) , 920为形成于背面的主栅电极。 如图 1 ( b ) 所示, 在 MWT背 接触太阳电池的背面采用集成的背板 930来封装成太阳电池组件。 背 板 930中, 与 MWT背接触太阳电池接触的一层为耐候绝缘基板板材 料和密封材料; 中间层为金属薄膜层, 通过对金属薄膜层构图, 可以 实现相应主栅电极和背电极的连接 (如图中的白色曲线) ; 背板 930 的最外层还覆盖一层绝缘层, 该绝缘层并不覆盖图中所示的电极接触 孔 931。 在太阳电池的背电极或主栅电极需要与金属铜薄膜层电性导 通的区域, 在其相应区域上的电极接触孔 931中填充导电胶(例如银 粉导电胶) 。 因此, 需要电极接触孔 931与相应电极对准。 图 1 中示 意了两个太阳电池之间的互连, 对于多个太阳电池, 同样适用。 因此, 图 1所示的互连方式并非采用传统的焊接方式焊接互连条。
但是, 以图 1所示的互连方式形成太阳电池组件时, 存在以下缺 点: ( 1 )电极与金属薄膜层之间通过导电胶连接, 可靠性较低; (2 ) MWT 电池背面的电极需要与金属薄膜上对应的电极接触孔精确对 准, 工艺过程中需要精确控制, 制造过程复杂、 难度较高; (3 ) 完 成以上互连过程所需要的设备昂贵, 无形中增加太阳电池组件的成 本; (4 )表面覆盖金属薄膜(例如铜薄膜材料) 的耐候绝缘的背板、 密封材料和银粉导电胶价格较高, 增加了太阳能电池组件的成本。 发明内容
本发明的目的之一在于, 提供一种绝缘隔离特性好、 便于通过互 连条組装成太阳电池组件的 MWT背接触太阳电池。
本发明的目的之二在于, 提供一种可以使用常规焊接方式或者导 电胶带粘接方式实现互连条互连 MWT背接触太阳电池形成太阳电池 组件。
本发明的上述目的或者其它目的通过以下技术方案实现: 按照本发明的一方面,提供一种 MWT背接触太阳电池, 其包括: 电池衬底, 包括用于形成 PN结的第一导电类型区域和第二 导电类型区域, 所述第一导电类型区域位于电池衬底的背面, 部 分所述第二导电类型区域位于电池衬底的正面;
多个通孔, 其穿过所述电池衬底;
副栅电极, 其设置于所述电池衬底的正面;
多行 /列主栅电极,其设置于所述电池衬底背面并通过所述电 池衬底中的通孔与所述副栅电极电性连接;
背电场, 其设置于所述电池衬底的背面;
多行 /列背电极,其用于输出所述背电场所收集的电流并用于 封装成组件时所述太阳电池之间的互连; 以及
第一绝缘介盾层, 其设置于所述电池衬底的背面; 其中, 多行 /列主栅电极以及多行 /列背电极之间相互基本平行设 置, 每行 /列主栅电极沿与其平行的电池衬底的中心线与相应一行 /列 背电极对称排布;
两个所述太阳电池之间可操作地通过互连条连接, 所述第一绝缘 介质层用于防止所述互连条同时电性连接于同一所述太阳电池的所 述主栅电极和所述背电场。
按照本发明提供的 MWT背接触太阳电池, 其中, 所述太阳电池 还包括设置于所述电池村底背面的第一隔离沟槽, 所述第一隔离沟槽 C 用于实现所述主栅电极和所述背电场之间的电性隔离。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述第二导 电类型区域基本包覆所述第一导电类型区域, 所述背电场用于对其所 接触的所述第二导电类型区域自对准补偿掺杂形成补偿掺杂区, 所述 第一导电类型区域所产生的电流通过所述补偿掺杂区输出至所述背 电场。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述第一隔 离槽通过激光划刻或者准湿法刻蚀形成。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 每行 /列所述 主栅电极被分段设置, 每段所述主栅电极被所述第一隔离沟槽包围。 在一实例中, 所述第一隔离沟槽被所述第一绝缘介质层填充。 在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述通孔在 所述副栅电极上等间距地设置, 分别位于 m条所述副栅电极上的 m 个通孔基本在一条直线上按行 /列排列, 其中, m为大于或等于 3的整 数。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述太阳电 池还包括设置于所述电池衬底正面的通孔连接线, 所述通孔连接线连 接按行 /列排列的所述通孔。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 在所述通孔 连接线上、 相邻的所述副栅电极之间还设置有一个或一个以上的通 孔。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述通孔连 接线的线宽范围为 100微米至 1毫米。
在又一实例中, 所述副栅电极的条数为 n, n大于 m, 按行 /列排 列的所述 m个通孔在 n奈副栅电极上非连续排列。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述主栅电 极中设置镂空区域。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述背电场 为铝或者铝合金材料。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述太阳电 池还包括在所述电池衬底正面和 /或背面形成的、位于所述太阳电池的 四周边沿区域的第二隔离沟槽, 所述第二隔离沟槽用于实现所述副栅 电极和所述背电场之间的电性隔离。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述太阳电 池还包括形成于所述电池衬底正面的减反射层。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述主栅电 极和所述背电极同时丝网印刷或钢网印刷而成。
按照本发明提供的 MWT背接触太阳电池的再一实施例中, 所述 第一绝缘介质层为带状,所述第一绝缘介质层位于所述行 /列主栅电极 与所述背电场之间的电池衬底上并且部分地覆盖所述主栅电极的边 沿及部分所述背电场。 在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述第一绝 缘介质层的宽度大于所述互连条的宽度。
在以上所述及的 MWT 背接触太阳电池中, 较佳地, 所述多行 / 列主栅电极之间以第一间距等间距分布,所述多行 /列之间以第二间距 等间距分布, 所述第一间距等于所述第二间距。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述第一绝 缘介盾层由低温固化型有机物材料或高温烧结型无机非金属氧化物 材料制成。
按照本发明的又一方面, 提供一种制备以上所述 MWT背接触太 阳电池的制备方法, 其包括以下步骤:
提供具有第一导电类型区域的电池衬底;
在所述电池衬底中定位形成通孔;
对所述电池衬底表面进行第二导电类型的掺杂以形成第二导电 类型区域; ·
在所述电池衬底背面上构图形成主栅电极以及背电极;
在所述电池村底背面上构图形成背电场, 所述背电场对其所接触 的所述第二导电类型区域自对准补偿掺杂;
在所述电池衬底正面构图形成副栅电极; 以及
在所述电池衬底背面构图形成第一绝缘介质层。
较佳地, 在所述电池衬底背面构图形成第一绝缘介质层之前或之 后还进行步骤: 通过激光划刻或准湿法刻蚀形成用于实现所述主栅电 极和所述背电场之间的电性隔离的第一隔离沟槽。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 在形成第一隔离槽时, 还同时通过激光划刻或准湿法刻蚀在所述太阳 电池的正面和 /或背面的四周边沿区域形成第二隔离沟槽。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 形成通孔之后, 还包括步骤: 对所述电池衬底进行制绒和清洗, 并去 除制通孔所形成的损伤和残渣。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 进行第二导电类型的掺杂以后, 还包括步骤: 去除磷硅玻璃。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 进行第二导电类型的掺杂以后, 还包括步骤: 在所述电池衬底的正面 沉积减反射层。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 在构图形成副栅电极时, 还同时在所述电池衬底正面构图形成通孔连 接线。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 所述主栅电极、 背电极、 背电场、 副栅电极的构图通过丝网印刷或钢 网印刷实现, 所述主栅电极、 背电极通过相同的浆料形成。
按照本发明的再一方面, 提供一种太阳电池组件, 所述太阳电池 组串包括多个按行 /列排列的如上所述的任意一种金属绕穿型背接触 连条连接, 每条互连条在基本同一平面、 基本同一直线上同时连接至 一个所述太阳电池的相应行 /列的主栅电极以及另一个所述太阳电池 的相应行 /列的背电极。
在以上所述及的太阳电池组件中, 较佳地, 同一行 /列所述太阳电 池中的相邻的两个所述太阳电池中, 其中一个所述太阳电池相对另一 个所述太阳电池旋转 180度设置。
在以上所述及的太阳电池组件中, 较佳地, 所述互连条的连接为 焊接连接或者导电胶带粘接。
具体地, 所述太阳电池组件还包括正面透光性基板、 正面密封粘 接层、 背面密封粘接层、 背面基板, 所述正面密封粘接层和背面密封 粘接层包覆所述太阳电池组串。
按照本发明的还一方面, 提供一种制备以上所述太阳电池组件的 制备方法, 包括步骤:
将以上所述及的多个 M WT背接触太阳电池按行 /列排列; 布置每行 /列所述太阳电池,以使相邻两个所述太阳电池中的一个 所述太阳电池的相应行 /列的主栅电极与另一个所述太阳电池的相应 行 /列的背电极在基本同一直线上; 以及
在基本同一平面上连接互连条。
在以上所述及的太阳电池組件的制备方法中, 较佳地, 相邻两个 所述太阳电池中, 其中一个所述太阳电池相对另一个所述太阳电^旋 转 180度。
在以上所述及的太阳电池组件的制备方法中, 较佳地, 通过烊接 连接或者导电胶带粘接的方式实现互连条的连接。
本发明的技术效果是, 通过将多行 /列主栅电极以及多行 /列背电 极之间相互基本平行设置,每行 /列主栅电极沿与其平行的电池衬底的 中心线与相应一行 /列背电极对称排布;从而可以方便地连接互连条来 组装太阳电池组件, 互连条连接的成本低; 每条互连条基本在同一平 面、 同一直线上连接两块太阳电池, 不易在太阳电池的边沿处产生隐 裂, 可靠性高、 成本低、 生产效率高, 并能确保太阳电池的高转换效 率。 另外, 由于太阳电池背面的绝缘介质层的存在, 太阳电池的绝缘 隔离特性好。 附图说明
从结合附图的以下详细说明中, 将会使本发明的上述和其它目的 及优点更加完全清楚,其中,相同或相似的要素采用相同的标号表示。
图 1是现有技术的将 MWT背接触太阳电池封装为太阳电池组件 的结构变化示意图, 其中, 图 1 ( a )为 MWT背接触太阳电池的背面 结构示意图, 图 1 ( b )为 MWT背接触太阳电池组件的制作过程中采 用导电胶粘接工艺时置放背板(Back Sheet ) 互连后的电性连接示意 图;
图 2是按照本发明一实施例的 MWT背接触太阳电池的背面结构 的局部示意图, 其中, 图 2 ( a )为该太阳电池的背面结构示意图, 图 2 ( b ) 为该太阳电池的正面结构示意图;
图 3是图 2所示实施例的 MWT背接触太阳电池中 A部分的放大 结构示意图;
图 4是图 2所示实施例的 MWT背接触太阳电池中 B部分的放大 结构示意图;
图 5是图 2所示实施例的 MWT背接触太阳电池的 C-C截面结构 示意图;
图 6是将多个图 2所示的 MWT背接触太阳电池互连以形成太阳 电池组件的太阳电池组串的过程示意图, 其中, 图 6 ( a ) 为多块太阳 电池 100的排列方式示意图, 图 6 ( b )为多块太阳电池 100通过互连 条焊接连接后形成的太阳电池组串的结构示意图;
图 7是按照本发明一实施例提供的太阳电池组件的分解结构示意 图;
图 8是制备图 2所示实施例的太阳电池的方法流程示意图; 图 9至图 17所示为按照图 8所示制备方法过程的结构变化示意 图;
图 18是按照本发明又一实施例的 MWT背接触太阳电池的截面结 构的局部示意图;
图 19是按照本发明再一实施例的 M WT背接触太阳电池的截面结 构的局部示意图。 具体实施方式
下面介绍的是本发明的多个可能实施例中的一些, 旨在提供对本发 明的基本了解, 并不旨在确认本发明的关键或决定性的要素或限定所要 保护的范围。 容易理解, 根据本发明的技术方案, 在不变更本发明的实 质精神下, 本领域的一般技术人员可以提出可相互替换的其它实现方 式。 因此, 以下具体实施方式以及附图仅是对本发明的技术方案的示例 或限制。
在附图中, 为了清楚起见, 有可能放大了层的厚度或者区域的面 积, 但作为示意图不应该被认为严格反映了几何尺寸的比例关系。
本发明中的"太阳电池的正面"是指电池工作时接收太阳光照射的 一面, 即光接收面, 而本发明中的 "太阳电池的背面"是指与 "太阳电池 的正面"相反的一面。
图 2所示为按照本发明一实施例的 MWT背接触太阳电池的背面 结构的局部示意图, 其中, 图 2 ( a )为该太阳电池的背面结构示意图, 图 2 ( b )为该太阳电池的正面结构示意图。 图 3所示为图 2所示实施 例的 MWT背接触太阳电池中 A部分的放大结构示意图。 图 4所示为 图 2所示实施例的 MWT背接触太阳电池中 B部分的放大结构示意图。 图 5所示为图 2所示实施例的 MWT背接触太阳电池的 C-C截面结构 示意图。 结合图 2至图 5所示, 对该实施例的 MWT背接触太阳电池 进^"详细说明。
该实施例的 MWT背接触太阳电池 100基于电池衬底 1 10形成。 在该实施例中, 选择 p型单晶硅片或多晶硅片作为电池衬底, 这样, 在该实施例中, 第一导电类型区域为 p型, 第二导电类型区域 n型。 电池衬底的材料类型并不是限制性的, 例如电池衬底 1 10还可以为多 晶硅材料或其它类型的太阳电池基体材料。; 太阳电池的电池衬底 1 10 可以选择为对称性结构的形状, 例如, 可以为近似长方形或正方形, 其具体形状也不受图示实施例限制(例如还可能可以为平行四边形), 确定电池衬底 1 10的形状(也即太阳电池 100的形状) 的因素, 将其 后的太阳电池组件中描述。如图 5所示,在该实施例中, 电池村底 1 10 中包括衬底本身提供的 ρ型半导体区域 1 12以及对电池衬底〗10的进 行掺杂形成的 η型半导体区域 11 1, 在该实例中, η型半导体区域 1 1 1 包覆所述 ρ型半导体区域 1 12。 η型半导体区域 111的厚度范围可以 为 0.1微米至 1微米。 ρ型半导体区域 1 12与 η型半导体区域 1 1 1共 同形成太阳电池的 ρη结, η型半导体区域的电流通过太阳电池的正面 (也即电池衬底 1 10的正面)的副栅电极 130收集并进一步通过背面 的主栅电极 150汇集来引出, ρ型半导体区域 1 12的电流通过太阳电 池的背电场 160汇集并通过背电极 161引出。
参阅图 2 ( b )和图 4 , 太阳电池的正面 120上形成若干条副栅电 极 130 , 常规地, 副栅电极 130以线状设置, 副栅电极 130的线宽约 为 30微米至 140微米, 多条副栅电极之间规则均匀排列, 这样有利 于收集 n型半导体区域 1 1 1的电流, 例如, 副栅电极之间平行且等间 距设置。 但是, 副栅电极 130之间的间距和副栅电极 130本身的线宽 等不受本发明限制。 通常地, 副栅电极 130是以丝网 (或钢网) 印刷 导电银浆再高温烧结而成, 在该实施例中, 副栅电极 130是形成在正 面的 n型半导体区域 111表面上并与 n型半导体区域电性连接, 从而 可以收集其光生电流。
为形成 MWT背接触太阳电池, 在副栅电极 130对应所在位置的 电池衬底上, 可以形成若干个穿透电池衬底 1 10 (也即穿过 n型半导 体区域 1 11和 p型半导体区域 112 ) 的通孔 190。 每条或某些副栅电 极 130上, 相隔一定距离后会与主栅电极 150交叉连接, 从而主栅电 极 150可以有效地汇集并引出副栅电极 130收集的电流。 在该实施例 中, 可以选择其中若干条副栅电极 130上形成多个通孔 190 , 优选地, 在多条平行排列的副栅电极 130上, 各条副栅电极 130上的通孔在横 向上成直线布置, 在 n型半导体区域 1 11表面上设置多条基本垂直于 副栅电极的通孔连接线 155, 通孔连接线 155可以将在一条直线上的 (即同一行的)通孔连接在一起导通, 因此, 某些未设置通孔 190的 副栅电极也可以通过通孔连接线 155汇集至背面的主栅电极 150, 如 此, 降低了打通孔的位置精度要求(通孔未设置在通孔连接线 155和 副栅电极 130的交叉点处时、 也可以实现副栅电极与背面主栅电极的 电性连接) 。 示意性地, 如图 2 ( b ) 中共设置了 57条副栅电极 130 , 28条副栅电极上形成有通孔 190, 其中, 连续排列的 4条副栅电极上 设置通孔, 另外连续排列的 4条副栅电极上未设置通孔, 4条设置通 孔的副栅电极和 4条未设置通孔的副栅电极间隔排列, 即实现通孔在 所有副栅电极上非完全连续排列; 设置通孔的副栅电极上, 3 个通孔 等间距设置, 3条通孔连接线 155等间距地平行排列并与副栅电极 130 垂直交叉, 通孔设置在副栅电极 130与通孔连接线 155的交叉点处; 相应地, 如图 2 ( a ) 所示, 主栅电极 150分段设置, 通孔连接线 155 上的 4个连续的通孔对应背面设置的一段主栅电极, 因此, 相应于同 一行上的通孔的非完全连续排列, 主栅电极 150被分为 7段, 按行排 歹' 一行 7段, 共三行。 因此, 通过以上具体设置, 正面的 n型半导 体区域 1 1 1电流以相对低串联电阻的方式汇集引出。 由于通孔连接线 155是等间距地平行设置的, 因此, 三行主栅电极 150也是基本等间 距地平行设置。
需要说明的是, 副栅电极的具体数量、 通孔连接线的具体数量、 主栅电极的分段数等不限制性的, 本领域技术人员可以根据以上示意 性实例的启示, 对各个相应数量进行设置。
具体地, 通孔 190可以通过化学腐蚀、 机;戒打孔、 激光打孔、 电 子束打孔等方法形成。 通孔连接线 155'与副栅电极 130都可以通过丝 网印刷等方式形成, 通孔连接线 155的宽度相对于传统的设置于正面 的主栅电极的宽度小很多, 例如, 其宽度范围在 100微米至 1毫米之 间。 ' —— ■
在其它实例中, 也可以在每条副栅电极上等间距地设置若干通 孔, 不同副栅电极上的通孔在横向以直线按行连续排列, 从而所有副 栅电极均引流至背面的同一主栅电极上(此时主栅电极并不分段并且 正面不再设置通孔连接线 155 ) , 每条主栅电极也基本等间距地平行 设置。 本领域技术人员应当理解, 通孔的设置排列方式, 还有许多其 它方式, 例如, 两条副栅电极共用一个通孔等等, 通过排列通孔位置 来决定主栅电极的位置,使按行(或按列)排列的主栅电极等间距(是 指行之间或列之间的间距) 平行设置。 需要说明的是, 以上实例中, 对于一行(或一列) 主栅电极被分段时, 段与段之间的间距并不一定 要求相等, 其并不是限制性的。
在一优选实例中, 如图 4所示, 在两奈设置通孔 190的副栅电极 130之间、 并在通孔连接线 155上, 可以再增加设置 1个通孔 (如图 中虚线圈所示) , 这样, 8个连续排列的通孔可以同时连接至同一段 主栅电极, 可以更可靠地将通孔连接线 155上的电流引出至背面的主 栅电极,提高电流的导通能力, 降低电池的串联电阻。在其它实例中, 在两条设置通孔 190的副栅电极 130之间、 并在通孔连接线 155上, 增加设置的通孔也还可以为两个或两个以上。
继续参阅 3和图 5 , 在该实施例中, 三行主栅电极 150相互平行 地按行排列, 其可以被基本等间距地平行设置, 主栅电极 150包括背 面部分 150a和绕穿部分 150b, 二者均是通过一体化印刷形成。 在该 实施例中, n型半导体区域 111形成于 p型半导体区域 1 12的表面并 基本包覆 p型半导体区域 1 12。 因此, 主栅电极 150是直接与 n型半 导体区域 1 1 1接触 (包括通孔内表面以及太阳电池背面) , 其中, 背 面部分 150a设置在背面的 n型半导体区域 1 11之上, 绕穿部分 15()b 设置在通孔中的 n型半导体区域 111之上, 优选地, 主栅电极 150可 以与 n型半导体区域 1 1 1形成欧姆接触, 其接触电阻较低, 更有利于 电流的汇集引出。 在其它优选实例中, 主栅电极 150上可以设置镂空 区域(图中未示出) , 从而减少金属与硅的接触面积, 有效降低金属 与硅的复合率, 并减少金属浆料的消耗、 降低成本。
背电场 160大面积地形成于太阳电池的背面, 其用于收集并引出 p型半导体区域 1 12的光生电流(即 pn结的 p端的电流)。 在该实施 例中, 背电场 160是直接形成在包覆 p型半导体区域 1 12的 n型半导 体区域 11 1之上, 从而与局部 n型半导体区域 1 11相接触。 具体可以 通过选择电极的类型, 使其能够对其所接触的 n型半导体区域 1 1 1补 偿掺杂, 例如选择 III A簇的金属元素作为背电场材料; 优选地, 背电 场 160为铝或者铝合金, 因此, 铝可以对其所接触的 n型半导体区域 1 1 1进行 p型掺杂 (特别是在形成铝电极的金属化过程中) 。 从而会 在每个背电场 160所邻接的电池衬底上形成补偿掺杂区 180。 在该实 施例中, 补偿掺杂区 180为 p型半导体区域, 其 p型掺杂浓度可以大 于 p型半导体区域 1 12的掺杂浓度, 从而易于与背电场 160形成欧姆 接触, 减少电极 160与电池衬底之间的接触电阻。 需要说明的是, 补 偿掺杂区 180与 p型半导体区域 112通常是没有如图 6所示的明显界 限的, 这是由于以背电场作为掺杂源向电池衬底里掺杂时, 根据扩散 掺杂的特点, 掺杂元素铝会一直扩散至 p型半导体区域 1 12中。
背电场 160区域中, 还设置背电极 161 , 其功能之一在于实现背 电场与互连条之间的连接, 其功能之二在于将背电场 160的电流进一 步引出至互连条。 背电极 161被背电场 160包围, 所以背电极 161对 应接触的 n型半导体区域也被补充掺杂区 180域隔离, 因此其不会导 致 pn结正负极的短接。 在该实施例中, 如图 2所示, 太阳电池的电 池衬底 1 10为正方形, 背电极 161也如主栅电极 150—样按行设置, 每行主栅电极 150的一旁对应设置一行背电极 161。 为使太阳电池在 同一平面上旋转 180° 后, 每行主栅电极能与另一相邻太阳电池的相 应行的背电极基本对齐, 每行背电极也能与另一相邻太阳电池的相应 行的主栅电极基本对齐, 每行背电极沿电池衬底 1 10的中心线 1 1】 与 每行主栅电极对称排布, 中心线 1 1 1平行于主栅电极 150。 因此, 每 行背电极 161之间也相互平行, 背电极 161的行数(或列数) 与主栅 电极 150的行数(或列数)相等。 通常地, 单个背电极 161通常为点 状(用于与互连条连接) , 多点背电极 161 (例如图中所示 1 1个)排 列形成行。 在主栅电极 150分段设置时(也即同一行的主栅电极不连 续设置) , 在主栅电极 150的一侧的背电场 160的电流可以通过主栅 电极的段间隙之间的背电场引流至其另一侧的背电极 161上。
为在同一太阳电池上实现主栅电极 150和背电场 160之间的绝缘 隔离, 在太阳电池 100 (也即电池村底 1 10 ) 的背面设置第一绝缘介 质层 140,在该实施例中,第一绝缘介质层 140填充第一隔离沟槽 145 , 第一隔离沟槽 145具体可以通过激光划刻或其它方法(例如准湿法刻 蚀 )形成。 第一隔离沟槽 145可以实现主栅电极 150和背电场 160的 物理隔离 (隔开背面的 n型半导体区域 11 1 ) , 从而也实现电性隔离。 第一绝缘介质层 140的具体设置及作用将在太阳电池组件中说明。
图 6所示为将多个图 2所示的 MWT背接触太阳电池互连以形成 太阳电池组件的太阳电池组串的过程示意图, 其中, 图 6 ( a )为多块 太阳电池 100的排列方式示意图, 图 6 ( b )为多块太阳电池 100通过 互连条烊接连接后形成的太阳电池组串的结构示意图。 通常地, 太阳 电池组串是通过多块太阳电池依次串联正负极而形成(即一块太阳电 池的主栅电极连接另一块太阳电池的背电极) 。 以下结合图 6 , 对太 阳电池组串 1000的结构及其制备方法进行说明。
参阅图 6 ( a ) , 以三块图 2所示的太阳电池 100串联连接形成太 阳电池组串 1000进行示意性说明。三块太阳电池分别为 100A、 100B、 lOOC, 在此实例中, 首先将它们按行排列 (也可以按列) , 其中, 太 阳电池 100B相对于太阳电池 100A或 100C旋转 180度, 从而可以将 其中一个太阳电池 (例如太阳电池 100A ) 的一行主栅电极与另一个 相邻的太阳电池(例如太阳电池 100B ) 的一行背电极基本对齐在一 条直线上(这是由于每行背电极 161沿电池衬底 1 10的中心线 1 1 1与 每行主栅电极对称排布) 。 在太阳电池基本设置为正方形状时 (或者 为长方形状时) , 按行排列的太阳电池的边沿也能对齐。
进一步, 参阅图 6 ( b ) , 每条互连条 940的一端将其中一块太阳 电池 (例如 100A ) 的一行主栅电极连接, 其另一端将另一相邻块太 阳电池 (例如 100B ) 的对齐在一条直线上的一行背电极连接, 具体 地, 互连条 940与主栅电极或背电极之间的连接, 可以为焊接连接方 式, 也可以为其它连接方式(例如采用导电胶带粘接的方式) ; 釆用 焊接连接方式时, 可以使用现有的焊接设备来完成, 连接可靠性高并 且设备要求低, 因此制备成本低。 如图 6 ( b )所示, 三条互连条焊接 连接太阳电池 100A和 100B , 其将太阳电池 100A的主栅电极和太阳 电池 100B的背电极串联连接;三条互连条焊接连接太阳电池 100B和 100C , 其将太阳电池 100B的主栅电极和太阳电池 100C的背电极串 联连接; 同行太阳电池之间依次交叉布置,从而可以方便地实现互连。 每条悍接条基本在同一平面 同一直线上焊接连接 太阳电池, 相 对于传统的太阳电池的焊接连接以及现有的 MWT背接触太阳电池的 互连连接方式, 其连接方便(例如可以采用常规的焊接方式来连接), 也不易在太阳电池的边沿处产生隐裂, 可靠性高、 成本低, 能确保太 阳电池组件的大批量生产 (生产效率高) , 并能确保太阳电池的高转 换效率。
在互连条 940连接太阳电池的主栅电极时, 必须避免互连条 940 与该太阳电池的电池衬底或者背电场电性连接; 同样, 在互连条 940 焊接连接一太阳 ^池的背电极时, 必须避免互连条 940与该太阳电池 的主栅电极电性连接。 因此, 如图 6和图 2所示, 通过第一绝缘介质 层 140实现以上目的, 具体地, 第一绝缘介质层 140带状设置, 对应 每行主栅电极 150设置一带状第一绝缘介质层 140, 主栅电极 150与 背电场 160之间的电池村底区域被带状第一绝缘介质层 140覆盖, 第 一绝缘介质层 140还部分地覆盖主栅电极 150的边沿, 还部分地覆盖 部分背电场 160 (例如, 覆盖分段的主栅电极 150的间隙之间的背电 场部分、 背电场的边沿等) 。 互连条 940的一端置于主栅电极 150上 时, 第一绝缘介质层 140可以实现其与同一太阳电池的背电场 160绝 缘隔离; 互连条 940的另一端连接于背电极 161上时, 第一绝缘介质 层 140可以进一步降低互连条 940与同一电池的主栅电极 150短接的 几率。 因此, 图 6所示的电池组件隔离特性好。 优选地, 互连条 940 的宽度小于带状第一绝缘介质层 140的宽度。
图 7所示为按照本发明一实施例提供的太阳电池组件的结构示意 图。 该实施例的太阳电池组件包括如图 6所示实施例的太阳电池组串 1000 , 还主要地包括正面透光性基板 1100、 正面密封粘接层 1200A . 背面密封粘接层 1200B、 背面基板 1300。 正面透光性基板 1 100、 正 面密封粘接层 1200A、 太阳电池组串 1000、 背面密封粘接层 120013、 背面基板 1300由上之下依次设置, 正面密封粘接层 1200A和背面密 封粘接层 1200B基本包覆太阳电池组串 1000。 具体地, 正面透光性 基板 1100可以为高强度的钢化玻璃板, 密封粘接层 1200A和 1200B 可以选择抗沖击性能和耐久性更好的胶粘剂材料, 例如, 可以选择采 用等离子体密封材料、 PVB ( Polyvinyl Butyral, 聚乙烯醇缩丁醛) 材 料、 EVA材料等, 背面基板 1300可以选择 TPT (聚氟乙烯复合膜) 基板或者钢化玻璃板等。 太阳电池组件的其它具体细节部件在此不再 一一详述。
图 8所示为制备图 2所示实施例的太阳电池的方法流程示意图。 图 9至图 17所示为按照图 8所示制备方法过程的结构变化示意图。 以下结合图 2、 图 8至图 17说明该太阳电池的制备方法过程。 首先, 步骤 S10, 提供具有第一导电类型区域的电池衬底。
参阅图 9, 在该实施例中, 太阳电池是基于电池衬底 110制备形 成, 选择 p型单晶硅或多晶硅作为电池衬底 110 (也即第一导电类型 为 p型) 。 具体地, p型单晶硅(原始硅片衬底) 的电阻率范围可以 为 O.lohm · cm 至 lOohm · cm,但这不是限制性的, p型电池衬底 110 可以直接用于形成第一导电类型区域 112。 电池衬底 110的正面 120 在太阳电池工作时被太阳光照射, 电池衬底选择为对称性结构的形 状, 例如, 可以为正方形或者长方形。
进一步, 步骤 S20, 在所述电池衬底中定位形成通孔。
参阅图 10, 在电池衬底 110上形成若干个通孔 190, 通孔 190从 电池衬底的正面穿透至电池衬底的背面。 通孔 190可以化学腐蚀、 机 械打孔、 激光打孔、 电子束打孔等方法形成, 通常地, 选择激光打孔 形成。通孔可以选择为大致圓柱形孔,其直径范围约为 10微米至 1000 微米。 通孔 190在电池衬底中的位置布局及数量可以参照图 2和图 4 及其以上相关说明。
需要说明的是, 在步骤 20之后, 还通常包括步骤 25 (图中未示 出) , 即对电池衬底进行制绒和清洗, 并去除制通孔所形成的损伤和 残渣。 在该步骤中制绒工艺和清洗工艺的具体过程与常规的工艺基本 相同。 通过制绒, 例如可以在电池衬底表面形成诸如金字塔形状的绒 面 (图中未示出) , 从而有利于提高电池的转换效率; 同时通孔 190 也被所形成的绒面粗糙化, 这有利于改善浆料填充的可靠性。
进一步, 步骤 S30, 对所迷电池衬底表面进行第二导电类型的掺 杂。
参阅图 11,在该实施例中,对电池衬底 110的表面进行 n型掺杂, 从而在电池衬底 110表面形成 n型半导体区域 111。 具体地, 可以选 择扩散掺杂、 离子注入掺杂等方法。 该步骤中, 为降低成本, 不需要 对该掺杂步骤另外进行光刻等构图步骤, 因此, 在该实施例的该步骤 中, n型半导体区域 111是基本包覆原来的 p型半导体区域 112的。
需要说明的是, 为去除掺杂过程中在电池村底表面形成的磷硅玻 璃层, 通常在第二导电类型的掺杂以后执行去除磷硅玻璃的步骤(图 中未示出) , 其中, 去磷硅玻璃可通过化学清洗的方法去除。
进一步, 步骤 S40, 在所述电池村底的正面沉积减反射层。 参阅图 12, 在该实施例中, n型半导体区域之上正面沉积的减反 射层 1 13 , 其可以通过 PECVD、 LPCVD或 APCVD等方法形成, 减 反射层 113可以选择为氮化硅等材料, 其具体厚度范围可以为 50-;120 纳米。 通过设置减反射层 1 13 , 可以有效提高太阳电池的转换效率。
进一步, 步骤 S50, 在所述电池村底背面构图印刷填充通孔以形 成主栅电极, 并同时印刷形成背电极。
参阅图 13 , 在该实施例中, 可以以丝网印刷或钢网印刷的方式构 图形成主栅电极 150以及背电极 161 , 在此过程中, 浆料(例如银浆) 同时填充通孔 190,从而形成主栅电极 150的背面部分 150a和绕穿部 分 150b。 可以选择浆料的类型(例如使用特殊类型的填孔浆料)以及 烧结工艺等, 以使主栅电极 150与 n型半导体区域 1 10基本形成欧姆 接触。 主栅电极 150、 背电极 161 的具体位置布局等可以参照图 2、 图 3、 图 6及其以上相关说明。
另外, 优选地, 在丝网印刷形成主栅电极 150时, 还可以通过设 置网版的图案、 在印刷形成主栅电极 150时形成若干镂空区域(图中 未示出) , 从而可以大大减小主栅电极金属与硅(也即 n型半导体区 域 1 1 1 ) 的接触面积, 有效地降低金属与硅的复合, 进而提高太阳能 的转换效率。 同时, 设置镂空区也能大大减少主栅电极金属用量 (例 如 4艮浆料) , 从而降低太阳电池的成本。 镂空区域在主栅电极上的位 置以及形状大小不是限制型的, 其以不影响主栅电极与通孔中金属的 连接为原则。
进一步, 步骤 S60, 在所述电池衬底背面构图形成背电场。
参阅图 14, 在该实施例中, 背电场 160可以通过丝网印刷铝浆于 电池衬底 110背面, 工艺顺序可以介于形成主栅电极 150的形成与副 栅电极 130的形成之间。 在选择铝 (其属于 ΠΙ Α簇的金属元素)作为 背电场材料时, 铝可以对其所接触的 n型半导体区域 1 1 1进行 p型掺 杂 (特别是在形成铝电极的金属化过程中, 例如烧结过程) , 因此, 会在每个背电场 160所邻接的电池衬底上形成补偿掺杂区 180, 从而 背电场 160收集 p'型半导体区域 112的光生电流并减小背电场 160与 p型半导体区域 112的接触电阻。
进一步, 步骤 70, 在所述电池衬底正面构图形成副栅电极。
参阅图 15 , 在该实施例中, 可以采用丝网印刷或者钢网印刷的方 式构图形成副栅电极 130, 在此过程中, 可以选择浆料 (例如银浆) 的类型以及烧结工艺, 以使副栅电极 130与 n型半导体区域 1 1 1形成 良好的电性接触 (例如欧姆接触) 。 优选地, 在该步骤中, 还同时构 图形成通孔连接线 155 (如图 2所示) , 副栅电极 130和通孔连接线 155可以采用相同的浆料。 副栅电极 130、 通孔连接线 155 的构图设 置要求可以参照图 2及以上相关说明。
在又一实例中, 以上步骤 S50、 S60和 S70 中的烧结过程可以在 印刷副栅电极后同时烧结完成。
进一步, 步骤 S80, 激光划刻形成第一隔离沟槽。
参阅图 16, 在该实施例中, 在电池衬底的背面的 n型半导体区域
1 11 上, 激光划刻形成第一隔离沟槽 145 , 激光隔离槽 145底部至少 到达 p型半导体层 112, 从而以激光隔离的方式实现主栅电极 150和 背电场 160之间的良好绝缘隔离。 第一隔离沟槽 145包围每段主栅电 极 150形成。
较佳地, 在该步骤中, 同时以激光划刻的方法在电池衬底的正面 和 /或背面的四周边沿区域上刻蚀第二隔离沟槽(图中未示出) , 该第 二隔离沟槽在电池衬底的边沿形成, 从而基本包围整个电池衬底正面 和 /或背面区域,这有利于实现背电场 160与副栅电极 130之间的绝缘 隔离。
进一步, 步骤 S90, 在所述电池衬底背面构图形成第一绝缘介质 层。
参阅图 17 , 在该实施例中, 可以采用光刻、 丝网印刷、 喷涂等方 法构图形成第一绝缘介质层 140, 第一绝缘介质层 140具体可以为低 温固化型有机物材料或高温烧结型无机非金属氧化物材料, 例如聚酰 亚胺 (Polyimide, PI) , 环氧树脂、 阻焊油墨等。 其厚度范围可以为 2 微米至 100微米。第一绝缘介质层 140的构图设置要求可以参照图 2、 图 6及以上相关说明。 第一绝缘介质层 140同时填充了第一隔离沟槽 145 , 更有利于提高主栅电极 150和背电场 160之间的绝缘隔离性能。
至此, 图 2所示的 MWT背接触太阳电池 100基本形成。
需要说明的是, 在以上方法过程中, 副栅电极和背电场之间的形 成顺序不是限制性的, 也即, 步骤 S70也可以在步骤 S60之前完成; 另外, 副栅电极 130也可以在第一绝缘介质层 140形成之后再构图形 成, 即步骤 S70也可以在步骤 S90之后完成。
图 18所示为按照本发明又一实施例的 MWT背接触太阳电池的截 面结构的局部示意图。 相比于图 2、 图 5所示的实施例, 其主要差异 在于第一隔离沟槽, 第一隔离沟槽 245相比与第一隔离沟槽 145的差 异在于, 第一隔离沟槽 245通过准湿法刻蚀形成。 因此, 在图 8所示 的制备方法过程中, 通过在沉积减减反射步骤 ( S40 ) 前, 准湿法刻 蚀形成第一隔离沟槽 245 , 即可制备图 18所示实施例的 MWT背接触 太阳电池 200。
图 19所示为按照本发明再一实施例的 M WT背接触太阳电池的截 面结构的局部示意图。 相比于图 2、 图 5所示的实施例, 其主要差异 在于第一隔离沟槽, 第一隔离沟槽 345相比与第一隔离沟槽 145的差 异在于, 其中第一隔离沟槽 345未填充第一绝缘介盾层 140 , 也即, 第一绝缘介质层 140先构图沉积形成、 然后再激光划刻形成第一隔离 沟槽 345。 因此, 在图 8所示的制备方法过程中, 通过调换步骤 S80 和步骤 S90的顺序, 即先执行步骤 S90再执行步骤 S80, 可制备图 19 所示实施例的 MWT背接触太阳电池 300。 制备 MWT背接触太阳电 池 300的其它步骤与图 8所示的相应其它步骤相同, 在此不在一一赘 述。
应当理解, 尽管以上实施例中仅描述了主栅电极和背电极按行排 列的情形, 本领域技术人员可以根据以上教导或启示, 设计出相应的 主栅电极和背电极按列排列的太阳电池和太阳电池组件的实施例。
以上例子主要说明了本发明的 MWT 背接触太阳电池、 M WT 背 接触太阳电池的制备方法及其太阳电池组件、 太阳电池组件的制备方 法。 尽管只对其中一些本发明的实施方式进行了描述, 但是本领域普 通技术人员应当了解, 本发明可以在不偏离其主旨与范围内以许多其 它的形式实施。 因此, 所展示的例子与实施方式被视为示意性的而非 限制性的, 在不脱离如所附各权利要求所定义的本发明精神及范围的 情况下, 本发明可能涵盖各种的修改与替换。

Claims

权 利 要 求
1. 一种金属绕穿型背接触太阳电池, 其特征在于, 包括:
电池衬底, 包括用于形成 PN结的第一导电类型区域和第二 导电类型区域, 所述第一导电类型区域位于电池衬底的背面, 部 分所述第二导电类型区域位于电池衬底的正面;
多个通孔, 其穿过所述电池衬底;
副栅电极, 其设置于所述电池村底的正面;
多行 /列主栅电极,其设置于所述电池衬底背面并通过所述电 池衬底中的通孔与所述副栅电极电性连接;
背电场, 其设置于所述电池衬底的背面;
多行 /列背电极,其用于输出所述背电场所收集的电流并用于 封装成组件时所述太阳电池之间的互连; 以及
第一绝缘介质层, 其设置于所述电池衬底的背面; 其中, 多行 /列主栅电极以及多行 /列背电极之间相互基本平行设 置, 每行 /列主栅电极沿与其平行的电池衬底的中心线与相应一行 /列 背电极对称排布;
两个所述太阳电池之间可操作地通过互连条连接, 所述第一绝缘 介质层用于防止所述互连奈同时电性连接于同一所述太阳电池的所 述主栅电极和所述背电场。
2. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 还包括设置于所述电池衬底背面的第一隔离沟槽, 所述第一隔离 沟槽用于实现所述主栅电极和所述背电场之间的电性隔离。
3. 如权利要求 2 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第二导电类型区域基本包覆所述第一导电类型区域, 所述背 电场用于对其所接触的所述第二导电类型区域自对准补偿掺杂形成 补偿掺杂区, 所述第一导电类型区域所产生的电流通过所述补偿掺杂 区输出至所述背电场。
4. 如权利要求 2 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一隔离槽通过激光划刻或者准湿法刻蚀形成。
5. 如权利要求 2 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一隔离沟槽被所述第一绝缘介质层填充。
6. 如权利要求 2 所述的金属绕穿型背接触太阳电池, 其特征在 于, 每行 /列所述主栅电极被分段设置,每段所述主栅电极被所迷第一 隔离沟槽包围。
7. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述通孔在所述副栅电极上等间距地设置, 分别位于 m条所述副 栅电极上的 m个通孔基本在一条直线上按行 /列排列, 其中, m为大 于或等于 3的整数。
8. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述太阳电池还包括设置于所述电池村底正面的通孔连接线, 所 述通孔连接线连接按行 /列排列的所述通孔。
9. 如权利要求 8 所述的金属绕穿型背接触太阳电池, 其特征在 于, 在所述通孔连接线上、 相邻的所述副栅电极之间还设置有一个或 一个以上的通孔。
10. 如权利要求 8所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述通孔连接线的线宽范围为 100微米至 1毫米。
11. 如权利要求 7所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述副栅电极的条数为 n, n大于 m, 按行 /列排列的所述 m个通 孔在 n条副栅电极上非连续排列。
12. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述主栅电极中设置镂空区域。
13. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述背电场为铝或者铝合金材料。
14. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述太阳电池还包括在所述电池衬底正面和 /或背面形成的、位于 所述太阳电池的四周边沿区域的第二隔离沟槽, 所述第二隔离沟槽用 于实现所述副栅电极和所述背电场之间的电性隔离。
15. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述太阳电池还包括形成于所述电池村底正面的减反射层。
16. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述主栅电极和背电极同时丝网印刷或钢网印刷而成。
17. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一绝缘介质层为带状, 所述第一绝缘介质层位于所述行 / 列主栅电极与所述背电场之间的电池衬底上并且部分地覆盖所述主 栅电极的边沿及部分所述背电场。
18. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一绝缘介质层的宽度大于所述互连条的宽度。
19. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述多行 /列主栅电极之间以第一间距等间距分布, 所述多行 /列 背电极之间以第二间距等间距分布, 所述第一间距等于所述第二间 距。
20. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一绝缘介质层由低温固化型有机物材料或高温烧结型无机 非金属氧化物材料制成。
21. 一种如权利要求 1所述的金属绕穿型背接触太阳电池的制备 方法, 其特征在于, 包括以下步骤:
提供具有第一导电类型区域的电池衬底;
在所述电池衬底中定位形成通孔;
对所述电池衬底表面进行第二导电类型的掺杂以形成第二导电 类型区域;
在所述电池村底背面上构图形成主栅电极以及背电极;
在所述电池衬底背面上构图形成背电场, 所述背电场对其所接触 的所述第二导电类型区域自对准补偿掺杂;
在所述电池衬底正面构图形成副栅电极; 以及
在所述电池衬底背面构图形成第一绝缘介质层。
22. 如权利要求 21所述的制备方法, 其特征在于, 在所述电池衬 底背面构图形成第一绝缘介质层之前或之后还进行步骤: 通过激光划 刻或准湿法刻蚀形成用于实现所述主栅电极和所述背电场之间的电 性隔离的第一隔离沟槽。 -
23. 如权利要求 22所述的制备方法, 其特征在于, 在形成第一隔 背面的四 5周边沿区域形成^二隔离沟槽。 、
24. 如权利要求 21所述的制备方法, 其特征在于, 在形成通孔之 后, 还包括步骤: 对所述电池村底进行制绒和清洗, 并去除制通孔所 形成的损伤和残渣。
25. 如权利要求 21所述的制备方法, 其特征在于, 进行第二导电 类型的掺杂以后, 还包括步骤: 去除磷硅玻璃。
26. 如权利要求 21所述的制备方法, 其特征在于, 进行第二导电 类型的掺杂以后,还包括步骤:在所述电池衬底的正面沉积减反射层。
27. 如权利要求 21所述的制备方法, 其特征在于, 在构图形成副 栅电极时, 还同时在所述电池衬底正面构图形成通孔连接线。
28. 如权利要求 21所述的制备方法,其特征在于,所述主栅电极、 背电极、 背电场、 副栅电极的构图通过丝网印刷或钢网印刷实现, 所 述主栅电极、 背电极通过相同的浆料形成。
29. 一种太阳电池组件, 包括太阳电池组串, 其特征在于, 所述 太阳电池组串包括多个按行 /列排列的如权利要求 1至 20中任一项所 述的金属绕穿型背接触太阳电池,每行 /列的太阳电池中相邻的两个所 迷太阳电池之间通过互连条连接, 每条互连条在基本同一平面、 基本 同一直线上同时连接至一个所述太阳电池的相应行 /列的主栅电极以 及另一个所述太阳电池的相应行 /列的背电极。
30. 如权利要求 29所述的太阳电池组件, 其特征在于, 同一行 / 列所述太阳电池中的相邻的两个所述太阳电池中, 其中一个所述太阳 电池相对另一个所述太阳电池旋转 180度设置。
31. 如权利要求 29所述的太阳电池组件, 其特征在于, 所述互连 条的连接为焊接连接或者导电胶带粘接。
32. 如权利要求 29所述的太阳电池组件, 其特征在于, 所述太阳 电池组件还包括正面透光性基板、正面密封粘接层、背面密封粘接层、 背面基板, 所述正面密封粘接层和背面密封粘接层包覆所述太阳电池 组串。
33. 一种如权利要求 29所述的太阳电池组件的制备方法,其特征 在于, 包括步骤:
将如权利要求 1 所述的多个金属绕穿型背接触太阳电池按行 /列 排列;
布置每行 /列所述太阳电池,以使相邻两个所述太阳电池中的一个 所述太阳电池的相应行 /列的主栅电极与另一个所述太阳电池的相应 行 /列的背电极在基本同一直线上; 以及 在基本同一平面上连接互连条。
34. 如权利要求 33所述的制备方法, 其特征在于, 相邻两个所述 太阳电池中, 其中一个所述太阳电池相对另一个所述太阳电池旋转 180度。
35. 如权利要求 33所述的制备方法, 其特征在于, 通过焊接连接 或者导电胶带粘接的方式实现互连条的连接
PCT/CN2011/000754 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法 WO2012145863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000754 WO2012145863A1 (zh) 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000754 WO2012145863A1 (zh) 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法

Publications (1)

Publication Number Publication Date
WO2012145863A1 true WO2012145863A1 (zh) 2012-11-01

Family

ID=47071534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000754 WO2012145863A1 (zh) 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法

Country Status (1)

Country Link
WO (1) WO2012145863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018001186A1 (zh) * 2016-06-30 2018-01-04 比亚迪股份有限公司 电池片、电池片矩阵及太阳能电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272419A1 (en) * 2006-12-26 2009-11-05 Kyocera Corporation Solar Cell Module
JP2009283479A (ja) * 2008-05-19 2009-12-03 Sharp Corp 太陽電池セル、太陽電池モジュール、および、太陽電池セルの製造方法
JP2010050350A (ja) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池
US20100218818A1 (en) * 2009-03-02 2010-09-02 Juwan Kang Solar cell and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272419A1 (en) * 2006-12-26 2009-11-05 Kyocera Corporation Solar Cell Module
JP2009283479A (ja) * 2008-05-19 2009-12-03 Sharp Corp 太陽電池セル、太陽電池モジュール、および、太陽電池セルの製造方法
JP2010050350A (ja) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池
US20100218818A1 (en) * 2009-03-02 2010-09-02 Juwan Kang Solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018001186A1 (zh) * 2016-06-30 2018-01-04 比亚迪股份有限公司 电池片、电池片矩阵及太阳能电池

Similar Documents

Publication Publication Date Title
US8253213B2 (en) Photoelectric conversion element, photoelectric conversion element assembly and photoelectric conversion module
US9343595B2 (en) Photovoltaic devices with electroplated metal grids
US20170323989A1 (en) Solar module structures and assembly methods for three-dimensional thin-film solar cells
US7999174B2 (en) Solar module structures and assembly methods for three-dimensional thin-film solar cells
US8129822B2 (en) Template for three-dimensional thin-film solar cell manufacturing and methods of use
US20150194547A1 (en) Systems and methods for monolithically isled solar photovoltaic cells
US20080264477A1 (en) Methods for manufacturing three-dimensional thin-film solar cells
US20170256661A1 (en) Method of manufacturing photovoltaic panels with various geometrical shapes
CN102760777A (zh) 太阳电池、太阳电池组件及其制备方法
CN106098831B (zh) 一种背接触太阳能电池串及其制备方法和组件、系统
US10205040B2 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
EP2863441A1 (en) Method for producing a backside contact in a solar cell device and solar cell device
WO2018176182A1 (zh) 一种n型ibc太阳能电池拼片连接的电池串及其制备方法、组件和系统
CN102760778A (zh) 太阳电池、太阳电池组件及其制备方法
WO2022206068A1 (zh) 太阳能电池前驱体、太阳能电池制备方法及太阳能电池
WO2012145863A1 (zh) 太阳电池、太阳电池组件及其制备方法
WO2012145864A1 (zh) 太阳电池、太阳电池组件及其制备方法
KR101153591B1 (ko) 결정질 실리콘 태양전지의 구조 및 제조방법
CN209785947U (zh) Mwt太阳能电池片、电池串及电池组件
WO2012031371A1 (zh) 金属绕穿型背接触太阳电池、制备方法及其组件
JP2014075532A (ja) 太陽電池モジュール
KR20200088898A (ko) 추가 도전성 라인을 갖는 박막 장치 및 그 제조 방법
CN212161825U (zh) 背接触太阳能电池组件
CN207909893U (zh) 一种光伏叠片组件的连接结构
CN106784104B (zh) 一种背接触太阳能电池串及其制备方法和组件、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864493

Country of ref document: EP

Kind code of ref document: A1