WO2012140893A1 - 判定装置 - Google Patents
判定装置 Download PDFInfo
- Publication number
- WO2012140893A1 WO2012140893A1 PCT/JP2012/002538 JP2012002538W WO2012140893A1 WO 2012140893 A1 WO2012140893 A1 WO 2012140893A1 JP 2012002538 W JP2012002538 W JP 2012002538W WO 2012140893 A1 WO2012140893 A1 WO 2012140893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- subcarrier
- received power
- signal
- weight vector
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/06—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
- H04L25/067—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2657—Carrier synchronisation
Definitions
- the present invention relates to a determination technique, and more particularly, to a determination apparatus that determines to reflect the reliability of data.
- Road-to-vehicle communication is being studied to prevent collisions at intersections.
- information on the situation of the intersection is communicated between the roadside device and the vehicle-mounted device.
- Road-to-vehicle communication requires the installation of roadside equipment, which increases labor and cost.
- installation of a roadside machine will become unnecessary.
- the current position information is detected in real time by GPS (Global Positioning System), etc., and the position information is exchanged between the vehicle-mounted devices so that the own vehicle and the other vehicle each enter the intersection. (See, for example, Patent Document 1).
- a Viterbi algorithm is executed with the soft decision result as a decoding target.
- the reliability is increased even though the actual reliability is low.
- a soft decision result may be generated.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the reliability of a soft decision result in an environment where an interference signal exists.
- a determination apparatus includes a soft decision unit that softly determines a demodulation result for each of a plurality of subcarriers constituting a multicarrier signal, and a multicarrier signal.
- An acquisition unit that obtains a weighting factor for each subcarrier based on the received power for each of the plurality of subcarriers, and a subcarrier that represents a demodulation result soft-decisioned by the soft-decision unit using the weighting factor obtained by the acquisition unit
- the reliability of the soft decision result can be improved in an environment where an interference signal exists.
- FIG. 5 is a diagram illustrating an outline of operation of a weight vector deriving unit in FIG. 4. It is a figure which shows the structure of the determination part of FIG.
- FIGS. 8A to 8E are diagrams illustrating the relationship between the received power and the weighting coefficient in the acquisition unit of FIG. It is a figure which shows another relationship of the reception power versus weighting coefficient in the acquisition part of FIG.
- an adaptive array antenna is applied and an error correction technique is also applied.
- convolutional coding and Viterbi decoding are used as error correction techniques.
- a Viterbi algorithm is executed with the soft decision result as the decoding target.
- the soft decision result reflects the reliability of the data. In general, as the received power increases, a soft decision result that increases reliability is generated. Under such circumstances, when the power of the interference signal is increased, a soft decision result is generated that increases the reliability even though the actual reliability is low.
- Embodiments of the present invention relate to a communication system that performs vehicle-to-vehicle communication between terminal devices mounted on a vehicle, and also executes road-to-vehicle communication from a base station device installed at an intersection or the like to a terminal device.
- the communication system corresponds to ITS.
- the terminal device broadcasts a packet signal that stores information such as the speed and position of the vehicle.
- the other terminal device receives the packet signal and recognizes the approach of the vehicle based on the information.
- the base station apparatus broadcasts a packet signal storing traffic jam information and construction information.
- the terminal device receives the packet signal and recognizes the occurrence of a traffic jam or a construction section based on the information.
- the packet signal Since the packet signal is subjected to OFDM (Orthogonal Frequency-Division Multiplexing) modulation, the packet signal is composed of a plurality of subcarriers in the frequency domain. Further, in order to improve the reception quality of the packet signal, the packet signal is subjected to convolutional coding at the time of transmission.
- the base station device or terminal device that has received the packet signal performs soft-decision Viterbi decoding. For example, data corresponding to the subcarrier is softly determined according to the received power of the subcarrier. This is equivalent to making a soft decision so as to reflect the reliability according to the received power. For this reason, the higher the received power, the higher the reliability. As described above, when a narrowband interference signal exists, the reliability may be lowered even if the received power is high. In order to cope with this, the base station apparatus and terminal apparatus according to the present embodiment execute the following processing.
- the base station apparatus and terminal apparatus predetermine a threshold value for the reception power for each subcarrier, and if the reception power is equal to or less than the threshold value, obtain a weighting factor that increases as the reception power increases. .
- the weight coefficient is maximized.
- the base station device or terminal device acquires a weighting factor that is equal to or smaller than the weighting factor when the received power is the threshold value.
- Such a weight coefficient is acquired for each subcarrier.
- the base station apparatus and the terminal apparatus weight the soft decision value of the demodulation result by the weight coefficient in units of subcarriers. The weighted soft decision result is input to the Viterbi decoder.
- the base station apparatus and terminal apparatus also perform adaptive array reception in order to further improve reception quality.
- adaptive array reception will be described.
- the format of a packet signal used in the communication system is similar to that of a wireless LAN, and an STF is arranged at the head part, followed by an LTF (Long Training Field).
- the LTF includes two OFDM symbols.
- the front is referred to as LTF1 and the rear is referred to as LTF2.
- LTF1 Long Training Field
- LTF2 Long Training Field
- the terminal device or the base station device derives an initial value of the weight vector based on the LTF.
- the initial value of the weight vector for each subcarrier must be estimated with the two OFDM symbols.
- the RLS algorithm is used to derive the weight vector. In order to improve the reception characteristics, it is desired to improve the accuracy of deriving the initial value of the weight vector even if the number of LTF OFDM symbols is small.
- the weight vector suitable for the transmission path also varies. Therefore, the weight vector needs to be updated even in the data period after the end of the LTF.
- the RLS algorithm when used in the data period than in the case where the RLS algorithm is used in the LTF period, it is more susceptible to errors and the accuracy of the weight vector tends to deteriorate. Therefore, when using the RLS algorithm in the data period, it is desired to reduce the influence of errors.
- known signals such as STF and LTF are used to reduce the influence of frequency offset. In order to improve the estimation accuracy of the frequency offset, it is desired to use a signal other than the known signal. In order to cope with these, the following processing is executed.
- the reception function in a base station apparatus and a terminal device is named generically as a receiving apparatus.
- the processing of the receiving apparatus is classified into an initial setting process performed during the STF and LTF periods and a follow-up process performed during the subsequent period.
- the initial setting process a frequency offset for the entire OFDM signal is estimated based on packet signals received by a plurality of antennas, and a frequency offset between subcarriers is also estimated. In addition, correction by these estimated frequency offsets is performed.
- the receiving apparatus derives an initial value of a weight vector to be used when array-combining packet signals received at a plurality of antennas by the RLS algorithm.
- the RLS algorithm is applied on a subcarrier basis to an LTF of 2 OFDM symbols.
- the receiving apparatus uses the subcarrier signal and the subcarrier signal adjacent to the subcarrier. For example, when signals of two adjacent subcarriers in LTF1 are used in addition to the signals of the subcarriers in LTF1 and LTF2, four LTFs can be used while the LTF is 2 OFDM symbols. Such processing is possible because the frequency offset between subcarriers is corrected, and the residual frequency offset for each subcarrier is uniform.
- the receiving apparatus estimates the frequency offset remaining in the signal after array synthesis (hereinafter referred to as “residual frequency offset”) for the entire OFDM signal.
- the estimation is made by extending to the signal placed downstream of LTF2 in addition to the two LTFs.
- the signal is not a known signal, unlike LTF.
- the modulation level of the signal is less than or equal to the modulation level of the data.
- the signal error rate is lower than the data error rate. Therefore, the receiving apparatus determines the signal after array synthesis and uses it for estimation of the residual offset.
- the weight vector is updated by executing the RLS algorithm even in the data section. In the RLS algorithm, a correlation inverse matrix for the received data is calculated.
- the receiving apparatus Since the inverse correlation matrix is defined by a recurrence formula, errors are integrated over time. In order to reduce the influence of such an error, the receiving apparatus periodically resets the inverse correlation matrix even in the middle of data. On the other hand, the weight vector is not reset.
- FIG. 1 shows a configuration of a communication system 100 according to an embodiment of the present invention. This corresponds to a case where one intersection is viewed from above.
- the communication system 100 includes a base station device 10, a first vehicle 12a, a second vehicle 12b, a third vehicle 12c, a fourth vehicle 12d, a fifth vehicle 12e, a sixth vehicle 12f, and a seventh vehicle 12g, collectively referred to as a vehicle 12. , The eighth vehicle 12h, and the network 80.
- Each vehicle 12 is equipped with a terminal device (not shown).
- An area 82 is formed around the base station apparatus 10, and the outside of the area 82 is an outside area 84.
- the road that goes in the horizontal direction of the drawing that is, the left and right direction
- intersects the vertical direction of the drawing that is, the road that goes in the up and down direction, at the central portion.
- the upper side of the drawing corresponds to the direction “north”
- the left side corresponds to the direction “west”
- the lower side corresponds to the direction “south”
- the right side corresponds to the direction “east”.
- the intersection of the two roads is an “intersection”.
- the first vehicle 12a and the second vehicle 12b are traveling from left to right
- the third vehicle 12c and the fourth vehicle 12d are traveling from right to left
- the fifth vehicle 12e and the sixth vehicle 12f are traveling from the top to the bottom
- the seventh vehicle 12g and the eighth vehicle 12h are traveling from the bottom to the top.
- the communication system 100 arranges the base station apparatus 10 at the intersection.
- the base station apparatus 10 receives traffic jam information and construction information from the network 80.
- the base station apparatus 10 generates a packet signal in which traffic jam information and construction information are stored, and notifies the packet signal.
- the notification is made to the terminal apparatus existing in the area 82 formed by the base station apparatus 10.
- the terminal device mounted on the vehicle 12 receives the packet signal from the base station device 10
- the terminal device extracts the traffic jam information and the construction information stored in the packet signal.
- the terminal device notifies the driver of the extracted traffic jam information and construction information.
- the notification is made, for example, by display on a monitor.
- the terminal device acquires information related to the presence position using GPS or the like, and generates a packet signal in which information related to the presence position is stored.
- the terminal device broadcasts a packet signal by CSMA / CA.
- the terminal device receives a packet signal from another terminal device, the terminal device notifies the driver of the approach of the vehicle 12 on
- FIG. 2 shows a configuration of the wireless device 14 mounted on the vehicle 12.
- the wireless device 14 includes a first RF unit 20a, a second RF unit 20b, a transmission processing unit 22, a reception processing unit 24, and a control unit 26, which are collectively referred to as the RF unit 20.
- the wireless device 14 corresponds to a terminal device mounted on the vehicle 12 in FIG. 1, but may correspond to the base station device 10 in FIG. 1.
- the terminal device and the base station device 10 may be collectively referred to as “wireless device 14”, and the terminal device or the base station device 10 may be referred to as “wireless device 14”, but these are not clearly shown.
- wireless device 14 the terminal device mounted on the vehicle 12 in FIG. 1
- the base station device 10 may be collectively referred to as “wireless device 14”
- the terminal device or the base station device 10 may be referred to as “wireless device 14”, but these are not clearly shown.
- the RF unit 20 is connected to the antenna on a one-to-one basis.
- a packet signal from another wireless device 14 (not shown) is received by the antenna.
- the RF unit 20 performs frequency conversion on the received radio frequency packet signal to generate a baseband packet signal.
- the RF unit 20 outputs a baseband packet signal to the reception processing unit 24.
- baseband packet signals are formed by in-phase and quadrature components, so two signal lines should be shown, but here only one signal line is shown for clarity. Shall be shown.
- the RF unit 20 also includes an LNA (Low Noise Amplifier), a mixer, an AGC, and an A / D conversion unit.
- LNA Low Noise Amplifier
- the RF unit 20 performs frequency conversion on the baseband packet signal input from the transmission processing unit 22 as a transmission process to generate a radio frequency packet signal. Further, the RF unit 20 transmits a radio frequency packet signal from the antenna during the road and vehicle transmission period.
- the RF unit 20 also includes a PA (Power Amplifier), a mixer, and a D / A conversion unit. Note that packet signals may be transmitted from the two RF units 20, or packet signals may be transmitted from one RF unit 20. Here, the latter is assumed for the sake of clarity.
- the transmission processing unit 22 includes a GPS receiver (not shown), a gyroscope, a vehicle speed sensor, and the like, and based on data supplied from these, the location of the vehicle 12 (not shown), that is, the vehicle 12 on which the wireless device 14 is mounted, The traveling direction, the moving speed, and the like (hereinafter also collectively referred to as “existing position”) are acquired.
- the existence position is indicated by latitude and longitude. Since a known technique may be used for these acquisitions, description thereof is omitted here.
- the transmission processing unit 22 generates a packet signal storing the location.
- the transmission processing unit 22 performs modulation on the generated packet signal. Further, the transmission processing unit 22 outputs the modulated result to the RF unit 20 as a baseband packet signal. As described above, since one RF unit 20 is used for transmission, the transmission processing unit 22 outputs a packet signal to the one RF unit 20.
- the transmission processing unit 22 since the communication system 100 corresponds to the OFDM (Orthogonal Frequency Division Multiplexing) modulation method, the transmission processing unit 22 also executes IFFT (Inverse Fast Fourier Transform).
- FIG. 3 shows a format of a packet signal defined in the communication system 100.
- the STF is arranged at the head, and GI2, LTF1, LTF2, SIG, and data are arranged following the STF.
- STF is a signal of 160 samples, and a signal pattern of 16 samples is repeated 10 times. That is, in the STF, a signal pattern having a period shorter than the period of LTF1 described later is repeated 10 times.
- LTF1 and LTF2 are the same period of 64 samples and have the same signal pattern.
- GI2 is a guard interval for LTF1 or LTF2, and is 32 samples. Moreover, LTF is formed by GI2, LTF1, and LTF2. Note that the LTF may be formed by the LTF 1 and the LTF 2.
- SIG is a control signal and is 80 samples. The 80 samples include a guard interval of 16 samples. SIG corresponds to the aforementioned signal.
- the reception processing unit 24 receives a baseband packet signal from each RF unit 20.
- the reception processing unit 24 synthesizes the packet signal by performing adaptive array signal processing on the baseband packet signal from each RF unit 20. Details of these processes will be described later.
- the reception processing unit 24 performs demodulation on the combined packet signal. At that time, the reception processing unit 24 also executes FFT (Fast Fourier Transform).
- the reception processing unit 24 executes processing according to the content of the demodulation result. For example, when the content of the demodulation result is information related to the location of the vehicle 12 on which the other wireless device 14 is mounted, the reception processing unit 24 monitors the driver about the approach of the other vehicle 12 (not shown) or a speaker. Notify through. If the content of the demodulation result is traffic jam information or construction information, the driver is notified of this via a monitor or speaker.
- the control unit 26 controls the operation timing of the wireless device 14.
- This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
- Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
- FIG. 4 shows the configuration of the reception processing unit 24 in the wireless device 14.
- the reception processing unit 24 includes a first pre-FFT AFC 32a, a second pre-FFT AFC 32b, collectively referred to as a pre-FFT AFC 32, a first FFT 34a, a second FFT 34b, collectively referred to as an FFT 34, and an inter-subcarrier rotation correction unit 36.
- a second multiplying unit 40b, a weight vector deriving unit 42, a synthesizing unit 44, a phase estimating unit 46, a determining unit 48, a deinterleaving unit 50, and an FEC unit 52 are included.
- the physical layer processing is mainly shown in the processing performed in the reception processing unit 24. Description of the upper layer processing is omitted.
- the pre-FFT AFC 32 receives a packet signal from each of the two RF units 20 (not shown).
- the format of the packet signal is as shown in FIG. 2, and STF and LTF as preambles, signals and data as control signals are sequentially arranged.
- the packet signal is also a multicarrier signal including a plurality of subcarriers, particularly an OFDM signal. Further, pilot signals are arranged on some of the subcarriers constituting the data.
- STF, LTF, and pilot signals as preambles are known signals.
- the signal modulation method is fixed at BPSK
- the data modulation method is variable at BPSK, QPSK, and 16QAM. That is, the number of modulation levels of the signal is equal to or less than the number of modulation levels of the data.
- the pre-FFT AFC 32 corrects the initial frequency offset for the entire OFDM signal in the frequency domain based on the LTF1 and the LTF2.
- the pre-FFT AFC 32 receives the packet signal and delays the packet signal over a period of LTF1, that is, 64 samples. Further, the pre-FFT AFC 32 derives the phase difference between the delayed packet signal and the non-delayed packet signal in units of samples. These phase differences correspond to the amount of rotation caused by the passage of 64 samples. Further, the pre-FFT AFC 32 derives the average value of the phase difference at 64 samples by averaging the phase difference over the LTF period, and derives the rotation amount at one sample by dividing the average value by 64. .
- the pre-FFT AFC 32 accumulates the rotation amount in one sample by reverse rotation so that the waveform rotates backward by the rotation amount in one sample every time one sample passes (hereinafter referred to as “initial correction signal”). Generated).
- the pre-FFT AFC 32 multiplies the initial correction signal and the packet signal. This corresponds to rotating the phase of the packet signal by the initial correction signal. Such multiplication is continued in the tracking process.
- the pre-FFT AFC 32 outputs a packet signal (hereinafter also referred to as “packet signal”) subjected to the initial frequency offset correction to the FFT 34.
- the FFT 34 inputs a packet signal from the AFC 32 before FFT.
- the FFT 34 performs an FFT on the packet signal to convert the time domain OFDM signal into a frequency domain OFDM signal.
- the FFT 34 outputs the packet signal converted into the frequency domain OFDM signal to the inter-subcarrier rotation correction unit 36. Note that the FFT 34 performs the same process in the follow-up process.
- the intersubcarrier rotation correction unit 36 receives the packet signal from the FFT 34. This corresponds to an OFDM signal in which the initial frequency offset is corrected in the AFC 32 before FFT.
- the inter-subcarrier rotation correction unit 36 derives a frequency offset between subcarriers in the LTF period, and corrects the frequency offset between subcarriers with respect to the OFDM signal by the derived frequency offset.
- the frequency offset between subcarriers will be explained. Although the description is omitted in the present embodiment, in practice, a window for executing the FFT is set in the FFT 34.
- This setting is based on the received packet signal and may contain errors. In other words, there may be a time lag from the optimal timing.
- the phase rotation occurs due to the time T shift, the phase rotation amount differs for each subcarrier because the frequency differs for each subcarrier.
- the phase is rotated by a different amount of phase rotation for each subcarrier. This is a frequency offset between subcarriers. If there is a frequency offset between subcarriers, the correlation between subcarriers becomes small, and the characteristics deteriorate due to processing across subcarriers. Although details will be described later, in the present embodiment, since the process across subcarriers is executed, the frequency offset between subcarriers is corrected in order to increase the correlation between the subcarriers.
- FIG. 5 shows an outline of the operation of the intersubcarrier rotation correction unit 36.
- This corresponds to an OFDM signal in LTF1 and LTF2.
- the vertical axis indicates the frequency, and the frequency of each subcarrier is indicated as f 1 , f 2 , f 3 ,..., F 52 , f 53 . It is assumed that f 1 is the lowest and f 53 is the highest.
- the intersubcarrier rotation correction unit 36 derives a phase difference between the LTF1 and the LTF2 for each subcarrier. Further, the frequency difference between subcarriers is derived by subtracting the phase difference between adjacent subcarriers. This is shown in FIG. 6 as ⁇ f 1 , ⁇ f 2 , ⁇ f 3 ,..., ⁇ f 51 .
- the inter-subcarrier rotation correction unit 36 derives an average value ⁇ f of these differences. This is a frequency offset between subcarriers, which is derived and fixed by the initial setting process.
- Subcarrier between the rotating correcting unit 36 does not execute the correction on the sub-carrier frequency f 1. This is because the subcarrier having the lowest frequency is used as a reference.
- Subcarrier between rotation correction unit 36 executes correction by - ⁇ f against the sub-carrier frequency f 2.
- the sub-carrier between the rotation correction unit 36 executes correction by -2 ⁇ f to the sub-carrier frequency f 3. That is, the inter-subcarrier rotation correction unit 36 performs correction using the frequency added by ⁇ f as the subcarrier frequency increases. This is equivalent to correction with a different rotation amount for each subcarrier.
- the inter-subcarrier rotation correction unit 36 similarly performs correction based on ⁇ f in the follow-up process.
- the inter-subcarrier rotation correction unit 36 outputs a packet signal (hereinafter also referred to as “packet signal”), which is an OFDM signal in which the frequency offset between subcarriers is corrected, to the phase correction unit 38.
- packet signal hereinafter also referred to as “pack
- the phase correction unit 38 corrects the remaining frequency offset, but does not execute the correction in the initial setting process, and outputs the packet signal to the multiplication unit 40 and the weight vector deriving unit 42 as they are.
- the weight vector deriving unit 42 receives a packet signal from each of the two phase correction units 38.
- the weight vector deriving unit 42 derives a weight vector for each subcarrier by the RLS algorithm.
- Such a weight vector can be said to be a weight vector for OFDM signals received by a plurality of antennas.
- the weight vector deriving unit 42 uses LTF1 and LTF2 to derive a weight vector.
- the weight vector deriving unit 42 determines an execution pattern of the RLS algorithm.
- the weight vector deriving unit 42 calculates the reception power Pow of the subcarrier for each subcarrier.
- the received power Pow is the larger of the received power at LTF1 and the received power at LTF2.
- the weight vector deriving unit 42 determines in units of subcarriers whether the received power Pow is equal to or greater than the threshold value and there is an adjacent subcarrier. For subcarriers satisfying such conditions, the weight vector deriving unit 42 selects pattern 1 as the execution pattern of the RLS algorithm. On the other hand, the weight vector deriving unit 42 selects the pattern 2 for subcarriers that do not satisfy such a condition, that is, subcarriers whose reception power is lower than the threshold value or for which no adjacent subcarrier exists.
- FIG. 6 is used to explain pattern 1 and pattern 2.
- FIG. 6 shows an outline of the operation of the weight vector deriving unit 42.
- three squares are arranged in the vertical direction, and a figure in which one square is arranged on the right side of the central square is shown.
- One square represents one OFDM symbol in one subcarrier, which is the same as in FIG.
- the three squares on the left side correspond to LTF1
- the one square on the right side corresponds to LTF2.
- the central square corresponds to the subcarrier of interest.
- pattern 1 after reading LTF1, the RLS algorithm is executed for LTF1 of the subcarrier of interest as indicated by “1”. Subsequently, as indicated by “2”, the RLS algorithm is executed on the LTF1 of the subcarrier on the low frequency side of the subcarrier of interest.
- the RLS algorithm is executed on the LTF 1 of the subcarrier on the high frequency side of the subcarrier of interest.
- the RLS algorithm is executed for LTF1 of the subcarrier of interest as indicated by “4”. This is the same as the case of “1”.
- the RLS algorithm is executed for the LTF 2 of the subcarrier of interest. That is, in pattern 1, the weight vector deriving unit 42 uses a signal of a subcarrier other than the subcarrier in addition to the signal of the subcarrier when deriving a weight vector for a predetermined subcarrier. This is to artificially increase the number of OFDM symbols used for the RLS algorithm and reduce the influence of noise.
- Pattern 2 after reading LTF1, the RLS algorithm is executed on LTF1 of the subcarrier of interest as indicated by “1”. In addition, after reading LTF2, the RLS algorithm is executed for LTF2 of the subcarrier of interest. Further, as indicated by “3” and “4”, “1” and “2” are repeatedly executed. That is, in the pattern 2, when deriving a weight vector for a predetermined subcarrier, only a signal of the subcarrier is used without using a signal of a subcarrier other than the subcarrier. This is because the reception power of the subcarrier is small, and therefore, if the adjacent subcarrier is used, the influence of the adjacent subcarrier becomes large. Returning to FIG.
- the weight vector deriving unit 42 derives the initial value of the weight vector in units of subcarriers according to the pattern 1 or the pattern 2.
- the weight vector derivation unit 42 outputs the initial value of the weight vector to the multiplication unit 40.
- a weight vector in units of subcarriers and a group of such weight vectors for a plurality of subcarriers are referred to as weight vectors without distinction.
- the multiplication unit 40 receives the packet signal from the phase correction unit 38 and the initial value of the weight vector from the weight vector deriving unit 42.
- the multiplier 40 multiplies the packet signal by the initial value of the weight vector.
- the multiplication is performed on a subcarrier basis.
- the multiplication unit 40 outputs the multiplication result to the synthesis unit 44.
- the combining unit 44 combines the multiplication results from the multiplying unit 40, that is, the multiplication results corresponding to the plurality of antennas, in units of subcarriers.
- the processing of the multiplication unit 40 and the synthesis unit 44 corresponds to array synthesis using a weight vector.
- the multiplication unit 40 may delay the packet signal from the phase correction unit 38 until the initial value of the weight vector is output from the weight vector deriving unit 42.
- an updated weight vector is output from the weight vector deriving unit 42, and the multiplying unit 40 and the synthesizing unit 44 perform array synthesis using the updated weight vector.
- the combining unit 44 outputs the result of the array combining (hereinafter also referred to as “packet signal”) to the phase estimation unit 46 and also outputs it to processing of an upper layer (not shown).
- the phase estimation unit 46 receives the packet signal from the synthesis unit 44.
- the phase estimation unit 46 estimates the frequency offset (hereinafter referred to as “residual frequency offset”) remaining in the packet signal whose frequency offset has already been corrected by the pre-FFT AFC 32 and the intersubcarrier rotation correction unit 36. More specifically, the phase estimation unit 46 estimates the residual frequency offset based on the difference between the LTF portion of the received packet signal and the known LTF. Furthermore, in addition to the LTF, the phase estimation unit 46 also uses the signal determination result of the received packet signal to estimate the residual frequency offset. Since the determination result of this signal is based on the packet signal that has been synthesized by the array, the error rate is improved.
- the phase estimation unit 46 generates a waveform that rotates in the reverse direction (hereinafter referred to as “residual correction signal”) based on the residual frequency offset, and instructs the phase correction unit 38 to perform correction using the residual correction signal.
- the two phase correction units 38 are instructed to perform correction using the same waveform. As described above, the correction in the phase correction unit 38 is not performed during the initial setting process.
- the LTF is used to estimate the frequency offset in the AFC 32 before FFT.
- the phase estimation unit 46 estimates the residual frequency offset that could not be estimated in the pre-FFT AFC 32, the phase estimation unit 46 requires higher estimation accuracy than the pre-FFT AFC 32.
- the pre-FFT AFC 32 estimates the frequency offset with respect to the signal before array synthesis, while the phase estimation unit 46 estimates the frequency offset with respect to the signal after array synthesis. Therefore, since the error rate of the signal after synthesis is low, the estimation accuracy is improved.
- the phase correction unit 38 receives the residual correction signal from the phase estimation unit 46.
- the phase correction unit 38 corrects the residual frequency offset for the packet signal packet signal in units of subcarriers using the received residual correction signal.
- the residual frequency offset for each of the packet signals received by the plurality of antennas is corrected in common.
- the weight vector deriving unit 42 uses the RLS algorithm to update the weight vector from the initial value of the weight vector in units of subcarriers.
- the weight vector deriving unit 42 updates the weight vector by the RLS algorithm, and periodically resets the correlation inverse matrix in the RLS algorithm in the middle of the packet signal. This is to reset the inverse correlation matrix by substituting the initial value into the updated inverse correlation matrix.
- the weight vector deriving unit 42 includes a storage unit (not shown), and stores the weight vector updated before resetting the correlation inverse matrix at the reset timing.
- the weight vector deriving unit 42 restarts updating of the weight vector from the reset correlation inverse matrix by the RLS algorithm.
- the weight vector deriving unit 42 updates the weight vector but does not output the weight vector to the multiplying unit 40 until a predetermined period elapses after the reset. Over this period, the weight vector derivation unit 42 outputs the weight vector stored in the storage unit to the multiplication unit 40. After a predetermined period has elapsed since the reset, the weight vector deriving unit 42 outputs the weight vector whose updating has been resumed to the multiplying unit 40.
- the weight vector derivation unit 42 includes a measurement unit (not shown), and the measurement unit derives the size of the synthesis result obtained by the synthesis unit 44. Further, the measurement unit also derives an integrated value of the magnitude of the synthesis result during the period of the tracking process. Here, the integrated value is set to 1 at the time of a signal.
- the weight vector deriving unit 42 amplifies the weight vector when the integrated value is smaller than the threshold value. For example, the weight vector is multiplied by 1.05.
- the multiplication unit 40 and the synthesis unit 44 synthesize the packet signal from the phase correction unit 38 using the weight vector updated by the weight vector derivation unit 42.
- the phase estimation unit 46 estimates the residual frequency offset using the pilot signal in the data section. Since the estimation procedure may be performed in the same manner as in the initial setting process, description thereof is omitted here.
- the determination unit 48 inputs signals and data from the combining unit 44 among the packet signals shown in FIG. That is, a part of the packet signal excluding known signals such as STF and LTF is input to the determination unit 48.
- the determination unit 48 performs soft decision on the input signal and weights the soft decision result.
- FIG. 7 shows the configuration of the determination unit 48.
- the determination unit 48 includes a soft determination unit 60, a power calculation unit 62, an acquisition unit 64, a weighting unit 66, and an output unit 68.
- the soft decision unit 60 inputs the demodulation result from the synthesis unit 44 (not shown).
- the soft decision unit 60 Since the OFDM signal is composed of a plurality of subcarriers in the frequency domain, the soft decision unit 60 inputs a demodulation result for each subcarrier for one OFDM symbol, and for a plurality of OFDM symbols. Repeat the input. Soft decision section 60 makes a soft decision on the demodulation result for each of a plurality of subcarriers constituting the OFDM signal. A known technique may be used as the soft decision processing, but here, a soft decision result that is larger as the value of the demodulation result is larger is generated. Soft decision section 60 outputs the soft decision results for each of the plurality of subcarriers to weighting section 66.
- the power calculation unit 62 inputs a weight vector from a weight vector deriving unit 42 (not shown).
- the weight vector corresponds to each subcarrier.
- the power calculator 62 derives the magnitude of the weight vector and calculates the reciprocal of the derived magnitude.
- the reciprocal of the size corresponds to the received power of the subcarrier. Such a calculation is made for each subcarrier.
- the power calculator 62 outputs the received power for each of the plurality of subcarriers included in the OFDM symbol to the acquisition unit 64 as one unit. Such processing may be performed only on the initial value of the weight vector derived at the head portion of the packet signal, or may be performed every time the weight vector is updated.
- the acquisition unit 64 inputs the received power for each subcarrier from the power calculation unit 62.
- the acquisition unit 64 acquires a weighting factor for each subcarrier based on the received power for each subcarrier.
- the weighting factor acquisition process will be specifically described. If the reception power of the subcarrier is equal to or less than the threshold, the acquisition unit 64 acquires a weighting factor that increases as the reception power of the subcarrier increases. Therefore, the weight coefficient when the received power of the subcarrier is a threshold value is maximized.
- a predetermined relationship is defined between the received power of the subcarrier and the value of the weight coefficient. For example, a linear or logarithmic relationship is used. Other relationships may be used.
- the acquiring unit 64 acquires a weighting factor that is equal to or smaller than the weighting factor when the received power of the subcarrier is the threshold value.
- FIGS. 8A to 8E show the relationship between the received power and the weighting coefficient in the acquisition unit 64.
- FIG. 8A shows an example of the relationship between received power and weighting factor. If the received power of the subcarrier is less than or equal to the threshold value, the value of the weighting factor is linearly increased as the received power increases. That is, a weighting factor is defined such that the value for the received power indicated as “P2” larger than “P1” is larger than the value for the received power indicated as “P1”. If the received power of the subcarrier is larger than the threshold value, the weight coefficient value is linearly decreased as the received power of the subcarrier increases.
- a weighting factor is defined such that the value for the received power indicated as “P4” larger than “P3” is smaller than the value for the received power indicated as “P3”.
- FIG. 8B shows another example of the relationship between the received power and the weighting factor. If the received power of the subcarrier is larger than the threshold value, the weighting factor is set to a constant value even if the received power of the subcarrier increases.
- the weighting coefficient when the received power of the subcarrier is a threshold value is used.
- FIG. 8C is the same as FIG. 8B, but here, a weighting factor having a value smaller than the weighting factor when the received power of the subcarrier is a threshold value is used.
- FIG. 8D shows yet another example of the relationship between the received power and the weighting factor. This corresponds to a combination of FIG. 8A and FIG. In other words, if the received power of the subcarrier is larger than the threshold value, the weight coefficient value decreases linearly as the received power of the subcarrier increases, but if the received power of the subcarrier increases to some extent, The coefficient is set to a constant value. In FIG. 8E, if the received power of the subcarrier is larger than the threshold value, the weighting factor is set to “0”.
- FIG. 9 shows another relationship between the received power and the weighting coefficient in the acquisition unit 64.
- the value of the weighting coefficient changes linearly as the received power increases, but in FIG. 9, it changes in a stepped manner.
- the received power of the subcarrier is less than or equal to the threshold value, the value for the received power indicated as “P2” larger than “P1” is larger than the value for the received power indicated as “P1”.
- a weighting factor is defined.
- the value for the received power indicated as “P4” larger than “P3” is smaller than the value for the received power indicated as “P3”.
- Such a weighting factor is defined.
- a step-like change as shown in FIG. 9 may be combined from FIG. 8B to FIG. 8E.
- Acquisition unit 64 outputs a weighting factor corresponding to each subcarrier to weighting unit 66.
- the weighting unit 66 receives a weighting factor corresponding to each subcarrier from the acquisition unit 64 and receives a soft decision result corresponding to each subcarrier from the soft decision unit 60.
- the weighting unit 66 weights the soft decision result in units of subcarriers using a weighting coefficient.
- the output unit 68 outputs the soft decision result weighted by the weighting unit 66 (hereinafter also referred to as “soft decision result”) to the deinterleave unit 50 (not shown).
- the deinterleave unit 50 receives the soft decision result from the decision unit 48.
- the deinterleaving unit 50 performs deinterleaving on the soft decision result.
- the deinterleaving pattern is determined in advance and corresponds to an interleaving pattern on the transmitting side (not shown).
- the deinterleave unit 50 outputs the soft decision result (hereinafter also referred to as “soft decision result”) obtained by executing the deinterleave to the FEC unit 52.
- the FEC unit 52 executes a Viterbi algorithm on the soft decision result from the deinterleave unit 50 and outputs a decoding result.
- the Viterbi algorithm only needs to use a known technique, and the description thereof is omitted here.
- the weighting factor is obtained such that it is smaller than the weighting factor when the received power of the subcarrier is the threshold value. Therefore, the influence of the interference signal on the soft decision result can be reduced. Further, since the influence of the interference signal on the soft decision result is reduced, the decoding characteristic can be improved. In addition, since the weighting coefficient that decreases as the reception power of the subcarrier increases, the influence of the interference signal can be reduced as the reception power increases. Also, if the received power of the subcarrier is larger than the threshold value, a constant weighting factor is obtained, so that the influence of the interference signal can be suppressed even if the received power increases.
- the weight coefficient is set to “0”, so that the influence of the interference signal can be excluded.
- a signal of a subcarrier other than the subcarrier is also used. Therefore, many signals can be used in a pseudo manner. In addition, since many signals are used in a pseudo manner, the influence of noise can be reduced even if the number of known preambles is small. In addition, since the influence of noise is reduced, the weight vector derivation accuracy can be improved. Further, since the accuracy of deriving the weight vector is improved, it is possible to suppress the deterioration of reception characteristics. Further, even if the known preamble is shorter than the data, the deterioration of reception characteristics is suppressed, so that transmission efficiency can be improved.
- the frequency offset for the entire OFDM signal is corrected and the frequency offset between subcarriers is also corrected, the influence of the deviation of the local oscillation signal can be reduced, and the influence of the deviation of the FFT window setting can also be reduced.
- adjacent subcarriers can also be used when deriving the weight vector.
- the reception power of a predetermined subcarrier when the reception power of a predetermined subcarrier is lower than the threshold value, the signal of subcarriers other than the subcarrier is not used, so that the influence of noise included in other subcarriers can be avoided.
- a signal of a subcarrier other than the subcarrier is also used. The influence of noise can be reduced.
- the integrated value of the magnitude of the result of array synthesis becomes smaller than the threshold value, the weight vector is amplified, so that it is possible to follow a rapid change in the transmission path. Further, since it can follow a sudden change in the transmission path, it is possible to suppress the deterioration of the reception characteristics.
- the correlation inverse matrix in the RLS algorithm is reset even in the middle of the data, the influence of error accumulation can be reduced.
- the influence of error accumulation is reduced, it is possible to suppress deterioration of the weight vector derivation accuracy.
- the weight vector derived before the reset is used as it is for a certain period, so that the influence of the reset can be reduced.
- a weight vector using the reset correlation inverse matrix is used after a certain period of time has elapsed since the reset, it can be used after the correlation inverse matrix has converged. Further, since the inverse correlation matrix is used after convergence, the derivation accuracy of the weight vector can be improved.
- the signal is used in addition to the preamble when estimating the residual frequency offset, the number of OFDM symbols can be increased. In addition, since the number of OFDM symbols is increased, the influence of noise is reduced. Moreover, since the influence of noise is reduced, the estimation accuracy of the residual frequency offset can be improved. Further, since the modulation multi-level number of symbols is equal to or less than the modulation multi-level number of data, the influence of symbol errors can be reduced even if symbols are used for estimation of residual offset. In addition, when a packet signal is received by a plurality of antennas, an array-combined symbol is used, so that the influence of symbol errors can be reduced.
- the wireless device 14 includes two antennas.
- the present invention is not limited to this.
- the wireless device 14 may include three or more antennas. According to this modification, reception characteristics can be improved.
- the inter-subcarrier rotation correction unit 36 uses the LTF1 of the adjacent subcarrier when the pattern 1 is used.
- the present invention is not limited to this.
- the inter-subcarrier rotation correction unit 36 may use the LTF1 of a further subcarrier such as the next adjacent subcarrier. According to this modification, the number of signals that can be used for the RLS algorithm can be increased.
- the inter-subcarrier rotation correction unit 36 uses the LTF1 of the adjacent subcarrier when the pattern 1 is used.
- the present invention is not limited to this.
- LTF2 of an adjacent subcarrier may be used. According to this modification, the number of signals that can be used for the RLS algorithm can be increased.
- the weight vector deriving unit 42 uses a fixed value as the initial value of the inverse correlation matrix.
- the present invention is not limited to this.
- the weight vector deriving unit 42 may set different values depending on the reception status as the initial value of the correlation inverse matrix. Specifically, a value corresponding to the convergence value of AGC, or a value corresponding to a weak electric field, a medium electric field, a strong electric field, or the like is set. According to this modification, the initial value of the inverse correlation matrix suitable for the reception situation can be used.
- the weight vector deriving unit 42 uses a fixed value as the initial value of the weight vector.
- the present invention is not limited to this.
- the weight vector deriving unit 42 may use an algorithm different from the RLS algorithm, for example, a value calculated by maximum ratio synthesis, as the initial value of the weight vector. According to this modification, the accuracy of the weight vector can be improved.
- the acquisition unit 64 acquires a weighting factor according to the comparison result between the received power of the subcarrier and the threshold value.
- the reception processing unit 24 further includes an estimation unit that estimates the presence / absence of an interference signal with respect to the multicarrier signal. May be.
- the estimation unit measures SINR, and estimates that there is an interference signal when the SINR is low even though the received power is high. On the other hand, in other cases, the estimation unit estimates that there is no interference signal.
- the acquisition unit 64 acquires a weighting factor as described above, that is, a weighting factor corresponding to the comparison result between the received power of the subcarrier and the threshold value. In other cases, the acquisition unit 64 uses a weighting factor that increases as the received power increases. According to this modification, the accuracy of the weighting coefficient when there is no interference signal can be improved.
- a determination apparatus includes a soft decision unit that softly determines a demodulation result for each of a plurality of subcarriers constituting a multicarrier signal, and each of a plurality of subcarriers that constitute a multicarrier signal.
- An acquisition unit that acquires a weighting factor for each subcarrier based on the received power with respect to the weighting unit that weights the demodulation result soft-decisioned in the soft-decision unit by the weighting factor acquired in the acquisition unit, in units of subcarriers;
- an output unit that outputs the demodulation result weighted by the weighting unit to the decoder. If the reception power of the subcarrier is equal to or less than the threshold, the acquisition unit weights such that the value for the second reception power (first reception power ⁇ second reception power) is larger than the value for the first reception power. Get the coefficient.
- the acquiring unit may acquire a weighting factor that is equal to or smaller than the weighting factor when the received power of the subcarrier is the threshold. By reducing the weighting factor, the reliability of the subcarrier is lowered, so that the influence of the interference signal on the soft decision result can be reduced.
- the acquisition unit weights such that the value for the fourth reception power (third reception power ⁇ fourth reception power) is smaller than the value for the third reception power.
- a coefficient may be acquired.
- the acquisition unit may acquire a constant weighting factor if the received power of the subcarrier is greater than the threshold value. Since a weighting factor that does not depend on the magnitude of the received power is acquired, the influence of the interference signal can be suppressed even if the received power increases.
- An estimation unit for estimating presence / absence of an interference signal with respect to the multicarrier signal is further provided, and the acquisition unit, when the estimation unit estimates that there is an interference signal, a weighting factor according to a comparison result between the received power of the subcarrier and the threshold May be obtained.
- a weighting factor corresponding to only the received power is not used, so that the influence of the interference signal can be considered.
- the reliability of the soft decision result can be improved in an environment where an interference signal exists.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
軟判定部60は、マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する復調結果を軟判定する。取得部64は、マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する受信電力をもとに、各サブキャリアに対する重み係数を取得する。取得部64は、サブキャリアの受信電力がしきい値以下であれば、サブキャリアの受信電力が増加するほど大きくなるような重み係数を取得し、サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力がしきい値である場合の重み係数以下の大きさであるような重み係数を取得する。重み付け部66は、重み係数によって、軟判定結果をサブキャリア単位に重みづける。
Description
本発明は、判定技術に関し、特にデータの信頼性を反映させるように判定する判定装置に関する。
交差点の出会い頭の衝突事故を防止するために、路車間通信の検討がなされている。路車間通信では、路側機と車載器との間において交差点の状況に関する情報が通信される。路車間通信では、路側機の設置が必要になり、手間と費用が大きくなる。これに対して、車車間通信、つまり車載器間で情報を通信する形態であれば、路側機の設置が不要になる。その場合、例えば、GPS(Global Positioning System)等によって現在の位置情報をリアルタイムに検出し、その位置情報を車載器同士で交換しあうことによって、自車両および他車両がそれぞれ交差点へ進入するどの道路に位置するかを判断する(例えば、特許文献1参照)。
受信特性を向上するために、軟判定結果を復号対象とするビタビアルゴリズムが実行されるが、干渉信号の電力が大きくなると、実際の信頼性は低いにもかかわらず、信頼性が高くなるような軟判定結果が生成されることもある。
本発明はこうした状況に鑑みてなされたものであり、その目的は、干渉信号が存在する環境下において、軟判定結果の信頼性を向上する技術を提供することにある。
上記課題を解決するために、本発明のある態様の判定装置は、マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する復調結果を軟判定する軟判定部と、マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する受信電力をもとに、各サブキャリアに対する重み係数を取得する取得部と、取得部において取得した重み係数によって、軟判定部において軟判定した復調結果をサブキャリア単位に重みづける重み付け部と、重み付け部において重みづけた復調結果を復号器へ出力する出力部とを備える。取得部は、サブキャリアの受信電力がしきい値以下であれば、第1受信電力に対する値よりも、第2受信電力(第1受信電力<第2受信電力)に対する値が大きくなるような重み係数を取得する。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、干渉信号が存在する環境下において、軟判定結果の信頼性を向上できる。
本発明の実施例の基礎となった知見は、次の通りである。IEEE802.11等の規格に準拠した無線LAN(Local Area Network)では、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)と呼ばれるアクセス制御機能が使用されている。そのため、当該無線LANでは、複数の端末装置によって同一の無線チャネルが共有される。このようなCSMA/CAでは、キャリアセンスによって他のパケット信号が送信されていないことを確認した後に、パケット信号が送信される。一方、ITS(Intelligent Transport Systems)のような車車間通信に無線LANを適用する場合、不特定多数の端末装置へ情報を送信する必要があるために、信号はブロードキャストにて送信されることが望ましい。
このようなITSにおいて、受信特性を向上するために、アダプティブアレイアンテナが適用されるとともに、誤り訂正技術も適用される。IEEE802.11等の規格に準拠した無線LANでは、誤り訂正技術として畳込み符号化、ビタビ復号が使用される。ビタビ復号の特性を改善するために、軟判定結果を復号対象とするビタビアルゴリズムが実行される。軟判定結果では、データの信頼性が反映される。一般的に、受信電力が高くなれば、信頼性が高くなるような軟判定結果が生成される。このような状況下において干渉信号の電力が大きくなると、実際の信頼性は低いにもかかわらず、信頼性が高くなるような軟判定結果が生成される。
本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、車両に搭載された端末装置間において車車間通信を実行するとともに、交差点等に設置された基地局装置から端末装置へ路車間通信も実行する通信システムに関する。当該通信システムは、ITSに相当する。車車間通信として、端末装置は、車両の速度や位置等の情報を格納したパケット信号をブロードキャスト送信する。また、他の端末装置は、パケット信号を受信するとともに、これらの情報をもとに車両の接近等を認識する。さらに、基地局装置は、渋滞情報や工事情報を格納したパケット信号をブロードキャスト送信する。端末装置は、パケット信号を受信するとともに、情報をもとに渋滞の発生や工事区間を認識する。
パケット信号にはOFDM(Orthogonal Frequency-Division Multiplexing)変調がなされているので、パケット信号は、周波数領域において複数のサブキャリアにて構成されている。また、パケット信号の受信品質を向上させるために、パケット信号には送信時に畳込み符号化がなされている。パケット信号を受信した基地局装置や端末装置は、軟判定のビタビ復号を実行する。例えば、サブキャリアの受信電力に応じて、当該サブキャリアに対応したデータが軟判定される。これは、受信電力に応じた信頼性を反映させるように軟判定がなされることに相当する。そのため、受信電力の高いサブキャリアほど信頼性が高くされる。前述のごとく、狭帯域の干渉信号が存在している場合、受信電力が高くても信頼性が低くなることもあり得る。これに対応するために、本実施例に係る基地局装置や端末装置は、次の処理を実行する。
基地局装置や端末装置は、サブキャリアごとの受信電力に対するしきい値を予め規定し、受信電力がしきい値以下であれば、受信電力の増加に応じて大きくなるような重み係数を取得する。受信電力がしきい値のときに、重み係数が最大になる。一方、受信電力がしきい値よりも大きければ、基地局装置や端末装置は、受信電力がしきい値のときの重み係数以下の大きさであるような重み係数を取得する。このような重み係数はサブキャリア単位に取得される。さらに、基地局装置や端末装置は、重み係数によって復調結果の軟判定値をサブキャリア単位に重みづける。このように重みづけされた軟判定結果は、ビタビ復号器に入力される。
基地局装置や端末装置は、受信品質をさらに向上するために、アダプティブアレイ受信も実行する。ここでは、アダプティブアレイ受信について説明する。通信システムにて使用されるパケット信号のフォーマットは、無線LANと類似しており、先頭部分にSTFが配置され、それに続いてLTF(Long Training Field)が配置される。なお、LTFは、ふたつのOFDMシンボルを含み、ここでは、前の方をLTF1といい、後ろの方をLTF2という。無線LANでは、一般的に、受信したパケット信号とSTFとの相関処理がなされ、相関値のピークがしきい値よりも大きくなった場合に、タイミング同期が確立したとされている。また、LTFをもとに伝送路特性が推定され、推定した伝送路特性が復調に使用される。端末装置や基地局装置は、LTFをもとにウエイトベクトルの初期値を導出する。前述のごとく、LTFは、ふたつのOFDMシンボルを含んでいるので、各サブキャリアに対するウエイトベクトルの初期値はふたつのOFDMシンボルで推定されなければならない。ウエイトベクトルを導出するために、例えば、RLSアルゴリズムが使用される。受信特性を向上するためには、LTFのOFDMシンボル数が少なくても、ウエイトベクトルの初期値の導出精度向上が望まれる。
また、ITSのようなフェージング環境下では、伝送路に適したウエイトベクトルも変動する。そのため、LTF終了後のデータ期間でもウエイトベクトルの更新が必要となる。一方、LTF期間においてRLSアルゴリズムを使用する場合よりも、データ期間においてRLSアルゴリズムを使用する場合は、誤差の影響を受けやすくなり、ウエイトベクトルの精度が悪化する傾向にある。そのため、データ期間においてRLSアルゴリズムを使用する場合に、誤差の影響の低減が望まれる。さらに、周波数オフセットの影響を低減するために、STF、LTFのような既知信号が使用される。周波数オフセットの推定精度を向上するために、既知信号以外の信号の使用が望まれる。これらに対応するために、次の処理が実行される。以下では、基地局装置や端末装置における受信機能を受信装置と総称する。
受信装置の処理は、STF、LTFの期間においてなされる初期設定処理と、それらに続く期間においてなされる追従処理とに分類される。初期設定処理では、複数のアンテナにおいて受信したパケット信号をもとに、OFDM信号全体に対する周波数オフセットが推定されるとともに、サブキャリア間の周波数オフセットも推定される。また、これらの推定された周波数オフセットによる補正がなされる。受信装置は、RLSアルゴリズムによって、複数のアンテナにおいて受信したパケット信号をアレイ合成する際に使用すべきウエイトベクトルの初期値を導出する。RLSアルゴリズムは、2OFDMシンボルのLTFに対してサブキャリア単位に適用される。受信装置は、所定のサブキャリアに対するウエイトベクトルを導出する際に、当該サブキャリアの信号と、当該サブキャリアに隣接したサブキャリアの信号を使用する。例えば、LTF1とLTF2における当該サブキャリアの信号に加えて、LTF1における隣接したふたつのサブキャリアの信号も使用される場合、LTFは2OFDMシンボルながら、4つのLTFが使用可能になる。このような処理は、サブキャリア間の周波数オフセットが補正されることによって、各サブキャリアに対する残留周波数オフセットが均一になっているために可能になる。
受信装置は、アレイ合成後の信号に残った周波数オフセット(以下、「残留周波数オフセット」という)をOFDM信号全体で推定する。当該推定は、ふたつのLTFに加えて、LTF2の後段に配置されたシグナルまで延長することによってなされる。シグナルは、LTFと異なって既知の信号ではない。しかしながら、シグナルの変調多値数は、データの変調多値数以下である。その結果、シグナルの誤り率は、データの誤り率よりも低い。そのため、受信装置は、アレイ合成後のシグナルを判定して、残留オフセットの推定に使用する。追従処理では、データ区間においてもRLSアルゴリズムを実行することによって、ウエイトベクトルを更新する。RLSアルゴリズムでは、受信したデータに対する相関逆行列を計算する。相関逆行列は、漸化式によって定義されるので、時間の経過とともに誤差が積算されていく。このような誤差の影響を低減するために、受信装置は、データの途中であっても、定期的に相関逆行列をリセットする。一方、ウエイトベクトルはリセットされない。
図1は、本発明の実施例に係る通信システム100の構成を示す。これは、ひとつの交差点を上方から見た場合に相当する。通信システム100は、基地局装置10、車両12と総称される第1車両12a、第2車両12b、第3車両12c、第4車両12d、第5車両12e、第6車両12f、第7車両12g、第8車両12h、ネットワーク80を含む。なお、各車両12には、図示しない端末装置が搭載されている。また、エリア82が、基地局装置10の周囲に形成され、エリア82の外側がエリア外84である。
図示のごとく、図面の水平方向、つまり左右の方向に向かう道路と、図面の垂直方向、つまり上下の方向に向かう道路とが中心部分で交差している。ここで、図面の上側が方角の「北」に相当し、左側が方角の「西」に相当し、下側が方角の「南」に相当し、右側が方角の「東」に相当する。また、ふたつの道路の交差部分が「交差点」である。第1車両12a、第2車両12bが、左から右へ向かって進んでおり、第3車両12c、第4車両12dが、右から左へ向かって進んでいる。また、第5車両12e、第6車両12fが、上から下へ向かって進んでおり、第7車両12g、第8車両12hが、下から上へ向かって進んでいる。
通信システム100は、交差点に基地局装置10を配置する。基地局装置10は、ネットワーク80から、渋滞情報や工事情報を受けつける。基地局装置10は、渋滞情報や工事情報が格納されたパケット信号を生成し、パケット信号を報知する。ここで、報知は、基地局装置10によって形成されたエリア82内に存在する端末装置に対してなされる。車両12に搭載された端末装置は、基地局装置10からのパケット信号を受信すると、パケット信号に格納された渋滞情報や工事情報を抽出する。端末装置は、抽出した渋滞情報や工事情報を運転者へ通知する。通知は、例えば、モニタへの表示によってなされる。端末装置は、GPS等によって存在位置に関する情報を取得し、存在位置に関する情報が格納されたパケット信号を生成する。端末装置は、CSMA/CAによってパケット信号を報知する。端末装置は、他の端末装置からのパケット信号を受信すると、他の端末装置が搭載された車両12の接近を運転者へ通知する。
図2は、車両12に搭載された無線装置14の構成を示す。無線装置14は、RF部20と総称される第1RF部20a、第2RF部20b、送信処理部22、受信処理部24、制御部26を含む。無線装置14は、図1の車両12に搭載された端末装置に相当するが、図1の基地局装置10に相当してもよい。以下では、端末装置と基地局装置10とを総称して「無線装置14」という場合もあれば、端末装置あるいは基地局装置10を「無線装置14」という場合もあるが、これらを明示しないものとする。
RF部20は、アンテナと1対1で接続される。図示しない他の無線装置14からのパケット信号をアンテナにて受信する。RF部20は、受信処理として、受信した無線周波数のパケット信号に対して周波数変換を実行し、ベースバンドのパケット信号を生成する。さらに、RF部20は、ベースバンドのパケット信号を受信処理部24に出力する。一般的に、ベースバンドのパケット信号は、同相成分と直交成分によって形成されるので、ふたつの信号線が示されるべきであるが、ここでは、図を明瞭にするためにひとつの信号線だけを示すものとする。RF部20には、LNA(Low Noise Amplifier)、ミキサ、AGC、A/D変換部も含まれる。
RF部20は、送信処理として、送信処理部22から入力したベースバンドのパケット信号に対して周波数変換を実行し、無線周波数のパケット信号を生成する。さらに、RF部20は、路車送信期間において、無線周波数のパケット信号をアンテナから送信する。また、RF部20には、PA(Power Amplifier)、ミキサ、D/A変換部も含まれる。なお、ふたつのRF部20からパケット信号が送信されてもよいし、ひとつのRF部20からパケット信号が送信されてもよい。ここでは、説明を明瞭にするために後者であるとする。
送信処理部22は、図示しないGPS受信機、ジャイロスコープ、車速センサ等を含んでおり、それらから供給されるデータによって、図示しない車両12、つまり無線装置14が搭載された車両12の存在位置、進行方向、移動速度等(以下、これも「存在位置」と総称する)を取得する。なお、存在位置は、緯度・経度によって示される。これらの取得には公知の技術が使用されればよいので、ここでは説明を省略する。送信処理部22は、存在位置を格納したパケット信号を生成する。
送信処理部22は、生成したパケット信号に対して、変調を実行する。さらに、送信処理部22は、変調した結果をベースバンドのパケット信号としてRF部20に出力する。前述のごとく、ひとつのRF部20が送信に使用されるので、送信処理部22は、当該ひとつのRF部20へパケット信号を出力する。ここで、通信システム100は、OFDM(Orthogonal Frequency Division Multiplexing)変調方式に対応するので、送信処理部22は、IFFT(Inverse Fast Fourier Transform)も実行する。
ここでは、送信処理部22における変調処理、後述の受信処理部24における復調処理の対象とされるパケット信号のフォーマットを説明する。図3は、通信システム100において規定されるパケット信号のフォーマットを示す。図示のごとく、STFが先頭に配置されるとともに、STFに続いてGI2、LTF1、LTF2、SIG、データが配置されている。ここで、STFは、160サンプルの信号であり、16サンプルの信号パターンが10回繰り返されている。つまり、STFでは、後述のLTF1の期間よりも短い期間の信号パターンが10回繰り返されている。LTF1とLTF2とは、64サンプルで同一期間であり、信号パターンも同一である。GI2は、LTF1あるいはLTF2に対するガードインターバルであり、32サンプルである。また、GI2、LTF1、LTF2とによってLTFが形成されている。なお、LTF1、LTF2とによってLTFが形成されているとしてもよい。SIGは、制御信号であり、80サンプルである。80サンプルには、16サンプルのガードインターバルが含まれている。SIGは、前述のシグナルに相当する。図2に戻る。
受信処理部24は、各RF部20からのベースバンドのパケット信号を受けつける。受信処理部24は、各RF部20からのベースバンドのパケット信号に対してアダプティブアレイ信号処理を実行することによって、パケット信号を合成する。これらの処理の詳細は後述する。受信処理部24は、合成したパケット信号に対して、復調を実行する。その際、受信処理部24は、FFT(Fast Fourier Transform)も実行する。受信処理部24は、復調結果の内容に応じた処理を実行する。例えば、復調結果の内容が、他の無線装置14を搭載した車両12の存在位置に関する情報である場合、受信処理部24は、図示しない他の車両12の接近等を運転者へモニタやスピーカを介して通知する。また、復調結果の内容が渋滞情報や工事情報であれば、それらを運転者へモニタやスピーカを介して通知する。制御部26は、無線装置14の動作タイミングを制御する。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
図4は、無線装置14における受信処理部24の構成を示す。受信処理部24は、FFT前AFC32と総称される第1FFT前AFC32a、第2FFT前AFC32b、FFT34と総称される第1FFT34a、第2FFT34b、サブキャリア間回転補正部36と総称される第1サブキャリア間回転補正部36a、第2サブキャリア間回転補正部36b、位相補正部38と総称される第1位相補正部38a、第2位相補正部38b、乗算部40と総称される第1乗算部40a、第2乗算部40b、ウエイトベクトル導出部42、合成部44、位相推定部46、判定部48、デインタリーブ部50、FEC部52を含む。なお、図4では、受信処理部24においてなされる処理のうち、物理レイヤの処理を中心に示している。上位レイヤの処理については、説明を省略する。
ここでは、まず初期設定処理を説明し、それに続いて追従処理を説明し、最後に復号処理を説明する。初期設定処理において、FFT前AFC32は、図示しないふたつのRF部20のそれぞれから、パケット信号を入力する。パケット信号のフォーマットは、図2に示したとおりであり、プリアンブルとしてのSTF、LTF、制御信号としてのシグナル、データが順に配置されている。また、パケット信号は、複数のサブキャリアが含まれたマルチキャリア信号、特にOFDM信号でもある。さらに、データを構成している複数のサブキャリアのうち、一部のサブキャリアにはパイロット信号が配置されている。ここで、パケット信号のうち、プリアンブルとしてのSTF、LTFおよびパイロット信号は既知の信号である。また、シグナルの変調方式はBPSKで固定であり、データの変調方式はBPSK、QPSK、16QAMで可変である。つまり、シグナルの変調多値数はデータの変調多値数以下である。
FFT前AFC32は、LTF1、LTF2をもとに、周波数領域のOFDM信号全体に対する初期の周波数オフセットを補正する。FFT前AFC32は、パケット信号を入力し、LTF1の期間、つまり64サンプルにわたってパケット信号を遅延させる。また、FFT前AFC32は、遅延したパケット信号と遅延させていないパケット信号との間の位相差をサンプル単位に導出する。これらの位相差は、64サンプル経過することによって生じる回転量に相当する。さらに、FFT前AFC32は、位相差をLTFの期間にわたって平均することによって、64サンプルでの位相差の平均値を導出し、平均値を64で除算することによって1サンプルでの回転量を導出する。
以上の処理は、LTFの終了時に1回だけなされる。FFT前AFC32は、1サンプルでの回転量を逆回転で積算していくことによって、1サンプル経過するごとに、1サンプルでの回転量だけ逆回転するような波形(以下、「初期補正信号」という)を生成する。FFT前AFC32は、初期補正信号とパケット信号とを乗算する。これは、初期補正信号によってパケット信号の位相を回転させることに相当する。このような乗算は、追従処理でも継続される。FFT前AFC32は、初期の周波数オフセット補正がなされたパケット信号(以下、これも「パケット信号」という)をFFT34に出力する。
FFT34は、FFT前AFC32からのパケット信号を入力する。FFT34は、パケット信号に対してFFTを実行することによって、時間領域のOFDM信号を周波数領域のOFDM信号に変換する。FFT34は、周波数領域のOFDM信号に変換されたパケット信号をサブキャリア間回転補正部36へ出力する。なお、FFT34は、追従処理でも同様の処理を実行する。サブキャリア間回転補正部36は、FFT34からのパケット信号を入力する。これは、FFT前AFC32において初期の周波数オフセットを補正したOFDM信号に相当する。サブキャリア間回転補正部36は、LTFの期間においてサブキャリア間の周波数オフセットを導出し、導出した周波数オフセットによって、OFDM信号に対するサブキャリア間の周波数オフセットを補正する。ここでは、サブキャリア間回転補正部36の処理を説明する前に、サブキャリア間の周波数オフセットについて説明する。本実施例においては説明を省略したが、実際には、FFT34においてFFTを実行するためのウインドウが設定される。
この設定は、受信したパケット信号をもとになされるので、誤差を含むことがある。つまり、最適なタイミングから時間Tだけずれることがある。時間Tずれることによって位相回転が生じるが、サブキャリアごとに周波数が異なるので、サブキャリアごとに位相回転量が異なる。その結果、サブキャリア単位に異なった位相回転量によって位相が回転する。これが、サブキャリア間の周波数オフセットである。サブキャリア間の周波数オフセットが存在すると、サブキャリア間の相関が小さくなるので、サブキャリアをまたがった処理によって特性が悪化する。詳細は後述するが、本実施例では、サブキャリアをまたがった処理を実行するので、サブキャリア間の相関を大きくするために、サブキャリア間の周波数オフセットの補正が実行される。
図5は、サブキャリア間回転補正部36の動作概要を示す。これは、LTF1とLTF2におけるOFDM信号に相当する。縦軸が周波数を示しており、各サブキャリアの周波数が、f1、f2、f3、・・・、f52、f53のように示されている。なお、周波数は、f1が最も低く、f53が最も高いものとする。サブキャリア間回転補正部36は、LTF1とLTF2との間の位相差をサブキャリアごとに導出する。また、隣接したサブキャリア間において位相差を減算することによって、サブキャリア間の周波数の差異を導出する。これは、図6において、Δf1、Δf2、Δf3、・・・、Δf51と示される。サブキャリア間回転補正部36は、これらの差異の平均値Δfを導出する。これがサブキャリア間の周波数オフセットであり、初期設定処理によって導出され、固定される。
サブキャリア間回転補正部36は、周波数f1のサブキャリアに対して補正を実行しない。最も周波数の低いサブキャリアを基準にするためである。サブキャリア間回転補正部36は、周波数f2のサブキャリアに対して-Δfによる補正を実行する。また、サブキャリア間回転補正部36は、周波数f3のサブキャリアに対して-2Δfによる補正を実行する。つまり、サブキャリア間回転補正部36は、サブキャリアの周波数が増加するにつれて、-Δfずつ加算させた周波数による補正を実行する。これは、サブキャリアごとに異なった回転量による補正がなされることに相当する。なお、サブキャリア間回転補正部36は、追従処理においても、Δfをもとにした補正を同様に実行する。図4に戻る。サブキャリア間回転補正部36は、サブキャリア間の周波数オフセットを補正したOFDM信号であるパケット信号(以下、これも「パケット信号」という)を位相補正部38に出力する。
位相補正部38は、残留した周波数オフセットを補正するが、初期設定処理においては補正を実行せず、乗算部40およびウエイトベクトル導出部42へパケット信号をそのまま出力する。ウエイトベクトル導出部42は、ふたつの位相補正部38のそれぞれからパケット信号を受けつける。ウエイトベクトル導出部42は、RLSアルゴリズムにてウエイトベクトルをサブキャリア単位に導出する。このようなウエイトベクトルは、複数のアンテナにて受信したOFDM信号に対するウエイトベクトルといえる。ウエイトベクトル導出部42は、ウエイトベクトルを導出するために、LTF1とLTF2とを使用する。
RLSを実行する前に、ウエイトベクトル導出部42は、RLSアルゴリズムの実行パターンを決定する。ウエイトベクトル導出部42は、サブキャリアの受信電力Powをサブキャリア単位に計算する。ここで、受信電力Powは、LTF1での受信電力とLTF2での受信電力のうち、大きい方とされる。ウエイトベクトル導出部42は、受信電力Powがしきい値以上であり、かつ隣接サブキャリアが存在するかをサブキャリア単位に判定する。このような条件を満たすサブキャリアに対して、ウエイトベクトル導出部42は、RLSアルゴリズムの実行パターンとしてパターン1を選択する。一方、このような条件を満たさないサブキャリア、つまり受信電力がしきい値よりも低いか、あるいは隣接サブキャリアが存在しないサブキャリアに対して、ウエイトベクトル導出部42は、パターン2を選択する。
ここでは、パターン1とパターン2を説明するために図6を使用する。図6は、ウエイトベクトル導出部42の動作概要を示す。それぞれにおいて縦方向に3つの四角が並べられ、そのうちの中央の四角の右側にひとつの四角が並べられた図形が示されている。ひとつの四角は、ひとつのサブキャリアにおけるひとつのOFDMシンボルを示しており、図6と同様である。また、左側の3つの四角がLTF1に相当し、右側のひとつの四角がLTF2に相当する。さらに、左側の3つの四角のうち、中央の四角が、着目しているサブキャリアに相当する。パターン1では、LTF1を読み込んだ後、「1」と示したように、着目しているサブキャリアのLTF1に対してRLSアルゴリズムが実行される。また、これに続いて、「2」と示したように、着目しているサブキャリアの低周波数側のサブキャリアのLTF1に対してRLSアルゴリズムが実行される。
さらに、「3」と示したように、着目しているサブキャリアの高周波数側のサブキャリアのLTF1に対してRLSアルゴリズムが実行される。パターン1でのLTF2の読み込み後、「4」と示したように、着目しているサブキャリアのLTF1に対してRLSアルゴリズムが実行される。これは、「1」の場合と同一である。さらに、「5」と示したように、着目しているサブキャリアのLTF2に対してRLSアルゴリズムが実行される。つまり、パターン1において、ウエイトベクトル導出部42は、所定のサブキャリアに対するウエイトベクトルを導出する際に、当該サブキャリアの信号に加えて、当該サブキャリア以外のサブキャリアの信号も使用する。これは、RLSアルゴリズムに使用するOFDMシンボル数を擬似的に増加させ、雑音の影響を低減するためである。
パターン2では、LTF1を読み込んだ後、「1」と示したように、着目しているサブキャリアのLTF1に対してRLSアルゴリズムが実行される。また、LTF2の読み込み後、着目しているサブキャリアのLTF2に対してRLSアルゴリズムが実行される。さらに、「3」と「4」と示されたように、「1」と「2」とが繰り返し実行される。つまり、パターン2において、所定のサブキャリアに対するウエイトベクトルを導出する際に、当該サブキャリア以外のサブキャリアの信号を使用せず、当該サブキャリアの信号のみを使用する。これは、当該サブキャリアの受信電力が小さいために、隣接サブキャリアを使用すると、隣接サブキャリアの影響が大きくなってしまうからである。図4に戻る。
ウエイトベクトル導出部42は、パターン1あるいはパターン2にしたがって、ウエイトベクトルの初期値をサブキャリア単位に導出する。ウエイトベクトル導出部42は、ウエイトベクトルの初期値を乗算部40に出力する。以下では、サブキャリア単位のウエイトベクトル、そのようなウエイトベクトルを複数のサブキャリアについてまとめたものを区別せずにウエイトベクトルという。
乗算部40は、位相補正部38からのパケット信号を受けつけるとともに、ウエイトベクトル導出部42からのウエイトベクトルの初期値を受けつける。乗算部40は、ウエイトベクトルの初期値をパケット信号に乗算する。当該乗算は、サブキャリア単位になされる。乗算部40は、乗算結果を合成部44に出力する。合成部44は、乗算部40からの乗算結果、つまり複数のアンテナのそれぞれに対応した乗算結果をサブキャリア単位に合成する。乗算部40および合成部44の処理が、ウエイトベクトルを使用したアレイ合成に相当する。なお、LTFもアレイ合成するために、乗算部40は、ウエイトベクトル導出部42から、ウエイトベクトルの初期値が出力されるまで、位相補正部38からのパケット信号を遅延させてもよい。追従処理では、ウエイトベクトル導出部42から、更新されたウエイトベクトルが出力されるが、乗算部40および合成部44は、更新されたウエイトベクトルを使用してアレイ合成を実行する。合成部44は、アレイ合成の結果(以下、これも「パケット信号」という)を位相推定部46に出力するとともに、図示しない上位レイヤの処理へも出力する。
位相推定部46は、合成部44からのパケット信号を受けつける。位相推定部46は、FFT前AFC32およびサブキャリア間回転補正部36において既に周波数オフセットを補正したパケット信号に残留した周波数オフセット(以下、「残留周波数オフセット」という)を推定する。具体的に説明すると、位相推定部46は、受けつけたパケット信号のうちのLTFの部分と、既知のLTFとの差分をもとに残留周波数オフセットを推定する。さらに、位相推定部46は、LTFに加えて、受けつけたパケット信号のうち、シグナルの判定結果も使用して、残留周波数オフセットを推定する。このシグナルの判定結果は、アレイ合成されたパケット信号にもとづくので、誤り率が改善されている。位相推定部46は、残留周波数オフセットをもとに、逆回転するような波形(以下、「残留補正信号」という)を生成し、残留補正信号による補正を位相補正部38に指示する。なお、ふたつの位相補正部38に対して、同一の波形による補正が指示される。前述のごとく、位相補正部38における補正は、初期設定処理の間においてなされない。
FFT前AFC32における周波数オフセットの推定には、LTFが使用される。一方、位相推定部46は、FFT前AFC32において推定できなかった残留周波数オフセットを推定するので、位相推定部46には、FFT前AFC32よりも高い推定精度が必要とされる。これを実現するために、位相推定部46は、LTFに加えてシグナルも使用するので、雑音の影響がさらに低減され、推定精度が向上される。さらに、FFT前AFC32は、アレイ合成前の信号に対する周波数オフセットを推定するが、位相推定部46は、アレイ合成後の信号に対する周波数オフセットを推定する。そのため、合成後のシグナルの誤り率は低くなっているので、推定精度が向上される。
次に、追従処理を説明する。位相補正部38は、位相推定部46からの残留補正信号を受けつける。位相補正部38は、受けつけた残留補正信号によって、パケット信号パケット信号に対する残留周波数オフセットをサブキャリア単位に補正する。その際、複数のアンテナにて受信したパケット信号のそれぞれに対する残留周波数オフセットが共通に補正される。ウエイトベクトル導出部42は、RLSアルゴリズムを使用して、ウエイトベクトルの初期値からウエイトベクトルをサブキャリア単位に更新する。ここで、ウエイトベクトル導出部42は、RLSアルゴリズムにてウエイトベクトルを更新しており、パケット信号の途中においてRLSアルゴリズム中の相関逆行列を定期的にリセットする。これは、更新していた相関逆行列に初期値を代入することによって、相関逆行列をリセットすることである。
また、ウエイトベクトル導出部42は、図示しない記憶部を備えており、リセットのタイミングにおいて、相関逆行列をリセットする前に更新したウエイトベクトルを記憶する。ウエイトベクトル導出部42は、RLSアルゴリズムにて、リセットした相関逆行列からウエイトベクトルの更新を再開する。なお、ウエイトベクトル導出部42は、リセットしてから所定の期間経過するまで、ウエイトベクトルを更新するものの当該ウエイトベクトルを乗算部40に出力しない。この期間にわたって、ウエイトベクトル導出部42は、記憶部に記憶したウエイトベクトルを乗算部40に出力する。リセットしてから所定の期間経過後、ウエイトベクトル導出部42は、更新を再開したウエイトベクトルを乗算部40に出力する。
ウエイトベクトル導出部42は、図示しない測定部を備え、測定部は、合成部44での合成結果の大きさを導出する。さらに、測定部は、追従処理の期間において、合成結果の大きさの積算値も導出する。ここで、積算値は、シグナルのときに1にされる。ウエイトベクトル導出部42は、積算値がしきい値よりも小さい場合、ウエイトベクトルを増幅させる。例えば、ウエイトベクトルが1.05倍される。乗算部40、合成部44は、ウエイトベクトル導出部42において更新したウエイトベクトルを使用して、位相補正部38からのパケット信号を合成する。位相推定部46は、データの区間において、パイロット信号を使用して、残留周波数オフセットを推定する。推定の手順は、初期設定処理の際と同様になされればよいので、ここでは説明を省略する。
判定部48は、図3に示したパケット信号のうち、シグナル、データを合成部44から入力する。つまり、パケット信号のうち、STF、LTF等の既知信号を除いた部分が判定部48に入力される。判定部48は、入力した信号に対して軟判定を実行するとともに、軟判定結果に重みづけを実行する。図7は、判定部48の構成を示す。判定部48は、軟判定部60、電力計算部62、取得部64、重み付け部66、出力部68を含む。軟判定部60は、図示しない合成部44から復調結果を入力する。OFDM信号は、周波数領域において複数のサブキャリアによって構成されているので、軟判定部60は、ひとつのOFDMシンボルに対して、各サブキャリアに対する復調結果を入力するとともに、複数のOFDMシンボルに対して入力を繰り返し実行する。軟判定部60は、OFDM信号を構成している複数のサブキャリアのそれぞれに対する復調結果を軟判定する。軟判定処理として公知の技術が使用されればよいが、ここでは復調結果の値が大きいほど、大きくなるような軟判定結果が生成される。軟判定部60は、複数のサブキャリアのそれぞれに対する軟判定結果を重み付け部66へ出力する。
電力計算部62は、図示しないウエイトベクトル導出部42からウエイトベクトルを入力する。ここで、ウエイトベクトルは、各サブキャリアに対応している。電力計算部62は、ウエイトベクトルの大きさを導出し、導出した大きさの逆数を計算する。大きさの逆数が、サブキャリアの受信電力に相当する。このような計算は、各サブキャリアに対してなされる。電力計算部62は、OFDMシンボルに含まれた複数のサブキャリアのそれぞれに対する受信電力をひとつのまとまりとして取得部64に出力する。このような処理は、パケット信号の先頭部分において導出されたウエイトベクトルの初期値のみに対してなされてもよいし、ウエイトベクトルが更新されるごとになされてもよい。
取得部64は、電力計算部62から、各サブキャリアに対する受信電力を入力する。取得部64は、各サブキャリアに対する受信電力をもとに、各サブキャリアに対する重み係数を取得する。ここでは、重み係数の取得処理を具体的に説明する。取得部64は、サブキャリアの受信電力がしきい値以下であれば、サブキャリアの受信電力が増加するほど大きくなるような重み係数を取得する。そのため、サブキャリアの受信電力がしきい値である場合の重み係数が最も大きくされる。また、サブキャリアの受信電力と重み係数の値との間には、所定の関係が規定される。例えば、線形や対数の関係が使用される。これら以外の関係であってもよい。一方、取得部64は、サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力がしきい値である場合の重み係数以下の大きさであるような重み係数を取得する。
図8(a)-(e)は、取得部64における受信電力対重み係数の関係を示す。これらにおいて、横軸は受信電力を示し、縦軸は重み係数の値を示す。図8(a)は、受信電力対重み係数の関連の一例を示す。サブキャリアの受信電力がしきい値以下であれば、受信電力の増加に応じて、重み係数の値が線形的に大きくされる。つまり、「P1」と示された受信電力に対する値よりも、「P1」よりも大きな「P2」と示された受信電力に対する値が大きくなるような重み係数が規定されている。サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力が増加するほど、重み係数の値が線形的に小さくされる。つまり、「P3」と示された受信電力に対する値よりも、「P3」よりも大きな「P4」と示された受信電力に対する値が小さくなるような重み係数が規定されている。図8(b)は、受信電力対重み係数の関係の別の一例を示す。サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力が増加しても、重み係数が一定値にされる。ここでは、サブキャリアの受信電力がしきい値である場合の重み係数が使用される。
図8(c)も、図8(b)と同様であるが、ここでは、サブキャリアの受信電力がしきい値である場合の重み係数よりも小さい値の重み係数が使用される。図8(d)は、受信電力対重み係数の関係のさらに別の一例を示す。これは、図8(a)と図8(c)との組合せに相当する。つまり、サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力が増加するほど、重み係数の値が線形的に小さくされるが、サブキャリアの受信電力がある程度大きくなると、重み係数が一定値にされる。図8(e)では、サブキャリアの受信電力がしきい値よりも大きければ、重み係数が「0」とされる。
図9は、取得部64における受信電力対重み係数の別の関係を示す。図8(a)では、受信電力の増加に応じて、重み係数の値が線形的に変化しているが、図9では、階段状に変化する。ここでも、サブキャリアの受信電力がしきい値以下であれば、「P1」と示された受信電力に対する値よりも、「P1」よりも大きな「P2」と示された受信電力に対する値が大きくなるような重み係数が規定されている。また、サブキャリアの受信電力がしきい値よりも大きければ、「P3」と示された受信電力に対する値よりも、「P3」よりも大きな「P4」と示された受信電力に対する値が小さくなるような重み係数が規定されている。また、図9のような階段状の変化が、図8(b)から図8(e)に組み合わされてもよい。図7に戻る。取得部64は、各サブキャリアに対応した重み係数を重み付け部66に出力する。
重み付け部66は、取得部64から、各サブキャリアに対応した重み係数を受けつけるとともに、軟判定部60から、各サブキャリアに対応した軟判定結果を受けつける。重み付け部66は、重み係数によって、軟判定結果をサブキャリア単位に重みづける。出力部68は、重み付け部66において重みづけた軟判定結果(以下、これも「軟判定結果」という)を図示しないデインタリーブ部50へ出力する。図4に戻る。
デインタリーブ部50は、判定部48からの軟判定結果を受けつける。デインタリーブ部50は、軟判定結果に対してデインタリーブを実行する。デインタリーブのパターンは、予め定められており、図示しない送信側におけるインタリーブのパターンに対応している。デインタリーブ部50は、デインタリーブを実行した軟判定結果(以下、これも「軟判定結果」という)をFEC部52へ出力する。FEC部52は、デインタリーブ部50からの軟判定結果に対してビタビアルゴリズムを実行し、復号結果を出力する。ビタビアルゴリズムについては公知の技術が使用されればよいので、ここでは説明を省略する。
本発明の実施例によれば、サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力がしきい値である場合の重み係数以下の大きさであるような重み係数を取得するので、軟判定結果に対する干渉信号の影響を低減できる。また、軟判定結果に対する干渉信号の影響が低減されるので、復号特性を向上できる。また、サブキャリアの受信電力が増加するほど小さくなるような重み係数を取得するので、受信電力が増加するほど、干渉信号の影響を低減できる。また、サブキャリアの受信電力がしきい値よりも大きければ、一定値の重み係数を取得するので、受信電力が増加しても、干渉信号の影響を抑制できる。また、サブキャリアの受信電力がしきい値よりも大きければ、一定値の重み係数を取得するので、干渉信号の影響が小さくても、軟判定結果に与える影響を低減できる。また、サブキャリアの受信電力がしきい値よりも大きければ、重み係数を「0」にするので、干渉信号の影響を除外できる。
また、所定のサブキャリアに対するウエイトベクトルを導出する際に、当該サブキャリアの信号に加えて、当該サブキャリア以外のサブキャリアの信号も使用するので、擬似的に多くの信号を使用できる。また、擬似的に多くの信号が使用されるので、既知のプリアンブルが少なくても、雑音の影響を低減できる。また、雑音の影響が低減されるので、ウエイトベクトルの導出精度を向上できる。また、ウエイトベクトルの導出精度が向上されるので、受信特性の悪化を抑制できる。また、既知のプリアンブルがデータよりも短くても、受信特性の悪化が抑制されるので、伝送効率を改善できる。また、OFDM信号全体に対する周波数オフセットを補正するとともに、サブキャリア間の周波数オフセットも補正するので、局部発振信号のずれの影響を低減できるとともに、FFTウインドウ設定のずれの影響も低減できる。また、サブキャリア間の周波数オフセットが補正されるので、ウエイトベクトルを導出する際に、隣接したサブキャリアも使用できる。
また、所定のサブキャリアの受信電力がしきい値よりも低い場合、当該サブキャリア以外のサブキャリアの信号を使用しないので、他のサブキャリアに含まれた雑音の影響を回避できる。また、所定のサブキャリアの受信電力がしきい値以上である場合、当該サブキャリア以外のサブキャリアの信号も使用するので、他のサブキャリアに含まれた雑音の影響を低減しながら、全体の雑音の影響を低減できる。また、アレイ合成した結果の大きさの積算値がしきい値より小さくなると、ウエイトベクトルを増幅させるので、伝送路の急激な変化にも追従できる。また、伝送路の急激な変化にも追従されるので、受信特性の悪化を抑制できる。
また、データの途中であっても、RLSアルゴリズム中の相関逆行列をリセットするので、誤差の累積の影響を低減できる。また、誤差の累積の影響が低減されるので、ウエイトベクトルの導出精度の悪化を抑制できる。また、相関逆行列をリセットした場合であっても、一定期間にわたって、リセット前に導出したウエイトベクトルをそのまま使用するので、リセットの影響を低減できる。また、リセットから一定期間経過してから、リセットした相関逆行列を使用したウエイトベクトルを使用するので、相関逆行列が収束してから使用できる。また、相関逆行列が収束してから使用されるので、ウエイトベクトルの導出精度を向上できる。
また、残留周波数オフセットを推定する際に、プリアンブルだけではなくシグナルも使用するので、OFDMシンボル数を増加できる。また、OFDMシンボル数が増加されるので、雑音の影響を低減される。また、雑音の影響が低減されるので、残留周波数オフセットの推定精度を向上できる。また、シンボルの変調多値数はデータの変調多値数以下であるので、シンボルを残留オフセットの推定に使用しても、シンボルの誤りの影響を低減できる。また、複数のアンテナにてパケット信号を受信している場合に、アレイ合成したシンボルを使用するので、シンボルの誤りの影響を低減できる。
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施例において、無線装置14は、ふたつのアンテナを備える。しかしながらこれに限らず例えば、無線装置14は、3つ以上のアンテナを備えてもよい。本変形例によれば、受信特性を向上できる。
本発明の実施例において、サブキャリア間回転補正部36は、パターン1の際に、隣接サブキャリアのLTF1を使用している。しかしながらこれに限らず例えば、サブキャリア間回転補正部36は、次隣接サブキャリア等のさらに離れたサブキャリアのLTF1を使用してもよい。本変形例によれば、RLSアルゴリズムに使用可能な信号数を増加できる。
本発明の実施例において、サブキャリア間回転補正部36は、パターン1の際に、隣接サブキャリアのLTF1を使用している。しかしながらこれに限らず例えば、隣接サブキャリアのLTF2を使用してもよい。本変形例によれば、RLSアルゴリズムに使用可能な信号数を増加できる。
本発明の実施例において、ウエイトベクトル導出部42は、相関逆行列の初期値として固定値を使用している。しかしながらこれに限らず例えば、ウエイトベクトル導出部42は、相関逆行列の初期値として、受信状況に応じて異なった値を設定してもよい。具体的には、AGCの収束値に応じた値や、弱電界、中電界、強電界等に応じた値が設定される。本変形例によれば、受信状況に適した相関逆行列の初期値を使用できる。
本発明の実施例において、ウエイトベクトル導出部42は、ウエイトベクトルの初期値として固定値を使用している。しかしながらこれに限らず例えば、ウエイトベクトル導出部42は、ウエイトベクトルの初期値として、RLSアルゴリズムとは別のアルゴリズム、例えば、最大比合成で計算した値を使用してもよい。本変形例によれば、ウエイトベクトルの精度を向上できる。
本発明の実施例において、取得部64は、サブキャリアの受信電力としきい値との比較結果に応じた重み係数を取得している。しかしながらこれに限らず例えば、受信処理部24は、マルチキャリア信号に対する干渉信号の有無を推定する推定部をさらに備えており、取得部64は、推定部における推定結果に応じた重み係数を使用してもよい。ここで、推定部は、SINRを測定しており、受信電力が高いにもかかわらずSINRが低い場合に、干渉信号ありと推定する。一方、その他の場合に、推定部は、干渉信号なしと推定する。さらに、取得部64は、推定部が干渉信号ありと推定した場合に、前述のような重み係数、つまりサブキャリアの受信電力としきい値との比較結果に応じた重み係数を取得する。その他の場合に、取得部64は、受信電力の増加に応じて大きくなるような重み係数を使用する。本変形例によれば、干渉信号がない場合の重み係数の精度を向上できる。
本発明の一態様の概要は、次の通りである。本発明のある態様の判定装置は、マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する復調結果を軟判定する軟判定部と、マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する受信電力をもとに、各サブキャリアに対する重み係数を取得する取得部と、取得部において取得した重み係数によって、軟判定部において軟判定した復調結果をサブキャリア単位に重みづける重み付け部と、重み付け部において重みづけた復調結果を復号器へ出力する出力部とを備える。取得部は、サブキャリアの受信電力がしきい値以下であれば、第1受信電力に対する値よりも、第2受信電力(第1受信電力<第2受信電力)に対する値が大きくなるような重み係数を取得する。
重み係数を大きくすることで、サブキャリアの信頼度が高くなるので、受信特性を向上できる。
取得部は、サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力がしきい値である場合の重み係数以下の大きさであるような重み係数を取得してもよい。重み係数を小さくすることで、サブキャリアの信頼度が低くなるので、軟判定結果に対する干渉信号の影響を低減できる。
取得部は、サブキャリアの受信電力がしきい値よりも大きければ、第3受信電力に対する値よりも、第4受信電力(第3受信電力<第4受信電力)に対する値が小さくなるような重み係数を取得してもよい。受信電力が大きくなるほど重み係数を小さくすることによって、大きな干渉信号の影響を低減できる。
取得部は、サブキャリアの受信電力がしきい値よりも大きければ、一定値の重み係数を取得してもよい。受信電力の大きさに依存しない重み係数を取得するので、受信電力が増加しても、干渉信号の影響を抑制できる。
マルチキャリア信号に対する干渉信号の有無を推定する推定部をさらに備え、取得部は、推定部が干渉信号ありと推定した場合に、サブキャリアの受信電力としきい値との比較結果に応じた重み係数を取得してもよい。干渉信号がある場合、受信電力だけに応じた重み係数を使用しないので、干渉信号の影響を考慮できる。
10 基地局装置、 12 車両、 14 無線装置、 20 RF部、 22 送信処理部、 24 受信処理部、 26 制御部、 32 FFT前AFC、 34 FFT、 36 サブキャリア間回転補正部、 38 位相補正部、 40 乗算部、 42 ウエイトベクトル導出部、 44 合成部、 46 位相推定部、 48 判定部、 50 デインタリーブ部、 52 FEC部、 60 軟判定部、 62 電力計算部、 64 取得部、 66 重み付け部、 68 出力部、 100 通信システム。
本発明によれば、干渉信号が存在する環境下において、軟判定結果の信頼性を向上できる。
Claims (5)
- マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する復調結果を軟判定する軟判定部と、
マルチキャリア信号を構成している複数のサブキャリアのそれぞれに対する受信電力をもとに、各サブキャリアに対する重み係数を取得する取得部と、
前記取得部において取得した重み係数によって、前記軟判定部において軟判定した復調結果をサブキャリア単位に重みづける重み付け部と、
前記重み付け部において重みづけた復調結果を復号器へ出力する出力部とを備え、
前記取得部は、サブキャリアの受信電力がしきい値以下であれば、第1受信電力に対する値よりも、第2受信電力(第1受信電力<第2受信電力)に対する値が大きくなるような重み係数を取得することを特徴とする判定装置。 - 前記取得部は、サブキャリアの受信電力がしきい値よりも大きければ、サブキャリアの受信電力がしきい値である場合の重み係数以下の大きさであるような重み係数を取得することを特徴とする請求項1に記載の判定装置。
- 前記取得部は、サブキャリアの受信電力がしきい値よりも大きければ、第3受信電力に対する値よりも、第4受信電力(第3受信電力<第4受信電力)に対する値が小さくなるような重み係数を取得することを特徴とする請求項2に記載の判定装置。
- 前記取得部は、サブキャリアの受信電力がしきい値よりも大きければ、一定値の重み係数を取得することを特徴とする請求項2に記載の判定装置。
- マルチキャリア信号に対する干渉信号の有無を推定する推定部をさらに備え、
前記取得部は、前記推定部が干渉信号ありと推定した場合に、サブキャリアの受信電力としきい値との比較結果に応じた重み係数を取得することを特徴とすることを特徴とする請求項1から4のいずれかに記載の判定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013509798A JP5919540B2 (ja) | 2011-04-15 | 2012-04-12 | 判定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011090657 | 2011-04-15 | ||
JP2011-090657 | 2011-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012140893A1 true WO2012140893A1 (ja) | 2012-10-18 |
Family
ID=47009084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002538 WO2012140893A1 (ja) | 2011-04-15 | 2012-04-12 | 判定装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5919540B2 (ja) |
WO (1) | WO2012140893A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015027069A (ja) * | 2013-07-29 | 2015-02-05 | エフシーアイ インク | Ofdm受信信号の処理方法及びこれを用いたofdm受信装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001136144A (ja) * | 1999-11-05 | 2001-05-18 | Mitsubishi Electric Corp | 受信機および復調方法 |
JP2008131363A (ja) * | 2006-11-21 | 2008-06-05 | Denso Corp | 受信方式,受信装置,プログラム |
JP2009278536A (ja) * | 2008-05-16 | 2009-11-26 | Denso Corp | 無線通信システム、受信装置及び送信装置 |
JP2010004280A (ja) * | 2008-06-19 | 2010-01-07 | Denso Corp | 軟判定値補正方法、及び受信装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3481542B2 (ja) * | 2000-03-09 | 2003-12-22 | 日本電信電話株式会社 | 無線通信システムにおける誤り訂正用送信回路ならびに受信回路 |
-
2012
- 2012-04-12 WO PCT/JP2012/002538 patent/WO2012140893A1/ja active Application Filing
- 2012-04-12 JP JP2013509798A patent/JP5919540B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001136144A (ja) * | 1999-11-05 | 2001-05-18 | Mitsubishi Electric Corp | 受信機および復調方法 |
JP2008131363A (ja) * | 2006-11-21 | 2008-06-05 | Denso Corp | 受信方式,受信装置,プログラム |
JP2009278536A (ja) * | 2008-05-16 | 2009-11-26 | Denso Corp | 無線通信システム、受信装置及び送信装置 |
JP2010004280A (ja) * | 2008-06-19 | 2010-01-07 | Denso Corp | 軟判定値補正方法、及び受信装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015027069A (ja) * | 2013-07-29 | 2015-02-05 | エフシーアイ インク | Ofdm受信信号の処理方法及びこれを用いたofdm受信装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5919540B2 (ja) | 2016-05-18 |
JPWO2012140893A1 (ja) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9136937B1 (en) | System and method for providing antenna diversity in multiple sub-carrier communication systems | |
JP4571997B2 (ja) | マルチキャリア通信システムにおける干渉雑音推定方法及び受信処理方法並びに干渉雑音推定装置及び受信機 | |
JP5334825B2 (ja) | 無線ネットワークにおいてビームを通信する方法 | |
US8270545B2 (en) | Methods and systems using fine frequency tracking loop design for WiMAX | |
US8654911B2 (en) | Uplink SDMA pilot estimation | |
US20120314615A1 (en) | Base station apparatus and terminal apparatus which transmit or receive a signal including information | |
US20090323793A1 (en) | Estimation and correction of integral carrier frequency offset | |
US20100046359A1 (en) | Wireless Terminal, Base Station and Channel Characteristic Estimating Method | |
US9210017B2 (en) | Reception device, reception method, and program | |
JP2008118194A (ja) | 等化器 | |
JP2016029813A (ja) | 受信装置 | |
JP5442343B2 (ja) | 無線装置 | |
JP5919540B2 (ja) | 判定装置 | |
JP2009088984A (ja) | 受信装置、無線通信端末、無線基地局及び受信方法 | |
WO2012114413A1 (ja) | 受信装置 | |
US20130089163A1 (en) | Device and method for generating pilot sequence | |
WO2009157356A1 (ja) | 無線通信装置、及びmimo無線通信における信号送信方法 | |
US10389393B2 (en) | Reception device, receiving method, and program | |
US11652672B1 (en) | Adaptive guard interval using channel impulse response data | |
JP2014090223A (ja) | 受信装置 | |
JP2014090224A (ja) | 受信装置 | |
KR101284393B1 (ko) | 직교 주파수 분할 다중 변조 방식 통신 시스템의 순환 지연 다이버시티 기법을 이용하는 송신기 및 잔여 주파수 오차를 추정하는 수신기 | |
JP2014090225A (ja) | 受信装置 | |
KR101153648B1 (ko) | 셀 탐색 및 입사각 추정 장치 및 그 방법 | |
JP2006115318A (ja) | 受信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12770982 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013509798 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12770982 Country of ref document: EP Kind code of ref document: A1 |