WO2012142840A1 - 一种下行控制信息的处理方法和系统 - Google Patents

一种下行控制信息的处理方法和系统 Download PDF

Info

Publication number
WO2012142840A1
WO2012142840A1 PCT/CN2011/083890 CN2011083890W WO2012142840A1 WO 2012142840 A1 WO2012142840 A1 WO 2012142840A1 CN 2011083890 W CN2011083890 W CN 2011083890W WO 2012142840 A1 WO2012142840 A1 WO 2012142840A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
control information
time slot
downlink control
transmitted
Prior art date
Application number
PCT/CN2011/083890
Other languages
English (en)
French (fr)
Inventor
戴博
陈艺戬
吴欣
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/357,537 priority Critical patent/US9713132B2/en
Publication of WO2012142840A1 publication Critical patent/WO2012142840A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for processing downlink control information. Background technique
  • the frame structure type (Type) 1 is applicable to Frequency Division Duplex (FDD) and Frequency Division Half-Duplex.
  • FDD Frequency Division Duplex
  • Each radio frame is 10ms long and consists of 20 slots, each slot is 0.5ms, numbered from 0 to 19.
  • Figure 1 is a schematic diagram of the frame structure of the FDD mode, as shown in Figure 1, one subframe
  • subframe consists of two consecutive time slots, such as subframe i consisting of two consecutive time slots 2i and 2i+l.
  • subframe i consisting of two consecutive time slots 2i and 2i+l.
  • UE User Equipment, user equipment
  • FDD does not have this limitation, that is, there can be 10 downlinks and 10 uplink subframes every 10 ms interval.
  • Frame Structure Type 2 is suitable for Time Division Duplex (TDD).
  • 2 is a schematic diagram of a frame structure of a TDD mode.
  • a radio frame has a length of 10 ms and is composed of two half-frames having a length of 5 ms.
  • One field consists of five sub-frames of length 1 ms.
  • the supported uplink and downlink configurations are shown in Table 1.
  • “D” indicates that the subframe is a downlink subframe
  • U indicates that the subframe is an uplink subframe
  • S indicates that the subframe is a special subframe.
  • the special subframe is composed of a downlink pilot time slot (DwPTS), a guard interval (GP), and an uplink pilot time slot.
  • DwPTS downlink pilot time slot
  • GP guard interval
  • Each subframe i consists of two time slots 2i and 2i+1 that are 0.5 ms in length.
  • the frame structure Type 2 supports two downlink-uplink conversion periods of 5ms and 10ms. In the 5-leg up-down conversion period, both fields have special subframes; in the 10ms uplink-downlink conversion period, only the first half has special subframes. Subframes 0, 5 and DwPTS are always reserved for the next Line transfer. The UpPTS and the next subframe immediately following the special subframe are always reserved for the uplink transmission. Therefore, for the 5ms uplink and downlink conversion period, UpPTS, subframe 2, and subframe 7 are reserved for uplink transmission; for 10ms uplink and downlink conversion period, UpPTS and subframe 2 are reserved for uplink transmission.
  • PCFICH Physical Control Format Indicator Channel
  • PCFICH Physical hybrid automatic weight
  • PHICH Physical Downlink Control Channel
  • PDCH Physical Downlink Control Channel
  • the information carried by the PCFICH is used to indicate the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols for transmitting the PDCCH in the subframe, and is sent on the first OFDM symbol of the subframe, where the frequency position is
  • OFDM Orthogonal Frequency Division Multiplexing
  • ID the frequency position is
  • the number of PHICHs and the time-frequency location may be the physical broadcast of the downlink carrier where the PHICH is located.
  • the system message and cell ID in the Physical Broadcast Channel (PBCH) are determined.
  • the PDCCH is used to carry Downlink Control Information (DCI), and includes: scheduling information of a PUSCH (Physical Uplink Shared Channel), scheduling information of a PDSCH (Physical Downlink Shared Channel), and uplink power control information.
  • DCI Downlink Control Information
  • the UE when the UE detects the PDCCH channel of the scheduling information of the PUSCH that belongs to the UE in the subframe n, or the UE receives the PHICH corresponding to the PUSCH of the UE in the subframe n, the UE will be in the subframe according to the situation.
  • the data of the PUSCH is transmitted on n+4.
  • the UE when the UE detects the PDCCH channel carrying the PUSCH scheduling information belonging to the UE in the subframe n, or the UE receives the PHICH corresponding to the PUSCH of the UE in the subframe n.
  • the UE will transmit the data of the PUSCH on the subframe n+k according to the situation.
  • the UE When the UE detects the PDCCH channel of the scheduling information carrying the PUSCH belonging to the UE in the subframe n, and the lower bit of the UL Index signaling in the scheduling information is 1, or when the UE receives the UE belonging to the UE on subframe 0 and subframe 5
  • the corresponding PHICH of the PUSCH, and when IPHICH 1, the UE will transmit the data of the PUSCH on the subframe n+7 according to the situation.
  • the above k values are as shown in Table 2:
  • CRS is designed to measure the quality of the channel and demodulate the received data symbols.
  • Common Reference Signal common reference signal.
  • the UE can perform channel measurement through the CRS, thereby supporting the UE to perform cell reselection and handover to the target cell, and perform channel quality measurement in the UE connection state.
  • CSI-RS channel information reference signal
  • DMRS demodulation reference signal
  • the CSI-RS is used for the measurement of the channel
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • the DMRS is used for demodulation of the downlink shared channel.
  • the DMRS demodulation can reduce the interference between different receiving sides and different cells by using the beam method, and can reduce the performance degradation caused by the codebook granularity, and reduce the downlink to a certain extent. Control signaling overhead.
  • the physical downlink control channel is mainly distributed in the first 1, 2, or 3 OFDM of one subframe, and the specific distribution needs to be configured according to different subframe types and the number of ports of the CRS, as shown in Table 3. Show:
  • Subframe 1 and Subframe 6 1 , 2 2 in Subframe Type 2 are identical to Subframe 1 and Subframe 6 1 , 2 2 in Subframe Type 2
  • Subframes on the PDSCH transmission carrier are not supported. 0 0
  • Non-MBSFN subframes configured as PRS (except 1 , 2, 3 2, 3
  • Subframe of frame structure type 2 6
  • Each receiving side needs to perform blind detection according to the first three symbols, the starting position of the blind detection and the number of elements of the control channel, and the wireless network allocated to the receiving side temporarily Identification and related to different control information.
  • the control information can generally be divided into public control information and proprietary control information.
  • the public control information is generally placed in the common search space of the physical downlink control channel, and the proprietary control information can be placed in all public spaces and dedicated search spaces.
  • the receiving side determines whether the current subframe has a common system message, downlink scheduling, or uplink scheduling information after the blind detection. Since this downlink control information does not have HARQ
  • Carrier Aggregation In order to obtain a larger working spectrum and system bandwidth, carrier aggregation (Carrier Aggregation) technology can be used to distribute several continuous component carrier frequencies (spectrums) distributed in different frequency bands.
  • Component Carrier aggregates to form the bandwidth that LTE-Advanced can use, for example: 100MHz. That is, for the aggregated spectrum, it is divided into n component carrier frequencies (spectrums), and the spectrum in each component carrier frequency (spectrum) is continuous. The spectrum is divided into two types of primary classification carrier (PCC) and secondary component carrier (SCC), also referred to as primary cell and secondary cell.
  • PCC primary classification carrier
  • SCC secondary component carrier
  • the specific resource silence method can be divided into a subframe-based silence method, for example, an ABS (Almost Blank Subframe) method; or a resource element-based method. Methods, for example: CRS silent method.
  • the above method not only increases the waste of resources, but also imposes a great limitation on scheduling.
  • the Macro eNodeB configures more ABS, which will It has a large impact on the Macro eNodeB, and increases the scheduling delay while increasing the waste of resources.
  • it cannot solve the interference problem of CRS resources and data resources, and the method of silent CRS cannot solve the interference between data resources.
  • the backward compatibility of the above methods is not good, and more standardization efforts may be required while increasing the access delay.
  • the main object of the present invention is to provide a method and system for processing downlink control information, and to increase an area for transmitting downlink control information, so as to fully utilize the space division technology, reduce interference between control channels, and expand downlink control channel capacity. .
  • a method for processing downlink control information includes:
  • the downlink control information of the subframe n is transmitted on the subframe n; or the downlink control information of the subframe n is transmitted on the subframe n-1.
  • the downlink control information of the subframe n is transmitted on the first time slot and/or the second time slot of the subframe n-1;
  • the time domain location of the downlink control information of the subframe n transmitted on the subframe n-1 is: g consecutive OFDM symbols of the subframe n-1; the g is configured by signaling, or, g is a predefined value Or,
  • the downlink control information of the subframe n is transmitted in the second slot of the subframe n-1, or the downlink control information of the subframe n is transmitted in the first slot of the subframe n.
  • the downlink control information of the subframe n is transmitted in the second time slot of the subframe n-1, or the downlink control information of the subframe n is sent in the first time slot of the subframe n, including at least the following One way to send:
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, and the downlink control information related to the physical uplink shared channel scheduling of the subframe n is in the subframe. Sent on the first time slot of n;
  • Downlink control information related to physical downlink shared channel scheduling of subframe n is transmitted on a second time slot of subframe n-1, or downlink control information related to physical downlink shared channel scheduling of subframe n is in a sub-frame
  • the first time slot of the frame n is transmitted; the downlink control information of the subframe n related to the physical uplink shared channel scheduling is transmitted on the first time slot of the subframe n;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the subframe n is related to the physical downlink shared channel scheduling.
  • the row control information is transmitted on the first time slot of the subframe n;
  • the downlink control information related to the physical uplink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the subframe
  • the downlink control information related to the physical uplink shared channel scheduling of n is transmitted on the first time slot of the subframe n;
  • Downlink control information related to physical downlink shared channel scheduling of subframe n is transmitted on a second time slot of subframe n-1, or downlink control information related to physical downlink shared channel scheduling of subframe n is in a sub-frame
  • the first time slot of the frame n is transmitted; the downlink control information of the subframe n related to the physical uplink shared channel scheduling is transmitted on the second time slot of the subframe n.
  • the method further includes:
  • the user equipment UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n on the first time slot of the subframe n, in the second time slot of the subframe n-1. Detecting downlink control information related to physical uplink shared channel scheduling of subframe n;
  • the UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n in the first time slot of the subframe n and the second time slot of the subframe n-1, in the subframe n
  • the downlink control message related to the physical uplink shared channel scheduling of the subframe n is detected on the first time slot.
  • the UE is in the first time slot of the subframe n and the second time of the subframe n-1. Detecting downlink control information related to physical downlink shared channel scheduling of the subframe n, detecting that the subframe n is shared with the physical uplink in the first slot of the subframe n and the second slot of the subframe n-1 Downlink control information related to channel scheduling;
  • the UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n and the physical uplink shared channel scheduling related to the subframe n-1 in the second time slot of the subframe n-1.
  • Downlink control information detecting downlink control information related to physical downlink shared channel scheduling of subframe n on a first time slot of subframe n, the UE detecting on a second time slot of subframe n
  • the downlink control information of the subframe n is sent by the signaling configuration on the subframe n-1.
  • the subframe n is a downlink subframe
  • the n-1 subframe is the closest to the subframe n.
  • the downlink control information of the subframe n is transmitted only on the subframe n
  • the downlink control information of the subframe n is transmitted on the first slot of the subframe n, or the downlink control information of the subframe n is in the subframe.
  • the first time slot and the second time slot of frame n are transmitted.
  • the time domain location of the downlink control information region sent on the second time slot of the subframe is: consecutive m OFDM symbols starting from the hth OFDM symbol in the second time slot; wherein, the h and m For a predefined value, or, configured by signaling;
  • the time domain location of the downlink control information region sent on the second time slot of the subframe is: from the first OFDM symbol to the last OFDM symbol on the second time slot;
  • the area where the downlink control information is sent in the first time slot of the subframe is one or two.
  • the time domain location of the area is: the first A consecutive OFDM symbols of the first time slot of the subframe, where the area for transmitting the downlink control information is one in the first time slot of the subframe;
  • A is configured by signaling, and the signaling is transmitted on the physical control format indication channel; or, the time domain location of the area is: the last B consecutive OFDM symbols of the first time slot of the subframe;
  • the signaling configuration is either a predetermined value;
  • the time domain position of the first area is: the first A consecutive OFDM symbols of the first time slot of the subframe;
  • the A is configured by signaling, and the signaling is transmitted on the physical control format indication channel;
  • the time domain location of the second area is: the last B consecutive OFDM symbols of the first time slot of the subframe;
  • B is configured by signaling or B is a predetermined value or determined according to A;
  • the frequency domain location of the first region is a full bandwidth, or a partially continuous bandwidth; the frequency domain location of the second region is configured by signaling.
  • the method further includes:
  • the UE detects the downlink control information of the subframe n on the first time slot of the subframe n, or the UE detects the downlink control information of the subframe n on the first time slot and the second time slot of the subframe n.
  • the public search space of the UE is located in the first area of the first time slot of the subframe n, or the public search space of the UE is located in the second area of the first time slot of the subframe n, or the UE The public search space is located in the second time slot of the subframe n-1;
  • the UE's proprietary search space is located in the first region of the first slot of the subframe n, or the UE's proprietary search space is located in the second region of the first slot of the subframe n, or The private search space is located in the second region of the first slot of the subframe n and the second slot of the subframe n, or the UE's proprietary search space is located in the second slot of the first slot of the subframe n The second slot of the area and subframe n-1.
  • a processing system for downlink control information including a base station, for:
  • the downlink control information of the subframe n is transmitted on the subframe n; or the downlink control information of the subframe n is transmitted on the subframe n-1.
  • the base station is configured to:
  • the downlink control information of the subframe n is transmitted on the first time slot and/or the second time slot of the subframe n-1;
  • the time domain location of the downlink control information of the subframe n transmitted on the subframe n-1 is: g consecutive OFDM symbols of the subframe n-1; the g is configured by signaling, or , g is a predefined value;
  • the downlink control information of the subframe n is transmitted in the second slot of the subframe n-1, or the downlink control information of the subframe n is transmitted in the first slot of the subframe n.
  • the base station transmits the downlink control information of the subframe n in the second time slot of the subframe n-1, or transmits the downlink control information of the subframe n in the first time slot of the subframe n.
  • a sending method that includes at least one of the following:
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, and the downlink control information related to the physical uplink shared channel scheduling of the subframe n is in the subframe. Sending on the first time slot of ⁇ ;
  • Downlink control information related to physical downlink shared channel scheduling of subframe n is transmitted on a second time slot of subframe n-1, or downlink control information related to physical downlink shared channel scheduling of subframe n is in a sub-frame
  • the first time slot of the frame ⁇ is transmitted; the downlink control information related to the physical uplink shared channel scheduling of the subframe n is transmitted on the first time slot of the subframe ⁇ ;
  • Downlink control information related to physical downlink shared channel scheduling of subframe n is transmitted on a second time slot of subframe n-1, or downlink control information related to physical downlink shared channel scheduling of subframe n is in a sub-frame
  • the first time slot of the frame ⁇ is transmitted; the downlink control information related to the physical uplink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe ⁇ -1, or the physical uplink of the subframe ⁇
  • the downlink control information related to the shared channel scheduling is transmitted on the first time slot of the subframe ⁇ ;
  • Downlink control information related to physical downlink shared channel scheduling of subframe n is transmitted on a second time slot of subframe n-1, or downlink control information related to physical downlink shared channel scheduling of subframe n is in a sub-frame
  • the first time slot of the frame n is transmitted; the downlink control information of the subframe n related to the physical uplink shared channel scheduling is transmitted on the second time slot of the subframe n.
  • the system further includes a UE, configured to: For the first method, the downlink control information related to the physical downlink shared channel scheduling of the subframe n is detected on the first time slot of the subframe n, and the subframe n is detected on the second time slot of the subframe n1. Downlink control information related to physical uplink shared channel scheduling;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is detected on the first time slot of the subframe n and the second time slot of the subframe n-1, in the subframe n. Detecting, in the first time slot, downlink control information related to physical uplink shared channel scheduling of subframe n; for the third method, in the first time slot of subframe n and the second time slot of subframe n-1 Detecting the downlink control information related to the physical downlink shared channel scheduling of the subframe n, detecting the physical uplink shared channel of the subframe n in the first slot of the subframe n and the second slot of the subframe n-1 Scheduling related downlink control information;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n and the downlink related to the physical uplink shared channel scheduling of the subframe n-1 are detected on the second time slot of the subframe n-1.
  • Control information, detecting downlink control information related to physical downlink shared channel scheduling of subframe n on a first time slot of subframe n, and detecting a subframe n+1 on a second time slot of subframe n The downlink control information related to the physical downlink shared channel scheduling and the downlink control information related to the physical uplink shared channel scheduling of the subframe n.
  • the downlink control information of the subframe n is sent by the signaling configuration on the subframe n-1.
  • the subframe n is a downlink subframe
  • the n-1 subframe is the closest to the subframe n.
  • the base station is configured to: transmit the downlink control information of the subframe n on the first time slot of the subframe n, or The downlink control information of frame n is transmitted on the first time slot and the second time slot of subframe n.
  • the time domain location of the downlink control information region sent on the second time slot of the subframe is: consecutive m OFDM symbols starting from the hth OFDM symbol in the second time slot; wherein, the h and m For a predefined value, or, configured by signaling; or,
  • the time domain location of the downlink control information region sent on the second time slot of the subframe is: from the first OFDM symbol to the last OFDM symbol on the second time slot;
  • the area where the downlink control information is sent in the first time slot of the subframe is one or two.
  • the time domain location of the area is: the first A consecutive OFDM symbols of the first time slot of the subframe, where the area for transmitting the downlink control information is one in the first time slot of the subframe;
  • A is configured by signaling, and the signaling is transmitted on the physical control format indication channel; or, the time domain location of the area is: the last B consecutive OFDM symbols of the first time slot of the subframe;
  • the signaling configuration is either a predetermined value;
  • the time domain position of the first area is: the first A consecutive OFDM symbols of the first time slot of the subframe;
  • the A is configured by signaling, and the signaling is transmitted on the physical control format indication channel;
  • the time domain location of the second area is: the last B consecutive OFDM symbols of the first time slot of the subframe;
  • B is configured by signaling or B is a predetermined value or determined according to A;
  • the frequency domain location of the first region is a full bandwidth, or a partially continuous bandwidth; the frequency domain location of the second region is configured by signaling.
  • the UE is further configured to:
  • the downlink control information of the subframe n is detected on the first slot of the subframe n, or the downlink control information of the subframe n is detected on the first slot and the second slot of the subframe n.
  • the public search space of the UE is located in the first area of the first time slot of the subframe n, or the public search space of the UE is located in the second area of the first time slot of the subframe n, or the UE The public search space is located in the second time slot of the subframe n-1;
  • the UE's proprietary search space is located in the first region of the first slot of the subframe n, or the UE's proprietary search space is located in the second region of the first slot of the subframe n, or The private search space is located in the second area of the first slot of subframe n and the second slot of subframe n, Alternatively, the UE's proprietary search space is located in the second region of the first slot of subframe n and the second slot of subframe n-1.
  • the control channel information processing technology provided by the present invention adds an area for transmitting downlink control information, can fully utilize the space division technology, reduces the load of the physical downlink control channel, and reduces interference between control channels, and expands the control channel. capacity.
  • FIG. 1 is a schematic diagram of a type 1 frame structure of an LTE system
  • FIG. 2 is a schematic diagram of a type 2 frame structure of an LTE system
  • FIG. 3 is a schematic diagram 1 of transmitting a downlink control channel according to an embodiment of the present invention.
  • FIGS. 4a to 4c are schematic diagrams 2 of transmitting a downlink control channel according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram 3 of transmitting a downlink control channel according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram 4 of transmitting a downlink control channel according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram 5 of transmitting a downlink control channel according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram 6 of transmitting a downlink control channel according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a process flow of downlink control information according to an embodiment of the present invention. detailed description
  • the base station may send the downlink control information of the subframe n on the subframe n, or send the downlink control information of the subframe n on the subframe n-1.
  • the downlink control information of the subframe n is the downlink control information originally scheduled to be transmitted on the subframe n in the LTE system, that is, the downlink control information of the subframe n is the PDSCH on the downlink subframe n.
  • the relevant scheduling information and/or PUSCH related scheduling information on the uplink subframe n+k, k is defined by Table 2.
  • the downlink control information of the subframe n is in the first slot and/or the second of the subframe n-1. Transmission on time slots;
  • the time domain position of the downlink control information of the subframe n transmitted on the subframe n-1 is: g consecutive OFDM symbols of the subframe n-1; the g is configured by signaling, or, g is Predefined value.
  • the downlink control information of the subframe n is transmitted in the second time slot of the subframe n-1, or the downlink control information of the subframe n is transmitted in the first time slot of the subframe n;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, and the downlink control information related to the physical uplink shared channel scheduling of the subframe n is transmitted. Sent on the first time slot of subframe n;
  • the UE detects downlink control information related to physical downlink shared channel scheduling of subframe n on the first time slot of subframe n, and detects subframe n on the second time slot of subframe n-1.
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the downlink control information related to the physical downlink shared channel scheduling of the subframe n Transmitting on the first time slot of subframe n; downlink control information related to physical uplink shared channel scheduling of subframe n is transmitted on the first time slot of subframe n;
  • the UE detects downlink control information related to physical downlink shared channel scheduling of the subframe n in the first slot of the subframe n and the second slot of the subframe n-1, in the first of the subframe n Detecting downlink control information related to physical uplink shared channel scheduling of subframe n on time slots;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the physical downlink shared channel scheduling of the subframe n is The downlink control information of the downlink is transmitted on the first time slot of the subframe n; the downlink control information related to the physical uplink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or Downlink control information related to physical uplink shared channel scheduling of subframe n is transmitted on the first time slot of subframe n;
  • the UE detects downlink control information related to physical downlink shared channel scheduling of the subframe n in the first slot of the subframe n and the second slot of the subframe n-1, in the first of the subframe n Detecting downlink control information related to physical uplink shared channel scheduling of subframe n on a second time slot and a second time slot of subframe n-1;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the downlink control information related to the physical downlink shared channel scheduling of the subframe n Transmitting on the first time slot of subframe n; downlink control information related to physical uplink shared channel scheduling of subframe n is transmitted on the second time slot of subframe n;
  • the UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n and the downlink control information related to the physical uplink shared channel scheduling of the subframe n-1 on the second time slot of the subframe n-1. Detecting, in the first time slot of the subframe n, downlink control information related to physical downlink shared channel scheduling of the subframe n, and detecting, by the UE, the subframe n+1 and the physical on the second time slot of the subframe n Downlink control information related to downlink shared channel scheduling and downlink control information related to physical uplink shared channel scheduling of subframe n;
  • whether the downlink control information of the subframe n is transmitted on the subframe n-1 is configured by signaling; further, for the TDD system, the subframe n is a downlink subframe, and the n-1 subframe is a distance subframe. n The most recent previous downlink subframe.
  • the downlink control information of the subframe n is transmitted only on the subframe n
  • the downlink control information of the subframe n is transmitted on the first slot of the subframe n
  • the downlink control information of the subframe n is Transmitted on the first time slot and the second time slot of subframe n;
  • the control area defines the specific areas for sending downlink control information in three scenarios as follows:
  • the time domain location of the downlink control information region sent on the second time slot of the subframe is: consecutive m OFDM symbols starting from the hth OFDM symbol in the second time slot; wherein, h and m may be Predefined value, or, configured by signaling;
  • the time domain location of the downlink control information region sent on the second time slot of the subframe is: from the first OFDM symbol to the last OFDM symbol on the second time slot;
  • the area where the downlink control information is sent in the first time slot of the subframe is one or two;
  • the time domain position of the area is: the first A consecutive OFDM symbols of the first time slot of the subframe; wherein A is configured by signaling, and the signaling is in physical control
  • the format indicates the transmission on the channel; or, the time domain location of the area is: the last B consecutive OFDM symbols of the first time slot of the subframe; wherein B is configured by signaling or is a predetermined value;
  • the time domain location of the first area is: the first A consecutive OFDM symbols of the first time slot of the subframe; wherein A is configured by signaling, and the signaling is in physical control
  • the format indicates the transmission on the channel;
  • the time domain location of the second region is: the last B consecutive OFDM symbols of the first slot of the subframe; wherein B is configured by signaling or B is a predetermined value or determined according to A
  • the frequency domain location of the first area is a full bandwidth, or a partially continuous bandwidth; the frequency domain location of the second area is configured by signaling;
  • the public search space of the UE is located in the first area of the first time slot of the subframe n, or the public search space of the UE is located in the second area of the first time slot of the subframe n, or The public search space of the UE is located in the second time slot of the subframe n-1;
  • the UE's proprietary search space is located in the first region of the first slot of the subframe n, or the UE's proprietary search space is located in the second region of the first slot of the subframe n, or The private search space is located in the second region of the first slot of the subframe n and the second slot of the subframe n, or the UE's proprietary search space is located in the second slot of the first slot of the subframe n The second slot of the area and subframe n-1.
  • the downlink control information of the subframe n is transmitted on the subframe n, or the downlink control information of the subframe n is transmitted on the subframe n-1;
  • the downlink control information of the subframe n is transmitted on the first slot and the second slot of the subframe n-1; the time domain location of the downlink control information region of the subframe n transmitted on the subframe n-1 is: The last g consecutive OFDM symbols of frame n-1;
  • g is a predefined value, for example, suppose a subframe contains OFDM symbols of W, g is W or W-3 or W-4 or W-2;
  • the subframe n is a downlink subframe
  • the n-1 subframe is a previous downlink subframe that is closest to the subframe n;
  • the base station transmits a UL Grant (uplink grant) on the first slot PDCCH region of the subframe n (LTE R8 definition, the first m OFDM symbols of the subframe), in the PDSCH region of the subframe n-1 (subframe n- DL Grant (downlink grant) information is transmitted on the last g consecutive OFDM symbols of 1;
  • the UL Grant includes PUSCH related scheduling information, and the DL Grant includes a PDSCH Related scheduling information;
  • the UE detects the DL Grant information on the PDSCH region of the subframe n-1, and detects the UL Grant on the PDCCH region of the first slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the downlink control information of the subframe n is transmitted in the second time slot of the subframe n-1, and may also be transmitted in the first time slot of the subframe n;
  • Whether the downlink control information of the subframe n is transmitted on the subframe n-1 is configured by signaling;
  • the subframe n is a downlink subframe
  • the n-1 subframe is a previous downlink subframe that is closest to the subframe n;
  • Downlink control information (ie, DL Grant) related to physical downlink shared channel scheduling of subframe n is transmitted on the second time slot of subframe n-1, and downlink control information related to physical uplink shared channel scheduling of subframe n (UL Grant) is sent on the first time slot of subframe n;
  • the UE detects the downlink control information related to the physical uplink shared channel scheduling of the subframe n on the first time slot of the subframe n, and detects the physical downlink of the subframe n on the second time slot of the subframe n-1. Sharing downlink control information related to channel scheduling;
  • the base station transmits the UL Grant on the first slot PDSCH region of the subframe n (the LTE R8 definition, the first m OFDM symbols of the subframe n transmit the PDCCH, and the remaining symbols of the first slot of the subframe n are the PDSCH region), Transmitting DL Grant information on the second time slot of subframe n-1;
  • the UE detects the DL Grant information on the second time slot of the subframe n-1, and detects the UL Grant on the PDSCH area of the first time slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the downlink control information related to the physical downlink shared channel scheduling of the subframe n is in the subframe. Transmission on the first time slot of n; downlink control information related to physical uplink shared channel scheduling of subframe n is transmitted on the first time slot of subframe n;
  • the UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n on the second time slot of the subframe n-1, and detects the physical uplink of the subframe n on the first time slot of the subframe n. Sharing downlink control information related to channel scheduling and downlink control information related to physical downlink shared channel scheduling of subframe n ;
  • the base station transmits the UL Grant on the first slot PDSCH region of the subframe n (the LTE R8 definition, the first m OFDM symbols of the subframe n transmit the PDCCH, and the remaining symbols of the first slot of the subframe n are the PDSCH region), Transmitting DL Grant information on the PDSCH region of the first slot of subframe n;
  • the UE detects the DL Grant information and the UL Grant information on the PDSCH region of the first slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE will root Transmitting PUSCH on subframe n+k according to UL Grant information, k is defined by Table 2;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the downlink control information related to the physical downlink shared channel scheduling of the subframe n is in the subframe.
  • the first time slot of n is transmitted;
  • the downlink control information related to the physical uplink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the subframe n is shared with the physical uplink.
  • the downlink control information related to channel scheduling is transmitted on the first time slot of the subframe n;
  • the UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n and the downlink control information related to the physical uplink shared channel scheduling of the subframe n in the first time slot of the subframe n, in the subframe n-1
  • the downlink control information related to the physical uplink shared channel scheduling of the subframe n and the downlink control information related to the physical downlink shared channel scheduling of the subframe n are detected on the second time slot;
  • the base station transmits the UL Grant on the first slot PDSCH region of subframe n (g consecutive OFDM symbols are PDSCH regions after the first slot of subframe n), in the second slot of subframe n-1 Transmitting DL Grant information;
  • the UE detects the UL Grant information on the PDSCH region of the first slot of the subframe n, and detects the DL Grant information on the second slot of the subframe n-1;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the base station transmits UL Grant information and UL Grant information on the second time slot of the subframe n-1; the UE detects the DL Grant information and the UL Grant information on the second time slot of the subframe n-1; for the FDD, The UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE will root Transmitting the PUSCH on the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the downlink control information related to the physical downlink shared channel scheduling of the subframe n is transmitted on the second time slot of the subframe n-1, or the downlink control information related to the physical downlink shared channel scheduling of the subframe n is in the subframe. Transmission on the first time slot of n; downlink control information related to physical uplink shared channel scheduling of subframe n is transmitted on the second time slot of subframe n;
  • the UE detects the downlink control information related to the physical downlink shared channel scheduling of the subframe n and the downlink control information related to the physical uplink shared channel scheduling of the subframe n-1 in the second time slot of the subframe n-1.
  • the downlink time control information related to the physical downlink shared channel scheduling of the subframe n is detected on the first time slot of the frame n, and the UE detects the physical downlink shared channel of the subframe n+1 on the second time slot of the subframe n. Scheduling related downlink control information and downlink control information related to physical uplink shared channel scheduling of subframe n;
  • the base station transmits the DL Grant on the first slot PDSCH region of the subframe n (the LTE R8 definition, the first m OFDM symbols of the subframe n transmit the PDCCH, and the remaining symbols of the first slot of the subframe n are the PDSCH region), Transmitting UL Grant information on the second time slot of subframe n;
  • the UE detects the DL Grant information on the PDSCH region of the first slot of the subframe n, and detects the UL Grant information on the second slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • Example 3 When the downlink control information of the subframe n is transmitted only on the subframe n, the downlink control information of the subframe n is transmitted on the first slot of the subframe n, and the UE detects on the first slot of the subframe n.
  • the base station transmits the UL Grant and the first slot PDSCH region of the subframe n (the LTE R8 definition, the first m OFDM symbols of the subframe n transmit the PDCCH, and the remaining symbols of the first slot of the subframe n are the PDSCH region) DL Grant information;
  • the UE detects the DL Grant information and the UL Grant information on the PDSCH region of the first slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the base station is in the PDSCH region of the first slot of the subframe n (on the subframe n from the gth OFDM of the first slot to the last OFDM symbol of the first slot is the PDSCH region, g is configured by higher layer signaling) Transmitting UL Grant and DL Grant information;
  • the UE detects the DL Grant information and the UL Grant information on the PDSCH region of the first slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the downlink control signal of the subframe n When the downlink control information of the subframe n is transmitted only on the subframe n, the downlink control signal of the subframe n The information is transmitted on the first time slot and the second time slot of the subframe n; the UE detects the downlink control information of the subframe n on the first time slot and the second time slot of the subframe n ;
  • the DL Grant information is transmitted only in the first time slot of the subframe n, and the UL Grant information may be transmitted in the first time slot of the subframe n or in the second time slot of the subframe n;
  • the base station transmits the DL Grant information on the first slot PDSCH region of the subframe n (the LTE R8 definition, the first m OFDM symbols of the subframe n transmit the PDCCH, and the remaining symbols of the first slot of the subframe n are the PDSCH region). Transmitting a UL Grant on a second time slot of subframe n;
  • the UE detects the DL Grant information on the PDSCH region of the first slot of the subframe n, and detects the UL Grant information on the second slot of the subframe n.
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the base station is in the PDSCH region of the first slot of the subframe n (on the subframe n from the gth OFDM of the first slot to the last OFDM symbol of the first slot is the PDSCH region, g is configured by higher layer signaling) Transmitting UL Grant and DL Grant information;
  • the UE detects the DL Grant information and the UL Grant information on the PDSCH region of the first slot of the subframe n;
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE will root Transmitting PUSCH on subframe n+k according to UL Grant information, k is defined by Table 2;
  • the DL Grant information is transmitted only in the first time slot of the subframe n, and the UL Grant information is transmitted only in the second time slot of the subframe n;
  • the base station is in the PDSCH region of the first slot of the subframe n (on the subframe n from the gth OFDM of the first slot to the last OFDM symbol of the first slot is the PDSCH region, g is configured by higher layer signaling) Transmitting DL Grant information, and transmitting UL Grant information on the second time slot;
  • the UE detects the DL Grant information on the PDSCH region of the first slot of the subframe n, and detects the UL Grant information on the second slot.
  • the UE receives the PDSCH in the subframe n according to the DL Grant information, and the UE transmits the PUSCH in the uplink subframe n+4 according to the UL Grant information;
  • the UE receives the PDSCH on the subframe n according to the DL Grant information, and the UE transmits the PUSCH on the subframe n+k according to the UL Grant information, where k is defined by Table 2;
  • the time domain location of the downlink control information region sent on the second time slot is: consecutive m OFDM symbols starting from the h th OFDM symbol in the second time slot; wherein the h and m may be predefined values Or, the h and m are configured by signaling; or, the time domain location of the downlink control information region sent on the second time slot is: from the first OFDM symbol to the last OFDM in the second time slot Symbol
  • the frequency domain area on the second time slot is configured by signaling, and may be configured by using a type 0/typel/type2 centralized virtual resource block and a discrete virtual resource block in LTE R8;
  • CRS/DMRS demodulation When the downlink control information is transmitted on the second time slot, CRS/DMRS demodulation may be used, and multiple antenna transmission modes such as diversity/open loop multiplexing/closed loop multiplexing are adopted; Example 6
  • the area where the downlink control information is sent in the first time slot is one, and the time domain position of the area is: the first A consecutive OFDM symbols of the first time slot of the subframe; wherein A is configured by signaling
  • the signaling is transmitted on the physical control format indication channel; that is, the same as the physical downlink control channel region of the LTE R8/9/10; or the time domain location of the region is: after the first time slot of the subframe B consecutive OFDM symbols; wherein B is configured by signaling or is a predetermined value;
  • the time domain location of the region in which the downlink control information is sent on the first time slot is: the first A consecutive OFDM symbols of the first slot of the subframe; wherein, A Configured by signaling, the signaling is transmitted on the physical control format indication channel; that is, the same as the physical downlink control channel region of LTE R8/9/10;
  • the area in which the downlink control information is sent on the first time slot is: the last B consecutive OFDM symbols of the first time slot of the subframe; wherein B is configured by signaling
  • X is a non-MBSFN subframe
  • subframe Y is an MBSFN subframe
  • subframe X and subframe Y are configured by signaling;
  • the first time slot of the subframe includes the number of OFDM symbols R, and B is R or R-3 or R-4 or R-2; the subframe is configured by signaling;
  • the frequency domain area is configured by signaling, and the virtual resource blocks and discrete types of type0/typel/type2 in LTE R8 may be used.
  • the virtual resource block is configured in a manner; at this time, the downlink control information may be demodulated by using CRS/DMRS, and multiple antenna transmission modes such as diversity/open loop multiplexing/closed loop multiplexing are adopted;
  • the frequency domain area is the full bandwidth; at this time, the downlink control information is demodulated by CRS, and the diversity/open loop complex is adopted.
  • the time domain position of the first area is: the first A consecutive OFDM symbols of the first time slot of the subframe; wherein, A Configured by signaling, the signaling is transmitted on the physical control format indication channel; that is, the same as the physical downlink control channel region of LTE R8/9/10;
  • the frequency domain location of the first region is a full bandwidth, or a partially continuous bandwidth;
  • the time domain location of the second region is: the last B consecutive OFDM symbols of the first time slot of the subframe; B is configured by signaling.
  • the number of OFDM symbols included in the first slot of the subframe is R
  • the first time slot of the subframe includes the number of OFDM symbols R, and B is R or R-3 or R-4 or R-2; the subframe is configured by signaling;
  • the frequency domain location of the second area is configured by signaling
  • the frequency domain area of the second area of the first time slot is configured by signaling, and may be configured by using a type 0/type 1/type 2 centralized virtual resource block and a discrete virtual resource block in LTE R8;
  • the information can be demodulated using CRS/DMRS, and multiple antenna transmission modes such as diversity/open loop multiplexing/closed loop multiplexing are adopted;
  • the frequency domain region of the first region of the first time slot is a full bandwidth; at this time, the downlink control information is demodulated by CRS, and a multi-antenna transmission mode such as diversity/open loop multiplexing is adopted;
  • the open loop mode is the same as the open loop multiplexing mode defined by LTE R8, namely: large delay Cyclic delay diversity (large delay cyclic delay diversity);
  • the search space allocation method of the downlink control information of the UE is as follows:
  • subframe n the public search space and the private search space of the UE are located in the first region of the first slot of the subframe n; wherein, the UL Grant and the DL Grant are in the first slot of the subframe n Transmission on two areas and/or a second time slot and/or a first time slot on the first area;
  • the public search space of the UE is located in the first region of the first slot of the subframe n, and the private search space of the UE is located in the second region of the first slot of the subframe n;
  • the public search space of the UE is located in the first region of the first slot of the subframe n, and the private search space of the UE is located in the second region and subframe of the first slot of the subframe n.
  • the public search space of the UE is located in the first region of the first slot of the subframe n, and the private search space of the UE is located in the first region and subframe of the first slot of the subframe n.
  • the public search space of the UE is located in the first area of the first slot of the subframe n, and the private search space of the UE is located in the second slot of the subframe n;
  • the public search space of the UE is located in the second region of the first slot of the subframe n, and the private search space of the UE is located in the second region and subframe of the first slot of the subframe n.
  • the public search space of the UE is located in the second area of the first time slot of the subframe n, and the private search space of the UE is located in the second area of the first time slot of the subframe n;
  • the component carrier may also be referred to as a serving cell
  • the component carrier c may schedule one or more component carriers, each component carrier corresponding to a user-specific search space, each component
  • the search space corresponding to the carrier may be located on the same area as above, or may be located in different areas;
  • the component carrier c can schedule the component carrier c and the component carrier d, and the component carrier c and the component carrier d respectively correspond to a user-specific search space, and the search space corresponding to the component carrier c and the search space corresponding to the component carrier d are respectively located in the subframe.
  • the component carrier c can schedule the component carrier c and the component carrier d, and the component carrier c and the component carrier d respectively correspond to a user-specific search space, and the search space corresponding to the component carrier c is located in the first slot of the subframe n first.
  • the search space corresponding to the component carrier d is located in the second area of the first slot of the subframe n; or, the search space corresponding to the component carrier c is located in the first area of the first slot of the subframe n,
  • the search space corresponding to the component carrier d is located in the second area and the second time slot of the first time slot of the subframe n; or, the search space corresponding to the component carrier c is located in the first time slot of the subframe n,
  • the search space corresponding to the component carrier d is located in the first slot of the subframe n and the second slot of the subframe n-1.
  • the operation of the present invention for transmitting downlink control information may identify the process shown in FIG. 9, and the process includes:
  • Step 910 Send downlink control information of subframe n on subframe n.
  • Step 920 Alternatively, the downlink control information of the subframe n is sent on the subframe n-1.
  • control channel information processing technology adds an area for transmitting downlink control information, which can fully utilize the space division technology, reduces the load of the physical downlink control channel, and reduces The interference between the control channels increases the capacity of the control channel.
  • the present invention provides a method and system for processing downlink control information, which may send downlink control information of subframe n on subframe n; or transmit downlink control information of subframe n on subframe n-1.
  • the control channel information processing technology provided by the present invention adds an area for transmitting downlink control information, can fully utilize the space division technology, reduces the load of the physical downlink control channel, and reduces interference between control channels, and expands the control channel. capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种下行控制信息的处理方法和系统,可将子帧n的下行控制信息在子帧n上发送;或者,将子帧n的下行控制信息在子帧n-1上发送。本发明提供的控制信道信息处理技术增加了一种发送下行控制信息的区域,可以充分利用空分技术,减轻了物理下行控制信道的负载,并且减少控制信道之间的干扰,扩大了控制信道的容量。

Description

一种下行控制信息的处理方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种下行控制信息的处理方法和系统。 背景技术
长期演进(Long Term Evolution, LTE ) 系统中有两种帧结构, 帧结构 类型(Type ) 1适用于频分全双工(Frequency Division Duplex, FDD )和频 分半双工。每个无线帧长为 10ms,由 20个时隙( slot )组成,每个时隙 0.5ms, 编号从 0到 19。 图 1是 FDD模式的帧结构示意图, 如图 1所示, 一个子帧
( subframe )由两个连续的时隙组成,如子帧 i由两个连续的时隙 2i和 2i+l 组成。 无论是半双工 FDD还是全双工 FDD, 上下行都是在不同的频率上传 输, 但是对于半双工 FDD, UE ( User Equipment, 用户设备) 不能同时发 送和接收数据; 而对于全双工 FDD就没有这个限制, 即在每 10ms间隔内 可以有 10个下行和 10个上行子帧。
帧结构 Type 2适用于时分双工( TDD, Time Division Duplex )。 图 2是 TDD模式的帧结构示意图, 如图 2所示, 一个无线帧长度为 10ms, 由两个 长度为 5ms的半帧(half-frame )组成。 一个半帧由 5个长度为 1ms子帧组 成。 支持的上下行链路配置如表 1所示, 表中" D"表示该子帧为下行子帧, "U"表示该子帧为上行子帧, "S"表示该子帧为特殊子帧( special subframe )。 特殊子帧由下行导频时隙 (DwPTS )、 保护间隔 (GP ) 以及上行导频时隙
( UpPTS )组成, 总长度为 lms。 每个子帧 i由两个长度为 0.5ms的时隙 2i 和 2i+l组成。 帧结构 Type 2支持 5ms和 10ms两种下行-上行转换周期。在 5腿的上下行转换周期中, 两个半帧都有特殊子帧; 在 10ms的上下行转换 周期中, 只有第一个半帧有特殊子帧。 子帧 0、 5和 DwPTS总是预留给下 行传输。 UpPTS和紧接着特殊子帧的下一个子帧总是预留给上行传输。 因 此对 5ms的上下行转换周期, UpPTS、 子帧 2和子帧 7预留给上行传输; 对 10ms的上下行转换周期, UpPTS、 子帧 2预留给上行传输。
Figure imgf000004_0001
表 1、 上下行链路配置
LTE 中定义了如下三种下行物理控制信道: 物理下行控制格式指示信 道 ( Physical Control Format Indicator Channel, PCFICH )、 物理混合自动重
Channel, PHICH ), 物理下行控制信道( Physical Downlink Control Channel, PDCCH )。
其中, PCFICH承载的信息用于指示在子帧里传输 PDCCH的正交频分 复用 ( OFDM, Orthogonal Frequency Division Multiplexing )符号的数目 , 在子帧的第一个 OFDM符号上发送, 所在频率位置由系统下行带宽与小区 标识(Identity, ID )确定。 馈信息。 PHICH的数目、 时频位置可由 PHICH所在的下行载波的物理广播 信道( Physical Broadcast Channel , PBCH ) 中的系统消息和小区 ID确定。
PDCCH用于承载下行控制信息( Downlink Control Information, DCI ), 包括: PUSCH (物理上行共享信道) 的调度信息、 PDSCH (物理下行共享 信道) 的调度信息以及上行功率控制信息。
对于 FDD, 当 UE在子帧 n检测到属于该 UE的承载 PUSCH的调度信 息的 PDCCH信道, 或者该 UE在子帧 n接收到属于该 UE的 PUSCH对应 的 PHICH时, UE将根据情况在子帧 n+4上发送 PUSCH的数据。
对于 TDD上下行链路配置 1至 6, 当 UE在子帧 n检测到属于该 UE 的承载 PUSCH调度信息的 PDCCH信道, 或者, 该 UE在子帧 n接收到属 于该 UE的 PUSCH对应的 PHICH时, UE将根据情况在子帧 n+k上发送 PUSCH的数据。 对于 TDD上下行链路配置 0, 当 UE在子帧 n检测到属于 该 UE的承载 PUSCH调度信息的 PDCCH信道, 并且调度信息中 UL Index 信令的高位为 1 ,或者当 UE在子帧 0和子帧 5上接收到属于该 UE的 PUSCH 对应的 PHICH,并且 IPHICH=0时 , UE将根据情况在子帧 n+k上发送 PUSCH 的数据。 当 UE在子帧 n检测到属于该 UE的承载 PUSCH的调度信息的 PDCCH信道, 并且调度信息中 UL Index信令的低位为 1 , 或者当 UE在子 帧 0 和子帧 5 上接收到属于该 UE 的 PUSCH 的对应的 PHICH, 并且 IPHICH=1时, UE将根据情况在子帧 n+7上发送 PUSCH的数据。 上述 k 值, 如表 2所示:
Figure imgf000005_0001
6 7 7 7 7 5
表 2、 TDD配置 0-6对应的 k值示意表 在 LTE系统的版本(Release, R ) 8/9中, 为了对信道的质量进行测量 以及对接收的数据符号进行解调, 设计了 CRS ( Common Reference Signal, 公共参考信号)。 UE可以通过 CRS进行信道的测量, 从而支持 UE进行小 区重选和切换到目标小区, 并且在 UE连接状态进行信道质量的测量。 在 LTE R10 中为了进一步提高小区平均的频谱利用率和小区边缘频谱利用率 以及各个 UE 的吞吐率, 分别定义了两种参考信号: CSI-RS (信道信息参 考信号)和 DMRS (解调参考信号), 其中, CSI-RS 用于信道的测量, 通 过对 CSI-RS 的测量可以计算出 UE需要向 eNB反馈的 PMI ( Precoding Matrix Indicator, 预编码矩阵索引)、 CQI ( Channel Quality Indicator, 信道 质量信息指示)以及 RI ( Rank Indicator, 秩指示)。 DMRS用于下行共享信 道的解调, 利用 DMRS解调可以利用波束的方法减少不同接收侧和不同小 区之间的干扰, 而且可以减少码本粒度造成的性能下降, 并且在一定程度 上减少了下行控制信令的开销。
在 LTE R8、 R9和 R10中, 物理下行控制信道主要分布在一个子帧的 前 1、 2或者 3个 OFDM, 具体分布需要按照不同的子帧类型和 CRS的端 口数目来配置, 如表 3所示:
子帧 ^L >io 的 Λ^≤10 的 PDCCH
PDCCH OFDM OFDM符号数目 符号数目
子帧类型 2中的子帧 1和子帧 6 1 , 2 2
支持 PDSCH 的载波上的 MBSFN 1 , 2 2
(多播单频网络)子帧, CRS配置 为 1或者 2端口
支持 PDSCH 的载波上的 MBSFN 2 2
子帧, CRS配置为 4端口
不支持 PDSCH传输载波上的子帧 0 0
配置为 PRS的非 MBSFN子帧(除 1 , 2, 3 2, 3
了帧结构类型 2的子帧 6 )
所有其他情况 1 , 2, 3 2, 3, 4 表 3 每个接收侧需要根据前三个符号进行盲检, 盲检的起始位置和控制信 道的元素数目、 分配给接收侧的无线网络暂时标识以及不同控制信息有关。 一般可以把控制信息分为公有控制信息和专有控制信息, 公有控制信息一 般放置在物理下行控制信道的公共搜索空间, 专有控制信息可以放置在公 共所有空间和专用搜索空间。 接收侧在盲检后确定当前子帧是否存在公共 系统消息、下行调度或者上行调度信息。由于这种下行控制信息没有 HARQ
( Hybrid Automatic Retransmission Request, 混合自动重传请求 )反馈, 所 以需要保证检测的误码率尽可能低。
为了获得更大的工作频谱和系统带宽, 可以采用载波聚集 (Carrier Aggregation ) 技术将几个分布在不同频段上的连续分量载频 (频谱)
( Component Carrier )聚合起来, 形成 LTE- Advanced可以使用的带宽, 例 如: 100MHz。 即对于聚集后的频谱, 被划分为 n个分量载频 (频谱), 每 个分量载频(频谱)内的频谱是连续的。频谱划分为两类主分类载波(PCC ) 和辅分量载波(SCC ), 也称为主小区和辅小区。
在 LTE R10异构网下, 由于不同基站类型有较强的干扰, 考虑了宏基 站( Macro eNodeB )对微基站( Pico )的干扰问题和家庭基站( Home eNodeB ) 对宏基站(Macro eNodeB )干扰问题, 提出利用资源静默(Muting ) 的方 法来解决不同类型基站之间的相互干扰问题, 具体的资源静默方法可以分 为基于子帧的静默方法, 例如: ABS ( Almost Blank Subframe,数据空子帧) 的方法; 还可以为基于资源元素的方法, 例如: CRS静默方法。
但是, 以上方法不但增加了资源的浪费, 而且对于调度带来了极大的 限制,特别是在考虑 Macro eNodeB的 ABS配置时,如果 Pico的分布较多, Macro eNodeB配置的 ABS较多,这样会给 Macro eNodeB带来较大的影响, 在增加资源浪费的同时还增加了调度时延; 而且无法解决 CRS资源和数据 资源的干扰问题, 对于静默 CRS的方法亦无法解决数据资源之间的干扰。 另外, 以上方法的后向兼容性不好, 在增加接入时延的同时可能需要更多 的标准化努力。
在 LTE R11阶段可能引入更多的用户在 MBSFN子帧上进行发送, 这 样将会导致用于承载的 PDCCH的 2个 OFDM符号容量不足, 为了保证对 R8/R9/R10用户的后向兼容性, 需要在 PDSCH资源上开辟新的传输控制信 息的资源, 而且在 R11 阶段引入了 COMP ( Coordinated Multi-Point Transmission, 多点协作传输)技术, 这种技术可以通过空分的方式解决不 同类型小区之间的干扰问题, 而且节省了资源开销, 避免了静默带来的资 源浪费,减少对调度的限制。但是目前时域 PDCCH的方式是无法通过空分 的方法解决这个问题的,而且考虑到对 R8和 R9的后向兼容性,时域 PDCCH 这种控制信道的方式必须保留 , 这时如何利用空分技术来解决控制信道之 间的干扰就需要进行细致的研究。 发明内容
有鉴于此, 本发明的主要目的在于提供一种下行控制信息的处理方法 和系统, 增加发送下行控制信息的区域, 以便充分利用空分技术, 减少控 制信道之间的干扰, 扩大下行控制信道容量。
为达到上述目的, 本发明的技术方案是这样实现的: 一种下行控制信息的处理方法, 包括:
将子帧 n的下行控制信息在子帧 n上发送; 或者, 将子帧 n的下行控 制信息在子帧 n-1上发送。
其中, 子帧 n的下行控制信息在子帧 n-1的第一个时隙和 /或第二个时 隙上传输;
在子帧 n-1上发送子帧 n的下行控制信息的区域时域位置为: 子帧 n-1 的 g个连续的 OFDM符号; 所述 g由信令配置, 或者, g为预定义值; 或者,
子帧 n的下行控制信息在子帧 n-1 的第二个时隙传输, 或者, 子帧 n 的下行控制信息在子帧 n的第一个时隙发送。
其中 , 将子帧 n的下行控制信息在子帧 n-1的第二个时隙传输, 或者, 子帧 n的下行控制信息在子帧 n的第一个时隙发送时, 包括以下至少之一 的发送方法:
方法 1
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上发送, 将子帧 n的与物理上行共享信道调度相关的下行控 制信息在子帧 n的第一个时隙上发送;
方法 2
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n的第一个时隙上传输;
方法 3
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n 的与物理上行共享信道调度相关的下行控制信息在子帧 n的第一个时隙上 传输;
方法 4
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n的第二个时隙上传输。
其中, 该方法还包括:
针对所述方法一, 用户设备 UE在子帧 n的第一个时隙上检测子帧 n 的与物理下行共享信道调度相关的下行控制信息,在子帧 n-1的第二个时隙 上检测子帧 n的与物理上行共享信道调度相关的下行控制信息;
针对所述方法二, UE在子帧 n的第一个时隙和子帧 n-1的第二个时隙 上检测子帧 n 的与物理下行共享信道调度相关的下行控制信息, 在子帧 n 的第一个时隙上检测子帧 n的与物理上行共享信道调度相关的下行控制信 针对所述方法三, UE在子帧 n的第一个时隙和子帧 n-1的第二个时隙 上检测子帧 n 的与物理下行共享信道调度相关的下行控制信息, 在子帧 n 的第一个时隙和子帧 n- 1的第二个时隙上检测子帧 n的与物理上行共享信道 调度相关的下行控制信息;
针对所述方法四, UE在子帧 n- 1的第二个时隙上检测子帧 n的与物理 下行共享信道调度相关的下行控制信息和子帧 n-1 的与物理上行共享信道 调度相关的下行控制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理 下行共享信道调度相关的下行控制信息, UE在子帧 n的第二个时隙上检测 子帧 n+1的与物理下行共享信道调度相关的下行控制信息和子帧 n的与物 理上行共享信道调度相关的下行控制信息。
其中, 子帧 n的下行控制信息是否在子帧 n-1上发送由信令配置; 对于 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距离子帧 n 最近的前一个下行子帧。
其中, 当子帧 n的下行控制信息仅在子帧 n上发送时, 子帧 n的下行 控制信息在子帧 n的第一个时隙上传输, 或者, 子帧 n的下行控制信息在 子帧 n的第一个时隙和第二个时隙上传输。
其中, 所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二个时隙上从第 h个 OFDM符号开始连续 m个 OFDM符号; 其中 , 所 述 h和 m为预定义值, 或者, 由信令配置;
或者,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第一个 OFDM符号到最后一个 OFDM符号;
所述子帧的第一个时隙上发送下行控制信息的区域为 1个或者 2个。 其中, 所述子帧的第一个时隙上发送下行控制信息的区域为 1 个时, 所述区域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其 中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 或者, 所述 区域的时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置或为预定值;
所述子帧的第一个时隙上发送下行控制信息的区域为 2个时, 所述第 一个区域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其 中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 所述第二个 区域的时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置或 B为预定值或者根据 A确定; 所述第一个区域的频域位置为全带宽, 或者, 部分连续的带宽; 所述 第二个区域的频域位置由信令配置。
其中, 该方法还包括:
UE在子帧 n的第一个时隙上检测子帧 n的下行控制信息, 或者, UE 在子帧 n的第一个时隙和第二个时隙上检测子帧 n的下行控制信息。
其中, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区域, 或 者, UE的公有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE 的公有搜索空间位于子帧 n-1的第二个时隙;
UE的专有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的专有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的专有 搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的第二个时隙, 或者,UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n-1 的第二个时隙。
一种下行控制信息的处理系统, 包括基站, 用于:
将子帧 n的下行控制信息在子帧 n上发送; 或者, 将子帧 n的下行控 制信息在子帧 n-1上发送。
其中, 所述基站, 用于:
将子帧 n的下行控制信息在子帧 n-1的第一个时隙和 /或第二个时隙上 传输;
在子帧 n-1上发送子帧 n的下行控制信息的区域时域位置为: 子帧 n-1 的 g个连续的正交频分复用 OFDM符号; 所述 g由信令配置, 或者, g为 预定义值;
或者,
将子帧 n的下行控制信息在子帧 n-1的第二个时隙传输, 或者, 子帧 n 的下行控制信息在子帧 n的第一个时隙发送。 其中,所述基站将子帧 η的下行控制信息在子帧 η-1的第二个时隙传输, 或者, 将子帧 η的下行控制信息在子帧 η的第一个时隙发送时, 用于使用 包括以下至少之一的发送方法:
方法 1
将子帧 η 的与物理下行共享信道调度相关的下行控制信息在子帧 η-1 的第二个时隙上发送, 将子帧 η的与物理上行共享信道调度相关的下行控 制信息在子帧 η的第一个时隙上发送;
方法 2
将子帧 η 的与物理下行共享信道调度相关的下行控制信息在子帧 η-1 的第二个时隙上传输, 或者, 子帧 η的与物理下行共享信道调度相关的下 行控制信息在子帧 η的第一个时隙上传输; 子帧 η的与物理上行共享信道 调度相关的下行控制信息在子帧 η的第一个时隙上传输;
方法 3
将子帧 η 的与物理下行共享信道调度相关的下行控制信息在子帧 η-1 的第二个时隙上传输, 或者, 子帧 η的与物理下行共享信道调度相关的下 行控制信息在子帧 η的第一个时隙上传输; 子帧 η的与物理上行共享信道 调度相关的下行控制信息在子帧 η-1 的第二个时隙上传输, 或者, 子帧 η 的与物理上行共享信道调度相关的下行控制信息在子帧 η的第一个时隙上 传输;
方法 4
将子帧 η 的与物理下行共享信道调度相关的下行控制信息在子帧 η-1 的第二个时隙上传输, 或者, 子帧 η的与物理下行共享信道调度相关的下 行控制信息在子帧 η的第一个时隙上传输; 子帧 η的与物理上行共享信道 调度相关的下行控制信息在子帧 η的第二个时隙上传输。
其中, 该系统还包括 UE, 用于: 针对所述方法一, 在子帧 n的第一个时隙上检测子帧 n的与物理下行 共享信道调度相关的下行控制信息,在子帧 n-l的第二个时隙上检测子帧 n 的与物理上行共享信道调度相关的下行控制信息;
针对所述方法二,在子帧 n的第一个时隙和子帧 n-1的第二个时隙上检 测子帧 n的与物理下行共享信道调度相关的下行控制信息, 在子帧 n的第 一个时隙上检测子帧 n的与物理上行共享信道调度相关的下行控制信息; 针对所述方法三,在子帧 n的第一个时隙和子帧 n-1的第二个时隙上检 测子帧 n的与物理下行共享信道调度相关的下行控制信息, 在子帧 n的第 一个时隙和子帧 n-1的第二个时隙上检测子帧 n的与物理上行共享信道调度 相关的下行控制信息;
针对所述方法四,在子帧 n-1的第二个时隙上检测子帧 n的与物理下行 共享信道调度相关的下行控制信息和子帧 n-1 的与物理上行共享信道调度 相关的下行控制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理下行 共享信道调度相关的下行控制信息,在子帧 n的第二个时隙上检测子帧 n+1 的与物理下行共享信道调度相关的下行控制信息和子帧 n的与物理上行共 享信道调度相关的下行控制信息。
其中, 子帧 n的下行控制信息是否在子帧 n-1上发送由信令配置; 对于 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距离子帧 n 最近的前一个下行子帧。
其中, 当子帧 n的下行控制信息仅在子帧 n上发送时, 所述基站用于: 将子帧 n的下行控制信息在子帧 n的第一个时隙上传输, 或者, 将子帧 n 的下行控制信息在子帧 n的第一个时隙和第二个时隙上传输。
其中, 所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二个时隙上从第 h个 OFDM符号开始连续 m个 OFDM符号; 其中 , 所 述 h和 m为预定义值, 或者, 由信令配置; 或者,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第一个 OFDM符号到最后一个 OFDM符号;
所述子帧的第一个时隙上发送下行控制信息的区域为 1个或者 2个。 其中, 所述子帧的第一个时隙上发送下行控制信息的区域为 1 个时, 所述区域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其 中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 或者, 所述 区域的时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置或为预定值;
所述子帧的第一个时隙上发送下行控制信息的区域为 2个时, 所述第 一个区域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其 中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 所述第二个 区域的时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置或 B为预定值或者根据 A确定;
所述第一个区域的频域位置为全带宽, 或者, 部分连续的带宽; 所述 第二个区域的频域位置由信令配置。
其中, 所述 UE还用于:
在子帧 n的第一个时隙上检测子帧 n的下行控制信息,或者,在子帧 n 的第一个时隙和第二个时隙上检测子帧 n的下行控制信息。
其中, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区域, 或 者, UE的公有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE 的公有搜索空间位于子帧 n-1的第二个时隙;
UE的专有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的专有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的专有 搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的第二个时隙, 或者,UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n-1 的第二个时隙。
本发明提供的控制信道信息处理技术增加了一种发送下行控制信息的 区域, 可以充分利用空分技术, 减轻了物理下行控制信道的负载, 并且减 少控制信道之间的干扰, 扩大了控制信道的容量。 附图说明
图 1为 LTE系统的类型 1帧结构的示意图;
图 2为 LTE系统的类型 2帧结构的示意图;
图 3为本发明实施例的发送下行控制信道的示意图一;
图 4a至 4c为本发明实施例的发送下行控制信道的示意图二; 图 5为本发明实施例的发送下行控制信道的示意图三;
图 6为为本发明实施例的发送下行控制信道的示意图四;
图 7为为本发明实施例的发送下行控制信道的示意图五;
图 8为为本发明实施例的发送下行控制信道的示意图六;
图 9为本发明实施例的下行控制信息的处理流程简图。 具体实施方式
在实际应用中, 基站可以将子帧 n的下行控制信息在子帧 n上发送, 或者, 将子帧 n的下行控制信息在子帧 n-1上发送。
需要说明的是: 所述子帧 n 的下行控制信息为 LTE系统中原定于在子 帧 n上传输的下行控制信息, 即, 所述子帧 n 的下行控制信息为下行子帧 n上 PDSCH相关调度信息和 /或上行子帧 n+k上 PUSCH相关调度信息, k 由表 2定义。
场景一
进一步的, 子帧 n的下行控制信息在子帧 n-1的第一个时隙和 /或第二 个时隙上传输;
更进一步,在子帧 n-1上发送子帧 n的下行控制信息的区域时域位置为: 子帧 n-1的 g个连续的 OFDM符号; 所述 g由信令配置, 或者, g为预定 义值。
场景二
进一步的,子帧 n的下行控制信息在子帧 n-1的第二个时隙传输,或者, 子帧 n的下行控制信息在子帧 n的第一个时隙发送;
方法 1
更进一步, 将子帧 n的与物理下行共享信道调度相关的下行控制信息 在子帧 n-1的第二个时隙上发送,将子帧 n的与物理上行共享信道调度相关 的下行控制信息在子帧 n的第一个时隙上发送;
更进一步, UE在子帧 n的第一个时隙上检测子帧 n的与物理下行共享 信道调度相关的下行控制信息,在子帧 n-1的第二个时隙上检测子帧 n的与 物理上行共享信道调度相关的下行控制信息;
方法 2
更进一步, 子帧 n的与物理下行共享信道调度相关的下行控制信息在 子帧 n-1的第二个时隙上传输,或者,子帧 n的与物理下行共享信道调度相 关的下行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共 享信道调度相关的下行控制信息在子帧 n的第一个时隙上传输;
更进一步, UE在子帧 n的第一个时隙和子帧 n-1的第二个时隙上检测 子帧 n的与物理下行共享信道调度相关的下行控制信息, 在子帧 n的第一 个时隙上检测子帧 n的与物理上行共享信道调度相关的下行控制信息; 方法 3
更进一步, 子帧 n的与物理下行共享信道调度相关的下行控制信息在 子帧 n-1的第二个时隙上传输,或者,子帧 n的与物理下行共享信道调度相 关的下行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共 享信道调度相关的下行控制信息在子帧 n-1的第二个时隙上传输,或者, 子 帧 n的与物理上行共享信道调度相关的下行控制信息在子帧 n的第一个时 隙上传输;
更进一步, UE在子帧 n的第一个时隙和子帧 n-1的第二个时隙上检测 子帧 n的与物理下行共享信道调度相关的下行控制信息, 在子帧 n的第一 个时隙和子帧 n-1的第二个时隙上检测子帧 n的与物理上行共享信道调度相 关的下行控制信息;
方法 4
更进一步, 子帧 n的与物理下行共享信道调度相关的下行控制信息在 子帧 n-1的第二个时隙上传输,或者,子帧 n的与物理下行共享信道调度相 关的下行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共 享信道调度相关的下行控制信息在子帧 n的第二个时隙上传输;
更进一步, UE在子帧 n-1的第二个时隙上检测子帧 n的与物理下行共 享信道调度相关的下行控制信息和子帧 n-1 的与物理上行共享信道调度相 关的下行控制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理下行共 享信道调度相关的下行控制信息, UE在子帧 n 的第二个时隙上检测子帧 n+1 的与物理下行共享信道调度相关的下行控制信息和子帧 n的与物理上 行共享信道调度相关的下行控制信息;
进一步, 子帧 n的下行控制信息是否在子帧 n-1上发送由信令配置; 进一步, 对于 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距 离子帧 n最近的前一个下行子帧。
场景三
进一步, 当子帧 n的下行控制信息仅在子帧 n上发送时, 子帧 n的下 行控制信息在子帧 n的第一个时隙上传输, 或者, 子帧 n的下行控制信息 在子帧 n的第一个时隙和第二个时隙上传输;
更进一步, UE在子帧 n的第一个时隙上检测子帧 n的下行控制信息, 或者, UE在子帧 n的第一个时隙和第二个时隙上检测子帧 n的下行控制信 针对三个场景下发送下行控制信息的具体区域定义如下:
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第 h个 OFDM符号开始连续 m个 OFDM符号; 其中, 所述 h 和 m可以为预定义值, 或者, 由信令配置;
或者,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第一个 OFDM符号到最后一个 OFDM符号;
进一步, 所述子帧的第一个时隙上发送下行控制信息的区域为 1 个或 者 2个;
更进一步, 所述区域为 1 个时, 所述区域的时域位置为: 子帧第一个 时隙的前 A个连续的 OFDM符号; 其中, A由信令配置, 该信令在物理控 制格式指示信道上传输; 或者, 所述区域的时域位置为: 子帧第一个时隙 的后 B个连续的 OFDM符号; 其中, B由信令配置或为预定值;
所述区域为 2个时, 所述第一个区域的时域位置为: 子帧第一个时隙 的前 A个连续的 OFDM符号; 其中, A由信令配置, 该信令在物理控制格 式指示信道上传输;所述第二个区域的时域位置为: 子帧第一个时隙的后 B 个连续的 OFDM符号;其中, B由信令配置或 B为预定值或者根据 A确定; 更进一步, 所述第一个区域的频域位置为全带宽, 或者, 部分连续的 带宽; 所述第二个区域的频域位置由信令配置;
更进一步, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区域, 或者, UE的公有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的公有搜索空间位于子帧 n-1的第二个时隙;
UE的专有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的专有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的专有 搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的第二个时隙, 或者,UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n-1 的第二个时隙。
实施例 1
子帧 n的下行控制信息在子帧 n上发送, 或者, 子帧 n的下行控制信 息在子帧 n-1上发送;
子帧 n的下行控制信息在子帧 n-1的第一个时隙和第二个时隙上传输; 在子帧 n-1上发送子帧 n的下行控制信息区域时域位置为: 子帧 n-1的 后 g个连续的 OFDM符号;
所述 g由信令配置,假设,子帧 n-1上传输的物理下行控制信道的 OFDM 符号数量为 T, 一个子帧包含的 OFDM符号个数为 W, 则, g=W-T;
或者,
g为预定义值, 例如, 假设一个子帧包含的 OFDM符号个数为 W, g 为 W或 W-3或 W-4或 W-2;
对于 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距离子帧 n 最近的前一个下行子帧;
具体位置, 如图 3所示;
具体应用:
基站在子帧 n的第一个时隙 PDCCH区域( LTE R8定义, 子帧的前 m 个 OFDM符号 )上传输 UL Grant (上行授权), 在子帧 n-1的 PDSCH区域 (子帧 n-1的后 g个连续 OFDM符号 )上传输 DL Grant (下行授权 )信息; 所述 UL Grant中包括 PUSCH相关调度信息,所述 DL Grant中包括 PDSCH 相关调度信息;
UE在子帧 n-1的 PDSCH区域上检测到 DL Grant信息, 在子帧 n的第 一个时隙 PDCCH区域上检测到 UL Grant;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
实施例 2
子帧 n的下行控制信息在子帧 n-1的第二个时隙传输,也可以在子帧 n 的第一个时隙发送;
子帧 n的下行控制信息是否在子帧 n-1上发送由信令配置;
对于 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距离子帧 n 最近的前一个下行子帧;
具体位置, 如图 4所示;
方法 1
子帧 n的与物理下行共享信道调度相关的下行控制信息(即 DL Grant ) 在子帧 n-1的第二个时隙上发送,子帧 n的与物理上行共享信道调度相关的 下行控制信息 (UL Grant )在子帧 n的第一个时隙上发送;
UE在子帧 n的第一个时隙上检测子帧 n的与物理上行共享信道调度相 关的下行控制信息,在子帧 n-1的第二个时隙上检测子帧 n的与物理下行共 享信道调度相关的下行控制信息;
具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域( LTE R8定义, 子帧 n的前 m个 OFDM符号传输 PDCCH,子帧 n的第一个时隙剩余符号为 PDSCH区 域)上传输 UL Grant, 在子帧 n-1的第二个时隙上传输 DL Grant信息; UE在子帧 n-1的第二个时隙上检测到 DL Grant信息,在子帧 n的第一 个时隙 PDSCH区域上检测到 UL Grant;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
方法 2
子帧 n的与物理下行共享信道调度相关的下行控制信息在子帧 n-1的第 二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下行控 制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道调度 相关的下行控制信息在子帧 n的第一个时隙上传输;
UE在子帧 n-1的第二个时隙上检测子帧 n的与物理下行共享信道调度 相关的下行控制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理上行 共享信道调度相关的下行控制信息和子帧 n的与物理下行共享信道调度相 关的下行控制信息;
具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域( LTE R8定义, 子帧 n的前 m个 OFDM符号传输 PDCCH,子帧 n的第一个时隙剩余符号为 PDSCH区 域 )上传输 UL Grant,在子帧 n的第一个时隙 PDSCH区域上传输 DL Grant 信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息和 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
方法 3
子帧 n的与物理下行共享信道调度相关的下行控制信息在子帧 n-1的第 二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下行控 制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道调度 相关的下行控制信息在子帧 n-1的第二个时隙上传输,或者, 子帧 n的与物 理上行共享信道调度相关的下行控制信息在子帧 n的第一个时隙上传输;
UE在子帧 n的第一个时隙上检测子帧 n的与物理下行共享信道调度相 关的下行控制信息和子帧 n的与物理上行共享信道调度相关的下行控制信 息,在子帧 n-1的第二个时隙上检测子帧 n的与物理上行共享信道调度相关 的下行控制信息和子帧 n的与物理下行共享信道调度相关的下行控制信息; 具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域(子帧 n的第一个时隙后 g个 连续 OFDM符号为 PDSCH区域 )上传输 UL Grant, 在子帧 n-1的第二个 时隙上传输 DL Grant信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 UL Grant信息,在子 帧 n- 1的第二个时隙上检测到 DL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
具体应用 2
基站在子帧 n-1的第二个时隙上传输 UL Grant信息和 UL Grant信息; UE在子帧 n-1的第二个时隙上检测到 DL Grant信息和 UL Grant信息; 对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
方法 4
子帧 n的与物理下行共享信道调度相关的下行控制信息在子帧 n-1的第 二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下行控 制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道调度 相关的下行控制信息在子帧 n的第二个时隙上传输;
UE在子帧 n-1的第二个时隙上检测子帧 n的与物理下行共享信道调度 相关的下行控制信息和子帧 n-1 的与物理上行共享信道调度相关的下行控 制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理下行共享信道调度 相关的下行控制信息, UE在子帧 n的第二个时隙上检测子帧 n+1的与物理 下行共享信道调度相关的下行控制信息和子帧 n的与物理上行共享信道调 度相关的下行控制信息;
具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域( LTE R8定义, 子帧 n的前 m个 OFDM符号传输 PDCCH,子帧 n的第一个时隙剩余符号为 PDSCH区 域 )上传输 DL Grant, 在子帧 n的第二个时隙上传输 UL Grant信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息,在子 帧 n的第二个时隙上检测 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
实施例 3 当子帧 n的下行控制信息仅在子帧 n上发送时, 子帧 n的下行控制信 息在子帧 n的第一个时隙上传输, UE在子帧 n的第一个时隙上检测子帧 n 的下行控制信息;
具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域( LTE R8定义, 子帧 n的前 m个 OFDM符号传输 PDCCH,子帧 n的第一个时隙剩余符号为 PDSCH区 域 )上传输 UL Grant和 DL Grant信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息和 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
具体应用 2
基站在子帧 n的第一个时隙 PDSCH区域(子帧 n上从第一个时隙第 g 个 OFDM开始到第一个时隙最后一个 OFDM符号为 PDSCH区域, g由高 层信令配置 )上传输 UL Grant和 DL Grant信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息和 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
实施例 4
当子帧 n的下行控制信息仅在子帧 n上发送时, 子帧 n的下行控制信 息在子帧 n的第一个时隙和第二个时隙上传输; UE在子帧 n的第一个时隙 和第二个时隙上检测子帧 n的下行控制信息;
具体位置, 如图 5所示;
方法 1
DL Grant信息仅在子帧 n的第一个时隙传输, UL Grant信息可以在子 帧 n的第一个时隙传输或者子帧 n的第二个时隙传输;
具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域( LTE R8定义, 子帧 n的前 m个 OFDM符号传输 PDCCH,子帧 n的第一个时隙剩余符号为 PDSCH区 域)上传输 DL Grant信息, 在子帧 n的第二个时隙上传输 UL Grant;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息,子帧 n的第二个时隙上检测到 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
具体应用 2
基站在子帧 n的第一个时隙 PDSCH区域(子帧 n上从第一个时隙第 g 个 OFDM开始到第一个时隙最后一个 OFDM符号为 PDSCH区域, g由高 层信令配置 )上传输 UL Grant和 DL Grant信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息和 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
方法 2
DL Grant信息仅在子帧 n的第一个时隙传输, UL Grant信息仅在子帧 n 的第二个时隙传输;
具体应用 1
基站在子帧 n的第一个时隙 PDSCH区域(子帧 n上从第一个时隙第 g 个 OFDM开始到第一个时隙最后一个 OFDM符号为 PDSCH区域, g由高 层信令配置)上传输 DL Grant信息, 在第二个时隙上传输 UL Grant信息;
UE在子帧 n的第一个时隙 PDSCH区域上检测到 DL Grant信息,在第 二个时隙上检测到 UL Grant信息;
对于 FDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在上行子帧 n+4上传输 PUSCH;
对于 TDD, UE根据 DL Grant信息在子帧 n上接收 PDSCH, UE将根 据 UL Grant信息在子帧 n+k上传输 PUSCH, k由表 2定义;
实施例 5
所述第二个时隙上发送下行控制信息区域的时域位置为: 第二个时隙 上从第 h个 OFDM符号开始连续 m个 OFDM符号; 其中, 所述 h和 m可 以为预定义值, 或者, 所述 h和 m由信令配置; 或者, 所述第二个时隙上 发送下行控制信息区域的时域位置为: 第二个时隙上从第一个 OFDM符号 到最后一个 OFDM符号;
具体位置, 如图 6所示;
上述第二个时隙上的频域区域由信令配置, 可以采用 LTE R8 中 type0/typel/type2集中虚拟资源块和离散虚拟资源块的方式进行配置;
当下行控制信息在第二个时隙上传输时, 可以使用 CRS/DMRS解调, 采用分集 /开环复用 /闭环复用等多天线传输方式; 实施例 6
所述第一个时隙上发送下行控制信息的区域为 1 个, 所述区域的时域 位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其中, A由信令配 置, 该信令在物理控制格式指示信道上传输; 即, 与 LTE R8/9/10的物理下 行控制信道区域相同; 或者, 所述区域的时域位置为: 子帧第一个时隙的 后 B个连续的 OFDM符号; 其中, B由信令配置或为预定值;
具体应用
在部分子帧 (子帧 X )上, 所述第一个时隙上发送下行控制信息的区 域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 即, 与 LTE R8/9/10 的物理下行控制信道区域相同;
在部分子帧 (子帧 Y )上, 所述第一个时隙上发送下行控制信息的区 域为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置, 例如, 子帧第一个时隙包含的 OFDM符号个数为 R, 在物理控制格式指示 信道上指示的传输物理下行控制信道的 OFDM符号数量为 A, 则, B=R-A; 其中, 子帧 X为非 MBSFN子帧, 子帧 Y为 MBSFN子帧, 或者, 子 帧 X和子帧 Y由信令配置;
或者,
B为预定值, 例如, 子帧第一个时隙包含的 OFDM符号个数为 R, B 为 R或 R-3或 R-4或 R-2; 所述子帧由信令配置;
具体位置, 如图 7所示;
所述区域的时域位置为子帧第一个时隙的后 B 个连续的 OFDM符号 时, 其频域区域由信令配置, 可以采用 LTE R8中 type0/typel/type2集中虚 拟资源块和离散虚拟资源块的方式进行配置; 此时, 下行控制信息可以使 用 CRS/DMRS解调, 采用分集 /开环复用 /闭环复用等多天线传输方式; 所述区域的时域位置为子帧第一个时隙的前 A个连续的 OFDM符号 时, 其频域区域为全带宽; 此时, 下行控制信息使用 CRS解调, 采用分集 / 开环复用等多天线传输方式;
实施例 7
所述第一个时隙上发送下行控制信息的区域为 2个时, 所述第一个区 域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 即, 与 LTE R8/9/10 的物理下行控制信道区域相同;
所述第一个区域的频域位置为全带宽, 或者, 部分连续的带宽; 所述第二个区域的时域位置为: 子帧第一个时隙的后 B 个连续的 OFDM符号; 其中, B由信令配置, 例如, 子帧第一个时隙包含的 OFDM 符号个数为 R, 在物理控制格式指示信道上指示的传输物理下行控制信道 的 OFDM符号数量为 A, 则, B=R-A;
或者,
B为预定值, 例如, 子帧第一个时隙包含的 OFDM符号个数为 R, B 为 R或 R-3或 R-4或 R-2; 所述子帧由信令配置;
所述第二个区域的频域位置由信令配置;
具体位置, 如图 8所示;
所述第一个时隙的第二个区域的频域区域由信令配置, 可以采用 LTE R8中 type0/typel/type2集中虚拟资源块和离散虚拟资源块的方式进行配置; 此时, 下行控制信息可以使用 CRS/DMRS解调, 采用分集 /开环复用 /闭环 复用等多天线传输方式;
所述第一个时隙的第一个区域的频域区域为全带宽; 此时, 下行控制 信息使用 CRS解调, 采用分集 /开环复用等多天线传输方式;
所述开环方式与 LTE R8 定义的开环复用方式相同, 即: large delay Cyclic delay diversity (大延迟循环延迟分集)方式;
实施例 8
UE的下行控制信息的搜索空间分配方法如下:
在子帧 n上, UE的公有搜索空间和专有搜索空间位于子帧 n的第一个 时隙的第一个区域; 其中, UL Grant和 DL Grant在子帧 n的第一个时隙第 二个区域和 /或第二个时隙和 /或第一个时隙第一个区域上传输;
或者,
在子帧 n上, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区 域, UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域;
或者,
在子帧 n上, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区 域, UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的 第二个时隙;
或者,
在子帧 n上, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区 域, UE的专有搜索空间位于子帧 n的第一个时隙的第一个区域和子帧 n的 第二个时隙;
或者,
在子帧 n上, UE的公有搜索空间位于子帧 n的第一个时隙的第一个区 域, UE的专有搜索空间位于子帧 n的第二个时隙;
或者,
在子帧 n上, UE的公有搜索空间位于子帧 n的第一个时隙的第二个区 域, UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的 第二个时隙;
或者, 在子帧 n上, UE的公有搜索空间位于子帧 n的第一个时隙的第二个区 域, UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域;
实施例 9
当分量载波(分量载波也可以称为服务小区 ) c上跨载波调度配置使能 时, 分量载波 c 可以调度一个或多个分量载波, 每个分量载波对应一个用 户专有的搜索空间, 各分量载波所对应的搜索空间可以位于上述相同的区 域上, 也可以位于不同的区域上;
具体应用 1
分量载波 c可以调度分量载波 c和分量载波 d, 分量载波 c和分量载波 d分别对应用户专有的搜索空间,分量载波 c所对应的搜索空间和分量载波 d所对应的搜索空间分别位于子帧 n的第一个时隙第一个区域; 或者, 子帧 n的第一个时隙第二个区域; 或者, 子帧 n的第一个时隙第二个区域和第二 个时隙; 或者, 子帧 n的第一个时隙, 子帧 n-1的第二个时隙;
具体应用 2
分量载波 c可以调度分量载波 c和分量载波 d, 分量载波 c和分量载波 d分别对应用户专有的搜索空间, 分量载波 c所对应的搜索空间位于子帧 n 的第一个时隙第一个区域, 分量载波 d所对应的搜索空间位于子帧 n的第 一个时隙第二个区域; 或者, 分量载波 c所对应的搜索空间位于子帧 n的 第一个时隙第一个区域, 分量载波 d所对应的搜索空间位于子帧 n的第一 个时隙第二个区域和第二个时隙; 或者, 分量载波 c所对应的搜索空间位 于子帧 n的第一个时隙, 分量载波 d所对应的搜索空间位于子帧 n的第一 个时隙, 以及子帧 n-1的第二个时隙。
结合以上各实施例可见, 本发明发送下行控制信息的操作思路可以标 识如图 9所示的流程, 该流程包括:
步驟 910: 将子帧 n的下行控制信息在子帧 n上发送; 步驟 920: 或者, 将子帧 n的下行控制信息在子帧 n-1上发送。
需要说明的是, 上述两个步驟之间不存在时间先后顺序。
综上所述可见, 无论是方法还是系统, 本发明提供的控制信道信息处 理技术增加了一种发送下行控制信息的区域, 可以充分利用空分技术, 减 轻了物理下行控制信道的负载, 并且减少控制信道之间的干扰, 扩大了控 制信道的容量。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性
本发明提供了一种下行控制信息的处理方法和系统, 可将子帧 n的下 行控制信息在子帧 n上发送; 或者, 将子帧 n的下行控制信息在子帧 n-1 上发送。 本发明提供的控制信道信息处理技术增加了一种发送下行控制信 息的区域, 可以充分利用空分技术, 减轻了物理下行控制信道的负载, 并 且减少控制信道之间的干扰, 扩大了控制信道的容量。

Claims

权利要求书
1、 一种下行控制信息的处理方法, 包括:
将子帧 n的下行控制信息在子帧 n上发送; 或者, 将子帧 n的下行控 制信息在子帧 n-1上发送。
2、 根据权利要求 1所述的方法, 其中,
子帧 n的下行控制信息在子帧 n-1的第一个时隙和 /或第二个时隙上传 输;
在子帧 n-1上发送子帧 n的下行控制信息的区域时域位置为: 子帧 n-1 的 g个连续的正交频分复用 OFDM符号; 所述 g由信令配置, 或者, g为 预定义值;
或者,
子帧 n的下行控制信息在子帧 n-1 的第二个时隙传输, 或者, 子帧 n 的下行控制信息在子帧 n的第一个时隙发送。
3、 根据权利要求 2述的方法, 其中, 将子帧 n的下行控制信息在子帧 n-1的第二个时隙传输, 或者, 子帧 n的下行控制信息在子帧 n的第一个时 隙发送时, 包括以下至少之一的发送方法:
方法 1
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上发送, 将子帧 n的与物理上行共享信道调度相关的下行控 制信息在子帧 n的第一个时隙上发送;
方法 2
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n的第一个时隙上传输; 方法 3
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n 的与物理上行共享信道调度相关的下行控制信息在子帧 n的第一个时隙上 传输;
方法 4
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n的第二个时隙上传输。
4、 根据权利要求 3所述的方法, 其中, 该方法还包括:
针对所述方法一, 用户设备 UE在子帧 n的第一个时隙上检测子帧 n 的与物理下行共享信道调度相关的下行控制信息,在子帧 n-1的第二个时隙 上检测子帧 n的与物理上行共享信道调度相关的下行控制信息;
针对所述方法二, UE在子帧 n的第一个时隙和子帧 n-1的第二个时隙 上检测子帧 n 的与物理下行共享信道调度相关的下行控制信息, 在子帧 n 的第一个时隙上检测子帧 n的与物理上行共享信道调度相关的下行控制信 息;
针对所述方法三, UE在子帧 n的第一个时隙和子帧 n-1的第二个时隙 上检测子帧 n 的与物理下行共享信道调度相关的下行控制信息, 在子帧 n 的第一个时隙和子帧 n- 1的第二个时隙上检测子帧 n的与物理上行共享信道 调度相关的下行控制信息;
针对所述方法四, UE在子帧 n- 1的第二个时隙上检测子帧 n的与物理 下行共享信道调度相关的下行控制信息和子帧 n-1 的与物理上行共享信道 调度相关的下行控制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理 下行共享信道调度相关的下行控制信息, UE在子帧 n的第二个时隙上检测 子帧 n+1的与物理下行共享信道调度相关的下行控制信息和子帧 n的与物 理上行共享信道调度相关的下行控制信息。
5、 根据权利要求 1至 4任一项所述的方法, 其中,
子帧 n的下行控制信息是否在子帧 n-1上发送由信令配置;
对于时分双工 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距 离子帧 n最近的前一个下行子帧。
6、 根据权利要求 1所述的方法, 其中, 当子帧 n的下行控制信息仅在 子帧 n上发送时, 子帧 n的下行控制信息在子帧 n的第一个时隙上传输, 或者, 子帧 n的下行控制信息在子帧 n的第一个时隙和第二个时隙上传输。
7、 根据权利要求 6所述的方法, 其中,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第 h个 OFDM符号开始连续 m个 OFDM符号; 其中, 所述 h 和 m为预定义值, 或者, 由信令配置;
或者,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第一个 OFDM符号到最后一个 OFDM符号;
所述子帧的第一个时隙上发送下行控制信息的区域为 1个或者 2个。
8、 根据权利要求 7所述的方法, 其中,
所述子帧的第一个时隙上发送下行控制信息的区域为 1 个时, 所述区 域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 或者, 所述区域的 时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信 令配置或为预定值;
所述子帧的第一个时隙上发送下行控制信息的区域为 2个时, 所述第 一个区域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其 中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 所述第二个 区域的时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置或 B为预定值或者根据 A确定;
所述第一个区域的频域位置为全带宽, 或者, 部分连续的带宽; 所述 第二个区域的频域位置由信令配置。
9、 根据权利要求 6至 8任一项所述的方法, 其中, 该方法还包括: UE在子帧 n的第一个时隙上检测子帧 n的下行控制信息, 或者, UE 在子帧 n的第一个时隙和第二个时隙上检测子帧 n的下行控制信息。
10、 根据权利要求 9所述的方法, 其中,
UE的公有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的公有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的公有 搜索空间位于子帧 n-1的第二个时隙;
UE的专有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的专有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的专有 搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的第二个时隙, 或者,UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n-1 的第二个时隙。
11、 一种下行控制信息的处理系统, 包括基站, 用于:
将子帧 n的下行控制信息在子帧 n上发送; 或者, 将子帧 n的下行控 制信息在子帧 n-1上发送。
12、 根据权利要求 11所述的系统, 其中, 所述基站, 用于:
将子帧 n的下行控制信息在子帧 n-1的第一个时隙和 /或第二个时隙上 传输;
在子帧 n-1上发送子帧 n的下行控制信息的区域时域位置为: 子帧 n-1 的 g个连续的正交频分复用 OFDM符号; 所述 g由信令配置, 或者, g为 预定义值;
或者,
将子帧 n的下行控制信息在子帧 n-1的第二个时隙传输, 或者, 子帧 n 的下行控制信息在子帧 n的第一个时隙发送。
13、 根据权利要求 12述的系统, 其中, 所述基站将子帧 n的下行控制 信息在子帧 n-1的第二个时隙传输,或者,将子帧 n的下行控制信息在子帧 n的第一个时隙发送时, 用于使用包括以下至少之一的发送方法:
方法 1
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上发送, 将子帧 n的与物理上行共享信道调度相关的下行控 制信息在子帧 n的第一个时隙上发送;
方法 2
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n的第一个时隙上传输;
方法 3
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n 的与物理上行共享信道调度相关的下行控制信息在子帧 n的第一个时隙上 传输;
方法 4
将子帧 n 的与物理下行共享信道调度相关的下行控制信息在子帧 n-1 的第二个时隙上传输, 或者, 子帧 n的与物理下行共享信道调度相关的下 行控制信息在子帧 n的第一个时隙上传输; 子帧 n的与物理上行共享信道 调度相关的下行控制信息在子帧 n的第二个时隙上传输。
14、 根据权利要求 13所述的系统, 其中, 该系统还包括 UE, 用于: 针对所述方法一, 在子帧 n的第一个时隙上检测子帧 n的与物理下行 共享信道调度相关的下行控制信息,在子帧 n-l的第二个时隙上检测子帧 n 的与物理上行共享信道调度相关的下行控制信息;
针对所述方法二,在子帧 n的第一个时隙和子帧 n-1的第二个时隙上检 测子帧 n的与物理下行共享信道调度相关的下行控制信息, 在子帧 n的第 一个时隙上检测子帧 n的与物理上行共享信道调度相关的下行控制信息; 针对所述方法三,在子帧 n的第一个时隙和子帧 n-1的第二个时隙上检 测子帧 n的与物理下行共享信道调度相关的下行控制信息, 在子帧 n的第 一个时隙和子帧 n-1的第二个时隙上检测子帧 n的与物理上行共享信道调度 相关的下行控制信息;
针对所述方法四,在子帧 n-1的第二个时隙上检测子帧 n的与物理下行 共享信道调度相关的下行控制信息和子帧 n-1 的与物理上行共享信道调度 相关的下行控制信息, 在子帧 n的第一个时隙上检测子帧 n的与物理下行 共享信道调度相关的下行控制信息,在子帧 n的第二个时隙上检测子帧 n+1 的与物理下行共享信道调度相关的下行控制信息和子帧 n的与物理上行共 享信道调度相关的下行控制信息。
15、 根据权利要求 11至 14任一项所述的系统, 其中,
子帧 n的下行控制信息是否在子帧 n-1上发送由信令配置; 对于 TDD系统, 所述子帧 n为下行子帧, 所述 n-1子帧为距离子帧 n 最近的前一个下行子帧。
16、 根据权利要求 11所述的系统, 其中, 当子帧 n的下行控制信息仅 在子帧 n上发送时, 所述基站用于: 将子帧 n的下行控制信息在子帧 n的 第一个时隙上传输, 或者, 将子帧 n的下行控制信息在子帧 n的第一个时 隙和第二个时隙上传输。
17、 根据权利要求 16所述的系统, 其中,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第 h个 OFDM符号开始连续 m个 OFDM符号; 其中, 所述 h 和 m为预定义值, 或者, 由信令配置;
或者,
所述子帧的第二个时隙上发送下行控制信息区域的时域位置为: 第二 个时隙上从第一个 OFDM符号到最后一个 OFDM符号;
所述子帧的第一个时隙上发送下行控制信息的区域为 1个或者 2个。
18、 根据权利要求 17所述的系统, 其中,
所述子帧的第一个时隙上发送下行控制信息的区域为 1 个时, 所述区 域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 或者, 所述区域的 时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信 令配置或为预定值;
所述子帧的第一个时隙上发送下行控制信息的区域为 2个时, 所述第 一个区域的时域位置为: 子帧第一个时隙的前 A个连续的 OFDM符号; 其 中, A 由信令配置, 该信令在物理控制格式指示信道上传输; 所述第二个 区域的时域位置为: 子帧第一个时隙的后 B个连续的 OFDM符号; 其中, B由信令配置或 B为预定值或者根据 A确定; 所述第一个区域的频域位置为全带宽, 或者, 部分连续的带宽; 所述 第二个区域的频域位置由信令配置。
19、根据权利要求 16至 18任一项所述的系统,其中,所述 UE还用于: 在子帧 n的第一个时隙上检测子帧 n的下行控制信息,或者,在子帧 n 的第一个时隙和第二个时隙上检测子帧 n的下行控制信息。
20、 根据权利要求 19所述的系统, 其中,
UE的公有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的公有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的公有 搜索空间位于子帧 n-1的第二个时隙;
UE的专有搜索空间位于子帧 n的第一个时隙的第一个区域,或者, UE 的专有搜索空间位于子帧 n的第一个时隙的第二个区域, 或者, UE的专有 搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n的第二个时隙, 或者,UE的专有搜索空间位于子帧 n的第一个时隙的第二个区域和子帧 n-1 的第二个时隙。
PCT/CN2011/083890 2011-04-22 2011-12-13 一种下行控制信息的处理方法和系统 WO2012142840A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/357,537 US9713132B2 (en) 2011-04-22 2011-12-13 Method and system for processing downlink control information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110102805.3A CN102158978B (zh) 2011-04-22 2011-04-22 一种下行控制信息的处理方法和系统
CN201110102805.3 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012142840A1 true WO2012142840A1 (zh) 2012-10-26

Family

ID=44440061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083890 WO2012142840A1 (zh) 2011-04-22 2011-12-13 一种下行控制信息的处理方法和系统

Country Status (3)

Country Link
US (1) US9713132B2 (zh)
CN (1) CN102158978B (zh)
WO (1) WO2012142840A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979510A4 (en) * 2013-03-28 2016-11-16 Samsung Electronics Co Ltd DOWNLINK SIGNALING FOR ADJUSTING UPLINK DOWNLINK CONFIGURATION IN TDD COMMUNICATION SYSTEMS
CN111107631A (zh) * 2018-10-26 2020-05-05 财团法人资讯工业策进会 物联网基站及其资源安排方法
US10743340B2 (en) 2017-02-03 2020-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for utilizing short transmission time intervals in a wireless communications network
CN111585715A (zh) * 2016-05-14 2020-08-25 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158978B (zh) 2011-04-22 2017-03-01 中兴通讯股份有限公司 一种下行控制信息的处理方法和系统
US9402264B2 (en) 2011-09-30 2016-07-26 Intel Corporation Methods to transport internet traffic over multiple wireless networks simultaneously
KR101492380B1 (ko) * 2011-10-12 2015-02-10 엘지전자 주식회사 서브프레임에서 제어 채널의 탐색 영역을 할당하는 방법 및 장치
CN103107857B (zh) * 2011-11-14 2017-02-08 中兴通讯股份有限公司 增强物理下行控制信道的发送方法及装置
CN103096494B (zh) * 2012-01-20 2015-01-21 华为终端有限公司 基于跨载波调度的数据传输方法、用户设备和基站
CN103249148B (zh) * 2012-02-01 2018-04-13 中兴通讯股份有限公司 配置控制信令的方法及装置
CN103546411B (zh) * 2012-07-09 2019-01-04 中兴通讯股份有限公司 上行授权信息发送方法、授权信息指示方法及基站
CN103873183B (zh) * 2012-12-07 2017-03-01 电信科学技术研究院 一种数据传输方法及装置
CN104919772B (zh) * 2013-01-11 2018-10-12 交互数字专利控股公司 用于适应性调制的系统和方法
CN104995855B (zh) * 2013-01-17 2018-10-19 英特尔Ip公司 长期演进无线网络中的时分双工系统的信道状态信息参考信号模式
KR102118750B1 (ko) * 2013-10-04 2020-06-03 이노스카이 주식회사 상향링크 스케줄링 및 harq 타이밍 제어 방법 및 장치
US9313698B2 (en) 2013-10-11 2016-04-12 Blackberry Limited Method and apparatus for handover in heterogeneous cellular networks
JP6658729B2 (ja) 2015-03-06 2020-03-04 日本電気株式会社 無線局、無線端末装置、及びこれらの方法
US9949220B2 (en) * 2015-03-27 2018-04-17 Qualcomm Incorporated Uplink scheduling with power control command in an FDD half-duplex network
KR102316775B1 (ko) 2015-04-02 2021-10-26 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 전송시간구간 감소를 위한 송수신 방법 및 장치
EP3944551A1 (en) * 2015-04-02 2022-01-26 Samsung Electronics Co., Ltd. Transmission and reception method and apparatus for reducing transmission time interval in wireless cellular communication system
JP6163181B2 (ja) * 2015-08-21 2017-07-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3340714B1 (en) * 2015-09-15 2020-05-06 Huawei Technologies Co., Ltd. Method and apparatus for sending or receiving control information
EP3361686B1 (en) * 2015-10-22 2022-10-12 Huawei Technologies Co., Ltd. Method and apparatus for sending downlink control information (dci)
CN106856613B (zh) * 2015-12-09 2020-04-14 华为技术有限公司 一种下行控制信息dci的发送方法及相关装置
WO2017096577A1 (zh) * 2015-12-10 2017-06-15 华为技术有限公司 系统的数据传输方法及用户设备、基站
EP3410803B1 (en) 2016-01-27 2020-12-23 LG Electronics Inc. -1- Method for receiving downlink signal, in wireless communication system supporting unlicensed band, and device for supporting same
WO2017199205A1 (en) * 2016-05-20 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling multiple subframes in unlicensed spectrum
CN109314914B (zh) * 2016-08-12 2020-09-11 华为技术有限公司 控制信息发送方法、接收方法及设备
KR102114940B1 (ko) * 2016-10-31 2020-05-26 주식회사 케이티 차세대 무선 액세스망을 위한 데이터 채널 자원 할당 방법 및 장치
WO2018080268A1 (ko) 2016-10-31 2018-05-03 주식회사 케이티 차세대 무선 액세스망을 위한 데이터 채널 자원 할당 방법 및 장치
CN109891969B (zh) * 2016-11-04 2021-09-14 华为技术有限公司 一种调度方法和设备
US10536966B2 (en) * 2016-12-09 2020-01-14 Qualcomm Incorporated Physical downlink control channel and hybrid automatic repeat request feedback for multefire coverage enhancement
TWI616111B (zh) * 2016-12-23 2018-02-21 財團法人工業技術研究院 在未授權頻譜中的無線電資源排程方法及使用其之基地台
US11265905B2 (en) * 2017-02-02 2022-03-01 Ntt Docomo, Inc. User terminal and radio communication method
EP3606279A4 (en) * 2017-04-18 2020-04-08 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR INDICATING SUBFRAME CONFIGURATION
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
EP3627946B1 (en) * 2018-01-11 2023-03-08 LG Electronics Inc. Method for operating terminal in wireless communication system, and device using same method
CN108599914B (zh) * 2018-03-12 2020-12-18 西安电子科技大学 基于正交频分复用的同时同频全双工双向中继传输方法
US11909678B2 (en) 2018-04-04 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Determination method and device for size of downlink control information format
WO2020065046A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control information for unlicensed operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414870A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 下行控制信令及参考符号传输方法及装置
CN101505498A (zh) * 2009-03-17 2009-08-12 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
CN101610564A (zh) * 2009-04-29 2009-12-23 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法
CN101877621A (zh) * 2009-04-30 2010-11-03 三星电子株式会社 用于lte-a系统中下行控制信道pdcch的发送方法及发送装置
CN102025472A (zh) * 2009-09-14 2011-04-20 株式会社日立制作所 基站、终端及无线通信系统
CN102158978A (zh) * 2011-04-22 2011-08-17 中兴通讯股份有限公司 一种下行控制信息的处理方法和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477675B2 (en) * 2009-04-17 2013-07-02 Research In Motion Limited Multicast/broadcast single frequency network subframe physical downlink control channel design
EP2427007A1 (en) * 2009-04-27 2012-03-07 Panasonic Corporation Radio communication relay station device, radio communication base station device, radio communication mobile station device, and radio communication method
US9277566B2 (en) * 2009-09-14 2016-03-01 Qualcomm Incorporated Cross-subframe control channel design
US8942192B2 (en) * 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
WO2011042038A1 (en) * 2009-10-05 2011-04-14 Nokia Siemens Networks Oy Apparatus and method for communication
US9083494B2 (en) * 2010-03-23 2015-07-14 Qualcomm Incorporated Efficient resource utilization in TDD
US9226288B2 (en) * 2010-04-13 2015-12-29 Qualcomm Incorporated Method and apparatus for supporting communications in a heterogeneous network
US9112692B2 (en) * 2010-08-16 2015-08-18 Qualcomm Incorporated ACK/NACK transmission for multi-carrier operation
US8711790B2 (en) * 2011-02-11 2014-04-29 Nokia Corporation DL control channel structure enhancement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414870A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 下行控制信令及参考符号传输方法及装置
CN101505498A (zh) * 2009-03-17 2009-08-12 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
CN101610564A (zh) * 2009-04-29 2009-12-23 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法
CN101877621A (zh) * 2009-04-30 2010-11-03 三星电子株式会社 用于lte-a系统中下行控制信道pdcch的发送方法及发送装置
CN102025472A (zh) * 2009-09-14 2011-04-20 株式会社日立制作所 基站、终端及无线通信系统
CN102158978A (zh) * 2011-04-22 2011-08-17 中兴通讯股份有限公司 一种下行控制信息的处理方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETSI 'LTE: "Evolved Universal Terrestrial Radio Access (E-UTRA)", PHYSICAL CHANNELS AND MODULATION' 3GPP TS 36.211 VERSION 10.0.0, 10 January 2011 (2011-01-10), Retrieved from the Internet <URL:http://www.ptsn.net.cn/standardquery/show.php?source=ets&id=26885> [retrieved on 20120202] *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979510A4 (en) * 2013-03-28 2016-11-16 Samsung Electronics Co Ltd DOWNLINK SIGNALING FOR ADJUSTING UPLINK DOWNLINK CONFIGURATION IN TDD COMMUNICATION SYSTEMS
US9538515B2 (en) 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Downlink signaling for adaptation of an uplink-downlink configuration in TDD communication systems
US10111217B2 (en) 2013-03-28 2018-10-23 Samsung Electronics Co., Ltd. Downlink signaling for adaption of an uplink-downlink configuration in TDD communication systems
CN111585715A (zh) * 2016-05-14 2020-08-25 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN111585715B (zh) * 2016-05-14 2024-05-14 荣耀终端有限公司 一种无线通信中的方法和装置
US10743340B2 (en) 2017-02-03 2020-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for utilizing short transmission time intervals in a wireless communications network
RU2730168C1 (ru) * 2017-02-03 2020-08-19 Телефонактиеболагет Лм Эрикссон (Пабл) Способы и устройства для использования коротких интервалов времени передачи в сети беспроводной связи
US11388746B2 (en) 2017-02-03 2022-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for utilizing short transmission time intervals in a wireless communications network
US11997695B2 (en) 2017-02-03 2024-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for utilizing short transmission time intervals in a wireless communications network
CN111107631A (zh) * 2018-10-26 2020-05-05 财团法人资讯工业策进会 物联网基站及其资源安排方法

Also Published As

Publication number Publication date
CN102158978B (zh) 2017-03-01
CN102158978A (zh) 2011-08-17
US20140376422A1 (en) 2014-12-25
US9713132B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2012142840A1 (zh) 一种下行控制信息的处理方法和系统
US11082169B2 (en) System and method for a long-term evolution (LTE)-compatible subframe structure for wideband LTE
JP7163277B2 (ja) 無線通信システムにおいて上りリンク送信のための方法及びそのための装置
US11838158B2 (en) Method and apparatus for configuring demodulation reference signal position in wireless cellular communication system
EP3410772B1 (en) Base station, terminal, and communication method
CN109997327B (zh) 在无线通信系统中发送上行链路信号的方法及其装置
CN106664280B (zh) 在无线通信系统中收发数据的方法和装置
JP6212048B2 (ja) ユーザ端末、ユーザ端末のpdscha/n送信方法、送受信ポイント、及び送受信ポイントのpdscha/n受信方法
KR101622967B1 (ko) 채널 송수신을 제어하는 방법 및 장치
US20170026164A1 (en) Data transmission in carrier aggregation with different carrier configurations
US9801168B2 (en) Wireless communication with co-operating cells
WO2012029873A1 (ja) 無線通信システム、無線基地局装置及び移動端末装置
JP2020502936A (ja) 無線通信システムにおいて短い送信時間間隔を支援する端末のための上りリンク信号送信又は受信方法及びそのための装置
JP2019528610A (ja) 無線通信システムにおけるチャネル態報告のための方法及びその装置
WO2012028025A1 (zh) 一种时分双工系统中动态子帧的配置方法及装置
WO2014047927A1 (zh) 控制信息发送方法、接收方法和设备
EP2695404A1 (en) Method and system for transmission and reception of signals and related method of signaling
JP2020520144A (ja) 無線通信システムにおいて下りリンク信号を受信する方法及びそのための装置
KR20150117650A (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
US9338782B2 (en) Method and apparatus for receiving data using extension carrier in wireless access system
WO2012155508A1 (zh) 一种传输控制方法和用户设备
WO2014015699A1 (zh) 新载波参考信号发送、接收方法及装置
EP3425977A1 (en) User terminal, radio base station and radio communication method
WO2023064677A1 (en) Scheduling for sidelink communications
US20220321266A1 (en) Hybrid automatic repeat request (harq) feedback for dynamic multi-slot physical downlink shared channel (pdsch)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357537

Country of ref document: US