WO2012145864A1 - 太阳电池、太阳电池组件及其制备方法 - Google Patents

太阳电池、太阳电池组件及其制备方法 Download PDF

Info

Publication number
WO2012145864A1
WO2012145864A1 PCT/CN2011/000755 CN2011000755W WO2012145864A1 WO 2012145864 A1 WO2012145864 A1 WO 2012145864A1 CN 2011000755 W CN2011000755 W CN 2011000755W WO 2012145864 A1 WO2012145864 A1 WO 2012145864A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
gate electrode
main gate
battery
metal
Prior art date
Application number
PCT/CN2011/000755
Other languages
English (en)
French (fr)
Other versions
WO2012145864A8 (zh
Inventor
周杰
温建军
蔡昭
周豪浩
王玉林
藏智毅
艾凡凡
刘皎彦
杨健
陈如龙
严婷婷
唐应堂
Original Assignee
无锡尚德太阳能电力有限公司
张光春
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡尚德太阳能电力有限公司, 张光春 filed Critical 无锡尚德太阳能电力有限公司
Priority to PCT/CN2011/000755 priority Critical patent/WO2012145864A1/zh
Publication of WO2012145864A1 publication Critical patent/WO2012145864A1/zh
Publication of WO2012145864A8 publication Critical patent/WO2012145864A8/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of photovoltaic technology, and relates to a metal Wrap Through (MWT) back contact solar cell, which is electrically isolated between a main gate electrode and a back electric field by a non-ohmic contact or a second insulating dielectric layer, and particularly relates to the sun.
  • a MWT back contact solar cell with a first insulating dielectric layer disposed on a back side of the battery a method of manufacturing the solar cell, a solar cell module capable of connecting a plurality of MWT back contact solar cells on substantially the same plane through an interconnecting strip, and the solar cell The method of preparation of the components. Background technique
  • a solar cell includes a pn junction formed on a battery substrate (e.g., single crystal silicon or polycrystalline silicon), and an electrode that collects photocurrent generated by solar irradiation on the bottom of the battery and collects it.
  • the solar cell includes a front side and a back side, wherein a side illuminated by sunlight when the battery is in operation is defined as a front side of the solar cell, and a side opposite to the front side is defined as a back side.
  • a sub-gate electrode or a sub-gate line) for collecting current and a main gate electrode for collecting current of the sub-gate electrode are formed on the front surface thereof; a back electric field and a back electrode are formed on the back surface thereof to extract current.
  • one end of one interconnecting strip needs to be soldered to the back electrode on the back side of the solar cell, and the other end of the solar cell needs to be soldered to the main gate electrode on the front side of the other solar cell.
  • the interconnect strips are not on the same plane, which is detrimental to the automated production of solar cell modules; and, as the battery substrate continues to thin, there is a greater risk of cracking at the solder joints at the edges of the solar cells.
  • MWT back contact solar cell In which a main gate electrode of a front surface of a battery is placed on the back surface of a battery substrate has been proposed in recent years.
  • An MWT back contact solar cell is specifically disclosed in the patent entitled “Solar Cell and Process of Manufacturing the Same" in U.S. Patent No. 6,384,317 B1.
  • MWT back contact solar cells have high conversion efficiency and beautiful appearance compared with conventional solar cells.
  • FIG. 1 is a schematic view showing a structural change of a prior art MWT back contact solar cell packaged as a solar cell module, wherein FIG. 1( a ) is a schematic view of the back structure of the MWT back contact solar cell, and FIG. 1 ( b ) is a MWT
  • the electrical connection diagram of the back sheet is interconnected when the conductive adhesive bonding process is used.
  • the back plate is generally used to realize the conductive adhesive bonding process. As shown in Fig.
  • 900 is the bottom of the MWT back-contact solar cell
  • 910 is the back electrode in the back electric field (for example, formed by silver paste)
  • 920 is the main gate electrode formed on the back surface.
  • an integrated backplane 930 is used on the back of the MWT back-contact solar cell to package the solar cell module.
  • a layer in contact with the MWT back contact solar cell is a weather resistant insulating substrate plate material and a sealing material; the intermediate layer is a metal thin film layer, and the corresponding main gate electrode and the back electrode can be connected by patterning the metal thin film layer.
  • the outermost layer of the back plate 930 is also covered with an insulating dielectric layer which does not cover the electrode contact hole 931 shown in the drawing.
  • the electrode contact hole 931 on the corresponding region is filled with a conductive paste (for example, silver powder conductive paste). Therefore, the electrode contact holes 931 are required to be aligned with the corresponding electrodes.
  • the interconnection between two solar cells is illustrated in Figure 1, and is equally applicable to multiple solar cells. Therefore, the interconnection shown in Figure 1 does not use conventional soldering methods to solder interconnect strips.
  • the solar cell module is formed by the interconnection method shown in FIG. 1, the following disadvantages exist: (1) The electrode and the metal film layer are connected by a conductive adhesive, and the reliability is low; (2) the electrode of the back of the MWT battery is required Accurately align with the corresponding electrode contact holes on the metal film, precise control in the process, complicated manufacturing process and high difficulty; (3) The equipment required to complete the above interconnection process is expensive, and the cost of the solar cell module is invisibly increased. (4) The weather-resistant insulating back sheet, sealing material and silver powder conductive adhesive covering the metal film (such as copper film material) have a higher price, which increases the cost of the solar cell module. Summary of the invention
  • One object of the present invention is to provide an MWT back contact solar cell having good insulation isolation characteristics and facilitating assembly into a solar cell module by interconnecting strips.
  • a second object of the present invention is to provide a conventional welding method or guide Electro-adhesive bonding method realizes interconnection strip interconnection MWT back contact solar cell to form solar cell module till
  • an MWT back contact solar cell comprising: a battery substrate including a first conductive type region on a back side thereof and a second conductive type region on the front surface, the second conductive type region and the first conductive type region forming a PN junction;
  • a conductivity type of the inner surface of the through hole is a first conductivity type
  • a secondary gate electrode disposed on a front surface of the battery substrate
  • a back electric field which is disposed on the back of the battery village
  • a first insulating dielectric layer disposed on a back surface of the battery substrate; wherein, the contact between the main gate electrode and the battery substrate is a non-ohmic contact, or the main gate electrode and the battery bottom a second insulating medium layer is also disposed between;
  • the multi-row/column main gate electrode and the multi-row/column back electrode are arranged substantially in parallel with each other, and each row/column main gate electrode is arranged symmetrically along a center line of the parallel battery substrate with a corresponding row/column back electrode;
  • the two solar cells are operatively connected by interconnecting strips for preventing the interconnect strips from being electrically connected to the main gate electrodes of the same solar cell at the same time The back electric field.
  • the main gate electrode when the contact of the main gate electrode with the battery substrate is non-ohmic contact, the main gate electrode is formed by printing and sintering a slurry having a glass frit content of substantially zero.
  • the main gate electrode is formed by silver paste printing and sintering, and the second insulating dielectric layer is The silver paste and the battery substrate are formed during the sintering process.
  • the silver paste is a silver paste containing a glass frit
  • the second insulating dielectric layer is a dielectric glass layer formed during the sintering 0
  • the second insulating dielectric layer is formed by embossing a printed surface on the inner surface of the through hole, the insulating dielectric layer The edge portion extends beyond the contact area of the main gate electrode and the bottom of the battery.
  • the main gate electrode is arranged in sections per row/column.
  • the through holes are equally spaced on the sub-gate electrode, and m through holes respectively located on the sub-gate electrode are substantially A line is arranged in rows/columns, where m is an integer greater than or equal to 3.
  • the solar cell further includes a through hole connection line disposed on a front surface of the battery substrate, and the through hole connection line is arranged in rows/columns.
  • the through hole preferably, the solar cell further includes a through hole connection line disposed on a front surface of the battery substrate, and the through hole connection line is arranged in rows/columns. The through hole.
  • one or more through holes are further provided between the adjacent sub-gate electrodes on the via connection line.
  • the through-hole connecting line has a line width ranging from 100 micrometers to 1 millimeter.
  • the number of the sub-gate electrodes is n, n is greater than m, and the m via holes arranged in rows/columns are non-continuously arranged on the n sub-gate electrodes.
  • the hollow gate region is provided in the main gate electrode.
  • the back electric field is an aluminum or aluminum alloy material, and the back electric field forms an ohmic contact with the first conductive type region.
  • the solar cell further includes an antireflection layer formed on a front surface of the battery.
  • the main gate electrode and the back electrode are simultaneously screen printed or stencil printed.
  • the first insulating dielectric layer is in the form of a strip, and the first insulating dielectric layer is located in the battery lining between the row/column main gate electrode and the back electric field. The edge of the main gate electrode and a portion of the back electric field are partially and partially covered.
  • the first The width of the edge shield layer is greater than the width of the interconnect strip.
  • a further embodiment of the ⁇ j ⁇ JMJ ⁇ aLji ⁇ J g battery is characterized in that the plurality of rows/column main gate electrodes are equally spaced at a first pitch, and the plurality of rows/columns of back electrodes are spaced apart by a second pitch, etc. a pitch distribution, the first pitch being equal to the second pitch.
  • the first material is made. , ": , , , "
  • a first insulating dielectric layer is patterned on the back side of the battery substrate.
  • the method further includes the steps of: flocking and cleaning the battery substrate, and removing the through hole formed. Damage and residue.
  • the method further comprises the step of: removing the phosphosilicate glass.
  • the method further comprises the step of: depositing an antireflection layer on the front surface of the battery substrate.
  • a via connection is formed on the front side of the battery substrate.
  • the patterning of the main gate electrode, the back electrode, the back electric field, and the sub-gate electrode is performed by screen printing or steel.
  • the net printing is realized, and the main gate electrode and the back electrode are formed by the same slurry.
  • the main gate electrode is formed by printing and sintering a paste having a meta-draft content of substantially 0, and the contact between the main gate electrode and the bottom of the battery is a non-ohmic contact.
  • the main gate electrode is formed by silver paste printing and sintering, and a second insulation between the main gate electrode and the battery substrate is simultaneously formed in the sintering process. Medium layer.
  • the silver paste is a silver paste containing a glass frit
  • the second insulating medium layer is a glass dielectric layer formed during sintering.
  • the manufacturing method further includes the steps of: patterning and forming the second insulating dielectric layer on an inner surface of the through hole and a back surface of the first conductive type region; wherein, the second An edge portion of the insulating dielectric layer extends beyond a contact area of the main gate electrode and the battery substrate.
  • the etching is wet etching, and the battery substrate is floated face up in the etching liquid used for the wet etching.
  • a solar cell module comprising a solar battery string comprising a plurality of metal-wound-type back-contacting suns arranged in rows/columns as described above a battery, wherein two adjacent solar cells in each row/column of solar cells are connected by interconnecting strips, and each interconnecting strip is simultaneously connected to one of the solar cells in substantially the same plane and substantially the same straight line.
  • one of the two solar cells in the same row/column of the solar cells rotates one of the solar cells relative to the other of the solar cells 180 degree setting.
  • the interconnection of the interconnection strips is a solder joint or a conductive tape bond.
  • the solar cell module further includes a front transparent substrate, a front sealing adhesive layer, a back sealing adhesive layer, and a rear substrate, the front sealing adhesive layer And sealing the solar cell string with a back sealing adhesive layer.
  • a method of preparing a solar cell module as described above comprising the steps of: Arranging any of the plurality of metal-wound-type back contact solar cells described above in rows/columns;
  • one of the two adjacent solar cells is rotated by 180 degrees with respect to the other of the solar cells.
  • connection of the interconnection strips is achieved by means of soldering or bonding of conductive tape.
  • each row/column main gate electrode is along a center line and a corresponding row of the battery bottom parallel thereto / column back electrodes are symmetrically arranged; thus, it is convenient to connect the interconnecting strips to assemble the solar cell module, and the cost of connecting the interconnecting strips is low; each interconnecting strip connects two solar cells on the same plane and on the same straight line, which is not easy Cracks occur at the edges of solar cells, providing high reliability, low cost, high production efficiency, and high solar cell conversion efficiency.
  • the solar cell has good insulation isolation due to the presence of the first dielectric layer on the back side of the solar cell.
  • FIG. 1 is a schematic view showing a structural change of a prior art MWT back contact solar cell packaged as a solar cell module, wherein FIG. 1(a) is a schematic view of the back surface of the MWT back contact solar cell, and FIG. 1(b) is a MWT back contact.
  • FIG. 1(a) is a schematic view of the back surface of the MWT back contact solar cell
  • FIG. 1(b) is a MWT back contact.
  • a schematic diagram of electrical connections after the backsheet is interconnected by using a conductive adhesive bonding process in the manufacturing process of the solar cell module;
  • FIG. 2 is a partial schematic view showing the structure of the back surface of the MWT back contact solar cell according to an embodiment of the present invention, wherein FIG. 2(a) is a schematic view of the back surface of the solar cell, and FIG. 2(b) is a front structure of the solar cell.
  • FIG. 2(a) is a schematic view of the back surface of the solar cell
  • FIG. 2(b) is a front structure of the solar cell.
  • Figure 3 is an enlarged view of the portion A of the MWT back contact solar cell of the embodiment of Figure 2.
  • FIG. 4 is a schematic enlarged view showing a portion B of the MWT back contact solar cell of the embodiment shown in FIG. 2;
  • Figure 5 is a cross-sectional view showing the C-C cross-section of the MWT back contact solar cell of the embodiment shown in Figure 2;
  • Figure 6 is an enlarged schematic view of a portion A of Figure 5, wherein Figure 6 (a) is one of the examples, and Figure 6 (b) is another example thereof;
  • FIG. 7 is a schematic diagram of a process of interconnecting a plurality of MWT back contact solar cells shown in FIG. 2 to form a solar cell string of a solar cell module, wherein FIG. 6( a ) is a schematic diagram of an arrangement of a plurality of solar cells 500 , 6(b) is a schematic structural view of a solar cell string formed by soldering and connecting a plurality of solar cells 500 through interconnecting strips;
  • FIG. 8 is a schematic exploded view of a solar cell module according to an embodiment of the invention.
  • FIG. 9 is a schematic flow chart of a method for preparing a solar cell of the embodiment shown in FIG. 2.
  • FIG. 10 to FIG. 18 are schematic structural views showing a process of the preparation method shown in FIG.
  • Fig. 19 is a flow chart showing the flow of a second embodiment of the solar cell of the embodiment shown in Fig. 2. detailed description
  • FIG. 2 is a partial schematic view showing the structure of the back surface of the MWT back contact solar cell according to an embodiment of the present invention, wherein FIG. 2( a ) is a schematic view of the back surface structure of the solar cell, and FIG. 2 ( b ) is the solar cell Schematic diagram of the front structure.
  • FIG. 3 is a schematic enlarged view showing a portion A of the MWT back contact solar cell of the embodiment shown in FIG.
  • FIG. 4 is a schematic enlarged view showing a portion B of the MWT back contact solar cell of the embodiment shown in FIG. 2.
  • FIG. 5 is a schematic cross-sectional view showing the CC cross-section of the MWT back contact solar cell of the embodiment shown in FIG.
  • Fig. 6 is a schematic enlarged view showing the portion A of Fig. 5.
  • the M WT back contact solar cell of this embodiment will be described in detail with reference to FIGS. 2 to 6.
  • the MWT back contact solar cell 500 of this embodiment is formed based on the battery substrate 5 10 .
  • a p-type single crystal silicon wafer or a polycrystalline silicon wafer is selected as the battery substrate, and thus, in this embodiment, the first conductive type region is p-type and the second conductive type region is n-type.
  • the type of material of the battery substrate is not limited.
  • the battery substrate 510 may also be a polycrystalline silicon material or other type of solar cell base material.
  • the battery substrate 5 1 0 of the solar cell may be selected as a shape of a symmetrical structure, for example, may be approximately rectangular or square, and its specific shape is also not limited by the illustrated embodiment (for example, it may also be a parallelogram), and the battery is determined.
  • the battery substrate 5 10 includes a p-type semiconductor region 512 provided by the substrate itself and a surface formed by doping the battery substrate 5 10 on the front side of the battery substrate.
  • Type semiconductor region 51 1 The thickness of the n-type semiconductor region 5 1 1 may range from 0.1 ⁇ m to 1 ⁇ m.
  • the p-type semiconductor region 5 12 and the n-type semiconductor region 51 1 together form a pn junction of the solar cell, and the current of the n-type semiconductor region is collected by the sub-gate electrode 530 of the front surface of the solar cell (that is, the front surface of the battery cell 510) and further The main gate electrode 550 on the back surface is taken up to be drawn, and the current of the p-type semiconductor region 5 12 is collected by the back electric field 560 of the solar cell and taken out by the back electrode 561.
  • a plurality of sub-gate electrodes 530 are formed on the front surface 520 of the solar cell.
  • the sub-gate electrodes 530 are disposed in a line shape, and the sub-gate electrode 530 has a line width of about 30 micrometers to 140 micrometers.
  • the plurality of sub-gate electrodes are regularly and uniformly arranged, which is advantageous for collecting the current of the n-type semiconductor region 51 1 , for example, the sub-gate electrodes are arranged in parallel and equidistantly in parallel.
  • the pitch between the sub-gate electrodes 530 and the line width of the sub-gate electrode 530 itself are not limited by the present invention.
  • the sub-gate electrode 530 is sintered by a screen (or stencil) printed conductive silver paste.
  • the sub-gate electrode 530 is formed on the surface of the front-side n-type semiconductor region 51 1 and is The semiconductor region is electrically connected so that To collect its photogenerated current.
  • a plurality of penetrating cell substrates 510 may be formed on the cell substrate corresponding to the location of the sub-gate electrode 530 (i.e., through the n-type semiconductor region 5 1 1 and the p-type semiconductor region 512). ) through hole 590.
  • Each of the sub-gate electrodes 530 is cross-connected with the main gate electrode 550 after a certain distance, so that the main gate electrode 550 can efficiently collect and draw the current collected by the sub-gate electrode 530.
  • a plurality of via holes 590 may be formed on a plurality of sub-gate electrodes 530.
  • the via holes on each of the sub-gate electrodes 530 are laterally Arranging in a straight line
  • a plurality of via connection lines 555 substantially perpendicular to the sub-gate electrodes are disposed on the surface of the n-type semiconductor region 51 1 , and the via connection lines 555 can connect the via holes in a straight line (ie, the same row)
  • the connection is turned on. Therefore, some of the sub-gate electrodes 530 not provided with the via holes 590 can also be collected to the main gate electrode 550 on the back side through the via connection lines 555, thus reducing the positional accuracy requirement of the via holes.
  • the electrical connection between the sub-gate electrode and the back main gate electrode can also be achieved.
  • a total of 57 sub-gate electrodes 530 are disposed in FIG.
  • via holes 590 are formed on the 28 sub-gate electrodes, wherein through-holes are disposed on the four sub-gate electrodes arranged in series, and are further arranged in series There are no through holes on the four sub-gate electrodes, and four sub-gate electrodes for providing the through holes and four sub-gate electrodes not provided with the through holes are arranged at intervals, that is, the through holes are not completely continuously arranged on all the sub-gate electrodes; On the sub-gate electrode of the through hole, three through holes are equally spaced, and three through hole connecting lines 555 are arranged in parallel at equal intervals and vertically intersect with the sub-gate electrode 530, and the through hole is disposed at the sub-gate electrode 530 and the through hole.
  • the main gate electrode 550 is segmentally disposed, and the four continuous via holes on the via connection line 555 correspond to a segment of the main gate electrode disposed on the back surface, thus Corresponding to the non-complete continuous arrangement of the via holes on the same row, the main gate electrode 550 is divided into 7 segments, arranged in rows, one row and seven segments, for a total of three rows. Therefore, with the above specific arrangement, the front n-type semiconductor region 51 1 current is collected and drawn in a relatively low series resistance. Since the via connection lines 555 are arranged in parallel at equal intervals, the three rows of main gate electrodes 550 are also arranged in parallel at substantially equal intervals.
  • the through hole 590 can be chemically etched, mechanically punched, laser punctured, and electrically Sub-beam drilling or the like is formed.
  • Both the connection line 555 and the sub-gate electrode 530 can be formed by screen printing or the like, and the width of the via 555 is much smaller than the width of the conventional main gate electrode disposed on the front surface, for example, the width thereof is in the range of 100 Between microns and 1 mm.
  • a plurality of via holes may be equally spaced on each of the sub-gate electrodes, and the via holes on the different sub-gate electrodes are continuously arranged in a straight line in the lateral direction, so that all the sub-gate electrodes are drained to the same on the back side.
  • each of the main gate electrodes is also disposed substantially equidistantly. It should be understood by those skilled in the art that there are many other ways for the arrangement of the through holes, for example, the two sub-gate electrodes share one through hole, etc., and the position of the main gate electrode is determined by arranging the positions of the through holes so that the row is made.
  • the main gate electrodes arranged in (or in columns) are arranged in parallel, such as the spacing between rows or columns. It should be noted that, in the above example, when a row (or a column) of main gate electrodes is segmented, the spacing between segments is not necessarily required to be equal, which is not limitative.
  • two sub-gate electrodes are provided in the through holes 590.
  • one more via hole (shown by a dotted circle in the figure) can be added, so that eight consecutively arranged via holes can be simultaneously connected to the same main gate electrode.
  • the current on the via connection line 555 can be more reliably extracted to the main gate electrode on the back side, thereby improving the conduction capability of the current and reducing the series resistance of the battery.
  • two or more through holes may be provided between the two sub-gate electrodes 530 in which the through holes 590 are provided and on the through-hole connecting lines 555.
  • the three rows of main gate electrodes 550 are arranged in parallel with each other in parallel, which may be disposed in parallel at substantially equal intervals, and the main gate electrode 550 includes a back surface portion 550a and a winding portion 550b. Both are formed by integrated printing.
  • the back surface portion 550a is disposed over the p-type semiconductor region 512
  • the bypass portion 550b is disposed in the via hole and extends over the n-type semiconductor region 51 1 to achieve connection with the sub-gate electrode 530 (approximately FIG.
  • each of the main gate electrodes 550 may be continuous or non-continuous, and those skilled in the art may select according to specific design requirements.
  • each of the main gate electrodes 550 is discontinuous (as shown in FIG. 2). ), that is, composed of a plurality of block-shaped main gate electrodes.
  • a back electric field is formed on the back surface of the battery substrate (i.e., above the p-type semiconductor region 512).
  • the back electric field 560 and the main gate electrode 550 need to be electrically isolated (that is, the positive and negative electrodes of the pn junction cannot be directly electrically connected). Therefore, the main gate electrode 550 that is led to the back surface of the battery substrate 510 through the via 590 needs to be electrically isolated from the battery substrate (especially, it needs to be electrically isolated from the p-type semiconductor region 512).
  • Fig. 6 is a schematic enlarged view of a portion A of Fig. 5, wherein Fig. 6(a) is an example thereof, and Fig. 6(b) is another example thereof.
  • the electrical isolation of the main gate electrode 550 from the battery substrate 510 i.e., the electrical isolation of the positive and negative electrodes of the solar cell
  • the main gate electrode 550 is at the inner surface of the via hole 590 with the battery substrate 510 (for example, The contact of the p-type semiconductor region 512) is a non-ohmic contact, and likewise, the contact of the main gate electrode 550 with the back surface of the battery substrate 510 (for example, the p-type semiconductor region 512) is also a non-ohmic contact, and thus, the p-type semiconductor region 512.
  • the generated current does not flow to the main gate electrode 550, so that it does not form a loop with the current generated by the n-type semiconductor region 51 1; preferably, the silver paste is selected to be a silver paste having a glass material content of substantially zero.
  • electrical isolation is achieved by providing a second insulating dielectric layer 551 between the main gate electrode 550 and the battery substrate 510.
  • the main gate electrode 550 is pulped.
  • the screen is printed and sintered, and the second insulating dielectric layer 551 can be formed on the inner surface of the through hole 590 and the back surface of the p-type semiconductor region 512 by printing, thereby forming a main gate electrode by screen printing and sintering in a silver paste.
  • the silver paste is not in direct contact with the battery substrate 510, and the second insulating dielectric layer 551 may be a non-conductive non-metal oxide material; in addition, the second insulating dielectric layer 551 may also pass through the silver paste during sintering.
  • the contact area with the battery substrate 510 (for example, the p-type semiconductor region 512) is spontaneously formed.
  • the silver paste is selected to be a slurry containing glass, and the mass percentage of the glass frit in the silver paste is 1%.
  • the glass frit component concentrates on the contact surface of the battery substrate 510 and the slurry to form a thin layer of the glass dielectric layer, that is, the second Insulating dielectric layer 551.
  • the battery substrate 510 in order to ensure the non-ohmic contact between the main gate electrode 550 and the battery substrate 510 as much as possible, electrical isolation between the positive and negative electrodes is achieved, preferably, the battery substrate 510
  • the resistivity e.g., p-type doping concentration ranges from 0.1 ohm'cm to 20 ohm'cm.
  • a hollow region may be disposed on the main gate electrode 550 (not shown) Shown), thereby reducing the contact area of metal with silicon, effectively reducing the recombination ratio of metal to silicon, and reducing the consumption of metal paste and reducing the cost.
  • the back electric field 560 is directly formed on the back surface of the p-type semiconductor region 5 12 and electrically connected to the p-type semiconductor region 512, so that the current of the p-type semiconductor region 512 can pass through the back of the solar cell.
  • Electric field 560 is collected and extracted.
  • the contact resistance of the p-type semiconductor region 512 and the back electric field 560 as shown in FIG.
  • the back electric field 560 specifically selects the metal element of the bismuth cluster as a back electric field material (for example, aluminum or aluminum alloy), thereby During the sintering process, the aluminum element can diffuse into the surface region of the p-type semiconductor region 512, further performing p-type doping thereof, thereby forming a region 580 of relatively high doping concentration, making the region 580 easy to form an ohmic with the back electric field 560. Contact, and reduce contact resistance; most of the back-field material remains on the back side to form an aluminum back field, which is the back electric field 560.
  • the high doping concentration region 580 and the p-type semiconductor region 512 are generally not clearly defined as shown in FIG. 5, because the back electric field is used as the doping source, according to the characteristics of diffusion doping.
  • the doped element aluminum diffuses into the p-type semiconductor region 512 in a concentration-gradient manner.
  • a back electrode 561 is also provided, one of the functions of which is to realize the connection between the back electric field and the interconnecting strip, and the second function is to further extract the current of the back electric field 560 to the interconnecting strip.
  • the back electrode 561 is surrounded by the back electric field 560, so that the n-type semiconductor region corresponding to the contact of the back electrode 561 is also isolated by the complementary doping region 580, so that it does not cause shorting of the positive and negative electrodes of the pn junction.
  • the battery cell bottom 510 of the solar cell is square
  • the back electrode 561 is also like the main gate electrode 550
  • the back electrode 561 is arranged in rows, and one side of each row of the main gate electrode 550 corresponds to A row of back electrodes 561 is provided.
  • each row of main gate electrodes can be substantially aligned with the back electrodes of the corresponding rows of another adjacent solar cell, and each row of back electrodes can also correspond to another adjacent solar cell.
  • the main gate electrodes of the rows are substantially aligned; each row of back electrodes is symmetrically arranged along the centerline 501 of the battery substrate 5 10 with each row of main gate electrodes, the centerline 501 is parallel to the main gate electrode 550, and all rows of back electrodes are parallel Settings.
  • the number of rows (or the number of columns) of the back electrode 561 is equal to the number of rows (or the number of columns) of the main gate electrode 550, and the plurality of rows of the back electrodes 561 are disposed in parallel at equal intervals, and the plurality of rows of the main gate electrodes 550 are equally spaced from each other. Parallelly disposed, and the pitch of the adjacent row back electrodes 561 is equal to the pitch between adjacent row main gate electrodes 550.
  • a single back electrode 561 is generally punctiform (for connection to an interconnect strip) and a multi-point back electrode 561 (e.g., 11 shown) is arranged to form a row.
  • a multi-point back electrode 561 e.g., 11 shown
  • the main gate electrode 550 is segmented (ie, The main gate electrode of the same row is discontinuously disposed), and the current of the back electric field 560 on one side of the main gate electrode 550 can be drained to the back electrode 561 on the other side through the back electric field between the segment gaps of the main gate electrode.
  • solar cell 500 further includes an anti-reflective layer 513 deposited over n-type semiconductor region 511 on the front side of battery substrate 510.
  • the anti-reflection layer 513 may be a material such as silicon nitride, and may have a specific thickness ranging from 50 to 120 nm.
  • FIG. 7 is a schematic view showing a process of interconnecting a plurality of MWT back contact solar cells shown in FIG. 2 to form a solar cell string of a solar cell module, wherein FIG. 7(a) is an arrangement of a plurality of solar cells 500.
  • FIG. 7(b) is a schematic structural view of a solar battery string formed by welding a plurality of solar cells 500 through interconnecting strips.
  • a solar battery string is formed by sequentially connecting a plurality of solar cells in series with a positive and negative electrode (i.e., a main gate electrode of one solar cell is connected to a back electrode of another solar cell).
  • a positive and negative electrode i.e., a main gate electrode of one solar cell is connected to a back electrode of another solar cell.
  • three solar cells 500 shown in Fig. 2 are connected in series to form a solar battery string 5000 for schematic explanation.
  • the three solar cells are 500A, 500B, 500C, respectively.
  • they are first arranged in rows (also in columns), wherein the solar cell 500B is rotated by 180 degrees with respect to the solar cell 500A or 500C, so that A row of main gate electrodes of one solar cell (e.g., solar cell 500A) is substantially aligned with a row of back electrodes of another adjacent solar cell (e.g., solar cell 500B) in a straight line (since each row of back electrodes 561 is lined along the cell)
  • the center line 501 of the bottom 510 is symmetrically arranged with each row of main gate electrodes).
  • the solar cells are basically set to a square shape (or when they are rectangular), the edges of the solar cells arranged in rows can also be aligned.
  • each interconnecting strip 940 connects one row of main gate electrodes of one solar cell (for example, 500A), and the other end aligns another adjacent block of solar cells (for example, 500B).
  • a row of back electrodes connected in a straight line specifically, the connection between the interconnect strip 940 and the main gate electrode or the back electrode may be a solder connection method or other connection methods (for example, bonding by using conductive tape) ). As shown in FIG.
  • three interconnecting strips are soldered to the solar cell 500A and 500B, which connects the main gate electrode of the solar cell 500A and the back electrode of the solar cell 500B in series; the three interconnect strips are welded to the solar cells 500B and 500C, which connect the main gate electrode of the solar cell 500B and the back electrode of the solar cell 500C in series Connection; Parallel arrangement of solar cells in the same order, so that interconnection can be easily realized.
  • the interconnection between the solar cells can be connected by conventional welding methods, and each of the welding bars is welded to the two solar cells in the same plane and on the same straight line, compared with the conventional solar cell welding connection and now Some MWT back contact solar cells are interconnected, which is easy to connect (for example, can be connected by conventional welding methods), and is not easy to crack at the edge of the solar cell. High reliability and low cost can ensure the sun. Mass production of battery components (high production efficiency) and high solar cell conversion efficiency.
  • the interconnect strip 940 When the interconnect strip 940 is connected to the main gate electrode of the solar cell, the interconnect strip 940 must be electrically connected to the battery substrate or the back field of the solar cell; likewise, the back electrode of the solar cell is soldered to the interconnect strip 940.
  • the interconnect strip 940 must be electrically connected to the main gate electrode of the solar cell. Therefore, as shown in FIG. 7 and FIG. 2, the above object is achieved by the first insulating dielectric layer 540.
  • the first insulating dielectric layer 540 is disposed in a strip shape, and a strip-shaped first insulating medium is disposed corresponding to each row of the main gate electrode 550.
  • the layer 540, the battery bottom region (partial p-type semiconductor region 512) between the main gate electrode 550 and the back electric field 560 is covered by the strip-shaped first insulating dielectric layer 540, and partially covers the main gate electrode
  • the edge of 550 also partially covers a portion of the back electric field 560 (e.g., the back electric field portion between the gaps covering the segmented main gate electrode 550, the edge of the back electric field, etc.).
  • the first insulating dielectric layer 540 can be insulated from the back electric field 560 of the same solar cell; when the other end of the interconnecting strip 940 is connected to the back electrode 561, The first insulating dielectric layer 540 can further reduce the probability of the interconnect strips 940 being shorted to the main gate electrode 550 of the same cell. Therefore, the battery pack shown in Fig. 6 has good isolation characteristics.
  • the width of the interconnect strip 940 is less than the width of the strip-shaped first insulating dielectric layer 540.
  • FIG. 8 is a schematic structural view of a solar cell module according to an embodiment of the invention.
  • the solar cell module of this embodiment includes the solar cell string 5000 of the embodiment shown in FIG. 6, and further includes a front transparent substrate 5100, a front sealing adhesive layer 5200A, a back sealing bonding layer 5200B, and a back substrate 5300.
  • the front transparent substrate 5100, the front sealing adhesive layer 5200A, the solar battery string 5000, the back sealing adhesive layer 5200B, and the rear substrate 5300 are sequentially disposed from the top to the bottom, and the front surface sealing adhesive layer 5200A and the back surface are densely bonded.
  • the sealing adhesive layer 5200B substantially covers the solar battery string 5000.
  • the front transparent substrate 5100 may be a high-strength tempered glass plate
  • the sealing bonding layers 5200A and 5200B may select an adhesive material having better impact resistance and durability.
  • a plasma sealing material may be selected.
  • PVB Polyvinyl Butyral, polyvinyl butyral
  • the back substrate 5300 can be selected from a TPT (polyvinyl fluoride composite film) substrate or a tempered glass plate.
  • TPT polyvinyl fluoride composite film
  • Fig. 9 is a flow chart showing the process of the first embodiment of the solar cell of the embodiment shown in Fig. 2.
  • 10 to 18 are schematic views showing the structural changes of the process according to the preparation method shown in Fig. 9. The process of preparing the solar cell will be described below with reference to Figs. 2 and 9 to 18.
  • step S410 a battery substrate having a first conductivity type region is provided.
  • a solar cell is formed based on a battery substrate 510, and p-type single crystal silicon or polycrystalline silicon is selected as the battery substrate 510 (i.e., the first conductivity type is p-type).
  • the p-type single crystal silicon original silicon substrate
  • the p-type battery substrate 510 may be directly used to form the first A conductive type zone 512.
  • Battery ⁇ The front side of the bottom 510 520 is illuminated by sunlight when the solar cell is in operation.
  • the bottom of the battery is selected to have a symmetrical structure, for example, a rectangle or a square.
  • step S420 a through hole is formed in the battery substrate.
  • a plurality of through holes 590 are formed in the battery substrate 510, and the through holes 590 penetrate from the front surface of the battery substrate to the back surface of the battery substrate.
  • the through hole 590 can be formed by chemical etching, mechanical drilling, laser drilling, electron beam drilling, etc. Generally, laser drilling is selected.
  • the through holes can be selected to be substantially cylindrical holes having diameters ranging from about 10 microns to about 1000 microns.
  • the position layout and number of the through holes 590 in the bottom of the battery can be referred to the relevant descriptions of Figs. 2 and 4 and above.
  • step 425 (not shown) is generally included, that is, the battery bottom is subjected to texturing and cleaning, and the damage and residue formed by the through holes are removed.
  • the specific process of the texturing process and the cleaning process in this step is substantially the same as the conventional process.
  • texturing for example, a suede (not shown) such as a pyramid shape can be formed on the surface of the battery substrate, thereby contributing to an improvement in conversion efficiency of the battery; at the same time, the through hole 5 is also roughened by the formed pile surface, which It is beneficial to improve the reliability of slurry filling.
  • doping of the second conductivity type is mainly performed on the front surface of the battery substrate.
  • the front side of the battery substrate 510 is n-type doped (i.e., the second conductivity type).
  • the two battery substrates may be grouped in a back-to-back relationship. Together, they are placed in a diffusion furnace for single-sided diffusion, which helps to increase production.
  • the side and back sides of the battery substrate 510 are inevitably doped, and the inner surface of the through hole 590 is also doped, thereby forming The n-type semiconductor doping region 5 1 1 a on the surface of the battery substrate 5 10 shown in FIG. 12, at this time, the n-type semiconductor doping region 51 1 a substantially covers the p-type semiconductor region 512.
  • doping may be performed by a method such as diffusion doping or ion implantation doping.
  • step S440 wet etching is performed to remove the doped region of the second conductivity type on the side and back sides of the battery substrate.
  • step S440 when the front side of the battery substrate is mainly doped, it is inevitably doped at the same time outside the front surface layer (for example, the side surface).
  • the battery substrate 510 can be floated in the etching liquid with the front side facing upward, so that the front surface of the battery substrate 510 is not etched except for the front n-type semiconductor doped region.
  • the n-type region e.g., the via wall of the via hole, the substrate side and/or the back surface
  • the n -type semiconductor doped region 51 1a is formed as the n-type semiconductor region 5 1 1 on the front side.
  • the etching solution can be any solution capable of etching silicon, and its specific type and composition are not limited by the embodiments of the present invention.
  • the battery substrate 5 10 floats in the etching liquid, due to the surface tension of the liquid surface, at the front edge of the battery substrate 5 10, it will be combined with the etching liquid.
  • the contact is etched, so that the n-type semiconductor region at the corner of the front surface of the battery cell 5 10 is partially etched (not shown), that is, the edge of the n-type semiconductor region 51 1 It will be partially etched, but the area where it is etched is limited.
  • the phosphosilicate glass layer formed on the surface of the battery substrate 510 during the doping process can be simultaneously removed.
  • step S450 an anti-reflection layer is deposited on the front surface of the battery substrate.
  • an anti-reflection layer 513 deposited on the front surface of the n-type semiconductor region may be formed by a method such as PECVD, LPCVD or APCVD, and the anti-reflection layer 513 may be selected as a material such as silicon nitride. Specific thickness range can be 50-120 Nano.
  • a printed via hole is patterned on the back surface of the battery substrate to form a main gate electrode, and simultaneously printed to form a back electrode.
  • the main gate electrode 550 and the back electrode 561 may be patterned by screen printing or stencil printing.
  • the slurry for example, silver paste
  • the type of the slurry for example, using a special type of hole-filling paste
  • a sintering process or the like may be selected such that the main gate electrode 550 and the p-type semiconductor region 5 12 substantially form a non-ohmic contact or a second Insulating dielectric layer 551.
  • the specific position layout of the main gate electrode 550 and the back electrode 561 can be referred to the relevant descriptions of Figs. 2, 3, 6, and above.
  • step S460 In order to achieve electrical isolation between the main gate electrode 550 and the battery substrate 5 10, in this step S460, it can be realized in two ways:
  • the first silver paste used in the main gate electrode 550 has a glass frit content of substantially a silver paste of 0, a non-ohmic contact is formed between the main gate electrode 550 and the battery substrate 5 10 (eg, the p-type semiconductor region 5 12 );
  • the main gate electrode 550 is formed by screen printing and sintering by silver paste.
  • the silver paste is selected as a paste containing glass.
  • the mass percentage of the glass frit in the silver paste ranges from 1% to 80%, so that during the sintering process, the glass frit concentrates on the contact surface of the battery substrate 5 10 and the slurry, thereby forming a thin layer of glass.
  • the shield layer that is, the second insulating dielectric layer 551; the second insulating dielectric layer 55 1 is formed between the battery substrate 5 10 and the main gate electrode 550, so that the main gate electrode 550 and the battery substrate 510 can be realized.
  • the basic insulation is isolated.
  • the functional phase, the binder phase and the carrier phase are included, and the binder phase is usually a glass frit, and the main component of the glass frit is usually an inorganic oxide such as Si0 2 , PbO or B 2 0 3 . It binds the functional phase of the silver powder particles together and firmly bonds the conductive silver layer to the surface of the wafer.
  • the action mechanism of the glass frit is: During the high-temperature sintering of the solar cell and the conductive silver paste, the frit of the inorganic oxide melts and etches the silicon-based thin anti-reflection film to form a window, and is firmly adhered to the silicon surface.
  • the "glass frit content is substantially 0" in the silver paste is not limited to the case where the mass percentage content of the glass frit is absolutely zero, and those skilled in the art should understand that the main gate electrode
  • the glass frit content of substantially 0 may include a case where there is a positive deviation, for example, when the mass percentage of the glass frit is (0%+0.5%), or The addition of the frit additive does not have the function of the frit, and since the ohmic contact is not formed, the frit content is understood to be substantially zero.
  • a plurality of hollow regions may be formed by forming a pattern of the screen and forming a main gate electrode 550 during printing, thereby being greatly reduced.
  • the contact area between the main gate electrode metal and the silicon ie, the P-type semiconductor region 5 12 ) effectively reduces the recombination of the metal and the silicon, thereby improving the conversion efficiency of the solar energy.
  • setting the hollowed out area can also greatly reduce the amount of metal used in the main gate electrode (such as silver paste), thereby reducing the cost of the solar cell.
  • the position and shape of the cutout region on the main gate electrode are not limited, and the principle is that the connection between the main gate electrode and the metal in the via hole is not affected.
  • step S470 a back electric field is formed on the back surface of the battery substrate.
  • the back electric field 560 can be screen printed aluminum paste on the back side of the battery substrate 510, and the process sequence can be between forming the formation of the main gate electrode 550 and the formation of the sub gate electrode 530.
  • the aluminum which belongs to the metal element of the bismuth cluster
  • the aluminum may further p-type doping the p-type semiconductor region 512 to which it is contacted (especially during the metallization process of forming the aluminum electrode, For example, a sintering process), thereby forming a region 580 of relatively high doping concentration, makes it easy for the region 580 to make ohmic contact with the back electrode 560 and reduce contact resistance.
  • a sub-gate electrode is patterned on the front side of the battery substrate.
  • the sub-gate electrode 530 may be patterned by screen printing or stencil printing.
  • the type of the slurry for example, silver paste
  • the sintering process may be selected to
  • the sub-gate electrode 530 is brought into good electrical contact (e.g., ohmic contact) with the n-type semiconductor region 51.
  • the via connection line 555 (shown in FIG. 2) is also patterned at the same time, and the sub-gate electrode 530 and the via connection line 555 may be made of the same paste.
  • the layout of the sub-gate electrode 530 and the via connection line 555 Refer to Figure 2 and the related description above for the requirements.
  • the sintering process in the above steps S450, S460, and S470 can be simultaneously sintered after printing the sub-gate electrode.
  • step S490 a first insulating dielectric layer is patterned on the back surface of the battery substrate.
  • the first insulating dielectric layer 540 may be patterned by photolithography, screen printing, spraying, etc., and the first insulating dielectric layer 540 may be a low-temperature curing organic material or a high-temperature sintering inorganic material.
  • Non-metal oxide materials such as polyimide (Polyimide, PI), epoxy resin, solder resist ink, etc.
  • the thickness can range from 2 microns to 100 microns.
  • the composition setting requirements of the first insulating shield layer 540 can be referred to FIG. 2, FIG. 7 and the related descriptions above.
  • the MWT back contact solar cell 500 shown in Fig. 2 is basically formed.
  • the doped alloying elements may also be included in the paste used for printing the sub-gate electrode 530, the main gate electrode 550, and the back electric field 560.
  • the silver paste is doped with other metal elements to form a silver alloy electrode
  • the aluminum paste is doped with other metal elements to form an aluminum alloy electrode.
  • Fig. 19 is a flow chart showing the second embodiment of the solar cell of the embodiment shown in Fig. 2.
  • the manufacturing method of the second embodiment differs from the manufacturing method of the first embodiment only in that step S455 is added.
  • Step S455 is used to electrically isolate the main gate electrode 550 from the battery substrate 510.
  • the structure of the example shown in Fig. 6(b) is formed.
  • the manner in which the sintering in step S460 of the first embodiment spontaneously forms the second insulating dielectric layer 551 is formed by another separate step S455 patterning.
  • a second insulating interlayer 551 is patterned on the battery substrate on which the main gate electrode is to be formed.
  • the second insulating dielectric layer 551 may be formed on the inner surface of the via 590 and the back surface of the p-type semiconductor region 512 by printing, so that in step S70, the main gate electrode is formed by screen printing and sintering with silver paste.
  • the silver paste is not in direct contact with the battery substrate 510, thereby achieving electrical isolation between the main gate electrode 550 and the battery substrate 510.
  • the edge portion of the second insulating dielectric layer 551 extends beyond the contact region of the main gate electrode 550 to be formed with the battery substrate (for example, the p-type semiconductor region 5 12 ), preventing the main gate electrode 550 from being on the edge portion and the battery substrate Direct contact (e.g., p-type semiconductor region 512).
  • the thickness of the second insulating dielectric layer 551 may range from 1 micron -50 microns.
  • step S480 may also be completed before step S470;
  • the sub-gate electrode 530 may also be patterned after the first insulating dielectric layer 540 is formed, that is, the step S480 may be completed after the step S490.
  • step S420 may also be completed after step S440 or step S450.
  • main gate electrode and the back electrode are arranged in a row is described in the above embodiment, those skilled in the art may design a corresponding solar cell in which the main gate electrode and the back electrode are arranged in columns according to the above teachings or teachings. And an embodiment of a solar cell assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

太阳电池、 太阳电池组件及其制备方法 技术领域
本发明属于光伏技术领域, 涉及通过非欧姆接触或者第二绝缘介 质层实现主栅电极和背电场之间电性隔离的金属绕穿型 (Metal Wrap Through, MWT )背接触太阳电池, 尤其涉及太阳电池的背面设置第一 绝缘介质层的 MWT背接触太阳电池、 该太阳电池的制备方法、 可通 过互连条将多个 MWT背接触太阳电池在基本同一平面上连接的太阳 电池组件以及该太阳电池组件的制备方法。 背景技术
利用半导体的光生伏特效应将太阳能转变为电能的应用越来越 广泛。 而太阳电池就是其中最为普遍的被用来将太阳能转换为电能的 器件。 在实际应用中, 一般是以由多个太阳电池串联(以互连条焊接 串联连接) 而成的太阳电池组件作为基本的应用单元。
通常地, 太阳电池包括形成在电池村底 (如单晶硅或多晶硅) 上 的 pn 结, 以及收集电池村底上因太阳照射所产生的光生电流并将其 汇集引出的电极。 太阳电池包括正面以及背面, 其中电池工作时被太 阳光所照射的一面定义为太阳电池的正面, 与该正面相反的一面定义 为背面。 常规地, 在其正面形成用于收集电流的副栅电极(或次栅线) 以及用于汇集副栅电极的电流的主栅电极; 在其背面上形成背电场和 背电极以引出电流。 这种太阳电池通过互连条串联形成太阳电池组件 时, 一条互连条的一端需要在一太阳电池的背面焊接连接背电极、 其 另一端需要在另一太阳电池的正面焊接连接主栅电极, 互连条并不是 在同一平面上, 这不利于太阳电池组件的自动化生产; 并且, 随着电 池衬底的不断减薄, 在太阳电池的边沿处的焊接点处存在较大的隐裂 风险。
随着太阳电池技术的发展, 近年来提出了将电池正面的主栅电极 置于电池衬底背面的背接触型太阳电池。美国专利号为 US6,384,317B 1 的、 题为 "Solar Cell and Process of Manufacturing the Same (太阳电池及 其制备方法)"的专利中具体公开了一种 MWT背接触太阳电池。 MWT 背接触太阳电池相对常规的太阳电池具有转换效率高、 美观的特点,
认本 并且避免了在正面和背面需要同时焊接互连条的情形, 提高了太阳电 ^A^ ^^ j于将太阳 成太阳电^
图 1所示为现有技术的将 MWT背接触太阳电池封装为太阳电池 组件的结构变化示意图, 其中, 图 1 ( a ) 为 MWT背接触太阳电池的 背面结构示意图, 图 1 ( b )为 MWT背接触太阳电池组件的制作过程 中采用导电胶粘接工艺时置放背板 (Back Sheet ) 互连后的电性连接 示意图。 现有技术中, MWT背接触太阳电池互连为太阳电池组件时, 一般采用背板来实现导电胶粘接工艺。 如图 1 ( a )所示, 900为 MWT 背接触太阳电池的村底, 910为背电场中的背电极(例如通过银浆形 成) , 920为形成于背面的主栅电极。 如图 1 ( b ) 所示, 在 MWT背 接触太阳电池的背面采用集成的背板 930来封装成太阳电池组件。 背 板 930中, 与 MWT背接触太阳电池接触的一层为耐候绝缘基板板材 料和密封材料; 中间层为金属薄膜层, 通过对金属薄膜层构图, 可以 实现相应主栅电极和背电极的连接 (如图中的白色曲线) ; 背板 930 的最外层还覆盖一层绝缘介质层, 该绝缘介质层并不覆盖图中所示的 电极接触孔 931。 在太阳电池的背电极或主栅电极需要与金属铜薄膜 层电性导通的区域, 在其相应区域上的电极接触孔 931中填充导电胶 (例如银粉导电胶) 。 因此, 需要电极接触孔 931与相应电极对准。 图 1中示意了两个太阳电池之间的互连, 对于多个太阳电池, 同样适 用。因此,图 1所示的互连方式并非采用传统的焊接方式焊接互连条。
但是, 以图 1所示的互连方式形成太阳电池组件时, 存在以下缺 点: ( 1 )电极与金属薄膜层之间通过导电胶连接, 可靠性较低; (2 ) MWT 电池背面的电极需要与金属薄膜上对应的电极接触孔精确对 准, 工艺过程中需要精确控制, 制造过程复杂、 难度较高; (3 ) 完 成以上互连过程所需要的设备昂贵, 无形中增加太阳电池组件的成 本; (4 )表面覆盖金属薄膜(例如铜薄膜材料) 的耐候绝缘的背板、 密封材料和银粉导电胶价格较高, 增加了太阳能电池组件的成本。 发明内容
本发明的目的之一在于, 提供一种绝缘隔离特性好、 便于通过互 连条组装成太阳电池组件的 MWT背接触太阳电池。
本发明的目的之二在于, 提供一种可以使用常规焊接方式或者导 电胶带粘接方式实现互连条互连 MWT背接触太阳电池形成太阳电池 组件„
本发明的上述目的或者其它目的通过以下技术方案实现: 按照本发明的一方面,提供一种 MWT背接触太阳电池, 其包括: 电池衬底, 包括位于其背面的第一导电类型区域和位于其正 面的第二导电类型区域, 所述第二导电类型区域与所述第一导电 类型区域形成 PN结;
多个通孔, 其穿过所述电池衬底, 且所述通孔内表面的导电 类型为第一导电类型;
副栅电极, 其设置于所述电池衬底正面;
多行 /列主栅电极,其设置于所述电池衬底背面并通过所述电 池衬底中的通孔与所述副栅电极电性连接;
背电场, 其设置于所述电池村底背面;
多行 /列背电极,其用于输出所述背电场所收集的电流并用于 封装成组件时所述太阳电池之间的互连; 以及
第一绝缘介质层, 其设置于所述电池衬底的背面; 其中, 所述主栅电极与所述电池衬底的接触为非欧姆接触, 或者 所述主栅电极与所述电池村底之间还设置有第二绝缘介质层;
多行 /列主栅电极以及多行 /列背电极之间相互基本平行设置, 每 行 /列主栅电极沿与其平行的电池衬底的中心线与相应一行 /列背电极 对称排布;
两个所述太阳电池之间可操作地通过互连条连接, 所述第一绝缘 介盾层用于防止所述互连条同时电性连接于同一所述太阳电池的所 述主栅电极和所述背电场。
在一实施例中, 所述主栅电极与所述电池衬底的接触为非欧姆接 触时,所述主栅电极通过玻璃料含量基本为 0的浆料印刷并烧结形成。
在又一实施例中, 所述主栅电极与所述电池村底之间设置有第二 绝缘介质层时, 所述主栅电极通过银浆印刷并烧结形成, 所述第二绝 缘介质层是所述银浆与所述电池衬底在所述烧结过程中形成。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述银浆为 含有玻璃料的银浆, 所述第二绝缘介质层是烧结过程中形成的玻璃介 质层 0 在还一实施例中, 所述第二绝缘介质层是通过在所述通孔内表面 Α Μ .Λ^ζ^ Μ } ^ί.^构罔印刷形 ϋ , 所述 一 绝缘介^层的边缘部分延伸超出主栅电极与电池村底的接触区域。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 每行 /列所述 主栅电极被分段设置。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述通孔在 所述副栅电极上等间距地设置, 分别位于 m奈所述副栅电极上的 m 个通孔基本在一奈直线上按行 /列排列, 其中, m为大于或等于 3的整 数。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述太阳电 池还包括设置于所述电池衬底正面的通孔连接线, 所述通孔连接线连 接按行 /列排列的所述通孔。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 在所述通孔 连接线上、 相邻的所述副栅电极之间还设置有一个或一个以上通孔。
较佳地, 所述通孔连接线的线宽范围基本可以为 100微米至 1毫 米。
在又一实例中, 所述副栅电极的条数为 n, n大于 m, 按行 /列排 列的所述 m个通孔在 n条副栅电极上非连续排列。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述主栅电 极中设置镂空区域。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述背电场 为铝或者铝合金材料, 所述背电场与所述第一导电类型区域形成欧姆 接触。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述太阳电 池还包括形成于所述电池村底正面的减反射层。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述主栅电 极和背电极同时丝网印刷或钢网印刷而成。
在以上所述及的 MWT背接触太阳电池中, 所述第一绝缘介质层 为带状,所述第一绝缘介质层位于所述行 /列主栅电极与所述背电场之 间的电池衬底上并且部分地覆盖所述主栅电极的边沿及部分所述背 电场。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述第一绝 缘介盾层的宽度大于所述互连条的宽度。
^j ^JMJ^ aLji^J g电池的还一实施例' 所述多行 /列主栅电极之间以第一间距等间距分布, 所述多行 /列背电 极之间以第二间距等间距分布, 所述第一间距等于所述第二间距。
在以上所述及的 MWT背接触太阳电池中, 较佳地, 所述第一绝 材料制成。 , ": 、 , "
按照本发明的又一方面, 提供制备以上所述 MWT背接触太阳电 池的方法, 其包括以下步骤:
提供具有第一导电类型区域的电池衬底;
在所述电池村底中定位形成通孔;
对所述电池衬底表面进行第二导电类型的掺杂以形成第二导电 类型掺杂区域;
刻蚀除所述电池村底的正面以外的第二导电类型掺杂区域以形 成所述电池衬底正面的第二导电类型区域;
在所述电池衬底背面上构图形成主栅电极以及背电极;
在所述电池衬底背面上构图形成背电场;
在所述电池村底正面构图形成副栅电极; 以及
在所述电池衬底背面构图形成第一绝缘介质层。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 在形成通孔之后, 还包括步骤: 对所述电池衬底进行制绒和清洗, 并 去除制通孔所形成的损伤和残渣。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 进行第二导电类型的掺杂以后, 还包括步骤: 去除磷硅玻璃。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 进行第二导电类型的掺杂以后, 还包括步骤: 在所述电池衬底的正面 沉积减反射层。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 在构图形成副栅电极时, 还同时在所述电池衬底正面构图形成通孔连 接线。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地 所述主栅电极、 背电极、 背电场、 副栅电极的构图通过丝网印刷或钢 网印刷实现, 所述主栅电极、 背电极通过相同的浆料形成。
在一实施例中 , 所述主柵电极 彩成为通过坡瑢料含量基本为 0 的浆料印刷并烧结形成, 所述主栅电极与所述电池村底的接触为非欧 姆接触。
在又一实施例中, 所述主栅电极的形成为通过银浆印刷并烧结形 成, 并在所述烧结过程中同时形成在所述主栅电极与所述电池衬底之 间的第二绝缘介质层。
在以上所述及的 MWT背接触太阳电池的制备方法中, 较佳地, 所述银浆为含有玻璃料的银浆, 所述第二绝缘介质层是烧结过程中形 成的玻璃介质层。
在还一实施例中, 该制备方法还包括步骤: 在所述通孔的内表面 和所述第一导电类型区域的背面上构图印刷形成所述第二绝缘介质 层; 其中, 所述第二绝缘介质层的边缘部分延伸超出主栅电极与电池 衬底的接触区域。
按照本发明提供的制备方法, 其中, 所述刻蚀为湿法刻蚀, 所述 电池衬底正面朝上地浮于湿法刻蚀所使用的刻蚀液中。
按照本发明的再一方面, 提供一种太阳电池组件, 包括太阳电池 组串,所述太阳电池组串包括多个按行 /列排列的如上所述的任意一种 金属绕穿型背接触太阳电池,每行 /列的太阳电池中相邻的两个所述太 阳电池之间通过互连条连接, 每条互连条在基本同一平面、 基本同一 直线上同时连接至一个所述太阳电池的相应行 /列的主栅电极以及另 一个所述太阳电池的相应行 /列的背电极。
在以上所述及的太阳电池组件中, 较佳地, 同一行 /列所述太阳电 池中的相邻的两个所述太阳电池中, 其中一个所述太阳电池相对另一 个所述太阳电池旋转 180度设置。
在以上所述及的太阳电池組件中, 较佳地, 所述互连条的连接为 焊接连接或者导电胶带粘接。
在以上所述及的太阳电池组件中, 较佳地, 所述太阳电池组件还 包括正面透光性基板、正面密封粘接层、 背面密封粘接层、 背面基板, 所述正面密封粘接层和背面密封粘接层包覆所述太阳电池组串。
按照本发明的还一方面, 提供一种制备以上所述及的太阳电池组 件的方法, 其包括以下步骤: 将以上所述及的任一种多个金属绕穿型背接触太阳电池按行 /列 排列;
布置每行 /列所述太阳电池,以使相邻两个所述太阳电池中的一个 所述太阳电池的相应行 /列的主栅电极与另一个所述太阳电池的相应 行 /列的背电极在基本同一直线上; 以及
在基本同一平面上连接互连奈。
在以上所述及的太阳电池组件的制备方法中, 较佳地, 相邻两个 所述太阳电池中, 其中一个所述太阳电池相对另一个所述太阳电池旋 转 180度。
在以上所述及的太阳电池组件的制备方法中, 较佳地, 通过焊接 连接或者导电胶带粘接的方式实现互连条的连接。
本发明的技术效果是, 通过将多行 /列主栅电极以及多行 /列背电 极之间相互基本平行设置,每行 /列主栅电极沿与其平行的电池村底的 中心线与相应一行 /列背电极对称排布;从而可以方便地连接互连条来 组装太阳电池组件, 互连条连接的成本低; 每条互连条基本在同一平 面、 同一直线上连接两块太阳电池, 不易在太阳电池的边沿处产生隐 裂, 可靠性高、 成本低、 生产效率高, 并能确保太阳电池的高转换效 率。 另外, 由于太阳电池背面的第一绝缘介质层的存在, 太阳电池的 绝缘隔离特性好。 附图说明
从结合附图的以下详细说明中, 将会使本发明的上述和其它目的 及优点更加完全清楚,其中,相同或相似的要素采用相同的标号表示。
图 1是现有技术的将 MWT背接触太阳电池封装为太阳电池组件 的结构变化示意图, 其中, 图 1 ( a )为 MWT背接触太阳电池的背面 结构示意图, 图 1 ( b )为 MWT背接触太阳电池组件的制作过程中采 用导电胶粘接工艺时置放背板(Back Sheet ) 互连后的电性连接示意 图;
图 2是按照本发明一实施例的 MWT背接触太阳电池的背面结构 的局部示意图, 其中, 图 2 ( a )为该太阳电池的背面结构示意图, 图 2 ( b ) 为该太阳电池的正面结构示意图;
图 3是图 2所示实施例的 MWT背接触太阳电池中 A部分的放大 结构示意图;
图 4是图 2所示实施例的 MWT背接触太阳电池中 B部分的放大 结构示意图;
图 5是图 2所示实施例的 MWT背接触太阳电池的 C-C截面结构 示意图;
图 6是图 5中 A部分的放大结构示意图, 其中图 6 ( a )为其中一 实例, 图 6 ( b ) 为其中另一实例;
图 7是将多个图 2所示的 MWT背接触太阳电池互连以形成太阳 电池组件的太阳电池组串的过程示意图, 其中, 图 6 ( a ) 为多块太阳 电池 500的排列方式示意图, 图 6 ( b )为多块太阳电池 500通过互连 条焊接连接后形成的太阳电池组串的结构示意图;
图 8是按照本发明一实施例提供的太阳电池组件的分解结构示意 图;
图 9是制备图 2所示实施例的太阳电池的方法流程示意图; 图 10至图 1 8所示为按照图 9所示制备方法过程的结构变化示意 图;
图 19是制备图 2所示实施例的太阳电池的第二实施例方法流程 示意图。 具体实施方式
下面介绍的是本发明的多个可能实施例中的一些, 旨在提供对本发 明的基本了解, 并不旨在确认本发明的关键或决定性的要素或限定所要 保护的范围。 容易理解, 根据本发明的技术方案, 在不变更本发明的实 质精神下, 本领域的一般技术人员可以提出可相互替换的其它实现方 式。 因此, 以下具体实施方式以及附图仅是对本发明的技术方案的示例 或限制。
在附图中, 为了清楚起见, 有可能放大了层的厚度或者区域的面 积, 但作为示意图不应该被认为严格反映了几何尺寸的比例关系。
本发明中的"太阳电池的正面"是指电池工作时接收太阳光照射的 一面, 即光接收面, 而本发明中的 "太阳电池的背面"是指与 "太阳电池 的正面"相反的一面。 图 2所示为按照本发明一实施例的 MWT背接触太阳电池的背面 结构的局部示意图, 其中, 图 2 ( a )为该太阳电池的背面结构示意图, 图 2 ( b )为该太阳电池的正面结构示意图。 图 3所示为图 2所示实施 例的 MWT背接触太阳电池中 A部分的放大结构示意图。 图 4所示为 图 2所示实施例的 MWT背接触太阳电池中 B部分的放大结构示意图。 图 5所示为图 2所示实施例的 MWT背接触太阳电池的 C-C截面结构 示意图。 图 6所示为图 5中 A部分的放大结构示意图。 结合图 2至图 6所示, 对该 施例的 M WT背接触太阳电池进行详细说明。
该实施例的 MWT背接触太阳电池 500基于电池衬底 5 10形成。 在该实施例中, 选择 p型单晶硅片或多晶硅片作为电池衬底, 这样, 在该实施例中, 第一导电类型区域为 p型, 第二导电类型区域 n型。 电池衬底的材料类型并不是限制性的, 例如电池衬底 510还可以为多 晶硅材料或其它类型的太阳电池基体材料。 太阳电池的电池衬底 5 1 0 可以选择为对称性结构的形状, 例如, 可以为近似长方形或正方形, 其具体形状也不受图示实施例限制(例如还可能可以为平行四边形), 确定电池衬底 510的形状(也即太阳电池 500的形状) 的因素, 将其 后的太阳电池組件中描述。如图 5所示,在该实施例中, 电池衬底 5 1 0 中包括衬底本身提供的 p型半导体区域 512以及对电池衬底 5 10的进 行掺杂在电池村底的正面形成的 n型半导体区域 51 1。 n型半导体区 域 5 1 1的厚度范围可以为 0.1微米至 1微米。 p型半导体区域 5 12与 n 型半导体区域 51 1共同形成太阳电池的 pn结, n型半导体区域的电流 通过太阳电池的正面 (也即电池村底 510的正面) 的副栅电极 530收 集并进一步通过背面的主栅电极 550汇集来引出, p型半导体区域 5 12 的电流通过太阳电池的背电场 560汇集并由背电极 561引出。
参阅图 2 ( b )和图 4 , 太阳电池的正面 520上形成若干条副栅电 极 530 , 常规地, 副栅电极 530以线状设置, 副栅电极 530的线宽约 为 30微米至 140微米, 多条副栅电极之间规则均匀排列, 这样有利 于收集 n型半导体区域 51 1的电流, 例如, 副栅电极之间平行且等间 距平行设置。 但是, 副栅电极 530之间的间距和副栅电极 530本身的 线宽等不受本发明限制。 通常地, 副栅电极 530是以丝网 (或钢网) 印刷导电银浆烧结而成, 在该实施例中, 副栅电极 530是形成在正面 的 n型半导体区域 51 1表面上并与 n型半导体区域电性连接, 从而可 以收集其光生电流。
为形成 MWT背接触太阳电池, 在副栅电极 530对应所在位置的 电池衬底上, 可以形成若干个穿透电池衬底 510 (也即穿过 n型半导 体区域 5 1 1和 p型半导体区域 512 ) 的通孔 590。 每条或某些副栅电 极 530上, 相隔一定距离后会与主栅电极 550交叉连接, 从而主栅电 极 550可以有效地汇集并引出副栅电极 530收集的电流。 在该实施例 中, 可以选择其中若干条副栅电极 530上形成多个通孔 590 , 优选地, 在多条平行排列的副栅电极 530上, 各条副栅电极 530上的通孔在横 向上成直线布置, 在 n型半导体区域 51 1表面上设置多条基本垂直于 副栅电极的通孔连接线 555 , 通孔连接线 555可以将在一条直线上的 (即同一行的)通孔连接在一起导通, 因此, 某些未设置通孔 590的 副栅电极 530也可以通过通孔连接线 555汇集至背面的主栅电极 550 , 如此, 降低了制通孔的位置精度要求 (通孔未设置在通孔连接线 555 和副栅电极 530的交叉点处时、 也可以实现副栅电极与背面主栅电极 的电性连接)。 示意性地,如图 2 ( b )中共设置了 57条副栅电极 530 , 28条副栅电极上形成有通孔 590, 其中, 连续排列的 4条副栅电极上 设置通孔, 另外连续排列的 4条副栅电极上未设置通孔, 4条设置通 孔的副栅电极和 4条未设置通孔的副栅电极间隔排列, 即实现通孔在 所有副栅电极上非完全连续排列; 设置通孔的副栅电极上, 3 个通孔 等间距设置, 3条通孔连接线 555等间距地平行排列并与副栅电极 530 垂直交叉, 通孔设置在副栅电极 530与通孔连接线 555的交叉点处; 相应地, 如图 2 ( a ) 所示, 主栅电极 550分段设置, 通孔连接线 555 上的 4个连续的通孔对应背面设置的一段主栅电极, 因此, 相应于同 一行上的通孔的非完全连续排列, 主栅电极 550被分为 7段, 按行排 列, 一行 7段, 共三行。 因此, 通过以上具体设置, 正面的 n型半导 体区域 51 1电流以相对低串联电阻的方式汇集引出。 由于通孔连接线 555是等间距地平行设置的, 因此, 三行主栅电极 550也是基本等间 距地平行设置。
需要说明的是, 副栅电极的具体数量、 通孔连接线的具体数量、 主栅电极的分段数等不是限制性的, 本领域技术人员可以根据以上示 意性实例的启示, 对各个相应数量进行设置。
具体地, 通孔 590可以通过化学腐蚀、 机械打孔、 激光打孔、 电 子束打孔等方法形成。 通^连接线 555与副栅电极 530都可以通过丝 网印刷等方式形成, 通孔£接线 555的宽度相对于传统的设置于正面 的主栅电极的宽度小很多, 例如, 其宽度范围在 100微米至 1毫米之 间。
在其它实例中, 也可以在每条副栅电极上等间距地设置若干通 孔, 不同副栅电极上的通孔在横向以直线按行连续排列, 从而所有副 栅电极均引流至背面的同一主栅电极上(此时主栅电极并不分段并且 正面不再设置通孔连接线 555 ) , 每条主栅电极也基本等间距地平行 设置。 本领域技术人员应当理解, 通孔的设置排列方式, 还有许多其 它方式, 例如, 两奈副栅电极共用一个通孔等等, 通过排列通孔位置 来决定主栅电极的位置,使按行(或按列)排列的主栅电极等间距(是 指行之间或列之间的间距)地平行设置。 需要说明的是, 以上实例中, 对于一行(或一列)主栅电极被分段时, 段与段之间的间距并不一定 要求相等, 其并不是限制性的。
在一优选实例中, 如图 4所示, 在两条设置通孔 590的副栅电极
530之间、 并在通孔连接线 555上, 可以再增加设置 1个通孔 (如图 中虛线圈所示) , 这样, 8 个连续排列的通孔可以同时连接至同一段 主栅电极, 可以更可靠地将通孔连接线 555上的电流引出至背面的主 栅电极,提高电流的导通能力, 降低电池的串联电阻。在其它实例中, 在两条设置通孔 590的副栅电极 530之间、 并在通孔连接线 555上 增加设置的通孔也还可以为两个或两个以上。
继续参阅 3和图 5 , 在该实施例中, 三行主栅电极 550相互平行 地按行排列, 其可以被基本等间距地平行设置, 主栅电极 550包括背 面部分 550a和绕穿部分 550b , 二者均是通过一体化印刷形成。 背面 部分 550a设置在 p型半导体区域 512之上, 绕穿部分 550b设置在所 述通孔中并延伸至 n型半导体区域 51 1之上,从而实现与副栅电极 530 的连接(大致如图 5所示的结构) , 这样可以避免副栅电极 530的电 极材料进入通孔 590中而与通孔 590的 p型半导体区域 512形成欧姆 接触。 每奈主栅电极 550可以是连续地, 也可以为非连续的, 本领域 技术人员可以根据具体设计要求选择, 在该实施例中, 每条主栅电极 550是非连续的 (如图 2所示) , 也即由多段块状主栅电极构成。 另 夕卜, 电池衬底的背面上 (即 p型半导体区域 512之上)还形成背电场
I I 560。 根据太阳电池的基本原理, 背电场 560和主栅电极 550之间是 需要电性隔离的 (即 pn结的正极和负极之间不能直接电性接通) 。 因此, 通过通孔 590引至电池衬底 510的背面的主栅电极 550需要与 电池衬底电性隔离 (尤其需要与 p型半导体区域 512电性隔离) 。
图 6所示为图 5中 A部分的放大结构示意图, 其中图 6 ( a )为其 中一实例, 图 6 ( b ) 为其中另一实例。 主栅电极 550与电池衬底 510 的电性隔离 (也即太阳电池的正负电极的电性隔离)可以通过两种方 式实现:
第一种, 如图 6 ( a )所示, 将通过银浆丝网印刷并烧结形成主栅 电极 550的实例中, 主栅电极 550在通孔 590的内表面处与电池衬底 510 (例如 p型半导体区域 512 )的接触为非欧姆接触, 同样, 主栅电 极 550与电池衬底 510的背面的 (例如 p型半导体区域 512 ) 的接触 也为非欧姆接触, 这样, p型半导体区域 512所产生的电流不会流向 主栅电极 550, 从而不会与 n型半导体区域 51 1所产生的电流形成回 路; 优选地, 银浆选择为玻璃 (glass )料含量基本为 0的银浆料。
第二种, 如图 6 ( b ) 所示, 通过在主栅电极 550与电池衬底 5 10 之间设置第二绝缘介质层 551实现电性隔离, 在该实例中, 主栅电极 550以浆料丝网印刷并烧结形成, 第二绝缘介质层 551可以通过印刷 形成于通孔 590的内表面以及 p型半导体区域 512的背面表面上, 从 而在以银浆丝网印刷并烧结形成主栅电极 550时, 银浆不与电池衬底 510直接接触, 第二绝缘介质层 551可以为不导电的非金属氧化物材 料; 另外, 在烧结过程中, 第二绝缘介质层 551也可以通过在银浆与 电池衬底 510 (例如 p型半导体区域 512 ) 的接触区域自发地形成, 优选地, 银浆选择为含有玻璃 (glass )料的浆料, 玻璃料在银浆中的 质量百分比范围为 1%-80% (例如 35% ) , 从而可以实现在烧结过程 中 , 玻璃料成分会集中于电池衬底 510与浆料的接触面处而形成薄层 的玻璃介质层, 也即第二绝缘介质层 551。
在以上第一种实例中, 为尽最大可能地保证主栅电极 550与电池 衬底 510之间能形成非欧姆接触, 实现正负电极之间的电性隔离, 优 选地, 电池村底 510 的电阻率 (例如 p 型掺杂浓度) 的范围为 0.1 ohm'cm-20ohm'cm。
在其它优选实例中, 主栅电极 550上可以设置镂空区域(图中未 示出), 从而减少金属与硅的接触面积,有效降低金属与硅的复合率, 并减少金属浆料的消耗、 降低成本。
继续参阅图 2和图 5,背电场 560直接形成在 ρ型半导体区域 5 12 的背面表面上并与 ρ型半导体区域 512电性连接, 从而可以将 ρ型半 导体区域 512的电流通过太阳电池的背电场 560收集并引出。优选地, 为降低 ρ型半导体区域 5 12与背电场 560的接触电阻, 如图 3所示, 背电场 560具体地选择 ΙΠΑ簇的金属元素作为背电场材料(例如铝或 者铝合金) , 从而在烧结的过程中, 铝元素可以扩散进入 ρ型半导体 区域 512的表面区域、 实现对其进一步进行 ρ型掺杂, 从而形成相对 高掺杂浓度的区域 580,使区域 580易于与背电场 560形成欧姆接触, 并降低接触电阻; 大部分背电场材料仍然保留在背面形成了铝背场, 也即背电场 560。 需要说明的是, 高掺杂浓度的区域 580与 ρ型半导 体区域 512通常是没有如图 5所示的明显界限的, 这是由于以背电场 作为掺杂源时, 根据扩散掺杂的特点, 掺杂元素铝以浓度渐变方式扩 散至 ρ型半导体区域 512中。
背电场 560区域中, 还设置背电极 561 , 其功能之一在于实现背 电场与互连条之间的连接, 其功能之二在于将背电场 560的电流进一 步引出至互连条。 背电极 561被背电场 560包围, 所以背电极 561对 应接触的 η型半导体区域也被补充掺杂区域 580隔离, 因此其不会导 致 ρη结正负极的短接。 在该实施例中, 如图 2所示, 太阳电池的电 池村底 510为正方形,背电极 561也如主栅电极 550—样,背电极 561 按行设置, 每行主栅电极 550的一旁对应设置一行背电极 561。 为使 太阳电池在同一平面上旋转 180° 后, 每行主栅电极能与另一相邻太 阳电池的相应行的背电极基本对齐, 每行背电极也能与另一相邻太阳 电池的相应行的主栅电极基本对齐; 每行背电极沿电池衬底 5 10的中 心线 501与每行主栅电极对称排布,中心线 501平行于主栅电极 550, 并且所有行背电极之间平行设置。 背电极 561的行数(或列数) 与主 栅电极 550的行数(或列数)相等, 多行背电极 561之间等间距地平 行设置, 多行主栅电极 550之间等间距地平行设置, 并且, 相邻行背 电极 561的间距等于相邻行主栅电极 550之间的间距。 通常地, 单个 背电极 561通常为点状 (用于与互连条连接) , 多点背电极 561 (例 如图中所示 1 1个)排列形成行。 在主栅电极 550分段设置时 (也即 同一行的主栅电极不连续设置),在主栅电极 550的一侧的背电场 560 的电流可以通过主栅电极的段间隙之间的背电场引流至其另一侧的 背电极 561上。
继续参阅图 5, 在又一具体实施例中, 太阳电池 500还包括沉积 在电池衬底 510正面的、 n型半导体区域 511之上的减反射层 513。 减反射层 513 可以为氮化硅等材料, 其具体厚度范围可以为 50-120 纳米。 通过设置减反射层 513, 可以进一步有效降低太阳电池表面的 反射率, 从而提高太阳电池的转换效率。 需要说明的是, 在以上实施 例的太阳电池 500中, 由于正负电极之间的隔离不需要通过激光划刻 形成隔离槽或者准湿法刻蚀形成隔离槽, 因此,其转换效率相对较高。
图 7所示为将多个图 2所示的 MWT背接触太阳电池互连以形成 太阳电池组件的太阳电池组串的过程示意图, 其中, 图 7 ( a)为多块 太阳电池 500的排列方式示意图, 图 7 (b)为多块太阳电池 500通过 互连条焊接连接后形成的太阳电池组串的结构示意图。 通常地, 太阳 电池组串是通过多块太阳电池依次串联正负极而形成(即一块太阳电 池的主栅电极连接另一块太阳电池的背电极) 。 以下结合图 7, 对太 阳电池组串 5000的结构及其制备方法进行说明。
参阅图 7 ( a) , 以三块图 2所示的太阳电池 500串联连接形成太 阳电池组串 5000进行示意性说明。三块太阳电池分别为 500A、 500B、 500C, 在此实例中, 首先将它们按行排列 (也可以按列) , 其中, 太 阳电池 500B相对于太阳电池 500A或 500C旋转 180度, 从而可以将 其中一个太阳电池 (例如太阳电池 500A) 的一行主栅电极与另一个 相邻的太阳电池 (例如太阳电池 500B) 的一行背电极基本对齐在一 条直线上(这是由于每行背电极 561沿电池衬底 510的中心线 501与 每行主栅电极对称排布) 。 在太阳电池基本设置为正方形状时 (或者 为长方形状时) , 按行排列的太阳电池的边沿也能对齐。
进一步, 参阅图 7 (b) , 每条互连条 940的一端将其中一块太阳 电池(例如 500A) 的一行主栅电极连接, 其另一端将另一相邻块太 阳电池 (例如 500B) 的对齐在一条直线上的一行背电极连接, 具体 地, 互连条 940与主栅电极或背电极之间的连接, 可以为焊接连接方 式, 也可以为其它连接方式(例如采用导电胶带粘接的方式) 。 如图 7 (b) 所示, 在该实施例中, 三条互连条焊接连接太阳电池 500A和 500B , 其将太阳电池 500A的主栅电极和太阳电池 500B的背电极串 联连接; 三条互连条焊接连接太阳电池 500B和 500C, 其将太阳电池 500B的主栅电极和太阳电池 500C的背电极串联连接; 同行太阳电池 之间依次交叉布置, 从而可以方便地实现互连。 因此, 太阳电池之间 的互连可以通过常规的焊接方式实现连接, 并且, 每条焊接条基本在 同一平面、 同一直线上焊接连接两块太阳电池, 相对于传统的太阳电 池的焊接连接以及现有的 MWT背接触太阳电池的互连连接方式, 其 连接方便(例如可以采用常规的焊接方式来连接) , 也不易在太阳电 池的边沿处产生隐裂, 可靠性高、 成本低, 能确保太阳电池组件的大 批量生产 (生产效率高) , 并能确保太阳电池的高转换效率。
在互连条 940连接太阳电池的主栅电极时, 必须避免互连条 940 与该太阳电池的电池衬底或者背电场电性连接; 同样, 在互连条 940 焊接连接一太阳电池的背电极时, 必须避免互连条 940与该太阳电池 的主栅电极电性连接。 因此, 如图 7和图 2所示, 通过第一绝缘介质 层 540实现以上目的, 具体地, 第一绝缘介质层 540带状设置, 对应 每行主栅电极 550设置一带状第一绝缘介质层 540, 主栅电极 550与 背电场 560之间的电池村底区域(部分 p型半导体区域 512 )被带状 第一绝缘介质层 540覆盖, 第一绝缘介质层 540并且部分地覆盖主栅 电极 550的边沿, 还部分地覆盖部分背电场 560 (例如, 覆盖分段的 主栅电极 550的间隙之间的背电场部分、 背电场的边沿等) 。 互连条 940的一端置于主栅电极 550上时, 第一绝缘介质层 540可以实现其 与同一太阳电池的背电场 560绝缘隔离; 互连条 940的另一端连接于 背电极 561上时, 第一绝缘介质层 540可以进一步降低互连条 940与 同一电池的主栅电极 550短接的几率。 因此, 图 6所示的电池组件隔 离特性好。 优选地, 互连条 940的宽度小于带状第一绝缘介质层 540 的宽度。
图 8所示为按照本发明一实施例提供的太阳电池組件的结构示意 图。 该实施例的太阳电池组件包括如图 6所示实施例的太阳电池组串 5000 , 还主要地包括正面透光性基板 5100、 正面密封粘接层 5200A、 背面密封粘接层 5200B、 背面基板 5300。 正面透光性基板 5100、 正 面密封粘接层 5200A、 太阳电池组串 5000、 背面密封粘接层 5200B、 背面基板 5300由上之下依次设置, 正面密封粘接层 5200A和背面密 封粘接层 5200B基本包覆太阳电池组串 5000。 具体地, 正面透光性 基板 5100可以为高强度的钢化玻璃板, 密封粘接层 5200A和 5200B 可以选择抗沖击性能和耐久性更好的胶粘剂材料, 例如, 可以选择采 用等离子体密封材料、 PVB ( Polyvinyl Butyral, 聚乙烯醇缩丁醛) 材 料、 EVA材料等, 背面基板 5300可以选择 TPT (聚氟乙烯复合膜) 基板或者钢化玻璃板等。 太阳电池組件的其它具体细节部件在此不再 "详述。
图 9所示为制备图 2所示实施例的太阳电池的第一实施例方法流 程示意图。 图 10至图 18所示为按照图 9所示制备方法过程的结构变 化示意图。 以下结合图 2、 图 9至图 18说明该太阳电池的制备方法过 程。
首先, 步骤 S410, 提供具有第一导电类型区域的电池衬底。
参阅图 10, 在该实施例中, 太阳电池是基于电池衬底 510制备形 成, 选择 p型单晶硅或多晶硅作为电池衬底 510 (也即第一导电类型 为 p型) 。 具体地, p型单晶硅(原始硅片衬底) 的电阻率范围可以 为 O. lohm ' cm 至 20ohm ' cm,但这不是限制性的, p型电池衬底 510 可以直接用于形成第一导电类型区 戈 512。 电池^ "底 510的正面 520 在太阳电池工作时被太阳光照射, 电池村底选择为对称性结构的形 状, 例如, 可以为长方形或者正方形。
进一步, 步骤 S420, 在所述电池衬底中定位形成通孔。
参阅图 1 1 , 在电池衬底 510上形成若干个通孔 590, 通孔 590从 电池村底的正面穿透至电池衬底的背面。 通孔 590可以化学腐蚀、 机 械打孔、 激光打孔、 电子束打孔等方法形成, 通常地, 选择激光打孔 形成。通孔可以选择为大致圆柱形孔,其直径范围约为 10微米至 1000 微米。 通孔 590在电池村底中的位置布局及数量可以参照图 2和图 4 及其以上相关说明。
需要说明的是, 在步骤 420之后, 还通常包括步骤 425 (图中未 示出) , 即对电池村底进行制绒和清洗, 并去除制通孔所形成的损伤 和残渣。 在该步骤中制绒工艺和清洗工艺的具体过程与常规的工艺基 本相同。 通过制绒, 例如可以在电池衬底表面形成诸如金字塔形状的 绒面(图中未示出),从而有利于提高电池的转换效率; 同时通孔 5 也被所形成的絨面粗糙化, 这有利于改善浆料填充的可靠性。 进一步, 步骤 430, 主要对电池衬底的正面进行第二导电类型的 掺杂。
参阅图 12所示, 在该实施例中, 对电池衬底 510的正面进行 n 型掺杂(也即第二导电类型), 优选地, 可以以两片电池衬底为一组, 背对背地接触在一起, 然后置于扩散炉中进行单面扩散, 这样有利于 提高产量。 在该优选实例中, 在对电池村底正面进行掺杂时, 不可避 免地会对电池村底 510的側面及背面进行掺杂, 同样通孔 590的内表 面也被掺杂, 因此会形成如图 12所示的电池衬底 5 10表面的 n型半 导体掺杂区域 5 1 1 a, 此时 n型半导体掺杂区域 51 1 a基本包覆 p型半 导体区域 512。 具体地, 可以选择扩散掺杂、 离子注入掺杂等方法进 行掺杂。
进一步, 步骤 S440 , 湿法刻蚀去除电池村底的侧面及背面上的第 二导电类型的掺杂区域。
如步骤 S440 所描述, 主要对电池衬底的正面进行掺杂时, 不可 避免地会在正面表层之外的地方 (例如侧面) 被同时掺杂。 如图 1 3 所示, 可以将电池衬底 510浮于刻蚀液中, 其中正面朝上, 从而电池 衬底 510的正面不会被刻蚀, 除正面的 n型半导体掺杂区域外的其他 n型区域(例如通孔的孔壁、 衬底侧面和 /或背面)将被刻蚀掉, 从而 n型半导体掺杂区域 51 1a被形成为正面上的 n型半导体区域 5 1 1。 刻 蚀液可以为各种能对硅进行刻蚀的溶液, 其具体类型和成分不受本发 明实施例的限制。另外需要说明的是,在该实施例中, 当电池衬底 5 10 浮于刻蚀液中, 由于液面表面张力的作用, 在电池衬底 5 10的正面边 沿处, 其会与刻蚀液接触而被刻蚀, 因此在电池村底 5 10的正面的边 角处的 n型半导体区域会被部分地刻蚀(图中未示出) , 也即 n型半 导体区域 51 1的边沿边角将被部分地刻蚀, 但是, 其被刻蚀的区域是 有限的。
需要说明的是, 在该湿法刻蚀过程中, 同时可以去除掺杂过程中 在电池衬底 510表面形成的磷硅玻璃层。
进一步, 步骤 S450 , 在所述电池衬底的正面沉积减反射层。
参阅图 14 , 在该实施例中, n型半导体区域之上正面沉积的减反 射层 513, 其可以通过 PECVD、 LPCVD或 APCVD等方法形成, 减 反射层 513可以选择为氮化硅等材料, 其具体厚度范围可以为 50- 120 纳米。 通过设置减反射层 5 13, 可以有效提高太阳电池的转换效率。 进一步, 步骤 S460 , 在所述电池衬底背面构图印刷填充通孔以形 成主栅电极, 并同时印刷形成背电极。
参阅图 15 , 在该实施例中, 可以以丝网印刷或钢网印刷的方式构 图形成主栅电极 550以及背电极 561 , 在此过程中, 浆料(例如银浆) 同时填充通孔 590,从而形成主栅电极 550的背面部分 550a和绕穿部 分 550b。 在该步骤中, 可以选择浆料的类型(例如使用特殊类型的填 孔浆料)和 /或烧结工艺等, 以使主栅电极 550与 p型半导体区域 5 12 基本形成非欧姆接触或第二绝缘介质层 551。 主栅电极 550、 背电极 561的具体位置布局等可以参照图 2、 图 3、 图 6及其以上相关说明。
为实现主栅电极 550与电池衬底 5 10的电性隔离,在该步骤 S460 中, 可以通过两种方式实现:
第一种方式, 结合图 6 ( a )所示, 将通过银浆丝网印刷并烧结形 成主栅电极 550的过程中, 主栅电极 550所使用的第一种银浆为玻璃 料含量基本为 0的银浆, 主栅电极 550与电池衬底 5 10 (例如 p型半 导体区域 5 12 )之间形成非欧姆接触;
第二种方式, 结合图 6 ( b )所示, 将通过银浆丝网印刷并烧结形 成主栅电极 550的过程中,在该实例中,银浆选择为含有玻璃(glass ) 料的浆料, 玻璃料的在银浆中的质量百分比范围为 1 %-80%, 从而可 以实现在烧结过程中,玻璃料集中于电池衬底 5 10与浆料的接触面处, 从而形成薄层的玻璃介盾层, 也即第二绝缘介质层 551 ; 该第二绝缘 介质层 55 1形成于电池村底 5 10和主栅电极 550之间, 从而可以实现 主栅电极 550与电池衬底 510之间的基本绝缘隔离。
需要说明的是, 在银浆中, 包括功能相、 粘结相和载体相, 粘结 相通常为玻璃料, 玻璃料的主要成分通常为 Si02、 PbO、 B203等无机 氧化物, 其能将功能相的银粉颗粒粘结在一起, 并使导电银层与硅片 表面牢固地结合起来。 玻璃料的作用机理为: 在太阳电池与导电银浆 高温烧结过程中, 无机氧化物的玻璃料熔化并腐蚀硅基薄减反射膜形 成窗口, 并与硅表面牢固的附着在一起。 因此, 在高温烧结下银原子 与硅原子按一定比例互融熔后形成银硅合金, 从而会使银浆所形成的 银电极和硅基之间形成欧姆接触。 在上述第一种方式中, 当主栅电极 550所使用的第一种银浆玻璃料含量基本为 0时, 银浆所形成的主栅 电极 550将不会与电池衬底形成欧姆接触(也即不会形成银硅合金), 并使主栅电极 550与其所直接接触的电池衬底之间保持电性隔离。
需要说明的是, 在本发明中, 银浆中 "玻璃料含量基本为 0" 并 不仅仅限定为玻璃料的质量百分比含量绝对为 0的情形, 本领域技术 人员应当理解到, 在主栅电极 550在形成过程中不形成类似银硅合金 的情况下, 玻璃料含量基本为 0可以包括存在正偏差的情形, 例如, 玻璃料的质量百分比含量为 (0%+0.5% ) 时, 或者是所加玻璃料添加 剂不具备所述玻璃料的功能, 由于不会形成欧姆接触, 玻璃料含量被 理解为基本为 0。
另外, 优选地, 在丝网印刷形成主栅电极 550时, 还可以通过设 置网版的图案、 在印刷形成主栅电极 550时形成若干镂空区域(图中 未示出) , 从而可以大大减小主栅电极金属与硅(也即 P型半导体区 域 5 12 ) 的接触面积, 有效地降低金属与硅的复合, 进而提高太阳能 的转换效率。 同时, 设置镂空区也能大大减少主栅电极金属用量(例 如银浆料) , 从而降低太阳电池的成本。 镂空区域在主栅电极上的位 置以及形状大小不是限制型的, 其以不影响主栅电极与通孔中金属的 连接为原则。
进一步, 步骤 S470 , 在所述电池衬底背面构图形成背电场。
参阅图 16 , 在该实施例中, 背电场 560可以通过丝网印刷铝浆于 电池衬底 510背面, 工艺顺序可以介于形成主栅电极 550的形成与副 栅电极 530的形成之间。 在选择铝 (其属于 ΙΠ Α簇的金属元素)作为 背电场材料时, 铝可以对其所接触的 p型半导体区域 512进一步进行 p型掺杂 (特别是在形成铝电极的金属化过程中, 例如烧结过程) ,从 而形成相对高掺杂浓度的区域 580 , 使区域 580 易于与背面电极 560 形成欧姆接触, 并降低接触电阻。
进一步, 步骤 S480, 在所述电池衬底正面构图形成副栅电极。 参阅图 17, 在该实施例.中, 可以采用丝网印刷或者钢网印刷的方 式构图形成副栅电极 530 , 在此过程中, 可以选择浆料 (例如银浆) 的类型以及烧结工艺, 以使副栅电极 530与 n型半导体区域 5 1 1形成 良好的电性接触 (例如欧姆接触) 。 优选地, 在该步骤中, 还同时构 图形成通孔连接线 555 (如图 2所示) , 副栅电极 530和通孔连接线 555可以采用相同的浆料。 副栅电极 530、 通孔连接线 555的构图设 置要求可以参照图 2及以上相关说明。
在又一实例中, 以上步骤 S450、 S460和 S470中的烧结过程可以 在印刷副栅电极后同时烧结完成。
进一步, 步骤 S490, 在所述电池衬底背面构图形成第一绝缘介质 层。
参阅图 18 , 在该实施例中, 可以采用光刻、 丝网印刷、 喷涂等方 法构图形成第一绝缘介质层 540 , 第一绝缘介质层 540具体可以为低 温固化型有机物材料或高温烧结型无机非金属氧化物材料, 例如聚酰 亚胺 (Polyimide , PI) , 环氧树脂、 阻焊油墨等。 其厚度范围可以为 2 微米至 100微米。第一绝缘介盾层 540的构图设置要求可以参照图 2、 图 7及以上相关说明。
至此, 图 2所示的 MWT背接触太阳电池 500基本形成。 ' 还需要说明的是, 在印刷形成副栅电极 530、 主栅电极 550、 背 电场 560所使用的浆料中, 还可以包括所掺杂的合金元素。 例如, 银 浆中掺杂其它金属元素形成银合金电极, 铝浆中掺杂其它金属元素形 成铝合金电极。
图 19所示为制备图 2所示实施例的太阳电池的第二实施例方法 流程示意图。
对比图 19和图 9,第二实施例的制备方法与第一实施例的制备方 法的差异仅在于增加步骤 S455, 步骤 S455是用来实现主栅电极 550 与电池衬底 510的电性隔离, 形成图 6 ( b )所示的实例的结构。 在该 实施例中, 不同于第一实施例的步骤 S460 中的烧结自发形成第二绝 缘介质层 551的方式, 是通过另外单独步骤 S455构图形成的。
在步骤 S455 中, 在欲形成主栅电极的电池衬底上构图形成第二 绝缘介盾层 551。 具体地, 第二绝缘介质层 551可以通过印刷构图形 成于通孔 590的内表面和 p型半导体区域 512的背面表面上, 从而在 步骤 S70中, 以银浆丝网印刷并烧结形成主栅电极 550时, 银浆不与 电池衬底 510直接接触, 从而实现主栅电极 550与电池衬底 5 10的之 间的电性隔离。 优选地, 第二绝缘介质层 551的边缘部分延伸超出欲 形成的主栅电极 550与电池衬底 (例如 p型半导体区域 5 12 ) 的接触 区域, 防止主栅电极 550在边缘部分与电池衬底(例如 p型半导体区 域 512 ) 的直接接触。 第二绝缘介质层 551的厚度范围可以为 1微米 -50微米。
在图 19所示制备方法过程中, 其它过程基本与图 9的其它过程 基本相同, 在此不再——赞述。
需要说明的是, 在以上图 9和图 19所示实施例的方法过程中, 副栅电极和背电场之间的形成顺序不是限制性的, 也即, 步骤 S480 也可以在步骤 S470之前完成; 另外, 副栅电极 530也可以在第一绝 缘介质层 540形成之后再构图形成, 即步骤 S480也可以在步骤 S490 之后完成。
还需要说明的是, 在以上图 9和图 19所示实施例的方法过程中, 通孔形成步骤(即步骤 S420 )也可以在步骤 S440或者步骤 S450之后 完成。
应当理解, 尽管以上实施例中仅描述了主栅电极和背电极按行排 列的情形, 本领域技术人员可以根据以上教导或启示, 设计出相应的 主栅电极和背电极按列排列的太阳电池和太阳电池组件的实施例。
以上例子主要说明了本发明的 MWT背接触太阳电池、 MWT背 接触太阳电池的制备方法及其太阳电池組件、 太阳电池组件的制备方 法。 尽管只对其中一些本发明的实施方式进行了描述, 但是本领域普 通技术人员应当了解, 本发明可以在不偏离其主旨与范围内以许多其 它的形式实施。 因此, 所展示的例子与实施方式被视为示意性的而非 限制性的, 在不脱离如所附各权利要求所定义的本发明精神及范围的 情况下, 本发明可能涵盖各种的修改与替换。

Claims

权 利 要 求
1. 一种金属绕穿型背接触太阳电池, 其特征在于, 包括:
电池衬底, 包括位于其背面的第一导电类型区域和位于其正 面的第二导电类型区域, 所述第二导电类型区域与所述第一导电 类型区域形成 PN结;
多个通孔, 其穿过所述电池衬底, 且所述通孔内表面的导电 类型为第一导电类型;
副栅电极, 其设置于所述电池衬底正面;
多行 /列主栅电极,其设置于所述电池衬底背面并通过所述电 池村底中的通孔与所述副栅电极电性连接;
背电场, 其设置于所述电池衬底背面;
多行 /列背电极,其用于输出所述背电场所收集的电流并用于 封装成组件时所述太阳电池之间的互连; 以及
第一绝缘介质层, 其设置于所述电池衬底的背面; 其中, 所述主栅电极与所述电池村底的接触为非欧姆接触, 或者 所述主栅电极与所述电池衬底之间还设置有第二绝缘介质层;
多行 /列主栅电极以 多行 /列背电极之间相互基本平行设置, 每 行 /列主栅电极沿与其平行的电池衬底的中心线与相应一行 /列背电极 对称排布;
两个所述太阳电池之间可操作地通过互连奈连接, 所述第一绝缘 介质层用于防止所述互连条同时电性连接于同一所述太阳电池的所 述主栅电极和所述背电场。
2. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述主栅电极与所述电池衬底的接触为非欧姆接触时, 所述主栅 电极通过玻璃料含量基本为 0的浆料印刷并烧结形成。
3. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所迷主栅电极与所述电池衬底之间设置有第二绝缘介盾层时, 所 述主栅电极通过银浆印刷并烧结形成, 所述第二绝缘介质层是所述银 浆与所述电池衬底在所述烧结过程中形成。
4. 如权利要求 3 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述银浆为含有玻璃料的银浆, 所述第二绝缘介质层是烧结过程 中形成的玻璃介质层。
5. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第二绝缘介质层是通过在所述通孔内表面上以及在所述第一 导电类型区域的背面上构图印刷形成的, 所述第二绝缘介质层的边缘 部分延伸超出主栅电极与电池衬底的接触区域。
6. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 每行 /列所述主栅电极被分段设置。
7. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述通孔在所述副栅电极上等间距地设置, 分别位于 m条所述副 栅电极上的 m个通孔基本在一条直线上按行 /列排列, 其中, m为大 于或等于 3的整数。
8. 如权利要求 1 所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述太阳电池还包括设置于所述电池村底正面的通孔连接线, 所 述通孔连接线连接按行 /列排列的所述通孔。
9. 如权利要求 8 所述的金属绕穿型背接触太阳电池, 其特征在 于, 在所述通孔连接线上、 相邻的所述副栅电极之间还设置有一个或 一个以上通孑 L。
10. 如权利要求 8所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述通孔连接线的线宽范围为 100微米至 1毫米。
11. 如权利要求 7所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述副栅电极的条数为 n, n大于 m, 按行 /列排列的所述 m个通 孔在 n条副栅电极上非连续排列。
12. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述主栅电极中设置镂空区域。
13. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所迷背电场为铝或者铝合金材料, 所述背电场 所述第一导电类 型区域形成欧姆接触。
14. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述太阳电池还包括形成于所述电池村底正面的减反射层。
15. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述主栅电极和背电极同时丝网印刷或钢网印刷而成。
16. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一绝缘介质层为带状, 所述第一绝缘介质层位于所述行 / 栅电极的边 及部分所述背电场。 '
17. 如权利要求 16所述的金属绕穿型背接触太阳电池,其特征在 于, 所述第一绝缘介质层的宽度大于所述互连条的宽度。
18. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述多行 /列主栅电极之间以第一间距等间距分布, 所述多行 /列 背电极之间以第二间距等间距分布, 所述第一间距等于所述第二间 距。
19. 如权利要求 1所述的金属绕穿型背接触太阳电池, 其特征在 于, 所述第一绝缘介质层由低温固化型有机物材料或高温烧结型无机 非金属氧化物材料制成。
20. 一种如权利要求 1所述的金属绕穿型背接触太阳电池的制备 方法, 其特征在于, 包括以下步驟:
提供具有第一导电类型区域的电池村底;
在所述电池村底中定位形成通孔;
对所述电池衬底表面进行第二导电类型的掺杂以形成第二导电 类型掺杂区域;
刻蚀除所述电池衬底的正面以外的第二导电类型掺杂区域以形 成所述电池衬底正面的第二导电类型区域;
在所述电池村底背面上构图形成主栅电极以及背电极;
在所述电池衬底背面上构图形成背电场;
在所述电池衬底正面构图形成副栅电极; 以及
在所述电池衬底背面构图形成第一绝缘介质层。
21. 如权利要求 20所述的制备方法, 其特征在于, 在形成通孔之 后, 还包括步骤: 对所迷电池衬底进行制绒和清洗, 并去除制通孔所 形成的损伤和残渣。
22. 如权利要求 20所述的制备方法, 其特征在于, 进行第二导电 类型的掺杂以后, 还包括步骤: 去除磷硅玻璃。
23. 如权利要求 20所述的制备方法, 其特征在于, 进行第二导电 类型的掺杂以后,还包括步骤:在所述电池衬底的正面沉积减反射层。
24. 如权利要求 20所述的制备方法, 其特征在于, 在构图形成副 栅电极时, 还同时在所述电池衬底正面 ¾图形成通孔连接线。
25. 如权利要求 20所述的制备方法,其特征在于,所述主栅电极、 背电极、 背电场、 副栅电极的构图通过丝网印刷或钢网印刷实现, 所 述主栅电极、 背电极通过相同的浆料形成。
26. 如权利要求 20所述的制备方法, 其特征在于, 所述主栅电极 的形成为通过玻璃料含量基本为 0的浆料印刷并烧结形成, 所述主栅 电极与所述电池衬底的接触为非欧姆接触。
27. 如权利要求 20所述的制备方法, 其特征在于, 所述主栅电极 的形成为通过银浆印刷并烧结形成, 并在所述烧结过程中同时形成在 所述主栅电极与所述电池衬底之间的第二绝缘介质层。
28. 如权利要求 27所述的制备方法, 其特征在于, 所述银浆为含 有玻璃料的银浆, 所述第二绝缘介质层是烧结过程中形成的玻璃介质 层。
29. 如权利要求 20所述的制备方法, 其特征在于, 该制备方法还 包括步骤: 在所述通孔的内表面和所述第一导电类型区域的背面上构 图印刷形成所述第二绝缘介质层; 其中, 所述第二绝缘介质层的边缘 部分延伸超出主栅电极与电池衬底的接触区域。
30. 如权利要求 20所述的制备方法, 其特征在于, 所述刻蚀为湿 法刻蚀, 所述电池衬底正面朝上地浮于湿法刻蚀所使用的刻蚀液中。
31 一种太阳电池组件, 包括太阳电池组串, 其特征在于, 所述 太阳电池组串包括多个按行 /列排列的如权利要求 1至 19中任一项所 述的金属绕穿型背接触太阳电池,每行 /列的太阳电池中相邻的两个所 述太阳电池之间通过互连条连接, 每条互连条在基本同一平面、 基本 同一直线上同时连接至一个所述太阳电池的相应行 /列的主栅电极以 及另一个所述太阳电池的相应行 /列的背电极。
32. 如权利要求 31 所述的太阳电池组件, 其特征在于, 同一行 / 列所述太阳电池中的相邻的两个所述太阳电池中, 其中一个所述太阳 电池相对另一个所述太阳电池旋转 180度设置。
33. 如权利要求 3 1所述的太阳电池组件, 其特征在于, 所述互连 条的连接为焊接连接或者导电胶带粘接。
34. 如权利要求 31所述的太阳电池组件, 其特征在于, 所述太阳 电池组件还包括正面透光性基板、正面密封粘接层、背面密封粘接层、 背面基板, 所述正面密封粘接层和背面密封粘接层包覆所述太阳电池 组串。
35. 一种如权利要求 31所述的太阳电池组件的制备方法,其特征 在于, 包括步骤:
将如权利要求 1 所述的多个金属绕穿型背接触太阳电池按行 /列 排列;
布置每行 /列所述太阳电池,以使相邻两个所述太阳电池中的一个 所述太阳电池的相应行 /列的主栅电极与另一个所述太阳电池的相应 行 /列的背电极在基本同一直线上; 以及 ,
在基本同一平面上连接互连条。
36. 如权利要求 31所述的制备方法, 其特征在于, 相邻两个所迷 太阳电池中, 其中一个所述太阳电池相对另一个所述太阳电池旋转 1 80度。
37. 如权利要求 31所述的制备方法, 其特征在于, 通过焊接连接 或者导电胶带粘接的方式实现互连条的连接。
PCT/CN2011/000755 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法 WO2012145864A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000755 WO2012145864A1 (zh) 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000755 WO2012145864A1 (zh) 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法

Publications (2)

Publication Number Publication Date
WO2012145864A1 true WO2012145864A1 (zh) 2012-11-01
WO2012145864A8 WO2012145864A8 (zh) 2012-12-20

Family

ID=47071535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000755 WO2012145864A1 (zh) 2011-04-29 2011-04-29 太阳电池、太阳电池组件及其制备方法

Country Status (1)

Country Link
WO (1) WO2012145864A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618009A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种丝网印刷背钝化电池及其制备方法
CN104617163A (zh) * 2015-01-12 2015-05-13 浙江光隆能源科技股份有限公司 一种太阳能电池片及其扩散工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059921A (ja) * 2007-08-31 2009-03-19 Sharp Corp 光電変換素子、光電変換素子接続体および光電変換モジュール
CN101399293A (zh) * 2007-09-28 2009-04-01 三洋电机株式会社 太阳能电池、太阳能电池模块和太阳能电池的制造方法
CN101919064A (zh) * 2007-11-19 2010-12-15 荷兰能源建设基金中心 制造背接触式光伏电池的方法及由该方法制得的背接触式光伏电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059921A (ja) * 2007-08-31 2009-03-19 Sharp Corp 光電変換素子、光電変換素子接続体および光電変換モジュール
CN101399293A (zh) * 2007-09-28 2009-04-01 三洋电机株式会社 太阳能电池、太阳能电池模块和太阳能电池的制造方法
CN101919064A (zh) * 2007-11-19 2010-12-15 荷兰能源建设基金中心 制造背接触式光伏电池的方法及由该方法制得的背接触式光伏电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618009A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种丝网印刷背钝化电池及其制备方法
CN104617163A (zh) * 2015-01-12 2015-05-13 浙江光隆能源科技股份有限公司 一种太阳能电池片及其扩散工艺
CN106024599A (zh) * 2015-01-12 2016-10-12 浙江光隆能源科技股份有限公司 太阳能电池片的扩散工艺
CN106024599B (zh) * 2015-01-12 2018-12-04 浙江光隆能源科技股份有限公司 太阳能电池片的扩散工艺

Also Published As

Publication number Publication date
WO2012145864A8 (zh) 2012-12-20

Similar Documents

Publication Publication Date Title
US10115839B2 (en) Module fabrication of solar cells with low resistivity electrodes
US8859322B2 (en) Cell and module processing of semiconductor wafers for back-contacted solar photovoltaic module
US9502590B2 (en) Photovoltaic devices with electroplated metal grids
KR102018652B1 (ko) 태양 전지
WO2016045227A1 (zh) 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
CN104810423B (zh) 新型无主栅高效率背接触太阳能电池和组件及制备工艺
JP2018500775A (ja) 無メイングリッド高効率のバックコンタクト太陽電池、アセンブリ及びその製造プロセス
US20170256661A1 (en) Method of manufacturing photovoltaic panels with various geometrical shapes
CN102760777A (zh) 太阳电池、太阳电池组件及其制备方法
CN105789359A (zh) 一种双面太阳能电池组件的制作方法
CN103489934A (zh) 一种双面透光的局部铝背场太阳能电池及其制备方法
JPWO2014002329A1 (ja) 太陽電池モジュールおよびその製造方法
US20220271190A1 (en) Shingled solar cell panel and method of manufacturing the same
WO2018176182A1 (zh) 一种n型ibc太阳能电池拼片连接的电池串及其制备方法、组件和系统
CN107195696A (zh) 一种mwt太阳能电池片及利用其制成的mwt太阳能电池组件
CN205609550U (zh) 一种双面太阳能电池组件
JP6656225B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
CN113745357A (zh) 一种多主栅背接触异质结太阳电池及其制作方法
CN216084904U (zh) 一种多主栅背接触异质结太阳电池
CN102760778A (zh) 太阳电池、太阳电池组件及其制备方法
WO2012145864A1 (zh) 太阳电池、太阳电池组件及其制备方法
WO2013057978A1 (ja) 光電変換装置およびその製造方法、光電変換モジュール
JP6298152B2 (ja) 太陽電池およびこれを用いた太陽電池モジュール
CN209785947U (zh) Mwt太阳能电池片、电池串及电池组件
KR101153591B1 (ko) 결정질 실리콘 태양전지의 구조 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864450

Country of ref document: EP

Kind code of ref document: A1