WO2012137653A1 - プレス成形性に優れたチタン板 - Google Patents

プレス成形性に優れたチタン板 Download PDF

Info

Publication number
WO2012137653A1
WO2012137653A1 PCT/JP2012/058253 JP2012058253W WO2012137653A1 WO 2012137653 A1 WO2012137653 A1 WO 2012137653A1 JP 2012058253 W JP2012058253 W JP 2012058253W WO 2012137653 A1 WO2012137653 A1 WO 2012137653A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
titanium
crystal grains
titanium plate
plate
Prior art date
Application number
PCT/JP2012/058253
Other languages
English (en)
French (fr)
Inventor
健 工藤
昌吾 村上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020137025756A priority Critical patent/KR101511464B1/ko
Priority to CN201280011713.7A priority patent/CN103415636B/zh
Publication of WO2012137653A1 publication Critical patent/WO2012137653A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention relates to a titanium plate having excellent formability such as press working.
  • Titanium has excellent corrosion resistance and specific strength, so it is widely used in heat exchangers, chemical plant members, coastal structural materials, etc., especially seawater, so it does not corrode at all. It is often adopted for.
  • a plate-type heat exchanger employs a titanium plate processed into a plate shape, and a titanium plate whose surface is press-formed into an uneven shape is used to improve heat transfer efficiency.
  • a titanium plate having further excellent formability such as press molding will be developed.
  • the titanium plate excellent in press formability there are various proposals regarding the composition of the material of the titanium plate and the forming technique thereof.
  • Patent Document 1 proposes a method of reducing anisotropy by rolling at a right angle to the normal rolling direction. Has been. However, in this method, since the rolling direction has to be changed in the middle of the manufacturing process, there is a fact that productivity has to be reduced.
  • Patent Document 2 an iron or zinc alloy layer of a lubricant carrier is formed on the surface of a plate material, and then zinc phosphate treatment is performed. And a method of applying a lubricant has been proposed. However, this method requires many steps for the lubricant treatment, and is inefficient in that respect.
  • Patent Documents 3 and 4 disclose a titanium plate having an oxide film formed on the surface of the plate material and a manufacturing method thereof as Patent Document 5 and the surface of the plate material.
  • a titanium plate having a nitrogen-enriched layer formed thereon and a method for producing the same have been proposed as Patent Document 6, and a titanium plate having a TiC-containing layer formed on the surface of a plate material has been proposed.
  • Patent Document 6 discloses a titanium plate having a TiC-containing layer formed on the surface of a plate material.
  • Titanium is also applied to two-wheel and four-wheel members such as mufflers because it has excellent lightness, corrosion resistance and design.
  • titanium is required to have moldability that can cope with complicated and diverse processes such as stretchability, deep drawability, bending workability, and stretch flangeability.
  • Japanese Unexamined Patent Publication No. 60-82227 Japanese Unexamined Patent Publication No. 63-174749 Japanese Patent Laid-Open No. 6-173083 Japanese Unexamined Patent Publication No. 6-248404 Japanese Unexamined Patent Publication No. 10-204609 Japanese Unexamined Patent Publication No. 2006-291362
  • the present invention has been made as a solution to the above-mentioned conventional problems, and an object of the present invention is to provide a titanium plate having excellent press formability and excellent stretch flangeability.
  • the invention according to claim 1 contains, in mass%, Fe 0.04 to 0.10%, O 0.07 to 0.20%, the balance being Ti and inevitable impurities, t / 4
  • the area ratio of ⁇ 11-22 ⁇ ⁇ 11-23> twinning deformation Schmid factor of 0.47 or more at the time of rolling in the rolling direction of the (t is the plate thickness) portion is 30% or more, and t Of the total crystal grains ( ⁇ phase) existing in a 1 mm ⁇ 1 mm plane of the / 4 (t is the plate thickness) part, the area ratio occupied by the crystal grains whose c-axis angle is 70 to 90 ° with respect to the rolling direction is 90 % Or less, it is a titanium plate excellent in press formability.
  • the average crystal grain size of crystal grains ( ⁇ phase) existing in a 1 mm ⁇ 1 mm plane of a t / 4 (t is a plate thickness) portion is 20 to 200 ⁇ m. It is a titanium plate excellent in press formability.
  • a titanium plate excellent in press formability can be obtained.
  • it has excellent press formability and excellent stretch flangeability.
  • applications that require high strength and high formability such as four-wheel members, fuel cell separators, mobile phones, mobile personal computers, camera bodies, and spectacle frames.
  • the present inventors diligently conducted experiments and research in order to obtain a titanium plate having excellent press formability and excellent stretch flangeability.
  • Phase a titanium plate that has excellent press formability and stretch flangeability by appropriately controlling the area ratio occupied by the crystal grains whose c-axis angle with respect to the rolling direction is 70 to 90 °.
  • the present invention was completed and the present invention was completed.
  • the component composition of the titanium plate and the Schmid factor of the ⁇ 11-22 ⁇ ⁇ 11-23> twin deformation at the time of rolling in the rolling surface of the t / 4 (t is the plate thickness) portion of the titanium plate Is an area ratio of 0.47 or more, and among the crystal grains ( ⁇ phase) existing within 1 mm ⁇ 1 mm of the plane of the t / 4 (t is the plate thickness) portion of the titanium plate, the angle of the c axis with respect to the rolling direction Defines the area ratio occupied by 70 to 90 ° crystal grains.
  • Component composition Pure titanium contains a small amount of C, H, O, N, Fe, etc. as unavoidable impurities, but in the present invention, the content is relatively large, and the inclusion of Fe and O that affects mechanical properties. The amount was specified.
  • the upper limit of the Fe content is 0.10% by mass.
  • the upper limit with preferable Fe content is 0.08 mass%, and a more preferable upper limit is 0.06 mass%.
  • the lower limit of the Fe content is 0.04% by mass.
  • the upper limit of the O content is 0.20% by mass.
  • the upper limit with preferable content of O is 0.16 mass%, and a more preferable upper limit is 0.12 mass%.
  • the lower limit of the O content is 0.07% by mass.
  • the area ratio of the Schmid factor of ⁇ 11-22 ⁇ ⁇ 11-23> twinning deformation at the time of rolling in the rolling direction of the t / 4 (t is the plate thickness) portion of the titanium plate is 0.47 or more, and Of the crystal grains ( ⁇ phase) existing within 1 mm ⁇ 1 mm of the plane of the t / 4 (t is the plate thickness) portion of the titanium plate, the crystal grains whose c-axis angle with respect to the rolling direction is 70 to 90 ° occupy The reason for defining the area ratio is as follows.
  • the area ratio of ⁇ 11-22 ⁇ ⁇ 11-23> twinning deformation Schmid factor of 0.47 or more at the time of rolling direction tension The area where the Schmid factor of the ⁇ 11-22 ⁇ ⁇ 11-23> twin deformation at the time of rolling in the rolling direction of the t / 4 (t is the plate thickness) portion of the titanium plate is 0.47 or more. If the rate is too small, the frequency of deformation twins generated at the time of forming the titanium plate becomes too low, and the excellent press formability intended in the present invention cannot be obtained.
  • the area ratio having a Schmid factor of 0.47 or more in the ⁇ 11-22 ⁇ plane at the time of rolling in the rolling direction must be 30% or more.
  • the area ratio with a Schmitt factor of 0.47 or more needs to be 35% or more, more preferably the area ratio with a Schmitt factor of 0.47 or more needs to be 40% or more.
  • the area ratio occupied by the crystal grains having the c-axis angle of 70 to 90 ° with respect to the rolling direction must be 90% or less.
  • the area ratio is preferably 85% or less, and more preferably the area ratio is 80% or less.
  • the above is the essential requirement prescribed in the present invention, but the average grain size of the crystal grains ( ⁇ phase) existing in the 1 mm ⁇ 1 mm plane of the t / 4 (t is the plate thickness) portion of the titanium plate is appropriately set. By controlling to, a titanium plate having excellent press formability and excellent stretch flangeability can be obtained.
  • the average crystal grain size of the crystal grains ( ⁇ phase) existing in the 1 mm ⁇ 1 mm plane of the t / 4 (t is the plate thickness) portion of the titanium plate becomes too large, the rough surface of the titanium plate after press forming becomes remarkable. Therefore, it is not preferable in appearance as a press-formed product. Therefore, the average crystal grain size of the crystal grains ( ⁇ phase) is 200 ⁇ m or less. A more preferable upper limit of the average crystal grain size of the crystal grains ( ⁇ phase) is 150 ⁇ m, and a more preferable upper limit is 100 ⁇ m.
  • the average crystal grain size of the crystal grains ( ⁇ phase) is 20 ⁇ m or more.
  • the more preferable lower limit of the average crystal grain size of the crystal grains ( ⁇ phase) is 35 ⁇ m, and the more preferable lower limit is 50 ⁇ m.
  • the production conditions are that the partial rolling, hot rolling, and cold rolling are all performed in the same direction, the rolling reduction per pass of the partial rolling is 5% or more, the final cold rolling rate is 70% or more, and the final annealing.
  • the temperature is 500 to 810 ° C., and the holding time of the final annealing is 1 hour or less.
  • a titanium ingot containing Fe and O was cast at the contents shown in Table 1 by CCIM (cold crucible induction melting method).
  • the balance is Ti and unavoidable impurities such as C, H, N, and the like.
  • the size of the ingot is 10 kg in a cylindrical shape of ⁇ 100 mm.
  • the partial rolling was performed at the rolling reduction per pass shown in Table 1, and then the mixture was allowed to cool to obtain a plate-shaped partial rolled material having a thickness of 45 mm.
  • hot rolling was performed, scale removal was performed, and a hot rolled sheet having a thickness of about 5 mm was obtained.
  • the scale was removed after performing an annealing process (intermediate annealing) in which air heating was performed at 700 ° C. for 5 minutes in an atmospheric furnace.
  • intermediate annealing in which air heating was performed at 700 ° C. for 5 minutes in an atmospheric furnace.
  • cold rolling at the cold rolling rate shown in Table 1, in the vacuum annealing furnace, it is heated under the conditions shown in Table 1 and then air-cooled (final annealing), and then the skin pass is performed.
  • the scale was removed and a titanium plate having a thickness of 0.5 mm was manufactured.
  • a field emission scanning microscope Field Emission Scanning Electron Microscope: FESEM
  • FESEM Field Emission Scanning Electron Microscope: JSM5410
  • a back-scattered electron diffraction image Electron Back Scattering (Scattered) Pattern system
  • the metal structure was observed and measured by the crystal orientation analysis method.
  • This measurement method was used because the EBSP method has higher resolution than other measurement methods and can perform measurement with high accuracy.
  • EBSP method projects an EBSP onto a screen by irradiating a sample set in a FESEM column with an electron beam. This is taken with a high-sensitivity camera and captured as an image on a computer. The orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, data of tens of thousands to hundreds of thousands of points can be obtained at the end of measurement.
  • the EBSP method has a wider field of view than the X-ray diffraction method or the electron beam diffraction method using a transmission electron microscope, and can provide various information on hundreds of crystal grains for several hours. There are advantages you can get within.
  • the specified region is scanned at a fixed interval instead of the measurement for each crystal grain, there is an advantage that each of the above-mentioned information regarding the above-described many measurement points covering the entire measurement region can be obtained. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in Kobe Steel Technical Report / Vol. 52 No. 2 (Sep. 2002) P66-70 and the like.
  • the surface of the rolled surface of the titanium plate is mechanically polished, followed by buffing and electrolytic polishing, and the rolled surface at a depth of t / 4 (t is the thickness) from the surface of the titanium plate (parallel to the surface of the titanium plate).
  • the surface is adjusted so that the crystal structure of the surface at a depth of t / 4 in the thickness direction) can be observed, and ⁇ 11-22 ⁇ ⁇ 11-23>
  • the area ratio having a Schmid factor of crystal deformation of 0.47 or more and the area ratio occupied by crystal grains having a c-axis angle of 70 to 90 ° with respect to the rolling direction were obtained by the above-described measurement.
  • the measurement area was in a 1 mm ⁇ 1 mm plane, and the measurement pitch was 1 ⁇ m.
  • the area ratio of ⁇ 11-22 ⁇ ⁇ 11-23> twinning deformation with a Schmid factor of 0.47 or more when tensile in the rolling direction is the number of measurement points with a Schmit factor of 0.47 or more at each measurement point measured. Calculated by dividing by the total number of measurement points.
  • the area ratio occupied by crystal grains having a c-axis angle of 70 to 90 ° with respect to the rolling direction was calculated by dividing the number of c-axis angles of 70 to 90 ° at each measured measurement point by the number of all measurement points. .
  • the test piece obtained in this test having a 0.2% yield strength (YS) in the rolling direction of 200 MPa or more was evaluated as having high yield strength.
  • press molding was performed by an 80 ton hydraulic press. Specifically, press oil having a kinematic viscosity of 34 mm 2 / s (40 ° C.) is applied to the front and back surfaces of each test specimen, and each test specimen is rolled in the rolling direction (L direction) in the vertical direction of FIG. Was placed on the upper surface of the lower mold so as to coincide with the above, and the flange portion was restrained by a plate press, and then press molding was carried out under the conditions of a press speed of 1 mm / s and an indentation depth of 3.4 mm. The press formability was evaluated by the number of cracks observed after press forming. A specific evaluation method will be described below.
  • the measurement positions A, C, C ′, and E which are the starting points of cracking, are 2 points if neither cracking nor constriction is observed, 1 point if constriction is recognized, 0 point if cracking is recognized, For other measurement positions B and D, 1 point is given if neither cracking nor constriction is observed, 0.5 point if constriction is recognized, 0 point if cracking is observed, and the reciprocal of machining R is added to each point. Multiply it and digitize the state of the cracks and determine the total.
  • the function F () depends on the temperature (T), the viscosity of the lubricating oil ( ⁇ ), and the plate thickness (t) of the specimen.
  • T, ⁇ , t) and the function G ( ⁇ , p) depending on the angle ( ⁇ ) and pitch (p) of the ridge line of the press mold were multiplied to calculate the formability score.
  • F and G are values from 0 to 1.
  • Formability score F ⁇ G ⁇ ⁇ E (ij) / R (j) / ( ⁇ A, C, C ′, E2 / R (j) + ⁇ B, D 1 / R (j)) ⁇ 100
  • A, C, C ′, E, E (ij) 1.0 ⁇ (no cracking of the neck: 2, necking: 1, cracking 0)
  • the moldability score was calculated with F ⁇ G as 1 for convenience.
  • the one with a calculated moldability score of 50 or more was evaluated as having excellent press moldability.
  • those having a moldability score of 75 points or more are shown as ⁇ , 50 to less than 75 points as ⁇ , and less than 50 points as ⁇ .
  • ⁇ Stretch flangeability> Regarding the stretch flangeability of the titanium plate, a 70 ⁇ 70 ⁇ 0.5 mm blank is cut out from each manufactured titanium plate, a hole of ⁇ 10 is formed in the center of the blank by punching, and then the burr generated at the time of punching is a plate. It was determined by carrying out a hole expansion test in which it was set on a die so as to face upward and a 60 ° conical punch was pushed upward from below.
  • No. No. 1 has a lower Fe content of 0.04% by mass.
  • No. 2 has an upper limit of Fe content of 0.10% by mass.
  • No. 3 has an O content of 0.20% by mass of the upper limit.
  • No. 4 is the one where the rolling reduction per pass of the ingot rolling is close to the lower limit.
  • No. 5 has a high rolling reduction rate of 9.2% per pass of the ingot rolling.
  • No. 6 shows that the final cold rolling ratio of cold rolling is close to the upper limit (the content of O is also close to the lower limit).
  • 7 is 70% of the lower limit of the final cold rolling ratio of cold rolling.
  • No. No. 8 has an Fe content exceeding the upper limit.
  • No. 9 has an O content exceeding the upper limit.
  • No. 10 has a rolling reduction per pass of the ingot rolling lower than the lower limit,
  • No. 10 No. 11 has a cold rolling final cold rolling rate lower than the lower limit.
  • No. 12 is the one in which the average crystal grain size of the crystal grains ( ⁇ phase) exceeds the upper limit.
  • No. 13 has both Fe and O contents less than the lower limit.
  • No. 1 to 7 are crystal grains in which the Schmid factor of ⁇ 11-22 ⁇ ⁇ 11-23> twin deformation during rolling in the rolling direction is 0.47 or more and the c-axis angle with respect to the rolling direction is 70 to 90 °. All the requirements defined by the present invention, ie, the area ratio occupied by are satisfied. As a result, the 0.2% proof stress (YS) is all 200 MPa or more, the test result of press formability is also ⁇ or ⁇ , and the hole expansion rate (stretch flangeability) is 90% or more. That is, no.
  • the titanium plates 1 to 7 can be said to be titanium plates having high yield strength and excellent press formability, and also excellent stretch flangeability.
  • the titanium plate of the present invention can be widely used for heat exchangers, chemical plant members, coastal structural materials, and the like, and is particularly useful as a seawater heat exchanger because it does not corrode against seawater. It can also be applied to applications that require high strength and high formability, such as muffler and other two-wheel and four-wheel members, fuel cell separators, mobile phones, mobile personal computers, camera bodies, and eyeglass frames. .

Abstract

 本発明のチタン板は、質量%で、Feを0.04~0.10%、Oを0.07~0.20%含有し、残部がTiおよび不可避的不純物であって、t/4(tは板厚)部の圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率が、30%以上であると共に、t/4(tは板厚)部の1mm×1mmの平面内に存在する全結晶粒(α相)のうち、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率が90%以下であり、プレス成形性に優れたうえに、伸びフランジ性にも優れる。

Description

プレス成形性に優れたチタン板
 本発明は、プレス加工等の成形性に優れたチタン板に関するものである。
 チタンは優れた耐食性並びに比強度を有することから、熱交換器、化学プラント部材、或いは海岸部の構造材等に広く採用されており、特に海水に対しては全く腐食しないことから海水熱交換器に採用されることが多い。中でも、プレート式熱交換器には板状に加工したチタン板が採用されており、伝熱効率向上のために表面を凹凸形状にプレス成形したチタン板が用いられている。また、近年は伝熱効率を更に向上させるため、チタン板を薄肉化させる、凹凸形状を複雑化させるといったニーズがあり、プレス成形等の成形性が更に優れたチタン板が開発されることが待望されているという背景もあり、プレス成形性に優れたチタン板に関しては、そのチタン板の材質等の構成並びにその成形加工技術に関する様々な提案がある。
 チタンの材質面では、チタンの結晶構造が六方晶であるために異方性があることから、特許文献1として、通常の圧延方向と直角に圧延して、異方性を低減する方法が提案されている。しかしながら、この方法では、製造工程の途中で圧延方向を変更しなければならないため、生産性を落とさざるを得ないという実情があった。
 成形加工技術の観点からは、表面潤滑の適正化等が検討されており、例えば、特許文献2として、板材の表面に潤滑剤キャリアの鉄、亜鉛合金層を形成させ、その後、リン酸亜鉛処理を行い、潤滑剤を塗布するという方法が提案されている。しかしながら、この方法では、潤滑剤処理に多数の工程が必要となり、その面で不効率な方法であった。
 また、板材の表面潤滑性に着目した提案も多くあり、特許文献3および特許文献4として、板材の表面に酸化被膜を形成させたチタン板とその製造方法が、特許文献5として、板材の表面に窒素富化層を形成させたチタン板とその製造方法が、特許文献6として、板材の表面にTiC含有層を形成させたチタン板が、夫々提案されている。しかしながら、これらのチタン板やその製造方法では、板材の表面に被覆層を形成する必要があり、その製造工程が複雑であるという実情があった。
 また、チタンは優れた軽量性、耐食性並びに意匠性を有することから、マフラー等の二輪や四輪の部材にも適用されている。これらに適用するために、チタンには、張出し性、深絞り性、曲げ加工性、伸びフランジ性などの複雑で多様な加工に対応できる成形加工性が求められている。
日本国特開昭60-82227号公報 日本国特開昭63-174749号公報 日本国特開平6-173083号公報 日本国特開平6-248404号公報 日本国特開平10-204609号公報 日本国特開2006-291362号公報
 本発明は、上記従来の問題を解決せんとしてなされたもので、プレス成形性に優れたうえに、伸びフランジ性にも優れたチタン板を提供することを課題とするものである。
 請求項1記載の発明は、質量%で、Feを0.04~0.10%、Oを0.07~0.20%含有し、残部がTiおよび不可避的不純物であって、t/4(tは板厚)部の圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率が、30%以上であると共に、t/4(tは板厚)部の1mm×1mmの平面内に存在する全結晶粒(α相)のうち、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率が90%以下であることを特徴とするプレス成形性に優れたチタン板である。
 請求項2記載の発明は、t/4(tは板厚)部の1mm×1mmの平面内に存在する結晶粒(α相)の平均結晶粒径が、20~200μmである請求項1記載のプレス成形性に優れたチタン板である。
 本発明によると、プレス成形性に優れたチタン板を得ることができる。また、チタン本来の優れた耐久性はもとより、高い機械的強度に加えて、優れたプレス成形性並びに優れた伸びフランジ性を有しているので、プレート式熱交換器の構成材のほか、二輪・四輪部材、燃料電池のセパレーター、携帯電話機、モバイルパソコン、カメラのボディ、眼鏡フレーム等、高耐力で高度な成形性が要求される用途に広く適用することができる。
 また、結晶粒(α相)の平均結晶粒径を、適切に制御することで、優れたプレス成形性を確保したうえで、且つ、伸びフランジ性に優れたチタン板とすることができる。
圧延方向に対するc軸の角度を説明するための参考図である。 実施例でプレス成形性並びに外観の評価を行うために用いたプレス成形金型を示し、(a)は平面図、(b)は(a)のF-F線断面図である。
 本発明者らは、プレス成形性に優れたうえに、伸びフランジ性にも優れたチタン板を得るために、鋭意、実験、研究を進めた。その結果、Feの含有量とOの含有量を規定したうえで、そのチタン板のt/4(tは板厚)部の圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率を、適切に制御すると共に、チタン板のt/4(tは板厚)部の平面の1mm×1mm内に存在する結晶粒(α相)のうち、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率を適切に制御することで、プレス成形性に優れたうえに、伸びフランジ性にも優れたチタン板を得ることができることを見出し、本発明の完成に至った。
 以下、本発明を実施形態に基づき詳細に説明する。
 本発明では、チタン板の成分組成と、そのチタン板のt/4(tは板厚)部の圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率、並びに、チタン板のt/4(tは板厚)部の平面の1mm×1mm内に存在する結晶粒(α相)のうち、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率を規定するが、まず、成分組成について説明する。
(成分組成)
 純チタンは、不可避的不純物としてC、H、O、N、Fe等を微量に含有するが、本発明では、その中でも含有量が比較的多く、機械的性質に影響を及ぼすFeとOの含有量を規定した。
 Feの含有量が0.10質量%を超えて多くなりすぎると、耐力が大きくなりすぎてプレス成形性および伸びフランジ性が低下する傾向がある。従って、Feの含有量の上限は0.10質量%とする。尚、Feの含有量の好ましい上限は0.08質量%であり、より好ましい上限は0.06質量%である。一方、Feの含有量が0.04質量%より少なくなると耐力が小さくなりすぎるので、Feの含有量の下限は0.04質量%とする。 
 Oの含有量が0.20質量%を超えて多くなりすぎると、耐力が大きくなりすぎてプレス成形性および伸びフランジ性が低下する傾向がある。従って、Oの含有量の上限は0.20質量%とする。尚、Oの含有量の好ましい上限は0.16質量%であり、より好ましい上限は0.12質量%である。一方、Oの含有量が0.07質量%より少なくなると耐力が小さくなりすぎるので、Oの含有量の下限は0.07質量%とする。
 また、チタン板のt/4(tは板厚)部の圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率、並びに、チタン板のt/4(tは板厚)部の平面の1mm×1mm内に存在する結晶粒(α相)のうち、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率の、規定理由は以下のとおりである。
(圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率)
 チタン板のt/4(tは板厚)部の圧延面における、圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子(Schmid factor)が0.47以上の面積率が少なすぎると、チタン板の成形時に発生する変形双晶の頻度が少なくなりすぎて、本発明で意図する優れたプレス成形性を得られなくなってしまう。本発明で意図する優れたプレス成形性を確保するためには、前記した圧延方向引張時の{11-22}面のシュミット因子が0.47以上の面積率が30%以上でなければならない。好ましくはシュミット因子が0.47以上の面積率を35%以上、より好ましくはシュミット因子が0.47以上の面積率を40%以上とする必要がある。
(圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率)
 チタン板のt/4(tは板厚)部の1mm×1mmの平面内に存在する全結晶粒(α相)のうち、図1に示す圧延方向に対するc軸の角度(θ)が70~90°の結晶粒が占める面積率が大きくなりすぎると、材料の異方性が大きくなりすぎ、等方的な変形を伴う伸びフランジ性が低下し、本発明で意図する伸びフランジ性が得られなくなってしまう。本発明で意図する伸びフランジ性を得るためには、前記した圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率が90%以下でなければならない。好ましくはその面積率を85%以下、より好ましくはその面積率を80%以下とする。
(結晶粒の平均結晶粒径)
 以上が本発明で規定する必須要件であるが、更にチタン板のt/4(tは板厚)部の1mm×1mmの平面内に存在する結晶粒(α相)の平均結晶粒径を適切に制御することで、優れたプレス成形性を確保したうえで、且つ、伸びフランジ性に優れたチタン板とすることができる。
 チタン板のt/4(tは板厚)部の1mm×1mmの平面内に存在する結晶粒(α相)の平均結晶粒径が大きくなりすぎると、プレス成形後のチタン板の肌荒れが顕著になり、プレス成形品として外観上好ましくなくなる。従って、結晶粒(α相)の平均結晶粒径は、200μm以下とする。結晶粒(α相)の平均結晶粒径のより好ましい上限は150μm、更に好ましい上限は100μmである。一方、平均結晶粒径が小さくなりすぎると、チタン板の成形時に発生する変形双晶の頻度が少なくなりすぎて、十分な延性を確保できなくなり、本発明で意図する優れたプレス成形性を得られなくなってしまう。従って、結晶粒(α相)の平均結晶粒径は、20μm以上とする。結晶粒(α相)の平均結晶粒径のより好ましい下限は35μm、更に好ましい下限は50μmである。
(製造条件)
 次に、本発明のチタン板の製造方法について説明する。通常のチタン板は、分塊圧延→熱間圧延→中間焼鈍→冷間圧延→最終焼鈍といった各工程間に、随時ブラスト、酸洗処理を入れて製造されるが、製造するチタン板の成分組成や各工程の設定条件によって、得られる物性や組織状態は変わるので、一連の製造工程として総合的に条件を選択して決定すべきであって、個々の工程毎に条件を厳密に設定することは必ずしも適切でない。
 しかしながら、本発明のチタン板を製造するための製造条件を、本発明者らが鋭意検討したところ、以下に示す製造条件を採用することで、本発明で意図するプレス成形性および伸びフランジ性に優れたチタン板を確実に製造することができることを確認した。
 その製造条件は、分塊圧延、熱間圧延、冷間圧延を全て同一方向で行うと共に、分塊圧延の1パスあたりの圧下率を5%以上、最終冷延率を70%以上、最終焼鈍温度を500~810℃、最終焼鈍の保持時間を1時間以下とすることである。これらの条件を適切に組み合わせてチタン板を製造することで、本発明で意図するプレス成形性および伸びフランジ性に優れたチタン板を製造することができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 本実施例では、まず、CCIM(コールドクルーシブル誘導溶解法)により表1に示す含有量でFe並びにOを含有するチタン鋳塊を鋳造した。残部はTiおよびC、H、N、等の不可避的不純物である。鋳塊の大きさはφ100mmの円柱形で、10kgである。この鋳塊を用いて表1に示す1パスあたりの圧下率で分塊圧延を行い、その後は放冷して厚み45mmの板形状の分塊圧延材を得た。更に、熱間圧延を実施し、スケール除去を行い厚み約5mmの熱延板を得た。
 次いで、大気炉にて、700℃で5分間加熱してから空冷する焼鈍処理(中間焼鈍)を行った後、スケール除去を行った。次に、表1に示す冷延率で冷間圧延を行った後、真空焼鈍炉にて、表1に示す条件で加熱してから空冷する焼鈍処理(最終焼鈍)を行い、次いで、スキンパスを実施し、スケール除去を行って厚み0.5mmのチタン板を製造した。   
 本実施例では、製造した各チタン板の金属組織等の観察・測定と、耐力およびプレス成形性の評価を夫々下記の要領で行った。
 本実施例では、電界放出型走査顕微鏡(Field Emission Scanning Electron Microscope:FESEM)(日本電子社製、JSM5410)に、後方錯乱電子回析像(Electron Back Scattering(Scattered) Pattern:EBSP)システムを搭載した結晶方位解析法によって金属組織の観察・測定を実施した。この測定方法を用いたのは、EBSP法は他の測定方法と比較して高分解能であり、高精度な測定ができるためである。まず、測定原理について説明する。
 EBSP法は、FESEMの鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などと共に記録される。このプロセスが全測定点に対して自動的に行われるので、測定終了時には数万~数十万点のデータを得ることができる。
 このように、EBSP法には、X線回析法や透過電子顕微鏡を用いた電子線回析法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する各種情報を、数時間以内で得ることができる利点がある。また、結晶粒毎の測定ではなく、指定した領域を一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。尚、これらFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66-70などに詳細に記載されている。 
(圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率)
 チタン板の圧延面表面を機械研磨し、更に、バフ研磨に次いで電解研磨を行い、チタン板の表面から深さt/4(tは板厚)部の圧延面(チタン板の表面に平行な面であって、その板厚方向の深さt/4部の面)の結晶組織が観察できるように調整し、その圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率、並びに、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率を、前記した測定により得た。測定エリアは1mm×1mmの平面内とし、測定ピッチは1μmとした。
 圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率は、測定した各測定点のシュミット因子が0.47以上の測定点の数を全測定点の数で割ることにより算出した。
 圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率は、測定した各測定点のc軸の角度が70~90°の数を全測定点の数で割ることにより算出した。
<結晶粒(α相)の平均結晶粒径>
 結晶粒(α相)の平均結晶粒径は、チタン板の圧延面表面を機械研磨し、更に、バフ研磨に次いでエッチングを行い、チタン板の表面から深さt/4部の圧延面の結晶組織が観察できるように調整し、光学顕微鏡を用いて×100にて任意の3箇所を写真撮影し、得られた写真を元にJIS G 0551の切断法により粒度番号測定を実施し、その粒度番号をもとにα相の円相当平均粒径(直径)を計算により求めた。尚、粒度番号測定に用いた光学顕微鏡による観察領域は1mm×1mmとした。
<耐力の測定>
 チタン板の耐力については、製造した各チタン板からJISZ2201に規定される13号試験片を作製し、この試験片について、JISZ2241に準拠する引張試験を行い、試験片の圧延方向の0.2%耐力(YS)を測定することで求めた。尚、試験片は、その長手方向(L方向)が圧延方向と一致するようにして採取した。また、試験速度(引張試験での歪み速度)は、0.3mm/minで一定とした。
 この試験で得られた試験片の圧延方向の0.2%耐力(YS)が200MPa以上のものを、高耐力であると評価した。
<プレス成形性>
 プレス成形性については、図2に示すような、V字形の溝を設けたプレート式熱交換器の熱交換部分をプレス成形することを模擬したプレス成形金型を用いてチタン板(試験体)のプレス成形を実施し、その評価を行った。プレス成形金型は、図2に示すように、成形部の大きさが100mm×100mmで、その表面には、ピッチ10mm、最大高さ4mmの平面V字形の平行する稜線部が6本形成されている。その各稜線部のR形状は、図2(a)の上から下に向かって順に、R=0.4、1.8、0.8、1.0、1.4、0.6の計6種類である。
 この成形金型を用いて80ton油圧プレス機によってプレス成形を実施した。具体的には、各試験体の表裏面に動粘度34mm/s(40℃)のプレス油を塗布し、各試験体を、その圧延方向(L方向)が図2(a)の上下方向と一致するようにして下金型の上面に配置し、そのフランジ部を板押さえで拘束した後、プレス速度1mm/s、押し込み深さ3.4mmの条件でプレス成形を実施した。プレス成形性の評価は、プレス成形後に認められる割れの数で評価した。具体的な評価方法を以下に説明する。
 プレス成形後の各試験体の図2(a)に示す稜線部と、測定位置A、B、C、C´、D、Eの一点鎖線との交点計36箇所について、割れの有無を目視で観察した。尚、測定位置C´は、図2(b)に示すように、隣接する稜線部の間に位置する谷部である。
 この目視において、割れの起点となる測定位置A、C、C´、Eについては、割れもくびれも認められなければ2点、くびれが認められれば1点、割れが認められれば0点とし、他の測定位置B、Dについては、割れもくびれも認められなければ1点、くびれが認められれば0.5点、割れが認められれば0点とし、更にその各点数に加工Rの逆数を掛けて割れの状態を数値化し、その合計値を求めた。その合計値を、完全に割れ、くびれが認められない場合を100として規格化した後、温度(T)、潤滑油の粘度(μ)、試験体の板厚(t)に依存する関数F(T,μ,t)、並びに、プレス金型の稜線の角度(α)、ピッチ(p)に依存する関数G(α,p)を掛け合わせて、成形性スコアとして算出した。尚、F並びにGは0~1の値である。
 以上の成形性スコアの算出方法は、下記式によって表すことができる。
 成形性スコア=F×G×ΣE(ij)/R(j)/(ΣA,C,C´,E 2/R(j)+ΣB,D 1/R(j))×100
 この式において、A、C、C´、Eの場合は、E(ij)=1.0×(割れくびれなし:2、くびれ:1、割れ0)として、また、B、Dの場合は、E(ij)=0.5×(割れくびれなし:2、くびれ:1、割れ0)として算出した。また、本実施例では、温度(T)、潤滑油の粘度(μ)、試験体の板厚(t)、プレス金型の稜線の角度(α)、およびプレス金型の稜線のピッチ(p)を一定としたため、F×Gを便宜的に1として成形性スコアを算出した。
 この算出した成形性スコアが50点以上のものをプレス成形性に優れていると評価した。尚、表1には、成形性スコアが75点以上のものを◎、50点~75点未満を○、50点未満を×として示す。
<伸びフランジ性>
 チタン板の伸びフランジ性については、製造した各チタン板から70×70×0.5mmのブランクを切り出し、そのブランクの中心にφ10の孔を打ち抜きにより形成した後、打ち抜き時に生成されたバリが板上方になるようにしてダイスにセットし、下方から上方へ60°円錐パンチを押し上げる孔拡げ試験を実施することで求めた。 
 試験では、孔の縁にクラックが生成されたことを目視により確認できた時点で速やかにパンチの押し上げを停止し、その時点での孔の直径を測定した後に、(試験後の孔の直径)/(試験前の孔の直径)という式より孔拡げ率λ(%)を算出した。この算出した孔拡げ率λが90%以上のものを伸びフランジ性に優れていると評価した。
<肌荒れ>
 前記したプレス成形性の評価で、各試験体において、プレス成形後に割れが認められなかったV字形頂点部について、目視で肌荒れの状態を確認した。この確認により、V字形頂点部に、肌荒れが全く認められないものを○、明らかな凹凸が認められるものを×とし、○をプレス成形後も優れた外観であるとして評価した。
 以上の試験結果を表1に示す。 
Figure JPOXMLDOC01-appb-T000001
 No.1は、Feの含有量が下限の0.04質量%のもの、No.2は、Feの含有量が上限の0.10質量%のものであり、また、No.3は、Oの含有量が上限の0.20質量%のもの、No.4は、分塊圧延の1パスあたりの圧下率が下限に近いもの、No.5は、分塊圧延の1パスあたりの圧下率が9.2%と高いもの、No.6は、冷間圧延の最終冷延率が上限に近いもの(Oの含有量も下限に近い)、No.7は冷間圧延の最終冷延率が下限の70%のものである。これらNo.1~7の成分組成は、全て本発明の要件を満足し、製造条件も好ましい条件である。
 これに対し、No.8は、Feの含有量が上限を超えるもの、No.9は、Oの含有量が上限を超えるもの、No.10は、分塊圧延の1パスあたりの圧下率が下限より低いもの、No.11は、冷間圧延の最終冷延率が下限より低いものであり、No.12は、結晶粒(α相)の平均結晶粒径が上限を上回るものであり、No.13は、FeとOの含有量が共に下限未満のものである。
 No.1~7は、圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率という本発明で規定する要件も全て満足している。その結果、0.2%耐力(YS)は全て200MPa以上であり、プレス成形性の試験結果も○或いは◎で、孔拡げ率(伸びフランジ性)も90%以上である。すなわち、No.1~7のチタン板は、高耐力でプレス成形性に優れたうえに、伸びフランジ性にも優れたチタン板であるということができる。 
 一方、No.9~11、13は、0.2%耐力(YS)、プレス成形性、孔拡げ率のいずれか一つ以上で合格判定基準を満足しない結果となった。また、No.12は、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率が上限を超える結果となり、V字形頂点部に肌荒れが認められた。すなわち、本発明で規定する要件から外れるチタン板は、高耐力でプレス成形性に優れたうえに、伸びフランジ性にも優れたチタン板とはいえないことが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年4月1日出願の日本特許出願(特願2011-082065)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のチタン板は、熱交換器や化学プラント部材、或いは海岸部の構造材等に広く利用でき、特に海水に対して腐食しないことから海水熱交換器として有用である。また、マフラー等の二輪や四輪の部材、燃料電池のセパレーター、携帯電話機、モバイルパソコン、カメラのボディ、眼鏡フレーム等、高耐力で高度な成形性が要求される用途にも適用することができる。

Claims (2)

  1.  質量%で、Feを0.04~0.10%、Oを0.07~0.20%含有し、残部がTiおよび不可避的不純物であって、 
     t/4(tは板厚)部の圧延面における圧延方向引張時の{11-22}<11-23>双晶変形のシュミット因子が0.47以上の面積率が、30%以上であると共に、
     1/4t(tは板厚)部の1mm×1mmの平面内に存在する全結晶粒(α相)のうち、圧延方向に対するc軸の角度が70~90°の結晶粒が占める面積率が90%以下であることを特徴とするプレス成形性に優れたチタン板。
  2.  t/4(tは板厚)部の1mm×1mmの平面内に存在する結晶粒(α相)の平均結晶粒径が、20~200μmである請求項1記載のプレス成形性に優れたチタン板。
PCT/JP2012/058253 2011-04-01 2012-03-28 プレス成形性に優れたチタン板 WO2012137653A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137025756A KR101511464B1 (ko) 2011-04-01 2012-03-28 프레스 성형성이 우수한 티탄판
CN201280011713.7A CN103415636B (zh) 2011-04-01 2012-03-28 冲压成形性优异的钛板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011082065A JP5400824B2 (ja) 2011-04-01 2011-04-01 プレス成形性に優れたチタン板
JP2011-082065 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137653A1 true WO2012137653A1 (ja) 2012-10-11

Family

ID=46969054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058253 WO2012137653A1 (ja) 2011-04-01 2012-03-28 プレス成形性に優れたチタン板

Country Status (4)

Country Link
JP (1) JP5400824B2 (ja)
KR (1) KR101511464B1 (ja)
CN (1) CN103415636B (ja)
WO (1) WO2012137653A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050984A4 (en) * 2013-09-24 2017-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium plate
EP3276017A4 (en) * 2015-03-23 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium plate, plate for heat exchanger, and separator for fuel cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100603A1 (ja) * 2021-11-30 2023-06-08 住友電気工業株式会社 チタン材料
CN115216667A (zh) * 2022-07-18 2022-10-21 西安秦钛智造科技有限公司 一种金属隔膜用钛板及其加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159562A (ja) * 1984-12-29 1986-07-19 Nippon Steel Corp チタン材料の熱間圧延方法
JP2003147462A (ja) * 2001-11-06 2003-05-21 Nippon Steel Corp 耐衝撃特性に優れたチタン板及びその製造方法
JP2009068098A (ja) * 2007-09-18 2009-04-02 Kobe Steel Ltd 高強度かつ成形性に優れたチタン合金板とその製造方法
JP2011026649A (ja) * 2009-07-23 2011-02-10 Kobe Steel Ltd 高耐力でプレス成形性に優れたチタン板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159562A (ja) * 1984-12-29 1986-07-19 Nippon Steel Corp チタン材料の熱間圧延方法
JP2003147462A (ja) * 2001-11-06 2003-05-21 Nippon Steel Corp 耐衝撃特性に優れたチタン板及びその製造方法
JP2009068098A (ja) * 2007-09-18 2009-04-02 Kobe Steel Ltd 高強度かつ成形性に優れたチタン合金板とその製造方法
JP2011026649A (ja) * 2009-07-23 2011-02-10 Kobe Steel Ltd 高耐力でプレス成形性に優れたチタン板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050984A4 (en) * 2013-09-24 2017-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium plate
EP3276017A4 (en) * 2015-03-23 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium plate, plate for heat exchanger, and separator for fuel cell

Also Published As

Publication number Publication date
CN103415636B (zh) 2016-08-17
KR101511464B1 (ko) 2015-04-10
JP5400824B2 (ja) 2014-01-29
KR20130130848A (ko) 2013-12-02
JP2012214861A (ja) 2012-11-08
CN103415636A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
JP4584341B2 (ja) チタン板及びチタン板の製造方法
JP5700650B2 (ja) プレス成形性と強度のバランスに優れた純チタン板
KR101743380B1 (ko) 티타늄판
KR101943253B1 (ko) 타이타늄판, 열 교환기용 플레이트 및 연료 전지용 세퍼레이터
JP5385038B2 (ja) 高耐力でプレス成形性に優れたチタン板
JP5937865B2 (ja) プレス成形性と強度のバランス、及び耐食性に優れた純チタン板の製造方法
JP6156613B1 (ja) 成形品の製造方法、及び成形品
WO2012137653A1 (ja) プレス成形性に優れたチタン板
JP5123910B2 (ja) チタン板のプレス成形方法
JP6753542B2 (ja) 金属板、金属板の製造方法、金属板の成形品の製造方法および金属板の成形品
Xu et al. The influence of self-lubricating coating during incremental sheet forming of TA1 sheet
JP2012214862A (ja) プレス成形性に優れたチタン板
JP5444182B2 (ja) 成形性に優れたチタン板
JP5427154B2 (ja) 高強度で成形性に優れたチタン板
JP5654934B2 (ja) プレス成形性に優れたチタン板
Jia et al. Experimental study on drawability of aluminium-copper composite in micro deep drawing
JP5315043B2 (ja) マグネシウム合金クラッド材およびその製造方法
JP5654933B2 (ja) 高耐力でプレス成形性に優れたチタン板
JP2001300643A (ja) マグネシウム材製品の製造方法
JP4928584B2 (ja) チタン板およびその製造方法ならびにプレート式熱交換器の熱交換部材の製造方法
JP2009074163A (ja) プレス成形用Al又はAl合金板及びその製造方法
JP2001239326A (ja) マグネシウム材製品の製造方法
JP6328374B2 (ja) 熱交換器用アルミニウム合金フィン材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025756

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768101

Country of ref document: EP

Kind code of ref document: A1