WO2012137862A1 - 回転電機の固定子 - Google Patents

回転電機の固定子 Download PDF

Info

Publication number
WO2012137862A1
WO2012137862A1 PCT/JP2012/059330 JP2012059330W WO2012137862A1 WO 2012137862 A1 WO2012137862 A1 WO 2012137862A1 JP 2012059330 W JP2012059330 W JP 2012059330W WO 2012137862 A1 WO2012137862 A1 WO 2012137862A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil end
radial direction
portions
stator
conductor
Prior art date
Application number
PCT/JP2012/059330
Other languages
English (en)
French (fr)
Inventor
昭夫 盛
明人 秋本
敦朗 石塚
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201280023557.6A priority Critical patent/CN103534902B/zh
Priority to US14/110,316 priority patent/US9559556B2/en
Publication of WO2012137862A1 publication Critical patent/WO2012137862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0025Shaping or compacting conductors or winding heads after the installation of the winding in the core or machine ; Applying fastening means on winding heads
    • H02K15/0031Shaping or compacting conductors in slots or around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Definitions

  • the present invention relates to, for example, a stator of a rotating electrical machine used as a motor or a generator in a vehicle.
  • each conductor wire forming the stator winding can be constituted by a single continuous conductor wire having a plurality of slot receiving portions and a plurality of turn portions.
  • each conductor wire may be formed of a plurality of conductor segments formed in a substantially U shape having a pair of straight portions and a turn portion connecting one ends of both straight portions to a predetermined number of the conductor segments. It can also be formed by connecting the open ends together on one side in the axial direction of the stator core.
  • Patent Document 1 discloses a method of forming a substantially U-shaped conductor segment.
  • stator windings have a pair of coil end portions that respectively project outward in the axial direction from both axial end surfaces of the stator core.
  • connection portions of conductor wires formed by connecting the turn portions of the conductor wires or predetermined open ends of the conductor segments are stacked in the radial direction of the stator core.
  • stator winding and the stator core are cooled by a cooling medium such as a coolant or cooling air supplied from the outside of the direction.
  • a cooling medium such as a coolant or cooling air supplied from the outside of the direction.
  • the supplied cooling medium cools the stator winding and the surface of the stator core by circulating them.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a stator of a rotary electric machine in which the cooling effect of the stator winding can be enhanced.
  • the invention according to claim 1 made in order to solve the above problems is an annular stator core having a plurality of slots arranged at predetermined intervals in the circumferential direction, and a plurality of stator cores assembled to the stator core. And a stator winding formed of a conductor wire, wherein the stator winding is a pair of coil end portions projecting outward in the axial direction from both axial end faces of the stator core. And in each of the coil end portions, the plurality of conductor wires are stacked in the radial direction of the stator core, and the conductor positioned on the radially outer side of two radially adjacent conductor wires.
  • the wire has an axial height equal to or higher than that of the conductor wire located radially inward, and the outermost conductor wire located radially outward is the innermost in the radial direction Axial height higher than the conductor line located Wherein the is set high.
  • the conductor wire whose axial height is set lower than the adjacent conductor wire on the outer side in the radial direction among the plurality of conductor wires laminated in the radial direction in each coil end portion A part protrudes inward in the axial direction from the adjacent radially outer conductor wire, and the protruding part is exposed when viewed from the outer side in the radial direction.
  • the contact area with the cooling medium such as the cooling fluid and the cooling air supplied to the coil end portion is increased, so that the cooling effect of the stator winding by the cooling medium can be sufficiently enhanced.
  • each coil end portion the axial height of the conductor wire positioned on the outermost side in the radial direction can be set the highest. Therefore, when the cooling medium is supplied from the radially outer side of the coil end portion, the coil end portion The cooling medium can easily enter the inside of the stator, and the cooling effect of the stator winding can be further enhanced.
  • the axial height gradually increases from the radially inner side to the radially outer side of the coil end portion.
  • the axial heights of all the conductor wires are made different. In this way, the contact area with the cooling medium of all the conductor wires other than the conductor wire positioned at the outermost side in the radial direction can be increased, so the conductor wires stacked in the radial direction can be It is possible to achieve uniform cooling, which makes it possible to maximize the cooling effect.
  • the axial height difference between the outermost conductor wire in the radial direction and the innermost conductor wire in the radial direction at each coil end portion Although it is more effective to increase the height, the larger the difference in the axial height, the larger the stator winding size. Therefore, the axial height of each conductor wire is set considering the balance between them. You should do it.
  • each of the conductor wires is inclined at a predetermined angle with respect to an axial end surface of the corresponding stator core.
  • the inclined portions located at the radially outer side have equal inclination angles with respect to the inclined portions located at the radially inner side or
  • the inclined portion of the conductor wire located at the outermost side in the radial direction is set larger than the inclined portion of the conductor wire located at the innermost side in the radial direction.
  • the inclined portion whose inclination angle is set smaller than the adjacent radially outer inclined portion is A portion protrudes axially inward from the adjacent radially outer inclined portion, and the protruding portion is exposed when viewed from the radial outer side.
  • each coil end portion since the inclination angle of the inclined portion located on the outermost side in the radial direction is the largest, when the cooling medium is supplied from the radially outer side of the coil end portion, the coil end portion The cooling medium can easily enter the interior of the housing, which can enhance the cooling effect of the stator winding more sufficiently.
  • the inclination angle of the inclined portion is gradually increased from the inner side in the radial direction to the outer side in the radial direction of the coil end portion.
  • the inclination angles of all the inclined portions are made different.
  • the contact area with the cooling medium can be increased for all the inclined parts other than the inclined part located on the outermost side in the radial direction, so that the inclined parts stacked in the radial direction can be It is possible to achieve uniform cooling, which makes it possible to maximize the cooling effect.
  • the inclination angle of each inclined portion may be appropriately set in consideration of the balance between the cooling effect of the stator winding and the enlargement of the stator winding.
  • the invention according to claim 3 is characterized in that the inclined portion of each of the conductor wires is formed in a step shape having a plurality of sections extending substantially parallel to the axial end surface of the corresponding stator core.
  • the contact area of the sloped portion with the cooling medium is further increased, thereby further enhancing the cooling effect of the stator winding.
  • the inclined portion is formed in a step shape, the axial height of the coil end portion protruding from the axial end surface of the stator core can be reduced and the radial width can be reduced.
  • the stator winding can be miniaturized.
  • each of the conductor lines connects a plurality of slot accommodating portions accommodated in the slots of the stator core and the slot accommodating portions adjacent to each other outside the slots.
  • a plurality of turns each turn having a top section extending generally parallel to an axial end face of the corresponding stator core at a central portion in a circumferential direction; each of the stator windings In the coil end portion, the top section located radially outside of the top sections of the turn sections of the two radially adjacent conductor wires is the top section located radially inward with respect to the top section located radially inside
  • the top sections of the turn portions of the conductor wires located at the outermost positions in the radial direction are the same as or longer than the extension direction lengths of the conductor wires, and the radial direction Wherein the stretching direction length of the conductor lines than the top section of the turn portion of the conductor line located on the side is set longer.
  • the section increases the contact area with the cooling medium supplied to the coil end. Therefore, the cooling effect of the stator winding by the cooling medium can be further enhanced.
  • the length in the extension direction of the top section located at the outermost side in the radial direction can be set to the longest, when the cooling medium is supplied from the radially outer side of the coil end, the cooling medium flows into the coil end. It becomes easy to enter, which can further enhance the cooling effect of the stator winding.
  • the extension direction length of the top section is from the radially inner side to the radially outer side of the coil end portion. It is preferable that the extension direction lengths of all the top sections are set to be different so as to be gradually longer. In this way, the contact area with the cooling medium can be increased for all the top sections other than the radially outermost top section, so that the radially stacked top sections It is possible to achieve uniform cooling, which makes it possible to maximize the cooling effect.
  • the invention according to claim 5 is that, in each of the coil end portions of the stator winding, the conductor wire positioned inward in the radial direction among the two radially adjacent conductor wires is positioned radially outward
  • the conductor wire which does not protrude outward in the axial direction with respect to the conductor wire to be formed, and which is positioned on the innermost side in the radial direction is axially inward with respect to It is characterized by protruding to the
  • the conductor wires that do not protrude outward in the axial direction from the adjacent radial direction outer conductor wires are reverse Can project axially inward.
  • the protruding portion is exposed when viewed from the radial outer side, and the contact area with the cooling medium is increased by the exposed portion. Therefore, the cooling effect of the stator winding by the cooling medium supplied to the coil end portion can be sufficiently enhanced.
  • the conductor wire positioned at the outermost side in the radial direction most protrudes outward in the axial direction, when the cooling medium is supplied from the outer side in the radial direction of the coil end portion, the cooling medium flows into the coil end portion. It is easy to enter, which can sufficiently enhance the cooling effect of the stator winding.
  • the number of conductor wires stacked in the radial direction in each coil end portion is three or more, all the conductor wires are partially inward in the axial direction from the adjacent radial outer conductor wires. It is preferred that the be made to project. In this way, the contact area with the cooling medium of all the conductor wires other than the conductor wire positioned at the outermost side in the radial direction can be increased, so the conductor wires stacked in the radial direction can be It is possible to achieve uniform cooling, which makes it possible to maximize the cooling effect.
  • the amount of radial inward protrusion of the radially inner conductor wire with respect to the adjacent radially outer conductor wire is also the cooling effect of the stator winding and the enlargement of the stator winding. It may be set appropriately in consideration of the balance between
  • the invention according to claim 6 is that, in each of the coil end portions of the stator winding, the axial height of the conductor wire is gradually increased from the radially inner side to the radial direction outer side of the coil end portion. It is characterized in that it is set to be
  • the sixth aspect of the present invention it is possible to increase the contact area with the cooling medium with respect to all the conductor wires other than the conductor wire positioned at the outermost side in the radial direction in each coil end portion. Therefore, the cooling effect of the stator winding can be enhanced efficiently and uniformly.
  • each of the conductor lines extends parallel to one another in a straight shape and has a plurality of slot accommodation portions arranged at predetermined intervals in the longitudinal direction of the conductor lines, and the adjacent slot accommodation portions And the coil end portions of the stator winding are disposed on the same side in the axial direction of the stator core.
  • the turn portion which is constituted by the turn portion and which is located radially outside of the two conductor wires adjacent in the radial direction is a radially inner side.
  • the axial height is set equal to or higher than that of the turn portion located at the same position, and the turn portion of the conductor wire located at the outermost side in the radial direction is located at the innermost side in the radial direction Said conductor Characterized in that the are from the turn portion is set higher axial height.
  • each coil end portion the axial height of the turn portion located at the outermost side in the radial direction can be set the highest. Therefore, when the cooling medium is supplied from the outer peripheral side of each coil end portion, each coil end The cooling medium can easily enter the interior of the part, which can sufficiently enhance the cooling effect of the stator winding.
  • each of the conductor wires includes a pair of straight portions, a turn portion connecting one end of the straight portions, and a pair of open ends formed by bending the other end of the straight portions.
  • a plurality of segment conductors each having a portion are connected in a predetermined state, and one of the coil end portions of the stator winding is one of the conductor wires located on one side in the axial direction of the stator core
  • the other of the coil end portions is formed by the turn portion of the conductor segment, and the predetermined open end portions of the conductor segments of the conductor wire located on the other axial direction side of the stator core are connected to each other.
  • the turn portion positioned radially outward is The axial height is set equal to or higher than that of the turn portion located at the same position, and the turn portion of the conductor wire located at the outermost side in the radial direction is located at the innermost side in the radial direction.
  • the axial height of the conductor wire is set to be higher than the turn portion of the conductor wire, and the other of the coil end portions is located radially outward of the connection portions of two radially adjacent conductor wires.
  • the connecting portion is set to have an axial height equal to or higher than that of the connecting portion located radially inward, and the connecting portion of the conductor wire located at the outermost side in the radial direction has a diameter It is characterized in that the axial height is set to be higher than the connection portion of the conductor wire located in the innermost side in the direction.
  • the axial height is set to be lower than that of the adjacent radially outer turn portion among the plurality of turn portions stacked in the radial direction.
  • the turn portion has an increased contact area with the cooling medium supplied to the coil end portion.
  • the connection portion whose axial height is set lower than the adjacent radial direction outer connection portion is supplied to the coil end portion The contact area with the cooling medium is increased. Therefore, the cooling effect of the stator winding by the cooling medium supplied to each coil end portion can be sufficiently enhanced.
  • the axial height of the turn located at the outermost in the radial direction at one coil end can be set the highest, and the axial height of the connection located at the outermost in the radial direction at the other coil end.
  • each of the coil end portions of the stator winding is supplied with a cooling medium from the radially outer side of the stator core.
  • the conductor wire located at the outermost side in the radial direction is set higher in axial height than the conductor wire located at the innermost side in the radial direction.
  • the cooling medium supplied from the radially outer side of the stator core can easily enter the inside of each coil end. Thereby, the cooling effect by the cooling medium can be more reliably exhibited.
  • FIG. 1 is an axial sectional view showing an entire configuration of a rotary electric machine on which a stator according to a first embodiment is mounted.
  • FIG. 3A is an axial end view and a side view of a stator according to a first embodiment.
  • FIG. 3A is an axial end view and a side view of a stator according to a first embodiment.
  • 5 is an axial end view of a stator core according to Embodiment 1.
  • FIG. FIG. 2 is a plan view of a core segment according to Embodiment 1.
  • 2 is a perspective view of a stator winding according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view of a conductor wire that constitutes a stator winding according to Embodiment 1.
  • FIG. 5 is a front view showing the overall shape of the conductor wire according to Embodiment 1; It is a perspective view which shows the shape of the turn part of the conductor wire which concerns on Embodiment 1.
  • FIG. FIG. 7 is a front view of the turn portion radially arranged in the first and second coil end portions of the stator winding according to Embodiment 1 as viewed from the outer side in the radial direction.
  • FIG. 7 is a front view of the first coil end portion of the stator winding according to the first embodiment viewed from the radial direction outer side in the radially stacked turn portion.
  • FIG. 10 is a perspective view of a stator according to Embodiment 2 as viewed from the conductor segment insertion side.
  • FIG. 14 is an explanatory view showing a state in which a conductor segment is inserted into a slot of a stator core in Embodiment 2.
  • FIG. 13 is a front view of the turn portion radially arranged in the first and second coil end portions of the stator winding according to Embodiment 2 as viewed from the outer side in the radial direction.
  • FIG. 18 is a front view of the turn portion radially arranged in the first coil end portion of the stator winding according to Embodiment 2 as viewed from the outer side in the radial direction.
  • FIG. 13 is a front view of the turn portion radially arranged in the first and second coil end portions of the stator winding according to Embodiment 2 as viewed from the outer side in the radial direction.
  • FIG. 18 is a front view of the turn portion radially arranged in the first coil end portion of the stator winding according to Embodiment 2 as viewed from the outer side in the radial direction.
  • FIG. 13 is a front view of a connecting portion stacked and arranged in a radial direction in a second coil end portion of a stator winding according to a second embodiment, viewed from the outer side in the radial direction. It is the front view which looked from the radial direction outer side the turn part laminatedly arranged by radial direction in the 1st coil end part of the stator winding concerning other embodiments.
  • FIG. 1 is an axial sectional view schematically showing the configuration of a rotating electrical machine on which the stator of the present embodiment is mounted.
  • the rotary electric machine 1 according to the present embodiment includes a housing 10 in which a pair of substantially bottomed cylindrical housing members 10A and 10B are joined at openings, and bearings 11 and 12 on the housing 10.
  • a rotary shaft 13 rotatably supported via the rotor 14, a rotor 14 fixed to the rotary shaft 13, and a stator 20 fixed to the housing 10 at a position surrounding the rotor 14 in the housing 10; Have.
  • the rotary electric machine 1 is provided with a refrigerant supply unit provided with a pair of refrigerant pipelines 15 and 16 for supplying a cooling medium for cooling to the stator winding 40 of the stator 20.
  • the refrigerant pipes 15 and 16 are attached to the housing members 10A and 10B in such a manner as to communicate with the inside and the outside of the housing 10, respectively.
  • Discharge ports 15A and 16A for discharging a cooling medium are provided at the tip of each of the refrigerant pipes 15 and 16.
  • the discharge ports 15A, 16A open vertically above the first and second coil end portions 47, 48 of the stator winding 40 of the stator 20 housed in the housing 10.
  • a recovery means for recovering the cooling medium discharged from the discharge ports 15A and 16A and returning it to the refrigerant supply means and a cooler for cooling the heated cooling medium (not shown) Not shown) or the like is provided in the middle of the circulation path.
  • ATF AutomAtic TrAnsmission Fluid
  • the rotor 14 has a plurality of permanent magnets arranged at a predetermined distance in the circumferential direction on the radially outer side facing the inner side in the radial direction of the stator 20, and the permanent magnets have a polarity of N in the circumferential direction A plurality of magnetic poles alternating with the south pole are formed.
  • the number of magnetic poles of the rotor 14 can be appropriately set according to the specifications of the rotating electrical machine. In the present embodiment, a rotor having eight poles (N pole: 4, S poles: 4) is used.
  • the stator 20 is a three-phase stator comprising an annular stator core 30 formed by assembling a plurality of core segments 32, and a plurality of conductor wires 50 assembled to the stator core 30. And a winding 40. Insulating paper may be disposed between the stator core 30 and the stator winding 40.
  • the stator core 30 is formed by connecting a plurality of (for example, 24 in the present embodiment) core segments 32 adjacent to each other in the circumferential direction, as shown in FIGS. 3 and 4.
  • the stator core 30 has a plurality of slots 31 formed on the radially inner peripheral surface thereof and arranged at predetermined intervals in the circumferential direction.
  • the stator core 30 includes an annular back core portion 33 located radially outward and a plurality of teeth 34 protruding radially inward from the back core portion 33 and arranged at a predetermined distance in the circumferential direction. Become.
  • slots 31 which are opened inward in the radial direction of the stator core 30 and extend in the radial direction are formed.
  • the circumferentially opposite side surfaces 34A of the adjacent teeth 34 that is, a pair of side surfaces 34A defining one slot 31 are parallel to each other.
  • each slot 31 extends in the radial direction with a constant circumferential width dimension.
  • two slots 31 are provided for one magnetic pole of the rotor 14 having eight magnetic poles and for one phase of the three-phase stator winding 40. Accordingly, the total number of slots 31 provided in the stator core 30 is 48 (ie, 8 ⁇ 3 ⁇ 2). The total number of teeth 34 provided in the stator core 30 is also 48.
  • the core segment 32 constituting the stator core 30 is formed by laminating a plurality of electromagnetic steel plates formed in a predetermined shape by press punching in the axial direction of the stator core 30.
  • the stator core 30 is annularly fixed (retained) by fitting the outer cylinder 37 to the outer periphery of the core segment 32 assembled in an annular shape (see FIG. 2A).
  • the stator winding 40 is formed by stacking a predetermined number (12 in the present embodiment) of conductor wires 50 formed in a predetermined waveform shape to form a flat strip conductor wire assembly.
  • the conductor wire assembly is formed in a cylindrical shape by winding the conductor wire assembly a predetermined number of times.
  • each conductor wire (electric wire) 50 constituting the stator winding 40 has a conductor 58 made of copper of rectangular cross section, an inner layer 59A and an outer layer 59B, and an insulating film covering the outer periphery of the conductor 58. And 59.
  • the thickness of the insulating film 59 including the inner layer 59A and the outer layer 59B is set in the range of 100 ⁇ m to 200 ⁇ m. As described above, since the thickness of the insulating film 59 is large, it is not necessary to sandwich and insulate insulating paper or the like between the conductor wires 50 in order to insulate the conductor wires 50 from each other.
  • the outer layer 59B is formed of an insulating material such as nylon
  • the inner layer 59A is formed of a thermoplastic resin having a glass transition temperature higher than that of the outer layer 59B, or an insulating material such as polyamide imide having no glass transition temperature.
  • the outer layer 59B is crystallized earlier than the inner layer 59A by the heat generated in the rotary electric machine 1, so the surface hardness of the outer layer 59B becomes high, and the conductor wire 50 is not easily scratched.
  • each conductor wire 50 extends straight in parallel to one another and has a plurality of slot receiving portions 51 arranged at predetermined intervals in the longitudinal direction of the conductor wires, and adjacent slot receiving portions 51 as slots. It consists of a single continuous conductor wire having a plurality of turn parts 52 alternately connected on one end side and the other end side of the accommodation part 51, and the length of one is about 3 m.
  • a slot housing portion lamination portion in which the slot housing portions 51 of the plurality of conductor wires 50 are stacked in the radial direction of the stator core 30 at the axial center 46 and a plurality of turn portions 52 of a plurality of conductor wires 50 protruding outward in the axial direction from both axial end surfaces of the stator core 30 on both sides in the axial direction are laminated in the radial direction of the stator core 30 (8 in this embodiment) And the first and second coil end portions 47 and 48 which are laminated.
  • a top section 53 extending substantially parallel to the axial end face 30A of the stator core 30 is provided substantially at the center in the extending direction of the turn section 52 of the conductor wire 50.
  • a step-shaped inclined portion inclined at a predetermined angle with respect to the end face 30A of the stator core 30 is provided.
  • the top section 53 is formed with a non-twist crank portion 54 formed in a crank shape along the end face 30A of the stator core 30.
  • the deviation of the radial position due to the crank shape of the crank portion 54 is approximately the width of the conductor wire 50.
  • the turn portion 52 of the conductor wire 50 extends in a direction substantially parallel to the axial end face 30 A of the stator core 30 and has a pair of sections 56 respectively adjacent to the pair of slot accommodating portions 51 connected by the turn portion 52.
  • the protrusion height h1 from the end surface 30A of the stator core 30 of the turn part 52 becomes low.
  • the height H1 of the first and second coil ends 47 and 48 is reduced.
  • the length of the section 56 of the turn portion 52 of the conductor wire 50 is d1 and the distance between the slots 31 adjacent in the circumferential direction is d2, d1 ⁇ d2.
  • the turn portion 52 of the conductor wire 50 is formed between the crank portion 54 and the pair of sections 56, and has a pair of sections 57 extending substantially parallel to the axial end face 30A of the stator core 30. That is, the turn portion 52 of the conductor wire 50 is formed with a section including the top section 53 and extending substantially parallel to the end faces 30A of a total of seven stator cores 30. Thereby, compared with the case where a section extending substantially in parallel to the end face 30A of the stator core 30 is not provided, the height h1 of protrusion of the turn portion 52 from the end face 30A of the stator core 30 can be significantly reduced. Further, by providing the sections 56, 57 extending substantially parallel to the end face 30A of the stator core 30, both of the pair of inclined portions 55 of the turn portion 52 located on both sides of the top section 53 have a step shape.
  • the stator winding 40 has a diameter in the first and second coil end portions 47 and 48 formed by laminating a plurality of turn portions 52A to 52h in the radial direction.
  • the turn 52 positioned radially outward has an axial height relative to the turn 52 positioned radially inward (that is, the axial direction of the corresponding stator core 30
  • the protruding height h1 from the end face 30A of the is set high. Since the relationship of the axial height h1 is applied to all the turns 52 in the first and second coil end portions 47 and 48, the axial height of the radially outermost turn 52A is increased in the axial direction.
  • the height h1 is set the highest, and the axial height h1 of the radially innermost turn portion 52h is set the lowest.
  • the turn portions 52 of the first and second coil end portions 47 and 48 have a high axial height h1 gradually from the radially inner side to the radially outer side of the first and second coil end portions 47 and 48.
  • the axial heights h1 of all the turn portions 52A to 52h are made different.
  • the turn portion 52 positioned inward in the radial direction corresponds to the turn portion 52 positioned outward in the radial direction. Since the axial height h1 is set to a low value, it protrudes inward in the axial direction by a predetermined amount while being displaced. That is, as shown in FIG. 10, when the first and second coil end portions 47 and 48 are viewed from the radial direction outward, the turn portions 52B to 52h other than the turn portion 52A located at the outermost side in the radial direction An axially inward displacement relative to the adjacent radially outer turn 52 is projected, and the projecting portion is exposed. As a result, in the turn portions 52B to 52h other than the turn portions 52A located on the radially outermost side of the first and second coil end portions 47 and 48, the contact area with the cooling medium is increased by the exposed portions. It has been
  • the top sections 53 of the turn portions 52 are set so that the extension direction length L1 of the conductor wire 50 is gradually extended from the radially inner side to the radially outer side of the first and second coil end portions 47, 48 (See FIG. 10). Therefore, the extension direction length L1 of the radially outermost crest section 53A of the first and second coil end portions 47, 48 is set the longest, and the radially innermost crest section 53h is stretched The direction length L1 is set to be the shortest.
  • the inclination angle ⁇ 1 with respect to the end surface 30A of the stator core 30 is from the radially inner side to the radially outer side of the first and second coil end portions 47, 48. It is set to become gradually larger toward the end (see FIG. 10). Therefore, the inclination angle ⁇ 1 of the inclined portion 55A located on the outermost side in the radial direction of the first and second coil end portions 47 and 48 is set the largest, and the inclination angle ⁇ 1 of the inclined portion 55h located on the innermost side in the radial direction. Is set the smallest.
  • first and second coil end portions 47 and 48 of the present embodiment are configured as described above, so that the first and second coil end portions 47 to 47 from the refrigerant pipes 15 and 16 of the refrigerant supply unit are provided.
  • the cooling medium supplied to the radially outer side of the first and second coil end portions 47, 48 is facilitated to enter the radially inner side of the first and second coil end portions 47, 48, and the cooling medium having entered the radial direction inner side is all the turns. 52 is designed to be able to contact a wider range of surfaces. Thereby, the cooling effect of the stator winding 40 by the cooling medium supplied to the first and second coil end portions 47 and 48 is sufficiently enhanced.
  • the stator winding 40 and the stator core 30 can be assembled by inserting the teeth 34 of each core segment 32 from the outside in the radial direction of the cylindrical stator winding 40. After the core segment 32 is disposed in an annular shape along the stator winding 40, the cylindrical outer cylinder 37 is fitted to the outer periphery of the core segment 32. As a result, as shown in FIGS. 2A-2B, the stator winding 40 is assembled in a state in which the predetermined slot accommodating portion 51 of each conductor wire 50 is accommodated in the predetermined slot 31 of the stator core 30.
  • the adjacent slot accommodating portions 51 of the conductor wire 50 are respectively accommodated in two slots 31 separated by a predetermined number of slots (for example, six slots in the present embodiment) in the circumferential direction. Further, the turn portions 52 connecting the adjacent slot accommodating portions 51 of the conductor wire 50 respectively project from the end face 30A of the corresponding stator core 30, and the stator winding is carried out by the many turn portions 52 projecting therefrom. First and second coil end portions 47, 48 are formed at both axial ends of the wire 40.
  • the rotary electric machine 1 including the stator 20 of the present embodiment configured as described above is cooled for cooling from the discharge ports 15A and 16A of the refrigerant pipelines 15 and 16 by the refrigerant supply unit.
  • the medium is ejected.
  • the cooling medium discharged from the discharge ports 15A, 16A is supplied to the radially outer side of the first and second coil end portions 47, 48.
  • the supplied cooling medium enters the inside from the radially outer side of the first and second coil end portions 47, 48, and radially along the inner surface of each turn portion 52 and the end face 30A of the stator core 30. Flowing radially outward from the outside cools the first and second coil end portions 47, 48.
  • the axial height h1 of the turn portion 52 in the first and second coil end portions 47 and 48 is gradually increased from the inner side in the radial direction toward the outer side in the radial direction, and the turn portion located at the outermost side in the radial direction Since the contact area of the turn portion 52 with the cooling medium other than 52A is increased, the cooling medium that easily enters the inside of the first and second coil end portions 47, 48 is the inner surface of each turn portion 52.
  • the first and second coil end portions 47 and 48 are efficiently and effectively cooled by flowing smoothly from the radially outer side to the radially inner side along the lower and upper ends.
  • the cooling medium that has cooled the first and second coil end portions 47 and 48 and the stator core 30 is recovered by the recovery means and returned to the refrigerant supply means, and then discharged again from the discharge ports 15A and 16A. It is used by being circulated.
  • the radial direction of the turn portions 52 of the two adjacent conductor wires 50 in the first and second coil end portions 47 and 48 The axial height h1 of the turn portion 52 located outside is set higher than the turn portion 52 located inside in the radial direction, and the turn portion 52 located inside in the radial direction corresponds to the turn portion 52 located outside in the radial direction On the other hand, it projects inward in the axial direction and is exposed.
  • the contact area of the turn portion 52 stacked in the radial direction of the first and second coil end portions 47 and 48 with the cooling medium is increased, so that the first and second coil end portions 47 and 48 are supplied.
  • the cooling effect by the cooling medium can be sufficiently enhanced.
  • the axial height h1 of the turn portion 52 of the conductor wire 50 at the first and second coil end portions 47 and 48 is set gradually higher from the radially inner side toward the radially outer side.
  • all the turn portions 52 except the radially outermost turn portion 52A are projected inward in the axial direction with respect to the adjacent radially outer turn portion 52 to be exposed. . Therefore, since the contact area with the cooling medium of all the turn parts 52 except the turn part 52A located in the radial direction outermost side of the 1st and 2nd coil end parts 47 and 48 is increasing, the 1st and 2nd The cooling effect of the second coil end portions 47 and 48 (the stator winding 40) can be efficiently and uniformly enhanced.
  • the first and second coil end portions 47 and 48 are set. Since the cooling medium supplied from the radially outer side of 48 easily enters the insides of the first and second coil end portions 47, 48, the first and second coil end portions 47, 48 (also The cooling effect of the stator winding 40) can be sufficiently enhanced.
  • the turn part 52 of the conductor wire 50 has the inclination part 55 in the both sides of the top section 53, respectively, and two adjacent inclination in the radial direction in the 1st and 2nd coil end parts 47 and 48
  • the inclination angle ⁇ 1 of the inclined portion 55 located on the radially outer side is set larger than the inclination angle ⁇ 1 of the inclined portion 55 located on the inner side in the radial direction. That is, the inclined portion 55 located inward in the radial direction is disposed so as to protrude inward in the axial direction with respect to the inclined portion 55 located inward in the radial direction. Therefore, the cooling effect of the stator winding 40 by the cooling medium supplied to the first and second coil end portions 47 and 48 can be more sufficiently enhanced.
  • the inclination angle ⁇ 1 of the inclined portion 55 is set so as to gradually increase from the radial inner side to the radial outer side of the first and second coil end portions 47 and 48.
  • All the inclined portions 55 other than the radially outermost inclined portion 55 are disposed so as to protrude axially inward with respect to the adjacent radially outer inclined portions 55. Therefore, the contact area with the cooling medium (outside air) of all the inclined parts 55 except the inclined part 55 located in the radial direction outermost side of the 1st and 2nd coil end parts 47 and 48 is increasing,
  • the cooling effect of the first and second coil end portions 47 and 48 (the stator winding 40) can be enhanced efficiently and uniformly.
  • the first and second coil end portions 47 and 48 are formed.
  • the cooling medium supplied from the outer side in the radial direction of the coil easily enters the insides of the first and second coil end portions 47, 48, so that the first and second coil end portions 47, 48 (stator The cooling effect of the winding 40) can be sufficiently enhanced.
  • the sloped portion 55 is formed in a step shape, the contact area of the sloped portion 55 with the cooling medium is further increased, so the first and second coil end portions 47, 48 (the stator winding 40) Can further enhance the cooling effect of Further, by forming the inclined portion 55 in a step-like shape, the axial heights of the first and second coil end portions 47 and 48 protruding from the end face 30A of the stator core 30 (that is, the stator core 30). Since the radial direction width can be reduced while lowering the height of projection H1 from the end face 30A, the stator winding 40 can be miniaturized.
  • the turn part 52 of the conductor wire 50 in this embodiment has the top section 53 in the center part of the extending direction, and two top sections 53 radially adjacent to each other at the first and second coil end parts 47, 48.
  • the extension direction length L1 of the top section 53 located radially outward is set larger than the extension direction length L1 of the top section 53 located radially inward. Therefore, among the plurality of top sections 53 stacked in the radial direction in the first and second coil end portions 47 and 48, the top in which the extension direction length L1 is set shorter than the top section 53 adjacent to the outside in the radial direction.
  • the turn portion 52 having the section 53 has an increase in the contact area of the inclined portion 55 with the cooling medium. Therefore, the cooling effect of the stator winding 40 by the cooling medium supplied to the first and second coil end portions 47 and 48 can be further enhanced.
  • the stator winding 40 of the present embodiment is constituted by a continuous conductor wire 50 having a plurality of slot receiving portions 51 and a plurality of turn portions 52, and both of the first and second coil end portions 47 and 48 are formed.
  • the first and second coil end portions 47 and 48 are of the type constituted by a plurality of turn portions 52 stacked in the radial direction of the stator core 30. The cooling effect by the supplied cooling medium can be exhibited more sufficiently.
  • FIG. 11 is a perspective view of the stator according to Embodiment 2 as viewed from the conductor segment insertion side.
  • FIG. 12 is a perspective view seen from the conductor segment welding side of the stator according to the second embodiment.
  • FIG. 13 is an explanatory view showing a state in which the conductor segment is inserted into the slot of the stator core in the second embodiment.
  • the stator 120 of the present embodiment is mounted on the rotary electric machine 1 used as a vehicle generator as in the first embodiment, but as shown in FIGS. 11 to 13, it is used as the stator winding 140.
  • the second embodiment differs from the first embodiment in that a segment type connector is adopted in which a plurality of substantially U-shaped conductor segments 150 are assembled to the stator core 130 and then connected in a predetermined state.
  • the stator 120 is formed by bending an annular stator core 130, a pair of straight portions, a turn portion connecting one end of the straight portions, and the other end of the straight portion. And a stator winding 140 formed by connecting a plurality of conductor segments having a pair of open ends in a predetermined state.
  • the stator core 130 is an integral type formed by laminating a plurality of annular electromagnetic steel plates in the axial direction of the stator core 30.
  • the stator core 130 includes an annular back core portion 133, and a plurality of teeth portions 134 protruding radially inward from the back core portion 133 and arranged at a predetermined distance in the circumferential direction, and adjacent teeth portions A slot 131 is formed between 134.
  • the stator winding 140 assembled to the stator core 130 is constituted by a plurality of substantially U-shaped conductor segments 150 whose terminals are joined to each other.
  • An insulating film (not shown) is coated on the outer periphery of most of the conductor segments 150 except for the both ends.
  • the conductor segment 150 has a U-shape including a pair of parallel straight parts 151, 151 and a turn 152 connecting one ends of the pair of straight parts 151, 151 to each other. Is adopted.
  • FIG. 13 shows a pair of two conductor segments 150A and 150B inserted and arranged in two adjacent slots 131 and 131 of the same phase.
  • symbol 124 has shown the insulator which electrically insulates between the stator core 130 and the stator winding 140. As shown in FIG.
  • the U-shaped conductor segment 150 is inserted from one end side in the axial direction into two slots 131, 131 in which a pair of straight portions 151, 151 are separated by a predetermined one magnetic pole pitch of the stator core 130. In this manner, the straight portions 151 of the predetermined number of conductor segments 150 are inserted and arranged in all the slots 131. In the case of the present embodiment, a total of ten straight portions 151 in each slot 131 are stacked and arranged in one radial direction row (10 layers).
  • stator winding 140 having three phase windings (U phase, V phase, W phase) assembled to stator core 30 is formed. Be done.
  • a winding (coil) that makes 10 revolutions around the stator core 130 is formed by the U-shaped conductor segment 150 that is a basis.
  • a segment integrally having an output lead wire and a neutral point lead wire, and a segment having a turn portion connecting the first and second turns are basically And the conductor segment 150 which is different from the other.
  • the winding end of each phase of the stator winding 140 is wire-connected by star connection using these deformed segments.
  • the stator winding 140 according to the present embodiment can also be regarded as being constituted by a plurality of conductor lines each formed by connecting a predetermined number of conductor segments 150.
  • a plurality of turn portions 152 of the conductor segment 150 protruding from one end surface of the stator core 130 are fixed to one axial end side of the stator winding 140 formed in this manner.
  • a first coil end portion 147 laminated in the radial direction of the daughter core 130 is formed.
  • the turn portion 152 located radially outward has an axial height h2 with respect to the turn portion 152 located radially inward. It is set high. Since the relationship of the axial height h2 is applied to all the turns 152 of the first coil end portion 147, the axial height h2 of the radially outermost turn 152A is the highest.
  • the axial height h2 of the turn portion 152j which is set and located radially inward is set to be the lowest. Further, the axial height h2 of the turn portion 152 of the first coil end portion 147 is gradually increased from the inner side in the radial direction of the first coil end portion 147 toward the outer side in the radial direction. The direction height h2 is made to be different.
  • the turn 152 positioned radially inward has an axial height relative to the turn 152 positioned radially outward.
  • the turn portions 152B to 152j other than the turn portion 152A located at the outermost side in the radial direction The position is shifted inward in the axial direction with respect to the turn portion 152, and a portion protrudes, and the protruding portion is exposed.
  • the contact area with the cooling medium is increased by the exposed portion.
  • the top section 153 of the turn portion 152 is set such that the extension direction length L2 gradually increases from the radially inner side to the radial outer side of the first coil end portion 147 (see FIG. 15). Therefore, in the first coil end portion 147, the extension direction length L2 of the top section 153A located at the outermost side in the radial direction is set the longest, and the extension direction length L2 of the top section 153j located at the innermost side in the radial direction is It is set the shortest.
  • the inclined portion 155 of the turn portion 152 is set such that the inclination angle ⁇ 2 with respect to the end surface 130A of the stator core 30 gradually increases from the radially inner side to the radially outer side of the first coil end portion 147 (See Figure 15). Therefore, in the first coil end portion 147, the inclination angle ⁇ 2 of the turn portion 152A located at the outermost side in the radial direction is set the largest, and the inclination angle ⁇ 2 of the turn portion 152j located at the innermost side in the radial direction is set the smallest. ing.
  • connection portion 156 of the conductor segment 150 protruding from the other end surface of the stator core 130 are laminated in the radial direction of the stator core 130
  • a coil end portion 148 is formed.
  • the connection portion 156 located radially outward has an axial height (fixed to the connection portion 156 located radially inward). The height h3 from the end face 130A of the daughter core to the end joint portion 157 is set high.
  • the axial height h3 of the radially outermost connecting portion 156A is the highest.
  • the axial height h3 of the connection portion 156j which is set and located radially inward is set to be the lowest.
  • the axial height h3 of the connection portion 156 is gradually increased from the inner side in the radial direction of the second coil end portion 148 toward the outer side in the radial direction.
  • the direction height h3 is made to be different.
  • connection portion 156 positioned radially inward has an axial height relative to the connection portion 156 positioned radially outward.
  • h3 By setting h3 to a low level, it is in a state in which the position is shifted inward in the axial direction by a predetermined amount, and a part is protruded. That is, as shown in FIG. 16, when the second coil end portion 148 is viewed from the radially outer side, the connecting portions 156B to 156j other than the connecting portion 156A located at the outermost side in the radial direction are adjacent to the radially outer side.
  • connection portion 156 is displaced inward in the axial direction with respect to the connection portion 156, and a portion protrudes, and the protruding portion is exposed.
  • connection portions 156B to 156j other than the connection portion 156A located at the outermost side in the radial direction of the second coil end portion 148, the contact area with the cooling medium is increased by the exposed portion.
  • the oblique portion 154 of the conductor segment 150 is set such that the inclination angle ⁇ 3 with respect to the end surface 130A of the stator core 130 gradually increases from the radially inner side to the radially outer side of the second coil end portion 148. (See FIG. 16). Therefore, in the second coil end portion 148, the inclination angle ⁇ 3 of the oblique portion 154A located at the outermost side in the radial direction is set the largest, and the inclination angle ⁇ 3 of the oblique portion 154j located at the innermost side in the radial direction is the smallest. It is set.
  • first and second coil end portions 147 and 148 of the present embodiment are configured as described above, so that the first and second coil end portions 147 through the refrigerant pipelines 15 and 16 of the refrigerant supply unit are obtained.
  • the cooling medium supplied to the radially outer side of 148 is facilitated to approach the radial inner side of the first and second coil end portions 147, 148, and the cooling medium that has entered the radial direction inner side is all the turns.
  • a wider range of surfaces can be contacted with respect to 152 and connection 156. As a result, the cooling effect of the stator winding 140 by the cooling medium supplied to the first and second coil end portions 147 and 148 is sufficiently enhanced.
  • the refrigerant supply means A cooling medium is supplied from the discharge ports 15A, 16A radially outward of the first and second coil end portions 147, 148.
  • the supplied cooling medium enters the inside from the radially outer side of the first and second coil end portions 147 and 148, and the inner surface of each turn portion 152 and each connection portion 156 and the end surface of the stator core 130. It flows from the radially outer side to the radially inner side along 130 A to cool the first and second coil end portions 147, 148.
  • the first coil end portion 147 is positioned radially outside of two turn portions 152 adjacent in the radial direction.
  • the axial height h2 of the turn portion 152 is set to be higher than that of the turn portion 152 located radially inward, and the turn portion 152 located radially inward is in the axial direction with respect to the turn portion 152 located radially outward Since it is disposed so as to protrude inward and be exposed, the cooling effect by the cooling medium supplied to the first coil end portion 147 can be sufficiently enhanced.
  • connection portion 156 which is set higher than 156 and located radially inward, is disposed so that a part thereof protrudes inward in the axial direction with respect to the connection portion 156 located radially outward, and is thus exposed.
  • the cooling effect of the cooling medium supplied to the second coil end portion 148 can be sufficiently enhanced.
  • the axial heights h2 and h3 of the turn portion 152 or the connection portion 156 in the first and second coil end portions 147 and 148 are radially outward from the radially inner side. Is set to be gradually higher in the radial direction, all the turn portions 152 or the connection portions 156 other than the radially outermost turn portion 152A or the connection portion 156A are adjacent to the radially outer side.
  • the first and second coil end portions 147 and 148 are cooled because they are disposed so that a portion protrudes inward in the axial direction with respect to the turn portion 152 or the connection portion 156 and is exposed. The effects can be enhanced efficiently and uniformly.
  • the turn portion 152 or the connection portion 156 has the inclined portion 155 or the oblique portion 154 on both sides of the central portion, respectively, and is radially adjacent to the first and second coil end portions 147 and 148 Of the two inclined parts 155 or oblique parts 154, the inclined parts 155 located at the radially outer side or the inclination angles ⁇ 2 and ⁇ 3 of the inclined parts 154 of the inclined parts 155 or oblique parts 154 located radially inward
  • the inclination angles are set to be larger than ⁇ 2 and ⁇ 3.
  • the inclined portion 155 or the oblique portion 154 located radially inward is disposed so that a part thereof protrudes inward in the axial direction with respect to the inclined portion 155 or the oblique portion 154 located radially outward and is exposed. It is done. Therefore, the cooling effect of the stator winding 140 by the cooling medium supplied to the first and second coil end portions 147 and 148 can be more sufficiently enhanced.
  • the turn portion 152 of the conductor segment 150 in the present embodiment has a top section 153 at the central portion in the extending direction, and of the two top sections 153 radially adjacent to each other in the first coil end section 147, the radial direction
  • the extension direction length L2 of the top section 153 located outside is set larger than the extension direction length L2 of the top section 153 located inside in the radial direction. Therefore, among the plurality of top sections 153 stacked in the radial direction in the first coil end portion 147, a turn having the top section 153 in which the extension direction length L2 is set shorter than the adjacent top section 153 in the radial outer side.
  • the portion 152 the contact area of the inclined portion 155 with the cooling medium is increased. Therefore, the cooling effect of the stator winding 140 by the cooling medium supplied to the first coil end portion 147 can be further enhanced.
  • the turn portions 52 of the first and second coil end portions 47 and 48 are all made to have the axial height h1 gradually increase from the inner side in the radial direction toward the outer side in the radial direction.
  • the axial heights h1 of the turn portions 52 of the first embodiment are different from each other, but like the first coil end portion 47A shown in FIG. 17, the axial direction of the eight turn portions 52A to 52h stacked in the radial direction
  • the height h1 can be increased stepwise two by two from the radially inner side toward the radially outer side.
  • the number of the turn portions 52 having the same axial height h1 is two, but the diameter may be in the range of 0 to a plurality of arbitrary numbers It may be irregularly changed from the inner side toward the outer side in the radial direction.
  • the condition that the axial height h1 is set to be higher than at least the turn portion 52h positioned at least the innermost side in the radial direction is the turn portion 52A positioned at the outermost side in the radial direction. Become. Therefore, in the case of the first coil end portion 47A shown in FIG. 17, the number of turn portions 52 having the same axial height h1 is seven at the maximum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 固定子20は、周方向に所定間隔で配置された複数のスロット31を有する円環状の固定子コア30と、固定子コア30に組み付けられた複数の導体線50からなる固定子巻線40と、を備えている。各導体線50は、固定子コア30のスロット31に収容される複数のスロット収容部51と、スロット31の外部で隣接するスロット収容部51同士を接続している複数のターン部52とを有する。固定子巻線40は、固定子コア30の軸方向両端面から軸方向外方へそれぞれ突出する第1及び第2コイルエンド部47、48を有する。各コイルエンド部において、複数の導体線50のターン部52が固定子コア30の径方向に積層されており、且つターン部52の軸方向高さh1が径方向内側から径方向外側に向かって徐々に高くなるように設定されている。

Description

回転電機の固定子
 本発明は、例えば車両において電動機や発電機として使用される回転電機の固定子に関する。
従来、周方向に所定間隔で配置された複数のスロットを有する円環状の固定子コアと、固定子コアに組み付けられた複数の導体線からなる固定子巻線と、を備えた回転電機の固定子が知られている。なお、各導体線は、固定子コアのスロットに収容された複数のスロット収容部と、スロットの外部で隣接するスロット収容部同士を接続しているターン部とを有する。
また、固定子巻線をなす各導体線は、複数のスロット収容部と複数のターン部を有する一本の波形の連続導体線により構成することができる。あるいは、各導体線は、一対の直状部と両直状部の一端同士を接続するターン部とを有する略U字形状に成形された複数の導体セグメントを用いて、それら導体セグメントの所定の開放端部同士を固定子コアの軸方向一方側で接続することにより形成することもできる。なお、特許文献1には、略U字形状の導体セグメントの成形方法が開示されている。
これらの固定子巻線は、固定子コアの軸方向両端面から軸方向外方へそれぞれ突出する一対のコイルエンド部を有する。なお、各コイルエンド部において、導体線のターン部、あるいは導体セグメントの所定の開放端部同士を接続することによって形成された導体線の接続部が固定子コアの径方向に積層されている。
特開2003-264964号公報
 ところで、上記のような回転電機では、固定子巻線に流れる電流により固定子巻線の温度が高くなると、電気抵抗値が大きくなり性能が低下するため、固定子巻線のコイルエンド部に径方向外側から供給される冷却液や冷却エアー等の冷却媒体で固定子巻線や固定子コアを冷却するようにしている。この場合、供給された冷却媒体は、固定子巻線や固定子コアの表面を流通することによってそれらを冷却する。
 しかし、上記従来の固定子巻線は、コイルエンド部の軸方向高さが均等であるため、径方向外側から冷却媒体を供給して冷却した場合に、コイルエンド部の径方向外側は冷却することができるものの、コイルエンド部の径方向内側を十分に冷却することができないという問題がある。
 本発明は、上記事情に鑑みてなされたものであり、固定子巻線の冷却効果を高め得るようにした回転電機の固定子を提供することを解決すべき課題とするものである。
 上記課題を解決するためになされた請求項1に記載の発明は、周方向に所定間隔で配置された複数のスロットを有する円環状の固定子コアと、該固定子コアに組み付けられた複数の導体線からなる固定子巻線と、を備えた回転電機の固定子において、前記固定子巻線は、前記固定子コアの軸方向両端面から軸方向外方へそれぞれ突出する一対のコイルエンド部を有し、各前記コイルエンド部において、複数の前記導体線は前記固定子コアの径方向に積層されており、径方向に隣接する二つの前記導体線のうち径方向外側に位置する前記導体線は、径方向内側に位置する前記導体線に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線は、径方向の最も内側に位置する前記導体線より軸方向高さが高く設定されていることを特徴とする。
請求項1に記載の発明によれば、各コイルエンド部において径方向に積層された複数の導体線のうち、隣接する径方向外側の導体線より軸方向高さが低く設定されている導体線は、隣接する径方向外側の導体線より軸方向内方へ一部が突出し、その突出した部分は径方向外側から見た場合に露出した状態になる。これにより、コイルエンド部に供給される冷却液や冷却エアー等の冷却媒体との接触面積が増加するため、冷却媒体による固定子巻線の冷却効果を十分に高めることができる。
 また、各コイルエンド部において、径方向の最も外側に位置する導体線の軸方向高さを最も高く設定できるため、コイルエンド部の径方向外側から冷却媒体が供給される場合に、コイルエンド部の内部へ冷却媒体が進入し易くなり、固定子巻線の冷却効果を更に高めることができる。
本発明において、各コイルエンド部において径方向に積層されている導体線が3層以上の場合には、コイルエンド部の径方向内側から径方向外側に向かって徐々に軸方向高さが高くなるようにして、それら全ての導体線の軸方向高さが異なるようにされているのが好ましい。このようにすれば、径方向の最も外側に位置する導体線以外の全ての導体線の、冷却媒体との接触面積を増加させることができるので、径方向に積層された導体線を径方向において均一的に冷却することが可能となり、これによって冷却効果を最大限高めることが可能となる。
 なお、固定子巻線の冷却効果を高めるためには、各コイルエンド部において径方向の最も外側に位置する導体線と径方向の最も内側に位置する導体線との軸方向高さの差を、より大きくした方が有効となるが、軸方向高さの差を大きくする程、固定子巻線の大型化に繋がるため、それらのバランスを考慮して各導体線の軸方向高さを設定するようにすればよい。
請求項2に記載の発明は、前記固定子巻線の各前記コイルエンド部において、各前記導体線は、対応する前記固定子コアの軸方向端面に対して所定の角度で傾斜した複数の傾斜部を有し、径方向に隣接する二つの前記導体線の前記傾斜部のうち径方向外側に位置する前記傾斜部は、径方向内側に位置する前記傾斜部に対して傾斜角度が同等に又は大きく設定されており、且つ、径方向の最も外側に位置する前記導体線の前記傾斜部は、径方向の最も内側に位置する前記導体線の前記傾斜部より傾斜角度が大きく設定されていることを特徴とする。
請求項2に記載の発明によれば、各コイルエンド部において径方向に積層された複数の傾斜部のうち、隣接する径方向外側の傾斜部より傾斜角度が小さく設定されている傾斜部は、隣接する径方向外側の傾斜部より軸方向内方へ一部が突出し、その突出した部分は径方向外側から見た場合に露出した状態になる。これにより、コイルエンド部に供給される冷却媒体との接触面積が増加するため、冷却媒体による固定子巻線の冷却効果をより十分に高めることができる。
また、各コイルエンド部において、径方向の最も外側に位置する傾斜部の傾斜角度が最も大きくされていることから、コイルエンド部の径方向外側から冷却媒体が供給される場合に、コイルエンド部の内部へ冷却媒体が進入し易くなり、これによって固定子巻線の冷却効果をより十分に高めることができる。
本発明において、各コイルエンド部において径方向に積層されている傾斜部が3層以上の場合には、傾斜部の傾斜角度がコイルエンド部の径方向内側から径方向外側に向かって徐々に大きくなるようにして、それら全ての傾斜部の傾斜角度が異なるようにされているのが好ましい。このようにすれば、径方向の最も外側に位置する傾斜部以外の全ての傾斜部の、冷却媒体との接触面積を増加させることができるので、径方向に積層された傾斜部を径方向において均一的に冷却することが可能となり、これによって冷却効果を最大限高めることが可能となる。なお、各傾斜部の傾斜角度は、本発明の場合にも、固定子巻線の冷却効果と固定子巻線の大型化とのバランスを考慮して適宜設定するようにすればよい。
 請求項3に記載の発明は、各前記導体線の前記傾斜部は、対応する前記固定子コアの軸方向端面に略平行に延びる複数のセクションを有する階段形状に形成されていることを特徴とする。
請求項3に記載の発明によれば、傾斜部が階段形状に形成されていることにより、傾斜部の冷却媒体との接触面積が更に増加するので、固定子巻線の冷却効果を更に高めることができる。また、傾斜部が階段形状に形成されていることによって、固定子コアの軸方向端面から突出しているコイルエンド部の軸方向高さを低くすると共に、径方向幅を小さくすることができるので、固定子巻線を小型化することができる。
 請求項4に記載の発明は、各前記導体線は、前記固定子コアの前記スロットに収容される複数のスロット収容部と、前記スロットの外部で隣接する前記スロット収容部同士を接続している複数のターン部とを有するとともに、各前記ターン部は、周方向の中央部に、対応する前記固定子コアの軸方向端面に略平行に延びる頂上セクションを有し、前記固定子巻線の各前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記ターン部の前記頂上セクションのうち径方向外側に位置する前記頂上セクションは、径方向内側に位置する前記頂上セクションに対して前記導体線の延伸方向長さが同等に又は長く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記ターン部の前記頂上セクションは、径方向の最も内側に位置する前記導体線の前記ターン部の前記頂上セクションより前記導体線の延伸方向長さが長く設定されていることを特徴とする。
 請求項4に記載の発明によれば、各コイルエンド部において、径方向に積層された複数の頂上セクションのうち、隣接する径方向外側の頂上セクションより延伸方向長さが短く設定されている頂上セクションは、コイルエンド部に供給される冷却媒体との接触面積が増加する。そのため、冷却媒体による固定子巻線の冷却効果を更に高めることができる。
 また、径方向の最も外側に位置する頂上セクションの延伸方向長さを最も長く設定できるため、コイルエンド部の径方向外側から冷却媒体が供給される場合に、コイルエンド部の内部へ冷却媒体が進入し易くなり、これによって固定子巻線の冷却効果を更に高めることができる。
本発明において、各コイルエンド部おいて径方向に積層されている頂上セクションが3層以上の場合には、頂上セクションの延伸方向長さがコイルエンド部の径方向内側から径方向外側に向かって徐々に長くなるようにして、それら全ての頂上セクションの延伸方向長さが異なるように設定されているのが好ましい。このようにすれば、径方向の最も外側に位置する頂上セクション以外の全ての頂上セクションの、冷却媒体との接触面積を増加させることができるので、径方向に積層された頂上セクションを径方向において均一的に冷却することが可能となり、これによって冷却効果を最大限高めることが可能となる。
 請求項5に記載の発明は、前記固定子巻線の各前記コイルエンド部において、径方向に隣接する二つの前記導体線のうち径方向内側に位置する前記導体線は、径方向外側に位置する前記導体線に対して軸方向外方へ突出しておらず、且つ、径方向の最も内側に位置する前記導体線は、径方向の最も外側に位置する前記導体線に対して軸方向内方へ突出していることを特徴とする。
 請求項5に記載の発明によれば、各コイルエンド部において径方向に積層された複数の導体線のうち、隣接する径方向外側の導体線より軸方向外方へ突出しない導体線は、逆に軸方向内方へ突出させることができる。その結果、その突出している部分が径方向外側から見た場合に露出しており、その露出した部分だけ冷却媒体との接触面積が増加する。そのため、コイルエンド部に供給される冷却媒体による固定子巻線の冷却効果を十分に高めることができる。
 また、径方向の最も外側に位置する導体線が軸方向外方へ最も突出しているため、コイルエンド部の径方向外側から冷却媒体が供給される場合に、コイルエンド部の内部へ冷却媒体が進入し易くなり、これによって固定子巻線の冷却効果を十分に高めることができる。
 本発明において、各コイルエンド部において径方向に積層されている導体線が3層以上の場合には、それら全ての導体線が、隣接する径方向外側の導体線より軸方向内方へ一部が突出しているようにされているのが好ましい。このようにすれば、径方向の最も外側に位置する導体線以外の全ての導体線の、冷却媒体との接触面積を増加させることができるので、径方向に積層された導体線を径方向において均一的に冷却することが可能となり、これによって冷却効果を最大限高めることが可能となる。なお、隣接する径方向外側の導体線に対する径方向内側の導体線の軸方向内方への突出量は、本発明の場合にも、固定子巻線の冷却効果と固定子巻線の大型化とのバランスを考慮して適宜設定するようにすればよい。
 請求項6に記載の発明は、前記固定子巻線の各前記コイルエンド部において、前記導体線の軸方向高さが、前記コイルエンド部の径方向内側から径方向外側に向かって徐々に高くなるように設定されていることを特徴とする。
 請求項6に記載の発明によれば、各コイルエンド部において径方向の最も外側に位置する導体線以外の全ての導体線に対して、冷却媒体との接触面積を増加させることが可能となるので、固定子巻線の冷却効果を効率よく且つ均一的に高めることが可能となる。
 請求項7に記載の発明は、各前記導体線は、互いに平行に直状に延びるとともに前記導体線の長手方向に所定間隔で配置された複数のスロット収容部と、隣り合う前記スロット収容部同士を接続する複数のターン部とを有する一本の連続導体線により構成され、前記固定子巻線の各前記コイルエンド部は、前記固定子コアの軸方向の同一側に位置する前記導体線の前記ターン部により構成され、前記固定子巻線の各前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記ターン部のうち径方向外側に位置する前記ターン部は、径方向内側に位置する前記ターン部に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記ターン部は、径方向の最も内側に位置する前記導体線の前記ターン部より軸方向高さが高く設定されていることを特徴とする。
請求項7に記載の発明によれば、各コイルエンド部において、径方向に積層された複数のターン部のうち、隣接する径方向外側ターン部より軸方向高さが低く設定されているターン部は、そのコイルエンド部に供給される冷却媒体との接触面積が増加する。そのため、冷却媒体による固定子巻線の冷却効果を十分に高めることができる。
 また、各コイルエンド部において、径方向の最も外側に位置するターン部の軸方向高さを最も高く設定できるため、各コイルエンド部の外周側から冷却媒体が供給される場合に、各コイルエンド部の内部へ冷却媒体が進入し易くなり、これによって固定子巻線の冷却効果を十分に高めることができる。
 請求項8に記載の発明は、各前記導体線は、一対の直状部と前記直状部の一端同士を接続するターン部と前記直状部の他端を屈曲させてなる一対の開放端部とを有する複数のセグメント導体を所定の状態に接続することにより構成され、前記固定子巻線の一方の前記コイルエンド部は、前記固定子コアの軸方向一方側に位置する前記導体線の前記導体セグメントの前記ターン部により構成され、他方の前記コイルエンド部は、前記固定子コアの軸方向他方側に位置する前記導体線の前記導体セグメントの所定の前記開放端部同士を接続することによって形成された複数の接続部により構成され、一方の前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記ターン部のうち径方向外側に位置する前記ターン部は、径方向内側に位置する前記ターン部に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記ターン部は、径方向の最も内側に位置する前記導体線の前記ターン部より軸方向高さが高く設定されており、他方の前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記接続部のうち径方向外側に位置する前記接続部は、径方向内側に位置する前記接続部に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記接続部は、径方向の最も内側に位置する前記導体線の前記接続部より軸方向高さが高く設定されていることを特徴とする。
 請求項8に記載の発明によれば、一方の前記コイルエンド部において、径方向に積層された複数のターン部のうち、隣接する径方向外側ターン部より軸方向高さが低く設定されているターン部は、そのコイルエンド部に供給される冷却媒体との接触面積が増加する。また、他方のコイルエンド部において、径方向に積層された複数の接続部のうち、隣接する径方向外側接続部より軸方向高さが低く設定されている接続部は、そのコイルエンド部に供給される冷却媒体との接触面積が増加する。したがって、各コイルエンド部に供給される冷却媒体による固定子巻線の冷却効果を十分に高めることができる。
 また、一方のコイルエンド部において径方向の最も外側に位置するターン部の軸方向高さを最も高く設定でき、他方のコイルエンド部において径方向の最も外側に位置する接続部の軸方向高さを最も高く設定できるため、各コイルエンド部の外周側から冷却媒体が供給される場合に、各コイルエンド部の内部へ冷却媒体が進入し易くなり、これによって固定子巻線の冷却効果を十分に高めることができる。
 請求項9に記載の発明は、前記固定子巻線の各前記コイルエンド部は、前記固定子コアの径方向外側から冷却媒体が供給されることを特徴とする。
 請求項9に記載の発明によれば、各コイルエンド部において、径方向の最も外側に位置する導体線が径方向の最も内側に位置する導体線より軸方向高さが高く設定されているため、固定子コアの径方向外側から供給される冷却媒体が各コイルエンド部の内部へ容易に進入できる。これにより、冷却媒体による冷却効果をより確実に発揮させることができる。
実施形態1に係る固定子が搭載された回転電機の全体構成を示す軸方向断面図である。 実施形態1に係る固定子の軸方向端面図と側面図である。 実施形態1に係る固定子の軸方向端面図と側面図である。 実施形態1に係る固定子コアの軸方向端面図である。 実施形態1に係るコアセグメントの平面図である。 実施形態1に係る固定子巻線の斜視図である。 実施形態1に係る固定子巻線を構成する導体線の断面図である。 実施形態1に係る導体線の全体形状を示す正面図である。 実施形態1に係る導体線のターン部の形状を示す斜視図である。 実施形態1に係る固定子巻線の第1及び第2コイルエンド部において径方向に積層配置されたターン部を径方向外側から見た正面図である。 実施形態1に係る固定子巻線の第1コイルエンド部において径方向に積層配置されたターン部を径方向外側から見た正面図である。 実施形態2に係る固定子の導体セグメント挿入側から見た斜視図である。 実施形態2に係る固定子の導体セグメント溶接側から見た斜視図である。 実施形態2において固定子コアのスロットに導体セグメントを挿入する状態を示す説明図である。 実施形態2に係る固定子巻線の第1及び第2コイルエンド部において径方向に積層配置されたターン部を径方向外側から見た正面図である。 実施形態2に係る固定子巻線の第1コイルエンド部において径方向に積層配置されたターン部を径方向外側から見た正面図である。 実施形態2に係る固定子巻線の第2コイルエンド部において径方向に積層配置された接続部を径方向外側から見た正面図である。 他の実施形態に係る固定子巻線の第1コイルエンド部において径方向に積層配置されたターン部を径方向外側から見た正面図である。
 以下、本発明の回転電機の固定子を具体化した実施形態について図面を参照しつつ具体的に説明する。
 〔実施形態1〕
 本実施形態の固定子は、車両用発電機として用いられる回転電機に搭載されるものである。図1は、本実施形態の固定子が搭載された回転電機の構成を模式的に示す軸方向断面図である。本実施形態に係る回転電機1は、図1に示すように、略有底筒状の一対のハウジング部材10A,10Bが開口部同士で接合されてなるハウジング10と、ハウジング10に軸受け11,12を介して回転自在に支承される回転軸13と、回転軸13に固定された回転子14と、ハウジング10内の回転子14を包囲する位置でハウジング10に固定された固定子20と、を備えている。
 また、この回転電機1には、固定子20の固定子巻線40に冷却用の冷却媒体を供給する一対の冷媒管路15、16を備えた冷媒供給手段が設けられている。冷媒管路15、16は、ハウジング10の内部と外部を連通するようにして、ハウジング部材10A、10Bにそれぞれ貫通した状態で取り付けられている。各冷媒管路15、16の先端部には、冷却媒体を吐出する吐出口15A、16Aが設けられている。吐出口15A、16Aは、ハウジング10内に収容された固定子20の固定子巻線40の第1及び第2コイルエンド部47、48の鉛直上方に開口している。
 なお、この回転電機1には、吐出口15A、16Aから吐出した冷却媒体を回収し冷媒供給手段に戻して循環させる回収手段(図示せず)や、加熱された冷却媒体を冷却する冷却器(図示せず)等が、循環経路の途中に設けられている。また、冷却媒体として、本実施形態ではATF(AutomAtic TrAnsmission Fluid)を用いているが、従来の回転電機において使用される冷却油等の冷却媒体を用いてもよい。
 回転子14は、固定子20の径方向内側と向き合う径方向外側に、周方向に所定距離を隔てて配置された複数の永久磁石を有し、これら永久磁石により周方向において極性がN極とS極との間で交互に変わる複数の磁極が形成されている。回転子14の磁極の数は、回転電機の仕様に応じて適宜設定できる。本実施形態では、8極(N極:4、S極:4)の回転子が用いられている。
 次に、固定子20について図2A~図10を参照して説明する。固定子20は、図2に示すように、複数のコアセグメント32を組み付けてなる円環状の固定子コア30と、固定子コア30に組み付けられた複数の導体線50からなる三相の固定子巻線40とを備えている。なお、固定子コア30と固定子巻線40との間には、絶縁紙を配してもよい。
 固定子コア30は、図3及び図4に示すように、複数(例えば、本実施形態では24個)のコアセグメント32を周方向において互いに隣接するように接続することによって形成される。また、固定子コア30は、その径方向内周面に形成され、周方向に所定間隔で配置された複数のスロット31を有する。この固定子コア30は、径方向外側に位置する円環状のバックコア部33と、バックコア部33から径方向内方へ突出し周方向に所定距離を隔てて配列された複数のティース34とからなる。これにより、隣り合うティース34の周方向に対向する側面34A同士の間には、固定子コア30の径方向内側に開口し径方向に延びるスロット31が形成されている。隣り合うティース34の周方向に対向する側面34A、即ち、1つのスロット31を区画する一対の側面34Aは、互いに平行になっている。これにより、各スロット31は、一定の周方向幅寸法で径方向に延びている。
本実施形態において、8個の磁極を有する回転子14の一磁極あたり及び三相の固定子巻線40の一相あたりに2個のスロット31を設けている。したがって、固定子コア30に設けられたスロット31の総数は48(すなわち、8×3×2)である。なお、固定子コア30に設けられたティース34の総数も同じく48である。
 なお、固定子コア30を構成するコアセグメント32は、プレス打ち抜き加工により所定形状に形成された複数の電磁鋼板を固定子コア30の軸方向に積層して形成されている。また、固定子コア30は、円環状に組み付けられたコアセグメント32の外周に外筒37が嵌合されることにより円環状に固定(保形)されている(図2A参照)。
固定子巻線40は、図5に示すように、所定の波形形状に成形した所定数(本実施形態では12本)の導体線50を積み重ねて平らな帯状の導体線集積体を形成し、その導体線集積体を所定回数巻き付けることによって円筒状に形成されている。
 固定子巻線40を構成する各導体線(電線)50は、図6に示すように、矩形断面の銅製の導体58と、内層59A及び外層59Bを有し導体58の外周を被覆する絶縁皮膜59とからなる。内層59A及び外層59Bを合わせた絶縁皮膜59の厚みは、100μm~200μmの範囲に設定されている。このように、絶縁皮膜59の厚みが厚いので、導体線50同士を絶縁するために導体線50同士の間に絶縁紙等を挟み込んで絶縁する必要がない。
 また、外層59Bはナイロン等の絶縁材で形成され、内層59Aは外層59Bよりもガラス転移温度の高い熱可塑性樹脂、またはポリアミドイミド等のガラス転移温度を有しない絶縁材で形成されている。これにより、回転電機1に発生する熱により外層59Bは内層59Aよりも早く結晶化するため、外層59Bの表面硬度が高くなり、導体線50に傷が付き難くなる。
 各導体線50は、図7に示すように、互いに平行に直状に延びるとともに導体線の長手方向に所定間隔で配列された複数のスロット収容部51と、隣り合うスロット収容部51同士をスロット収容部51の一端側と他端側とで交互に接続する複数のターン部52とを有する一本の連続導体線よりなり、1本の長さは約3mである。これにより、固定子巻線40は、図5に示すように、軸方向中央部で複数の導体線50のスロット収容部51が固定子コア30の径方向に積層されてなるスロット収容部積層部46と、軸方向両側で固定子コア30の軸方向両端面から軸方向外方へそれぞれ突出する複数の導体線50のターン部52が固定子コア30の径方向に積層(本実施形態では8層)されてなる第1及び第2コイルエンド部47、48とを有する。
 図8に示すように、導体線50のターン部52の延伸方向の略中央部には、固定子コア30の軸方向の端面30Aに略平行に延びる頂上セクション53が設けられており、頂上セクション53の両側には、固定子コア30の端面30Aに対して所定の角度で傾斜した階段形状の傾斜部が設けられている。頂上セクション53には、固定子コア30の端面30Aに沿ってクランク形状に形成されたねじりを伴わないクランク部54が形成されている。このクランク部54のクランク形状による径方向位置のずれ量は、導体線50の略幅分である。これにより、径方向に隣接している導体線50のターン部52同士を密に巻回することができる。その結果、第1及び第2コイルエンド部47、48の径方向の幅が小さくなるので、固定子巻線40が径方向外側に張り出すことを防止する。
また、導体線50のターン部52は、固定子コア30の軸方向の端面30Aに略平行に延びるとともに該ターン部52により接続される一対のスロット収容部51にそれぞれ隣接する一対のセクション56を有する。これにより、ターン部52の固定子コア30の端面30Aからの突出高さh1が低くなる。その結果、第1及び第2コイルエンド47、48の高さH1が低くなる。
 また、導体線50のターン部52のセクション56の長さをd1、周方向に隣接するスロット31同士の間隔をd2とすると、d1≦d2と設定されている。これにより、ターン部52のセクション56が周方向に隣り合うスロット31から突出する他のターン部52と干渉することを防止できる。これにより、周方向に隣接するスロット31から突出するターン部52同士が互いに干渉することを避けるために、第1及び第2コイルエンド部47、48の高さH1が高くなったり、あるいは第1及び第2コイルエンド部47、48の径方向の幅が大きくなったりすることを防止できる。その結果、第1及び第2コイルエンド部47、48の高さH1が低くなる。さらに、第1及び第2コイルエンド部47、48の径方向の幅が小さくなるので、固定子巻線40が径方向外側に張り出すことを防止する。
さらに、導体線50のターン部52は、クランク部54と一対のセクション56との間にそれぞれ形成され、固定子コア30の軸方向の端面30Aに略平行に延びる一対のセクション57を有する。つまり、導体線50のターン部52には、頂上セクション53を含んで、合計7個の固定子コア30の端面30Aに略平行に延びるセクションが形成されている。これにより、固定子コア30の端面30Aに略平行に延びるセクションを設けない場合と比べて、ターン部52の固定子コア30の端面30Aからの突出高さh1を大幅に低減できる。また、固定子コア30の端面30Aに略平行に延びるセクション56、57を設けることによって、頂上セクション53の両側に位置するターン部52の一対の傾斜部55は両方とも階段形状となっている。
 本実施形態の固定子巻線40は、図9及び図10に示すように、複数のターン部52A~52hが径方向に積層されてなる第1及び第2コイルエンド部47、48において、径方向に隣接する二つのターン部52のうち径方向外側に位置するターン部52は、径方向内側に位置するターン部52に対して軸方向高さ(つまり、対応する固定子コア30の軸方向の端面30Aからの突出高さ)h1が高く設定されている。この軸方向高さh1の関係は、第1及び第2コイルエンド部47、48における全てのターン部52に適用されていることから、径方向の最も外側に位置するターン部52Aの軸方向高さh1が最も高く設定され、径方向の最も内側に位置するターン部52hの軸方向高さh1が最も低く設定されている。また、第1及び第2コイルエンド部47、48におけるターン部52は、第1及び第2コイルエンド部47、48の径方向内側から径方向外側に向かって徐々に軸方向高さh1が高くされ、それら全てのターン部52A~52hの軸方向高さh1が異なるようにされている。
 換言すれば、第1及び第2コイルエンド部47、48における径方向に隣接する二つのターン部52のうち径方向内側に位置するターン部52は、径方向外側に位置するターン部52に対して軸方向高さh1が低く設定されていることによって、軸方向内方へ所定量ずつ位置ずれして突出した状態になっている。即ち、図10に示すように、第1及び第2コイルエンド部47、48を径方向外方から見た場合、径方向の最も外側に位置するターン部52A以外のターン部52B~52hは、隣接する径方向外側のターン部52に対して軸方向内方へ位置ずれして突出し、その突出した部分が露出している。これにより、第1及び第2コイルエンド部47、48の径方向の最も外側に位置するターン部52A以外のターン部52B~52hは、その露出した部分だけ冷却媒体との接触面積が増加するようにされている。
 また、ターン部52の頂上セクション53は、第1及び第2コイルエンド部47、48の径方向内側から径方向外側に向かって徐々に導体線50の延伸方向長さL1が長くなるように設定されている(図10参照)。よって、第1及び第2コイルエンド部47、48の径方向の最も外側に位置する頂上セクション53Aの延伸方向長さL1が最も長く設定され、径方向の最も内側に位置する頂上セクション53hの延伸方向長さL1が最も短く設定されている。
 さらに、ターン部52の階段形状に形成された傾斜部55は、固定子コア30の端面30Aに対する傾斜角度α1が、第1及び第2コイルエンド部47、48の径方向内側から径方向外側に向かって徐々に大きくなるように設定されている(図10参照)。よって、第1及び第2コイルエンド部47、48の径方向の最も外側に位置する傾斜部55Aの傾斜角度α1が最も大きく設定され、径方向の最も内側に位置する傾斜部55hの傾斜角度α1が最も小さく設定されている。
 即ち、本実施形態の第1及び第2コイルエンド部47、48は、上記のように構成されていることによって、冷媒供給手段の冷媒管路15、16から第1及び第2コイルエンド部47、48の径方向外側に供給される冷却媒体が、第1及び第2コイルエンド部47、48の径方向内側へ進入し易くされ、且つ径方向内側へ進入した冷却媒体が、全てのターン部52に対してより広範囲の表面に接触可能となるようにされている。これにより、第1及び第2コイルエンド部47、48に供給される冷却媒体による固定子巻線40の冷却効果が十分に高められている。
 なお、この固定子巻線40と固定子コア30との組付けは、円筒状に成形された固定子巻線40の径方向外側から各コアセグメント32のティース部34を挿入して、全てのコアセグメント32を固定子巻線40に沿って円環状に配置した後、コアセグメント32の外周に円筒状の外筒37を嵌合することにより行われる。これにより、固定子巻線40は、図2A-2Bに示すように、各導体線50の所定のスロット収容部51が固定子コア30の所定のスロット31内に収容された状態に組み付けられる。この場合、導体線50の隣り合うスロット収容部51は、周方向に所定数のスロット(例えば、本実施形態では6スロット)離れた2個のスロット31にそれぞれ収容されている。また、導体線50の隣り合うスロット収容部51同士を接続しているターン部52は、対応する固定子コア30の端面30Aからそれぞれ突出し、その突出している多数のターン部52により、固定子巻線40の軸方向両端部に第1及び第2コイルエンド部47、48が形成される。
 以上のように構成された本実施形態の固定子20を備えた回転電機1は、運転が開始されると、冷媒供給手段により冷媒管路15、16の吐出口15A、16Aから冷却用の冷却媒体が吐出される。吐出口15A、16Aから吐出した冷却媒体は、第1及び第2コイルエンド部47、48の径方向外側に供給される。そして、供給された冷却媒体は、第1及び第2コイルエンド部47、48の径方向外側から内部に進入し、各ターン部52の内側表面及び固定子コア30の端面30Aに沿って径方向外側から径方向内側へと流動して、第1及び第2コイルエンド部47、48を冷却する。
 このとき、第1及び第2コイルエンド部47、48の径方向の最も外側に位置するターン部52Aの軸方向高さh1が最も高く設定されていることから、第1及び第2コイルエンド部47、48の径方向外側に供給された冷却媒体は、第1及び第2コイルエンド部47、48の内部へ容易に進入して、各ターン部52の表面に沿って径方向外側から径方向内側へと円滑に流動する。
 また、第1及び第2コイルエンド部47、48におけるターン部52の軸方向高さh1が、径方向内側から径方向外側に向かって徐々に高くされ、径方向の最も外側に位置するターン部52A以外のターン部52の冷却媒体との接触面積が増加されていることから、第1及び第2コイルエンド部47、48の内部に容易に進入した冷却媒体が、各ターン部52の内側表面に沿って径方向外側から径方向内側へと円滑に流動することにより、第1及び第2コイルエンド部47、48を効率よく効果的に冷却する。
 なお、第1及び第2コイルエンド部47、48及び固定子コア30を冷却した冷却媒体は、回収手段により回収されて冷媒供給手段に戻された後、再度吐出口15A、16Aから吐出されるようにして循環させて使用される。
 以上のように構成された本実施形態の回転電機1の固定子20によれば、第1及び第2コイルエンド部47、48における隣接する二つの導体線50のターン部52のうち、径方向外側に位置するターン部52の軸方向高さh1が径方向内側に位置するターン部52よりも高く設定され、径方向内側に位置するターン部52は、径方向外側に位置するターン部52に対して軸方向内方へ突出して露出するようにされている。これにより、第1及び第2コイルエンド部47、48の径方向に積層されたターン部52の、冷却媒体との接触面積が増加するため、第1及び第2コイルエンド部47、48に供給される冷却媒体による冷却効果を十分に高めることができる。
 特に、本実施形態では、第1及び第2コイルエンド部47、48における導体線50のターン部52の軸方向高さh1が、径方向内側から径方向外側に向かって徐々に高く設定されていることにより、径方向の最も外側に位置するターン部52A以外の全てのターン部52が、隣接する径方向外側のターン部52に対して軸方向内方へ突出して露出するようにされている。そのため、第1及び第2コイルエンド部47、48の径方向の最も外側に位置するターン部52A以外の全てのターン部52の、冷却媒体との接触面積が増加しているので、第1及び第2コイルエンド部47、48(固定子巻線40)の冷却効果を効率よく且つ均一的に高めることができる。
 また、第1及び第2コイルエンド部47、48における径方向の最も外側に位置するターン部52Aの軸方向高さh1が最も高く設定されていることから、第1及び第2コイルエンド部47、48の径方向外側から供給される冷却媒体が、第1及び第2コイルエンド部47、48の内部へ進入し易くなるため、これによっても、第1及び第2コイルエンド部47、48(固定子巻線40)の冷却効果を十分に高めることができる。
 そして、本実施形態では、導体線50のターン部52は、それぞれ頂上セクション53の両側に傾斜部55を有し、第1及び第2コイルエンド部47、48において径方向に隣接する二つの傾斜部55のうち、径方向外側に位置する傾斜部55の傾斜角度α1が径方向内側に位置する傾斜部55の傾斜角度α1よりも大きく設定されている。即ち、径方向内側に位置する傾斜部55は、径方向外側に位置する傾斜部55に対して軸方向内方へ突出して露出するように配置されている。そのため、第1及び第2コイルエンド部47、48に供給される冷却媒体による固定子巻線40の冷却効果をより十分に高めることができる。
 特に、本実施形態では、傾斜部55の傾斜角度α1が、第1及び第2コイルエンド部47、48の径方向内側から径方向外側に向かって徐々に大きくなるように設定されていることにより、径方向の最も外側に位置する傾斜部55以外の全ての傾斜部55が、隣接する径方向外側の傾斜部55に対して軸方向内方へ突出して露出するように配置されている。そのため、第1及び第2コイルエンド部47、48の径方向の最も外側に位置する傾斜部55以外の全ての傾斜部55の、冷却媒体(外気)との接触面積が増加しているので、第1及び第2コイルエンド部47、48(固定子巻線40)の冷却効果を効率よく且つ均一的に高めることができる。
 また、第1及び第2コイルエンド部47、48において径方向の最も外側に位置する傾斜部55の傾斜角度α1が最も大きく設定されていることから、第1及び第2コイルエンド部47、48の径方向外側から供給される冷却媒体が、第1及び第2コイルエンド部47、48の内部へ進入し易くなるため、これによっても、第1及び第2コイルエンド部47、48(固定子巻線40)の冷却効果を十分に高めることができる。
 また、傾斜部55が階段形状に形成されていることから、傾斜部55の冷却媒体との接触面積が更に増加するので、第1及び第2コイルエンド部47、48(固定子巻線40)の冷却効果を更に高めることができる。また、傾斜部55が階段形状に形成されていることによって、固定子コア30の端面30Aから突出している第1及び第2コイルエンド部47、48の軸方向高さ(つまり、固定子コア30の端面30Aからの突出高さ)H1を低くすると共に、径方向幅を小さくすることができるので、固定子巻線40を小型化することができる。
 そして、本実施形態における導体線50のターン部52は、延伸方向の中央部に頂上セクション53を有し、第1及び第2コイルエンド部47、48において径方向に隣接する二つの頂上セクション53のうち、径方向外側に位置する頂上セクション53の延伸方向長さL1が径方向内側に位置する頂上セクション53の延伸方向長さL1よりも大きく設定されている。そのため、第1及び第2コイルエンド部47、48において径方向に積層された複数の頂上セクション53のうち、隣接する径方向外側の頂上セクション53より延伸方向長さL1が短く設定されている頂上セクション53を有するターン部52は、その傾斜部55の冷却媒体との接触面積が増加する。そのため、第1及び第2コイルエンド部47、48に供給される冷却媒体による固定子巻線40の冷却効果を更に高めることができる。
 なお、本実施形態の固定子巻線40は、複数のスロット収容部51と複数のターン部52とを有する連続導体線50により構成され、第1及び第2コイルエンド部47、48の両方が固定子コア30の径方向に積層された複数のターン部52により構成されているタイプのものであるが、このタイプの固定子巻線40において、第1及び第2コイルエンド部47、48に供給される冷却媒体による冷却効果をより十分に発揮させることができる。
 〔実施形態2〕
 図11は、実施形態2に係る固定子の導体セグメント挿入側から見た斜視図である。図12は、実施形態2に係る固定子の導体セグメント溶接側から見た斜視図である。図13は、実施形態2において固定子コアのスロットに導体セグメントを挿入する状態を示す説明図である。
 本実施形態の固定子120は、実施形態1と同様に車両用発電機として用いられる回転電機1に搭載されるものであるが、図11~図13に示すように、固定子巻線140として、略U字形状の複数の導体セグメント150を固定子コア130に組み付けてから所定の状態に接続しているセグメント型のものが採用されている点で、実施形態1と異なる。
 本実施形態の固定子120は、円環状の固定子コア130と、一対の直状部と両該直状部の一端同士を接続するターン部と前記直状部の他端を屈曲させてなる一対の開放端部とを有する複数の導体セグメントを所定の状態に接続することにより形成された固定子巻線140と、を備えている。
 固定子コア130は、円環状の複数の電磁鋼板を固定子コア30の軸方向に積層して形成された一体型のものである。固定子コア130は、円環状のバックコア部133と、バックコア部133から径方向内方へ突出し周方向に所定距離を隔てて配列された複数のティース部134とからなり、隣り合うティース部134の間にスロット131が形成されている。
 固定子コア130に組み付けられた固定子巻線140は、端末同士が互いに接合された複数の略U字形状の導体セグメント150により構成されている。この導体セグメント150の両端部を除く大部分の外周には、図示しない絶縁被膜が被覆されている。導体セグメント150は、図13に示すように、互いに平行な一対の直状部151、151と、一対の直状部151、151の一端を互いに連結するターン部152とからなるU字形状のものが採用されている。ターン部152の中央部には、固定子コア130の端面130Aに略平行に延びる頂上セクション153が設けられており、頂上セクション153の両側には、固定子コア130の端面130Aに対して所定の角度で傾斜した傾斜部155が設けられている。なお、図13には、同一相の隣接する2個のスロット131、131に挿入配置される2個で一組の導体セグメント150A、150Bが示されている。また、符号124は、固定子コア130及び固定子巻線140間を電気絶縁するインシュレータを示している。
 U字形状の導体セグメント150は、一対の直状部151、151が固定子コア130の所定の1磁極ピッチ離れた2個のスロット131、131内に軸方向一端側から挿入される。このようにして、全スロット131に対して所定数の導体セグメント150の直状部151が挿入配置される。本実施形態の場合には、各スロット131内において合計10本の直状部151が径方向1列(10層)に積層配置される。
 その後、スロット131から軸方向他端側へ突出した一対の直状部151、151の開放端部が、互いに周方向反対側へ所定の角度をもって斜めに斜行するように折り曲げられて、略半磁極ピッチ分の長さの斜行部154(図16参照)が形成される。そして、固定子コア30の軸方向他端側において、導体セグメント150の所定の斜行部154の端末同士が溶接により接合されて所定のパターンで電気的に接続される。即ち、所定の二つの斜行部154の端末同士が接続されてなる接続部156が形成される。これにより、所定の導体セグメント150が直列に接続されることにより、固定子コア30に組み付けられた3本の相巻線(U相、V相、W相)を有する固定子巻線140が形成される。
 なお、固定子巻線140の各相について、基本となるU字形状の導体セグメント150により、固定子コア130の周りを10周する巻線(コイル)が形成される。しかし、固定子巻線140の各相について、出力用引き出し線及び中性点用引き出し線を一体に有するセグメント、並びに1周目と2周目とを接続するターン部を有するセグメントは、基本となる導体セグメント150とは異なる異形セグメントで構成される。これら異形セグメントを用いて、固定子巻線140の各相の巻線端が星型結線により結線される。
なお、本実施形態による固定子巻線140は、それぞれが所定数の導体セグメント150を接続してなる複数の導体線により構成されていると見なすこともできる。
 このように形成された固定子巻線140の軸方向一端側には、図14及び図15に示すように、固定子コア130の一端面から突出した導体セグメント150の複数のターン部152が固定子コア130の径方向に積層されてなる第1コイルエンド部147が形成されている。この第1コイルエンド部147において、径方向に隣接する二つのターン部152のうち径方向外側に位置するターン部152は、径方向内側に位置するターン部152に対して軸方向高さh2が高く設定されている。この軸方向高さh2の関係は、第1コイルエンド部147の全てのターン部152に適用されていることから、径方向の最も外側に位置するターン部152Aの軸方向高さh2が最も高く設定され、径方向の最も内側に位置するターン部152jの軸方向高さh2が最も低く設定されている。また、第1コイルエンド部147のターン部152は、第1コイルエンド部147の径方向内側から径方向外側に向かって徐々に軸方向高さh2が高くされ、それら全てのターン部152の軸方向高さh2が異なるようにされている。
 換言すれば、第1コイルエンド部147において径方向に隣接する二つのターン部152のうち径方向内側に位置するターン部152は、径方向外側に位置するターン部152に対して軸方向高さh2が低く設定されていることによって、軸方向内方へ所定量ずつ位置ずれして一部が突出した状態になっている。即ち、図15に示すように、第1コイルエンド部147を径方向外方から見た場合、径方向の最も外側に位置するターン部152A以外のターン部152B~152jは、隣接する径方向外側のターン部152に対して軸方向内方へ位置ずれして一部が突出し、その突出した部分が露出している。これにより、第1コイルエンド部147の径方向の最も外側に位置するターン部152A以外のターン部152B~152jは、その露出した部分だけ冷却媒体との接触面積が増加するようにされている。
 また、ターン部152の頂上セクション153は、第1コイルエンド部147の径方向内側から径方向外側に向かって徐々に延伸方向長さL2が長くなるように設定されている(図15参照)。よって、第1コイルエンド部147において径方向の最も外側に位置する頂上セクション153Aの延伸方向長さL2が最も長く設定され、径方向の最も内側に位置する頂上セクション153jの延伸方向長さL2が最も短く設定されている。
 さらに、ターン部152の傾斜部155は、固定子コア30の端面130Aに対する傾斜角度α2が、第1コイルエンド部147の径方向内側から径方向外側に向かって徐々に大きくなるように設定されている(図15参照)。よって、第1コイルエンド部147において径方向の最も外側に位置するターン部152Aの傾斜角度α2が最も大きく設定され、径方向の最も内側に位置するターン部152jの傾斜角度α2が最も小さく設定されている。
 一方、固定子巻線140の軸方向他端側には、固定子コア130の他端面から突出した導体セグメント150の複数の接続部156が固定子コア130の径方向に積層されてなる第2コイルエンド部148が形成されている。この第2コイルエンド部148において、径方向に隣接する二つの接続部156のうち径方向外側に位置する接続部156は、径方向内側に位置する接続部156に対して軸方向高さ(固定子コアの端面130Aから端末接合部157までの高さ)h3が高く設定されている。この軸方向高さh3の関係は、第2コイルエンド部148における全ての接続部156に適用されていることから、径方向の最も外側に位置する接続部156Aの軸方向高さh3が最も高く設定され、径方向の最も内側に位置する接続部156jの軸方向高さh3が最も低く設定されている。また、第2コイルエンド部148において接続部156は、第2コイルエンド部148の径方向内側から径方向外側に向かって徐々に軸方向高さh3が高くされ、それら全ての接続部156の軸方向高さh3が異なるようにされている。
 換言すれば、第2コイルエンド部148において径方向に隣接する二つの接続部156のうち径方向内側に位置する接続部156は、径方向外側に位置する接続部156に対して軸方向高さh3が低く設定されていることによって、軸方向内方へ所定量ずつ位置ずれして一部が突出した状態になっている。即ち、図16に示すように、第2コイルエンド部148を径方向外方から見た場合、径方向の最も外側に位置する接続部156A以外の接続部156B~156jは、隣接する径方向外側の接続部156に対して軸方向内方へ位置ずれして一部が突出し、その突出した部分が露出している。これにより、第2コイルエンド部148の径方向の最も外側に位置する接続部156A以外の接続部156B~156jは、その露出した部分だけ冷却媒体との接触面積が増加するようにされている。
 また、導体セグメント150の斜行部154は、固定子コア130の端面130Aに対する傾斜角度α3が、第2コイルエンド部148の径方向内側から径方向外側に向かって徐々に大きくなるように設定されている(図16参照)。よって、第2コイルエンド部148において径方向の最も外側に位置する斜行部154Aの傾斜角度α3が最も大きく設定され、径方向の最も内側に位置する斜行部154jの傾斜角度α3が最も小さく設定されている。
 即ち、本実施形態の第1及び第2コイルエンド部147、148は、上記のように構成されていることによって、冷媒供給手段の冷媒管路15、16から第1及び第2コイルエンド部147、148の径方向外側に供給される冷却媒体が、第1及び第2コイルエンド部147、148の径方向内側へ進入し易くされ、且つ径方向内側へ進入した冷却媒体が、全てのターン部152及び接続部156に対してより広範囲の表面に接触可能となるようにされている。これにより、第1及び第2コイルエンド部147、148に供給される冷却媒体による固定子巻線140の冷却効果が十分に高められている。
 以上のように構成された本実施形態の固定子120の場合にも、回転電機1の運転が開始されると、実施形態1の場合と同様に、冷媒供給手段により冷媒管路15、16の吐出口15A、16Aから第1及び第2コイルエンド部147、148の径方向外側に冷却媒体が供給される。これにより、供給された冷却媒体は、第1及び第2コイルエンド部147、148の径方向外側から内部に進入し、各ターン部152及び各接続部156の内側表面及び固定子コア130の端面130Aに沿って径方向外側から径方向内側へと流動して、第1及び第2コイルエンド部147、148を冷却する。
 このとき、本実施形態の固定子120の場合にも、実施形態1の場合と同様に、第1コイルエンド部147において径方向に隣接する二つのターン部152のうち、径方向外側に位置するターン部152の軸方向高さh2が径方向内側に位置するターン部152よりも高く設定され、径方向内側に位置するターン部152は、径方向外側に位置するターン部152に対して軸方向内方へ突出して露出するように配置されているので、第1コイルエンド部147に供給される冷却媒体による冷却効果を十分に高めることができる。
 また、第2コイルエンド部148においても同様に、径方向に隣接する二つの接続部156のうち、径方向外側に位置する接続部156の軸方向高さh3が径方向内側に位置する接続部156よりも高く設定され、径方向内側に位置する接続部156は、径方向外側に位置する接続部156に対して軸方向内方へ一部が突出して露出するように配置されているので、第2コイルエンド部148に供給される冷却媒体による冷却効果を十分に高めることができる。
 さらに、本実施形態の固定子120の場合にも、第1及び第2コイルエンド部147、148におけるターン部152又は接続部156の軸方向高さh2、h3が、径方向内側から径方向外側に向かって徐々に高くなるように設定されていることにより、径方向の最も外側に位置するターン部152A又は接続部156A以外の全てのターン部152又は接続部156が、隣接する径方向外側のターン部152又は接続部156に対して軸方向内方へ一部が突出して露出するように配置されているため、第1及び第2コイルエンド部147、148(固定子巻線140)の冷却効果を効率よく且つ均一的に高めることができる。
 また、本実施形態では、ターン部152又は接続部156は、それぞれ中央部の両側に傾斜部155又は斜行部154を有し、第1及び第2コイルエンド部147、148において径方向に隣接する二つの傾斜部155又は斜行部154のうち、径方向外側に位置する傾斜部155又は斜行部154の傾斜角度α2、α3が径方向内側に位置する傾斜部155又は斜行部154の傾斜角度α2、α3よりも大きく設定されている。即ち、径方向内側に位置する傾斜部155又は斜行部154は、径方向外側に位置する傾斜部155又は斜行部154に対して軸方向内方へ一部が突出して露出するように配置されている。そのため、第1及び第2コイルエンド部147、148に供給される冷却媒体による固定子巻線140の冷却効果をより十分に高めることができる。
 また、本実施形態における導体セグメント150のターン部152は、延伸方向の中央部に頂上セクション153を有し、第1コイルエンド部147において径方向に隣接する二つの頂上セクション153のうち、径方向外側に位置する頂上セクション153の延伸方向長さL2が径方向内側に位置する頂上セクション153の延伸方向長さL2よりも大きく設定されている。そのため、第1コイルエンド部147において径方向に積層された複数の頂上セクション153のうち、隣接する径方向外側の頂上セクション153より延伸方向長さL2が短く設定されている頂上セクション153を有するターン部152は、その傾斜部155の冷却媒体との接触面積が増加する。そのため、第1コイルエンド部147に供給される冷却媒体による固定子巻線140の冷却効果を更に高めることができる。
 〔他の実施形態〕
 なお、本発明は、上記の実施形態1、2に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更することが可能である。
 例えば、実施形態1では、第1及び第2コイルエンド部47、48におけるターン部52は、径方向内側から径方向外側に向かって徐々に軸方向高さh1が高くなるようにされて、全てのターン部52の軸方向高さh1が異なるようにされていたが、図17に示す第1コイルエンド部47Aのように、径方向に積層された8個のターン部52A~52hの軸方向高さh1が径方向内側から径方向外側に向かって2個ずつ段階的に高くなるようにすることができる。
 また、図17に示す第1コイルエンド部47Aにおいては、軸方向高さh1が同じにされるターン部52の個数は2個とされているが、0個から任意の複数個の範囲で径方向内側から径方向外側に向かって変則的に変化させるようにしてもよい。但し、第1コイルエンド部47Aにおいて径方向の最も外側に位置するターン部52Aは、少なくとも径方向の最も内側に位置するターン部52hより軸方向高さh1が高く設定されていることが条件となる。よって、図17に示す第1コイルエンド部47Aの場合、軸方向高さh1が同じにされるターン部52の個数は、最大で7個となる。
 なお、上記のような第1及び第2コイルエンド部47、48におけるターン部52の軸方向高さh1の変化のさせ方は、実施形態2の第1及び第2コイルエンド部147、148におけるターン部152や接続部156の軸方向高さh2、h3についても、同様に適用することができる。
 1…回転電機、 10…ハウジング、 11,12…軸受け、 13…回転軸、 14…回転子、 20…固定子、 30…固定子コア、 31…スロット、 32…コアセグメント、 33…バックコア部、 34…ティース、 37…外筒、 40…固定子巻線、 46…スロット収容部積層部、 47、47A、147…第1コイルエンド部、 48、148…第2コイルエンド部、 50…導体線、 51…スロット収容部、 52、152…ターン部(導体線)、 53、153…頂上セクション、 55、155…傾斜部、 56、57…セクション、 58…導体、 59…絶縁皮膜、 150…導体セグメント、 154…斜行部(開放端部)、 156…接続部(接続開放端部、導体線)、 157…端末接合部。

Claims (9)

  1. 周方向に所定間隔で配置された複数のスロットを有する円環状の固定子コアと、該固定子コアに組み付けられた複数の導体線からなる固定子巻線と、を備えた回転電機の固定子において、
     前記固定子巻線は、前記固定子コアの軸方向両端面から軸方向外方へそれぞれ突出する一対のコイルエンド部を有し、
    各前記コイルエンド部において、複数の前記導体線は前記固定子コアの径方向に積層されており、径方向に隣接する二つの前記導体線のうち径方向外側に位置する前記導体線は、径方向内側に位置する前記導体線に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線は、径方向の最も内側に位置する前記導体線より軸方向高さが高く設定されていることを特徴とする回転電機の固定子。
  2. 前記固定子巻線の各前記コイルエンド部において、各前記導体線は、対応する前記固定子コアの軸方向端面に対して所定の角度で傾斜した複数の傾斜部を有し、径方向に隣接する二つの前記導体線の前記傾斜部のうち径方向外側に位置する前記傾斜部は、径方向内側に位置する前記傾斜部に対して傾斜角度が同等に又は大きく設定されており、且つ、径方向の最も外側に位置する前記導体線の前記傾斜部は、径方向の最も内側に位置する前記導体線の前記傾斜部より傾斜角度が大きく設定されていることを特徴とする請求項1に記載の回転電機の固定子。
  3.  各前記導体線の前記傾斜部は、対応する前記固定子コアの軸方向端面に略平行に延びる複数のセクションを有する階段形状に形成されていることを特徴とする請求項2に記載の回転電機の固定子。
  4.  各前記導体線は、前記固定子コアの前記スロットに収容される複数のスロット収容部と、前記スロットの外部で隣接する前記スロット収容部同士を接続している複数のターン部とを有するとともに、
    各前記ターン部は、周方向の中央部に、対応する前記固定子コアの軸方向端面に略平行に延びる頂上セクションを有し、
    前記固定子巻線の各前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記ターン部の前記頂上セクションのうち径方向外側に位置する前記頂上セクションは、径方向内側に位置する前記頂上セクションに対して前記導体線の延伸方向長さが同等に又は長く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記ターン部の前記頂上セクションは、径方向の最も内側に位置する前記導体線の前記ターン部の前記頂上セクションより前記導体線の延伸方向長さが長く設定されていることを特徴とする請求項1~3の何れか一項に記載の回転電機の固定子。
  5. 前記固定子巻線の各前記コイルエンド部において、径方向に隣接する二つの前記導体線のうち径方向内側に位置する前記導体線は、径方向外側に位置する前記導体線に対して軸方向外方へ突出しておらず、且つ、径方向の最も内側に位置する前記導体線は、径方向の最も外側に位置する前記導体線に対して軸方向内方へ突出していることを特徴とする請求項1~4の何れか一項に記載の回転電機の固定子。
  6. 前記固定子巻線の各前記コイルエンド部において、前記導体線の軸方向高さが、前記コイルエンド部の径方向内側から径方向外側に向かって徐々に高くなるように設定されていることを特徴とする請求項1~5の何れか一項に記載の回転電機の固定子。
  7. 各前記導体線は、互いに平行に直状に延びるとともに前記導体線の長手方向に所定間隔で配置された複数のスロット収容部と、隣り合う前記スロット収容部同士を接続する複数のターン部とを有する一本の連続導体線により構成され、
    前記固定子巻線の各前記コイルエンド部は、前記固定子コアの軸方向の同一側に位置する前記導体線の前記ターン部により構成され、
    前記固定子巻線の各前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記ターン部のうち径方向外側に位置する前記ターン部は、径方向内側に位置する前記ターン部に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記ターン部は、径方向の最も内側に位置する前記導体線の前記ターン部より軸方向高さが高く設定されていることを特徴とする請求項1に記載の回転電機の固定子。
  8. 各前記導体線は、一対の直状部と前記直状部の一端同士を接続するターン部と前記直状部の他端を屈曲させてなる一対の開放端部とを有する複数のセグメント導体を所定の状態に接続することにより構成され、
    前記固定子巻線の一方の前記コイルエンド部は、前記固定子コアの軸方向一方側に位置する前記導体線の前記導体セグメントの前記ターン部により構成され、他方の前記コイルエンド部は、前記固定子コアの軸方向他方側に位置する前記導体線の前記導体セグメントの所定の前記開放端部同士を接続することによって形成された複数の接続部により構成され、
    一方の前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記ターン部のうち径方向外側に位置する前記ターン部は、径方向内側に位置する前記ターン部に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記ターン部は、径方向の最も内側に位置する前記導体線の前記ターン部より軸方向高さが高く設定されており、
    他方の前記コイルエンド部において、径方向に隣接する二つの前記導体線の前記接続部のうち径方向外側に位置する前記接続部は、径方向内側に位置する前記接続部に対して軸方向高さが同等に又は高く設定されており、且つ、径方向の最も外側に位置する前記導体線の前記接続部は、径方向の最も内側に位置する前記導体線の前記接続部より軸方向高さが高く設定されていることを特徴とする請求項1に記載の回転電機の固定子。
  9.  前記固定子巻線の各前記コイルエンド部は、前記固定子コアの径方向外側から冷却媒体が供給されることを特徴とする請求項1~8の何れか一項に記載の回転電機の固定子。
PCT/JP2012/059330 2011-04-07 2012-04-05 回転電機の固定子 WO2012137862A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280023557.6A CN103534902B (zh) 2011-04-07 2012-04-05 旋转电机的定子
US14/110,316 US9559556B2 (en) 2011-04-07 2012-04-05 Stator of rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011085124A JP5716505B2 (ja) 2011-04-07 2011-04-07 回転電機の固定子
JP2011-085124 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012137862A1 true WO2012137862A1 (ja) 2012-10-11

Family

ID=46969252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059330 WO2012137862A1 (ja) 2011-04-07 2012-04-05 回転電機の固定子

Country Status (4)

Country Link
US (1) US9559556B2 (ja)
JP (1) JP5716505B2 (ja)
CN (1) CN103534902B (ja)
WO (1) WO2012137862A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756370A (zh) * 2012-10-26 2015-07-01 日立汽车系统株式会社 旋转电机的定子
CN111682671A (zh) * 2019-03-11 2020-09-18 株式会社电装 电动驱动装置
JP7397709B2 (ja) 2020-02-12 2023-12-13 ジヤトコ株式会社 装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757282B2 (ja) * 2012-11-07 2015-07-29 株式会社デンソー 固定子および回転電機
JP5842856B2 (ja) 2013-04-08 2016-01-13 株式会社デンソー 回転電機の固定子
JP6135535B2 (ja) * 2014-02-07 2017-05-31 株式会社デンソー 回転電機の固定子
JP6461158B2 (ja) * 2014-08-07 2019-01-30 日立オートモティブシステムズ株式会社 回転電機の固定子、及びこれを備えた回転電機
US10594183B2 (en) 2014-09-01 2020-03-17 Aisin Aw Co., Ltd. Stator assembling method
JP6350375B2 (ja) * 2015-04-17 2018-07-04 株式会社デンソー 回転電機
JP6799962B2 (ja) * 2016-08-03 2020-12-16 本田技研工業株式会社 バスバーユニット
FR3061815B1 (fr) * 2017-01-06 2021-01-01 Valeo Equip Electr Moteur Stator bobine pour machine electrique tournante
JP2018133850A (ja) * 2017-02-13 2018-08-23 株式会社デンソー 回転電機
US10615663B2 (en) 2018-02-09 2020-04-07 Deere & Company Electrical motor cooling design
JP7103821B2 (ja) * 2018-03-30 2022-07-20 本田技研工業株式会社 回転電機用のコイル及びこれを備えた回転電機
JP6673518B1 (ja) * 2019-07-08 2020-03-25 日立金属株式会社 配電部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350425A (ja) * 1999-06-01 2000-12-15 Denso Corp 車両用交流発電機
JP2007089273A (ja) * 2005-09-20 2007-04-05 Denso Corp 回転電機のu字導体順次接続式コイル及びその製造方法
JP2009095167A (ja) * 2007-10-10 2009-04-30 Denso Corp セグメント型固定子、回転電機および駆動装置、ならびにセグメント型コイルの成形方法
JP2010259145A (ja) * 2009-04-21 2010-11-11 Nippon Soken Inc 回転電機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484006B2 (ja) * 1996-01-30 2004-01-06 株式会社日立製作所 回転機および成形方法
JP3894004B2 (ja) 2002-03-11 2007-03-14 トヨタ自動車株式会社 回転電機のコイル用のセグメントの成形方法及びそれに用いる成形型構造
JP3734166B2 (ja) * 2002-06-25 2006-01-11 株式会社デンソー 回転電機のセグメント順次接合ステータコイルおよびその製造方法
JP2005160143A (ja) * 2003-11-20 2005-06-16 Toyota Motor Corp 回転電機の固定子
JPWO2008020471A1 (ja) * 2006-08-15 2010-01-07 株式会社日立製作所 回転電機
JP4946421B2 (ja) * 2006-12-20 2012-06-06 株式会社デンソー 回転電機の巻線接合方法
JP4505764B2 (ja) * 2008-04-21 2010-07-21 株式会社デンソー 回転電機のコイル組立体製造方法
JP5332347B2 (ja) * 2008-06-30 2013-11-06 株式会社デンソー 回転電機のコイル組立体用のコイル線材
JP5453770B2 (ja) * 2008-11-07 2014-03-26 株式会社デンソー 回転電機の固定子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350425A (ja) * 1999-06-01 2000-12-15 Denso Corp 車両用交流発電機
JP2007089273A (ja) * 2005-09-20 2007-04-05 Denso Corp 回転電機のu字導体順次接続式コイル及びその製造方法
JP2009095167A (ja) * 2007-10-10 2009-04-30 Denso Corp セグメント型固定子、回転電機および駆動装置、ならびにセグメント型コイルの成形方法
JP2010259145A (ja) * 2009-04-21 2010-11-11 Nippon Soken Inc 回転電機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756370A (zh) * 2012-10-26 2015-07-01 日立汽车系统株式会社 旋转电机的定子
US20150303754A1 (en) * 2012-10-26 2015-10-22 Hitachi Automotive Systems, Ltd. Stator for Rotating Electric Machine
EP2913907A4 (en) * 2012-10-26 2016-07-06 Hitachi Automotive Systems Ltd STATOR FOR ROTATING ELECTRICAL MACHINES
CN104756370B (zh) * 2012-10-26 2017-05-17 日立汽车系统株式会社 旋转电机的定子
US9929612B2 (en) 2012-10-26 2018-03-27 Hitachi Automotive Systems, Ltd. Stator for rotating electric machine
CN111682671A (zh) * 2019-03-11 2020-09-18 株式会社电装 电动驱动装置
CN111682671B (zh) * 2019-03-11 2023-10-10 株式会社电装 电动驱动装置
JP7397709B2 (ja) 2020-02-12 2023-12-13 ジヤトコ株式会社 装置
US11990824B2 (en) 2020-02-12 2024-05-21 Jatco Ltd Device including rotating electric machine and housing with introduction port

Also Published As

Publication number Publication date
CN103534902B (zh) 2016-11-16
JP5716505B2 (ja) 2015-05-13
US9559556B2 (en) 2017-01-31
JP2012222922A (ja) 2012-11-12
US20140062230A1 (en) 2014-03-06
CN103534902A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2012137862A1 (ja) 回転電機の固定子
JP5942714B2 (ja) 回転電機
JP5453770B2 (ja) 回転電機の固定子およびその製造方法
US9887596B2 (en) Rotating electric machine
US10291106B2 (en) Stator, rotary electric machine provided with the stator and method of manufacturing the stator
US7293342B2 (en) Method of manufacturing stator for electric motor
US8193675B2 (en) Stator for electric rotating machine
US9941760B2 (en) Rotary electric machine
US11309760B2 (en) Rotary electric machine
US8203247B2 (en) Stator for electric rotating machine
EP2063515A2 (en) Stator for rotary electric machine, and rotary electric machine using the stator
JP5920308B2 (ja) 回転電機
JP4105144B2 (ja) オールタネータ用ステータアセンブリ
US20130062978A1 (en) Electric rotating machine
JP5854268B2 (ja) 回転電機の固定子
JP2009011151A (ja) 回転電機の固定子
JP4625290B2 (ja) 回転電機用固定子
JP5997598B2 (ja) 回転電機
JP7467218B2 (ja) 回転電機の回転子およびその製造方法
JP6394542B2 (ja) 回転電機ステータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14110316

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12768030

Country of ref document: EP

Kind code of ref document: A1