WO2012137290A1 - Bandwidth-variable amplifier - Google Patents

Bandwidth-variable amplifier Download PDF

Info

Publication number
WO2012137290A1
WO2012137290A1 PCT/JP2011/058541 JP2011058541W WO2012137290A1 WO 2012137290 A1 WO2012137290 A1 WO 2012137290A1 JP 2011058541 W JP2011058541 W JP 2011058541W WO 2012137290 A1 WO2012137290 A1 WO 2012137290A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
capacitance element
transistor
variable capacitance
differential amplifier
Prior art date
Application number
PCT/JP2011/058541
Other languages
French (fr)
Japanese (ja)
Other versions
WO2012137290A9 (en
Inventor
正道 野上
聡 吉間
雅樹 野田
中川 潤一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013508652A priority Critical patent/JP5512040B2/en
Priority to PCT/JP2011/058541 priority patent/WO2012137290A1/en
Publication of WO2012137290A1 publication Critical patent/WO2012137290A1/en
Publication of WO2012137290A9 publication Critical patent/WO2012137290A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45098PI types
    • H03F3/45103Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45396Indexing scheme relating to differential amplifiers the AAC comprising one or more switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45631Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45658Indexing scheme relating to differential amplifiers the LC comprising two diodes of current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45702Indexing scheme relating to differential amplifiers the LC comprising two resistors

Definitions

  • the present invention relates to a variable bandwidth amplifier used in an optical communication system, and in particular, a subscriber termination unit (ONU: Optical Network Unit) of a PON (Passive Optical Network) system, which is one method of an access optical communication system.
  • ONU Optical Network Unit
  • PON Passive Optical Network
  • the present invention relates to a band-variable amplifier used in the above.
  • FIG. 7 is a configuration diagram of the PON system.
  • the PON system includes one OLT (Optical Line Terminal) 50 which is a station side device and a plurality of subscriber terminal devices ONU 70 (1) to 70 connected via an optical star coupler 60. (N).
  • OLT Optical Line Terminal
  • N optical star coupler 60.
  • the PON system having such a configuration can share most of the optical fiber as the transmission line and the OLT 50 with respect to a large number of ONUs 70 (1) to 70 (n), it can be expected that the operation cost is economical.
  • the optical star coupler 60 which is a passive component, has the advantages that it does not require power feeding, is easy to install outdoors, and has high reliability. For this reason, the PON system has been actively introduced in recent years as a trump card for realizing a broadband network.
  • 10 G-EPON (10 Gigabit-Ethernet Passive Optical Network), which is standardized by IEEE 802.3av and can communicate at both transmission rates of 10 Gbit / s and 1.25 Gbit / s, Such communication is performed.
  • Each ONU 70 (1) to 70 (n) divides the transmission rate by a WDM (Wavelength Division Multiplexing) filter that performs wavelength division multiplexing, and extracts only the data destined for the own station in the assigned time slot.
  • WDM Widelength Division Multiplexing
  • the optical receiver of the OLT 50 receives both 10G signal and 1G signal burst optical signals.
  • a technique related to a burst receiving circuit has been proposed (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 requires separate amplifier circuits for 10G signals and 1G signals, and there is a problem that the circuit scale and power consumption increase.
  • Patent Document 1 has a problem that it is difficult to widen the bandwidth because the circuit gain varies and the active load because the bandwidth is varied by Gm control.
  • FIG. 8 is a diagram showing a configuration of a conventional amplifier circuit according to Non-Patent Document 1.
  • the amplifier circuit shown in FIG. 8 includes an input terminal 101, output terminals 102 and 103, and amplifiers 111 and 112.
  • the input terminal 101 is inputted with respect to both the 10G signal and the 1G signal so that the data of the ONUs 70 (1) to 70 (n) do not collide.
  • Non-Patent Document 1 Since the amplifier circuit in Non-Patent Document 1 requires such two amplifiers, it requires twice the circuit scale and power consumption compared to the case where one band-variable amplifier is used.
  • FIG. 9 is a diagram showing a configuration of a conventional amplifier circuit according to Patent Document 1.
  • the amplifier circuit shown in FIG. 9 includes five CMOS transistors 211 to 215, four current sources 241 to 244, and a capacitor 251.
  • CMOS transistors 211 and 212 positive and negative phase input terminals
  • CMOS transistors 213 and 214 bias terminals of CMOS transistors 213 and 214 which are cascode transistors.
  • Gm control terminal 204 of the differential amplifier circuit a positive power source 205, and a negative power source 206.
  • the band fc in this circuit configuration is expressed by the following expression (1).
  • fc 1 / (2 ⁇ C (1 / gm)) (1)
  • C is the capacitance of the capacitor 251
  • gm is a value determined by the Gm control terminal 204.
  • the gain A is expressed by the following equation (2).
  • A -gm ⁇ RL (2)
  • RL is a load resistance
  • gm is a value determined by the Gm control terminal 204.
  • the present invention has been made in order to solve the above-described problems, and is suitable for 10G and 1G received signals while keeping the circuit gain constant while reducing circuit scale and power consumption.
  • An object of the present invention is to obtain a variable bandwidth amplifier that can amplify in a band.
  • a variable bandwidth amplifier includes a first transistor connected in series to a first resistive load and a second amplifier connected in series to a second resistive load.
  • a first variable capacitance element having one end connected to the positive phase output point of the differential amplifier circuit, a second variable capacitance element having one end connected to the negative phase output point of the differential amplifier circuit, And a capacitance control terminal connected to the other end of the second variable capacitance element, and according to a control voltage value applied to the capacitance control terminal, the first variable capacitance element and By changing the capacitance value of the second variable capacitance element, the band is controlled to a desired value without changing the gain output from the differential amplifier circuit.
  • the band variable amplifier according to the present invention has a configuration in which a variable capacitance element that can change a capacitance value according to the magnitude of an applied voltage is connected to an output point of a differential amplifier circuit, thereby reducing circuit scale and power consumption. It is possible to obtain a variable-band amplifier capable of amplifying the 10G and 1G received signals in the optimum equalization band while reducing the circuit gain and keeping the circuit gain constant.
  • variable bandwidth amplifier according to the present invention will be described in detail with reference to the accompanying drawings.
  • this invention is not limited by this embodiment.
  • FIG. 1 is a diagram showing a configuration of a variable bandwidth amplifier according to the first exemplary embodiment of the present invention.
  • the band-variable amplifier in FIG. 1 includes CMOS transistors 11 and 12, resistors 21 and 22, varactor diodes 31 and 32, and a current source 41. Further, as input / output terminals and power sources, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 31 and 32 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used.
  • a control terminal 3, a positive power source 5, and a negative power source 6 are provided.
  • FIG. 2 is a diagram showing the characteristics of capacitance versus reverse voltage of the varactor diodes 31 and 32 of the variable bandwidth amplifier according to the first exemplary embodiment of the present invention.
  • the varactor diodes 31 and 32 which are variable capacitance elements, have characteristics that the capacitance is large when the reverse voltage is small and the capacitance is small when the reverse voltage is large. is doing.
  • variable bandwidth amplifier takes advantage of the characteristics of FIG. 2 to control the terminal voltage of the capacity control terminal 3 shown in FIG. By changing, the band fc can be controlled.
  • FIG. 3 is a diagram showing an operation image of the gain versus frequency characteristic of the variable bandwidth amplifier according to the first exemplary embodiment of the present invention.
  • variable capacitance element that can change the capacitance value to a desired value according to the magnitude of the applied voltage is connected to the output point of the differential amplifier circuit.
  • the band can be controlled to a desired value without changing the gain by using the circuit configuration of one differential amplifier.
  • FIG. FIG. 4 is a diagram showing a configuration of the variable bandwidth amplifier according to the second exemplary embodiment of the present invention.
  • the band-variable amplifier in FIG. 4 includes CMOS transistors 11 to 14, resistors 21 and 22, varactor diodes 31 and 32, and a current source 41. Further, as input / output terminals and power sources, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 31 and 32 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used.
  • a control terminal 3, a bias setting terminal 4 for the CMOS transistors 13 and 14, a positive power source 5, and a negative power source 6 are provided.
  • the configuration of FIG. 4 in the second embodiment is different in that CMOS transistors 13 and 14 and a bias setting terminal 4 are further provided. Therefore, these differences will be mainly described below.
  • the CMOS transistors 13 and 14 having the bias setting terminal 4 are cascade-connected to the CMOS transistors 11 and 12 constituting the differential amplifier circuit, respectively.
  • the amplification gain of the mirror capacitance of the differential amplifier circuit composed of the CMOS transistors 11 and 12 can be reduced, and the bandwidth of the entire variable bandwidth amplifier can be increased. Become.
  • the amplification gain of the mirror capacitance of the differential amplifier circuit is reduced. Therefore, the bandwidth of the entire variable bandwidth amplifier can be increased.
  • FIG. 5 is a diagram showing a configuration of the variable bandwidth amplifier according to the third exemplary embodiment of the present invention.
  • the band-variable amplifier in FIG. 5 includes CMOS transistors 11 to 14, resistors 21 to 24, varactor diodes 31 to 34, and a current source 41. Further, as input / output terminals and a power source, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 31 to 34 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used.
  • a control terminal 3, a bias setting terminal 4 for the CMOS transistors 13 and 14, a positive power source 5, and a negative power source 6 are provided.
  • the configuration of FIG. 5 in the third embodiment is different in that resistors 23 and 24 and varactor diodes 33 and 34 are further provided. Therefore, these differences will be mainly described below.
  • the basic operation is the same as that of the second embodiment, and a description thereof is omitted.
  • the newly added varactor diodes 33 and 34 and the second low-pass filter including the resistors 23 and 24 are added to the first low-pass filter including the varactor diodes 31 and 32 and the resistors 21 and 22. Forming. With such a configuration, the order of the filter can be increased.
  • the third embodiment it is possible to increase the degree of freedom in filter design in addition to the effect of the second embodiment by providing a configuration that increases the order of the filter.
  • FIG. FIG. 6 is a diagram showing a configuration of the variable bandwidth amplifier according to the fourth exemplary embodiment of the present invention.
  • the band variable amplifier in FIG. 6 includes CMOS transistors 11 to 14, resistors 21 to 24, varactor diodes 33 and 34, and a current source 41. Further, as input / output terminals and power sources, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 33 and 34 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used.
  • a control terminal 3, a bias setting terminal 4 for the CMOS transistors 13 and 14, a positive power source 5, and a negative power source 6 are provided.
  • the configuration of FIG. 6 in the fourth embodiment is different in that the varactor diodes 31 and 32 are not provided. Therefore, this difference will be mainly described below.
  • the basic operation is the same as that of the second embodiment, and a description thereof is omitted.
  • the varactor diodes 33 and 34 in the fourth embodiment function in the same manner as the varactor diodes 31 and 32 in the first embodiment.
  • the band variable amplifier according to the fourth embodiment can also control the band to a desired value without changing the gain.
  • variable bandwidth amplifier according to the fourth embodiment does not have the varactor diodes 31 and 32. For this reason, since the capacitive component connected to the resistors 21 and 22 becomes smaller, it is possible to further widen the band compared to the third embodiment.
  • the effect of the second embodiment can be obtained by providing a configuration that can reduce the capacitance component connected to the resistance load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

Provided is a bandwidth-variable amplifier having reduced circuit scale and power consumption, and that can amplify 10 G and 1 G reception signals at optimal equivalent bandwidths, while holding circuit gain constant. The amplifier is provided with: a differential amplifier circuit constituted by a first transistor connected in series to a first resistance load, and a second transistor connected in series to a second resistance load; a first variable capacity element connected at one end to a normal phase output point of the differential amplifier circuit; a second variable capacity element connected at one end to a reverse phase output point of the differential amplifier circuit; and a capacity control terminal connected to the other end of the first variable capacity element and to the other end of the second variable capacity element. By modifying the capacity values of the first variable capacity element and the second variable capacity element in response to the value of a control voltage applied to the capacity control terminal, the bandwidth is controlled to a desired value, without changing the gain output by the differential amplifier circuit.

Description

帯域可変増幅器Bandwidth variable amplifier
 本発明は、光通信システムに用いられる帯域可変増幅器に関するものであり、特に、アクセス系光通信システムの一つの方式であるPON(Passive Optical Network)システムの加入者終端装置(ONU:Optical Network Unit)に用いられる帯域可変増幅器に関するものである。 The present invention relates to a variable bandwidth amplifier used in an optical communication system, and in particular, a subscriber termination unit (ONU: Optical Network Unit) of a PON (Passive Optical Network) system, which is one method of an access optical communication system. The present invention relates to a band-variable amplifier used in the above.
 従来、光ファイバを用いた公衆回線網を実現する方式として、PONシステムと呼ばれるポイント・トゥ・マルチポイントのアクセス系光通信システムが広く用いられている。図7は、PONシステムの構成図である。図7に示すように、PONシステムは、局側装置である1台のOLT(Optical Line Terminal)50と、光スターカプラ60を介して接続される複数の加入者端末装置ONU70(1)~70(n)により構成される。 Conventionally, a point-to-multipoint access optical communication system called a PON system has been widely used as a system for realizing a public network using an optical fiber. FIG. 7 is a configuration diagram of the PON system. As shown in FIG. 7, the PON system includes one OLT (Optical Line Terminal) 50 which is a station side device and a plurality of subscriber terminal devices ONU 70 (1) to 70 connected via an optical star coupler 60. (N).
 このような構成を有するPONシステムは、多数のONU70(1)~70(n)に対して、伝送路である光ファイバの大部分とOLT50を共有化できるため、運用コストの経済化が期待できる。さらに、受動部品である光スターカプラ60には給電が必要なく、屋外設置が容易であり、信頼性も高いという利点がある。このことから、PONシステムは、ブロードバンドネットワークを実現する切り札として、近年活発に導入が進められている。 Since the PON system having such a configuration can share most of the optical fiber as the transmission line and the OLT 50 with respect to a large number of ONUs 70 (1) to 70 (n), it can be expected that the operation cost is economical. . Further, the optical star coupler 60, which is a passive component, has the advantages that it does not require power feeding, is easy to install outdoors, and has high reliability. For this reason, the PON system has been actively introduced in recent years as a trump card for realizing a broadband network.
 例えば、IEEE802.3avで規格化されている、伝送速度が10Gbit/sと1.25Gbit/sの両方の伝送速度の通信が可能な10G-EPON(10Gigabit-Ethernet Passive Optical Network)においては、次のような通信が行われる。 For example, in 10 G-EPON (10 Gigabit-Ethernet Passive Optical Network), which is standardized by IEEE 802.3av and can communicate at both transmission rates of 10 Gbit / s and 1.25 Gbit / s, Such communication is performed.
 OLT50から各ONU70(1)~70(n)への下り方向の通信では、10G信号としては光波長1.58μm帯、1G信号としては光波長1.49μm帯による同報通信方式を用いている。そして、各ONU70(1)~70(n)は、波長分割多重を行うWDM(Wavelength Division Multiplexing)フィルタにより伝送速度を分割するとともに、割り当てられたタイムスロットの自局宛データのみを取り出す。 In downstream communication from the OLT 50 to each of the ONUs 70 (1) to 70 (n), a broadcast communication system using an optical wavelength of 1.58 μm as a 10G signal and an optical wavelength of 1.49 μm as a 1G signal is used. . Each ONU 70 (1) to 70 (n) divides the transmission rate by a WDM (Wavelength Division Multiplexing) filter that performs wavelength division multiplexing, and extracts only the data destined for the own station in the assigned time slot.
 一方、各ONU70(1)~70(n)からOLT50への上り方向の通信では、10G信号としては光波長1.27um帯、1G信号としては光波長1.31μm帯を用いて通信が行われる。そして、各ONU70(1)~70(n)による10G信号と1G信号の両方のデータが衝突しないように、送出タイミングを制御する時分割多重通信方式を用いている。 On the other hand, in upstream communication from each ONU 70 (1) to 70 (n) to the OLT 50, communication is performed using the optical wavelength 1.27um band as the 10G signal and the optical wavelength 1.31μm band as the 1G signal. . Then, a time division multiplex communication system for controlling transmission timing is used so that data of both the 10G signal and the 1G signal by the ONUs 70 (1) to 70 (n) do not collide.
 このようなPONシステムの上り方向の通信においては、OLT50の光受信部は、10G信号と1G信号の両方のバースト光信号を受信している。そして、それぞれの信号に対して最適な雑音等化を行い、受信感度特性を良好にするために、この光受信部には、10G、1Gの両方の回路を設けることが一般的であり、例えば、バースト受信回路に関する技術が提案されている(例えば、非特許文献1参照)。 In such upstream communication of the PON system, the optical receiver of the OLT 50 receives both 10G signal and 1G signal burst optical signals. In order to perform optimum noise equalization for each signal and improve the reception sensitivity characteristic, it is common to provide both 10G and 1G circuits in this optical receiving unit. A technique related to a burst receiving circuit has been proposed (see, for example, Non-Patent Document 1).
 一方、単独の回路により帯域を可変する構成としては、例えば、Gmを制御することにより差動増幅器の帯域を変化させる技術が提案されている(例えば、特許文献1参照)。 On the other hand, as a configuration for changing the band by a single circuit, for example, a technique for changing the band of the differential amplifier by controlling Gm has been proposed (see, for example, Patent Document 1).
特開2000-68761号公報JP 2000-68761 A
 しかしながら、従来技術には、以下のような課題がある。
 非特許文献1に示された技術は、10G信号用、1G信号用に個別の増幅回路が必要であり、回路規模、消費電力が大きくなる問題があった。
However, the prior art has the following problems.
The technique disclosed in Non-Patent Document 1 requires separate amplifier circuits for 10G signals and 1G signals, and there is a problem that the circuit scale and power consumption increase.
 また、特許文献1に示された技術は、Gm制御により帯域を可変するため、回路利得が変動するとともに、能動負荷のため、広帯域化が難しい問題があった。 Also, the technique disclosed in Patent Document 1 has a problem that it is difficult to widen the bandwidth because the circuit gain varies and the active load because the bandwidth is varied by Gm control.
 従来技術におけるこれらの問題を、図面を用いて詳しく説明する。まず始めに、図8は、非特許文献1による従来の増幅回路の構成を示す図である。図8に示す増幅回路は、入力端子101、出力端子102、103、および増幅器111、112で構成されている。 These problems in the prior art will be described in detail with reference to the drawings. First, FIG. 8 is a diagram showing a configuration of a conventional amplifier circuit according to Non-Patent Document 1. In FIG. The amplifier circuit shown in FIG. 8 includes an input terminal 101, output terminals 102 and 103, and amplifiers 111 and 112.
 次に、動作について説明する。入力端子101には、10G信号と1G信号の両方について、各ONU70(1)~70(n)のデータが衝突しないように入力される。増幅器101は、等化帯域fc=7.7GHzに設計された増幅器であり、10G信号を等化増幅して、出力端子102に出力する。一方、増幅器102は、等化帯域fc=0.9GHzに設計された増幅器であり、1G信号を等化増幅して、出力端子103に出力する。 Next, the operation will be described. The input terminal 101 is inputted with respect to both the 10G signal and the 1G signal so that the data of the ONUs 70 (1) to 70 (n) do not collide. The amplifier 101 is an amplifier designed in the equalization band fc = 7.7 GHz, and equalizes and amplifies the 10G signal and outputs it to the output terminal 102. On the other hand, the amplifier 102 is an amplifier designed in the equalization band fc = 0.9 GHz, equalizes and amplifies the 1G signal, and outputs it to the output terminal 103.
 非特許文献1における増幅回路は、このような2つの増幅器を必要とする構成であるため、1つの帯域可変型増幅器を用いる場合と比較して、回路規模、消費電力が2倍必要となる。 Since the amplifier circuit in Non-Patent Document 1 requires such two amplifiers, it requires twice the circuit scale and power consumption compared to the case where one band-variable amplifier is used.
 次に、図9は、特許文献1による従来の増幅回路の構成を示す図である。図9に示す増幅回路は、5つのCMOSトランジスタ211~215、4つの電流源241~244、およびコンデンサ251を備えている。 Next, FIG. 9 is a diagram showing a configuration of a conventional amplifier circuit according to Patent Document 1. In FIG. The amplifier circuit shown in FIG. 9 includes five CMOS transistors 211 to 215, four current sources 241 to 244, and a capacitor 251.
 また、入出力端子および電源として、CMOSトランジスタ211、212からなる差動増幅回路の正相、逆相入力端子201a、201b、出力端子202a、202b、カスコードトランジスタであるCMOSトランジスタ213、214のバイアス端子203、差動増幅回路のGm制御端子204、正電源205、負電源206を備えている。 Further, as input / output terminals and power sources, positive and negative phase input terminals 201a and 201b, output terminals 202a and 202b of a differential amplifier circuit composed of CMOS transistors 211 and 212, and bias terminals of CMOS transistors 213 and 214 which are cascode transistors. 203, a Gm control terminal 204 of the differential amplifier circuit, a positive power source 205, and a negative power source 206.
 次に、動作について説明する。本回路構成における帯域fcは、下式(1)で表わされる。
  fc=1/(2πC(1/gm))                   (1)
 上式(1)において、Cはコンデンサ251の容量、gmはGm制御端子204により決まる値である。
Next, the operation will be described. The band fc in this circuit configuration is expressed by the following expression (1).
fc = 1 / (2πC (1 / gm)) (1)
In the above equation (1), C is the capacitance of the capacitor 251, and gm is a value determined by the Gm control terminal 204.
 また、利得Aは、下式(2)で表わされる。
  A=-gm・RL                           (2)
 上式(2)において、RLは負荷抵抗、gmはGm制御端子204により決まる値である。
The gain A is expressed by the following equation (2).
A = -gm · RL (2)
In the above equation (2), RL is a load resistance, and gm is a value determined by the Gm control terminal 204.
 したがって、gmを変更することにより、上式(1)の関係により帯域fcを変化させることはできるが、上式(2)の関係により回路利得Aも同時に変化してしまう問題がある。このため、特許文献1による従来の増幅回路は、受信回路に適用できない課題がある。 Therefore, by changing gm, the band fc can be changed by the relationship of the above equation (1), but there is a problem that the circuit gain A is also changed by the relationship of the above equation (2). For this reason, the conventional amplifier circuit according to Patent Document 1 has a problem that cannot be applied to the receiving circuit.
 本発明は、前記のような課題を解決するためになされたものであり、回路規模、消費電力の削減を図るとともに、回路利得を一定に保ちながら10Gと1Gの受信信号に対して最適な等化帯域で増幅することのできる帯域可変増幅器を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and is suitable for 10G and 1G received signals while keeping the circuit gain constant while reducing circuit scale and power consumption. An object of the present invention is to obtain a variable bandwidth amplifier that can amplify in a band.
 本発明に係る帯域可変増幅器は、第1の抵抗負荷に直列に接続された第1のトランジスタと、第2の抵抗負荷に直列に接続された第2のトランジスタとにより構成された差動増幅回路と、差動増幅回路の正相出力点に一端が接続された第1の可変容量素子と、差動増幅回路の逆相出力点に一端が接続された第2の可変容量素子と、第1の可変容量素子の他端、および第2の可変容量素子の他端に接続された容量制御端子とを備え、容量制御端子に印加される制御電圧値に応じて、第1の可変容量素子および第2の可変容量素子の容量値を変更させることで、差動増幅回路から出力される利得を変化させることなく、帯域を所望の値に制御する構成を有するものである。 A variable bandwidth amplifier according to the present invention includes a first transistor connected in series to a first resistive load and a second amplifier connected in series to a second resistive load. A first variable capacitance element having one end connected to the positive phase output point of the differential amplifier circuit, a second variable capacitance element having one end connected to the negative phase output point of the differential amplifier circuit, And a capacitance control terminal connected to the other end of the second variable capacitance element, and according to a control voltage value applied to the capacitance control terminal, the first variable capacitance element and By changing the capacitance value of the second variable capacitance element, the band is controlled to a desired value without changing the gain output from the differential amplifier circuit.
 本発明に係る帯域可変増幅器によれば、印加電圧の大きさに応じて容量値を変更できる可変容量素子を差動増幅回路の出力点に接続した構成を有することにより、回路規模、消費電力の削減を図るとともに、回路利得を一定に保ちながら10Gと1Gの受信信号に対して最適な等化帯域で増幅することのできる帯域可変増幅器を得ることができる。 The band variable amplifier according to the present invention has a configuration in which a variable capacitance element that can change a capacitance value according to the magnitude of an applied voltage is connected to an output point of a differential amplifier circuit, thereby reducing circuit scale and power consumption. It is possible to obtain a variable-band amplifier capable of amplifying the 10G and 1G received signals in the optimum equalization band while reducing the circuit gain and keeping the circuit gain constant.
本発明の実施の形態1にかかる帯域可変増幅器の構成を示す図である。It is a figure which shows the structure of the variable band amplifier concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる帯域可変増幅器のバラクタダイオードの静電容量対逆方向電圧の特性を示す図である。It is a figure which shows the characteristic of the electrostatic capacitance versus reverse voltage of the varactor diode of the variable band amplifier concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる帯域可変増幅器の利得対周波数特性の動作イメージを示す図である。It is a figure which shows the operation | movement image of the gain versus frequency characteristic of the band variable amplifier concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる帯域可変増幅器の構成を示す図である。It is a figure which shows the structure of the band variable amplifier concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる帯域可変増幅器の構成を示す図である。It is a figure which shows the structure of the band variable amplifier concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる帯域可変増幅器の構成を示す図である。It is a figure which shows the structure of the band variable amplifier concerning Embodiment 4 of this invention. PONシステムの構成図である。It is a block diagram of a PON system. 非特許文献1による従来の増幅回路の構成を示す図である。It is a figure which shows the structure of the conventional amplifier circuit by a nonpatent literature 1. 特許文献1による従来の増幅回路の構成を示す図である。It is a figure which shows the structure of the conventional amplifier circuit by patent document 1. FIG.
 以下に、添付図面を参照して、本発明にかかる帯域可変増幅器の実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of a variable bandwidth amplifier according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment.
 実施の形態1.
 図1は、本発明の実施の形態1にかかる帯域可変増幅器の構成を示す図である。図1における帯域可変増幅器は、CMOSトランジスタ11、12、抵抗21、22、バラクタダイオード31、32、電流源41を備えている。また、入出力端子および電源として、CMOSトランジスタ11、12からなる差動増幅回路の正相、逆相入力端子1a、1b、正相、逆相出力端子2a、2b、バラクタダイオード31、32の容量制御端子3、正電源5、負電源6を備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a variable bandwidth amplifier according to the first exemplary embodiment of the present invention. The band-variable amplifier in FIG. 1 includes CMOS transistors 11 and 12, resistors 21 and 22, varactor diodes 31 and 32, and a current source 41. Further, as input / output terminals and power sources, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 31 and 32 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used. A control terminal 3, a positive power source 5, and a negative power source 6 are provided.
 次に、本実施の形態1にかかる帯域可変増幅器の動作、および特徴について説明する。図2は、本発明の実施の形態1にかかる帯域可変増幅器のバラクタダイオード31、32の静電容量対逆方向電圧の特性を示す図である。図2に示すように、可変容量素子であるバラクタダイオード31、32は、逆方向電圧が小さい場合には静電容量が大きく、逆方向電圧が大きい場合には静電容量が小さくなる特性を有している。 Next, the operation and characteristics of the variable bandwidth amplifier according to the first embodiment will be described. FIG. 2 is a diagram showing the characteristics of capacitance versus reverse voltage of the varactor diodes 31 and 32 of the variable bandwidth amplifier according to the first exemplary embodiment of the present invention. As shown in FIG. 2, the varactor diodes 31 and 32, which are variable capacitance elements, have characteristics that the capacitance is large when the reverse voltage is small and the capacitance is small when the reverse voltage is large. is doing.
 そこで、本実施の形態1における帯域可変増幅器は、この図2の特性を生かし、図1に示した容量制御端子3の端子電圧を制御することにより、上式(1)に示すCの容量値を変化させることで、帯域fcを制御することが可能となる。 Therefore, the variable bandwidth amplifier according to the first embodiment takes advantage of the characteristics of FIG. 2 to control the terminal voltage of the capacity control terminal 3 shown in FIG. By changing, the band fc can be controlled.
 図3は、本発明の実施の形態1にかかる帯域可変増幅器の利得対周波数特性の動作イメージを示す図である。容量制御端子3に与える電圧によりバラクタダイオード31、32の容量値を変化させることで、制御電圧High時はfc=7.7GHz、制御電圧Low時は0.9GHzに制御することが可能である。さらに、このような制御を行う場合には、上式(2)に示す利得Aに関わるgmやRLは変化しない。このため、利得変化なしに、帯域だけを所望の値に変更することが可能となる。 FIG. 3 is a diagram showing an operation image of the gain versus frequency characteristic of the variable bandwidth amplifier according to the first exemplary embodiment of the present invention. By changing the capacitance values of the varactor diodes 31 and 32 according to the voltage applied to the capacitance control terminal 3, it is possible to control to fc = 7.7 GHz when the control voltage is High and 0.9 GHz when the control voltage is Low. Further, when such control is performed, gm and RL related to the gain A shown in the above equation (2) do not change. For this reason, it is possible to change only the band to a desired value without gain change.
 以上のように、実施の形態1によれば、印加電圧の大きさに応じて容量値を所望の値に変更できる可変容量素子を差動増幅回路の出力点に接続した構成を有することで、1つの差動増幅器による回路構成を用いて、利得を変化させることなく、帯域を所望の値に制御することができる。この結果、回路規模、消費電力を削減できるとともに、回路利得を一定に保ちながら10Gと1Gの受信信号に対して最適な等化帯域が得られる優れた帯域可変増幅器を実現できる。 As described above, according to the first embodiment, the variable capacitance element that can change the capacitance value to a desired value according to the magnitude of the applied voltage is connected to the output point of the differential amplifier circuit. The band can be controlled to a desired value without changing the gain by using the circuit configuration of one differential amplifier. As a result, it is possible to realize an excellent variable bandwidth amplifier that can reduce the circuit scale and power consumption and obtain an optimum equalization band for 10G and 1G received signals while keeping the circuit gain constant.
 実施の形態2.
 図4は、本発明の実施の形態2にかかる帯域可変増幅器の構成を示す図である。図4における帯域可変増幅器は、CMOSトランジスタ11~14、抵抗21、22、バラクタダイオード31、32、電流源41を備えている。また、入出力端子および電源として、CMOSトランジスタ11、12からなる差動増幅回路の正相、逆相入力端子1a、1b、正相、逆相出力端子2a、2b、バラクタダイオード31、32の容量制御端子3、CMOSトランジスタ13、14のバイアス設定端子4、正電源5、負電源6を備えている。
Embodiment 2. FIG.
FIG. 4 is a diagram showing a configuration of the variable bandwidth amplifier according to the second exemplary embodiment of the present invention. The band-variable amplifier in FIG. 4 includes CMOS transistors 11 to 14, resistors 21 and 22, varactor diodes 31 and 32, and a current source 41. Further, as input / output terminals and power sources, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 31 and 32 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used. A control terminal 3, a bias setting terminal 4 for the CMOS transistors 13 and 14, a positive power source 5, and a negative power source 6 are provided.
 先の実施の形態1における図1の構成と比較すると、本実施の形態2における図4の構成は、CMOSトランジスタ13、14、およびバイアス設定端子4をさらに備えている点が異なっている。そこで、これらの相違点を中心に、以下に説明する。 Compared with the configuration of FIG. 1 in the first embodiment, the configuration of FIG. 4 in the second embodiment is different in that CMOS transistors 13 and 14 and a bias setting terminal 4 are further provided. Therefore, these differences will be mainly described below.
 図4に示すように、バイアス設定端子4を備えたCMOSトランジスタ13、14は、差動増幅回路を構成するCMOSトランジスタ11、12のそれぞれにカスケード接続されている。このような多段構成の増幅回路とすることで、CMOSトランジスタ11、12からなる差動増幅回路のミラー容量の増幅利得を小さくすることができ、帯域可変増幅器全体の広帯域化を図ることが可能となる。 As shown in FIG. 4, the CMOS transistors 13 and 14 having the bias setting terminal 4 are cascade-connected to the CMOS transistors 11 and 12 constituting the differential amplifier circuit, respectively. By using such a multistage amplifier circuit, the amplification gain of the mirror capacitance of the differential amplifier circuit composed of the CMOS transistors 11 and 12 can be reduced, and the bandwidth of the entire variable bandwidth amplifier can be increased. Become.
 以上のように、実施の形態2によれば、カスケード接続された差動増幅回路を用いることで、先の実施の形態1の効果に加え、差動増幅回路のミラー容量の増幅利得を小さくすることができ、帯域可変増幅器全体の広帯域化を実現することができる。 As described above, according to the second embodiment, by using the cascade-connected differential amplifier circuit, in addition to the effect of the first embodiment, the amplification gain of the mirror capacitance of the differential amplifier circuit is reduced. Therefore, the bandwidth of the entire variable bandwidth amplifier can be increased.
 実施の形態3.
 図5は、本発明の実施の形態3にかかる帯域可変増幅器の構成を示す図である。図5における帯域可変増幅器は、CMOSトランジスタ11~14、抵抗21~24、バラクタダイオード31~34、電流源41を備えている。また、入出力端子および電源として、CMOSトランジスタ11、12からなる差動増幅回路の正相、逆相入力端子1a、1b、正相、逆相出力端子2a、2b、バラクタダイオード31~34の容量制御端子3、CMOSトランジスタ13、14のバイアス設定端子4、正電源5、負電源6を備えている。
Embodiment 3 FIG.
FIG. 5 is a diagram showing a configuration of the variable bandwidth amplifier according to the third exemplary embodiment of the present invention. The band-variable amplifier in FIG. 5 includes CMOS transistors 11 to 14, resistors 21 to 24, varactor diodes 31 to 34, and a current source 41. Further, as input / output terminals and a power source, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 31 to 34 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used. A control terminal 3, a bias setting terminal 4 for the CMOS transistors 13 and 14, a positive power source 5, and a negative power source 6 are provided.
 先の実施の形態2における図4の構成と比較すると、本実施の形態3における図5の構成は、抵抗23、24、およびバラクタダイオード33、34をさらに備えている点が異なっている。そこで、これらの相違点を中心に、以下に説明する。なお、基本的な動作については、先の実施の形態2と同様であり、説明を省略する。 Compared with the configuration of FIG. 4 in the second embodiment, the configuration of FIG. 5 in the third embodiment is different in that resistors 23 and 24 and varactor diodes 33 and 34 are further provided. Therefore, these differences will be mainly described below. The basic operation is the same as that of the second embodiment, and a description thereof is omitted.
 図5に示すように、バラクタダイオード31、32と、抵抗21、22による第1のローパスフィルタに対して、新たに追加したバラクタダイオード33、34と、抵抗23、24による第2のローパスフィルタを形成している。このような構成とすることで、フィルタの次数を増加させることが可能となる。 As shown in FIG. 5, the newly added varactor diodes 33 and 34 and the second low-pass filter including the resistors 23 and 24 are added to the first low-pass filter including the varactor diodes 31 and 32 and the resistors 21 and 22. Forming. With such a configuration, the order of the filter can be increased.
 以上のように、実施の形態3によれば、フィルタの次数を増加させる構成を備えることで、先の実施の形態2の効果に加え、フィルタ設計の自由度を増加させることができる。 As described above, according to the third embodiment, it is possible to increase the degree of freedom in filter design in addition to the effect of the second embodiment by providing a configuration that increases the order of the filter.
 実施の形態4.
 図6は、本発明の実施の形態4にかかる帯域可変増幅器の構成を示す図である。図6における帯域可変増幅器は、CMOSトランジスタ11~14、抵抗21~24、バラクタダイオード33、34、電流源41を備えている。また、入出力端子および電源として、CMOSトランジスタ11、12からなる差動増幅回路の正相、逆相入力端子1a、1b、正相、逆相出力端子2a、2b、バラクタダイオード33、34の容量制御端子3、CMOSトランジスタ13、14のバイアス設定端子4、正電源5、負電源6を備えている。
Embodiment 4 FIG.
FIG. 6 is a diagram showing a configuration of the variable bandwidth amplifier according to the fourth exemplary embodiment of the present invention. The band variable amplifier in FIG. 6 includes CMOS transistors 11 to 14, resistors 21 to 24, varactor diodes 33 and 34, and a current source 41. Further, as input / output terminals and power sources, the capacitances of the positive phase and negative phase input terminals 1a and 1b, the positive and negative phase output terminals 2a and 2b, and the varactor diodes 33 and 34 of the differential amplifier circuit composed of the CMOS transistors 11 and 12 are used. A control terminal 3, a bias setting terminal 4 for the CMOS transistors 13 and 14, a positive power source 5, and a negative power source 6 are provided.
 先の実施の形態3における図5の構成と比較すると、本実施の形態4における図6の構成は、バラクタダイオード31、32を備えていない点が異なっている。そこで、この相違点を中心に、以下に説明する。なお、基本的な動作については、先の実施の形態2と同様であり、説明を省略する。 Compared with the configuration of FIG. 5 in the third embodiment, the configuration of FIG. 6 in the fourth embodiment is different in that the varactor diodes 31 and 32 are not provided. Therefore, this difference will be mainly described below. The basic operation is the same as that of the second embodiment, and a description thereof is omitted.
 本実施の形態4におけるバラクタダイオード33、34は、先の実施の形態1におけるバラクタダイオード31、32と同様の働きをする。この結果、本実施の形態4における帯域可変増幅器も、利得を変化させることなく、帯域を所望の値に制御することができる。 The varactor diodes 33 and 34 in the fourth embodiment function in the same manner as the varactor diodes 31 and 32 in the first embodiment. As a result, the band variable amplifier according to the fourth embodiment can also control the band to a desired value without changing the gain.
 また、本実施の形態4における帯域可変増幅器は、バラクタダイオード31、32がない。このため、抵抗21、22に接続される容量成分が小さくなることから、先の実施の形態3に比べ、さらなる広帯域化が可能となる。 Further, the variable bandwidth amplifier according to the fourth embodiment does not have the varactor diodes 31 and 32. For this reason, since the capacitive component connected to the resistors 21 and 22 becomes smaller, it is possible to further widen the band compared to the third embodiment.
 以上のように、実施の形態4によれば、フィルタの次数を増加させる構成はないものの、抵抗負荷に接続される容量成分を小さくできる構成を備えることで、先の実施の形態2の効果に加え、帯域可変増幅器全体の広帯域化を図ることができる。 As described above, according to the fourth embodiment, although there is no configuration for increasing the order of the filter, the effect of the second embodiment can be obtained by providing a configuration that can reduce the capacitance component connected to the resistance load. In addition, it is possible to increase the bandwidth of the entire variable bandwidth amplifier.

Claims (6)

  1.  第1の抵抗負荷に直列に接続された第1のトランジスタと、第2の抵抗負荷に直列に接続された第2のトランジスタとにより構成された差動増幅回路と、
     前記差動増幅回路の正相出力点に一端が接続された第1の可変容量素子と、
     前記差動増幅回路の逆相出力点に一端が接続された第2の可変容量素子と、
     前記第1の可変容量素子の他端、および前記第2の可変容量素子の他端に接続された容量制御端子と
     を備え、
     前記容量制御端子に印加される制御電圧値に応じて、前記第1の可変容量素子および前記第2の可変容量素子の容量値を変更させることで、前記差動増幅回路から出力される利得を変化させることなく、帯域を所望の値に制御する構成を有する
     帯域可変増幅器。
    A differential amplifier circuit composed of a first transistor connected in series to a first resistive load and a second transistor connected in series to a second resistive load;
    A first variable capacitance element having one end connected to a positive phase output point of the differential amplifier circuit;
    A second variable capacitance element having one end connected to a negative phase output point of the differential amplifier circuit;
    A capacitance control terminal connected to the other end of the first variable capacitance element and the other end of the second variable capacitance element;
    By changing the capacitance values of the first variable capacitance element and the second variable capacitance element according to the control voltage value applied to the capacitance control terminal, the gain output from the differential amplifier circuit is increased. A variable bandwidth amplifier having a configuration in which a band is controlled to a desired value without being changed.
  2.  請求項1に記載の帯域可変増幅器において、
     前記第1のトランジスタと前記第1の抵抗負荷との間に直列に挿入された第3のトランジスタと、
     前記第2のトランジスタと前記第2の抵抗負荷との間に直列に挿入された第4のトランジスタと
     をさらに備え、カスコード接続型の差動増幅器を構成する
     帯域可変増幅器。
    The variable bandwidth amplifier according to claim 1, wherein
    A third transistor inserted in series between the first transistor and the first resistive load;
    And a fourth transistor inserted in series between the second transistor and the second resistive load, and a cascode-connected differential amplifier.
  3.  請求項2に記載の帯域可変増幅器において、
     前記第1のトランジスタのコレクタと前記第3のトランジスタのエミッタとの間に直列に挿入された第3の抵抗負荷と、
     前記第2のトランジスタのコレクタと前記第4のトランジスタのエミッタとの間に直列に挿入された第4の抵抗負荷と、
     前記第3の抵抗負荷と前記第3のトランジスタとの接続点に一端が接続され、前記容量制御端子に他端が接続された第3の可変容量素子と、
     前記第4の抵抗負荷と前記第4のトランジスタとの接続点に一端が接続され、前記容量制御端子に他端が接続された第4の可変容量素子と
     をさらに備え、
     前記容量制御端子に印加される制御電圧値に応じて、前記第1の可変容量素子、前記第2の可変容量素子、前記第3の可変容量素子、および前記第4の可変容量素子の容量値を変更させ、前記第1の可変容量素子、前記第2の可変容量素子、前記第1の抵抗負荷、前記第2の抵抗負荷からなる第1のローパスフィルタと、前記第3の可変容量素子、前記第4の可変容量素子、前記第3の抵抗負荷、前記第4の抵抗負荷からなる第2のローパスフィルタとによる多段フィルタを構成する
     帯域可変増幅器。
    The variable bandwidth amplifier according to claim 2,
    A third resistive load inserted in series between the collector of the first transistor and the emitter of the third transistor;
    A fourth resistive load inserted in series between the collector of the second transistor and the emitter of the fourth transistor;
    A third variable capacitance element having one end connected to a connection point between the third resistance load and the third transistor and the other end connected to the capacitance control terminal;
    A fourth variable capacitance element having one end connected to a connection point between the fourth resistance load and the fourth transistor and the other end connected to the capacitance control terminal;
    Capacitance values of the first variable capacitance element, the second variable capacitance element, the third variable capacitance element, and the fourth variable capacitance element according to a control voltage value applied to the capacitance control terminal. The first variable capacitance element, the second variable capacitance element, the first resistance load, the first low-pass filter comprising the second resistance load, the third variable capacitance element, A band-variable amplifier that constitutes a multistage filter including the fourth variable capacitance element, the third resistance load, and a second low-pass filter including the fourth resistance load.
  4.  請求項3に記載の帯域可変増幅器において、
     前記第1の可変容量素子および前記第2の可変容量素子を除いた構成を有する
     帯域可変増幅器。
    The variable bandwidth amplifier according to claim 3,
    A variable bandwidth amplifier having a configuration excluding the first variable capacitance element and the second variable capacitance element.
  5.  請求項1ないし4のいずれか1項に記載の帯域可変増幅器において、
     前記可変容量素子のそれぞれは、バラクタダイオードである
     帯域可変増幅器。
    The variable bandwidth amplifier according to any one of claims 1 to 4,
    Each of the variable capacitance elements is a varactor diode.
  6.  請求項1ないし5のいずれか1項に記載の帯域可変増幅器において
     前記トランジスタのそれぞれは、バイポーラトランジスタまたはCMOSトランジスタである
     帯域可変増幅器。
    The variable bandwidth amplifier according to any one of claims 1 to 5, wherein each of the transistors is a bipolar transistor or a CMOS transistor.
PCT/JP2011/058541 2011-04-04 2011-04-04 Bandwidth-variable amplifier WO2012137290A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013508652A JP5512040B2 (en) 2011-04-04 2011-04-04 Bandwidth variable amplifier
PCT/JP2011/058541 WO2012137290A1 (en) 2011-04-04 2011-04-04 Bandwidth-variable amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058541 WO2012137290A1 (en) 2011-04-04 2011-04-04 Bandwidth-variable amplifier

Publications (2)

Publication Number Publication Date
WO2012137290A1 true WO2012137290A1 (en) 2012-10-11
WO2012137290A9 WO2012137290A9 (en) 2014-02-06

Family

ID=46968731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058541 WO2012137290A1 (en) 2011-04-04 2011-04-04 Bandwidth-variable amplifier

Country Status (2)

Country Link
JP (1) JP5512040B2 (en)
WO (1) WO2012137290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230208414A1 (en) * 2021-12-28 2023-06-29 Credo Technology Group Ltd Varactor integration-based voltage comparators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234945B (en) * 2020-10-14 2024-02-27 联合微电子中心有限责任公司 Distributed amplifier circuit, gain unit and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500238A (en) * 1987-07-29 1990-01-25 富士通株式会社 High-speed electronic circuit in cascode configuration
JPH0227807A (en) * 1988-07-18 1990-01-30 Fujitsu Ltd Electronic circuit
JPH08172340A (en) * 1994-12-16 1996-07-02 Alps Electric Co Ltd Active low pass filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500238A (en) * 1987-07-29 1990-01-25 富士通株式会社 High-speed electronic circuit in cascode configuration
JPH0227807A (en) * 1988-07-18 1990-01-30 Fujitsu Ltd Electronic circuit
JPH08172340A (en) * 1994-12-16 1996-07-02 Alps Electric Co Ltd Active low pass filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230208414A1 (en) * 2021-12-28 2023-06-29 Credo Technology Group Ltd Varactor integration-based voltage comparators

Also Published As

Publication number Publication date
WO2012137290A9 (en) 2014-02-06
JP5512040B2 (en) 2014-06-04
JPWO2012137290A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP4935422B2 (en) Preamplifier and optical receiver using the same
US10044328B2 (en) Transimpedance amplifier with bandwidth extender
US9762186B2 (en) Regulated cascode (RGC)-type burst mode optic pre-amplifier having extended linear input range
JP4870806B2 (en) Transimpedance amplifier
JP2010166216A (en) Preamplifier
US9490932B2 (en) Burst signal receiving apparatus and method, PON optical line terminal, and PON system
JP6661057B1 (en) Limiting amplifier circuit
US8466741B2 (en) Transimpedance amplifier, integrated circuit and system
JP4536770B2 (en) Burst mode receiver for generating on-chip reset signal and burst mode receiving method
JP5161189B2 (en) Transimpedance amplifier
JP5512040B2 (en) Bandwidth variable amplifier
CN108370274B (en) Burst mode receiver configured to receive an optical signal having a preamble and a data payload
JP5132543B2 (en) Optical receiver
JP2006527545A (en) Optical receiver with open loop automatic gain control circuit
JP6253347B2 (en) Signal detection circuit, optical receiver, master station apparatus, and signal detection method
KR100886178B1 (en) Limiting amplifier improved gain and bandwidth character
US20240113789A1 (en) Optical receiver
US8942567B2 (en) Optical receiving device and communication system
KR20120049433A (en) Limiting amplifier for bandwidth enhancement
WO2018198249A1 (en) Amplitude-limiting amplifier, optical receiver, optical terminating device, and optical communication system
JP2011119855A (en) Burst optical receiver
KR100948829B1 (en) Burst mode receiver and receiving method for generating on-chip reset signal
US7710196B2 (en) AC differential connection assembly between a trans-impedance amplifier and a post amplifier for burst mode receiving
EP4055709A1 (en) High sensitivity 10g burst mode amplifier
KR20050096296A (en) Differential transimpedance preamplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862901

Country of ref document: EP

Kind code of ref document: A1