WO2012142732A1 - 一种含噻吩基取代硅垸的烯烃聚合反应催化剂 - Google Patents

一种含噻吩基取代硅垸的烯烃聚合反应催化剂 Download PDF

Info

Publication number
WO2012142732A1
WO2012142732A1 PCT/CN2011/000943 CN2011000943W WO2012142732A1 WO 2012142732 A1 WO2012142732 A1 WO 2012142732A1 CN 2011000943 W CN2011000943 W CN 2011000943W WO 2012142732 A1 WO2012142732 A1 WO 2012142732A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thiophene
polymerization
titanium
catalyst
Prior art date
Application number
PCT/CN2011/000943
Other languages
English (en)
French (fr)
Inventor
李志飞
谭魁龙
王浩
义建军
徐庆红
崔伟松
白玮
刘新元
许普
鞠万庆
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US13/813,479 priority Critical patent/US8541332B2/en
Priority to JP2014505475A priority patent/JP5887400B2/ja
Priority to EP11863744.6A priority patent/EP2644627B1/en
Publication of WO2012142732A1 publication Critical patent/WO2012142732A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Definitions

  • the present invention relates to an olefin polymerization catalyst comprising a thienyl-substituted silane.
  • Ziegler-Natta catalysts for olefin polymerization or copolymerization the active components of which are usually composed mainly of titanium, magnesium and halogen, and when used in the polymerization, the cocatalyst alkyl aluminum compound is simultaneously added.
  • external electron donor components For the directed polymerization of olefins, especially the directional polymerization of propylene, most catalysts obtained from catalysts have lower isotacticity, generally less than 90%, without the addition of external donors, which is detrimental to industrial production and polymer applications. Therefore, for most propylene polymerization catalysts, the addition of external electron donors plays an important role.
  • a composition of an olefin polymerization catalyst comprising a organosilicon oxime compound of the formula SiR ⁇ OR' ⁇ m, wherein R is a hydrogen atom, a fluorenyl group or an aryl group, and R' is ⁇ , is disclosed in US Pat. No. 4,562,173. Base or aryl, m ranges from 0 m 4 .
  • cyclohexyl or tert-butyl is methyl, ethyl, propyl or butyl, the same or different; R 4 is a group containing from 1 to 6 carbon atoms.
  • a more preferred compound is cyclohexylmethyldimethoxysilane.
  • the examples disclosed in the patent show that cyclohexylmethyldimethoxysilane is used as the external electron donor of the specified catalyst, and the isotactic adjustment is smooth and hydrogen-regulated compared with diphenyldimethoxysilane. The advantages of smoothness and slow decay are more conducive to the smooth operation of industrial devices.
  • Patent EP 0350170 discloses a catalyst for olefin polymerization and a polymerization method thereof, the catalyst comprising an external electron donor having the formula of SiR 21 R 22 m (OR 23 ) 3 . m , wherein R 21 is cyclopentane A group, a cyclopentenyl group or a cyclopentadienyl group, and a derivatizing group of these groups, each of R 22 and R 23 represents a hydrocarbon group, which may be the same or different, 0 m 3 .
  • a preferred compound is dicyclopentyldimethoxysilane.
  • Patent CN1176258 discloses a catalyst system and process for the polymerization and copolymerization of propylene polymerization, said catalyst system comprising a conventional Ziegler-Natta catalyst contained in the general formula 1 on the carrier 511 '(01,) 4.
  • R is a group selected from the group consisting of an alkyl group, a cyclodecyl group, an aryl group, and a vinyl group
  • R' is a fluorenyl group
  • m is 0 to 3, wherein when R is an alkyl group, R may be R' is the same; when m is 0, 1 or 2, the R' groups may be the same or different; when m is 1, 2 or 3, the R groups may be the same or different.
  • the external electron donor of the catalyst system may be selected from the group consisting of cyclohexylmethyldimethoxysilane, diisobutyldimethoxysilane, di-tert-butyldimethoxysilane, cyclohexyliso Propyldimethoxysilane or dicyclopentyldimethoxysilane.
  • the catalyst system has high activity and can well control the content of xylene solubles of the polymer at 0.6 ⁇ 3.0wt e /. Within the range, a highly crystalline polypropylene product is obtained.
  • the external electron donor is particularly preferably dicyclopentyldimethoxysilane.
  • the examples disclosed in this patent show that the dicyclopentyldimethoxysilane has the lowest xylene soluble content and the highest isotacticity compared to several other external electron donors.
  • organosilicon oxime external electron donors for the catalytic polymerization of olefins are also disclosed in the patents EP 0 419 249, EP 0 565 173, EP 0 657 476, EP 0 844 260, US 5 166 340 US 5, 192 273, and the like, which are incorporated herein by reference.
  • organosilicon oxime external electron donors for olefin catalytic polymerization have been reported in many patents, and represented by cyclohexylmethyldimethoxysilane, diphenyldimethoxysilane, etc.
  • Typical external electron donors have been widely used in the industrial production of polypropylene, however, for the directed polymerization of olefins, especially the directed polymerization of propylene, in the state of the art, the isotacticity of the polymer is generally in the range of 95 to 99%. Inside. Further improvement of the isotacticity of the polymerization product is still of great significance for the production of some special products with high crystallization and high rigidity in order to further improve the mechanical properties of the polymer material.
  • the object of the present invention is to provide an olefin polymerization catalyst containing a thienyl-substituted silicon germanium, using an organosilicon oxime compound containing two thienyl substituents as an external electron donor for olefin catalytic polymerization, especially for The polymerization of propylene gives a polymerization product having a very high isotacticity to a higher yield.
  • the thiophene-substituted silane-containing olefin polymerization catalyst of the present invention which is a reaction product of the following components:
  • A a solid titanium catalyst component containing titanium, magnesium, and halogen as main components
  • B a mercapto aluminum compound component
  • the group is the same or different and is selected from the group consisting of hydrogen, a halogen atom, a linear or branched C ⁇ C ⁇ alkyl group, a C 3 -C 2 () cycloalkyl group, a C 6 -C 2 group () aryl, C 7 ⁇ C 2 o alkaryl or C 7 ⁇ C 2G aryl fluorenyl, and two or more R ⁇ Re groups may be bonded to each other to form a saturated or unsaturated condensed ring a structure, the fused cyclic structure may be substituted with a group of the same definition, the R ⁇ Re group optionally containing one or more heteroatoms as a carbon atom or a hydrogen atom or a substitute of the two,
  • the hetero atom is selected from nitrogen, oxygen, sulfur, silicon, phosphorus or a halogen atom.
  • the 1 ⁇ and 13 ⁇ 4 groups are the same or different and are selected from the linear or branched ⁇ C 4 yard base.
  • is the same or different, and is selected from a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group; and the same or different, and is a methyl group or an ethyl group.
  • 1 ⁇ is the same or different and is selected from a hydrogen atom, a methyl group; R a and both are methyl groups.
  • the principle of synthesis of the external electron donor compound involved in the preparation process of the present invention is that the halogenated thiophene or its derivative R undergoes a Grignard reaction with magnesium powder in the presence of a catalyst to form RMgX, and then an optional substituent is or
  • the decyloxysilane produces the target product disubstituted thiophenyldimethoxysilane in a solvent.
  • the above two-step reaction is carried out in the same reaction vessel.
  • the catalyst involved in the reaction is iodine, and the solvent is tetrahydrofuran.
  • the solvent tetrahydrofuran can be reused after being recovered.
  • the reaction vessel used in the synthesis of the external electron donor compound in the present invention is: a reactor having a reflux condenser, a thermometer, a stirrer, a heater, and a balance feeder.
  • the tetrahydrofuran and halothiophene used in the whole experiment were subjected to strict degassing and dehydration treatment.
  • the dehydration method is: placing tetrahydrofuran or halogenated thiophene into a round bottom flask of a reflux device, placing the rotor, stirring, and cutting the metal sodium into a thin sheet, and heating the mixture to reflux until the bubble is released. The liquid is then distilled dry. Unreacted sodium metal was treated with absolute ethanol.
  • Oxygen removal method Put tetrahydrofuran or halogenated thiophene into a gram bottle, then place the liquid-filled gram bottle in liquid nitrogen to cool, wait until the liquid becomes solid, remove the gram bottle, and use a vacuum pump Remove the air from it. After the solid in the bottle became a liquid at room temperature, it was filled with nitrogen and then cooled in liquid nitrogen. Repeat three times.
  • the specific preparation process was as follows: Under a nitrogen atmosphere, magnesium powder, a solvent tetrahydrofuran, a tetraalkoxysilane and an initiator iodine were placed in a three-necked flask equipped with a stirrer, a reflux condenser, and a thermometer. The reaction was initiated by the addition of pure halothiophene under stirring at reflux. After the reaction was initiated, the remaining mixture of tetrahydrofuran and halothiophene was slowly added dropwise while stirring under reflux. After the addition, the system was refluxed for several hours, then the heating was stopped and the reaction mixture was stirred until room temperature.
  • the reaction mixture was separated by filtration under a nitrogen atmosphere, and the filter cake was washed with dehydrated degassed tetrahydrofuran.
  • the obtained filtrate was subjected to atmospheric distillation and reduced pressure distillation under a nitrogen atmosphere to obtain a desired product.
  • the target product was examined for structure and purity using an infrared spectrometer, a nuclear magnetic resonance spectrometer, and an elemental analyzer.
  • the experimental feeds in the preparation process are two parts, the initiator and the dropping. Whether the Grignard reaction is initiated is related to the amount of the halogenated thiophene added. When the amount of the halogenated thiophene added is too small, it is difficult to cause it, and if it is too large, it is easy to be dangerous.
  • the halogenated thiophene is added in an amount of 3% to 20%, preferably 5% to 10% by weight of the total halogenated thiophene in the initiator of the present invention. .
  • the molar ratio of the tetramethoxysilane to the halogenated thiophene according to the present invention is 1:2 to 2.4, preferably 1:2.1 to 2.2, and the molar ratio of the tetraalkoxysilane to the magnesium powder is 1:2 to 2.8, preferably It is 1:2.1 ⁇ 2.6.
  • tetrahydrofuran is used as a solvent in an amount effective to dissolve the reactants, and there is no particular stringent requirement.
  • the mass ratio of tetrahydrofuran to magnesium powder is from 2 to 20.
  • iodine is used as an initiator to initiate the reaction, and the mass ratio to the magnesium powder is generally 0.0.
  • the solid titanium catalyst component containing titanium, magnesium or halogen as a main component contained in the present invention can be optionally prepared by the following method.
  • an alcohol and a magnesium halide and a hydrocarbon solvent are used in the presence of a carboxylic anhydride compound to obtain a magnesium halide alcoholate, and then the homogeneous solution of the alcoholate is contacted with the liquid titanium compound at a low temperature, and then raised.
  • Temperature based on the precipitation of magnesium halide from low temperature to high temperature in the titanium compound, a certain amount of internal electron donor compound reaction is added during the heating process, and the temperature is further increased. When the reaction temperature is reached, a certain amount is added.
  • the electron donor compound is continuously reacted, filtered, washed, and dried to obtain a solid titanium catalyst.
  • the spherical magnesium chloride alcoholate particles of the formula MgCl 2 ⁇ nROH are added to the titanium tetrachloride solution at a low temperature for a period of time; gradually heating to 40 ° C to 100 ° C, adding a kind Or two internal electron donors, continue to react for a period of time; filter, add a certain amount of titanium tetrachloride, react for a period of time, repeat the addition of titanium tetrachloride and filtration step 1 ⁇ 3 times; finally wash with inert hydrocarbon solvent , dried to give a spherical solid catalyst.
  • a more specific preparation method can also be referred to the published patent ZL94103454.2.
  • the internal electron donor compound may be selected from the group consisting of polycarboxylic acid esters, acid anhydrides, ketones, ethers, sulfonyl compounds and the like.
  • the mercapto aluminum compound component contained in the present invention is preferably a compound of the formula AlRnX(3-n) wherein R is hydrogen or an alkyl group having 1 to 20 carbon atoms, an aralkyl group, an aryl group; X is a halogen.
  • n is an integer of ln 3. Specifically selected from the group consisting of trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum, monohydrogen aluminum aluminum, monohydrogen diisobutyl aluminum, monochlorodiethyl aluminum, monochloroethylene Isobutyl aluminum, ethyl aluminum dichloride or the like, preferably triethyl aluminum and triisobutyl aluminum.
  • the ratio between the components (A), (B), (C) of the catalyst is 1 : 5 to 1000: 0 to 500; preferably 1: 50 in terms of a molar ratio of titanium: aluminum: silicon. ⁇ 150: 5 ⁇ 50.
  • the olefin polymerization and copolymerization of the present invention are carried out according to methods well known in the art, in a liquid phase bulk or in a solution in an inert solvent, or in the gas phase, or by a combined polymerization process in a gas phase.
  • the polymerization temperature is usually from 0 to 15 (TC, preferably from 50 to 10 (TC.
  • the polymerization pressure is normal pressure or higher.
  • the structure and purity of the synthesized external electron donor compound were determined by elemental analysis, infrared spectroscopy and l3 C NMR.
  • the melt index of the polymerization product is determined.
  • a stainless steel reaction vessel having a volume of 2 L was sufficiently substituted with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 mol/L was sequentially added thereto, and 0.9 mmol of the external electron donor compound dithiophene dimethoxysilane was synthesized.
  • 20.5 mg of the titanium-containing solid catalyst component was prepared, 500 g of liquid propylene was introduced, and the temperature was raised to 70 ° C. The temperature was maintained for 0.5 hour, the temperature was lowered, the pressure was released, and the polypropylene product was discharged.
  • a stainless steel reaction vessel having a volume of 2 L was sufficiently substituted with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 mol/L was sequentially added thereto, and 0.9 mmol of the external electron donor compound dithiophene dimethoxysilane was synthesized.
  • the prepared titanium-containing solid catalyst component was 18.8 mg, and 500 g of liquid propylene was introduced, and the temperature was raised to 70 ° C. The temperature was maintained for 0.5 hour, the temperature was lowered, the pressure was released, and the polypropylene product was discharged.
  • a stainless steel reaction vessel having a volume of 2 L was sufficiently substituted with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 mol/L was sequentially added, and the external electron donor compound dithiophene dimethoxysilane was synthesized to be 0.45 mmol.
  • the prepared titanium-containing solid catalyst component was 19.3 mg, and 500 g of liquid propylene was introduced, and the temperature was raised to 70 Torr. The temperature was maintained for 0.5 hour, the temperature was lowered, the pressure was released, and the polypropylene product was discharged.
  • a stainless steel reaction vessel with a volume of 2L was thoroughly replaced with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 m 0 l/L was sequentially added, and the synthesized external electron donor compound dithiophene dimethoxysilane was 1.8 mmol.
  • 22.4 mg of the titanium-containing solid catalyst component prepared above was passed through 500 g of liquid propylene, and the temperature was raised to 70 Torr. The temperature was maintained for 0.5 hour, the temperature was lowered, the pressure was released, and the polypropylene product was discharged.
  • the remaining bromothiophene was added to 30 mL of tetrahydrofuran to prepare a solution to be added dropwise.
  • the ingredients were added dropwise, and the feeding rate was controlled to make the tetrahydrofuran slightly boil, and the addition was completed in about 2 h.
  • the oil bath was heated for 40 Torr for 8 h.
  • the mixture is cooled and allowed to stand.
  • the filter cake is filtered under nitrogen and the filtrate is washed.
  • the filtrate is subjected to distillation under reduced pressure, and the fraction at 130-132 ° C, 20 mmHg column pressure is collected under reduced pressure, and elemental analysis, infrared spectroscopy and 13 C are carried out.
  • a stainless steel reaction vessel having a volume of 2 L was sufficiently substituted with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 mol/L was sequentially added thereto, and the synthesized external electron donor compound dithiophene diethoxysilane was 0.9 mmol.
  • 33.5 mg of the titanium-containing solid catalyst component prepared above was passed through 500 g of liquid propylene, and the temperature was raised to 70 ° C. The temperature was maintained for 0.5 hour, the temperature was lowered, the pressure was released, and the polypropylene product was discharged.
  • a stainless steel reaction vessel having a volume of 2 L was sufficiently substituted with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 mol/L was sequentially added thereto, and 1.8 mmol of the external electron donor compound dithiophene diethoxysilane was synthesized.
  • the prepared ruthenium-containing solid catalyst component was 23.6 mg, and 500 g of liquid propylene was introduced, and the temperature was raised to 70 Torr. The temperature was maintained for 0.5 hour, the temperature was lowered, the pressure was released, and the polypropylene product was discharged.
  • the remaining 2-bromothiophene was added to 30 mL of tetrahydrofuran to prepare a solution to be added dropwise. After the reaction was started, the ingredients were added dropwise, and the feeding rate was controlled to make the tetrahydrofuran slightly boil, and the addition was completed in about 2 h. After the completion of the dropping, the oil bath was heated for 3040 Torr and the reaction was kept for 7 h.
  • the filtrate is often subjected to pressure distillation, and the fractions under the column pressure of 125-126 T and 20 mmHg are collected under reduced pressure, and elemental analysis, infrared spectroscopy and l3 C nucleation are performed. Resonance test. The infrared spectrum and the nuclear magnetic resonance spectrum are shown in Fig. 5 and Fig. 6, respectively. Infrared spectroscopy initially proved that the synthesis reaction was carried out, and the l3 C NMR spectrum strongly confirmed the formation of the product.
  • a stainless steel reaction vessel with a volume of 2L was thoroughly replaced with gaseous propylene, and then 5 ml of a triethylaluminum solution having a concentration of 2.4 mol/L was sequentially added thereto, and the synthesized external electron donor compound 3-methylthiophene-thiophenedimethoxy group was synthesized.
  • Comparative Example 1 The same titanium-containing solid catalyst component and polymerization method as in Example 1 were employed except that the external electron donor compound was changed to dicyclopentyldimethoxysilane.
  • Comparative Example 2 The same titanium-containing solid catalyst component as the comparative example 1 and the external electron donor dicyclopentyldimethoxysilane were used, and the same polymerization method as in Example 5 was employed, i.e., firstly before polymerization. O.lMPa of hydrogen was added to the reactor.
  • Comparative Example 3 The same titanium-containing solid catalyst component and polymerization method as in Example 1 were employed except that the external electron donor compound was changed to cyclohexylmethyldimethoxysilane.
  • Comparative Example 4 The same titanium-containing solid catalyst component and polymerization method as in Example 1 were employed except that the external electron donor compound was changed to phenyltriethoxysilane. It can be seen from the results of the polymerization experiments in Table 1, that the organosiloxane compound containing two thiophene substituents of the present invention is used as an external electron donor, and the isotacticity of the obtained polymerization product is remarkably higher than that of the comparative example. Typical organosiloxane external electron donors are known, especially in the absence of hydrogenation.
  • the thiophene-substituted silane-containing olefin polymerization catalyst of the present invention utilizes an organosiloxane compound containing two thienyl substituents as an external electron donor for olefin catalytic polymerization, particularly for propylene polymerization, which has a very high High-grade polymerization products reach higher yields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

一种含噻吩基取代硅烷的烯烃聚合反应催化剂
技术领域
本发明涉及一种含噻吩基取代硅烷的烯烃聚合反应催化剂。
技术背景
在现有技术中, 用于烯烃聚合或共聚合的 Ziegler-Natta催化剂, 其活性组分 通常以钛、镁和卤素为主要成分, 在用于聚合反应时, 要同时加入助催化剂烷基 铝化合物以及外给电子体组分。 对于烯烃的定向聚合, 特别是丙烯的定向聚合, 如果不加外给电子体, 大多数催化剂所得聚合物的等规度较低, 一般低于 90%, 不利于工业生产和聚合物的应用。 因此, 对于多数丙烯聚合催化剂来说, 外给电 子体的加入起着十分重要的作用。
目前,外给电子体的种类已由最初的苯甲酸酯类发展到现在广泛使用的有机 硅氧烷类。 如专利 US4562173 中公开了一种烯经聚合催化剂的组分, 其中包含 通式为 SiR^OR'^m的有机硅氧垸化合物, 其中 R是氢原子、垸基或者芳基, R' 是垸基或芳基, m的范围是 0 m 4。 该专利公开的实施例显示, 使用苯基三乙 氧基硅垸为外给电子体, 进行丙烯聚合, 聚丙烯产物的等规度明显高于对比实施 例对甲基苯甲酸乙酯外给电子体。 专利 US4927797中公幵了一种与指定的 Toho 型钛镁体系催化剂配对使用的通式为 R OR^SKORs)!^的外给电子体, 其中 为至少包含一个仲碳或叔碳原子的大位阻垸基或环烷基, R2和 R3是垸基或芳基, 是直接与 Si原子相连的带有伯碳原子的烷基。优选 为环己基或叔丁基; R2 和 1 3是甲基、乙基、丙基或丁基,相同或不同; R4是包含 1〜6个碳原子的基团。 更优选的化合物是环己基甲基二甲氧基硅垸。该专利公开的实施例显示, 使用环 己基甲基二甲氧基硅垸作为该指定催化剂的外给电子体,与二苯基二甲氧基硅烷 相比, 具有等规度调节平稳、 氢调平稳、 衰减缓慢等优点, 更有利于工业装置的 平稳操作。 专利 EP0350170 公开了一种烯烃聚合的催化剂及其聚合方法, 所述 的催化剂中包含一种通式为 SiR21R22 m(OR23)3.m的外给电子体,其中 R21为环戊基、 环戊烯基或环戊二烯基以及这些基团的衍生基团, R22和 R23各代表碳氢基团, 可以相同或不同, 0 m 3。 优选的化合物是二环戊基二甲氧基硅垸。 该专利的 实施例显示, 所述催化剂用于丙烯均聚, 具有活性高、 聚合物等规度高的优点; 用于制备无规共聚聚丙烯薄膜料, 具有乙烯含量高、起始热封温度低、透明性好 的优点。专利 CN1176258公开了一种丙烯聚合和共聚的催化剂体系及聚合方法, 所述的催化剂体系包含常规载于载体上的 Ziegler-Natta 催化剂与通式为 511 1„(01,)4.„1的外给电子体的组合, 其中 R为选自烷基、 环垸基、 芳基和乙烯基 的基团; R'为垸基; m为 0〜3, 其中当 R为烷基时, R可与 R'相同; 当 m为 0, 1或 2时, R'基团可相同或不同; 当 m为 1 , 2或 3时, R基团可相同或不同。 更具体的, 该催化剂体系的外给电子体可以选自环己基甲基二甲氧基硅垸, 二异 丁基二甲氧基硅烷, 二叔丁基二甲氧基硅垸, 环己基异丙基二甲氧基硅垸或二环 戊基二甲氧基硅垸。该催化剂体系活性高, 并可以很好的控制聚合物的二甲苯可 溶物含量在 0.6〜3.0wte/。范围内, 获得高结晶度的聚丙烯产物。 所述的外给电子 体尤其优选二环戊基二甲氧基硅垸。该专利公开的实施例显示, 二环戊基二甲氧 基硅烷与其他几种外给电子体相比, 聚合产物的二甲苯可溶物含量最低, 等规度 最高。此外,专利 EP0419249、 EP0565173、 EP0657476、 EP0844260、 US5166340 US5192732等也都公幵了用于烯经催化聚合的有机硅氧垸类外给电子体,在此一 并作为参考。
尽管用于烯烃催化聚合的有机硅氧垸类外给电子体已有较多的公开专利报 道, 并且以环己基甲基二甲氧基硅烷、二苯基二甲氧基硅垸等为代表的典型外给 电子体已广泛用于聚丙烯的工业生产中, 但是, 对于烯烃的定向聚合, 特别是丙 烯的定向聚合, 现有技术水平中, 聚合物的等规度一般在 95〜99%范围内。进一 步提高聚合产物的等规度, 对于生产一些高结晶、 高刚性的特殊产品, 以便进一 步提高聚合物材料的力学性能, 仍具有十分重要的意义。
发明内容
本发明的目的是提供一种含噻吩基取代硅垸的烯烃聚合反应催化剂, 利用一 类含两个噻吩基取代基的有机硅氧垸化合物作烯烃催化聚合的外给电子体,特别 是用于丙烯聚合, 得到具有很高等规度的聚合产物, 达到较高收率。 本发明所述的含噻吩基取代硅烷的烯烃聚合反应催化剂;其为以下成分的反 应产物:
( A) 以钛、 镁、 卤素作为主要成分的固体钛催化剂成分; (B ) 垸基铝化合物成分, 以及
(C )含两个噻吩基取代基的有机硅氧垸化合物成分, 其选自以下通式( I ) 中所示化合物的至少一种:
Figure imgf000005_0001
通式 ( I ) 其中, 〜 基团相同或不同, 选自氢、 卤原子、 直链或支链的 C^C^烷 基, C3~C2()环烷基, C6~C2()芳基, C7~C2o烷芳基或 C7~C2G芳垸基, 且两个或两 个以上的 R^Re基团可以相互键连形成饱和或不饱和的缩合环状结构,该縮合环 状结构可以被与 相同定义的基团取代,所述的 R^Re基团任选含有一个或 多个杂原子作为碳原子或氢原子或者两者一起的取代物, 所述的杂原子选自氮、 氧、 硫、 硅、 磷或卤原子。 1^和1¾基团相同或不同, 选自直链或支链的 ~C4 院基。
优选地, 通式 ( I ) 中, 〜 相同或不相同, 选自氢原子、 甲基、 乙基、 丙基、 异丙基; 和 相同或不相同, 为甲基或乙基。
更优选地, 通式 ( I ) 中, 1^〜 相同或不相同, 选自氢原子、 甲基; Ra 和 均为甲基。
本发明制备过程中所涉及的外给电子体化合物合成原理为:卤代噻吩或其衍 生物 R 在催化剂存在下与镁粉发生格氏反应生成 RMgX,再与任选的取代基为 或 的四垸氧基硅垸在溶剂中生成目标产物二取代的噻吩基二垸氧基硅烷。 上述两步反应在同一反应容器中完成。反应所涉及的催化剂为碘, 溶剂为四氢呋 喃, 溶剂四氢呋喃经回收可以重复使用。
本发明中外给电子体化合物合成过程所用的反应容器为: 带有回流冷凝管、 温度计、 搅拌器、 加热器及平衡加料器的反应器。
整个实验过程中所用的四氢呋喃、 卤代噻吩都要经过严格的脱气脱水处理。 脱水方法为: 将四氢呋喃或卤代噻吩放入一回流装置的圆底烧瓶中, 放入转子, 开动搅拌, 将金属钠切为薄片加入里面, 混合体系加热回流至体系不再有气泡放 出为止, 然后蒸馏干燥液体。 未反应的金属钠用无水乙醇处理。 除氧方法: 将四 氢呋喃或卤代噻吩放入西兰克瓶中, 然后将装有液体的西兰克瓶放入液氮中冷 却, 等到液体变成固体之后, 取出西兰克瓶, 并用真空泵抽去其中的空气。 待瓶 中固体在室温下变成液体之后, 充入氮气, 然后继续在液氮中冷却。 反复三次即 可。
具体的制备过程如下: 氮气保护条件下, 在装有搅拌器、 回流冷凝管、 温度 计的三口烧瓶中, 加入镁粉、 溶剂四氢呋喃、 四烷氧基硅垸及引发剂碘。 在搅拌 回流状态下加入纯卤代噻吩引发反应。待反应被引发之后, 在搅拌回流状态下缓 慢滴加剩余的四氢呋喃和卤代噻吩混合液。加完后体系回流数小时, 然后停止加 热并继续搅拌反应混合物至室温。在氮气保护条件下用过滤管对反应混合物进行 过滤分离, 并用脱水脱气的四氢呋喃洗涤滤饼。对所得的滤液在氮气保护条件下 进行常压蒸馏和减压蒸馏, 即可得到目标产物。 对目标产物用红外光谱仪、 核磁 共振光谱仪以及元素分析仪进行结构和纯度检测。
制备过程中的实验投料分别为引发料和滴加料两部分。格氏反应是否引发与 引发料卤代噻吩的加入量有关。 卤代噻吩的加入量过少则难以引发, 过多则容易 冲料产生危险。 本发明所述引发料中卤代噻吩的加入量占总卤代噻吩的 3%〜 20%, 优选 5%〜10°/。。
本发明所述的四垸氧基硅烷与卤代噻吩的摩尔比为 1 :2~2.4,优选 1 :2.1〜2.2, 四烷氧基硅烷与镁粉的摩尔比为 1 :2~2.8, 优选为 1 :2.1~2.6。
本发明中四氢呋喃用作溶剂, 其用量以能够溶解反应物为至, 没有特别严格 的要求, 一般四氢呋喃与镁粉的质量比为 2~20。
本发明中碘用作引发剂, 以能够引发反应为止, 一般与镁粉的质量比为 0.0卜 0.1。 本发明中包含的以钛、 镁、 卤素作为主要成分的固体钛催化剂成分, 可选择 按照下述方法制备。
一种方法是,将醇类和卤化镁及烃类溶剂在羧酸酐类化合物的存在下, 得到 卤化镁醇合物, 再将醇合物均匀溶液与液态钛化合物在低温下接触, 然后升高温 度, 基于卤化镁在钛化合物中从低温到高温的析出存在重结晶过程, 在升温过程 中加入一定量的内给电子体化合物反应, 继续升温, 当达到反应温度时, 再加入 一定量的内给电子体化合物继续反应,经过滤、洗涤、干燥,制得固体钛催化剂。 更具体的制备方法也可参考公开专利 ZL02148336.1。
另一种方法是, 将通式为 MgCl2 · nROH的球形氯化镁醇合物颗粒低温下加 入到四氯化钛溶液中, 反应一段时间; 逐渐升温至 40°C〜100°C, 加入一种或两 种内给电子体, 继续反应一段时间; 过滤, 加入一定量的四氯化钛, 反应一段时 间, 可重复加入四氯化钛和过滤步骤 1〜3次; 最后用惰性烃类溶剂洗涤, 干燥, 得到球形固体催化剂。 更具体的制备方法也可参考公开专利 ZL94103454.2。
上述催化剂制备方法中,所述的内给电子体化合物可以选自多元羧酸酯、酸 酐、 酮、 醚、 磺酰基化合物等。
本发明中包含的垸基铝化合物成分, 优选通式为 AlRnX(3-n)的化合物, 式中 R为氢或者碳原子数 1〜20的烷基, 芳烷基, 芳基; X为卤素; n为 l n 3的 整数。具体可选自三甲基铝, 三乙基铝, 三异丁基铝, 三辛基铝,一氢二乙基铝, 一氢二异丁基铝, 一氯二乙基铝, 一氯二异丁基铝, 二氯乙基铝等, 优选三乙基 铝和三异丁基铝。
本发明中催化剂各组分(A)、 (B )、 (C )之间的比例, 以钛: 铝: 硅之间的 摩尔比计为 1 : 5〜1000: 0〜500; 优选 1 : 50〜150: 5〜50。
本发明的烯烃聚合以及共聚合按照本领域公知的方法进行,在液相本体或本 体于惰性溶剂中的溶液,或在气相中, 或通过在气液相中的组合聚合工艺进行操 作。 聚合温度一般为 0〜15(TC, 优选 50〜10(TC。 聚合反应压力是常压或更高。 附图说明
图 1 二噻吩二甲氧基硅垸红外光谱图。
图 2 二噻吩二甲氧基硅垸 13C核磁共振图。 图 3 二噻吩二乙氧基硅烷红外光谱图。
图 4 二噻吩二乙氧基硅烷 13C核磁共振图。
图 5 3-甲基噻吩 -噻吩二甲氧基硅垸红外光谱图。
图 6 3-甲基噻吩 -噻吩二甲氧基硅垸 13C核磁共振图。
具体实施方式
测试方法:
1、 采用元素分析、 红外光谱和 l3C核磁共振方法, 测定所合成的外给电子 体化合物的结构和纯度。
2、 采取沸腾正庚垸抽提的方法, 测定聚合产物的等规度。 按照国标 GB 2412-80进行。
3、 根据国标 GB/T 3682-2000, 测定聚合产物的熔融指数。
实施例 1
( 1 ) 二噻吩二甲氧基硅烷的合成
在氮气保护条件下, 将 5.34g镁粉、 1.62g溴代噻吩、 20mL四氢呋喃加入到 装有搅拌器、 回流冷凝管及温度计的 250ml的三口烧瓶中。 混合体系回流 0.5小 时后,加入 0.26g碘至反应剧烈进行。待反应稳定后,由试管上部缓慢滴加由 32.6g 溴代噻吩、 60ml四氢呋喃及 15.20g四甲氧基硅垸组成的混合溶液, 2小时左右 滴加完成。 混合体系加热搅拌回流 5个小时后, 慢慢冷却至室温, 在氮气保护下 用过滤管过滤, 并用四氢呋喃洗涤固体物质数遍。所得滤液进行常压蒸熘并收回 溶剂后, 进行减压精馏。 收集 130〜131 V、 25mmHg柱压力下的产物, 并进行 元素分析、 红外光谱及 l3C核磁共振测试。 红外光谱和核磁共振谱图分别见图 1 和图 2。 红外光谱初步证明合成反应得以进行, l3C核磁共振光谱有力地证明了 产物的形成。 元素分析结果表明, 所合成产物的 C 含量为 46.04%, H 含量为 5.37%, 与二噻吩二甲氧基硅垸的理论 C含量 46.51%和理论 H含量 5.43%基本 相当, 进一步证实了二噻吩二甲氧基硅烷产物的合成。
(2 ) 含钛的固体催化剂的制备
将球形 MgCl2 - 2.85C2H5OH载体 5.0克加入到装有 150mL TiCl4并事先预冷 至 -25Ό的带有搅拌的玻璃反应瓶中, 逐步升温至 80°C, 加入 2mmol内给电子体 邻苯二甲酸二异丁酯, 保持该温度 30分钟, 升温至 130 °C反应 2小时。 过滤, 加入 120mL TiCl4, 于 130 °C反应 2小时, 过滤; 重复上述加 TiC 和过滤步骤 1次; 用正己垸洗涤 6次, 最后真空干燥固体物, 即得到本发明的球形固体催化 剂组分 3.2g。
(3 ) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二甲氧基硅烷 0.9mmol, 上述制备的含钛固体催化剂组分 20.5mg, 通入液体丙烯 500g, 升温至 70°C, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 2
( 1 ) 二噻吩二甲氧基硅垸的合成
在氮气保护条件下, 将 3.50g镁粉、 1.30g溴代噻吩、 20mL四氢呋喃加入到 装有搅拌器、 回流冷凝管及温度计的 250ml的三口烧瓶中。 混合体系回流 0.5小 时后, 加入 0.26g 碘至反应剧烈进行。 待反应稳定后, 由试管上部缓慢滴加由 20.74g溴代噻吩、 60ml四氢呋喃及 9.99g四甲氧基硅垸组成的混合溶液, 2小时 左右滴加完成。 混合体系加热搅拌回流 5个小时后, 慢慢冷却至室温, 在氮气保 护下用过滤管过滤, 并用四氢呋喃洗漆固体物质数遍。所得滤液进行常压蒸馏并 收回溶剂后, 进行减压精馏。 收集 130〜13rC、 25mmHg柱压力下的产物, 合 成化合物的红外光谱及 l3C核磁共振光谱与图 1和图 2基本一致。红外光谱初步 证明合成反应得以进行, l3C核磁共振光谱有力地证明了产物的形成。
(2) 含钛的固体催化剂的制备
将 5克无水 MgCl2倒入经氮气充分置换的三口瓶中, 加入正癸垸 27ml及异 辛醇 23.0ml, 边搅拌边升温至 130Ό, 并在此温度下反应 3小时, 加入邻苯二甲 酸酐 1.17克, 并在 130Ό继续反应 1小时。 反应结束后, 冷却至室温得到稳定均 匀的醇合物溶液。再将上述制备的均匀溶液, 在 1小时滴加到经氮气充分置换且 装有 -25°C 200ml四氯化钛的反应器中, 滴加完毕, 经过 3小时升温至 60Ό, 加 入邻苯二甲酸二异丁酯 1.5ml, 继续升温 30min, 温度到达 11(TC, 加入邻苯二甲 酸二异丁酯 2.1ml,在此温度下反应 2小时。反应结束过滤液体后,重新加入 200ml 四氯化钛, 在 110°C反应 2小时。 反应结束后滤出反应液, 用分子筛干燥过的己 烷热洗涤 6次, 剩余固体产物经真空干燥得到固体催化剂。 (3) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二甲氧基硅烷 0.9mmol, 上述制备的含钛固体催化剂组分 18.8mg, 通入液体丙烯 500g, 升温至 70°C, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 3
(1) 二噻吩二甲氧基硅烷的合成: 同实施例 1。
(2) 含钛的固体催化剂的制备: 同实施例 1。
(3) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二甲氧基硅烷 0.45mmol, 上述制备的含钛固体催化剂组分 19.3mg, 通入液体丙烯 500g, 升温 至 70Ό, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 4
(1) 二噻吩二甲氧基硅垸的合成: 同实施例 1。
(2) 含钛的固体催化剂的制备: 同实施例 1。
(3) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4m0l/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二甲氧基硅烷 1.8mmol, 上述制备的含钛固体催化剂组分 22.4mg, 通入液体丙烯 500g, 升温至 70Ό, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 5
(1) 二噻吩二甲氧基硅烷的合成: 同实施例 1。
(2) 含钛的固体催化剂的制备: 同实施例 1。
(3) 丙烯聚合实验
容积为 2L的不锈钢反应釜, 经气体丙烯充分置换后, 首先向常压状态下的 聚合釜通入氢气至釜压为 O.lMPa, 依次加入浓度为 2.4mol/L 的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二甲氧基硅烷 0.9mmol, 上述制备的含 钛固体催化剂组分 20.7mg, 通入液体丙烯 500g, 升温至 70Ό, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 6
( 1 ) 二噻吩二乙氧基硅垸的合成
将 5.28 g镁粉、 30mL四氢呋喃、 24.6mL四乙氧基硅烷在氮气保护下加入到 带回流冷凝管、 恒压滴液漏斗的 250mL 经氮气置换后的干燥三口烧瓶中, 将 23mL溴代噻吩加入滴液漏斗, 搅拌下滴入适量纯溴代噻吩作为启动料, 使四氢 呋喃自动沸腾回流, 若不反应可加少量碘引发。剩余溴代噻吩加入 30mL四氢呋 喃稀释配成待滴加的溶液, 待反应启动后滴加配料, 控制加料速度使四氢呋喃微 沸, 2 h左右加完。 滴完后油浴加热 40Ό保温反应 8 h。 反应完成后冷却静置, 氮气保护下抽滤并洗涤滤饼, 所得滤液经常压蒸馏后减压蒸馏收集 130-132°C、 20mmHg柱压力下的馏分, 并进行元素分析、 红外光谱及 13C核磁共振测试。 红 外光谱和核磁共振谱图分别见图 3和图 4。红外光谱初步证明合成反应得以进行, l3C核磁共振光谱有力地证明了产物的形成。 元素分析结果表明, 所合成产物的 C含量为 50.14%, H含量为 5.72%,与二噻吩二乙氧基硅烷的理论 C含量 50.07% 和理论 H含量 5.63%基本相当, 进一步证实了二噻吩二乙氧基硅垸产物的合成。
( 2 ) 含钦的固体催化剂的制备: 同实施例 1。
( 3 ) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二乙氧基硅垸 0.9mmol, 上述制备的含钛固体催化剂组分 33.5mg, 通入液体丙烯 500g, 升温至 70°C, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 7
( 1 ) 二噻吩二乙氧基硅垸的合成: 同实施例 6。
( 2 ) 含钛的固体催化剂的制备: 同实施例 1。
( 3 ) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二乙氧基硅烷 1.8mmol, 上述制备的含钕固体催化剂组分 23.6mg, 通入液体丙烯 500g, 升温至 70Ό , 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。 实施例 8
( 1 ) 二噻吩二乙氧基硅垸的合成: 同实施例 6。
(2 ) 含钛的固体催化剂的制备: 同实施例 1。
( 3 ) 丙烯聚合实验
容积为 2L的不锈钢反应釜, 经气体丙烯充分置换后, 首先向常压状态下的 聚合釜通入氢气至釜压为 0.1 MPa, 依次加入浓度为 2.4mol/L 的三乙基铝溶液 5ml, 所合成的外给电子体化合物二噻吩二乙氧基硅垸 0.9tnmOl, 上述制备的含 钛固体催化剂组分 27.3mg, 通入液体丙烯 500g, 升温至 70Ό , 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
实施例 9
( 1 ) 3-甲基噻吩 -噻吩二甲氧基硅烷的合成
将 5 g镁粉、 30 mL四氢呋喃、 13.47 mL四甲氧基硅垸在氮气保护下加入到 带回流冷凝管、恒压滴液漏斗的 250 mL经氮气置换后的干燥三口烧瓶中,将 9mL 2-溴噻吩加入滴液漏斗, 搅拌下滴入适量纯溴代噻吩作为启动料, 使四氢呋喃自 动沸腾回流, 若不反应可加少量碘引发。 剩余 2-溴噻吩加入 30 mL四氢呋喃稀 释配成待滴加的溶液, 待反应启动后滴加配料, 控制加料速度使四氢呋喃微沸, 2 h左右加完。 滴完后油浴加热 3040Ό保温反应 7 h。 再将 10 mL 3-甲基 -2-溴噻 吩加入滴液漏斗, 并加入 30 mL四氢呋喃稀释配成待滴加的溶液, 滴加配料, 控制加料速度使四氢呋喃微沸, 2 h左右加完。 滴完后油浴加热 30-40 Ό保温反 应 6 h, 使镁粉作用完全。 反应完成后冷却静置, 氮气保护下抽滤并洗涤滤饼, 所得滤液经常压蒸馏后减压蒸馏收集 125-126 T、 20mmHg柱压力下的馏分, 并 进行元素分析、 红外光谱及 l3C核磁共振测试。 红外光谱和核磁共振谱图分别见 图 5和图 6。 红外光谱初步证明合成反应得以进行, l3C核磁共振光谱有力地证 明了产物的形成。 元素分析结果表明, 所合成产物的 C含量为 48.09%, H含量 为 5.56%,与 3-甲基噻吩 -噻吩二甲氧基硅垸的理论 C含量 48.89%和理论 H含量 5.19%基本相当, 进一步证实了 3-甲基噻吩 -噻吩二甲氧基硅垸产物的合成。
( 2 ) 含钛的固体催化剂的制备: 同实施例 1。
( 3 ) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物 3-甲基噻吩-噻吩二 甲氧基硅烷 0.9mmol, 上述制备的含钛固体催化剂组分 27.7mg, 通入液体丙烯 500g, 升温至 70°C, 维持此温度皮应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。 实施例 10
( 1 ) 3-甲基噻吩-噻吩二甲氧基硅烷的合成: 同实施例 9。
( 2 ) 含钛的固体催化剂的制备: 同实施例 1。
( 3 ) 丙烯聚合实验
容积为 2L 的不锈钢反应釜, 经气体丙烯充分置换后, 依次加入浓度为 2.4mol/L的三乙基铝溶液 5ml, 所合成的外给电子体化合物 3-甲基噻吩-噻吩二 甲氧基硅烷 1.8mmol, 上述制备的含钛固体催化剂组分 21.8 mg, 通入液体丙烯 500g, 升温至 70°C, 维持此温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。 实施例 11
( 1 ) 3-甲基噻吩-噻吩二甲氧基硅垸的合成: 同实施例 6。
(2 ) 含钛的固体催化剂的制备: 同实施例 1。
(3 ) 丙烯聚合实验
容积为 2L的不锈钢反应釜, 经气体丙烯充分置换后, 首先向常压状态下的 聚合釜通入氢气至釜压为 O.lMPa, 依次加入浓度为 2.4mol/L 的三乙基铝溶液 5ml, 所合成的外给电子体化合物 3-甲基噻吩 -噻吩二甲氧基硅垸 0.9mmOl, 上述 制备的含钛固体催化剂组分 23.4mg, 通入液体丙烯 500g, 升温至 70'C, 维持此 温度反应 0.5小时, 降温, 卸压, 出料得聚丙烯产物。
对比实施例 1 : 采用与实施例 1相同的含钛固体催化剂组分和聚合方法, 只 是将外给电子体化合物改为二环戊基二甲氧基硅烷。
对比实施例 2: 采用与对比实施例 1相同的含钛固体催化剂组分、 外给电子 体二环戊基二甲氧基硅垸, 采用与实施例 5相同的聚合方法, 即聚合之前首先向 反应釜中加入 O.lMPa的氢气。
对比实施例 3: 采用与实施例 1相同的含钛固体催化剂组分和聚合方法, 只 是将外给电子体化合物改为环己基甲基二甲氧基硅烷。
对比实施例 4: 采用与实施例 1相同的含钛固体催化剂组分和聚合方法, 只 是将外给电子体化合物改为苯基三乙氧基硅烷。 由表 1聚合实验结果可以看出,使用本发明的含两个噻吩类取代基的有机硅 氧烷化合物作为外给电子体,所得聚合产物的等规度明显高于对比实施例所使用 的已知的典型的有机硅氧烷外给电子体, 尤其是在不加氢的情况下。
表 1
Figure imgf000014_0001
实 施 例 3-甲基噻吩 13.3 0.1 3.6 95.4 20.7
11 -噻吩二甲
氧基娃院
对比实施 二环戊基二 13.3 0 9.8 98.9 0.031 例 1 甲氧基硅垸
对比实施 二环戊基二 13.3 0.1 13.9 98.7 4.91 例 2 甲氧基硅垸
对比实施 环己基甲基 13.3 0 6.1 98.3 0.691 例 3 二甲氧基硅
对比实施 苯基三乙氧 13.3 0 5.4 97.7 0.202 例 4 基娃烧 工业实用性
本发明所述的含噻吩基取代硅烷的烯烃聚合反应催化剂,利用含两个噻吩基 取代基的有机硅氧烷化合物作烯烃催化聚合的外给电子体, 特别是用于丙烯聚 合, 得到具有很高等规度的聚合产物, 达到较高收率。

Claims

权 利 要 求
1、 一种含噻吩基取代硅烷的烯烃聚合反应催化剂, 其特征在于: 其为以下成 分的反应产物:
(A) 以钛、 镁、 卤素作为主要成分的固体钛催化剂成分;
(B) 垸基铝化合物成分;
(C ) 含两个噻吩基取代基的有机硅氧烷化合物成分, 选自以下通式 ( I ) 中所示化合物的至少一种:
Figure imgf000016_0001
通式 ( I ) 其中, 〜 基团相同或不同, 选自氢、 卤原子、 直链或支链的 垸 基, C3~C2Q环垸基, C6~C2o芳基, C7~C2Q垸芳基或 C7~C2o芳烷基, 且两个或两 个以上的 R^R^基团可以相互键连形成饱和或不饱和的缩合环状结构,该缩合环 状结构可以被与 〜 相同定义的基团取代,所述的 基团任选含有一个或 多个杂原子作为碳原子或氢原子或者两者一起的取代物, 所述的杂原子选自氮、 氧、 硫、 硅、 磷或卤原子。 和 Rb基团相同或不同, 选自直链或支链的 ~C4 院基;
催化剂各组分以钛: 铝: 硅之间的摩尔比计为 1 : 50〜150: 5〜50。
2、 根据权利要求 1所述的含噻吩基取代硅垸的烯烃聚合反应催化剂, 其特 征在于: 其中所述的含两个噻吩基取代基的有机硅氧垸化合物通式 ( I ), R,〜 R6相同或不相同, 选自氢原子、 甲基、 乙基、 丙基或异丙基。
3、 根据权利要求 1所述的含噻吩基取代硅垸的烯烃聚合反应催化剂, 其特 征在于: 所述的含两个噻吩基取代基的有机硅氧烷化合物通式 ( I ) 中, Ra
Rb相同或不相同, 为甲基或乙基。
4、 根据权利要求 1所述的含噻吩基取代硅垸的烯烃聚合反应催化剂, 其特 征在于: 含两个噻吩基取代基的有机硅氧垸化合物, 其合成方法为: 在惰性气体 保护下, 将镁粉、 卤代噻吩和溶剂四氢呋喃混合回流后, 加入引发剂碘至反应剧 烈进行; 反应稳定后, 缓慢滴加卤代噻吩、 四氢呋喃及四垸氧基硅垸组成的混合 溶液, 加热搅拌回流一段时间; 缓慢冷却至室温, 过滤, 洗涤, 减压蒸馏, 得到 目标产物; 制备过程中的投料分别为引发料和滴加料两部分; 引发料中卤代噻吩 的加入量占总卤代噻吩的 3%〜20% ; 四垸氧基硅烷与卤代噻吩的摩尔比为 1 :2-2.4; 四垸氧基硅垸与镁粉的摩尔比为 1 :2〜2.8。
5、一种权利要求 1所述的含噻吩基取代硅烷的烯烃聚合反应催化剂的应用, 其特征在于: 用作烯烃聚合或共聚合催化剂, 聚合温度 50〜10(TC, 聚合反应压 力是常压或更高。
PCT/CN2011/000943 2011-04-22 2011-06-03 一种含噻吩基取代硅垸的烯烃聚合反应催化剂 WO2012142732A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/813,479 US8541332B2 (en) 2011-04-22 2011-06-03 Catalyst for polymerization of olefins comprising thienyl-substituted silanes
JP2014505475A JP5887400B2 (ja) 2011-04-22 2011-06-03 チエニル基で置換したシランを含有するオレフィン重合反応の触媒
EP11863744.6A EP2644627B1 (en) 2011-04-22 2011-06-03 Catalyst for polymerization of olefins comprising thienyl-substituted silanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110102200.4A CN102746425B (zh) 2011-04-22 2011-04-22 一种含噻吩基取代硅烷的烯烃聚合反应催化剂
CN201110102200.4 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012142732A1 true WO2012142732A1 (zh) 2012-10-26

Family

ID=47026954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000943 WO2012142732A1 (zh) 2011-04-22 2011-06-03 一种含噻吩基取代硅垸的烯烃聚合反应催化剂

Country Status (5)

Country Link
US (1) US8541332B2 (zh)
EP (1) EP2644627B1 (zh)
JP (1) JP5887400B2 (zh)
CN (1) CN102746425B (zh)
WO (1) WO2012142732A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865519B (zh) * 2017-12-01 2021-11-30 中国石化扬子石油化工有限公司 一种钌改性活性炭负载镍催化剂、其制备方法及其应用
EP4200307A1 (en) * 2020-08-19 2023-06-28 Henkel AG & Co. KGaA Heteroatom-containing silane compound
CN112076729B (zh) * 2020-09-15 2022-04-22 西南石油大学 一种长链饱和烷烃硅烷负载二氧化硅吸附剂的制备方法
CN115582149B (zh) * 2021-07-05 2023-10-31 中国石油化工股份有限公司 一种用于合成碳酸亚烷基酯的催化剂及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB694440A (en) * 1949-06-25 1953-07-22 British Thomson Houston Co Ltd Improvements in and relating to 2-thienyl-substituted silanes
US4562173A (en) * 1984-08-24 1985-12-31 Toho Titanium Co., Ltd. Catalyst component for the polymerization of olefins and catalyst therefor
US5498770A (en) * 1994-04-28 1996-03-12 Toho Titanium Co., Ltd. Catalyst for the polymerization of olefins and process for the polymerization of olefins

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927797A (en) 1987-04-09 1990-05-22 Fina Technology, Inc. Catalyst system for the polymerization of olefins
ES2052004T5 (es) 1988-06-17 2002-05-16 Mitsui Chemicals Inc Procedimiento de preparacion de poliolefinas y catalizador de polimerizacion.
US5166340A (en) 1989-07-26 1992-11-24 Himont Incorporated Organosilane compounds
US4990478A (en) 1989-09-21 1991-02-05 Amoco Corporation Silane-modified supported polyolefin catalyst to produce a broadened molecular weight distribution product
FR2669639A1 (fr) 1990-11-27 1992-05-29 Atochem Cocatalyseur de polymerisation du propylene a base de silane et de monoether.
EP0565173B1 (en) 1992-04-03 1997-06-04 Toho Titanium Co. Ltd. Process for preparing polyolefins with broad molecular-weight distribution
EP0844259B1 (en) 1993-12-06 2002-09-25 Sumitomo Chemical Company, Limited Alpha-olefin polymers, alpha olefin-polymerizing catalyst and process for producing alpha-olefin polymers
CN1176258A (zh) 1996-09-06 1998-03-18 弗纳技术股份有限公司 制备高结晶聚丙烯的催化剂体系
JP3688078B2 (ja) 1996-11-20 2005-08-24 三井化学株式会社 オレフィン重合用触媒、予備重合触媒、オレフィンの重合方法
SG172665A1 (en) * 2007-12-27 2011-07-28 Sumitomo Chemical Co Production process of olefin polymerization catalyst component, of olefin polymerization catalyst, and of olefin polymer
JP2010013588A (ja) * 2008-07-04 2010-01-21 Sumitomo Chemical Co Ltd プロピレン系ブロック共重合体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB694440A (en) * 1949-06-25 1953-07-22 British Thomson Houston Co Ltd Improvements in and relating to 2-thienyl-substituted silanes
US4562173A (en) * 1984-08-24 1985-12-31 Toho Titanium Co., Ltd. Catalyst component for the polymerization of olefins and catalyst therefor
US5498770A (en) * 1994-04-28 1996-03-12 Toho Titanium Co., Ltd. Catalyst for the polymerization of olefins and process for the polymerization of olefins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2644627A4 *

Also Published As

Publication number Publication date
JP5887400B2 (ja) 2016-03-16
US20130131292A1 (en) 2013-05-23
EP2644627B1 (en) 2017-01-11
EP2644627A1 (en) 2013-10-02
CN102746425A (zh) 2012-10-24
EP2644627A4 (en) 2014-02-26
US8541332B2 (en) 2013-09-24
JP2014513736A (ja) 2014-06-05
CN102746425B (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5918846B2 (ja) オレフィン重合触媒、その製造方法及びその応用
JP6137463B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合触媒及びこれを用いたオレフィン類重合体の製造方法
TW396168B (en) Solid catalyst component and catalyst for polymerization of olefins
WO2011131033A1 (zh) 用于烯烃聚合反应的催化剂组分及其催化剂
JP6343561B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP6782292B2 (ja) アルコキシマグネシウム、アルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
CN114502604A (zh) 使用具有新型1,3-二醚内电子给体的齐格勒-纳塔主催化剂聚合聚丙烯的方法
WO2012142732A1 (zh) 一种含噻吩基取代硅垸的烯烃聚合反应催化剂
JP2010030925A (ja) アルコキシマグネシウムの合成方法、オレフィン類重合用固体触媒成分および触媒
JP5771462B2 (ja) オレフィン類重合用固体触媒成分および触媒
US20170088642A1 (en) Catalyst component for olefin polymerization and catalyst containing catalyst component and use thereof
RU2692246C1 (ru) Внешний донор для полимеризации олефинов
JPH08157521A (ja) オレフィン重合用固体触媒成分の製造方法、オレフィン重合用触媒及びオレフィン重合体の製造方法
JP6067299B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
WO2013027560A1 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP7100511B2 (ja) ジアルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒及びオレフィン類重合体の製造方法
CN111978346A (zh) 芳胺基硅烷化合物、丙烯聚合催化剂及其制备与应用
KR101540513B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
JP5671625B2 (ja) プロピレン重合用固体触媒およびその製造方法
CN103374083B (zh) 一种用于烯烃聚合反应的催化剂组分及其制备与应用
JP6914095B2 (ja) ジアルコキシマグネシウムの製造方法、オレフィン類重合用触媒成分の製造方法、オレフィン類重合用触媒の製造方法、及びオレフィン類重合体の製造方法
JP3540578B2 (ja) α−オレフィンの重合方法
CN107344980B (zh) 用于烯烃聚合的催化剂组分、催化剂体系及其应用
JP3496999B2 (ja) オレフィン重合用固体触媒成分の製造方法
WO2023124896A1 (zh) 硅烷类化合物、催化剂组合物及其制备方法和应用

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2011863744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011863744

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505475

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13813479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE