WO2012142918A1 - 一种集尘器气动控制系统 - Google Patents
一种集尘器气动控制系统 Download PDFInfo
- Publication number
- WO2012142918A1 WO2012142918A1 PCT/CN2012/073719 CN2012073719W WO2012142918A1 WO 2012142918 A1 WO2012142918 A1 WO 2012142918A1 CN 2012073719 W CN2012073719 W CN 2012073719W WO 2012142918 A1 WO2012142918 A1 WO 2012142918A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- slag
- gas
- reversing valve
- dust collector
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
- B01D46/4272—Special valve constructions adapted to filters or filter elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
- B01D46/44—Auxiliary equipment or operation thereof controlling filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/66—Regeneration of the filtering material or filter elements inside the filter
- B01D46/70—Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
- B01D46/71—Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
Definitions
- a dust collector pneumatic control system FIELD OF THE INVENTION The invention relates to a pneumatic control system. Specifically, it is a dust collector pneumatic control system.
- Dust collectors are used in mining environments such as mines or oil fields to absorb the slag generated during drilling operations, and the application thereof improves the environment in which the rig operators work.
- the dust collector starts working when the machine is drilled.
- the negative pressure generated by the spray cylinder in the dust collector box can suck the slag generated by the drilling into the tank through the dust suction pipe, and filter through the filter element provided in the box body. After the treatment, the dust-free air is discharged to the dust collector through the spray cylinder, and the dross is collected into the dust bag.
- the filter element in the dust collector box is attached with excessive rock powder, which will affect the slag suction effect of the dust collector and reduce the service life of the internal filter element.
- high-pressure high-speed compressed air is generally used to flush the rock powder adsorbed on the filter element to achieve the purpose of cleaning the filter element.
- the effect of slag slag has a significant impact on the stability and life of the entire system.
- the compressed gas is directly injected through the control valve. At the beginning of the slag, the compressed air has a higher pressure and speed, but as the slag is performed, the pressure and speed of the compressed air are reduced. It takes a long time to complete the slag, requires a lot of compressed air, and the rock powder can not be removed, the slag effect
- the technical problem to be solved by the present invention is to overcome the shortcomings of the existing dust collector for slag slag, and the fact that the amount of compressed air is large, and the rock powder cannot be removed, and the slag slag effect is poor, providing a good slag effect. And a dust collector pneumatic control system with a small amount of compressed air.
- a dust collector pneumatic control system of the present invention includes a first air supply device for supplying compressed gas, and at least one slag gas control valve connected to the first air supply device for controlling a slag gas switch, a second air supply device is connected, the second air supply device is connected with a first reversing valve, the first reversing valve is connected to a second reversing valve, and one of the second reversing valves
- the air port is connected to the air control port of the third reversing valve, one port of the third reversing valve is connected to the air control port of the slag gas control valve, and the air control port of the second reversing valve is
- the first throttle valve is further disposed between the second air supply device and the accumulator, and the third throttle valve is connected with a second throttle valve, the accumulator and the device
- a check valve is provided between the third reversing valves for allowing gas to flow only to the third reversing valve.
- the first throttle valve is an adjustable flow valve.
- the second throttle valve is an adjustable flow valve.
- the second reversing valve, the third reversing valve and the slag pneumatic control valve each adopt a pneumatic pilot valve.
- the first air supply device and the second air supply device are the same air supply device.
- the dust collector pneumatic control system comprises two parallel slag gas control valves.
- a throttle valve is disposed between each of the air control port of the slag gas control valve and the first air supply device.
- a shut-off valve is further disposed between the first air supply device and the slag gas control valve.
- the first directional control valve is further connected with a slag suction control valve, and the slag suction control valve is connected with a negative pressure generator for slag absorption.
- the first reversing valve is a three-position five-way reversing valve
- the second reversing valve and the third reversing valve are both two-position five-way reversing valves.
- the dust collector pneumatic control system of the present invention has the following beneficial effects:
- the accumulator is used to generate the pulse air pressure, and the reversing valve is used to control the slag gas control valve to open and close after a certain period, so that the dust collector can be slag treated by multiple periodic pulse compression gas injection, each The secondary pulse compressed gas can maintain a higher pressure and speed, and can clean the filter element more effectively.
- the dust collector sprays compressed gas at regular intervals, the amount of compressed gas used can be greatly reduced, thereby saving energy.
- a first throttle valve is further connected between the first reversing valve and the accumulator, and the third reversing valve is further connected with a second throttle valve, wherein the first throttle valve is adjustable a flow valve that adjusts the size of the first throttle opening or the volume of the accumulator, such as reducing the opening of the first throttle Or increase the volume of the accumulator to extend the time it takes for the accumulator's air pressure to rise from Pi to Po, thus extending the entire slag cycle! 1 .
- the slag period T can be shortened. Adjusting the second adjustable throttle slag time ⁇ 2, as the second throttle valve opening is increased to shorten the time of slag ⁇ 2, otherwise the slag extended time ⁇ 2.
- FIG. 1 is a schematic diagram of a pneumatic control of an embodiment of a pneumatic control system for a dust collector of the present invention
- Fig. 2 is a graph showing the slag discharge period and the accumulator pressure change of an embodiment of the dust collector pneumatic control system of the present invention.
- FIG. 1 is a schematic diagram of a pneumatic control of an embodiment of a pneumatic control system for a dust collector of the present invention
- FIG. 2 is a diagram showing a slag discharge period and an accumulator pressure variation of an embodiment of a pneumatic control system for a dust collector of the present invention. . As shown in FIG. 1 and FIG.
- the dust collector pneumatic control system of the present invention comprises a first air supply device, at least one slag gas control valve 5 connected to the first air supply device for controlling the slag gas switch,
- the dust collector pneumatic control system of the present invention further includes a second air supply device for controlling opening and closing of the slag gas control valve 5, in the embodiment, the second air supply device and the first air supply device They are independent air supply devices.
- the second air supply device is connected to the first reversing valve 1 , the first reversing valve 1 is connected to one air port of the second reversing valve 3 , and the air port of the second reversing valve 3 is a gas control port of the three-way valve 4 is connected to a gas port of the rear chamber of the slag gas control valve 5, and the air control of the second directional valve 1
- the port is connected to the accumulator 11
- a first throttle valve 7 is further disposed between the second air supply device and the accumulator 11
- the third throttle valve 4 is connected to the second throttle valve 8 .
- a check valve 9 for allowing gas to flow only to the third switching valve 4 is connected between the accumulator 11 and the third switching valve 4.
- the first air supply device can be provided by a common pressure device such as a pneumatic pump, and the slag gas control valve 5 is a two-way two-way pilot gas.
- the control valve, the front chamber air control port and the rear chamber air control port are all connected with the compressed gas, and the rear chamber is also provided with a spring, which is in a normally closed state under the action of the spring and the compressed gas in the front chamber and the back chamber, in the non-ejection
- the slag gas control valve 5 passes through the third directional control valve 4, it is blocked by the check valve 9 and cannot flow to the accumulator 11, and the spool of the slag gas control valve 5 is in the front chamber gas pressure and after The indoor gas pressure and the rear chamber spring force are in the right position in Figure 1, so that the valve is closed and the compressed gas cannot be ejected.
- the first reversing valve 1 is a three-position five-way handle control reversing valve, and the handle is moved to move the spool of the first reversing valve 1 to the right position in FIG. 1, the second air supply device The supplied control gas flows through the first reversing valve 1 to the second reversing valve 3 and the first throttle valve 7, respectively. At this time, the spool of the second reversing valve 3 is in the left position in FIG. 1 under the action of the spring force, that is, the control gas is blocked by the spool of the second reversing valve 3.
- the control gas flowing through the first throttle valve 7 enters the air control ports of the accumulator 11 and the second reversing valve 3, so that the air pressure in the air control ports of the accumulator 11 and the second reversing valve 3 is continuously increased.
- the air pressure in the air control port of the accumulator 11 and the second reversing valve 3 reaches Po, and at this time, the control gas of the air control port pushes the movement of the valve core against the force of the spring, so that the second reversing valve 3 and One port communicating with the first reversing valve 1 is electrically connected to the air control port of the third reversing valve 4, and the gas flows into the air control port of the third reversing valve 4 and the air pressure reaches P 0 instantaneously, thereby overcoming the third reversing valve.
- the third reversing valve 4 is also electrically connected to the second throttle 8 valve, and the gas in the accumulator 11 is discharged through the check valve 9, the third reversing valve 4 and the second throttle valve 8, the accumulator
- the air pressure in the air inlet 11 gradually decreases, and when the air pressure of the air control port of the accumulator 11 and the second reversing valve 3 is lowered to Pi, the spool of the second reversing valve 3 is reset by the action of the spring, the third reversing direction
- the gas of the gas control port of the valve 4 is discharged through the second reversing valve 3, and the third reversing valve 4 is reset by the action of the spring, and the passage of the gas in the air chamber of the rear chamber of the slag gas control valve 5 is reversed by the third.
- the air pressure in the rear chamber of the slag gas control valve 5 is raised to reset the slag gas control valve 5, the passage of the compressed gas injection slag is cut off, and the compressed gas stops the injection.
- the time taken for the pressure of the accumulator 11 to decrease from Po to Pi is the slag time T 2 of the dust collector.
- the accumulator 11 is then boosted again to ⁇ , and the dust collector repeats the slag.
- the pressure of the accumulator 11 rises to Po to the cycle of rising again to Po, that is, the slag discharge period T of the dust collector.
- the dust collector pneumatic control system of the present invention uses the accumulator 11 and the first throttle The valve ⁇ generates a pulse air pressure, and controls the slag gas control valve 5 to open and close after a certain period, so that the dust collector can perform slag treatment by multiple periodic pulse compression gas injection, and the pulse compressed gas can be kept high every time.
- the pressure and speed can more effectively clean the filter element.
- the dust collector sprays compressed gas at regular intervals, the amount of compressed gas used can be greatly reduced, thereby saving energy.
- the first throttle valve 7 is an adjustable flow valve that adjusts the size of the opening of the first throttle valve 7 or the size of the volume of the accumulator 11, such as reducing the opening of the first throttle valve 7.
- the time taken for the air pressure of the accumulator 11 to rise from Pi to ⁇ can be extended, thereby extending the entire slag cycle! 1 .
- the slag slag period can be shortened.
- the second throttle valve 8 is an adjustable flow valve, and the second throttle valve 8 is adjusted to adjust the slag time ⁇ 2 . If the opening of the second throttle valve 8 is increased, the rush can be shortened. The slag time ⁇ 2 , and vice versa can extend the slag time ⁇ 2 .
- the dust collector pneumatic control system comprises two parallel slag gas control valves 5, and the two slag gas control valves 5 can be respectively connected to different injection pipes, and at the same time, the filter core is subjected to slag treatment. This makes the slag more thorough.
- a throttle valve is disposed between the air control port of the rear chamber of each of the slag gas control valve 5 and the first air supply device, and the first one is rushed by the first air supply device.
- the gas control port of the rear chamber of the slag gas control valve 5 provides pressure to cooperate with the spring to close the slag flow; and second, when the gas at the gas control port of the slag gas control valve 5 is discharged through the third directional control valve 4 The compressed gas of the first air supply device is prevented from being discharged in a large amount through the third switching valve 4.
- a shutoff valve 10 is further disposed between the first air supply device and the slag gas control valve 5, and the shutoff valve 10 is a ball valve.
- the valve is also connected with a slag suction control valve 2, the slag sump control valve 2 is connected to a negative pressure generator 12 for slag absorption, and the negative pressure generator 12 is sprayed.
- the handle of the first reversing valve 1 is pushed to the left position, the dust collector stops the slag and starts to suck the slag.
- the first air supply device and the second air supply device may be the same air supply device.
- the second reversing valve 3, the third reversing valve 4, and the slag gas control valve 5 are preferably pneumatic pilot valves, and the first reversing valve 1 may employ a common valve such as a solenoid valve in addition to the handle control reversing valve.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Description
一种集尘器气动控制系统 技术领域 本发明涉及一种气动控制系统。 具体为一种集尘器气动控制系统。 背景技术 集尘器用于矿山或者油田等作业环境中, 吸收钻机进行钻孔作业 时产生的岩渣, 其应用改善了钻机操作人员工作的环境。 集尘器在机 器钻孔时开始工作, 集尘器的箱体内的喷射筒产生的负压可将钻孔产 生的岩渣经由吸尘管吸到箱体内, 经过设在箱体内的滤芯的过滤处理 后, 无尘空气经喷射筒排出集尘器, 岩渣则收集到集尘袋中。 钻孔工 作一定时间后, 集尘器箱体内的滤芯由于附着了过多的岩石粉末, 既 会影响集尘器吸渣效果还会降低内部滤芯的使用寿命, 需要对其进行 冲渣。 冲渣时一般采用高压高速的压缩空气将吸附在滤芯上的岩石粉 末冲去, 达到清洁滤芯的目的, 冲渣的效果对滤芯从而对整个系统工 作的稳定性和寿命有着重大的影响。 目前的集尘器, 其压缩气体通过 控制阀直接喷射, 在冲渣开始时, 压缩空气具有较高的压强和速度, 但随着冲渣的进行, 压缩空气的压强和速度会有所降低, 完成冲渣所 需要的时间长, 需要大量压缩空气, 且岩石粉末不能除尽, 冲渣效果
发明内容 本发明解决的技术问题在于克服现有的集尘器冲渣时需要的压缩 空气的量较大, 且岩石粉末不能除尽, 冲渣效果较差的缺点, 提供一 种冲渣效果好且所需压缩空气量小的集尘器气动控制系统。
本发明的一种集尘器气动控制系统, 包括提供压缩气体的第一供 气装置、 至少一个与所述第一供气装置相连接用于控制冲渣气体开关 的冲渣气控阀, 还包括第二供气装置, 所述第二供气装置连接有第一 换向阀, 所述第一换向阀与第二换向阀连接, 所述第二换向阀的一个
气口与第三换向阀的气控口连接, 所述第三换向阀的一个气口与所述 冲渣气控阀的气控口连接, 所述第二换向阀的气控口与蓄能器连接, 所述第二供气装置与所述蓄能器之间还设有第一节流阀, 所述第三换 向阀连接有第二节流阀, 所述蓄能器与所述第三换向阀之间设有使气 体仅能向第三换向阀流动的单向阀。
作为优选, 所述第一节流阀为可调节流阀。
作为优选, 所述第二节流阀为可调节流阀。
作为优选, 所述第二换向阀、 第三换向阀和冲渣气控阀均采用气 控先导阀。
作为优选, 所述第一供气装置与所述第二供气装置为同一供气装 置。
作为优选, 所述集尘器气动控制系统包括两个并联的所述冲渣气 控阀。
作为进一步的优选, 每个所述冲渣气控阀的气控口与所述第一供 气装置之间均设有节流阀。
作为优选, 所述第一供气装置与所述冲渣气控阀之间还设有截止 阀。
作为优选, 所述第一换向阀还连接有吸渣气控阀, 所述吸渣气控 阀与用于吸渣的负压发生器相连接。
作为优选, 所述第一换向阀为三位五通换向阀, 所述第二换向阀 和第三换向阀均为两位五通换向阀。
本发明所述的集尘器气动控制系统和现有技术相比, 具有以下有 益效果:
1、 采用蓄能器产生脉冲气压, 并通过换向阀控制冲渣气控阀经过 一定周期打开和关闭, 从而使集尘器可通过多次周期性的脉冲压缩气 体喷射进行冲渣处理, 每次脉冲压缩气体可保持较高的压强和速度, 可更有效地对滤芯进行清洁, 另外, 由于集尘器间隔一定周期地喷射 压缩气体, 可大大减少所用的压缩气体量, 从而节约能源。
2、 第一换向阀与所述蓄能器之间还连接有第一节流阀, 所述第三 换向阀还连接有第二节流阀, 所述第一节流阀为可调节流阀, 调节第 一节流阀开口的大小或蓄能器容积的大小, 如减小第一节流阀的开口
或者增大蓄能器的容积,即可延长蓄能器的气压从 Pi升至 Po所用的时 间, 从而延长整个冲渣周期!1。 反之, 则可缩短冲渣周期 T。 调节第二 节流阀可调节冲渣时间 Τ2, 如增大第二节流阀的开口即可缩短冲渣时 间 Τ2, 反之则可延长冲渣时间 Τ2。
附图说明 图 1 为本发明的集尘器气动控制系统一个实施例的气动控制原理 图;
图 2 为本发明的集尘器气动控制系统一个实施例的冲渣周期和蓄 能器压力变化图。
附图标记
1-第一换向阀, 2-吸渣气控阀, 3-第二换向阀, 4-第三换向阀, 5-冲渣气控阀, 7-第一节流阀, 8-第二节流阀, 9-单向阀, 10-截止阀, 11-蓄能器, 12-负压发生器。 具体实施方式 图 1 为本发明的集尘器气动控制系统一个实施例的气动控制原理 图, 图 2 为本发明的集尘器气动控制系统一个实施例的冲渣周期和蓄 能器压力变化图。 如图 1和图 2所示, 本发明的集尘器气动控制系统 包括第一供气装置、 至少一个与第一供气装置相连接用于控制冲渣气 体开关的冲渣气控阀 5,本发明的集尘器气动控制系统还包括控制冲渣 气控阀 5 的打开和关闭的第二供气装置, 在本实施例中, 所述第二供 气装置与所述第一供气装置为相互独立的供气装置。 所述第二供气装 置与第一换向阀 1相连接, 所述第一换向阀 1与第二换向阀 3的一个 气口连接, 所述第二换向阀 3的一个气口与第三换向阀 4的气控口连 接, 所述第三换向阀 4的一个气口与所述冲渣气控阀 5后室的气控口 连接, 所述第二换向阀 1的气控口与蓄能器 11连接, 所述第二供气装 置与所述蓄能器 11之间还设有第一节流阀 7, 所述第三换向阀 4连接 有第二节流阀 8, 所述蓄能器 11与所述第三换向阀 4之间连接有使气 体仅能向第三换向阀 4流动的单向阀 9。在本实施例中, 第一供气装置 可通过气压泵等常用压力装置提供, 冲渣气控阀 5 为两位两通先导气
控阀, 其前室气控口和后室气控口均与压缩气体相通, 后室内还设有 弹簧, 在弹簧与前室和后室内压缩气体的作用下处于常闭状态, 在非 喷射的状态下, 冲渣气控阀 5后室内气体通过第三换向阀 4后被单向 阀 9阻隔, 不能向蓄能器 11流动, 冲渣气控阀 5的阀芯在前室内气体 压力和后室内气体压力及后室内弹簧力作用下处于图 1 中的右位, 使 阀关闭, 压缩气体不能喷出。 在本实施例中, 第一换向阀 1 为三位五 通手柄控制换向阀, 扳动手柄使第一换向阀 1 的阀芯移动至图 1 中的 右位, 第二供气装置提供的控制气体通过第一换向阀 1 分别流向第二 换向阀 3和第一节流阀 7。此时第二换向阀 3的阀芯在弹簧力的作用下 处于图 1 中的左位, 即控制气体被第二换向阀 3的阀芯堵住。 同时, 流过第一节流阀 7的控制气体进入蓄能器 11和第二换向阀 3的气控口, 使蓄能器 11和第二换向阀 3的气控口内的气压不断上升,经过时间 , 蓄能器 11和第二换向阀 3的气控口内的气压达到 Po,此时气控口的控 制气体克服弹簧的作用力推动阀芯移动, 使第二换向阀 3 与第一换向 阀 1连通的一个气口与第三换向阀 4的气控口导通, 气体流入第三换 向阀 4的气控口并且气压瞬间达到 P0,从而克服第三换向阀 4弹簧力, 推动第三换向阀 4的阀芯向左移动至使冲渣气控阀 5的气控口的压缩 气体通过第三换向阀 4排出, 此时冲渣气控阀 5前室内气体压力克服 后室内弹簧力的作用, 推动阀芯移动使冲渣气控阀 5导通, 压缩气体 从冲渣气控阀 5喷射而出冲去集尘器滤芯粘附的岩石粉末。 同时, 第 三换向阀 4还与第二节流 8阀导通,蓄能器 11内的气体通过单向阀 9、 第三换向阀 4和第二节流阀 8排出, 蓄能器 11内的气压逐渐降低, 当 蓄能器 11和第二换向阀 3的气控口的气压降低至 Pi时, 第二换向阀 3 的阀芯在弹簧的作用下复位, 第三换向阀 4气控口的气体通过第二换 向阀 3排出, 第三换向阀 4在弹簧的作用下复位, 冲渣气控阀 5的后 室气控口内气体排出的通道被第三换向阀 4切断, 冲渣气控阀 5的后 室内气压上升使冲渣气控阀 5复位, 切断压缩气体喷射冲渣的通路, 压缩气体停止喷射。 蓄能器 11的压力从 Po降为 Pi所用时间即集尘器 的冲渣时间 T2。之后蓄能器 11再次升压至 Ρο, 集尘器重复冲渣。 蓄能 器 11压力升至 Po至再次升至 Po的周期即集尘器的冲渣周期 T。 和现 有技术相比, 本发明的集尘器气动控制系统采用蓄能器 11和第一节流
阀 Ί产生脉冲气压, 控制冲渣气控阀 5经过一定周期打开和关闭, 从 而使集尘器可通过多次周期性的脉冲压缩气体喷射进行冲渣处理, 每 次脉冲压缩气体可保持较高的压强和速度, 可更有效地对滤芯进行清 洁, 另外, 由于集尘器间隔一定周期地喷射压缩气体, 可大大减少所 用的压缩气体量, 从而节约能源。
在上述实施例中, 所述第一节流阀 7 为可调节流阀, 调节第一节 流阀 7开口的大小或蓄能器 11容积的大小, 如减小第一节流阀 7的开 口或者增大蓄能器 11的容积, 即可延长蓄能器 11的气压从 Pi升至 Ρο 所用的时间, 从而延长整个冲渣周期!1。 反之, 则可缩短冲渣周期 Τ。
在上述实施例中, 所述第二节流阀 8 为可调节流阀, 调节第二节 流阀 8可调节冲渣时间 Τ2, 如增大第二节流阀 8的开口即可缩短冲渣 时间 Τ2, 反之则可延长冲渣时间 Τ2。
在上述实施例中, 所述集尘器气动控制系统包括两个并联的冲渣 气控阀 5, 两个冲渣气控阀 5可分别连接不同的喷射管道, 同时对滤芯 进行冲渣处理, 从而使得冲渣更彻底。
在上述实施例中, 每个所述冲渣气控阀 5 后室的气控口与所述第 一供气装置之间均设有节流阀, 作用一, 由第一供气装置向冲渣气控 阀 5 的后室的气控口提供压力,与弹簧共同作用,关闭冲渣气流; 作用 二, 在冲渣气控阀 5的气控口的气体通过第三换向阀 4排出时, 防止 第一供气装置的压缩气体通过第三换向阀 4大量排出。
在上述实施例中, 所述第一供气装置与所述冲渣气控阀 5之间还 设有截止阀 10, 所述截止阀 10采用球阀。
在上述实施例中, 所述阀门还连接有吸渣气控阀 2, 所述吸渣气控 阀 2与用于吸渣的负压发生器 12相连接, 所述负压发生器 12采用喷 射筒, 当第一换向阀 1 手柄推向左位时, 集尘器停止冲渣, 开始进行 吸渣。
在上述实施例中, 第一供气装置与第二供气装置也可为同一供气 装置。 另外, 第二换向阀 3、 第三换向阀 4和冲渣气控阀 5优选气控先 导阀, 第一换向阀 1除了手柄控制换向阀还可采用电磁阀等常用阀门。
以上实施例仅为本发明的示例性实施例, 不用于限制本发明, 本 发明的保护范围由权利要求书限定。 本领域技术人员可以在本发明的
实质和保护范围内, 对本发明做出各种修改或等同替换, 这种修 改或等同替换也应视为落在本发明的保护范围内。
Claims
1、一种集尘器气动控制系统,包括提供压缩气体的第一供气装置、 至少一个与所述第一供气装置相连接用于控制冲渣气体开关的冲渣气 控阀, 其特征在于: 还包括第二供气装置, 所述第二供气装置连接有 第一换向阀, 所述第一换向阀与第二换向阀连接, 所述第二换向阀与 第三换向阀的气控口连接, 所述第三换向阀与所述冲渣气控阀的气控 口连接, 所述第二换向阀的气控口与蓄能器连接, 所述第二供气装置 与所述蓄能器之间还设有第一节流阀, 所述第三换向阀连接有第二节 流阀, 所述蓄能器与所述第三换向阀之间设有使气体仅能向第三换向 阀流动的单向阀。
2、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所 述第一节流阀为可调节流阀。
3、根据权利要求 1或 2所述的集尘器气动控制系统,其特征在于: 所述第二节流阀为可调节流阀。
4、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所 述第二换向阀、 第三换向阀和冲渣气控阀均采用气控先导阀。
5、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所 述第一供气装置与所述第二供气装置为同一供气装置。
6、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所 述集尘器气动控制系统包括两个并联的所述冲渣气控阀。
7、 根据权利要求 6所述的集尘器气动控制系统, 其特征在于: 每 个所述冲渣气控阀的气控口与所述第一供气装置之间均设有节流阀。
8、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所 述第一供气装置与所述冲渣气控阀之间还设有截止阀。
9、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所 述第一换向阀还连接有吸渣气控阀, 所述吸渣气控阀与用于吸渣的负 压发生器相连接。
10、 根据权利要求 1所述的集尘器气动控制系统, 其特征在于: 所述第一换向阀为三位五通换向阀, 所述第二换向阀和第三换向阀均 为两位五通换向阀。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110098401.1A CN102747985B (zh) | 2011-04-19 | 2011-04-19 | 一种集尘器气动控制系统 |
CN201110098401.1 | 2011-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012142918A1 true WO2012142918A1 (zh) | 2012-10-26 |
Family
ID=47028440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/073719 WO2012142918A1 (zh) | 2011-04-19 | 2012-04-10 | 一种集尘器气动控制系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102747985B (zh) |
WO (1) | WO2012142918A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109899011A (zh) * | 2019-04-10 | 2019-06-18 | 四川恒铭泽石油天然气工程有限公司 | 一种油气井用全自动电动节流控压系统 |
CN110440137A (zh) * | 2019-08-09 | 2019-11-12 | 江苏丞宇米特医疗科技有限公司 | 气源动力系统及其推车 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114562586B (zh) * | 2022-02-28 | 2024-01-26 | 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) | 一种气体切换用集控模块 |
CN114961602B (zh) * | 2022-07-06 | 2023-05-12 | 江苏长路智造科技有限公司 | 一种道路自动钻孔清洁设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2813058Y (zh) * | 2005-08-18 | 2006-09-06 | 大石桥市环宇净化工程设备制造有限责任公司 | 高炉煤气旋转脉冲袋式除尘器 |
CN201157733Y (zh) * | 2007-12-07 | 2008-12-03 | 张家港市新中环保设备有限公司 | 用于除尘器灰斗上的冲灰装置 |
CN201264336Y (zh) * | 2008-07-30 | 2009-07-01 | 成都宏明双新科技股份有限公司 | 自动吹气清理塑料废渣的装置 |
CN201558626U (zh) * | 2009-10-09 | 2010-08-25 | 沈阳东和环保有限公司 | 煤气干法安全布袋除尘器 |
CN201756386U (zh) * | 2010-08-09 | 2011-03-09 | 上海冶金矿山机械厂 | 气动径向齿块调绳离合控制系统 |
CN202039819U (zh) * | 2011-04-19 | 2011-11-16 | 阿特拉斯科普柯(南京)建筑矿山设备有限公司 | 一种集尘器气动控制系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2633405Y (zh) * | 2003-07-07 | 2004-08-18 | 中国航空工业规划设计研究院 | 一种新型除尘器 |
-
2011
- 2011-04-19 CN CN201110098401.1A patent/CN102747985B/zh active Active
-
2012
- 2012-04-10 WO PCT/CN2012/073719 patent/WO2012142918A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2813058Y (zh) * | 2005-08-18 | 2006-09-06 | 大石桥市环宇净化工程设备制造有限责任公司 | 高炉煤气旋转脉冲袋式除尘器 |
CN201157733Y (zh) * | 2007-12-07 | 2008-12-03 | 张家港市新中环保设备有限公司 | 用于除尘器灰斗上的冲灰装置 |
CN201264336Y (zh) * | 2008-07-30 | 2009-07-01 | 成都宏明双新科技股份有限公司 | 自动吹气清理塑料废渣的装置 |
CN201558626U (zh) * | 2009-10-09 | 2010-08-25 | 沈阳东和环保有限公司 | 煤气干法安全布袋除尘器 |
CN201756386U (zh) * | 2010-08-09 | 2011-03-09 | 上海冶金矿山机械厂 | 气动径向齿块调绳离合控制系统 |
CN202039819U (zh) * | 2011-04-19 | 2011-11-16 | 阿特拉斯科普柯(南京)建筑矿山设备有限公司 | 一种集尘器气动控制系统 |
Non-Patent Citations (1)
Title |
---|
SHI, SHENGYONG. ET AL.: "Pneumatic Vibrating System of Duster Disposal Device.", CHINESE HYDRAULICS & PNEUMATICS., March 2003 (2003-03-01), pages 26. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109899011A (zh) * | 2019-04-10 | 2019-06-18 | 四川恒铭泽石油天然气工程有限公司 | 一种油气井用全自动电动节流控压系统 |
CN110440137A (zh) * | 2019-08-09 | 2019-11-12 | 江苏丞宇米特医疗科技有限公司 | 气源动力系统及其推车 |
Also Published As
Publication number | Publication date |
---|---|
CN102747985A (zh) | 2012-10-24 |
CN102747985B (zh) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012142918A1 (zh) | 一种集尘器气动控制系统 | |
CN201090139Y (zh) | 压控钻割一体化钻头 | |
US8210318B2 (en) | Minimum oil machining system | |
CN103742658B (zh) | 用于涂胶枪的密封面无冲蚀的限流阀 | |
WO2014080664A1 (ja) | 間欠エア吐出装置 | |
CN102704549B (zh) | 可调式无负压射流型管网叠压供水设备 | |
CN202039819U (zh) | 一种集尘器气动控制系统 | |
CN205926410U (zh) | 喷嘴机构及包括该喷嘴机构的压力清洗系统 | |
KR101594816B1 (ko) | 압축공기를 이용한 공작기계용 절삭유 공급라인의 동파방지장치 | |
CN104018454A (zh) | 一种可单边作业的洗扫车装置及方法 | |
JP2009018567A5 (zh) | ||
CN205743899U (zh) | 一种气动凿岩机及其水冲洗机构 | |
CN211821721U (zh) | 一种吸尘车用双气源供气系统 | |
CN111692138A (zh) | 集成式真空发生器及使用方法 | |
CN202850120U (zh) | 可调式无负压射流型管网叠压供水设备 | |
CN200948445Y (zh) | 喷砂枪 | |
CN113604623A (zh) | 一种液压泥炮差动控制回路及控制方法 | |
CN202881299U (zh) | 一种高炉出铁场泥炮转炮液压控制回路 | |
CN112709596A (zh) | 一种瓦斯抽采管道水力驱动自动排渣装置 | |
KR101594814B1 (ko) | 관비움을 이용한 공작기계용 절삭유 공급라인의 동파방지장치 | |
CN204817286U (zh) | 高压清洗机 | |
CN106178366B (zh) | 消防供水管路的阀控装置 | |
CN205600167U (zh) | 一种内焊机气动系统 | |
CN220851683U (zh) | 一种新型钻杆油脂润滑系统 | |
CN209621740U (zh) | 集成式真空发生器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12774180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12774180 Country of ref document: EP Kind code of ref document: A1 |