WO2012144373A1 - スイッチ回路、選択回路、及び電圧測定装置 - Google Patents

スイッチ回路、選択回路、及び電圧測定装置 Download PDF

Info

Publication number
WO2012144373A1
WO2012144373A1 PCT/JP2012/059756 JP2012059756W WO2012144373A1 WO 2012144373 A1 WO2012144373 A1 WO 2012144373A1 JP 2012059756 W JP2012059756 W JP 2012059756W WO 2012144373 A1 WO2012144373 A1 WO 2012144373A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
mos transistor
terminal
switch
power supply
Prior art date
Application number
PCT/JP2012/059756
Other languages
English (en)
French (fr)
Inventor
牧野 良成
博彦 早川
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to CN201280019197.2A priority Critical patent/CN103492888B/zh
Priority to JP2013510954A priority patent/JP5640147B2/ja
Priority to US14/112,893 priority patent/US9453886B2/en
Priority to EP12773728.6A priority patent/EP2700958B1/en
Publication of WO2012144373A1 publication Critical patent/WO2012144373A1/ja
Priority to US15/258,018 priority patent/US20160377685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors

Definitions

  • the present invention relates to a switch circuit, a selection circuit, and a voltage measuring device, and more particularly to a technique effective when applied to a voltage measuring device that selects and measures one voltage from a plurality of voltages.
  • EV electric vehicles
  • HEV hybrid vehicles
  • a vehicle-mounted power source having a high voltage of several hundred volts is required.
  • the on-vehicle power source is realized by an assembled battery in which a plurality of unit cells (also referred to as “battery cells”) that generate a voltage of about several volts are connected in series.
  • each battery cell VCL 1 is used to determine the state of the battery (for example, overcharged state, overdischarged state, remaining charge amount, etc.) under all use environments such as when the vehicle is running or charged. It is necessary to measure the voltage with high accuracy.
  • a highly accurate battery voltage detection technique is essential for the effective use of battery energy, and is particularly important as a vehicle power source that leads to vehicle safety and longer vehicle travel distance.
  • a voltage measuring device in a vehicle-mounted power supply has one AD converter (hereinafter referred to as ADC (Analog-to-to-hereinafter)) per battery cell VCL.
  • ADC Analog-to-to-hereinafter
  • the voltage measuring device is equipped with a multiplexer circuit (hereinafter also referred to as MUX (multiplexer)), and is designed based on the lowest potential (ground (GND) level) by MUX. Voltage measurement is realized by sequentially switching battery voltages at different voltage levels in time to ADC signal input.
  • MUX multiplexer circuit
  • Patent Document 1 As a circuit method for measuring the battery voltage, a method using a flying capacitor circuit has been most commonly used (see, for example, Patent Document 1).
  • This scheme is configured using at least one capacitor as part of the MUX circuit. Normally, neither terminal of both electrodes is fixed at a specific potential, and this capacitor can be connected to the input voltage terminals of both electrodes of each battery through the switch circuit on the battery side, and 2 of the ADC through the switch circuit on the ADC side. It can be connected to two input terminals. Further, one terminal of the capacitor can be connected to the GND potential or a predetermined fixed potential by another switch circuit.
  • the operation at the time of measurement of the flying capacitor circuit described in Patent Document 1 will be briefly described as follows.
  • a battery-side switch that connects both ends of the battery whose voltage is to be measured and the capacitor C is turned on to charge the capacitor C with the battery voltage.
  • the battery side switch is turned off, one of the electrodes of the capacitor C is connected to the GND potential or a constant potential.
  • the ADC side switch is turned on to electrically connect to the ADC, and the voltage value is read by the ADC.
  • a buffer amplifier or a differential amplifier may be used between the capacitor C and the ADC, the operation procedure is the same.
  • Patent Documents 1 to 9 disclose the conventional voltage measuring device, and Patent Documents 10 to 12 disclose other related techniques.
  • Patent Document 1 discloses a method for equalizing a switch drive current consumed from a battery when a switch element connecting a battery voltage input and a capacitor is turned on in each switch circuit of a flying capacitor type voltage measuring device.
  • a technique is disclosed in which the drive current is weighted for each battery so as to increase current consumption flowing in the level shift circuit. .
  • Patent Document 2 discloses a method of connecting to a voltage detection circuit using N + 1 PNP structure or NPN structure switching elements for connection to a capacitor for N battery cells.
  • Patent Documents 3 to 6 disclose a configuration in which the same number of capacitors as the voltage sources to be measured are used, and only one N-type or P-type MOSFET is used as the switch element of each switch circuit. Further, in Patent Document 5, in order to improve a measurement error due to the parasitic capacitance of the switch used in the flying capacitor, the floating capacitance including the parasitic capacitance of the switch group is measured in advance, the capacitance of the flying capacitor, the measured floating capacitance, and the like. A method is disclosed in which an error voltage due to charges accumulated in the stray capacitance is calculated based on the above and a measurement voltage is calculated based on the error voltage. Further, Patent Document 6 discloses a method for improving an error due to a parasitic capacitance component of a switch.
  • Patent Document 7 in order to cope with a charge loss due to a parasitic diode between the source and drain of a MOS transistor used as a switch element, capacitors corresponding to the number of battery cells are used in the voltage measurement circuit.
  • a method using a MOSFET is disclosed.
  • Patent Document 8 discloses a method of turning on a switch with an AC signal by using a capacitor in a signal level shift circuit for turning on a switch for connecting a battery voltage input and the capacitor.
  • Patent Document 9 discloses a method using a sample and hold circuit in which a switch and a differential amplifier circuit (OP amplifier) are combined in order to improve a measurement error due to the parasitic capacitance of the switch as in Patent Document 5. .
  • OP amplifier differential amplifier circuit
  • Patent Document 10 discloses a method for controlling the opening and closing of a power supply path between an external electrode and a battery for stably charging the battery in the battery protection circuit.
  • Patent Document 11 discloses a method for connecting cascaded transistors in a system in which one MOS transistor has insufficient withstand voltage.
  • Patent Document 12 discloses a technique for preventing a backflow of current from a battery due to battery overcharge or input voltage drop in battery charge control.
  • the inventor of the present application has found the following new problems as a result of reviewing the technical problems in accordance with the demand for higher accuracy of voltage measurement in the voltage measuring apparatus and equalization of current consumption of the battery.
  • the first problem is a decrease in battery sustainability due to an imbalance in battery energy consumption to be measured.
  • FIG. 19 is an example of a switch circuit using a P-type MOS transistor as a switch element, which is not a publicly known technique, but was examined by the inventors of the present application prior to the present invention.
  • FIG. 20 is an example of a switch circuit using an N-type MOS transistor as a switch element, which was examined prior to the present invention by the inventor of the present application, similarly to FIG.
  • the switch circuits shown in FIGS. 19 and 20 are controlled by a bidirectional switch that commonly connects the sources of two MOS transistors and a gate that are commonly connected, and a control signal (ENABLE) for controlling the switch.
  • a switch drive unit including a MOS transistor for generating a constant current, a MOS transistor for generating a constant current, and a resistor R.
  • the switch circuit shown in the figure is used as the switch circuit in the MUX circuit of the voltage measuring apparatus.
  • the switch drive circuit is turned on to measure the input terminal (VIN) to which the battery cell to be measured is connected. Connect to the output terminal (VOUT) connected to the circuit side.
  • a drive current I for turning on the switch flows from the input side (VIN) through the resistor R to the ground (GND).
  • VIN input side
  • R resistor
  • GND ground
  • Patent Document 1 discloses a method of weighting the drive current of the switch drive circuit, but in this method, when the number of battery cells connected in series is increased, The drive current increases according to the number, and the unit current of the drive current needs to be considerably reduced in order to suppress the power consumption of the battery. Further, the switch element near the lowest position must generate an on-voltage with a very small current, and a resistance element (for example, a resistance element corresponding to the resistance R in FIGS. 19 and 20) for generating the on-voltage of the drive circuit. ) Becomes a high resistance, which increases the area of the voltage measuring device.
  • the second problem is deterioration of voltage measurement accuracy due to a voltage drop caused by the resistance component of the switch element and the signal path and the drive current of the switch element.
  • the first problem when a driving current for turning on the switching element is supplied from the battery cell to be measured, the on-resistance of the switching element, the resistance component of the signal path through which the driving current flows, the battery cell
  • the drive current flows through the resistance component of the external noise cut filter between the electrode and the switch element, a voltage drop occurs.
  • These resistance components cannot be manufactured uniformly in all products, and variations in the elements always occur. However, the variations in the resistance components cause a difference in voltage drop between the respective components. This difference in voltage drop becomes a factor that degrades the voltage measurement accuracy.
  • Patent Document 2 a PMOS transistor is used as a switch on the positive electrode side and an NMOS switch is used on the negative electrode side as a switch element corresponding to each battery cell.
  • a PMOS transistor is used as a switch on the positive electrode side and an NMOS switch is used on the negative electrode side as a switch element corresponding to each battery cell.
  • the method for improving the measurement error due to the drive current is not particularly mentioned in Patent Documents 1 to 12.
  • Patent Document 8 as described above, a method of using a drive capacitor to drive a switch element is shown. However, an AC signal for turning on a switch may become measurement noise.
  • a flying capacitor circuit that holds the voltage so that measurement can be performed when the switch to the battery side is OFF is considered necessary.
  • a capacitive element having a large area must be used, resulting in an increase in circuit scale.
  • the third problem is a deterioration in measurement accuracy due to an unexpected current leak path in the switch element in the off state.
  • a MOS transistor is used as each switch element in a MUX circuit in which battery cells are selectively connected to one flying capacitor.
  • the switch element (MOS transistor) of the battery cell is turned on, the switch element (MOS transistor) of the other battery cell is turned off.
  • the gate of the MOS transistor of another battery cell is controlled to be turned off, a current path from the battery cell to be measured to the flying capacitor will occur if a voltage relationship occurs that causes a parasitic diode between the source and the drain to conduct.
  • Patent Documents 3 to 7 propose a configuration in which a parasitic diode does not work.
  • a flying capacitor corresponding to the number of battery cells must be built in, so that the circuit area is large. turn into.
  • Patent Document 9 even when a bidirectional switch that commonly connects the sources of two MOS transistors and commonly connects the gates is used as a switch element, When the voltage of the battery to be measured is higher than the source node of the PMOS transistor, the parasitic diode of the PMOS transistor operates and a load current is generated. Further, when the voltage of the battery to be measured is lower than the source node of the NMOS transistor of the switch element in the off state, the parasitic diode of the NMOS transistor operates and a load current is generated.
  • the fourth problem is the generation of a measurement error due to the device due to the parasitic capacitance of the switch element and the offset error of the OP amplifier in the flying capacitor type voltage measuring device.
  • the processing for correcting the error is complicated, which causes an increase in circuit scale.
  • an OP amplifier is added between a capacitor and an ADC in a flying capacitor circuit as in Patent Document 9 or a sample and hold circuit using an OP amplifier is used, the offset voltage of the OP amplifier itself is reduced. It becomes an error factor.
  • There are various methods for correcting the error but it takes a lot of time and may increase measurement time and power consumption.
  • An object of the present invention is to provide a technique that contributes to improvement of voltage measurement accuracy and equalization of current consumption of a battery in a voltage measurement device.
  • the switch circuit includes a switch element provided between the input terminal and the output terminal, and a first power supply voltage and a second power supply voltage that are different from each other across the input voltage supplied to the input terminal.
  • the switch driving unit has a drain side connected to a first power supply terminal side to which the first power supply voltage is supplied, inputs a voltage corresponding to the input voltage, and drives the switch element with a voltage generated on an output side
  • a source follower circuit to be supplied to the switch element as a driving voltage, and a current path between an output side of the source follower circuit and a second power supply terminal to which the second power supply voltage is supplied according to the control signal
  • a current control unit that opens and closes.
  • this switch circuit contributes to improvement of voltage measurement accuracy in the voltage measurement device and equalization of current consumption of the battery.
  • FIG. 1 is a block diagram illustrating an example of a voltage measuring apparatus according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing an example of power supply of the voltage measuring device 2.
  • FIG. 3 is an explanatory diagram showing connection portions of some switch circuits of the MUX circuit 30 in the voltage measuring device 2.
  • FIG. 4 is a timing chart showing an example of the operation timing of the voltage measuring device 2.
  • FIG. 5 is a circuit diagram showing an example of a switch circuit using the P-type MOS transistor of the MUX circuit 30 as a switch element.
  • FIG. 6 is a circuit diagram showing an example of a switch circuit using the N-type MOS transistor of the MUX circuit 30 as a switch element.
  • FIG. 1 is a block diagram illustrating an example of a voltage measuring apparatus according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing an example of power supply of the voltage measuring device 2.
  • FIG. 3 is an explanatory diagram showing connection portions of some switch circuits of the MUX circuit
  • FIG. 7 is a block diagram illustrating a configuration example of the MUX circuit 30 using two types of switch circuits.
  • FIG. 8 is a block diagram showing an example of a battery voltage measurement system for EV or HEV.
  • FIG. 9 is a block diagram showing another example of a battery voltage measurement system for EV or HEV.
  • FIG. 10 is a circuit diagram showing another example of a switch circuit using a bidirectional switch element of a P-type MOS transistor.
  • FIG. 11 is an explanatory diagram showing an off signal (OFF) in FIG.
  • FIG. 12 is a circuit diagram showing another example of a switch circuit using a bidirectional switch element of a P-type MOS transistor.
  • FIG. 13 is an explanatory diagram showing an off signal (OFF) in FIG.
  • FIG. 14 is a circuit diagram showing another example of a switch circuit using a bidirectional switch element of an N-type MOS transistor.
  • FIG. 15 is an explanatory diagram showing an off signal (OFF) in FIG.
  • FIG. 16 is a block diagram illustrating an example of the case where the power supply of the voltage measuring device 2 is supplied from another power source.
  • FIG. 17 is a block diagram showing an example of a flying capacitor type voltage measuring apparatus to which the MUX circuit 30 is applied.
  • FIG. 18 is a timing chart showing an example of the operation timing of the voltage measuring device 4.
  • FIG. 19 is a circuit diagram of a switch circuit using a P-type MOS transistor as a switch element, which was examined by the inventor prior to the present invention.
  • FIG. 20 is a circuit diagram of a switch circuit using an N-type MOS transistor as a switch element, which was examined by the inventor prior to the present invention.
  • the switch circuit (SWP, SWN) according to a representative embodiment of the present invention includes a switch element (MP1 and MP2 or MN1 and MN2) provided between an input terminal (VIN) and an output terminal (VOUT). And a switch drive unit (401 to 409) for driving the switch element based on a control signal (ENABLE) for instructing on / off of the switch element.
  • the switch driving unit is driven between a first power supply voltage (VCC or GND) and a second power supply voltage (GND or VCC) that are different from each other across an input voltage supplied to the input terminal.
  • the switch driver is connected to the drain side on the first power supply terminal side to which the first power supply voltage is supplied, inputs a voltage corresponding to the input voltage, and outputs the voltage generated on the output side to the switch element.
  • Source follower circuits (401, 404) to be supplied to the switch element as drive voltages for driving, and a second power supply terminal to which the output side of the source follower circuit and the second power supply voltage are supplied according to the control signal Current control units (402, 405) for opening and closing the current path between them.
  • the switch circuit of Item 1 does not supply a drive current from the input terminal side of the switch circuit, but by a drive current flowing between the first power supply terminal and the second power supply terminal via the source follower circuit.
  • the switch element is driven.
  • a voltage drop due to the switch drive current and the resistance component between the input and output terminals of the switch does not occur, and power on the input terminal side is not consumed for driving the switch. Therefore, for example, if the switch circuit of Item 1 is applied to the MUX circuit of the voltage measuring device described above, the first and second problems can be solved.
  • the switch circuit according to Item 1 wherein the switch element includes a first conductivity type first MOS transistor (MP1 or MN2) having a drain terminal connected to the input terminal side and the drive voltage supplied to the gate terminal, and a drain terminal. Is connected to the output terminal side, the gate terminal is connected to the gate terminal side of the first MOS transistor, and the source terminal is connected in common with the source terminal of the first MOS transistor (MP2). Or MN2).
  • the source follower circuit has a second conductivity type third MOS transistor (MN3 or MN3) having a drain terminal connected to the first power supply terminal side and a gate terminal connected to the source terminal side of the first MOS transistor and the second MOS transistor.
  • the current control unit opens a current path between the other end of the voltage generation unit and the second power supply terminal when the control signal instructs the switch element to be turned on, and the control signal is When instructing to turn off the element, the current path is closed.
  • the switch circuit of Item 1 can be realized with a simple configuration.
  • the gate-source voltages of the first MOS transistor and the second MOS transistor are generated based on the current flowing through the voltage generator, an on-voltage that is independent of the input voltage can be generated.
  • the switch driver has a current path through which a current smaller than a current flowing through a current path formed by the current control unit is routed, the first power supply terminal, the first MOS transistor, and the second MOS And an off-acceleration unit (403, 406) formed between the other end of the voltage generation unit and the gate terminals of the first MOS transistor and the second MOS transistor between the source terminal of the transistor.
  • the switch element when the switch element is in the OFF state, the potential of the node at the other end of the voltage generation unit transitions to the first power supply voltage side, so that the OFF state of the switch element becomes more stable.
  • the potentials of the source terminals of the first MOS transistor and the second MOS transistor are shifted to the first power supply voltage side, the movement of charges through the parasitic diodes of the first MOS transistor and the second MOS transistor in the off state is prevented. Can be prevented. Therefore, for example, if the switch circuit of Item 3 is applied to the MUX circuit of the voltage measuring device described above, the third problem can be solved in addition to the first and second problems described above.
  • the switch driver includes a first power supply terminal, a source terminal of the first MOS transistor, and a source terminal of the second MOS transistor during a predetermined period of the period in which the current control unit closes the current path And an off-acceleration unit (407 to 409) formed through the other end of the voltage generation unit.
  • the OFF state of the switch element becomes more stable, and the movement of electric charges via the parasitic diodes of the first MOS transistor and the second MOS transistor in the OFF state can be prevented. Therefore, for example, if the switch circuit of Item 3 is applied to the MUX circuit of the voltage measuring device described above, the third problem can be solved in addition to the first and second problems described above. Further, since the off acceleration unit does not flow current when the switch element is in an on state, current consumption can be reduced, and the current control is performed as a current flowing through the voltage generation unit that determines the on voltage of the switch element. Since only the current flowing through the part needs to be considered, it contributes to improving the accuracy of the on-voltage.
  • the off-acceleration unit operates as a switch, the time until the switch element shifts to the off state can be shortened compared to the case where the off-acceleration unit operates at a constant current, and the parasitic diode is inserted at an earlier timing. Movement of the generated charges can be prevented.
  • the period during which the off-acceleration unit forms the current path can be set as a period for instructing the off state of the switch element, for example, design is facilitated.
  • the first power supply voltage is set to a voltage value (VCC) equal to or higher than the input voltage
  • the first conductivity type is a P-channel type
  • the second conductivity type is N-channel type.
  • the first power supply voltage is a ground voltage
  • the second power supply voltage is a voltage value (VCC) equal to or higher than the input voltage
  • the first conductivity type is an N channel.
  • the second conductivity type is a P-channel type.
  • a selection circuit (30) includes one or a plurality of unit cells among a plurality of unit cells (VCL_1 to VCL_n) that constitute one assembled battery by connecting one end and the other end.
  • the block to be configured is defined as one unit, and a signal line connected to both ends of any one of the blocks is selected according to an input control signal, and a first output terminal (INP (+)) and a second output terminal Connect to (INN (-)).
  • the selection circuit has an input terminal (VIN) connected to a signal line connected to one end of the block (positive electrode of the battery cell VCL) and an output connected to a signal line connected to the first output terminal.
  • a first switch circuit having a terminal (VOUT) and electrically connecting the input terminal and the output terminal in accordance with the control signal; and the other end of the block (negative of the battery cell VCL).
  • the second switch circuit (SWN) that electrically connects the input terminal and the output terminal is provided corresponding to each of the blocks.
  • the first switch circuit and the second switch circuit are configured according to a switch element (MP1 and MP2 or MN1 and MN2) provided between an input terminal and an output terminal of the switch circuit and the control signal.
  • a switch driver (401 to 409) for driving the switch element.
  • the switch driving unit is disposed between a first power supply terminal to which the first power supply voltage (VCC or GND) is supplied and a second power supply terminal to which the second power supply voltage (GND or VCC) is supplied.
  • a source follower circuit (401, 404) that inputs a voltage corresponding to the input voltage and supplies the voltage generated on the output side to the switch element as a drive voltage for driving the switch element; and the control signal
  • a current control unit (402, 405) that opens and closes a current path in which the source follower circuit is disposed between the first power supply terminal and the second power supply terminal.
  • the first switch circuit and the second switch circuit there is no voltage drop due to the drive current of the switch and the resistance component between the input and output terminals of the switch, and the switch The power on the input terminal side is not consumed for driving. Therefore, for example, if the selection circuit of Item 9 is applied as the MUX circuit of the voltage measuring device described above, the first and second problems can be solved.
  • the first power supply voltage is a voltage (voltage of the positive electrode of VCL_1) corresponding to the voltage at one end of the highest-order unit cell among the unit cells constituting the assembled battery.
  • drive currents of the first switch circuit and the second switch circuit are supplied from the assembled battery. That is, since power consumption is equally performed from each unit cell in the selection operation of the selection circuit, the balance of battery energy consumption among the unit cells can be maintained.
  • the switch element includes a P-type MOS transistor (MP1, MP2) or an N-type MOS transistor (MN1, MN2) whose gate terminal is controlled by the drive voltage,
  • MP1, MP2 P-type MOS transistor
  • MN1, MN2 N-type MOS transistor
  • the selection circuit according to item 11 uses the same type of switch element connected to each electrode of the block to be selected, the resistance component from each electrode of the block to the first output terminal and the first Contributes to the reduction of deviation from the resistance component up to 2 output terminals.
  • [12] (Method of connecting the same type of switch circuit) Item 12.
  • the selection circuit according to any one of Items 9 to 11, wherein the switch of the first switch circuit and the second switch circuit corresponding to a first block in which the potential of the other end of the block is equal to or higher than a predetermined potential (VT).
  • the element is a P-type MOS transistor (MP1, MP2), and the first switch circuit and the second switch circuit corresponding to the second block of the block whose potential at the other end is lower than the predetermined potential.
  • the switch elements are N-type MOS transistors (MN1, MN2).
  • the switch elements connected to both ends of each block are provided.
  • the types can be equal.
  • N-type third MOS transistor MN3 connected to the source terminal side of the second MOS transistor, one end connected to the source terminal side of the third MOS transistor, and the other end to the first MOS transistor and the second MOS transistor.
  • a voltage generation unit (R1) that generates a voltage at both ends in accordance with the supplied current.
  • the current control unit (402) of the first switch circuit and the second switch circuit corresponding to the first block is configured so that when the control signal (ENABLE) instructs to turn on the switch element, A current path between the other end of the voltage generation unit and the second power supply terminal (GND) is opened. When the control signal instructs the switch element to be turned off, the current path is closed.
  • the first switch circuit and the second switch circuit can be realized with a simple configuration.
  • the gate-source voltages of the first MOS transistor and the second MOS transistor are generated based on the current flowing through the voltage generator, an on-voltage that is independent of the input voltage can be generated.
  • the first switch circuit corresponding to the second block and the switch element of the second switch circuit have a drain terminal connected to the input terminal side and a gate terminal connected to the drive voltage.
  • the first switch circuit corresponding to the second block and the source follower circuit (404) of the second switch circuit have a drain terminal connected to the second power supply terminal side and a gate terminal connected to the fourth MOS transistor.
  • a P-type sixth MOS transistor MP5 connected to the source terminal side of the fifth MOS transistor, one end connected to the source terminal side of the sixth MOS transistor, and the other end to the fourth MOS transistor and the fifth MOS transistor.
  • a voltage generation unit R2 that generates a voltage at both ends in accordance with the supplied current.
  • the current control unit of the first switch circuit and the second switch circuit corresponding to the second block may be configured such that the other end of the voltage generation unit is provided when the control signal instructs the switch element to be turned on. And the first power supply terminal (VCC) are opened, and when the control signal instructs the switch element to be turned off, the current path is closed.
  • the first switch circuit and the second switch circuit can be realized with a simple configuration.
  • the gate-source voltages of the fourth MOS transistor and the fifth MOS transistor are generated based on the current flowing through the voltage generator, an on-voltage that is independent of the input voltage can be generated.
  • Switch circuit with constant current type off acceleration circuit Item 14.
  • the switch elements are more stable in the off-state and in the off-state. It is possible to prevent charge movement through the parasitic diodes of the first MOS transistor and the second MOS transistor. Therefore, for example, if the selection circuit of item 15 is applied as the MUX circuit of the voltage measuring device described above, the third problem can be solved in addition to the first and second problems described above.
  • Switch circuit with switch type off acceleration circuit Item 12.
  • the off state of the switch element becomes more stable and It is possible to prevent the movement of charges through the parasitic diode. Therefore, according to the selection circuit of item 16, in addition to the first problem and the second problem, the third problem can be solved, as in the case of the item 15.
  • the off-acceleration unit can reduce current consumption and contribute to improving the accuracy of the on-voltage of the switch element, as in item 4.
  • the off-acceleration unit operates as a switch, the time until the switch element shifts to the off state can be shortened compared to the case where the off-acceleration unit operates at a constant current, and the parasitic diode is inserted at an earlier timing. Movement of the generated charges can be prevented.
  • Switch circuit having a constant current type off acceleration circuit Item 12.
  • the selection circuit according to any one of Items 12 to 16, wherein the first switch circuit corresponding to the second block and the switch driving unit of the second switch circuit have a current flowing in a current path formed by the current control unit.
  • the switch element is more stable in the off state, and It is possible to prevent charge movement through the parasitic diodes of the fourth MOS transistor and the fifth MOS transistor. Therefore, for example, if the selection circuit of Item 17 is applied as the MUX circuit of the voltage measuring device described above, the third problem can be solved in addition to the first and second problems described above.
  • the switch element is more stable in the off state and It is possible to prevent the movement of charges through the parasitic diode. Therefore, according to the selection circuit of item 18, in the same way as item 16, in addition to the first and second problems, the third problem can be solved.
  • the off-acceleration unit can reduce current consumption and contribute to improving the accuracy of the on-voltage of the switch element, as in item 16.
  • the off-acceleration unit operates as a switch, the time until the switch element shifts to the off state can be shortened compared to the case where the off-acceleration unit operates at a constant current, and the parasitic diode is inserted at an earlier timing. Movement of the generated charges can be prevented.
  • a voltage measuring device (2) includes one or more unit cells among a plurality of unit cells (VCL_1 to VCL_n) that constitute an assembled battery with one end and the other end connected to each other. Is a voltage measuring device for measuring the voltage across the block for each block. The voltage measuring device selects a signal line connected to both ends of the block for each block according to an input control signal, and outputs a first output terminal (INP (+)) and a second output terminal (INN).
  • the selection unit includes an input terminal (VIN) to which a signal line connected to one end (positive electrode of the battery cell) of the block is connected and an output terminal to which a signal line connected to the first output terminal is connected.
  • the first switch circuit and the second switch circuit include a switch element (MP1 and MP2 or MN1 and MN2) provided between an input terminal (VIN) and an output terminal (VOUT) of the switch circuit. And a switch driver (401 to 409) for driving the switch element in response to the control signal.
  • the switch driving unit is disposed between a first power supply terminal to which the first power supply voltage VCC or GND) is supplied and a second power supply terminal to which the second power supply voltage (GND or VCC) is supplied.
  • a source follower circuit (401, 404) that inputs a voltage according to the input voltage and supplies the voltage generated on the output side to the switch element as a drive voltage for driving the switch element, and according to the control signal Current control units (402, 405) for opening and closing a current path in which the source follower circuit is disposed between the first power supply terminal and the second power supply terminal.
  • the voltage measuring device since the drive currents of the first switch circuit and the second switch circuit flow between the first power supply terminal and the second power supply terminal, as in Item 1, A voltage drop due to the drive current and the resistance component between the input and output terminals of the switch does not occur, and power on the input terminal side is not consumed for driving the switch.
  • the voltage measurement device of item 19 since a voltage measurement device that does not employ the flying capacitor method can be configured, the measurement error due to the device due to the parasitic capacitance of the switch element or the like can be reduced when measuring the voltage. It is possible to prevent the occurrence of errors due to the use of a buffer or an amplifier circuit for sampling. Therefore, for example, if the voltage measuring device according to item 19 is applied as the voltage measuring device described above, the first, second, and fourth problems can be solved.
  • the first power supply voltage is a voltage (voltage of the positive electrode of VCL_1) corresponding to a voltage at one end of the highest-order unit cell among the unit cells constituting the assembled battery.
  • the switch circuit for each block is the same type of transistor
  • the switch element includes a P-type MOS transistor (MP1, MP2) or an N-type MOS transistor (MN1, MN2) whose gate terminal is controlled by the drive voltage,
  • MP1, MP2 P-type MOS transistor
  • MN1, MN2 N-type MOS transistor
  • the type of the switch element connected to each electrode of the block to be selected is the same as in item 11, from the positive electrode of the block to be measured to the first output terminal This reduces the difference between the resistance component of the signal path and the resistance component of the signal path from the negative electrode to the second output terminal.
  • common-mode noise due to disturbance it is possible to prevent differential noise from occurring at the input of the measurement unit. Therefore, for example, even if a delta-sigma analog-to-digital converter that requires a relatively long measurement time is used, it is possible to prevent the noise removal performance of the entire voltage measurement system from being reduced and to prevent measurement errors. Can do.
  • the first switch circuit and the second switch circuit corresponding to a first block in which the potential of the other end of the block is equal to or higher than a predetermined potential (VT).
  • the switch element is a P-type MOS transistor (MP1, MP2), and the first switch circuit and the second switch circuit corresponding to a second block in the block where the potential at the other end is lower than the predetermined potential.
  • These switch elements are N-type MOS transistors (MN1, MN2).
  • the switch elements of the first switch circuit and the second switch circuit corresponding to the first block have a drain terminal connected to the input terminal side, and the drive voltage is applied to the gate terminal.
  • the supplied P-type first MOS transistor (MP1) the drain terminal is connected to the output terminal side, the gate terminal is connected to the gate terminal side of the first MOS transistor, and the source terminal is the source terminal of the first MOS transistor And a P-type second MOS transistor (MP2) connected in common.
  • the source follower circuit (401) of the first switch circuit and the second switch circuit corresponding to the first block has a drain terminal connected to the first power supply terminal side and a gate terminal connected to the first MOS transistor.
  • N-type third MOS transistor MN3 connected to the source terminal side of the second MOS transistor, one end connected to the source terminal side of the third MOS transistor, and the other end to the first MOS transistor and the second MOS transistor.
  • a voltage generation unit R1 that generates a voltage at both ends in accordance with the supplied current.
  • the current control units of the first switch circuit and the second switch circuit corresponding to the first block are configured such that when the control signal instructs the switch element to turn on, the other end of the voltage generation unit and the current control unit A current path to the second power supply terminal (GND) is opened, and when the control signal instructs the switch element to turn off, the current path is closed.
  • the first switch circuit and the second switch circuit can be realized with a simple configuration.
  • the gate-source voltages of the first MOS transistor and the second MOS transistor are generated based on the current flowing through the voltage generator, an on-voltage that is independent of the input voltage can be generated.
  • the first switch circuit corresponding to the second block and the source follower circuit (404) of the second switch circuit have a drain terminal connected to the second power supply terminal side and a gate terminal connected to the fourth MOS transistor.
  • a P-type sixth MOS transistor (MP5) connected to the source terminal side of the fifth MOS transistor, one end connected to the source terminal side of the sixth MOS transistor, and the other end to the fourth MOS transistor and the fifth MOS transistor.
  • a voltage generation unit (R2) that generates a voltage at both ends in accordance with the supplied current.
  • the current control unit (405) of the first switch circuit and the second switch circuit corresponding to the second block is configured such that when the control signal instructs the switch element to be turned on, the voltage generation unit The current path between the other end of the switch and the first power supply terminal (VCC) is opened, and when the control signal instructs the switch element to be turned off, the current path is closed.
  • the first switch circuit and the second switch circuit can be realized with a simple configuration.
  • the gate-source voltages of the fourth MOS transistor and the fifth MOS transistor are generated based on the current flowing through the voltage generator, an on-voltage that is independent of the input voltage can be generated.
  • Switch circuit (Pch) having a constant current type off acceleration circuit) 24 In the voltage measuring device according to any one of Items 22 to 24, the switch driving unit of the first switch circuit and the second switch circuit corresponding to the first block flows in a current path formed by the current control unit.
  • the switch element is more stable in the OFF state, and It is possible to prevent charge movement through the parasitic diodes of the first MOS transistor and the second MOS transistor. Therefore, for example, according to the voltage measurement device of Item 25, in addition to the first problem, the second problem, and the fourth problem, the third problem can be solved.
  • switch circuit (Pch) having a switch type off acceleration circuit) 24 In the voltage measuring device according to any one of Items 22 to 24, the switch control unit of the first switch circuit and the second switch circuit corresponding to the first block is a period in which the current control unit closes a current path. And an off-acceleration unit that forms a current path between the first power supply terminal and the source terminals of the first MOS transistor and the second MOS transistor via the other end of the voltage generation unit.
  • the third problem can be solved.
  • the off-acceleration unit operates like a switch, so that the time until the switch element shifts to the off state can be shortened compared with the case where the off-acceleration unit operates at a constant current, and more It is possible to prevent the movement of charges via the parasitic diode at an early timing.
  • Switch circuit (Nch) having a constant current type off acceleration circuit In the voltage measurement device according to any one of Items 22 to 26, the first switch circuit corresponding to the second block and the switch driving unit of the second switch circuit flow in a current path formed by the current control unit.
  • the switch element is more stable in the OFF state, and It is possible to prevent charge movement through the parasitic diodes of the fourth MOS transistor and the fifth MOS transistor. Therefore, for example, according to the voltage measurement device of Item 26, in addition to the first problem, the second problem, and the fourth problem, the third problem can be solved.
  • the first switch circuit corresponding to the second block and the switch driving unit of the second switch circuit are periods in which the current control unit closes a current path. And an off-acceleration unit that forms a current path between the second power supply terminal and the source terminals of the first MOS transistor and the second MOS transistor via the other end of the voltage generation unit.
  • the third problem can be solved. Further, since the off acceleration unit operates like a switch as in the item 18, the time until the switch element shifts to the off state can be shortened as compared with the case where the off acceleration unit operates at a constant current, and more It is possible to prevent the movement of charges via the parasitic diode at an early timing.
  • ADC is a ⁇ / ⁇ type ADC for measuring battery voltage
  • the measurement unit includes delta-sigma analog-digital converters (601 to 603).
  • FIG. 1 is a block diagram illustrating an example of a voltage measuring apparatus according to the first embodiment.
  • the voltage measuring device 2 shown in the figure includes one or more battery cells among a plurality of battery cells VCL_1 to VCL_n connected in series (when battery cells are collectively referred to as VCL).
  • the voltage at both ends is measured for each battery cell block (hereinafter also referred to as “block”).
  • the block is a single battery cell. That is, the voltage measuring device 2 measures the voltage by selecting one battery cell from the plurality of battery cells VCL connected in series one by one.
  • the plurality of battery cells VCL connected in series are not limited to battery cell rows connected in series in one row, but also include battery cell rows in which a plurality of battery cell rows connected in series are connected in parallel. . In addition, it means that a plurality of battery cells connected in parallel is regarded as one battery, and a plurality of battery cells are connected in series.
  • the voltage measuring device 2 selects a voltage input terminal 20 for inputting a voltage from electrodes at both ends of each block, power supply terminals VCC and GND for inputting a power supply voltage, and one battery voltage to be measured.
  • Output MUX circuit 30, measurement circuit 60 that measures the input voltage difference, and protection element 40 In the figure, for the sake of simplicity, only functional units related to voltage measurement among the functional units of the voltage measuring device 2 are displayed.
  • the power supply of the voltage measuring device 2 is supplied from the plurality of battery cells VCL, for example.
  • FIG. 2 is an explanatory diagram showing an example of power supply of the voltage measuring device 2.
  • the voltage measuring apparatus 2 is configured such that the voltage of the positive electrode of the uppermost battery cell VCL_1 among the plurality of battery cells VCL is supplied to the power supply terminal VCC, and among the plurality of battery cells VCL, The voltage of the negative electrode of the lowest battery cell VCL_n is supplied to the power supply terminal GND.
  • the MUX circuit 30 includes a plurality of switch circuits for connecting a signal path connected to each of the plurality of voltage input terminals 20 and the two input terminals INP (+) and INN ( ⁇ ) of the measurement circuit 60.
  • the MUX circuit 30 displays switch circuits SWP_1 to SWP_n that connect the positive side electrode of the battery cell VCL and the positive side input terminal INP (+) of the measuring unit 60 (in a general term, simply SWP).
  • switch circuits SWN_1 to SWN_n in the generic name, simply denoted as SWP that connect the negative electrode of the battery cell VCL and the negative input terminal INN ( ⁇ ) of the measuring unit 60.
  • the MUX circuit 30 needs 2N switch circuits in order to measure the voltage of each battery cell.
  • the switch circuit SWX that connects the voltage input terminal 20 that inputs the positive voltage of the uppermost battery cell and the negative input terminal INN of the measurement circuit 60, and the negative voltage of the lowermost battery cell.
  • 2N + 2 switch circuits including a voltage input terminal 20 for inputting the voltage on the side and a switch circuit SWY for connecting the input terminal INP on the positive side of the measurement circuit 60 are provided.
  • the MUX circuit 30 is appropriately arranged according to the system to which the MUX circuit 30 is applied.
  • the on state and the off state of the switch are controlled by a control signal from the control unit 50.
  • the control unit 50 controls the switch circuit of the MUX circuit 30 so that the voltage across the battery cell is applied between the input terminals of the measurement circuit 60. Details of the MUX circuit 30 will be described later.
  • the protection element 40 is connected between the two input terminals INP and INN of the measurement circuit 60 and is a protection element for protecting the input stage of the measurement circuit 60, for example, a Zener diode.
  • the control unit 50 controls the MUX circuit 30 and the measurement circuit 60 to perform overall control for voltage measurement of each battery cell.
  • the control unit 50 is, for example, a dedicated logic circuit or a microcomputer.
  • the measurement circuit 60 measures the potential difference input to the two input terminals INP and INN according to the control signal from the control unit 50, and outputs the measurement result.
  • the measurement circuit 60 is realized by, for example, a delta-sigma A / D converter.
  • the measurement circuit 60 includes, for example, a switch unit 601 and a capacitor 602 for taking in the voltages input to the input terminals INP and INN, and a measurement unit 603 for measuring the voltage by inputting the taken-in voltage.
  • the capacitor 602 is a high withstand voltage element
  • the measurement unit 603 is a circuit composed of low withstand voltage elements.
  • FIG. 3 is an explanatory diagram showing connection parts of some switch circuits of the MUX circuit 30 in the voltage measuring device 2.
  • FIG. 4 is a timing chart showing an example of the operation timing of the voltage measuring device 2.
  • the control unit 50 first controls the MUX circuit 30 at the timing of reference numeral 201 to turn on the switch circuits SWP_1 and SWN_1. Accordingly, the voltage of the battery cell VCL_1 is input to the measurement circuit 60. After the input voltage is stabilized, the control unit 50 controls the measurement circuit 60 at the timing of reference numeral 202 to execute voltage measurement. When the measurement of the voltage of the battery cell VCL_1 is completed, the control unit 50 turns off the switch circuits SWP_1 and SWN_1 at the timing of reference numeral 203.
  • the control unit 50 controls the MUX circuit 30 at the timing of reference numeral 204 to turn on the switch circuits SWP_2 and SWN_2.
  • the timing 204 at which the switch is turned on is a timing after a predetermined time has elapsed since the switch circuits SWP_1 and SWN_1 are turned off in order to prevent a short circuit caused by turning on all the switch circuits SWP1 to SWN_2.
  • the switch circuits SWP_2 and SWN_2 are turned on, the voltage of the battery cell VCL_2 is input to the measurement circuit 60.
  • the control unit 50 controls the measurement circuit 60 at the timing of reference numeral 205 to execute voltage measurement.
  • the control unit 50 turns off the switch circuits SWP_2 and SWN_2 at the timing of reference numeral 206.
  • a flying capacitor and an OP amplifier as a buffer are not required when the flying capacitor method is adopted, a measurement error caused by a device such as a parasitic capacitance of a switch element of a switch circuit, A measurement error due to an offset voltage of an OP amplifier or the like does not occur.
  • switch circuits constituting the MUX circuit 30: a switch circuit using a P-type MOS transistor as a switch element and a switch circuit using an N-type MOS transistor as a switch element. Hereinafter, details of each switch circuit will be described.
  • FIG. 5 is a circuit diagram showing an example of a switch circuit using the P-type MOS transistor of the MUX circuit 30 as a switch element.
  • the switch circuit has a bidirectional switch element composed of two P-type MOS transistors MP1 and MP2.
  • the source terminals of MP1 and MP2 are connected in common, and the gate terminals are also connected in common.
  • the drain terminal of MP1 is connected to the input terminal VIN on the battery voltage input terminal side, and the drain terminal of MP2 is connected to the output terminal VOUT on the signal output side of the MUX circuit.
  • a diode D1 is inserted between the common source terminal and the gate terminal, and the anode is connected to the common gate terminal side and the cathode is connected to the common source terminal side.
  • a Zener diode having a breakdown voltage equal to or higher than the ON voltage of the bidirectional switch element may be used in place of the diode D1.
  • the switch circuit further includes an on-voltage generator 401, a current controller 402, and an off-accelerator 403.
  • the on-voltage generator 401 is a source follower circuit composed of an N-type MOS transistor MN3 and a resistor R1 that is a voltage generating element.
  • the gate terminal of MN3 is connected to the common source terminal of the bidirectional switch element, the drain terminal is connected to the power supply terminal VCC which is the highest potential, and the source terminal is connected to the common gate terminal of the bidirectional switch element via the resistor R1. Is done.
  • An element other than a resistor may be used as the voltage generating element.
  • a MOS transistor in which a bias voltage is applied to the gate terminal may be used, or a depletion type MOS transistor may be used as a current source.
  • the depletion type MOS transistor here is a MOS transistor whose threshold value is adjusted so that a current is generated even when the potential difference between the gate and the source is 0V, for example.
  • a resistance element may be inserted in series in each gate terminal and each drain terminal of the MN3 and the bidirectional switch elements MP1 and MP2 to prevent electrostatic breakdown.
  • the current control unit 402 is applied with a bias voltage (BIAS), for example, and an N-type MOS transistor MN4 for supplying a current (2I) and an enable signal for controlling on / off of the bidirectional switch elements MP1 and MP2 (
  • the N-type MOS transistor MN5 to which (ENABLE) is applied is connected to the cascode.
  • the drain terminal of MN4 is connected to the gate terminals of bidirectional switch elements MP1 and MP2.
  • the enable signal is a control signal from the control unit 50. Note that the connection relationship between MN4 and MN5 may be reversed.
  • MN4 and MN6 for supplying current are configured by, for example, a current mirror circuit, but may be configured by a cascode current mirror circuit in order to suppress a current value fluctuation due to a channel length modulation effect.
  • the current mirror circuit composed of MP3 and MP4 may be a cascode type current mirror circuit.
  • the off-acceleration unit 403 is applied with a bias voltage (BIAS) common to MN4, and returns an N-type MOS transistor MN6 for supplying current (I) and a current (I) of MN6 to return the gate of the bidirectional switch element It comprises P-type MOS transistors MP3 and MP4 constituting a current mirror circuit for supplying to the terminal.
  • BIAS bias voltage
  • the drive current of the switch circuit is not supplied from the input terminal VIN side but from the power supply terminal VCC.
  • a voltage drop due to on-resistance does not occur, and measurement errors can be reduced.
  • the drive current is supplied from the power supply terminal VCC, the power consumption of each battery cell constituting the assembled battery is evenly performed, thus preventing the unbalanced power consumption between the battery cells as in the past. can do.
  • the current I from the off-accelerator 403 flows into the source terminals of MP1 and MP2 via the diode D1, thereby charging the parasitic capacitance connected to the source terminal and setting the potential of the source terminal to the highest potential ( Lift to VCC).
  • the effect of this is as follows. As described above, the voltage at both ends of the selected battery cell is input to the measurement unit 603 via the capacitor 602 in the measurement circuit 60, but the charge is transferred from the battery cell to the capacitor 602 via the switch circuit of the MUX circuit 30. By being charged, the voltage of the battery cell is input to the measurement unit 603.
  • the off acceleration unit 403 prevents a state in which the signal potential on the drain terminal side of the bidirectional switch elements MP1 and MP2 is higher than the potential on the source terminal side, thereby preventing the movement of charges via the parasitic diode. Therefore, the OFF state can be further stabilized and measurement errors can be prevented from occurring.
  • the drive current (2I) and the current value of the current (I) supplied from the off-acceleration unit do not have to be designed at a constant ratio, and the on-voltage generator 401 turns on the bidirectional switch element. As long as the difference voltage VGS can be generated, an arbitrary current value may be used.
  • FIG. 6 is a circuit diagram showing an example of a switch circuit using the N-type MOS transistor of the MUX circuit 30 as a switch element.
  • the switch circuit has a bidirectional switch element composed of two N-type MOS transistors MN1 and MN2.
  • the source terminals of MN1 and MN2 are connected in common, and the gate terminals are also connected in common.
  • the drain terminal of MN1 is connected to the input terminal VIN on the battery voltage input terminal side, and the drain terminal of MN2 is connected to the output terminal VOUT on the signal output side of the MUX circuit.
  • a diode D2 is inserted between the common source terminal and the gate terminal, and the anode is connected to the common source terminal side and the cathode is connected to the common gate terminal side. If gate breakdown voltage protection is required, a Zener diode having a breakdown voltage higher than the on-voltage of the bidirectional switch element may be used instead of the diode D2.
  • the switch circuit including the N-type bidirectional switch element further includes an on-voltage generator 404, a current controller 405, and an off-accelerator 406.
  • the on-voltage generator 404 is a source follower circuit composed of a P-type MOS transistor MP5 and a resistor R2 that is a voltage generating element.
  • the gate terminal of MP5 is connected to the common source terminal of the bidirectional switch element, the drain terminal is connected to the power supply terminal GND which is the lowest potential, and the source terminal is connected to the common gate terminal of the bidirectional switch element via the resistor R2. Is done.
  • an element other than a resistor may be used as the voltage generating element.
  • a resistance element may be inserted in series in each gate terminal and each drain terminal of MP5 and bidirectional switch elements MN1 and MN2 to prevent electrostatic breakdown.
  • the current control unit 405 is applied with a bias voltage (BIAS), for example, an N-type MOS transistor MN4 for supplying a current (2I), and an enable signal for controlling on / off of the bidirectional switch elements MP1 and MP2 ( N-type MOS transistor MN4 to which (ENABLE) is applied, and P-type MOS transistors MP6 and MP7 constituting a current mirror circuit for turning back the current (2I) of MN4 and supplying it to the gate terminal of the bidirectional switch element, Composed.
  • the enable signal is a control signal from the control unit 50 as described above.
  • the gate terminals of MN1 and MN2 constituting the bidirectional switch element can sufficiently be switched on / off even when a low voltage is applied, the gate terminals of the bidirectional switch element are not connected via the current mirror circuits MP6 and MP7.
  • a signal may be directly applied to the drive.
  • the connection relationship between MN4 and MN5 may be reversed.
  • MN4 and MN6 for supplying current are configured by a current mirror circuit, for example, but may be configured by a cascode type current mirror circuit in order to suppress a current value fluctuation due to a channel length modulation effect.
  • the current mirror circuit composed of MP6 and MP7 may be a cascode type current mirror circuit.
  • the off acceleration unit 406 includes an N-type MOS transistor MN6 to which a bias voltage (BIAS) common to MN4 is applied and generates a current (I) between the gate terminal and the GND terminal of the bidirectional switch element.
  • BIAS bias voltage
  • MN5 When the enable signal is set to a high level and an instruction to turn on the bidirectional switch element is given, MN5 is turned on, and a drive current 2I is generated by MN4.
  • the drive current 2I flows into the node to which the common gate terminal of the bidirectional switch element is connected via the current mirror circuits MP6 and MP7, and a part of the drive current I flows to the off acceleration unit 406.
  • the difference current I is drawn to the highest potential (GND) via the on-voltage generator 404.
  • a potential difference VGS sufficient to turn on MN1 and MN2 is generated between the gate and source of the bidirectional switch element, whereby the voltage input terminal side of the battery and the output side of the MUX circuit are electrically connected.
  • the drive current of the switch circuit is not supplied from the input terminal VIN side but from the power supply terminal VCC.
  • a voltage drop due to on-resistance does not occur, and measurement errors can be reduced.
  • the drive current is supplied from the power supply terminal VCC, the power consumption of each battery cell constituting the assembled battery is evenly performed, thus preventing the unbalanced power consumption between the battery cells as in the past. can do.
  • the enable signal is set to a low level and the bidirectional switch element is instructed to be turned off
  • MN5 is turned off and the drive current 2I does not flow.
  • no current flows through the on-voltage generator 404, no potential difference occurs between the gate and source of the bidirectional switch elements MN1 and MN2, and the switch circuit is connected to the voltage input terminal side of the battery and the output side of the MUX circuit. Is opened electrically.
  • the off acceleration unit 403 causes the current I to flow to the GND side, thereby pulling down the gate terminals of the bidirectional switch elements MN1 and MN2 to the highest potential (GND), thereby stabilizing the off state.
  • the off-acceleration unit 404 extracts charges from the source terminals of MN1 and MN2 via the diode D2, thereby discharging the parasitic capacitance connected to the source terminal, and setting the potential of the source terminal to the lowest potential (GND). Pull down. This prevents the signal potential on the drain terminal side of MP1 and MP2 from becoming lower than the potential on the source terminal side and prevents the movement of charges via the parasitic diodes of MN1 and MN2, thereby preventing the bidirectional switch element. Is further stabilized. Note that the drive current (2I) and the current value of the current (I) supplied from the off-acceleration unit do not have to be designed at a constant ratio, as described above. An arbitrary current value may be used as long as the differential voltage VGS for turning on the switch element can be generated.
  • FIG. 7 is a block diagram showing a configuration example of the MUX circuit 30 using two types of switch circuits.
  • this figure shows the connection relationship up to the previous stage of the measurement circuit 60.
  • a plurality of battery cells (external voltage source) 1 connected in series, the voltage input terminal 20, and the MUX circuit 30
  • the connection relationship with the measurement circuit 60 is shown.
  • a case where a low-pass filter (LPF) 3 is inserted between the plurality of battery cells VCL and the voltage input terminal 20 is shown as an example for noise removal.
  • the low-pass filter 3 is composed of, for example, an external resistor and capacitor, but may be composed of an inductor or the like.
  • the switch circuit is configured as follows.
  • the negative electrode is connected to a plurality of continuous battery cells from the battery cell having a potential equal to or higher than a predetermined potential (VT) to the battery cell having the positive electrode at the highest potential.
  • a switch circuit including a bidirectional switch element configured by commonly connecting the sources of two P-channel MOSFETs is used (PMOS switch group).
  • PMOS switch group a switch circuit including a bidirectional switch element configured by commonly connecting the sources of two P-channel MOSFETs.
  • a switch circuit of a P-type switch element in order for the bidirectional switch elements MP1 and MP2 to be turned on, a voltage range is required in the direction in which the gate voltages of MP1 and MP2 are lower than the source voltage. Therefore, a switch circuit of a P-type switch element is used as a switch circuit connected to a battery cell having a higher potential.
  • the positive electrode is connected to a plurality of continuous battery cells from the battery cell in which the potential of the positive electrode is a predetermined potential (VT) or less to the battery cell having the lowest potential.
  • a switch circuit including a bidirectional switch element configured by commonly connecting the sources of two N-channel MOSFETs is used (NMOS switch group).
  • NMOS switch group a switch circuit including a bidirectional switch element configured by commonly connecting the sources of two N-channel MOSFETs.
  • switch elements of the switch circuits SWP_1 to SWP_n that connect the positive electrode of the battery cell and the positive output of the output signal line of the MUX circuit 30 (the positive input terminal INP of the measurement circuit 60) are the same type of switch elements. That is, by making the type of the MOS transistor of the switch element that forms the negative signal path the same as the positive signal line that inputs the voltage of the selected battery cell to the measurement circuit 60, the on-resistance of the switch element is reduced. Configure to be equal.
  • the switch connected to a plurality of continuous battery cells from the battery cell in which the potential of the negative electrode is equal to or higher than the predetermined potential (VT) to the battery cell in which the positive electrode is the highest potential.
  • the circuit uses a switch circuit using a P-type MOS transistor as a switching element, and continues from a battery cell in which the potential of the positive electrode is a predetermined potential (VT) or less to a battery cell in which the negative electrode is the lowest potential.
  • VT predetermined potential
  • the predetermined potential VT is determined according to the input voltage range of the MUX circuit 30, the characteristics of the bidirectional switch element, the required specifications of the MUX circuit 30, and the like.
  • FIGS. 1-10 An example of a system to which the voltage measuring device 2 is applied is shown in FIGS.
  • FIG. 8 is a block diagram showing an example of a battery voltage measurement system for EV or HEV.
  • the motor is driven by supplying power from the battery to both ends of the inverter for driving the motor.
  • the battery device 10 constituting the voltage measurement system shown in the figure includes a battery 101 composed of an assembled battery in which a plurality of unit cells are connected in series, and several to dozens of battery cells constituting the battery. A plurality of voltage measuring devices 2 assigned to each battery cell 1 and a battery monitoring microcomputer (MCU) 6 are provided.
  • the battery 101 is composed of several hundred unit cells in the whole vehicle such as an electric vehicle, for example, and the highest voltage is about 400V, for example.
  • the unit cell constituting the battery 101 is, for example, a lithium ion battery.
  • the battery monitoring microcomputer (MCU) 3 controls the voltage measuring device 2 to measure the battery voltage, and controls the power supply from the battery to the motor driving inverter based on the measurement result. Further, CAN communication or the like is performed with the battery control microcomputer 7.
  • Each voltage measuring device 2 measures the voltage of a set of battery cells 1 to be measured among the batteries 101 by the method described above.
  • the voltage measuring apparatus 2 further includes communication function units 70 and 71 in addition to the above-described function units.
  • the communication function units 70 and 71 are used to control instructions, voltage measurement results, and the like from the battery monitoring microcomputer 6. Communicate with each other.
  • FIG. 9 is a block diagram showing another example of a battery voltage measurement system for EV or HEV.
  • the battery device 11 constituting the voltage measuring system shown in FIG. 1 is a set of several to dozens of battery cells constituting the battery 101, and the voltage measuring device 2 and the battery for each set of battery cells 1.
  • a monitoring microcomputer (MCU) 6 is assigned. The voltage measurement is performed in the same manner as described above, but each voltage measurement instruction and voltage measurement result are exchanged between the voltage measuring device 2 and the battery monitoring microcomputer 6 corresponding to a set of battery cells 1. Between.
  • the voltage measuring device 2 and the battery monitoring microcomputer 6 for each set of battery cells 1 may be, for example, an LSI formed on a separate semiconductor substrate, or may be a single chip formed on a single semiconductor substrate. LSI may be used.
  • the voltage measuring apparatus 2 when the switch is in the on state, a voltage drop based on the drive current and the resistance component such as the on-resistance of the switch element in the signal path does not occur. Can be reduced. Further, since the drive current is supplied from the power supply terminal VCC, unbalanced power consumption between the unit cells can be prevented. Furthermore, the off-acceleration units 403 and 406 can further stabilize the off state of the bidirectional switch element. In addition, since the voltage measuring apparatus 2 according to the first embodiment does not employ the flying capacitor method, the capacitor 602 in the measurement circuit 60 needs to be a high voltage element, but the device such as the parasitic capacitance of the switch element of the switch circuit. The measurement error due to the measurement error and the measurement error due to the offset voltage of the OP amplifier or the like do not occur, so that a voltage measurement circuit with smaller measurement error can be realized.
  • FIG. 10 is a circuit diagram showing another example of a switch circuit using a bidirectional switch element of a P-type MOS transistor.
  • the same components as those of the switch circuit of FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the switch circuit shown in FIG. 10 includes an off acceleration unit 407 controlled by an off signal (OFF) in response to an enable signal (ENABLE), instead of the off acceleration unit 403 configured to flow a constant current I.
  • the off acceleration unit 407 includes an N-type MOS transistor MN7 whose gate terminal receives an off signal (OFF), and a resistance element R3 for adjusting a current value provided between the source terminal and the GND terminal of the MN7.
  • the resistor R4 that converts the current flowing through the MN7 into voltage with respect to the power supply VCC and the voltage generated by the resistor R4 are input, and the power supply terminal VCC and the common gate terminal of the bidirectional switch element are connected in a switch manner.
  • P-type MOS transistor MP8 is whose MOS transistor MN7 whose gate terminal receives an off signal (OFF), and a resistance element R3 for adjusting a current value provided between the source terminal and the GND terminal of the MN7.
  • the resistor R4 that converts the current flowing through the
  • FIG. 11 is an explanatory diagram showing an off signal in FIG.
  • the off signal (OFF) is a signal that is set to high for a predetermined period after the enable signal (ENABLE) is switched from high to low.
  • the off signal is one of control signals output from the control unit 50, for example, like the enable signal.
  • the off acceleration unit 407 turns on MN7 and turns on the power supply VCC by the resistor R4.
  • a reference voltage is generated, MP8 is turned on, and a large current instantaneously flows from the power supply VCC side to the gate terminals of the bidirectional switch elements MP1 and MP2.
  • the gate terminal of the bidirectional switch element is raised to the highest potential, and the current flows through the diode D1, so that the source terminal of the bidirectional switch element is also raised to the highest potential.
  • the bias current I is not passed when the switch element is on.
  • the ON voltage of the switch element is determined based on the current I flowing through the resistors R1 and MN4. That is, since it is not necessary to consider the off-acceleration bias current I in determining the on-voltage of the bidirectional switch element, the design is facilitated and the accuracy of the on-voltage can be increased. In addition, since the bias current I is not passed unnecessarily, the current consumption can be further reduced.
  • the current is generated by the MN7 to which the off signal is input and the resistor R3.
  • the current is not limited to the configuration in FIG. 10, and the MN7 is operated as a bias current source when the off signal is applied by adjusting the voltage of the off signal. It may be configured.
  • a MOS transistor in which a bias voltage is applied to the gate terminal may be used, or a depletion type MOS transistor may be used as a current source.
  • the depletion type MOS transistor here is a MOS transistor whose threshold value is adjusted so that a current is generated even when the potential difference between the gate and the source is 0V, for example.
  • FIG. 12 is a circuit diagram showing another example of a switch circuit using a bidirectional switch element of a P-type MOS transistor.
  • the same components as those in the switch circuits of FIGS. 5 and 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the switch circuit shown in FIG. 12 includes an off acceleration unit 408 controlled by an off signal (OFF) in response to an enable signal (ENABLE), instead of the off acceleration unit 403 configured to flow a constant current I.
  • the off-accelerator 408 inputs an N-type MOS transistor MN8 and a P-type MOS transistor MP9 that constitute a logic circuit to which an off signal (OFF) is input, and an output of the logic circuit, and is bidirectional with the power supply terminal VCC.
  • a P-type MOS transistor MP8 that switches-connects the common gate terminals of the switch elements.
  • the inverter circuit is driven between a power supply VCC and a voltage based on the power supply VCC.
  • the potential based on the power supply VCC is, for example, a potential generated so as to be 5 V lower than the power supply VCC.
  • the power supply VCC reference potential is 5 V lower than the highest voltage, but this voltage can be set according to various conditions such as the withstand voltage of the element used.
  • an inverter circuit composed of MN8 and MP9 is shown as the logic circuit. However, if MP8 can be controlled in accordance with an off signal, a more complex logic circuit is used. May be.
  • FIG. 13 is an explanatory diagram showing an off signal in FIG.
  • the OFF signal is, for example, a signal having a phase opposite to that of the enable signal (ENABLE), and is a signal that is set to HIGH only when the enable signal is LOW. is there.
  • the off signal is one of control signals output from the control unit 50, for example, like the enable signal.
  • the off-acceleration unit 408 turns on MP8 when a high-off signal is applied while the enable signal (ENABLE) is switched to Low, and the bidirectional switch element MP1 is turned on from the power supply VCC side. And a large current flows instantaneously into the gate terminal of MP2. As a result, the gate terminal of the bidirectional switch element is raised to the highest potential, and the current flows through the diode D1, so that the source terminal of the bidirectional switch element is also raised to the highest potential. With the above operation, the state where the potential on the drain terminal side of the bidirectional switch element is higher than the potential on the source terminal side can be prevented, and the OFF state of the bidirectional switch element can be further stabilized. In addition, it is possible to shift to a stable state at a higher speed than when charging with a constant current.
  • the bias current I is not supplied from the off acceleration circuit 408 when the switch element is turned on. This eliminates the need to consider the off-acceleration bias current I in determining the on-voltage of the bidirectional switch element, thereby facilitating the design and improving the accuracy of the on-voltage. In addition, since the bias current I is not passed unnecessarily, the current consumption can be further reduced.
  • FIG. 14 is a circuit diagram showing another example of a switch circuit using a bidirectional switch element of an N-type MOS transistor.
  • the same components as those in the switch circuit of FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the off acceleration unit 409 includes an off acceleration unit 409 that is controlled by an off signal (OFF) corresponding to an enable signal (ENABLE), instead of the off acceleration unit 406 configured to flow a constant current I.
  • the off acceleration unit 409 includes an N-type MOS transistor MN9 having an off signal (OFF) input to the gate terminal, a source terminal connected to the GND terminal, and a drain terminal connected to the common gate terminal of the bidirectional switch element. Is done.
  • FIG. 15 is an explanatory diagram showing an off signal (OFF) in FIG.
  • the OFF signal (OFF) is, for example, a signal having a phase opposite to that of the enable signal (ENABLE), and is a signal that is set to HIGH only when the enable signal is LOW. is there.
  • the off signal is one of control signals output from the control unit 50, for example, like the enable signal.
  • the off acceleration unit 409 turns on MN9 and turns on the gates of the bidirectional switch elements MP1 and MP2 when an off signal that becomes high during the period when the enable signal (ENABLE) is switched to low is applied.
  • a large current flows instantaneously from the terminal side to the power supply GND side.
  • the gate terminal of the bidirectional switch element is pulled down to the lowest potential, and the current flows through the diode D2, whereby the source terminal of the bidirectional switch element is also pulled down to the lowest potential.
  • the bias current I is not supplied from the off acceleration circuit 409 when the switch element is turned on. This eliminates the need to consider the off-acceleration bias current I in determining the on-voltage of the bidirectional switch element, thereby facilitating the design and improving the accuracy of the on-voltage. In addition, since the bias current I is not passed unnecessarily, the current consumption can be further reduced.
  • the source terminal of MN9 is directly connected to the GND terminal.
  • the present invention is not limited to this, and a resistance element for adjusting the current value may be inserted between the source terminal and the GND terminal.
  • the MN9 may be operated as a bias current source when the off signal is applied by adjusting the voltage of the off signal. With these configurations, the peak current during discharge is reduced, which contributes to the reduction of system noise radiation.
  • the off signal is not limited to the pulse shown in FIG. 15, and may be a short-time pulse as shown in FIG. 11, or the pulse is not limited to once but may be applied a plurality of times.
  • FIG. 16 is a block diagram illustrating an example of the case where the power supply of the voltage measuring device 2 is supplied from another power source.
  • the power supply of the voltage measuring device 2 is performed from the highest voltage of the plurality of battery cells VCL connected in series.
  • the power source is supplied from a different power source different from the plurality of battery cells. Supply.
  • the voltage measuring device 2 when the voltage measuring device 2 is applied to a voltage measuring system for an EV or HEV battery, power is supplied from a voltage VA generated based on a lead battery power source mounted to drive a vehicle-mounted illumination or the like. To do.
  • a plurality of voltage measuring devices 2 are used. Since the GND voltages are also different, the power supply circuit cannot be electrically connected directly.
  • the voltage VA is stepped up or stepped down using the isolated DC / DC converter 5 in order to supply energy by electrically insulating the voltage VA generated by stepping up or stepping down the voltage of a lead battery power source or the like.
  • the voltage VCC is supplied to the voltage measuring device 2.
  • the power supply voltage VCC supplies a voltage equal to or higher than the highest voltage of the plurality of battery cells connected in series. For example, assuming that the voltage of the battery cell is 4.3 V at the maximum with respect to the voltage measuring device when twelve lithium ion batteries are connected in series, the power supply voltage VCC needs to be 52 V or more. Therefore, the output voltage of the insulation type DC / DC converter 5 is adjusted so as to supply, for example, about 55 V as the power supply voltage VCC.
  • the drive current of the switch circuit in the MUX circuit 30 of the voltage measuring device 2 is not supplied from the plurality of battery cells connected in series, the power of the plurality of battery cells is measured in the voltage measurement operation of the battery cell. Consumption can be suppressed, and reduction in battery sustainability due to imbalance in battery energy consumption of battery cells can also be prevented.
  • Embodiment 6 In the first embodiment, the voltage measuring device 2 having a configuration that does not use a flying capacitor is shown. However, the MUX circuit 30 including the switch circuit can also be applied to a flying capacitor type voltage measuring device.
  • FIG. 17 is a block diagram showing an example of a flying capacitor type voltage measuring apparatus to which the MUX circuit 30 is applied.
  • the voltage measurement device 4 shown in the figure includes a MUX circuit 30, a flying capacitor C1, a voltage input switch unit 80, an OP amplifier (buffer amplifier) U1 that constitutes a buffer, a measurement circuit 61, and a control unit. 51.
  • the measurement circuit 61 includes a delta-sigma type AD conversion circuit or a SAR (Successive Application Register) type AD conversion circuit.
  • the voltage of the positive electrode of the highest battery cell VCL_1 among the plurality of battery cells VCL is input to the power supply terminal VCC of the voltage measuring device 4, and the power supply terminal GND includes, for example, the plurality of battery cells VCL. Among them, the voltage of the negative electrode of the lowest battery cell VCL_n is input.
  • FIG. 18 is a timing chart showing an example of operation timing of the voltage measuring device 4 shown in FIG.
  • the control unit 51 first controls the MUX circuit 30 at the timing of reference numeral 501 to turn on the switch circuits SWP_1 and SWN_1. As a result, the voltage of the battery cell VCL_1 is input to both ends of the flying capacitor C1. After the input voltage is stabilized, the control unit 51 turns off the switch circuits SWP_1 and SWN_1 at the timing of reference numeral 502, and causes the flying capacitor C1 to float. At the timing indicated by reference numeral 503, the control unit 51 turns on the switch circuit SWB and connects one electrode of the flying capacitor C1 to the negative side input terminal INN (GND potential) of the measurement circuit 61.
  • INN negative side input terminal
  • the control unit 51 controls the measurement circuit 61 at the timing of reference numeral 505 to execute voltage measurement.
  • the control unit 51 turns off the switch circuits SWA and SWB at the timing indicated by reference numeral 506.
  • the control unit 51 controls the MUX circuit 30 at the timing of reference numeral 507 to turn on the switch circuits SWP_2 and SWN_2.
  • the control unit 51 turns off the switch circuits SWP_1 and SWN_1 at the timing indicated by reference numeral 508, and causes the flying capacitor C1 to float.
  • the control unit 51 turns on the switch circuit SWB and connects one electrode of the flying capacitor C1 to the negative side input terminal INN (GND potential) of the measurement circuit 61.
  • the switch circuit SWA is turned on at the timing of reference numeral 510, and the voltage of the flying capacitor C1 is input to the measurement circuit 61 via the buffer amplifier U1.
  • control unit 51 controls the measurement circuit 61 at the timing indicated by reference numeral 511 to execute voltage measurement.
  • the control unit 51 turns off the switch circuits SWA and SWB at the timing of reference numeral 512.
  • the voltage of all the battery cells of the unit cells connected in series is measured by repeatedly executing the above operation.
  • the measurement circuit 60 can be configured without using a high voltage element by applying the flying capacitor type voltage measurement device 4 as the voltage measurement device.
  • the MUX circuit 30 is applied to the voltage measuring device 4, as in the first embodiment, generation of measurement error due to a voltage drop based on the driving current of the switch circuit and the resistance component such as the on-resistance of the signal path. , Prevention of unbalanced power consumption between battery cells, and further stabilization of the OFF state of the switch element.
  • the voltage measuring device is applied to a battery voltage measuring system such as an electric vehicle
  • a digital camera, notebook PC, electric tool, electric assist bicycle It can also be applied to the measurement of the battery voltage of products using multi-straight batteries such as electric motorcycles.
  • the lithium ion battery was illustrated as a battery cell which comprises an external voltage source, it is not restricted to this, It can apply also to various batteries, such as a nickel metal hydride battery and a fuel battery.
  • the switch circuit according to Embodiments 1 to 6 is applied to the MUX circuit 30 in the voltage measuring device is illustrated, the present invention is not limited to this, and if it is used as a switch, it may be applied to circuits for other purposes. Can do.
  • the present invention relates to a switch circuit, a selection circuit, and a voltage measurement device, and in particular, can be widely applied to a voltage measurement device that selects and measures one voltage from a plurality of voltages.
  • VCL_1 to VCL_n Battery cell 1 A set of battery cells 2, 4 Voltage measuring device 3 External LPF 20 Voltage input terminal 30 Multiplexer circuit (MUX circuit) SWP_1 to SWP_n Switch circuits for connecting the positive electrode of the battery cell and the positive input terminal of the measurement circuit SWN_1 to SWN_n

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Electronic Switches (AREA)

Abstract

 電圧測定装置における電圧測定精度の向上と電池の消費電流の均一化に資する技術を提供する。 スイッチ回路(SWP、SWN)は、入力端子と出力端子の間に設けられたスイッチ素子(MP1及びMP2、MN1及びMN2)と、入力電圧を挟んで相互に異なる第1電源電圧(VCC又はGND)と第2電源電圧(GND又はVCC)との間で駆動されるスイッチ駆動部(401~409)とを有する。スイッチ駆動部は、第1電源電圧が供給される第1電源端子側にドレイン側が接続され、入力電圧に応じた電圧を入力し、出力側に生じた電圧をスイッチ素子を駆動するための駆動電圧としてスイッチ素子に供給するソースフォロア回路(401、404)と、制御信号(ENABLE)に応じてソースフォロア回路の出力側と第2電源電圧が供給される第2電源端子との間の電流経路を開閉する電流制御部(402、405)とを有する。

Description

スイッチ回路、選択回路、及び電圧測定装置
 本発明は、スイッチ回路、選択回路、及び電圧測定装置に関し、特に複数の電圧から1つの電圧を選択して測定する電圧測定装置に適用して、有効な技術に関する。
 現在、車両走行用の駆動源としてモータを使用する電気自動車(EV:electric vehicle)やハイブリッド車(HEV:hybrid electric vehicle)が自動車メーカを問わず多くの企業・団体で開発されている。これらモータを駆動するためには数百ボルトの高電圧を有する車両搭載電源が必要とされる。前記車両搭載電源は、数ボルト程度の電圧を発生する素電池(「電池セル」とも称する。)を複数個直列に接続した組電池で実現されている。
 電気自動車等では車両の走行時や充電時などすべての使用環境下において、電池の状態(例えば、過充電状態、過放電状態、充電残量等)を判断するために各電池セルVCL1つずつの電圧を高精度で測定する必要がある。電池電圧の高精度な検出技術は電池エネルギの有効活用に必須であり、特に車両用電源としては車両の安全性や車両走行距離の長距離化に繋がる重要な技術である。
 このような高精度化の要求に応え、且つさらなる低コスト化を実現するために、車両搭載電源における電圧測定装置は、電池セルVCL1つにつき1つのAD変換器(以下、ADC(Analog-to-Digital Converter)とも称する。)を備えるのではなく、電池セル数個~十数個を1ブロックとして捉え、1ブロックにつき1つのADCを持つ構成が主に実用化されている。またその構成を実現するために、電圧測定装置は、マルチプレクサ回路(以下、MUX(multiplexer)とも称する。)を搭載し、MUXにより最下位電位(グラウンド(GND)レベル)を基準にして設計されるADCの信号入力に複数の異なる電圧水準にある電池電圧を時間的に順次切り替えることで、電圧の測定を実現している。また電池電圧を測定する回路方式として、従来はフライングキャパシタ回路を用いる方式が最もよく使用されている(例えば特許文献1参照)。この方式はMUX回路の一部として、少なくとも1つのキャパシタを使用して構成される。このキャパシタは通常時は両極いずれの端子も特定の電位に固定されておらず、電池側のスイッチ回路を通じて各電池の両極の入力電圧端子に接続可能とされ、ADC側のスイッチ回路を通じてADCの2つの入力端子に接続可能とされる。また、別のスイッチ回路によってキャパシタの一方の端子はGND電位や所定の固定電位に接続可能とされる。特許文献1に記載のフライングキャパシタ回路の測定時の動作を簡単に説明すると以下となる。例えば、先ず電圧を測定する電池の両端とキャパシタCとを接続する電池側スイッチをオンしてキャパシタCに電池電圧を充電する。次に電池側スイッチをオフしてから、キャパシタCのどちらか一方の電極をGND電位や一定電位に接続する。これにより電圧水準の異なる電池電圧をADCの動作範囲内の電圧領域にシフトさせることができる。そしてこの状態でADC側のスイッチをオンするにすることでADCと電気的に接続し、ADCによってその電圧値を読み取る。なお、キャパシタCとADCの間にバッファアンプや差動アンプを使用する場合があるが動作手順は同様である。
 電圧測定装置の従来技術として特許文献1乃至9に開示があり、その他の関連技術として特許文献10乃至12に開示がある。
 特許文献1には、フライングキャパシタ方式の電圧測定装置の各スイッチ回路において、電池電圧入力とキャパシタ間を接続するスイッチ素子をオンにする際に電池から消費されるスイッチの駆動電流を均一化する方法として、上位の単位電池セルに接続されたスイッチを駆動するレベルシフト回路ほど、そのレベルシフト回路に流れる消費電流を大きくするように、電池毎に前記駆動電流に重み付けを行う技術が開示されている。
 特許文献2には、電池セル数N個に対して、キャパシタとの接続にN+1個のPNP構造またはNPN構造のスイッチング素子を使用して電圧検出回路に接続する方法が開示されている。
 特許文献3乃至6には、測定対象の電圧源と同数のキャパシタを用い、各スイッチ回路のスイッチ素子にはN型またはP型のMOSFETを1つだけ使用する構成が開示されている。また特許文献5では、フライングキャパシタで使用されるスイッチの寄生容量による測定誤差を改善するために、スイッチ群の寄生容量を含む浮遊容量を予め測定し、フライングキャパシタの容量と測定した前記浮遊容量等に基づいて浮遊容量に蓄積された電荷による誤差電圧を算出し、その誤差電圧に基づいて測定電圧を算出する方法が開示されている。更に、特許文献6ではスイッチの寄生容量成分による誤差の改善方法が開示されている。
 特許文献7には、スイッチ素子として用いるMOSトランジスタのソース・ドレイン間の寄生ダイオードによる電荷抜けに対応するため、電圧測定回路において電池セル数分のキャパシタを用いるとともに、各スイッチ回路のスイッチ素子にはMOSFETを用いる方法が開示されている。
 特許文献8には、電池電圧入力とキャパシタ間を接続するスイッチをオンするための信号のレベルシフト回路にコンデンサを用いて、交流信号でスイッチをONする方法が開示されている。
 特許文献9には、前記特許文献5と同様にスイッチの寄生容量による測定誤差を改善するために、スイッチと差動増幅回路(OPアンプ)を組み合わせたサンプルホールド回路を用いる方法が開示されている。
 特許文献10には、バッテリ保護回路においてバッテリの充電を安定して行うための外部電極とバッテリとの間の給電経路の開閉制御の方法が開示されている。
 特許文献11には、1つのMOSトランジスタでは耐圧が不足するシステムにおける縦続トランジスタの接続方法が開示されている。
 特許文献12には、バッテリ充電制御において、バッテリの過充電や入力電圧低下によるバッテリからの電流の逆流を防止するための技術が開示されている。
特開2005-265776号公報 特開2006-53120号公報 国際公開WO2004/086065号パンフレット 特開2005-283258号公報 特開2006-105824号公報 特開2005-3394号公報 特開2005-91136号公報 特開2005-17289号公報 特開2008-99371号公報 特開2006-320183号公報 特開2002-9600号公報 特開2009-301209号公報
 本願発明者は、電圧測定装置における電圧測定精度の高精度化や電池の消費電流の均一化の要求に伴い、その技術的課題を見直した結果、以下の新たな課題を見出した。
 第1の課題は、測定対象の電池エネルギ消費のアンバランスによる電池持続力の低下である。
 図19は、公知技術ではないが、本願発明者が本願発明に先立って検討したP型MOSトランジスタをスイッチ素子とするスイッチ回路の一例である。また、図20は、図19と同様に、本願発明者が本願発明に先立って検討したN型MOSトランジスタをスイッチ素子とするスイッチ回路の一例である。
 図19及び図20に示されるスイッチ回路は、2つのMOSトランジスタのソースを共通に接続するとともにゲートを共通に接続する双方向スイッチと、当該スイッチを制御するための制御信号(ENABLE)によって制御されるMOSトランジスタと、定電流を発生させるMOSトランジスタと、抵抗Rと、から構成されるスイッチ駆動部を備える。例えば、電圧測定装置のMUX回路におけるスイッチ回路として、同図のスイッチ回路を用いた場合を考える。この電圧測定装置によって組電池を構成する夫々の電池セルの電圧を測定するに場合には、スイッチ駆動回路によってスイッチをオンして、測定対象の電池セルが接続される入力端子(VIN)を計測回路側に接続される出力端子(VOUT)に接続する。このときスイッチ駆動回路には、スイッチをオンするための駆動電流Iが入力側(VIN)から抵抗Rを介してグラウンド(GND)に流れる。このように、スイッチ駆動回路の低耐圧素子の使用や信号での制御の容易化のため、計測対象の電池セルの電極からGNDレベルに駆動電流Iが流れるようにすることでスイッチ素子を駆動すると、夫々の電池セルは直列に接続されているため、下位側に配置された電池セルほど駆動電流を何度も取り出すこととなる。逆に最上位側に配置された電池セルからはあまり駆動電流は取り出されないために、電池エネルギ消費のアンバランスを引き起こしてしまう。この対策方法として、前述したように、特許文献1にスイッチ駆動回路の駆動電流の重み付けを行う方法が示されているが、この方法では、直列に接続する電池セルの数を増加させた場合には、その数に応じて駆動電流が大きくなり、電池の消費電力を抑えるためには駆動電流の単位電流をかなり小さくする必要がある。また、最下位付近のスイッチ素子は微少電流でオン電圧を発生させなければならず、駆動回路のオン電圧を発生させるための抵抗素子(例えば、図19及び図20の抵抗Rに相当する抵抗素子)が高抵抗となってしまい、電圧測定装置の面積の増大を招く。
 第2の課題は、スイッチ素子及び信号経路の抵抗成分とスイッチ素子の駆動電流とで生ずる電圧降下による電圧測定精度の悪化である。上記の第1の課題で示したように、スイッチ素子をオンするための駆動電流を計測対象の電池セルから供給すると、スイッチ素子のオン抵抗、前記駆動電流が流れる信号経路の抵抗成分、電池セルの電極とスイッチ素子との間の外付けノイズカットフィルタの抵抗成分に前記駆動電流が流れることにより電圧降下が発生する。これらの抵抗成分はすべての製品で均一に製造することはできず、必ず素子のバラつきが生じてしまうが、この抵抗成分のバラつきが夫々の電圧降下に差を生じさせる。この電圧降下の差が電圧測定精度を悪化させる要因となる。例えば特許文献2では、各電池セルに対応するスイッチ素子としてプラス極側のスイッチにPMOSトランジスタを用い、マイナス極側にNMOSスイッチを用いているが、このような組み合わせ構成したスイッチ回路において前記抵抗成分のバラつきが大きい場合には、駆動電流の流れる方向の違いから電圧降下が相殺されることなく、逆に大きな測定誤差要因を生む可能性がある。この駆動電流による測定誤差の改善方法については、上記特許文献1乃至12では特に言及されていない。特許文献8では、前述したようにスイッチ素子を駆動するためにドライブコンデンサを用いる方法が示されているが、スイッチをオンさせる交流信号自体が測定ノイズとなる可能性がある。測定ノイズを防止するには、電池側とのスイッチをOFFのときに測定出来る様に電圧を保持するフライングキャパシタ回路を必要と考えられる。また、この方法を電圧測定装置で実現するには面積の大きな容量素子を使用せざるを得ず、回路規模の増大を招く。
 第3の課題は、オフ状態のスイッチ素子において想定外の電流リークパスが生じることによる測定精度悪化である。例えば1つフライングキャパシタに選択的に電池セルを接続するMUX回路において、夫々のスイッチ素子としてMOSトランジスタを用いる場合を考える。一つの電池セルの電圧を測定するために、当該電池セルのスイッチ素子(MOSトランジスタ)をオンしているとき、他の電池セルのスイッチ素子(MOSトランジスタ)はオフとされる。しかしながら、他の電池セルのMOSトランジスタのゲートを制御してオフとしても、そのソース・ドレイン間の寄生ダイオードが導通するような電圧関係が生じると、測定対象の電池セルからフライングキャパシタへの電流経路に加え、オフしているスイッチ素子への電流経路が生じてしまい、測定対象の電池セルにとっては想定外の負荷電流として見えてしまう可能性がある。この負荷電流と電池からMUX回路出力までの経路における抵抗成分とによって電圧降下が生じてしまい、その電圧降下が測定誤差を生じさせる誤差要因となる。この課題の対策方法として、前述の特許文献3乃至7に寄生ダイオードが働かない構成が提案されているが、これらの方法では電池セル数分のフライングキャパシタを内蔵しないといけないため、回路面積が大きくなってしまう。一方、特許文献9等のように、スイッチ素子として2つのMOSトランジスタのソースを共通に接続するとともにゲートを共通に接続する双方向スイッチを用いる場合であっても、例えば、オフ状態のスイッチ素子のPMOSトランジスタのソースノードよりも測定対象の電池の電圧が高い場合には、前記PMOSトランジスタの寄生ダイオードが動作してしまい、負荷電流が生じてしまう。また、オフ状態のスイッチ素子のNMOSトランジスタのソースノードよりも測定対象の電池の電圧が低い場合には、前記NMOSトランジスタの寄生ダイオードが動作してしまい負荷電流が生じてしまう。
 第4の課題は、フライングキャパシタ方式の電圧測定装置におけるスイッチ素子の寄生容量及びOPアンプのオフセット誤差等によるデバイス起因の測定誤差の発生である。前述した特許文献5及び特許文献9でも言及されているように、フライングキャパシタ方式の電圧測定装置では、スイッチ素子の寄生容量が測定誤差要因となるために、測定の高精度化には対策が必要である。特許文献5及び特許文献9のいずれにおいても、誤差を補正するための処理等が複雑であり、回路規模の増大を招く。特に、特許文献9のようにフライングキャパシタ回路においてキャパシタとADCの間にバッファ用途でOPアンプを追加したり、OPアンプを用いたサンプルホールド回路を用いたりする場合、OPアンプ自身のオフセット電圧などが誤差要因となってしまう。その誤差を補正する方法は各種あるが、多くの手間がかかり、計測時間の増大や消費電力の増大を招く可能性がある。
 また特許文献10乃至12に開示されたいずれの技術によっても上記の問題を解決することはできない。
 本発明の目的は、電圧測定装置における電圧測定精度の向上と電池の消費電流の均一化に資する技術を提供することにある。
 本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 すなわち、スイッチ回路は、入力端子と出力端子の間に設けられたスイッチ素子と、前記入力端子に供給される入力電圧を挟んで、相互に異なる第1電源電圧と第2電源電圧との間で駆動されるスイッチ駆動部とを有する。前記スイッチ駆動部は、前記第1電源電圧が供給される第1電源端子側にドレイン側が接続され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路と、前記制御信号に応じて前記ソースフォロア回路の出力側と前記第2電源電圧が供給される第2電源端子との間の電流経路を開閉する電流制御部とを有する。
 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
 すなわち、本スイッチ回路は、電圧測定装置における電圧測定精度の向上と電池の消費電流の均一化に資する。
図1は、実施の形態1に係る電圧測定装置の一例を示すブロック図である。 図2は、電圧測定装置2の電源供給の一例を示す説明図である。 図3は、電圧測定装置2におけるMUX回路30の一部のスイッチ回路の接続部分を示した説明図である。 図4は、電圧測定装置2の動作タイミングの一例を示すタイミングチャートである。 図5は、MUX回路30のP型MOSトランジスタをスイッチ素子とするスイッチ回路の一例を示す回路図である。 図6は、MUX回路30のN型MOSトランジスタをスイッチ素子とするスイッチ回路の一例を示す回路図である。 図7は、2種類のスイッチ回路を用いたMUX回路30の構成例を示すブロック図である。 図8は、EV又はHEV用のバッテリの電圧測定システムの一例を示すブロック図である。 図9は、EV又はHEV用のバッテリの電圧測定システムの別の一例を示すブロック図である。 図10は、P型MOSトランジスタの双方向スイッチ素子を用いたスイッチ回路の別の一例を示す回路図である。 図11は、図10におけるオフ信号(OFF)を示す説明図である。 図12は、P型MOSトランジスタの双方向スイッチ素子を用いたスイッチ回路の別の一例を示す回路図である。 図13は、図12におけるオフ信号(OFF)を示す説明図である。 図14は、N型MOSトランジスタの双方向スイッチ素子を用いたスイッチ回路の別の一例を示す回路図である。 図15は、図14におけるオフ信号(OFF)を示す説明図である。 図16は、電圧測定装置2の電源供給を別電源から供給する場合の一例を示すブロック図である。 図17は、MUX回路30を適用したフライングキャパシタ方式の電圧測定装置の一例を示すブロック図である。 図18は、電圧測定装置4の動作タイミングの一例を示すタイミングチャートである。 図19は、本願発明者が本願発明に先立って検討したP型MOSトランジスタをスイッチ素子とするスイッチ回路の回路図である。 図20は、本願発明者が本願発明に先立って検討したN型MOSトランジスタをスイッチ素子とするスイッチ回路の回路図である。
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
 〔1〕(電源電圧駆動のスイッチ回路)
 本発明の代表的な実施の形態に係るスイッチ回路(SWP、SWN)は、入力端子(VIN)と出力端子(VOUT)の間に設けられたスイッチ素子(MP1及びMP2、又はMN1及びMN2)と、前記スイッチ素子のオンオフを指示する制御信号(ENABLE)に基づいて、前記スイッチ素子を駆動するスイッチ駆動部(401~409)とを有する。前記スイッチ駆動部は、前記入力端子に供給される入力電圧を挟んで相互に異なる第1電源電圧(VCC又はGND)と第2電源電圧(GND又はVCC)との間で駆動される。また、前記スイッチ駆動部は、前記第1電源電圧が供給される第1電源端子側にドレイン側が接続され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路(401、404)と、前記制御信号に応じて前記ソースフォロア回路の出力側と前記第2電源電圧が供給される第2電源端子との間の電流経路を開閉する電流制御部(402、405)とを有する。
 項1のスイッチ回路は、前記スイッチ回路の入力端子側から駆動電流を供給するのではなく、前記ソースフォロア回路を介して前記第1電源端子と前記第2電源端子との間に流れる駆動電流によってスイッチ素子を駆動させる。これにより、スイッチの駆動電流とスイッチの入出力端子間の抵抗成分とによる電圧降下は生じず、且つスイッチ駆動のために入力端子側の電力を消費することはない。したがって、例えば前述した電圧測定装置のMUX回路に項1のスイッチ回路を適用すれば、上記の第1の課題と第2の課題を解決することができる。
 〔2〕(スイッチ回路の詳細)
 項1のスイッチ回路において、前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給される第1導電型の第1MOSトランジスタ(MP1又はMN2)と、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第1MOSトランジスタのゲート端子側に接続され、ソース端子が前記第1MOSトランジスタのソース端子と共通に接続される第1導電型の第2MOSトランジスタ(MP2又はMN2)と、を有する。前記ソースフォロア回路は、ドレイン端子が前記第1電源端子側に接続され、ゲート端子が前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子側に接続される第2導電型の第3MOSトランジスタ(MN3又はMP5)と、一端が前記第3MOSトランジスタのソース端子側に接続され、他端が前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部(402、405)とを有する。前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第2電源端子との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる。
 これによれば、項1のスイッチ回路を簡易な構成で実現することができる。また、前記電圧生成部に流れる電流に基づいて第1MOSトランジスタ及び第2MOSトランジスタのゲート・ソース間電圧を発生させるから、前記入力電圧によらないオン電圧を生成することができる。
 〔3〕(定電流タイプのオフ加速回路を備えるスイッチ回路)
 項1又は2のスイッチ回路において、前記スイッチ駆動部は、前記電流制御部によって形成された電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第1電源端子と第1MOSトランジスタ及び第2MOSトランジスタのソース端子との間に前記電圧生成部の他端、並びに、前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子を介して形成するオフ加速部(403、406)と、を更に有する。
 これによれば、スイッチ素子がオフ状態のとき、前記電圧生成部の他端のノードの電位が前記第1電源電圧側に遷移するため、スイッチ素子のオフ状態がより安定となる。また、前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子の電位が前記第1電源電圧側に遷移するため、オフ状態の前記第1MOSトランジスタ及び前記第2MOSトランジスタの寄生ダイオードを介した電荷の移動を防止することができる。したがって、例えば前述した電圧測定装置のMUX回路に項3のスイッチ回路を適用すれば、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。
 〔4〕(スイッチタイプのオフ加速回路を備えるスイッチ回路)
 項1又は2のスイッチ回路において、前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間のうち所定の期間に前記第1電源端子と第1MOSトランジスタ及び第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(407~409)と、を更に有する。
 これによれば、項3と同様に、スイッチ素子のオフ状態がより安定となり、且つオフ状態の前記第1MOSトランジスタ及び前記第2MOSトランジスタの寄生ダイオードを介した電荷の移動を防止することができる。したがって、例えば前述した電圧測定装置のMUX回路に項3のスイッチ回路を適用すれば、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。また、前記オフ加速部は、スイッチ素子がオン状態であるときには電流を流さないので消費電流を低減することができ、且つスイッチ素子のオン電圧を決定する前記電圧生成部に流れる電流として前記電流制御部に流れる電流のみを考慮すればよいので、オン電圧の精度向上に資する。更に前記オフ加速部はスイッチ的に動作するので、定電流で動作する場合に比べ前記スイッチ素子がオフ状態に移行するまでの時間をより短くすることができ、且つより早いタイミングで寄生ダイオードを介した電荷の移動を防止することができる。
 〔5〕(オフ加速回路:ワンショット信号)
 項4のスイッチ回路において、前記オフ加速部が電流経路を形成する期間は、前記電流制御部が電流経路を閉じている期間のうち一部の期間(図11のオフ信号のハイレベル期間)である。
 〔6〕(オフ加速回路:反転信号)
 項4のスイッチ回路において、前記オフ加速部が電流経路を形成する期間は、前記電流制御部が電流経路を閉じている期間に対応する期間(図13又は図15のオフ信号のハイレベル期間)である。
 これによれば、前記オフ加速部が電流経路を形成する期間を、例えばスイッチ素子のオフ状態を指示する期間とすることができるから、設計が容易となる。
 〔7〕(スイッチ回路(Pch))
 項2乃至6のいずれかのスイッチ回路において、前記第1電源電圧は、前記入力電圧以上の電圧値(VCC)とされ、前記第1導電型はPチャネル型であり、前記第2導電型はNチャネル型である。
 〔8〕(スイッチ回路(Nch))
 項2乃至6のいずれかのスイッチ回路において、前記第1電源電圧はグラウンド電圧とされ、前記第2電源電圧は前記入力電圧以上の電圧値(VCC)とされ、前記第1導電型はNチャネル型であり、前記第2導電型はPチャネル型である。
 〔9〕(電源電圧駆動のスイッチ回路を備えるマルチプレクサ回路)
 本発明の代表的な実施の形態に係る選択回路(30)は、一端と他端が接続されて組電池を構成する複数個の素電池(VCL_1~VCL_n)のうち1又は複数の素電池から構成されるブロックを1単位とし、入力された制御信号に応じて、いずれかの前記ブロックの両端に接続される信号線を選択して第1出力端子(INP(+))と第2出力端子(INN(-))に接続する。前記選択回路は、前記ブロックの一端(電池セルVCLの正側電極)に接続される信号線が接続される入力端子(VIN)と前記第1出力端子に接続される信号線が接続される出力端子(VOUT)とを有して、前記制御信号に応じて当該入力端子と当該出力端子とを電気的に接続する第1スイッチ回路(SWP)と、前記ブロックの他端(電池セルVCLの負側電極)に接続される信号線が接続される入力端子(VIN)と前記第2出力端子に接続される信号線が接続される出力端子(VOUT)とを有して、前記制御信号に応じて当該入力端子と当該出力端子とを電気的に接続する第2スイッチ回路(SWN)とを夫々の前記ブロックに対応して有する。また、前記第1スイッチ回路及び前記第2スイッチ回路は、当該スイッチ回路の入力端子と出力端子の間に設けられたスイッチ素子(MP1及びMP2、又はMN1及びMN2)と、前記制御信号に応じて前記スイッチ素子を駆動するスイッチ駆動部(401~409)と、を有する。前記スイッチ駆動部は、前記第1電源電圧(VCC又はGND)が供給される第1電源端子と、前記第2電源電圧(GND又はVCC)が供給される第2電源端子との間に配置され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路(401、404)と、前記制御信号に応じて、前記第1電源端子と前記第2電源端子との間の前記ソースフォロア回路が配置された電流経路を開閉する電流制御部(402、405)とを有する。
 これによれば、項1と同様に、前記第1スイッチ回路及び前記第2スイッチ回路によれば、スイッチの駆動電流とスイッチの入出力端子間の抵抗成分とによる電圧降下は生じず、且つスイッチ駆動のために入力端子側の電力を消費することはない。したがって、例えば前述した電圧測定装置のMUX回路として項9の選択回路を適用すれば、上記の第1の課題と第2の課題を解決することができる。
 〔10〕(VCCはバッテリ電圧)
 項9の選択回路において、前記第1電源電圧は、前記組電池を構成する素電池のうち最高位の素電池の一端の電圧に応じた電圧(VCL_1の正側電極の電圧)である。
 項10の選択回路において、前記第1スイッチ回路及び前記第2スイッチ回路の駆動電流は前記組電池から供給される。すなわち、前記選択回路の選択動作において各素電池から均等に電力消費が行われるので、素電池間の電池エネルギ消費のバランスを保つことができる。
 〔11〕(ブロック毎のスイッチ回路は同一種類のトランジスタ)
 項10の選択回路において、前記スイッチ素子は、ゲート端子が前記駆動電圧により制御されるP型のMOSトランジスタ(MP1、MP2)又はN型のMOSトランジスタ(MN1、MN2)を有し、前記ブロックに対応される前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子のトランジスタの種類は同一とされる。
 項11の選択回路は、前記選択対象の前記ブロックの夫々の電極に接続されるスイッチ素子の種類を同一とするから、前記ブロックの夫々の電極から前記第1出力端子までの抵抗成分と前記第2出力端子までの抵抗成分とのずれの低減に資する。
 〔12〕(同一種類のスイッチ回路の接続方法)
 項9乃至11のいずれかの選択回路において、前記ブロックのうち前記他端の電位が所定の電位(VT)以上となる第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、P型のMOSトランジスタ(MP1、MP2)とされ、前記ブロックのうち前記他端の電位が前記所定の電位より低い第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、N型のMOSトランジスタ(MN1、MN2)とされる。
 これによれば、前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子としてN型MOSトランジスタとP型MOSトランジスタを用いた場合であっても、夫々のブロックの両端に接続されるスイッチ素子を種類を等しくすることができる。
 〔13〕(スイッチ回路の詳細(Pch))
 項12の選択回路において、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるP型の第1MOSトランジスタ(MP1)と、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第1MOSトランジスタのゲート端子側に接続され、ソース端子が前記第1MOSトランジスタのソース端子と共通に接続されるP型の第2MOSトランジスタ(MP2)と、を有する。また、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記ソースフォロア回路(401)は、ドレイン端子が前記第1電源端子側に接続され、ゲート端子が前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子側に接続されるN型の第3MOSトランジスタ(MN3)と、一端が前記第3MOSトランジスタのソース端子側に接続され、他端が前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部(R1)とを有する。更に、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記電流制御部(402)は、前記制御信号(ENABLE)が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第2電源端子(GND)との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる。
 これによれば、項2と同様に前記第1スイッチ回路及び前記第2スイッチ回路を簡易な構成で実現することができる。また、前記電圧生成部に流れる電流に基づいて第1MOSトランジスタ及び第2MOSトランジスタのゲート・ソース間電圧を発生させるから、前記入力電圧によらないオン電圧を生成することができる。
 〔14〕(スイッチ回路の詳細(Nch))
 項12又は13の選択回路において、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるN型の第4MOSトランジスタ(MN1)と、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第4MOSトランジスタのゲート端子側に接続され、ソース端子が前記第4MOSトランジスタのソース端子と共通に接続されるN型の第5MOSトランジスタ(MN2)と、を有する。また、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記ソースフォロア回路(404)は、ドレイン端子が前記第2電源端子側に接続され、ゲート端子が前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子側に接続されるP型の第6MOSトランジスタ(MP5)と、一端が前記第6MOSトランジスタのソース端子側に接続され、他端が前記第4MOSトランジスタ及び前記第5MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部(R2)と、を有する。更に、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第1電源端子(VCC)との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる。
 これによれば、項2と同様に前記第1スイッチ回路及び前記第2スイッチ回路を簡易な構成で実現することができる。また、前記電圧生成部に流れる電流に基づいて第4MOSトランジスタ及び第5MOSトランジスタのゲート・ソース間電圧を発生させるから、前記入力電圧によらないオン電圧を生成することができる。
 〔15〕(定電流タイプのオフ加速回路を備えるスイッチ回路)
 項12乃至14のいずれかの選択回路において、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第1電源端子(VCC)と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(403)と、を更に有する。
 これによれば、項3と同様に、スイッチ素子がP型MOSトランジスタから構成される前記第1スイッチ回路及び前記第2スイッチ回路において、スイッチ素子のオフ状態がより安定となり、且つ、オフ状態の前記第1MOSトランジスタ及び前記第2MOSトランジスタの寄生ダイオードを介した電荷の移動を防止することができる。したがって、例えば前述した電圧測定装置のMUX回路として項15の選択回路を適用すれば、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。
 〔16〕(スイッチタイプのオフ加速回路を備えるスイッチ回路)
 項12乃至14のいずれかの選択回路において、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第1電源端子と前記第1MOSトランジスタ及び第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(407、408)と、を更に有する。
 これによれば、項4と同様に、スイッチ素子がP型MOSトランジスタから構成される前記第1スイッチ回路及び前記第2スイッチ回路において、スイッチ素子のオフ状態がより安定となり、且つオフ状態時の寄生ダイオードを介した電荷の移動を防止することができる。したがって、項16の選択回路によれば、項15と同様に、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。また、前記オフ加速部は、項4と同様に、消費電流を低減することができ、且つスイッチ素子のオン電圧の精度向上に資する。更に前記オフ加速部はスイッチ的に動作するので、定電流で動作する場合に比べ前記スイッチ素子がオフ状態に移行するまでの時間をより短くすることができ、且つより早いタイミングで寄生ダイオードを介した電荷の移動を防止することができる。
 〔17〕(定電流タイプのオフ加速回路を備えるスイッチ回路)
 項12乃至16のいずれかの選択回路において、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を前記第2電源端子と前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(406)と、を更に有する。
 これによれば、項15と同様に、スイッチ素子がN型MOSトランジスタから構成される前記第1スイッチ回路及び前記第2スイッチ回路において、スイッチ素子のオフ状態がより安定となり、且つ、オフ状態の前記第4MOSトランジスタ及び前記第5MOSトランジスタの寄生ダイオードを介した電荷の移動を防止することができる。したがって、例えば前述した電圧測定装置のMUX回路として項17の選択回路を適用すれば、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。
 〔18〕(スイッチタイプのオフ加速回路を備えるスイッチ回路)
 項12乃至16のいずれかの選択回路において、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に前記第2電源端子と前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(409)と、を更に有する。
 これによれば、項16と同様に、スイッチ素子がN型MOSトランジスタから構成される前記第1スイッチ回路及び前記第2スイッチ回路において、スイッチ素子のオフ状態がより安定となり、且つオフ状態時の寄生ダイオードを介した電荷の移動を防止することができる。したがって、項18の選択回路によれば、項16と同様に、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。また、前記オフ加速部は、項16と同様に、消費電流を低減することができ、且つスイッチ素子のオン電圧の精度向上に資する。更に前記オフ加速部はスイッチ的に動作するので、定電流で動作する場合に比べ前記スイッチ素子がオフ状態に移行するまでの時間をより短くすることができ、且つより早いタイミングで寄生ダイオードを介した電荷の移動を防止することができる。
 〔19〕(電源電圧駆動のスイッチ回路を備えるバッテリ電圧測定のためのバッテリ電圧測定装置)
 本発明の代表的な実施の形態に係る電圧測定装置(2)は、一端と他端が接続されて組電池を構成する複数個の素電池(VCL_1~VCL_n)のうち1又は複数の素電池から構成されるブロックを1単位とし、1ブロック毎に前記ブロックの両端の電圧を測定するための電圧測定装置である。前記電圧測定装置は、入力された制御信号に応じて、前記ブロックの両端に接続される信号線を1ブロック毎に選択して第1出力端子(INP(+))と第2出力端子(INN(-))に接続する選択部(30)と、前記第1出力端子と前記第2出力端子の電圧を入力して、両端子間の電圧を測定する測定部(60)と、を有する。前記選択部は、前記ブロックの一端(電池セルの正側電極)に接続される信号線が接続される入力端子(VIN)と前記第1出力端子に接続される信号線が接続される出力端子(VOUT)とを有して前記制御信号に応じて前記入力端子と前記出力端子とを電気的に接続する第1スイッチ回路(SWP)と、前記ブロックの他端(電池セルの負側電極)に接続される信号線が接続される入力端子(VIN)と前記第2出力端子に接続される信号線が接続される出力端子(VOUT)とを有して前記制御信号に応じて前記入力端子と前記出力端子とを電気的に接続する第2スイッチ回路(SWN)と、を夫々の前記ブロックに対応して有する。また、前記第1スイッチ回路及び前記第2スイッチ回路は、当該スイッチ回路の入力端子(VIN)と出力端子(VOUT)との間に設けられたスイッチ素子(MP1及びMP2、又はMN1及びMN2)と、前記制御信号に応じて前記スイッチ素子を駆動するスイッチ駆動部(401~409)と、を有する。前記スイッチ駆動部は、前記第1電源電圧VCC又はGND)が供給される第1電源端子と、前記第2電源電圧(GND又はVCC)が供給される第2電源端子との間に配置され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路(401、404)と、前記制御信号に応じて、前記第1電源端子と前記第2電源端子との間の前記ソースフォロア回路が配置された電流経路を開閉する電流制御部(402、405)と、を有する。
 項19の電圧測定装置において、前記第1スイッチ回路及び前記第2スイッチ回路の駆動電流は、項1と同様に、前記第1電源端子と前記第2電源端子との間で流れるから、スイッチの駆動電流とスイッチの入出力端子間の抵抗成分とによる電圧降下は生じず、且つスイッチ駆動のために入力端子側の電力を消費することはない。また、項19の電圧測定装置によれば、フライングキャパシタ方式を採用しない電圧測定装置を構成することができるから、電圧の測定に際し、スイッチ素子の寄生容量等によるデバイス起因の測定誤差を低減することができ、バッファやサンプリング用途の増幅回路の使用することによる誤差の発生を防ぐことができる。したがって、例えば前述した電圧測定装置として項19の電圧測定装置を適用すれば、上記の第1の課題、第2の課題、及び第4の課題を解決することができる。
 〔20〕(VCCはバッテリ電圧)
 項19の電圧測定装置において、前記第1電源電圧は、前記組電池を構成する素電池のうち最高位の素電池の一端の電圧に応じた電圧(VCL_1の正側電極の電圧)である。
 これによれば、項10と同様に、電圧測定装置における前記選択回路の選択動作において、各素電池から均等に電力消費が行われるので、素電池間の電池エネルギ消費のバランスを保つことができる。
 〔21〕(ブロック毎のスイッチ回路は同一種類のトランジスタ)
 項19又は20の電圧測定装置において、前記スイッチ素子は、ゲート端子が前記駆動電圧により制御されるP型のMOSトランジスタ(MP1、MP2)又はN型のMOSトランジスタ(MN1、MN2)を有し、前記ブロックに対応される前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子のトランジスタの種類は同一とされる。
 これによれば、項11と同様に、前記選択対象の前記ブロックの夫々の電極に接続されるスイッチ素子の種類を同一とするから、測定対象の前記ブロックの正電極から前記第1出力端子までの信号経路の抵抗成分と、負電極から前記第2出力端子までの信号経路の抵抗成分との差異の低減に資する。これにより、例えば、外乱による同相ノイズが発生した場合であっても、測定部の入力に差動ノイズが発生することを防止することができる。したがって、例えば、比較的測定に時間を要するデルタ・シグマ方式のアナログデジタル変換器を用いても、電圧測定システム全体でのノイズ除去性能の低減を防止することができ、測定誤差の発生を防ぐことができる。
 〔22〕(同一種類のスイッチ回路の接続方法)
 項19乃至21のいずれかの電圧測定装置において、前記ブロックのうち前記他端の電位が所定の電位(VT)以上となる第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、P型のMOSトランジスタ(MP1、MP2)とされ、前記ブロックのうち前記他端の電位が前記所定の電位より低い第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、N型のMOSトランジスタ(MN1、MN2)とされる。
 これによれば、項12と同様に、前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子としてN型MOSトランジスタとP型MOSトランジスタを用いた場合であっても、夫々のブロックの両端に接続されるスイッチ素子を種類を等しくすることができる。
 〔23〕(スイッチ回路の詳細(Pch))
 項22の電圧測定装置において、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるP型の第1MOSトランジスタ(MP1)と、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第1MOSトランジスタのゲート端子側に接続され、ソース端子が前記第1MOSトランジスタのソース端子と共通に接続されるP型の第2MOSトランジスタ(MP2)と、有する。また、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記ソースフォロア回路(401)は、ドレイン端子が前記第1電源端子側に接続され、ゲート端子が前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子側に接続されるN型の第3MOSトランジスタ(MN3)と、一端が前記第3MOSトランジスタのソース端子側に接続され、他端が前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部(R1)と、を有する。前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第2電源端子(GND)との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる。
 これによれば、項13と同様に前記第1スイッチ回路及び前記第2スイッチ回路を簡易な構成で実現することができる。また、前記電圧生成部に流れる電流に基づいて第1MOSトランジスタ及び第2MOSトランジスタのゲート・ソース間電圧を発生させるから、前記入力電圧によらないオン電圧を生成することができる。
 〔24〕(スイッチ回路の詳細(Nch))
 項22又は23の電圧測定装置において、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるN型の第4MOSトランジスタ(MN1)と、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第4MOSトランジスタのゲート端子側に接続され、ソース端子が前記第4MOSトランジスタのソース端子と共通に接続されるN型の第5MOSトランジスタ(MN2)と、を有する。また、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記ソースフォロア回路(404)は、ドレイン端子が前記第2電源端子側に接続され、ゲート端子が前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子側に接続されるP型の第6MOSトランジスタ(MP5)と、一端が前記第6MOSトランジスタのソース端子側に接続され、他端が前記第4MOSトランジスタ及び前記第5MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部(R2)と、を有する。更に、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記電流制御部(405)は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第1電源端子(VCC)との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる。
 これによれば、項14と同様に前記第1スイッチ回路及び前記第2スイッチ回路を簡易な構成で実現することができる。また、前記電圧生成部に流れる電流に基づいて第4MOSトランジスタ及び第5MOSトランジスタのゲート・ソース間電圧を発生させるから、前記入力電圧によらないオン電圧を生成することができる。
 〔25〕(定電流タイプのオフ加速回路を備えるスイッチ回路(Pch))
 項22乃至24のいずれかの電圧測定装置において、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第1電源端子と前記第1MOSトランジスタ及び第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(403)、を更に有する。
 これによれば、項15と同様に、スイッチ素子がP型MOSトランジスタから構成される前記第1スイッチ回路及び前記第2スイッチ回路において、スイッチ素子のオフ状態がより安定となり、且つ、オフ状態の前記第1MOSトランジスタ及び前記第2MOSトランジスタの寄生ダイオードを介した電荷の移動を防止することができる。したがって、例えば項25の電圧測定装置によれば、上記の第1の課題、第2の課題、及び第4の課題に加え、第3の課題を解決することができる。
 〔26〕(スイッチタイプのオフ加速回路を備えるスイッチ回路(Pch))
 項22乃至24のいずれかの電圧測定装置において、前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する。
 これによれば、項16と同様に、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。また、項16と同様に、前記オフ加速部はスイッチ的に動作するので、定電流で動作する場合に比べ前記スイッチ素子がオフ状態に移行するまでの時間をより短くすることができ、且つより早いタイミングで寄生ダイオードを介した電荷の移動を防止することができる。
 〔27〕(定電流タイプのオフ加速回路を備えるスイッチ回路(Nch))
 項22乃至26のいずれかの電圧測定装置において、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第2電源端子と前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部(406)、を更に有する。
 これによれば、項16と同様に、スイッチ素子がN型MOSトランジスタから構成される前記第1スイッチ回路及び前記第2スイッチ回路において、スイッチ素子のオフ状態がより安定となり、且つ、オフ状態の前記第4MOSトランジスタ及び前記第5MOSトランジスタの寄生ダイオードを介した電荷の移動を防止することができる。したがって、例えば項26の電圧測定装置によれば、上記の第1の課題、第2の課題、及び第4の課題に加え、第3の課題を解決することができる。
 〔28〕(スイッチタイプのオフ加速回路を備えるスイッチ回路(Nch))
 項22乃至26のいずれかの電圧測定装置において、前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路の前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第2電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する。
 これによれば、項18と同様に、上記の第1の課題と第2の課題に加え、第3の課題を解決することができる。また、項18と同様に、前記オフ加速部はスイッチ的に動作するので、定電流で動作する場合に比べ前記スイッチ素子がオフ状態に移行するまでの時間をより短くすることができ、且つより早いタイミングで寄生ダイオードを介した電荷の移動を防止することができる。
 〔29〕(ADCはΔ・Σ方式のADCであるバッテリ電圧測定のためのバッテリ電圧測定装置)
 項19乃至28のいずれかの電圧測定装置において、前記測定部は、デルタ・シグマ方式のアナログデジタル変換器(601~603)を有する。
 2.実施の形態の詳細
 実施の形態について更に詳述する。
 ≪実施の形態1≫
 図1は、実施の形態1に係る電圧測定装置の一例を示すブロック図である。
 同図に示される電圧測定装置2は、直列に接続された複数の電池セルVCL_1~VCL_n(電池セルを総称する場合は、単に、VCLと表示する。)のうち、1又は複数の電池セルからなる電池セルのかたまり(以下、「ブロック」とも称する。)毎に両端の電圧を測定する。ここでは一例として前記ブロックを1個の電池セルとする。すなわち、前記電圧測定装置2は、前記直列に接続された複数の電池セルVCLから1個ずつ電池セル選択して電圧を測定するものとする。なお、前記直列に接続された複数の電池セルVCLは、直列に1列で接続された電池セル列に限られず、直列に接続された電池セル列が複数並列に接続された電池セル列も含む。また、複数の電池セルを並列接続したものを1つの電池としてみなして、それが複数個直列に接続されるものも意味する。
 電圧測定装置2は、各ブロックの両端の電極から電圧を入力するための電圧入力端子20と、電源電圧を入力するための電源端子VCC及びGNDと、測定対象となる1つの電池電圧を選択して出力するMUX回路30と、入力される電圧差を計測する計測回路60と、保護素子40とから構成される。なお同図では、簡単のため、電圧測定装置2の機能部のうち電圧測定に係る機能部のみを表示している。
 電圧測定装置2の電源は、例えば、前記複数の電池セルVCLから供給される。図2は、電圧測定装置2の電源供給の一例を示す説明図である。同図に示されるように、電圧測定装置2は、前記複数の電池セルVCLのうち最上位の電池セルVCL_1の正側電極の電圧が電源端子VCCに供給され、前記複数の電池セルVCLのうち最下位の電池セルVCL_nの負側電極の電圧が電源端子GNDに供給される。
 MUX回路30は、複数の電圧入力端子20の夫々に接続される信号経路と計測回路60の2つの入力端子INP(+)及びINN(-)とを接続するための複数のスイッチ回路を有する。具体的には、MUX回路30は、電池セルVCLの正側電極と計測部60の正側入力端子INP(+)とを接続するスイッチ回路SWP_1~SWP_n(総称する場合は単にSWPと表示する。)と、電池セルVCLの負側電極と計測部60の負側入力端子INN(-)とを接続するスイッチ回路SWN_1~SWN_n(総称する場合は単にSWPと表示する。)と、を有する。すなわち、前記複数の電池セルの数をN個とすると、夫々の電池セルの電圧を測定するために、MUX回路30は、2N個のスイッチ回路が必要となる。なお、図1では、最上位の電池セルの正側の電圧を入力する電圧入力端子20と計測回路60の負側の入力端子INNとを接続するスイッチ回路SWXと、最下位の電池セルの負側の電圧を入力する電圧入力端子20と計測回路60の正側の入力端子INPとを接続するスイッチ回路SWYとを含む2N+2個のスイッチ回路備える場合を示しているが、これら2つのスイッチ回路は無くてもよく、MUX回路30が適用されるシステム等に応じて適宜配置される。
 スイッチ回路SWP、SWNは、制御部50による制御信号によってスイッチのオン状態とオフ状態が制御される。例えば、所定の電池セルの電圧を測定するとき、当該電池セルの両端の電圧が計測回路60の入力端子間に印加されるように、制御部50がMUX回路30のスイッチ回路を制御する。MUX回路30の詳細は後述する。
 保護素子40は、計測回路60の2つの入力端子INP、INN間に接続され、計測回路60の入力段を保護するための保護素子であり、例えばツェナーダイオードである。
 制御部50は、MUX回路30や計測回路60を制御することにより、各電池セルの電圧測定のための統括的な制御を行う。前記制御部50は、例えば専用のロジック回路やマイクロコンピュータ等である。
 計測回路60は、制御部50からの制御信号に応じて、2つの入力端子INP、INNに入力された電位差を測定して測定結果を出力する。前記計測回路60は、例えば、デルタ・シグマ方式のA/D変換器によって実現される。計測回路60は、例えば、入力端INP、INNに入力された電圧を取り込むためのスイッチ部601及び容量602と、取り込んだ電圧を入力して電圧を測定する計測部603とを備える。容量602は高耐圧素子であり、計測部603は低耐圧素子によって構成される回路である。
 電圧測定装置2の測定動作について図3及び図4を用いて簡単に説明する。
 図3は、電圧測定装置2におけるMUX回路30の一部のスイッチ回路の接続部分を示した説明図である。
 図4は、電圧測定装置2の動作タイミングの一例を示すタイミングチャートである。
 図4において、例えば電池セルVCL_1の電圧を測定するため、先ず制御部50は、参照符号201のタイミングでMUX回路30を制御してスイッチ回路SWP_1及びSWN_1をオンさせる。これにより、電池セルVCL_1の電圧が計測回路60に入力される。入力電圧の安定後、参照符号202のタイミングで制御部50は計測回路60を制御し、電圧測定を実行させる。電池セルVCL_1の電圧の測定が完了すると、参照符号203のタイミングで、制御部50はスイッチ回路SWP_1及びSWN_1をオフさせる。次に、例えば電池セルVCL_2の電圧を測定するため、制御部50は、参照符号204のタイミングでMUX回路30を制御してスイッチ回路SWP_2及びSWN_2をオンさせる。このとき、スイッチをオンさせるタイミング204は、スイッチ回路SWP1~SWN_2が全てオンすることによる短絡防止のため、スイッチ回路SWP_1及びSWN_1がオフ状態になってから一定時間経過後のタイミングである。スイッチ回路SWP_2及びSWN_2がオンすることにより、電池セルVCL_2の電圧が計測回路60に入力される。入力電圧の安定後、参照符号205のタイミングで制御部50は計測回路60を制御し、電圧測定を実行させる。電池セルVCL_2の電圧の測定が完了すると、参照符号206のタイミングで、制御部50はスイッチ回路SWP_2及びSWN_2をオフさせる。以上の動作を繰り返し実行することにより、直列に接続された複数の電池セルの全ての電池セルの電圧を測定する。このように、本実施の形態1に係る電圧測定装置2は、前記直列に接続された複数の電池セルの電位が計測回路60に直接入力されるため、前述したように計測回路60内の容量602は高耐圧素子にする必要があるが、フライングキャパシタ方式にした場合のフライングキャパシタやバッファとしてのOPアンプ等が不要となるため、スイッチ回路のスイッチ素子の寄生容量等のデバイス起因の測定誤差やOPアンプ等のオフセット電圧等による測定誤差が生じることはない。
 MUX回路30を構成するスイッチ回路として、P型のMOSトランジスタをスイッチ素子とするスイッチ回路とN型のMOSトランジスタをスイッチ素子とするスイッチ回路の2種類がある。以下、夫々のスイッチ回路の詳細について説明する。
 図5は、MUX回路30のP型MOSトランジスタをスイッチ素子とするスイッチ回路の一例を示す回路図である。同図に示されるように、スイッチ回路は、2つのP型MOSトランジスタMP1、MP2から構成される双方向スイッチ素子を有する。MP1とMP2のソース端子は共通に接続され、ゲート端子も共通に接続される。MP1のドレイン端子は電池電圧入力端子側の入力端子VINに接続され、MP2のドレイン端子はMUX回路の信号出力側の出力端子VOUTに接続される。また共通のソース端子とゲート端子との間にはダイオードD1が挿入され、アノードが共通ゲート端子側、カソードが共通ソース端子側にそれぞれ接続される。なお、ゲート耐圧保護が必要な場合は双方向スイッチ素子のオン電圧以上のブレイクダウン電圧を持ったツェナーダイオードを前記ダイオードD1の代わりに用いてもよい。
 スイッチ回路は更に、オン電圧発生部401、電流制御部402、及びオフ加速部403を備える。
 オン電圧発生部401は、N型MOSトランジスタMN3と電圧発生素子である抵抗R1から構成されるソースフォロア回路である。MN3のゲート端子は双方向スイッチ素子の共通ソース端子に接続され、ドレイン端子は最上位電位である電源端子VCCに接続され、ソース端子は抵抗R1を介して双方向スイッチ素子の共通ゲート端子に接続される。なお、電圧発生素子として抵抗以外の素子を用いてもよい。例えば、抵抗素子R1の代わりに、バイアス電圧をゲート端子に印加したMOSトランジスタを用いてもよいし、デプレッション型のMOSトランジスタを電流源として用いてもよい。なお、ここでいうデプレッション型のMOSトランジスタとは、例えば、ゲート・ソース間電位差が0Vでも電流を生じさせるように閾値が調整されたMOSトランジスタである。また、MN3と双方向スイッチ素子MP1及びMP2の各ゲート端子や各ドレイン端子には静電気破壊防止のために抵抗素子を直列に挿入してもよい。
 電流制御部402は、例えば、バイアス電圧(BIAS)が印加され、電流(2I)を供給するためのN型MOSトランジスタMN4と、双方向スイッチ素子MP1、MP2のオンオフを制御するためのイネーブル信号(ENABLE)が印加されるN型MOSトランジスタMN5とがカスコードに接続される構成である。MN4のドレイン端子は双方向スイッチ素子MP1、MP2のゲート端子に接続される。イネーブル信号は、制御部50からの制御信号である。なお、MN4とMN5との接続関係を逆にしてもよい。また、電流を供給するためのMN4及びMN6は例えばカレントミラー回路によって構成されるが、チャネル長変調効果による電流値変動を抑制するために、カスコード型カレントミラー回路によって構成されてもよい。同様にMP3及びMP4から成るカレントミラー回路もカスコード型カレントミラー回路としてもよい。
 オフ加速部403は、MN4と共通のバイアス電圧(BIAS)が印加され、電流(I)を供給するためのN型MOSトランジスタMN6と、MN6の電流(I)を折り返して双方向スイッチ素子のゲート端子に供給するためのカレントミラー回路を構成するP型MOSトランジスタMP3及びMP4とから構成される。
 イネーブル信号がハイ(High)レベルにされ、双方向スイッチ素子のオンが指示されると、MN5がオン状態となり、MN4によって駆動電流2Iを生じる。この駆動電流2Iはオフ加速部403から流れ込む電流Iとその接点ノードで加算される。これにより、差分の電流Iがオン電圧発生部401を介して最上位電位(VCC)から引き込まれる。このときに双方向スイッチ素子のゲート・ソース間にMP1及びMP2をオンするに足りる電位差VGSが生じることで、電池の電圧入力端子側とMUX回路の出力側とが電気的に導通される。すなわち、上記のスイッチ回路によれば、スイッチがオンするときスイッチ回路の駆動電流が入力端子VIN側から供給されるのではなく、電源端子VCCから供給されるから、駆動電流と双方向スイッチ素子のオン抵抗とによる電圧降下が生じず、測定誤差の低減を図ることできる。また、駆動電流が電源端子VCCから供給されることで、組電池を構成する夫々の電池セルの電力消費が均等に行われるため、従来のような電池セル間でのアンバランスな電力消費を防止することができる。
 一方、イネーブル信号がロー(Low)レベルにされ、双方向スイッチ素子のオフが指示されたときは、MN5がオフ状態となり、駆動電流2Iが流れなくなる。これにより、オン電圧発生部401には電流が流れなくなり、双方向スイッチ素子MP1、MP2のゲート・ソース間には電位差が生じず、スイッチ回路は電池の電圧入力端子側とMUX回路の出力側とを電気的に開放する。またオフ加速部403から流れ込む電流Iが双方向スイッチ素子MP1、MP2のゲート端子を最上位電位(VCC)にまで吊り上げることで、オフ状態を安定させる。更に、オフ加速部403からの電流IがダイオードD1を介してMP1及びMP2のソース端子に流れ込むことで、当該ソース端子に接続される寄生容量を充電し、当該ソース端子の電位を最上位電位(VCC)まで吊り上げる。これによる効果は以下である。前述したように、選択された電池セルの両端の電圧は計測回路60における容量602を介して計測部603に入力されるが、電池セルからMUX回路30のスイッチ回路を介して容量602に電荷がチャージされることにより、電池セルの電圧が計測部603に入力される。このとき、MUX回路30におけるオフ状態の双方向スイッチ素子MP1及びMP2のドレイン端子側の信号電位がソース端子側の電位より高い状態であると、測定対象の電池セルから前記容量602に流れ込む電流以外に、オフ状態の双方向スイッチ素子MP1及びMP2の寄生ダイオードを介した電流が流れることになる。これにより、前記容量602をチャージする電荷が減るのでチャージ時間が長くなり、目標電圧に到達する前に電圧測定が開始されてしまうおそれがあり、これが測定誤差要因となる。これを防ぐために測定開始のタイミングを遅らせる方法もあるが、この方法だと電圧測定の測定時間が全体的に増大するおそれがある。そこで、前記オフ加速部403によれば、双方向スイッチ素子MP1及びMP2のドレイン端子側の信号電位がソース端子側の電位より高くなる状態を防止するので、寄生ダイオードを介した電荷の移動を防ぐことができ、オフ状態の更なる安定化と測定誤差の発生の抑止を図ることができる。
 なお、駆動電流(2I)やオフ加速部から供給する電流(I)の電流値は一定の比率で設計しなければいけないということはなく、オン電圧発生部401によって双方向スイッチ素子をオンするための差電圧VGSを生成することができれば、任意の電流値としてもよい。
 図6は、MUX回路30のN型MOSトランジスタをスイッチ素子とするスイッチ回路の一例を示す回路図である。同図に示されるように、スイッチ回路は、2つのN型MOSトランジスタMN1、MN2から構成される双方向スイッチ素子を有する。MN1とMN2のソース端子は共通に接続され、ゲート端子も共通に接続される。MN1のドレイン端子は電池電圧入力端子側の入力端子VINに接続され、MN2のドレイン端子はMUX回路の信号出力側の出力端子VOUTに接続される。また共通のソース端子とゲート端子との間にはダイオードD2が挿入され、アノードが共通ソース端子側、カソードが共通ゲート端子側にそれぞれ接続される。なお、ゲート耐圧保護が必要な場合は双方向スイッチ素子のオン電圧以上のブレイクダウン電圧を持ったツェナーダイオードを前記ダイオードD2の代わりに用いてもよい。
 N型の双方向スイッチ素子からなるスイッチ回路は更に、オン電圧発生部404、電流制御部405、及びオフ加速部406を備える。
 オン電圧発生部404は、P型MOSトランジスタMP5と電圧発生素子である抵抗R2から構成されるソースフォロア回路である。MP5のゲート端子は双方向スイッチ素子の共通ソース端子に接続され、ドレイン端子は最下位電位である電源端子GNDに接続され、ソース端子は抵抗R2を介して双方向スイッチ素子の共通ゲート端子に接続される。なお、前記オン電圧発生部401と同様に、電圧発生素子として抵抗以外の素子を用いてもよい。また、MP5と双方向スイッチ素子MN1及びMN2の各ゲート端子や各ドレイン端子には静電気破壊防止のために抵抗素子を直列に挿入してもよい。
 電流制御部405は、例えば、バイアス電圧(BIAS)が印加され、電流(2I)を供給するためのN型MOSトランジスタMN4と、双方向スイッチ素子MP1、MP2のオンオフを制御するためのイネーブル信号(ENABLE)が印加されるN型MOSトランジスタMN4と、MN4の電流(2I)を折り返して双方向スイッチ素子のゲート端子に供給するためのカレントミラー回路を構成するP型MOSトランジスタMP6及びMP7と、から構成される。イネーブル信号は、前述と同様に制御部50からの制御信号である。なお、双方向スイッチ素子を構成するMN1及びMN2のゲート端子が低い電圧印加でも十分にオンオフ状態を切り替えることができる場合には、カレントミラー回路MP6、MP7を介さずに双方向スイッチ素子のゲート端子に直接信号を印加して駆動してもよい。また、MN4とMN5との接続関係を逆にしてもよい。更に電流を供給するためのMN4及びMN6は例えばカレントミラー回路によって構成されるが、チャネル長変調効果による電流値変動を抑制するために、カスコード型カレントミラー回路によって構成されてもよい。同様にMP6及びMP7から成るカレントミラー回路もカスコード型カレントミラー回路としてもよい。
 オフ加速部406は、MN4と共通のバイアス電圧(BIAS)が印加され、双方向スイッチ素子のゲート端子とGND端子との間で電流(I)を発生させるN型MOSトランジスタMN6から構成される。
 イネーブル信号がハイ(High)レベルにされ、双方向スイッチ素子のオンが指示されると、MN5がオン状態となり、MN4によって駆動電流2Iを生じる。この駆動電流2Iはカレントミラー回路MP6、MP7を介して双方向スイッチ素子の共通ゲート端子が接続されるノードに流れ込み、その駆動電流の一部の電流Iがオフ加速部406に流れる。これにより、差分の電流Iがオン電圧発生部404を介して最上位電位(GND)に引き込まれる。このときに双方向スイッチ素子のゲート・ソース間にMN1及びMN2をオンするに足りる電位差VGSが生じることで、電池の電圧入力端子側とMUX回路の出力側とが電気的に導通される。すなわち、上記のスイッチ回路によれば、スイッチがオンするときスイッチ回路の駆動電流が入力端子VIN側から供給されるのではなく、電源端子VCCから供給されるから、駆動電流と双方向スイッチ素子のオン抵抗とによる電圧降下が生じず、測定誤差の低減を図ることできる。また、駆動電流が電源端子VCCから供給されることで、組電池を構成する夫々の電池セルの電力消費が均等に行われるため、従来のような電池セル間でのアンバランスな電力消費を防止することができる。
 一方、イネーブル信号がロー(Low)レベルにされ、双方向スイッチ素子のオフが指示されると、MN5がオフ状態となり、駆動電流2Iが流れなくなる。これにより、オン電圧発生部404には電流が流れなくなり、双方向スイッチ素子MN1、MN2のゲート・ソース間には電位差が生じず、スイッチ回路は電池の電圧入力端子側とMUX回路の出力側とを電気的に開放する。さらに、オフ加速部403が電流IをGND側に流すことで、双方向スイッチ素子MN1、MN2のゲート端子を最上位電位(GND)にまで引き下げ、オフ状態を安定させる。更に、オフ加速部404がダイオードD2を介してMN1及びMN2のソース端子から電荷を引き抜くことで、当該ソース端子に接続される寄生容量を放電し、当該ソース端子の電位を最下位電位(GND)まで引き下げる。これにより、MP1及びMP2のドレイン端子側の信号電位がソース端子側の電位より低くなる状態が生じて、MN1及びMN2の寄生ダイオードを介した電荷の移動が生じることを防止し、双方向スイッチ素子のオフ状態を更に安定化させる。なお、駆動電流(2I)やオフ加速部から供給する電流(I)の電流値は、前述と同様に、一定の比率で設計しなければいけないということはなく、オン電圧発生部404によって双方向スイッチ素子をオンするための差電圧VGSを生成することができれば、任意の電流値としてもよい。
 次にMUX回路30の具体的な構成について説明する。
 図7は、2種類のスイッチ回路を用いたMUX回路30の構成例を示すブロック図である。簡単のため、同図では、計測回路60の前段までの接続関係が示され、例えば、直列に接続された複数の電池セル(外部電圧源)1と、電圧入力端子20と、MUX回路30と、計測回路60と、の接続関係が示される。なお、同図では、ノイズ除去のため、前記複数の電池セルVCLと電圧入力端子20との間に低域フィルタ(LPF)3が挿入されている場合を一例として示している。前記低域フィルタ3は、例えば、外付けの抵抗と容量から構成されるが、インダクタ等を用いて構成してもよい。図7に示されるMUX回路30では、例えばスイッチ回路は以下のように構成される。
 第1に、前記複数の電池セルのうち負側電極の電位が所定の電位(VT)以上となる電池セルから正側電極が最上位電位の電池セルまでの連続した複数の電池セルに接続されるスイッチ回路として、2つのPチャネルMOSFETのソース同士を共通接続して構成される双方向スイッチ素子を備えるスイッチ回路を用いる(PMOSスイッチ群)。例えば、P型のスイッチ素子のスイッチ回路の場合、双方向スイッチ素子MP1及びMP2がオンするためには、MP1及びMP2のゲート電圧はソース電圧よりも低くなる方向に電圧範囲が必要となる。そこで、より電位が高い電池セルに接続されるスイッチ回路にはP型のスイッチ素子のスイッチ回路を用いる。
 第2に、前記複数の電池セルのうち正側電極の電位が所定の電位(VT)以下となる電池セルから負側電極が最下位電位の電池セルまでの連続した複数の電池セルに接続されるスイッチ回路として、2つのNチャネル型MOSFETのソース同士を共通接続して構成される双方向スイッチ素子を備えるスイッチ回路を用いる(NMOSスイッチ群)。例えばN型のスイッチ素子のスイッチ回路の場合、双方向スイッチ素子MN1及びMN2がオンするためには、MN1及びMN2のゲート電圧はソース電圧よりも高くなる方向に電圧範囲が必要となる。そこで、より電位が低い電池セルに接続されるスイッチ回路にはN型のスイッチ素子のスイッチ回路を用いる。
 第3に、電池セルの正側電極とMUX回路30の出力信号線の正側出力(計測回路60の正側入力端子INP)とを接続するスイッチ回路SWP_1~SWP_nのスイッチ素子と、電池セルの負側電極とMUX回路30の出力信号線の負側出力(計測回路60の負側入力端子INN)とを接続するスイッチ回路SWN_1~SWN_nのスイッチ素子は、同一種類のスイッチ素子とする。すなわち、選択された電池セルの電圧を計測回路60に入力する正側の信号線と負側の信号経路を形成するスイッチ素子のMOSトランジスタの種類を同一とすることで、スイッチ素子のオン抵抗を等しくなるように構成する。これにより、夫々の信号経路の抵抗成分の差異が小さくなるように構成される。したがって、例えば図4に示した計測実行期間において、前記信号経路に外乱による同相ノイズが発生した場合であっても、計測回路60の入力に差動ノイズが発生することを防止することができ、測定誤差の発生を抑止することができる。
 以上のようにMUX回路30では、負側電極の電位が所定の電位(VT)以上となる電池セルから正側電極が最上位電位の電池セルまでの連続した複数の電池セルに接続されるスイッチ回路には、P型のMOSトランジスタをスイッチ素子とするスイッチ回路を用い、正側電極の電位が所定の電位(VT)以下となる電池セルから負側電極が最下位電位の電池セルまでの連続した複数の電池セルに接続されるスイッチ回路には、N型のMOSトランジスタをスイッチ素子とするスイッチ回路を用いる。なお、前記所定の電位VTは、MUX回路30の入力電圧範囲、双方向スイッチ素子等の特性、及びMUX回路30の要求仕様等に応じて決定する。
 電圧測定装置2を適用したシステムの一例を図8及び図9に示す。
 図8は、EV又はHEV用のバッテリの電圧測定システムの一例を示すブロック図である。
 同図において、モータはモータ駆動用のインバータの両端にバッテリから電力が供給されることにより駆動される。同図に示される電圧測定システムを構成するバッテリ装置10は、複数の素電池が直列に接続された組電池から構成されるバッテリ101と、前記バッテリを構成する電池セルのうち数個~十数個を一組とし、一組の電池セル1毎に割り当てられた複数の電圧測定装置2と、電池監視用マイクロコンピュータ(MCU)6と、を備える。バッテリ101は、例えば電気自動車等の車両全体で数百個の素電池から構成され、最上位の電圧は例えば400V程度である。また、バッテリ101を構成する素電池は、例えば、リチウムイオン電池である。
 電池監視用マイクロコンピュータ(MCU)3は、電圧測定装置2を制御することによりバッテリ電圧の測定を実行させ、測定結果に基づいてモータ駆動用インバータに対する電池からの電力供給を制御する。また、電池制御用マイクロコンピュータ7との間でCAN通信等を行う。
 夫々の電圧測定装置2は、バッテリ101のうち測定対象とされる一組の電池セル1について、前述した方法により電圧を測定する。また、電圧測定装置2は、前述した機能部に加え、通信機能部70、71を更に有し、通信機能部70、71を用いて電池監視用マイクロコンピュータ6からの制御指示や電圧測定結果等を相互に通信する。
 図9は、EV又はHEV用のバッテリの電圧測定システムの別の一例を示すブロック図である。
 同図に示される電圧測定システムを構成するバッテリ装置11は、バッテリ101を構成する電池セルのうち数個~十数個を一組とし、一組の電池セル1毎に電圧測定装置2と電池監視用マイクロコンピュータ(MCU)6とが割り当てられる。電圧測定は上記と同様の方法で行われるが、夫々の電圧測定の指示や電圧測定結果等のやり取りは、一組の電池セル1に対応される電圧測定装置2と電池監視用マイクロコンピュータ6との間で行われる。一組の電池セル1毎の電圧測定装置2と電池監視用マイクロコンピュータ6は、例えば夫々が別個の半導体基板に形成されたLSIでもよいし、夫々が1つの半導体基板に形成された1チップのLSIでもよい。
 以上実施の形態1に係る電圧測定装置2によれば、スイッチがオン状態のときに、駆動電流と信号経路におけるスイッチ素子のオン抵抗等の抵抗成分とに基づく電圧降下が生じないから、測定誤差の低減を図ることができる。また、駆動電流が電源端子VCCから供給されるので、素電池間でのアンバランスな電力消費を防止することができる。更に、オフ加速部403、406により、双方向スイッチ素子のオフ状態を更に安定化させることができる。また実施の形態1に係る電圧測定装置2は、フライングキャパシタ方式を採用しないため、計測回路60内の容量602は高耐圧素子にする必要はあるが、スイッチ回路のスイッチ素子の寄生容量等のデバイス起因の測定誤差やOPアンプ等のオフセット電圧等による測定誤差が生じることはないので、より測定誤差の小さい電圧測定回路を実現することができる。
 ≪実施の形態2≫
 図10は、P型MOSトランジスタの双方向スイッチ素子を用いたスイッチ回路の別の一例を示す回路図である。図5のスイッチ回路と同様の構成要素には同一の符号を付してその詳細な説明を省略する。
 図10に示されるスイッチ回路は、定電流Iを流しこむ構成のオフ加速部403に変えて、イネーブル信号(ENABLE)に応じたオフ信号(OFF)によって制御されるオフ加速部407を備える。前記オフ加速部407は、ゲート端子にオフ信号(OFF)が入力されるN型MOSトランジスタMN7と、MN7のソース端子とGND端子との間に設けられた電流値を調整するための抵抗素子R3と、電源VCCを基準としてMN7に流れる電流を電圧に変換する抵抗素子R4と、抵抗素子R4によって生じた電圧を入力して、電源端子VCCと双方向スイッチ素子の共通ゲート端子をスイッチ的に接続するP型MOSトランジスタMP8と、から構成される。
 図11は、図10におけるオフ信号を示す説明図である。同図に示されるように、オフ信号(OFF)は、イネーブル信号(ENABLE)がハイ(High)からロー(Low)に切り替わった後に、所定の期間だけハイ(High)とされる信号である。オフ信号は、イネーブル信号と同様に、例えば制御部50から出力される制御信号の一つである。オフ加速部407は、イネーブル信号(ENABLE)がロー(Low)に切り替わっている期間に短時間のパルスとしてオフ信号が1回または複数回印加されると、MN7がオンして抵抗R4により電源VCC基準の電圧が発生してMP8がオンし、電源VCC側から双方向スイッチ素子MP1及びMP2のゲート端子に大きな電流が瞬時に流れ込む。これにより、双方向スイッチ素子のゲート端子が最上位電位に吊り上げられるとともに、ダイオードD1を介して電流が流れることにより、双方向スイッチ素子のソース端子も最上位電位に吊り上げられる。以上の動作により、双方向スイッチ素子のドレイン端子側の電位がソース端子側の電位より高くなる状態を防ぎ、双方向スイッチ素子のオフ態をより安定化させることができる。また、定電流で充電する場合に比べてより高速に安定状態に移行させることができる。
 また、図5のスイッチ回路とは異なりバイアス電流Iをスイッチ素子のオン時に流さない。これにより、スイッチ素子のオン電圧は、抵抗R1とMN4に流れる電流Iに基づいて決定される。すなわち、双方向スイッチ素子のオン電圧を決定する上で上記オフ加速用のバイアス電流Iを考慮する必要がないから、設計が容易となるとともに、オン電圧の精度を高めることができる。また、バイアス電流Iを無駄に流さないから、消費電流をより小さく抑えることもできる。
 なお、オフ信号を入力するMN7と抵抗R3によって電流を生成しているが、図10の構成に限られず、オフ信号の電圧を調整することでオフ信号の印加時にバイアス電流源としてMN7を動作させる構成でもよい。また、抵抗素子R3の代わりに、バイアス電圧をゲート端子に印加したMOSトランジスタを用いてもよいし、デプレッション型のMOSトランジスタを電流源として用いてもよい。なお、ここでいうデプレッション型のMOSトランジスタとは、例えば、ゲート・ソース間電位差が0Vでも電流を生じさせるように閾値が調整されたMOSトランジスタである。
 ≪実施の形態3≫
 図12は、P型MOSトランジスタの双方向スイッチ素子を用いたスイッチ回路の別の一例を示す回路図である。図5及び図10のスイッチ回路と同様の構成要素には同一の符号を付してその詳細な説明を省略する。
 図12に示されるスイッチ回路は、定電流Iを流しこむ構成のオフ加速部403に変えて、イネーブル信号(ENABLE)に応じたオフ信号(OFF)によって制御されるオフ加速部408を備える。前記オフ加速部408は、オフ信号(OFF)が入力されるロジック回路を構成するN型MOSトランジスタMN8及びP型MOSトランジスタMP9と、前記ロジック回路の出力を入力して、電源端子VCCと双方向スイッチ素子の共通ゲート端子をスイッチ的に接続するP型MOSトランジスタMP8と、から構成される。前記インバータ回路は、電源VCCと電源VCC基準の電圧との間で駆動される。前記電源VCC基準の電位は、例えば、電源VCCから5V低くなるように生成された電位である。なお、前記電源VCC基準の電位を最上位電圧から5V低い電圧としているが、この電圧は使用する素子の耐圧など諸条件に合わせて設定可能である。また、同図では、簡単のため、前記ロジック回路としてMN8及びMP9から構成されるインバータ回路を示しているが、オフ信号に応じてMP8を制御することができれば、より複雑な論理回路で構成してもよい。
 図13は、図12におけるオフ信号を示す説明図である。同図に示されるように、オフ信号(OFF)は、例えばイネーブル信号(ENABLE)の逆位相となる信号であり、イネーブル信号がロー(Low)の期間だけ、ハイ(High)とされる信号である。オフ信号は、イネーブル信号と同様に、例えば制御部50から出力される制御信号の一つである。
 オフ加速部408は、イネーブル信号(ENABLE)がロー(Low)に切り替わっている期間にハイ(High)となるオフ信号が印加されると、MP8がオンして電源VCC側から双方向スイッチ素子MP1及びMP2のゲート端子に大きな電流が瞬時に流れ込む。これにより、双方向スイッチ素子のゲート端子が最上位電位に吊り上げられるとともに、ダイオードD1を介して電流が流れることにより、双方向スイッチ素子のソース端子も最上位電位に吊り上げられる。以上の動作により、双方向スイッチ素子のドレイン端子側の電位がソース端子側の電位より高くなる状態を防ぎ、双方向スイッチ素子のオフ態をより安定化させることができる。また、定電流で充電する場合に比べてより高速に安定状態に移行させることができる。
 また、実施の形態2に係るスイッチ回路と同様に、スイッチ素子のオン時にオフ加速回路408からバイアス電流Iを流さない。これにより、双方向スイッチ素子のオン電圧を決定する上で上記オフ加速用のバイアス電流Iを考慮する必要がないから、設計が容易となるとともに、オン電圧の精度を高めることができる。また、バイアス電流Iを無駄に流さないから、消費電流をより小さく抑えることもできる。
 ≪実施の形態4≫
 図14は、N型MOSトランジスタの双方向スイッチ素子を用いたスイッチ回路の別の一例を示す回路図である。図6のスイッチ回路と同様の構成要素には同一の符号を付してその詳細な説明を省略する。
 図14に示されるスイッチ回路は、定電流Iを流しこむ構成のオフ加速部406に変えて、イネーブル信号(ENABLE)に応じたオフ信号(OFF)によって制御されるオフ加速部409を備える。前記オフ加速部409は、ゲート端子にオフ信号(OFF)が入力され、ソース端子がGND端子に接続され、ドレイン端子が双方向スイッチ素子の共通ゲート端子に接続されるN型MOSトランジスタMN9から構成される。
 図15は、図14におけるオフ信号(OFF)を示す説明図である。同図に示されるように、オフ信号(OFF)は、例えばイネーブル信号(ENABLE)の逆位相となる信号であり、イネーブル信号がロー(Low)の期間だけ、ハイ(High)とされる信号である。オフ信号は、イネーブル信号と同様に、例えば制御部50から出力される制御信号の一つである。
 オフ加速部409は、イネーブル信号(ENABLE)がロー(Low)に切り替わっている期間にハイ(High)となるオフ信号が印加されると、MN9がオンして双方向スイッチ素子MP1及びMP2のゲート端子側から電源GND側に大きな電流が瞬時に流れ込む。これにより、双方向スイッチ素子のゲート端子が最下位電位に引き下げられるとともに、ダイオードD2を介して電流が流れることにより、双方向スイッチ素子のソース端子も最下位電位に引き下げられる。以上の動作により、双方向スイッチ素子のドレイン端子側の電位がソース端子側の電位より低くなる状態を防ぎ、双方向スイッチ素子のオフ態をより安定化させることができる。また、定電流で充電する場合に比べてより高速に安定状態に移行させることができる。
 また、実施の形態1に係るスイッチ回路及び実施の形態2に係るスイッチ回路と同様に、スイッチ素子のオン時にオフ加速回路409からバイアス電流Iを流さない。これにより、双方向スイッチ素子のオン電圧を決定する上で上記オフ加速用のバイアス電流Iを考慮する必要がないから、設計が容易となるとともに、オン電圧の精度を高めることができる。また、バイアス電流Iを無駄に流さないから、消費電流をより小さく抑えることもできる。
 なお、図14ではMN9のソース端子をGND端子に直接接続しているが、これに限られず、ソース端子とGND端子との間に電流値を調整する抵抗素子を挿入してもよい。また、オフ信号の電圧を調整することでオフ信号の印加時にバイアス電流源としてMN9を動作させる構成でもよい。これらの構成とすることで、放電時のピーク電流が低下するので、システムノイズ放射の軽減に資する。更に、オフ信号は図15に示されるパルスに限られず、図11に示されるような短時間のパルスであっても良いし、当該パルスは1回に限られず、複数回印加してもよい。
 ≪実施の形態5≫
 図16は、電圧測定装置2の電源供給を別電源から供給する場合の一例を示すブロック図である。
 実施の形態1では、電圧測定装置2の電源供給を前記直列に接続された複数の電池セルVCLの最上位電圧から行うが、実施の形態5では、前記複数の電池セルとは異なる別電源から供給する。例えば、EV又はHEV用のバッテリの電圧測定システムに電圧測定装置2を適用する場合、車載の照明などを駆動するために搭載されている鉛バッテリ電源等に基づいて生成される電圧VAから電源供給する。前述したように、バッテリとして用いられるリチウムイオン電池は数十個以上が直列に接続されるため電圧測定装置2が複数用いられる。そして、そのGND電圧もそれぞれ異なるため、電源供給回路を電気的に直接接続することは出来ない。そこで、例えば鉛バッテリ電源等の電圧を昇圧又は降圧して生成した電圧VAから電気的に絶縁してエネルギを供給するため、絶縁型DC/DCコンバータ5を用いて、電圧VAを昇圧又は降圧した電圧VCCを電圧測定装置2に供給する。図16では、フライバックコンバータで電源電圧を共有する場合を一例として示したが、それ以外の構成でもよい。また、電源電圧VCCは、前記直列に接続された複数の電池セルの最上位電圧以上の電圧を供給する。例えば、リチウムイオン電池を12個直列に接続した場合の電圧測定装置について電池セルの電圧が最大で4.3Vまでになるとすると、電源電圧VCCは52V以上必要となる。そこで、電源電圧VCCとして例えば55V程度を供給するように絶縁型DC/DCコンバータ5の出力電圧を調整する。
 これによれば、電圧測定装置2のMUX回路30におけるスイッチ回路の駆動電流は前記直列に接続された複数の電池セルから供給されないから、電池セルの電圧測定動作において、前記複数の電池セルの電力消費を抑えることができ、且つ電池セルの電池エネルギ消費のアンバランスによる電池持続力の低下も防止することができる。
 ≪実施の形態6≫
 実施の形態1では、フライングキャパシタを用いない構成の電圧測定装置2を示したが、前記スイッチ回路を備えるMUX回路30をフライングキャパシタ方式の電圧測定装置にも適用することができる。
 図17は、MUX回路30を適用したフライングキャパシタ方式の電圧測定装置の一例を示すブロック図である。同図に示される電圧測定装置4は、MUX回路30と、フライングキャパシタC1と、電圧入力用のスイッチ部80と、バッファを構成するOPアンプ(バッファアンプ)U1と、計測回路61と、制御部51とを備える。計測回路61は、デルタ・シグマ方式のAD変換回路、又はSAR(Successive Approximation Register)方式のAD変換回路を備える。電圧測定装置4の電源端子VCCには、例えば前記複数の電池セルVCLのうち最高位の電池セルVCL_1の正側電極の電圧が入力され、電源端子GNDには、例えば前記複数の電池セルVCLのうち最低位の電池セルVCL_nの負側電極の電圧が入力される。
 フライングキャパシタ方式の電圧測定装置4の動作手順について図18を用いて詳細に説明する。
 図18は、図17に示される電圧測定装置4の動作タイミングの一例を示すタイミングチャートである。
 例えば電池セルVCL_1の電圧を測定するため、先ず制御部51は、参照符号501のタイミングでMUX回路30を制御してスイッチ回路SWP_1及びSWN_1をオンさせる。これにより、電池セルVCL_1の電圧がフライングキャパシタC1の両端に入力される。入力電圧の安定後、参照符号502のタイミングで制御部51はスイッチ回路SWP_1及びSWN_1をオフさせ、フライングキャパシタC1をフローティングとする。参照符号503のタイミングにおいて制御部51はスイッチ回路SWBをオンさせ、フライングキャパシタC1の一方の電極を計測回路61の負側入力端子INN(GND電位)に接続する。これにより、フライングキャパシタC1の両端電圧は、GND電位を基準とした電圧に変換される。次に参照符号504のタイミングでスイッチ回路SWAをオンさせ、フライングキャパシタC1の電圧をバッファアンプU1を介して計測回路60に入力する。そして、制御部51は参照符号505のタイミングで計測回路61を制御し、電圧測定を実行させる。電池セルVCL_1の電圧の測定が完了すると、制御部51は、参照符号506のタイミングでスイッチ回路SWA及びSWBをオフさせる。次に、例えば電池セルVCL_2の電圧を測定するため、制御部51は、参照符号507のタイミングでMUX回路30を制御してスイッチ回路SWP_2及びSWN_2をオンさせる。これにより、電池セルVCL_2の電圧がフライングキャパシタC1の両端に入力される。入力電圧の安定後、参照符号508のタイミングで制御部51はスイッチ回路SWP_1及びSWN_1をオフさせ、フライングキャパシタC1をフローティングとする。参照符号509のタイミングにおいて制御部51はスイッチ回路SWBをオンさせ、フライングキャパシタC1の一方の電極を計測回路61の負側入力端子INN(GND電位)に接続する。次に参照符号510のタイミングでスイッチ回路SWAをオンさせ、フライングキャパシタC1の電圧をバッファアンプU1を介して計測回路61に入力する。そして、制御部51は参照符号511のタイミングで計測回路61を制御し、電圧測定を実行させる。電池セルVCL_2の電圧の測定が完了すると、制御部51は、参照符号512のタイミングでスイッチ回路SWA及びSWBをオフさせる。以上の動作を繰り返し実行することにより、直列に接続された素電池の全ての電池セルの電圧を測定する。
 前述したように、フライングキャパシタ方式の電圧測定装置の場合、フライングキャパシタに対するスイッチ素子の寄生容量等に起因する測定誤差や、バッファを構成するOPアンプのオフセット電圧等による測定誤差が生ずる。しかしながら、このような誤差が無視できるような場合には、電圧測定装置としてフライングキャパシタ方式の電圧測定装置4を適用すれば、高耐圧素子を用いなくとも計測回路60を構成することができる。また、電圧測定装置4にMUX回路30を適用しているので、実施の形態1と同様に、スイッチ回路の駆動電流と信号経路のオン抵抗等の抵抗成分とに基づく電圧降下による測定誤差の発生の抑止と、電池セル間でのアンバランスな電力消費を防止と、スイッチ素子のオフ状態の更なる安定化とが可能となる。
 以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
 例えば、実施の形態1乃至6では、電圧測定装置を電気自動車等のバッテリの電圧測定システムに適用する場合を例示したが、これに限られず、デジタルカメラ、ノートPC、電動工具、電動アシスト自転車、及び電動バイク等の多直電池を使用する製品の電池電圧の測定にも適用可能である。また、外部電圧源を構成する電池セルとしてリチウムイオン電池を例示したが、これに限られず、ニッケル水素電池や燃料電池など各種電池にも適用可能である。更に、実施の形態1乃至6に係るスイッチ回路を電圧測定装置におけるMUX回路30に適用する場合を例示したが、これに限られず、スイッチとして用いるのであれば他の用途の回路にも適用することができる。
 本発明は、スイッチ回路、選択回路、及び電圧測定装置に関し、特に複数の電圧から1つの電圧を選択して測定する電圧測定装置に広く適用することができる。
 VCL_1~VCL_n 電池セル
 1 一組の電池セル
 2、4 電圧測定装置
 3 外付けLPF
 20 電圧入力端子
 30 マルチプレクサ回路(MUX回路)
 SWP_1~SWP_n 電池セルの正側電極と計測回路の正側の入力端子を接続するためのスイッチ回路
 SWN_1~SWN_n 電池セルの負側電極と計測回路の負側の入力端子を接続するためのスイッチ回路
 40 保護用ダイオード
 50、51 制御部
 60、61 計測回路
 INP(+) 正側の入力端子
 INN(-) 負側の入力端子
 601 スイッチ部
 602 容量
 603 計測部
 201~206 動作タイミング
 401、404 オン電圧生成部
 402、405 電流制御部
 403、406~409 オフ加速部
 MP1、MP2 双方向スイッチ素子(P型MOSトランジスタ)
 MN1、MN2 双方向スイッチ素子(N型MOSトランジスタ)
 MN3~MN9 N型MOSトランジスタ
 MP3~MP9 P型MOSトランジスタ
 R1~R4 抵抗素子
 D1、D2 ダイオード
 VIN スイッチ回路の入力端子
 VOUT スイッチ回路の出力端子
 101 バッテリ
 10、11 バッテリ装置
 70、71、72 通信機能部
 5 絶縁型DC/DCコンバータ
 6 電池監視用マイクロコンピュータ
 7 電池制御用マイクロコンピュータ
 VA 鉛バッテリ等に基づいて生成される電圧
 80 スイッチ部
 SWA、SWB スイッチ回路
 U1 バッファアンプ
 501~512 動作タイミング
 VCC 電源電圧、電源電圧端子
 GND グラウンド電圧、グラウンド端子
 VT スイッチ回路の種別を決定するための基準となる電圧

Claims (29)

  1.  入力端子と出力端子の間に設けられたスイッチ素子と、
     前記スイッチ素子のオンオフを指示する制御信号に基づいて、前記スイッチ素子を駆動するスイッチ駆動部と、を有し、
     前記スイッチ駆動部は、前記入力端子に供給される入力電圧を挟んで、相互に異なる第1電源電圧と第2電源電圧との間で駆動され、
     前記第1電源電圧が供給される第1電源端子側にドレイン側が接続され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路と、
     前記制御信号に応じて、前記ソースフォロア回路の出力側と前記第2電源電圧が供給される第2電源端子との間の電流経路を開閉する電流制御部と、を有するスイッチ回路。
  2.  前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給される第1導電型の第1MOSトランジスタと、
     ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第1MOSトランジスタのゲート端子側に接続され、ソース端子が前記第1MOSトランジスタのソース端子と共通に接続される第1導電型の第2MOSトランジスタと、を有し、
     前記ソースフォロア回路は、ドレイン端子が前記第1電源端子側に接続され、ゲート端子が前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子側に接続される第2導電型の第3MOSトランジスタと、
     一端が前記第3MOSトランジスタのソース端子側に接続され、他端が前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部と、を有し、
     前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第2電源端子との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる、請求項1記載のスイッチ回路。
  3.  前記スイッチ駆動部は、前記電流制御部によって形成された電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に、前記電圧生成部の他端、並びに、前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子を介して形成するオフ加速部と、を更に有する請求項2記載のスイッチ回路。
  4.  前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する請求項2記載のスイッチ回路。
  5.  前記オフ加速部が電流経路を形成する期間は、前記電流制御部が電流経路を閉じている期間のうち一部の期間である、請求項4記載のスイッチ回路。
  6.  前記オフ加速部が電流経路を形成する期間は、前記電流制御部が電流経路を閉じている期間に対応する期間である、請求項4記載のスイッチ回路。
  7.  前記第1電源電圧は、前記入力電圧以上の電圧値とされ、
     前記第1導電型はPチャネル型であり、前記第2導電型はNチャネル型である、請求項3記載のスイッチ回路。
  8.  前記第1電源電圧はグラウンド電圧とされ、前記第2電源電圧は前記入力電圧以上の電圧値とされ、
     前記第1導電型はNチャネル型であり、前記第2導電型はPチャネル型である、請求項3記載のスイッチ回路。
  9.  素電池の一端と他端が接続されて組電池を構成する複数個の素電池のうち1又は複数の素電池から構成されるブロックを1単位とし、入力された制御信号に応じて、いずれかの前記ブロックの両端に接続される信号線を選択して第1出力端子と第2出力端子に接続する選択回路であって、
     前記ブロックの一端に接続される信号線が接続される入力端子と前記第1出力端子に接続される信号線が接続される出力端子とを有し、前記制御信号に応じて当該入力端子と当該出力端子とを電気的に接続する第1スイッチ回路と、
     前記ブロックの他端に接続される信号線が接続される入力端子と前記第2出力端子に接続される信号線が接続される出力端子とを有し、前記制御信号に応じて当該入力端子と当該出力端子とを電気的に接続する第2スイッチ回路と、を夫々の前記ブロックに対応して有し、
     前記第1スイッチ回路及び前記第2スイッチ回路は、当該スイッチ回路の入力端子と出力端子の間に設けられたスイッチ素子と、前記制御信号に応じて前記スイッチ素子を駆動するスイッチ駆動部と、を有し、
     前記スイッチ駆動部は、前記入力端子に供給される入力電圧を挟んで、相互に異なる第1電源電圧と第2電源電圧との間で駆動され、
     前記第1電源電圧が供給される第1電源端子と、前記第2電源電圧が供給される第2電源端子との間に配置され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路と、
     前記制御信号に応じて、前記第1電源端子と前記第2電源端子との間の前記ソースフォロア回路が配置された電流経路を開閉する電流制御部と、を有する選択回路。
  10.  前記第1電源電圧は、前記組電池を構成する素電池のうち最高位の素電池の一端の電圧に応じた電圧である、請求項9記載の選択回路。
  11.  前記スイッチ素子は、ゲート端子が前記駆動電圧により制御されるP型のMOSトランジスタ又はN型のMOSトランジスタを有し、
     前記ブロックに対応される前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子のトランジスタの種類は同一とされる、請求項10記載の選択回路。
  12.  前記ブロックのうち前記他端の電位が所定の電位以上となる第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、P型のMOSトランジスタとされ、
     前記ブロックのうち前記他端の電位が前記所定の電位より低い第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、N型のMOSトランジスタとされる、請求項11記載の選択回路。
  13.  前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるP型の第1MOSトランジスタと、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第1MOSトランジスタのゲート端子側に接続され、ソース端子が前記第1MOSトランジスタのソース端子と共通に接続されるP型の第2MOSトランジスタと、を有し、
     前記ソースフォロア回路は、ドレイン端子が前記第1電源端子側に接続され、ゲート端子が前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子側に接続されるN型の第3MOSトランジスタと、
     一端が前記第3MOSトランジスタのソース端子側に接続され、他端が前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部と、を有し、
     前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第2電源端子との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる、請求項12記載の選択回路。
  14.  前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるN型の第4MOSトランジスタと、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第4MOSトランジスタのゲート端子側に接続され、ソース端子が前記第4MOSトランジスタのソース端子と共通に接続されるN型の第5MOSトランジスタと、を有し、
     前記ソースフォロア回路は、ドレイン端子が前記第2電源端子側に接続され、ゲート端子が前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子側に接続されるP型の第6MOSトランジスタと、
     一端が前記第6MOSトランジスタのソース端子側に接続され、他端が前記第4MOSトランジスタ及び前記第5MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部と、を有し、
     前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第1電源端子との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる、請求項13記載の選択回路。
  15.  前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部と、を更に有する請求項14記載の選択回路。
  16.  前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する請求項14記載の選択回路。
  17.  前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第2電源端子と前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部と、を更に有する請求項15記載の選択回路。
  18.  前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第2電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する請求項16記載の選択回路。
  19.  素電池の一端と他端が接続されて組電池を構成する複数個の素電池のうち1又は複数の素電池から構成されるブロックを1単位とし、1ブロック毎に前記ブロックの両端の電圧を測定するための電圧測定装置であって、
     入力された制御信号に応じて、前記ブロックの両端に接続される信号線を1ブロック毎に選択して第1出力端子と第2出力端子に接続する選択部と、
     前記第1出力端子と前記第2出力端子の電圧を入力して、両端子間の電圧を測定する測定部と、を有し、
     前記選択部は、前記ブロックの一端に接続される信号線が接続される入力端子と前記第1出力端子に接続される信号線が接続される出力端子とを有し、前記制御信号に応じて前記入力端子と前記出力端子とを電気的に接続する第1スイッチ回路と、
     前記ブロックの他端に接続される信号線が接続される入力端子と前記第2出力端子に接続される信号線が接続される出力端子とを有し、前記制御信号に応じて前記入力端子と前記出力端子とを電気的に接続する第2スイッチ回路と、を夫々の前記ブロックに対応して有し、
     前記第1スイッチ回路及び前記第2スイッチ回路は、当該スイッチ回路の入力端子と出力端子との間に設けられたスイッチ素子と、前記制御信号に応じて前記スイッチ素子を駆動するスイッチ駆動部と、を有し、
     前記スイッチ駆動部は、前記入力端子に供給される入力電圧を挟んで、相互に異なる第1電源電圧と第2電源電圧との間で駆動され、
     前記第1電源電圧が供給される第1電源端子と、前記第2電源電圧が供給される第2電源端子との間に配置され、前記入力電圧に応じた電圧を入力し、出力側に生じた電圧を前記スイッチ素子を駆動するための駆動電圧として前記スイッチ素子に供給するソースフォロア回路と、
     前記制御信号に応じて、前記第1電源端子と前記第2電源端子との間の前記ソースフォロア回路が配置された電流経路を開閉する電流制御部と、を有する電圧測定装置。
  20.  前記第1電源電圧は、前記組電池を構成する素電池のうち最高位の素電池の一端の電圧に応じた電圧である、請求項19記載の電圧測定装置。
  21.  前記スイッチ素子は、ゲート端子が前記駆動電圧により制御されるP型のMOSトランジスタ又はN型のMOSトランジスタを有し、
     前記ブロックに対応される前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子のトランジスタの種類は同一とされる、請求項20記載の電圧測定装置。
  22.  前記ブロックのうち前記他端の電位が所定の電位以上となる第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、P型のMOSトランジスタとされ、
     前記ブロックのうち前記他端の電位が前記所定の電位より低い第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路のスイッチ素子は、N型のMOSトランジスタとされる、請求項21記載の電圧測定装置。
  23.  前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるP型の第1MOSトランジスタと、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第1MOSトランジスタのゲート端子側に接続され、ソース端子が前記第1MOSトランジスタのソース端子と共通に接続されるP型の第2MOSトランジスタと、を有し、
     前記ソースフォロア回路は、ドレイン端子が前記第1電源端子側に接続され、ゲート端子が前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子側に接続されるN型の第3MOSトランジスタと、
     一端が前記第3MOSトランジスタのソース端子側に接続され、他端が前記第1MOSトランジスタ及び前記第2MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部と、を有し、
     前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第2電源端子との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる、請求項22記載の電圧測定装置。
  24.  前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ素子は、ドレイン端子が前記入力端子側に接続され、ゲート端子に前記駆動電圧が供給されるN型の第4MOSトランジスタと、ドレイン端子が前記出力端子側に接続され、ゲート端子が前記第4MOSトランジスタのゲート端子側に接続され、ソース端子が前記第4MOSトランジスタのソース端子と共通に接続されるN型の第5MOSトランジスタと、を有し、
     前記ソースフォロア回路は、ドレイン端子が前記第2電源端子側に接続され、ゲート端子が前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子側に接続されるP型の第6MOSトランジスタと、
     一端が前記第6MOSトランジスタのソース端子側に接続され、他端が前記第4MOSトランジスタ及び前記第5MOSトランジスタのゲート端子側に接続され、供給された電流に応じて両端に電圧を生成する電圧生成部と、を有し、
     前記電流制御部は、前記制御信号が前記スイッチ素子のオンを指示する場合には、前記電圧生成部の他端と前記第1電源端子との間の電流経路を開き、前記制御信号が前記スイッチ素子のオフを指示する場合には当該電流経路を閉じる、請求項23記載の電圧測定装置。
  25.  前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部、を更に有する請求項24記載の電圧測定装置。
  26.  前記第1ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第1電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する請求項24記載の電圧測定装置。
  27.  前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部によって形成される電流経路に流れる電流よりも小さい電流が流れる電流経路を、前記第2電源端子と前記第4MOSトランジスタ及び前記第5MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して形成するオフ加速部、を更に有する請求項25記載の電圧測定装置。
  28.  前記第2ブロックに対応する前記第1スイッチ回路及び前記第2スイッチ回路において、
     前記スイッチ駆動部は、前記電流制御部が電流経路を閉じている期間に、前記第2電源端子と前記第1MOSトランジスタ及び前記第2MOSトランジスタのソース端子との間に前記電圧生成部の他端を介して電流経路を形成するオフ加速部と、を更に有する請求項26記載の電圧測定装置。
  29.  前記測定部は、デルタ・シグマ方式のアナログデジタル変換器を有する、請求項19記載の電圧測定装置。
PCT/JP2012/059756 2011-04-21 2012-04-10 スイッチ回路、選択回路、及び電圧測定装置 WO2012144373A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280019197.2A CN103492888B (zh) 2011-04-21 2012-04-10 开关电路、选择电路、以及电压测定装置
JP2013510954A JP5640147B2 (ja) 2011-04-21 2012-04-10 スイッチ回路、選択回路、及び電圧測定装置
US14/112,893 US9453886B2 (en) 2011-04-21 2012-04-10 Switch circuit, selection circuit, and voltage measurement device
EP12773728.6A EP2700958B1 (en) 2011-04-21 2012-04-10 Switch circuit, selection circuit, and voltage measurement device
US15/258,018 US20160377685A1 (en) 2011-04-21 2016-09-07 Switch circuit, selection circuit, and voltage measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011094801 2011-04-21
JP2011-094801 2011-04-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/112,893 A-371-Of-International US9453886B2 (en) 2011-04-21 2012-04-10 Switch circuit, selection circuit, and voltage measurement device
US15/258,018 Continuation US20160377685A1 (en) 2011-04-21 2016-09-07 Switch circuit, selection circuit, and voltage measurement device

Publications (1)

Publication Number Publication Date
WO2012144373A1 true WO2012144373A1 (ja) 2012-10-26

Family

ID=47041485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059756 WO2012144373A1 (ja) 2011-04-21 2012-04-10 スイッチ回路、選択回路、及び電圧測定装置

Country Status (5)

Country Link
US (2) US9453886B2 (ja)
EP (1) EP2700958B1 (ja)
JP (1) JP5640147B2 (ja)
CN (1) CN103492888B (ja)
WO (1) WO2012144373A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093635A (ja) * 2012-11-02 2014-05-19 Rohm Co Ltd アナログスイッチ回路およびそれを備える電気機器
JP2014126437A (ja) * 2012-12-26 2014-07-07 Denso Corp 電池監視装置
CN104467774A (zh) * 2013-07-24 2015-03-25 赵恩海 一种采用固体开关的开关网络电路
CN104569548A (zh) * 2014-12-30 2015-04-29 上海贝岭股份有限公司 一种开关电源的线电压检测电路
JP2017005715A (ja) * 2015-06-10 2017-01-05 ヴェーテッヒ・ゲーエムベーハー 双方向mosfetスイッチ、及びマルチプレクサ
JP2017198546A (ja) * 2016-04-27 2017-11-02 ラピスセミコンダクタ株式会社 半導体装置、電池監視システム、及び検出方法
JP2017539158A (ja) * 2014-11-24 2017-12-28 バン アンド オルフセン アクティー ゼルスカブBang And Olufsen A/S 固体スイッチ・リレー
CN109870950A (zh) * 2019-01-16 2019-06-11 金卡智能集团股份有限公司 一种基于gprs通信的控制系统
WO2019193973A1 (ja) * 2018-04-02 2019-10-10 カルソニックカンセイ株式会社 診断装置及び診断方法
JP2019184586A (ja) * 2019-03-15 2019-10-24 カルソニックカンセイ株式会社 診断装置及び診断方法
JP2020517127A (ja) * 2017-04-10 2020-06-11 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated ハイサイドスイッチのスルー制御
JP2020521963A (ja) * 2017-12-14 2020-07-27 エルジー・ケム・リミテッド 電圧測定装置及び方法
CN111954824A (zh) * 2018-04-02 2020-11-17 马瑞利株式会社 诊断装置和诊断方法
CN111971564A (zh) * 2018-04-26 2020-11-20 株式会社自动网络技术研究所 车载用的电压检测电路

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001680A1 (ja) * 2011-06-28 2013-01-03 パナソニック株式会社 電圧計測装置
JP5926143B2 (ja) * 2012-07-18 2016-05-25 ラピスセミコンダクタ株式会社 電池監視システム及び半導体装置
US8947137B2 (en) * 2012-09-05 2015-02-03 Nvidia Corporation Core voltage reset systems and methods with wide noise margin
JP6376722B2 (ja) * 2013-02-15 2018-08-22 エイブリック株式会社 電池電圧検出回路
KR102008358B1 (ko) * 2013-02-25 2019-10-21 온세미컨덕터코리아 주식회사 전압 측정 장치 및 이를 포함하는 배터리 관리 시스템
EP3093635A4 (en) * 2014-01-08 2017-02-15 Asahi Kasei Microdevices Corporation Output-current detection chip for diode sensors, and diode sensor device
KR20170039151A (ko) 2014-06-30 2017-04-10 스카이워크스 솔루션즈, 인코포레이티드 전압원들을 선택하기 위한 회로들, 디바이스들, 및 방법들
GB2529255B (en) * 2014-08-15 2017-01-04 Ge Aviat Systems Ltd A passive leakage management circuit for a switch leakage current
JP6378003B2 (ja) * 2014-08-27 2018-08-22 ラピスセミコンダクタ株式会社 半導体装置、電池監視システム、及び半導体装置の起動方法
US20160089958A1 (en) * 2014-09-25 2016-03-31 Denso International America, Inc. Vehicular power system for stop-start hvac system
JP6329054B2 (ja) * 2014-10-10 2018-05-23 トヨタ自動車株式会社 スイッチング回路
JP2017073742A (ja) * 2015-10-09 2017-04-13 株式会社東芝 レベルシフト回路、半導体装置および電池監視装置
CN109075783B (zh) * 2016-04-21 2022-03-15 株式会社索思未来 半导体集成电路
US9979396B1 (en) * 2017-02-23 2018-05-22 Stmicroelectronics (Grenoble 2) Sas Bidirectional analog multiplexer
US10625626B2 (en) * 2017-11-29 2020-04-21 Nio Usa, Inc. Charging systems and methods for electric vehicles
JP6477845B1 (ja) * 2017-12-08 2019-03-06 ミツミ電機株式会社 電池制御回路
EP3546956B1 (en) * 2018-03-29 2020-10-14 AMS Sensors UK Limited Circuit for measuring a resistance
US10363828B1 (en) * 2018-06-12 2019-07-30 Nio Usa, Inc. Systems and methods for regulating charging of electric vehicles
KR102434048B1 (ko) * 2018-07-26 2022-08-19 현대모비스 주식회사 전자식 릴레이 장치
WO2020104885A1 (ja) 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 二次電池の異常検知装置、および、半導体装置
FR3091082B1 (fr) * 2018-12-20 2021-12-10 Valeo Equip Electr Moteur système d’interrupteur comprenant un dispositif de limitation de courant
US10924008B2 (en) 2019-07-09 2021-02-16 Nio Usa, Inc. Devices, systems, and methods for charging electric vehicles
TWI707533B (zh) * 2019-09-12 2020-10-11 朋程科技股份有限公司 交流發電機以及整流裝置
US11340265B2 (en) * 2019-10-01 2022-05-24 Silego Technology Inc. Circuit and method for real time detection of a faulty capacitor
WO2021128715A1 (zh) * 2019-12-26 2021-07-01 上海派能能源科技股份有限公司 一种均衡驱动电路以及电子设备
TWI714467B (zh) * 2020-03-02 2020-12-21 盛群半導體股份有限公司 電壓監控裝置以及其電壓偵測電路
JP2022066088A (ja) * 2020-10-16 2022-04-28 株式会社デンソーテン 絶縁異常検出装置および絶縁異常検出方法
WO2022127055A1 (zh) * 2020-12-14 2022-06-23 珠海迈巨微电子有限责任公司 检测选通模块、电池管理系统及电池管理芯片
CN113258146B (zh) * 2021-03-29 2022-12-30 华为数字能源技术有限公司 一种电池系统、驱动系统及储能集装箱
JP2022188432A (ja) * 2021-06-09 2022-12-21 ローム株式会社 スイッチ駆動装置及びこれを用いたスイッチング電源
KR20230126466A (ko) * 2022-02-23 2023-08-30 현대모비스 주식회사 배터리 셀 전압 측정 회로 및 그 제어 방법
US11650656B1 (en) * 2022-04-20 2023-05-16 Hong Kong Applied Science and Technology Research Institute Company Limited Low-power voltage detector for low-voltage CMOS processes
CN115144773B (zh) * 2022-09-01 2022-11-08 奉加微电子(昆山)有限公司 电池组的电压测量系统和方法
KR20240071000A (ko) * 2022-11-15 2024-05-22 현대모비스 주식회사 전압 측정 장치
CN116418328B (zh) * 2023-06-09 2023-09-19 拓尔微电子股份有限公司 关断控制电路、电池管理系统以及电池包

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301882A (ja) * 1993-04-19 1994-10-28 Adobanetsuto:Kk 信号処理用集積回路及び信号処理装置
JP2002009600A (ja) 2000-06-26 2002-01-11 Origin Electric Co Ltd スイッチ回路
JP2004072749A (ja) * 2002-08-02 2004-03-04 Rohde & Schwarz Gmbh & Co Kg 電子スイッチ
WO2004086065A1 (ja) 2003-03-24 2004-10-07 Sanken Electric Co. Ltd. 電圧測定装置
JP2005003394A (ja) 2003-06-09 2005-01-06 Sanken Electric Co Ltd 電圧測定装置
JP2005017289A (ja) 2003-06-06 2005-01-20 Yazaki Corp スイッチング回路及び電圧計測回路
JP2005091136A (ja) 2003-09-17 2005-04-07 Yazaki Corp スイッチング回路及び電圧計測回路
JP2005265776A (ja) 2004-03-22 2005-09-29 Yazaki Corp スイッチング回路及び個別電圧計測装置
JP2005283258A (ja) 2004-03-29 2005-10-13 Sanken Electric Co Ltd 電圧測定装置
JP2006053120A (ja) 2004-07-12 2006-02-23 Denso Corp 組電池電圧検出装置
JP2006105824A (ja) 2004-10-06 2006-04-20 Sanken Electric Co Ltd 電圧測定装置
JP2006320183A (ja) 2005-05-16 2006-11-24 Texas Instr Japan Ltd バッテリ保護回路
JP2008099371A (ja) 2006-10-06 2008-04-24 Texas Instr Japan Ltd 電圧変換回路およびバッテリ装置
JP2009301209A (ja) 2008-06-11 2009-12-24 Mitsumi Electric Co Ltd 電源制御用半導体集積回路
JP2010060435A (ja) * 2008-09-03 2010-03-18 Texas Instr Japan Ltd 電圧検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629812A (ja) * 1992-07-09 1994-02-04 Toshiba Corp 電位データ選択回路
JP3129077B2 (ja) * 1994-03-07 2001-01-29 株式会社日立製作所 半導体試験装置
US5644547A (en) * 1996-04-26 1997-07-01 Sun Microsystems, Inc. Multiport memory cell
EP0990913B1 (en) * 1998-03-06 2007-10-03 Matsushita Electric Industrial Co., Ltd. Voltage measuring instrument with flying capacitor
US20100073207A1 (en) * 2008-09-22 2010-03-25 Texas Instruments Incorporated Delta-Sigma Analog-to-Digital Converters and Methods to Calibrate Delta-Sigma Analog-to-Digital Converters

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301882A (ja) * 1993-04-19 1994-10-28 Adobanetsuto:Kk 信号処理用集積回路及び信号処理装置
JP2002009600A (ja) 2000-06-26 2002-01-11 Origin Electric Co Ltd スイッチ回路
JP2004072749A (ja) * 2002-08-02 2004-03-04 Rohde & Schwarz Gmbh & Co Kg 電子スイッチ
WO2004086065A1 (ja) 2003-03-24 2004-10-07 Sanken Electric Co. Ltd. 電圧測定装置
JP2005017289A (ja) 2003-06-06 2005-01-20 Yazaki Corp スイッチング回路及び電圧計測回路
JP2005003394A (ja) 2003-06-09 2005-01-06 Sanken Electric Co Ltd 電圧測定装置
JP2005091136A (ja) 2003-09-17 2005-04-07 Yazaki Corp スイッチング回路及び電圧計測回路
JP2005265776A (ja) 2004-03-22 2005-09-29 Yazaki Corp スイッチング回路及び個別電圧計測装置
JP2005283258A (ja) 2004-03-29 2005-10-13 Sanken Electric Co Ltd 電圧測定装置
JP2006053120A (ja) 2004-07-12 2006-02-23 Denso Corp 組電池電圧検出装置
JP2006105824A (ja) 2004-10-06 2006-04-20 Sanken Electric Co Ltd 電圧測定装置
JP2006320183A (ja) 2005-05-16 2006-11-24 Texas Instr Japan Ltd バッテリ保護回路
JP2008099371A (ja) 2006-10-06 2008-04-24 Texas Instr Japan Ltd 電圧変換回路およびバッテリ装置
JP2009301209A (ja) 2008-06-11 2009-12-24 Mitsumi Electric Co Ltd 電源制御用半導体集積回路
JP2010060435A (ja) * 2008-09-03 2010-03-18 Texas Instr Japan Ltd 電圧検出装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093635A (ja) * 2012-11-02 2014-05-19 Rohm Co Ltd アナログスイッチ回路およびそれを備える電気機器
JP2014126437A (ja) * 2012-12-26 2014-07-07 Denso Corp 電池監視装置
CN104467774A (zh) * 2013-07-24 2015-03-25 赵恩海 一种采用固体开关的开关网络电路
JP2017539158A (ja) * 2014-11-24 2017-12-28 バン アンド オルフセン アクティー ゼルスカブBang And Olufsen A/S 固体スイッチ・リレー
CN104569548B (zh) * 2014-12-30 2020-05-01 上海贝岭股份有限公司 一种开关电源的线电压检测电路
CN104569548A (zh) * 2014-12-30 2015-04-29 上海贝岭股份有限公司 一种开关电源的线电压检测电路
JP2017005715A (ja) * 2015-06-10 2017-01-05 ヴェーテッヒ・ゲーエムベーハー 双方向mosfetスイッチ、及びマルチプレクサ
JP2017198546A (ja) * 2016-04-27 2017-11-02 ラピスセミコンダクタ株式会社 半導体装置、電池監視システム、及び検出方法
JP2020517127A (ja) * 2017-04-10 2020-06-11 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated ハイサイドスイッチのスルー制御
JP7307680B2 (ja) 2017-04-10 2023-07-12 マイクロチップ テクノロジー インコーポレイテッド ハイサイドスイッチのスルー制御
JP2020521963A (ja) * 2017-12-14 2020-07-27 エルジー・ケム・リミテッド 電圧測定装置及び方法
US11215669B2 (en) 2017-12-14 2022-01-04 Lg Chem, Ltd. Apparatus and method for measuring voltage
WO2019193973A1 (ja) * 2018-04-02 2019-10-10 カルソニックカンセイ株式会社 診断装置及び診断方法
CN111954824A (zh) * 2018-04-02 2020-11-17 马瑞利株式会社 诊断装置和诊断方法
US11307256B2 (en) 2018-04-02 2022-04-19 Marelli Corporation Diagnostic apparatus and diagnostic method
CN111971564A (zh) * 2018-04-26 2020-11-20 株式会社自动网络技术研究所 车载用的电压检测电路
CN111971564B (zh) * 2018-04-26 2023-06-16 株式会社自动网络技术研究所 车载用的电压检测电路
CN109870950A (zh) * 2019-01-16 2019-06-11 金卡智能集团股份有限公司 一种基于gprs通信的控制系统
CN109870950B (zh) * 2019-01-16 2024-06-11 金卡智能集团股份有限公司 一种基于gprs通信的控制系统
JP2019184586A (ja) * 2019-03-15 2019-10-24 カルソニックカンセイ株式会社 診断装置及び診断方法

Also Published As

Publication number Publication date
US20160377685A1 (en) 2016-12-29
EP2700958B1 (en) 2019-01-16
CN103492888B (zh) 2016-11-23
US20140043032A1 (en) 2014-02-13
EP2700958A4 (en) 2014-12-17
JPWO2012144373A1 (ja) 2014-07-28
CN103492888A (zh) 2014-01-01
US9453886B2 (en) 2016-09-27
JP5640147B2 (ja) 2014-12-10
EP2700958A1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5640147B2 (ja) スイッチ回路、選択回路、及び電圧測定装置
JP4858378B2 (ja) 多セル直列電池用のセル電圧監視装置
JP5932569B2 (ja) 半導体装置及び電池電圧監視装置
US9465083B2 (en) Voltage detecting device for assembled battery
US8786248B2 (en) Flying capacitor type voltage detecting circuit and battery protection integrated circuit
GB2588878A (en) Protection of switched capacitor power converter
US7023178B2 (en) Voltage measuring apparatus
US20130049760A1 (en) Switch, charge monitoring apparatus and rechargeable battery module
TW201310906A (zh) 閘極驅動電路及電力轉換器
JP5605143B2 (ja) 電流制御回路
US20040119522A1 (en) Analog switch circuit
US8749244B2 (en) Circuit for monitoring of accumulator cells connected in series
EP2763275B1 (en) Monitor and control module and method
JP5810326B2 (ja) 電圧計測用マルチプレクサおよびそれを備えた電圧計測器
US10451680B2 (en) Semiconductor device, battery monitoring system, and semiconductor device diagnosing method
CN112114257A (zh) 电压电流转换电路及充放电控制装置
WO2019176098A1 (ja) 電池充放電回路、電子機器、楽器、及び電池充放電方法
CN220626505U (zh) 一种电池管理系统电压检测选通电路
JP2015036649A (ja) 電圧測定装置および電圧測定方法
US11923770B2 (en) Current sensing in switched electronic devices
US20230327666A1 (en) Switch and sampling circuit
JP2016020921A (ja) 半導体装置の制御方法
CN116819163A (zh) 电池管理系统电压检测选通电路
JP2023049666A (ja) 半導体装置、電池監視システム、測定方法、及び均等化方法
JP2018081106A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012773728

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14112893

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE