WO2012137241A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2012137241A1
WO2012137241A1 PCT/JP2011/001996 JP2011001996W WO2012137241A1 WO 2012137241 A1 WO2012137241 A1 WO 2012137241A1 JP 2011001996 W JP2011001996 W JP 2011001996W WO 2012137241 A1 WO2012137241 A1 WO 2012137241A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
section
fixed
bearing
sliding
Prior art date
Application number
PCT/JP2011/001996
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 高石
興起 仲
小林 学
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013508620A priority Critical patent/JP5306558B2/en
Priority to PCT/JP2011/001996 priority patent/WO2012137241A1/en
Priority to KR1020137026072A priority patent/KR101374464B1/en
Priority to CN201180069957.6A priority patent/CN103460575B/en
Priority to TW100112932A priority patent/TWI426684B/en
Publication of WO2012137241A1 publication Critical patent/WO2012137241A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2207/00Specific aspects not provided for in the other groups of this subclass relating to arrangements for handling mechanical energy
    • H02K2207/03Tubular motors, i.e. rotary motors mounted inside a tube, e.g. for blinds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to a linear motor including a slide bearing disposed between a movable portion and a fixed portion, and a sliding member disposed eccentrically from the central axis of the fixed portion.
  • the shaft member (first sleeve) has N-pole and S-pole permanent magnets alternately formed along the axial direction in the interior thereof, and further improves the thrust between the permanent magnets.
  • a structure provided with a magnetic body (yoke) is employed.
  • the coil surrounding the outer periphery of the shaft member is provided in the movable part, and the shaft member moves linearly relative to the movable part in the axial direction of the shaft member inside the movable part located on the outer peripheral side of the shaft member.
  • a bearing for guiding the movement is provided.
  • a linear motor having such a structure has a structure in which a cylindrical or quadrangular bearing and a movable part are arranged around a shaft member, and a minute gap is provided between the bearing and the shaft member to facilitate relative motion. (For example, refer to Patent Document 1).
  • the conventional linear motor is configured as described above, rattling and fluctuation occur between the bearing and the shaft member by a minute gap provided between the bearing and the shaft member.
  • a shaft type linear motor in which a shaft that transmits thrust to the machine is provided in the movable part, there is a problem in that the positioning accuracy of the shaft tip part is lowered.
  • the present invention has been made to solve the above-described problems, and its purpose is to eliminate rattling and fluctuation between the bearing and the shaft member. For example, the positioning accuracy of the shaft tip portion of the shaft type linear motor Is to make it higher.
  • the linear motor includes a fixed portion and a movable portion that is located inside the fixed portion and is provided so as to be relatively displaceable in the axial direction with respect to the fixed portion.
  • a magnet part made up of a plurality of permanent magnets laminated in the axial direction, and a first sliding part made of a magnetic material that is arranged at one end of the magnet part and slides and guides the inside of the fixed part in the axial direction.
  • the fixed portion is provided inside the fixed portion with a first bearing made of a non-magnetic material that is in contact with the inner surface of the fixed portion that slidably supports the first sliding portion, and provides a magnetic flux to its inner space.
  • the positioning accuracy of the shaft tip portion of the shaft type linear motor can be increased, and the shaft type linear motor can be applied to precision electronic devices such as surface mounters and board inspection machines.
  • FIG. 1 is a structural diagram of a plain bearing of a shaft type linear motor showing Embodiment 1 of the present invention. It is sectional drawing of the shaft type linear motor which shows Example 2 of this invention. It is sectional drawing of the shaft type linear motor which shows Example 3 of this invention. It is a block diagram of the plain bearing of the shaft type linear motor which shows Example 4 of this invention. It is sectional drawing of the shaft type linear motor which shows Example 5 of this invention. It is sectional drawing of the shaft type linear motor which shows Example 6 of this invention.
  • Example 1 is a cross-sectional view of a shaft type linear motor showing Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of the shaft type linear motor showing Embodiment 1 of the present invention
  • reference numeral 1 denotes a fixed portion of the shaft type linear motor
  • 2 denotes a movable portion of the shaft type linear motor, which can be displaced relative to the fixed portion 1 in the axial direction
  • 31 is a slide bearing that functions as a first bearing and has an L-shaped cross section along the axial direction
  • 51 is a power supply lead wire
  • 11 is a plurality for generating a magnetic flux by causing a current to flow from the power supply lead wire 51.
  • a U-shaped lower frame, 15 is a base for increasing mechanical rigidity
  • 16 is a bearing that supports a shaft
  • 17 is a bracket that holds the bearing
  • 18 is a cover that prevents foreign matter from entering
  • 41 is a position.
  • the fixed portion 1 is a slide bearing 31, a coil 11, a bobbin 12, an upper frame 13, a lower frame 14, a base 15, a bearing 16, a bracket 17, a cover 18, and a position detector 41. It is made.
  • 32 is a sliding member that slides and guides the surface of the slide bearing 31 that functions as a first sliding portion
  • 21 is a magnet portion that generates thrust by interaction with the magnetic flux generated by the plurality of coils 11.
  • a plurality of permanent magnets stacked in order to achieve this. 22 is made of a magnetic material or a non-magnetic material, and is arranged between the plurality of permanent magnets 21 so that the N pole and S pole magnetic poles of the plurality of laminated permanent magnets 21 are alternately formed in the axial direction.
  • the spacer 23 is a shaft coupling member
  • 24 is a shaft (shaft) for transmitting the generated thrust to the machine
  • the movable part 2 includes a sliding member 32, a permanent magnet 21, a spacer 22, and a shaft coupling member 23.
  • the movable part 2 is connected to the end of the shaft 24.
  • the other end of the shaft 24 protrudes outside the fixed part 1 and is used for position detection.
  • the central axis of the plurality of permanent magnets 21, the central axis of the spacer 22, and the central axis of the shaft coupling member 23 coincide with the central axis of the shaft 24.
  • the movable part 2 is disposed inside the fixed part 1 and has a structure movable in the Z direction in FIG.
  • the plurality of coils 11 and the plurality of bobbins 12 are arranged concentrically outside the plurality of permanent magnets 21, and the central axes of the plurality of coils 11 and the central axes of the plurality of bobbins 12 are Each coincides with the central axis of the shaft 24.
  • Reference numeral 42 denotes a scale
  • 25 denotes a shaft tip of the shaft 24
  • 26 denotes a scale coupling member
  • 52 denotes a position detector lead.
  • the scale 42 is coupled to the shaft distal end portion 25 by the scale coupling member 26, and has a structure that can move according to the movement of the shaft 24.
  • the scale 42 has optical or magnetic position information recorded therein, and the position detector 41 coupled to the fixed portion 1 detects the position of the shaft 24 in the Z direction in FIG. In addition, the position signal is transmitted from the position detector lead wire 52 to the control unit.
  • the A-A ′ cross section and the B-B ′ cross section are cross sections along the XY plane of the shaft type linear motor shown in FIG.
  • FIG. 3 is a configuration diagram of a control unit of the shaft type linear motor showing the first embodiment of the present invention.
  • 90 is a control unit
  • 100 is a shaft type linear motor.
  • 91 is a position control circuit
  • 92 is a speed control circuit
  • 93 is a current control circuit
  • 99 is a current detector.
  • a control unit 90 is a position control circuit 91, a speed control circuit 92, a current control circuit 93, and a current detector 99. Composed.
  • Position information detected by the scale 42 and the position detector 41 is fed back to the control unit 90 of the shaft type linear motor 100.
  • the position control circuit 91 performs position control by comparing the position feedback value from the position detector 41 with the command value, and the speed control circuit 92 differentiates the output value from the position control circuit 91 and the position feedback value.
  • the current control circuit 93 can perform thrust control by comparing the output value from the speed control circuit 92 and the current feedback value from the current detector 99, respectively.
  • FIG. 4 is a structural diagram of a plain bearing of a shaft type linear motor showing Embodiment 1 of the present invention.
  • 61 is a magnetic flux
  • 62a and 62b are magnetic attractive forces generated by the influence of the magnetic flux 61 produced by the permanent magnet 21.
  • the slide bearing 31 is made of resin (non-magnetic material), and has a L-shaped cross section along the axial direction as shown in the A-A 'cross section of FIG.
  • the sliding member 32 is, for example, an S50C material
  • the upper frame 13 and the lower frame 14 are, for example, SPCC materials, all of which are magnetic materials.
  • the sliding member 32 is not concentric with respect to the central axis of the inner space of the coil 11 arranged concentrically with respect to the central axis of the shaft 24, and is installed so as to be eccentric to the sliding bearing 31 side.
  • the gap between the sliding member 32 and the upper frame 13 and the gap between the sliding member 32 and the lower frame 14 are each on the side where the slide bearing 31 having an L-shaped cross section is interposed (A in FIG. 4).
  • -A 'cross section does not exist on the left side and bottom surface of the sliding member 32), and has a predetermined distance on the non-intervening side (on the AA' cross section in FIG. 4, the right side surface and top surface of the sliding member 32). Will exist.
  • the magnetic flux 61 is magnetic between the upper frame 13 that is a magnetic material and the permanent magnet 21, between both side surfaces of the U-shaped lower frame 14 that is a magnetic material, and the permanent magnet 21.
  • a cross section as a material is formed between the lower surface of the U-shaped lower frame 14 and the permanent magnet 21.
  • magnetic attractive forces 62a and 62b are generated between the sliding member 32, which is a magnetic material, and the upper frame 13 and the U-shaped lower frame 14, which are magnetic materials.
  • 32 is disposed in such a way that the lower frame 14 has an L-shaped slide bearing 31 on the side where the L-shaped slide bearing 31 is interposed.
  • the bias of the sliding member 32 causes the magnetic attraction force 62a to generate a slide having an L-shaped cross section. It acts strongly on the side where the bearing 31 is interposed (the left side surface and the lower surface of the sliding member 32 in the section AA ′ in FIG. 4), and the magnetic attractive force 62b is not on the side where the L-shaped slide bearing 31 is not interposed (FIG. In the section AA ′ of FIG. 4, the sliding member 32 has almost no action on the right side surface and the upper surface.
  • the sliding member 32 and the sliding bearing 31 having an L-shaped cross section are always in contact with each other with a constant magnetic attractive force 62a.
  • the linear motor configuration does not require any processing.
  • the positioning accuracy of the shaft tip portion of the shaft type linear motor can be increased.
  • a motor can be applied. For example, it is possible to increase the density of components mounted on an electronic substrate.
  • Example 2 In the first embodiment of the present invention, the case where only one end portion of the movable portion 2 is the slide bearing 31 has been described. However, as shown in FIG. 5, both end portions of the movable portion 2 are connected to the slide bearing 31a as the first bearing.
  • the sliding bearing 31b as the second bearing may be used, and the same effect can be obtained by such a configuration.
  • a sliding member 32a Corresponding to the sliding bearings 31a, 31b at both ends of the movable part 2, on both sides sliding with the sliding bearings 31a, 31b of the fixed part 1, a sliding member 32a, which is a first sliding part, A sliding member 32b, which is the second sliding portion, is installed.
  • Example 3 In the first and second embodiments of the present invention, the case where the positional accuracy in the X and Y directions is ensured by using two surfaces of the L-shaped slide bearing 31 is described.
  • the slide bearing 35 In the case of only one direction, for example, only the X direction, as shown in FIG. 6, the slide bearing 35 may be formed in a flat plate shape parallel to the lower surface of the lower frame 14 along the axial direction. In this case, the same effects as those of the first and second embodiments can be obtained.
  • FIG. 7 is a structural diagram of a plain bearing of a shaft type linear motor showing Embodiment 4 of the present invention.
  • Reference numeral 71 denotes a first intermediate member, which is an intermediate member in FIG.
  • the slide bearing 31 is made of resin (non-magnetic material) and has an L-shaped cross section along the axial direction as shown in the AA ′ cross section of FIG. It is in contact.
  • the intermediate member 71 is, for example, a magnetic material such as an SPCC material, and has an L-shaped cross section along the axial direction as shown in the AA ′ cross section of FIG. And is in contact with the lower surface.
  • the sliding member 32 is, for example, an S50C material, and the upper frame 13 and the lower frame 14 are, for example, SPCC materials, all of which are magnetic materials.
  • the sliding member 32 is installed so as to coincide with the central axis of the inner space of the coil 11 arranged concentrically with respect to the central axis of the shaft 24.
  • the gap between the sliding member 32 and the upper frame 13 and the gap between the sliding member 32 and the lower frame 14 are the sides where the slide bearing 31 and the intermediate member 71 having an L-shaped cross section are interposed ( In the AA ′ cross section of FIG. 7, it does not exist on the left side and bottom surface of the sliding member 32, and on the non-intervening side (the right side surface and top surface of the sliding member 32 in the AA ′ cross section of FIG. 7). It exists with a predetermined distance.
  • the magnetic flux 61 is magnetic between the upper frame 13, which is a magnetic material, and the permanent magnet 21, and between the right side surface of the U-shaped lower frame 14, which is a magnetic material, and the permanent magnet 21.
  • a cross section that is a material is formed between the lower surface of the L-shaped intermediate member 71 and the permanent magnet 21, and a cross section that is a magnetic material is formed between the right side surface of the L-shaped intermediate member 71 and the permanent magnet 21.
  • magnetic attractive forces 62a and 62b are formed between the sliding member 32, which is a magnetic material, the upper frame 13, which is a magnetic material, the U-shaped lower frame 14, and the L-shaped intermediate member 71.
  • the magnetic attraction force 62a is on the side where the L-shaped slide bearing 31 and the intermediate member 71 are interposed (on the left side surface and the lower surface of the sliding member 32 in the AA 'cross section in FIG. 7). It acts strongly, and the magnetic attractive force 62b hardly acts on the side where the L-shaped slide bearing 31 and the intermediate member 71 are not interposed (the right side surface and the top surface of the sliding member 32 in the AA ′ cross section in FIG. 7). become.
  • the sliding member 32 and the sliding bearing 31 having an L-shaped cross section are always in contact with each other with a constant magnetic attractive force 62a.
  • the linear motor configuration does not require any processing.
  • the positioning accuracy of the shaft tip portion of the shaft-type linear motor can be increased.
  • a motor can be applied. For example, it is possible to increase the density of components mounted on an electronic substrate.
  • Example 5 In the fourth embodiment of the present invention, the case where the intermediate member 71 is applied only to one end of the movable portion 2 has been described. However, as shown in FIG. 8, the intermediate member that is the first intermediate member at both ends of the movable portion 2. 71a and the intermediate member 71b which is a 2nd intermediate member may be applied, and the same effect can be acquired also by such a structure.
  • Example 6 In the fourth embodiment and the fifth embodiment of the present invention, the case where the positional accuracy in the X and Y directions is secured using the two surfaces of the L-shaped intermediate member 71 is described.
  • the intermediate member 75 may be formed in a flat plate shape parallel to the lower surface of the lower frame 14 along the axial direction as shown in FIG. In this case, the same effects as those of the fourth and fifth embodiments can be obtained.
  • the present invention is not limited to this, and the same effect can be obtained when applied to other linear motors. Obtainable.

Abstract

Conventional linear motors had issues in that play and fluctuation were brought about between a bearing and a shaft member for the amount of a minute gap between the bearing and the shaft member, and in that, as a result thereof, precision deteriorated in the positioning of the front-tip section of the shaft that transmits thrust force to a machine. In order to attain a linear motor that can solve these issues, that can get rid of the play and fluctuation between the bearing and the shaft member, and that can enhance positioning precision of a movable section, the linear motor was made to have an anchored section (1) and a movable section (2). The movable section (2) is provided with: permanent magnets (21); and a sliding member (32) that comprises magnetic material, that is arranged at one front-tip section of the permanent magnets (21), and that slides within the anchored section (1) in the axis direction. The anchored section (1) is provided with: a plain bearing (31) that is made to come in contact with the inner face of the anchored section (1), and that supports the sliding member (32) in slidable state; and a coil (11) that is formed within the anchored section (1), and within the inner space of which the movable section (2) moves relative thereto. The sliding member (32) has the center axis thereof arranged to be eccentric to the plain bearing (31) side with respect to the center axis of the cross section of the inner space formed by the coil (11), and is made to come in contact with the plain bearing (31).

Description

リニアモータLinear motor
この発明は、可動部と固定部の間に配置されたすべり軸受と、固定部の中心軸から偏心して配置された摺動部材を備えたリニアモータに関する。 The present invention relates to a linear motor including a slide bearing disposed between a movable portion and a fixed portion, and a sliding member disposed eccentrically from the central axis of the fixed portion.
従来のリニアモータでは、軸部材(第1スリーブ)は、その内部にはN極及びS極の永久磁石が軸線方向に沿って交互に形成され、さらに永久磁石の間には、推力を向上させるための磁性体(ヨーク)が設けられた構造が採用されている。軸部材の外周を囲むコイルは可動部に設けられており、軸部材の外周側に位置する可動部内側には、軸部材が可動部に対して軸部材の軸線方向に相対的に直線運動するのを案内する軸受が設けられている。このような構成のリニアモータは、円筒または四角形状の軸受と可動部を、軸部材を中心にして配置し、軸受と軸部材の間に相対運動を円滑にするために微小なギャップを設ける構造にしている(例えば、特許文献1参照)。 In the conventional linear motor, the shaft member (first sleeve) has N-pole and S-pole permanent magnets alternately formed along the axial direction in the interior thereof, and further improves the thrust between the permanent magnets. A structure provided with a magnetic body (yoke) is employed. The coil surrounding the outer periphery of the shaft member is provided in the movable part, and the shaft member moves linearly relative to the movable part in the axial direction of the shaft member inside the movable part located on the outer peripheral side of the shaft member. A bearing for guiding the movement is provided. A linear motor having such a structure has a structure in which a cylindrical or quadrangular bearing and a movable part are arranged around a shaft member, and a minute gap is provided between the bearing and the shaft member to facilitate relative motion. (For example, refer to Patent Document 1).
特開平9-182408号公報(第4頁、第1図)JP-A-9-182408 (page 4, FIG. 1)
従来のリニアモータは、以上のように構成されているので、軸受と軸部材の間に設けられた微小なギャップ分だけ、軸受と軸部材の間にがたつきや変動が生じ、結果として、例えば、可動部に機械に推力を伝達するシャフトが設けられているシャフト型リニアモータにおいては、シャフト先端部の位置決め精度が低下するという問題点があった。 Since the conventional linear motor is configured as described above, rattling and fluctuation occur between the bearing and the shaft member by a minute gap provided between the bearing and the shaft member. For example, in a shaft type linear motor in which a shaft that transmits thrust to the machine is provided in the movable part, there is a problem in that the positioning accuracy of the shaft tip part is lowered.
この発明は、上述のような問題を解決するためになされたもので、その目的は、軸受と軸部材間のがたつきや変動をなくし、例えば、シャフト型リニアモータのシャフト先端部の位置決め精度を高くすることにある。 The present invention has been made to solve the above-described problems, and its purpose is to eliminate rattling and fluctuation between the bearing and the shaft member. For example, the positioning accuracy of the shaft tip portion of the shaft type linear motor Is to make it higher.
この発明に係るリニアモータにおいては、固定部と、固定部内部に位置し、固定部に対して軸線方向に相対変位可能に設けられた可動部とを有するリニアモータであって、可動部は、軸線方向に積層された複数個の永久磁石から成る磁石部と、磁石部の一方の先端部に配置され、固定部内部を軸線方向に摺動案内する磁性材から成る第1摺動部とを備え、固定部は、第1摺動部を摺動可能に支持する固定部内面に当接された非磁性材から成る第1軸受と、固定部内部に設けられ、自身の内空間に磁束を発生させ、磁石部に作用させて可動部を相対変位させる複数個のコイルとを備え、第1摺動部は、第1摺動部中心軸がコイルによって形成される内空間の断面中心軸から第1軸受側に偏心して配置されると共に第1軸受と当接することで、永久磁石からの磁気吸引力が偏心方向に作用させる。 In the linear motor according to the present invention, the linear motor includes a fixed portion and a movable portion that is located inside the fixed portion and is provided so as to be relatively displaceable in the axial direction with respect to the fixed portion. A magnet part made up of a plurality of permanent magnets laminated in the axial direction, and a first sliding part made of a magnetic material that is arranged at one end of the magnet part and slides and guides the inside of the fixed part in the axial direction. The fixed portion is provided inside the fixed portion with a first bearing made of a non-magnetic material that is in contact with the inner surface of the fixed portion that slidably supports the first sliding portion, and provides a magnetic flux to its inner space. A plurality of coils that are generated and act on the magnet part to relatively displace the movable part, and the first sliding part has a central axis of the first sliding part formed from the central axis of the inner space formed by the coil. By being eccentrically arranged on the first bearing side and contacting the first bearing, Magnetic attraction force from the magnet to act on the eccentric direction.
この発明により、シャフト型リニアモータのシャフト先端部の位置決め精度を高くすることができ、表面実装機や基板検査機等、精密電子機器へのシャフト型リニアモータの適用が可能となる。 According to the present invention, the positioning accuracy of the shaft tip portion of the shaft type linear motor can be increased, and the shaft type linear motor can be applied to precision electronic devices such as surface mounters and board inspection machines.
この発明の実施例1を示すシャフト型リニアモータの断面図である。It is sectional drawing of the shaft type linear motor which shows Example 1 of this invention. この発明の実施例1を示すシャフト型リニアモータの分解斜視図である。It is a disassembled perspective view of the shaft type linear motor which shows Example 1 of this invention. この発明の実施例1を示すシャフト型リニアモータの制御部の構成図である。It is a block diagram of the control part of the shaft type linear motor which shows Example 1 of this invention. この発明の実施例1を示すシャフト型リニアモータのすべり軸受の構造図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural diagram of a plain bearing of a shaft type linear motor showing Embodiment 1 of the present invention. この発明の実施例2を示すシャフト型リニアモータの断面図である。It is sectional drawing of the shaft type linear motor which shows Example 2 of this invention. この発明の実施例3を示すシャフト型リニアモータの断面図である。It is sectional drawing of the shaft type linear motor which shows Example 3 of this invention. この発明の実施例4を示すシャフト型リニアモータのすべり軸受の構造図である。It is a block diagram of the plain bearing of the shaft type linear motor which shows Example 4 of this invention. この発明の実施例5を示すシャフト型リニアモータの断面図である。It is sectional drawing of the shaft type linear motor which shows Example 5 of this invention. この発明の実施例6を示すシャフト型リニアモータの断面図である。It is sectional drawing of the shaft type linear motor which shows Example 6 of this invention.
実施例1.
図1は、この発明の実施例1を示すシャフト型リニアモータの断面図であり、図2は、この発明の実施例1を示すシャフト型リニアモータの分解斜視図である。図1と図2において、1はシャフト型リニアモータの固定部、2はシャフト型リニアモータの可動部で、固定部1に対して軸線方向に相対変位が可能ある。31は第1軸受として機能する、軸方向に沿って断面がL字形状をしたすべり軸受、51は電源用リード線、11は電源用リード線51から電流を流して磁束を発生させるための複数個のコイル、12は複数個のコイル11を絶縁する樹脂製のボビン、13は発生した磁束の磁気回路となる上フレーム、14は発生した磁束の磁気回路となる、軸方向に沿って断面がU字形状をした下フレーム、15は機械剛性を高くするためのベース、16は軸(シャフト)を支える軸受、17は軸受16を保持するブラケット、18は異物の侵入を防ぐカバー、41は位置検出器であり、固定部1は、すべり軸受31、コイル11、ボビン12、上フレーム13、下フレーム14、ベース15、軸受16、ブラケット17、カバー18、位置検出器41で構成される。
Example 1.
1 is a cross-sectional view of a shaft type linear motor showing Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view of the shaft type linear motor showing Embodiment 1 of the present invention. 1 and 2, reference numeral 1 denotes a fixed portion of the shaft type linear motor, and 2 denotes a movable portion of the shaft type linear motor, which can be displaced relative to the fixed portion 1 in the axial direction. 31 is a slide bearing that functions as a first bearing and has an L-shaped cross section along the axial direction, 51 is a power supply lead wire, and 11 is a plurality for generating a magnetic flux by causing a current to flow from the power supply lead wire 51. A coil 12, a resin bobbin that insulates the plurality of coils 11, an upper frame 13 serving as a magnetic circuit for the generated magnetic flux, and a cross section 14 along the axial direction, serving as a magnetic circuit for the generated magnetic flux. A U-shaped lower frame, 15 is a base for increasing mechanical rigidity, 16 is a bearing that supports a shaft, 17 is a bracket that holds the bearing 16, 18 is a cover that prevents foreign matter from entering, and 41 is a position. The fixed portion 1 is a slide bearing 31, a coil 11, a bobbin 12, an upper frame 13, a lower frame 14, a base 15, a bearing 16, a bracket 17, a cover 18, and a position detector 41. It is made.
一方、32は第1摺動部として機能する、すべり軸受31の表面を摺動案内する摺動部材、21は磁石部であり、複数個のコイル11の発生磁束との相互作用により推力を発生するために積層された複数個の永久磁石である。22は磁性材もしくは非磁性材からなり、積層された複数個の永久磁石21のN極及びS極の磁極が軸線方向に交互に形成されるように複数個の永久磁石21の間に配置されるスペーサ、23はシャフト結合部材、24は発生推力を機械に伝達する軸(シャフト)であり、可動部2は、摺動部材32、永久磁石21、スペーサ22、シャフト結合部材23で構成され、可動部2はシャフト24の端部と接続される。シャフト24のもう一方の端部は固定部1の外部に出ており、位置検出用に使われる。複数個の永久磁石21の中心軸とスペーサ22の中心軸とシャフト結合部材23の中心軸は、それぞれシャフト24の中心軸と一致している。可動部2は固定部1の内部に配置され、図1中のZ方向に可動な構造となっている。また、複数個のコイル11と複数個のボビン12は複数個の永久磁石21の外側に同心状に配置されており、複数個のコイル11の中心軸と複数個のボビン12の中心軸は、それぞれシャフト24の中心軸と一致している。 On the other hand, 32 is a sliding member that slides and guides the surface of the slide bearing 31 that functions as a first sliding portion, and 21 is a magnet portion that generates thrust by interaction with the magnetic flux generated by the plurality of coils 11. A plurality of permanent magnets stacked in order to achieve this. 22 is made of a magnetic material or a non-magnetic material, and is arranged between the plurality of permanent magnets 21 so that the N pole and S pole magnetic poles of the plurality of laminated permanent magnets 21 are alternately formed in the axial direction. The spacer 23 is a shaft coupling member, 24 is a shaft (shaft) for transmitting the generated thrust to the machine, and the movable part 2 includes a sliding member 32, a permanent magnet 21, a spacer 22, and a shaft coupling member 23. The movable part 2 is connected to the end of the shaft 24. The other end of the shaft 24 protrudes outside the fixed part 1 and is used for position detection. The central axis of the plurality of permanent magnets 21, the central axis of the spacer 22, and the central axis of the shaft coupling member 23 coincide with the central axis of the shaft 24. The movable part 2 is disposed inside the fixed part 1 and has a structure movable in the Z direction in FIG. The plurality of coils 11 and the plurality of bobbins 12 are arranged concentrically outside the plurality of permanent magnets 21, and the central axes of the plurality of coils 11 and the central axes of the plurality of bobbins 12 are Each coincides with the central axis of the shaft 24.
42はスケール、25はシャフト24のシャフト先端部、26はスケール結合部材、52は位置検出器用リード線である。スケール42はスケール結合部材26によって、シャフト先端部25に結合されており、シャフト24の動きに合わせて可動する構造となっている。また、スケール42は、その内部には光学的もしくは磁気的な位置情報が記録されており、固定部1に結合された位置検出器41によって、シャフト24の図1中のZ方向の位置を検出し、位置検出器用リード線52から制御部へ位置信号を伝達する構造となっている。 Reference numeral 42 denotes a scale, 25 denotes a shaft tip of the shaft 24, 26 denotes a scale coupling member, and 52 denotes a position detector lead. The scale 42 is coupled to the shaft distal end portion 25 by the scale coupling member 26, and has a structure that can move according to the movement of the shaft 24. The scale 42 has optical or magnetic position information recorded therein, and the position detector 41 coupled to the fixed portion 1 detects the position of the shaft 24 in the Z direction in FIG. In addition, the position signal is transmitted from the position detector lead wire 52 to the control unit.
なお、A-A’断面とB-B’断面は、図1に示すシャフト型リニアモータのX-Y面に沿った断面を示す。 The A-A ′ cross section and the B-B ′ cross section are cross sections along the XY plane of the shaft type linear motor shown in FIG.
図3は、この発明の実施例1を示すシャフト型リニアモータの制御部の構成図である。図3において、90は制御部、100はシャフト型リニアモータである。91は位置制御回路、92は速度制御回路、93は電流制御回路、99は電流検出器であり、制御部90は位置制御回路91、速度制御回路92、電流制御回路93、電流検出器99で構成される。 FIG. 3 is a configuration diagram of a control unit of the shaft type linear motor showing the first embodiment of the present invention. In FIG. 3, 90 is a control unit, and 100 is a shaft type linear motor. 91 is a position control circuit, 92 is a speed control circuit, 93 is a current control circuit, and 99 is a current detector. A control unit 90 is a position control circuit 91, a speed control circuit 92, a current control circuit 93, and a current detector 99. Composed.
スケール42及び位置検出器41により検出された位置情報は、シャフト型リニアモータ100の制御部90にフィードバックされる。位置制御回路91は位置検出器41からの位置フィードバック値と指令値とを比較することによって位置制御し、速度制御回路92は位置制御回路91からの出力値と位置フィードバック値を微分した速度フィードバック値を比較することによって速度制御し、電流制御回路93は速度制御回路92からの出力値と電流検出器99からの電流フィードバック値を比較することによって推力制御することがそれぞれ可能である。 Position information detected by the scale 42 and the position detector 41 is fed back to the control unit 90 of the shaft type linear motor 100. The position control circuit 91 performs position control by comparing the position feedback value from the position detector 41 with the command value, and the speed control circuit 92 differentiates the output value from the position control circuit 91 and the position feedback value. The current control circuit 93 can perform thrust control by comparing the output value from the speed control circuit 92 and the current feedback value from the current detector 99, respectively.
図4は、この発明の実施例1を示すシャフト型リニアモータのすべり軸受の構造図である。61は磁束、62aと62bは永久磁石21の作る磁束61の影響によって発生する磁気吸引力である。 FIG. 4 is a structural diagram of a plain bearing of a shaft type linear motor showing Embodiment 1 of the present invention. 61 is a magnetic flux, and 62a and 62b are magnetic attractive forces generated by the influence of the magnetic flux 61 produced by the permanent magnet 21.
すべり軸受31は樹脂製(非磁性材)であり、図4のA-A’断面に示すように軸方向に沿って断面がL字形状をしている。一方、摺動部材32は、例えばS50C材、上フレーム13及び下フレーム14は、例えばSPCC材であり、いずれも磁性材である。ここで、摺動部材32は、シャフト24の中心軸に対して同心状に配置されているコイル11の内空間の中心軸に対して同心ではなく、すべり軸受31側に偏心するように設置される。その結果、摺動部材32と上フレーム13の間のギャップと、摺動部材32と下フレーム14の間のギャップは、それぞれ断面がL字形状のすべり軸受31が介在する側(図4のA-A’断面では、摺動部材32の左側面と下面)では存在せず、介在しない側(図4のA-A’断面では、摺動部材32の右側面と上面)では所定の距離をもって存在することになる。 The slide bearing 31 is made of resin (non-magnetic material), and has a L-shaped cross section along the axial direction as shown in the A-A 'cross section of FIG. On the other hand, the sliding member 32 is, for example, an S50C material, and the upper frame 13 and the lower frame 14 are, for example, SPCC materials, all of which are magnetic materials. Here, the sliding member 32 is not concentric with respect to the central axis of the inner space of the coil 11 arranged concentrically with respect to the central axis of the shaft 24, and is installed so as to be eccentric to the sliding bearing 31 side. The As a result, the gap between the sliding member 32 and the upper frame 13 and the gap between the sliding member 32 and the lower frame 14 are each on the side where the slide bearing 31 having an L-shaped cross section is interposed (A in FIG. 4). -A 'cross section does not exist on the left side and bottom surface of the sliding member 32), and has a predetermined distance on the non-intervening side (on the AA' cross section in FIG. 4, the right side surface and top surface of the sliding member 32). Will exist.
図4のA-A’断面において、磁束61が、磁性材である上フレーム13と永久磁石21の間、磁性材であるU字形状の下フレーム14の両側面と永久磁石21の間、磁性材である断面がU字形状の下フレーム14の下面と永久磁石21の間でそれぞれ形成される。形成された磁束61の影響により、磁性材である摺動部材32と磁性材である上フレーム13及びU字形状の下フレーム14の間に磁気吸引力62aと62bが発生するが、摺動部材32が下フレーム14の断面がL字形状のすべり軸受31の介在する側に偏って設置されているため、この摺動部材32の偏りによって、磁気吸引力62aが、断面がL字形状のすべり軸受31が介在する側(図4のA-A’断面では、摺動部材32の左側面と下面)では強く作用し、磁気吸引力62bはL字形状のすべり軸受31の介在しない側(図4のA-A’断面では、摺動部材32の右側面と上面)ではほとんど作用しないことになる。 In the AA ′ cross section of FIG. 4, the magnetic flux 61 is magnetic between the upper frame 13 that is a magnetic material and the permanent magnet 21, between both side surfaces of the U-shaped lower frame 14 that is a magnetic material, and the permanent magnet 21. A cross section as a material is formed between the lower surface of the U-shaped lower frame 14 and the permanent magnet 21. Under the influence of the magnetic flux 61 formed, magnetic attractive forces 62a and 62b are generated between the sliding member 32, which is a magnetic material, and the upper frame 13 and the U-shaped lower frame 14, which are magnetic materials. 32 is disposed in such a way that the lower frame 14 has an L-shaped slide bearing 31 on the side where the L-shaped slide bearing 31 is interposed. Therefore, the bias of the sliding member 32 causes the magnetic attraction force 62a to generate a slide having an L-shaped cross section. It acts strongly on the side where the bearing 31 is interposed (the left side surface and the lower surface of the sliding member 32 in the section AA ′ in FIG. 4), and the magnetic attractive force 62b is not on the side where the L-shaped slide bearing 31 is not interposed (FIG. In the section AA ′ of FIG. 4, the sliding member 32 has almost no action on the right side surface and the upper surface.
このように構成されたシャフト型リニアモータにおいては、摺動部材32と断面がL字形状のすべり軸受31が、一定の磁気吸引力62aでもって常に接触した状態となるため、摺動部材32とすべり軸受31の間にはギャップが存在せず、その結果、従来のシャフト型リニアモータの構成では生じていたギャップに起因したがたつきや変動もなく、シャフト先端部25の位置決め精度を高くすることが可能となる。また、従来のシャフト型リニアモータの構成のままでギャップを小さくしようとした場合、摺動部材32とすべり軸受31の寸法を高精度に加工する必要があったが、この実施例1におけるシャフト型リニアモータの構成ではその加工も必要もない。 In the shaft type linear motor configured as described above, the sliding member 32 and the sliding bearing 31 having an L-shaped cross section are always in contact with each other with a constant magnetic attractive force 62a. There is no gap between the slide bearings 31. As a result, there is no rattling or fluctuation caused by the gap that has occurred in the configuration of the conventional shaft type linear motor, and the positioning accuracy of the shaft tip 25 is increased. It becomes possible. In addition, when trying to reduce the gap with the configuration of the conventional shaft type linear motor, it is necessary to process the dimensions of the sliding member 32 and the slide bearing 31 with high accuracy. The linear motor configuration does not require any processing.
以上、この実施例1で説明したシャフト型リニアモータの構成によれば、シャフト型リニアモータのシャフト先端部の位置決め精度を高くすることができるので、表面実装機や基板検査機へのシャフト型リニアモータの適用が可能となり、例えば、電子基板に実装する部品の高密度化が可能となる。 As described above, according to the configuration of the shaft type linear motor described in the first embodiment, the positioning accuracy of the shaft tip portion of the shaft type linear motor can be increased. A motor can be applied. For example, it is possible to increase the density of components mounted on an electronic substrate.
実施例2.
この発明の実施例1では、可動部2の一端部のみをすべり軸受31とした場合について説明したが、図5に示すように、可動部2の両端部を第1軸受であるすべり軸受31aと、第2軸受であるすべり軸受31bとしても良く、このような構成によっても同様の効果を得ることができる。可動部2の両端部をすべり軸受31a、31bとすることに対応して、固定部1のすべり軸受31a、31bと摺動する両側には、第1摺動部である摺動部材32aと、第2摺動部である摺動部材32bが設置される。
Example 2
In the first embodiment of the present invention, the case where only one end portion of the movable portion 2 is the slide bearing 31 has been described. However, as shown in FIG. 5, both end portions of the movable portion 2 are connected to the slide bearing 31a as the first bearing. The sliding bearing 31b as the second bearing may be used, and the same effect can be obtained by such a configuration. Corresponding to the sliding bearings 31a, 31b at both ends of the movable part 2, on both sides sliding with the sliding bearings 31a, 31b of the fixed part 1, a sliding member 32a, which is a first sliding part, A sliding member 32b, which is the second sliding portion, is installed.
実施例3.
この発明の実施例1及び実施例2では、L字形状のすべり軸受31の二面を使用してX及びY方向の位置精度を確保した場合について説明したが、位置精度を必要とする方向が一方向のみ、例えばX方向だけの場合は、図6に示すように、すべり軸受35を軸方向に沿って下フレーム14の下面と平行な平板状にしても良い。この場合も、実施例1及び実施例2と同様の効果を得ることができる。
Example 3
In the first and second embodiments of the present invention, the case where the positional accuracy in the X and Y directions is ensured by using two surfaces of the L-shaped slide bearing 31 is described. In the case of only one direction, for example, only the X direction, as shown in FIG. 6, the slide bearing 35 may be formed in a flat plate shape parallel to the lower surface of the lower frame 14 along the axial direction. In this case, the same effects as those of the first and second embodiments can be obtained.
実施例4.
図7は、この発明の実施例4を示すシャフト型リニアモータのすべり軸受の構造図である。71は第1中間部材であり、図7では中間部材としている。
Example 4
FIG. 7 is a structural diagram of a plain bearing of a shaft type linear motor showing Embodiment 4 of the present invention. Reference numeral 71 denotes a first intermediate member, which is an intermediate member in FIG.
すべり軸受31は樹脂製(非磁性材)であり、図7のA-A’断面に示すように軸方向に沿って断面がL字形状をしており、中間部材71の右側面と上面に当接している。また、中間部材71は、例えばSPCC材等の磁性材であり、図7のA-A’断面に示すように軸方向に沿って断面がL字形状をしており、下フレーム14の左側面と下面に当接している。一方、摺動部材32は、例えばS50C材、上フレーム13及び下フレーム14は、例えばSPCC材であり、いずれも磁性材である。ここで、摺動部材32は、シャフト24の中心軸に対して同心状に配置されているコイル11の内空間の中心軸と一致して設置される。その結果、摺動部材32と上フレーム13の間のギャップと、摺動部材32と下フレーム14の間のギャップは、それぞれ断面がL字形状のすべり軸受31と中間部材71が介在する側(図7のA-A’断面では、摺動部材32の左側面と下面)では存在せず、介在しない側(図7のA-A’断面では、摺動部材32の右側面と上面)では所定の距離をもって存在することになる。 The slide bearing 31 is made of resin (non-magnetic material) and has an L-shaped cross section along the axial direction as shown in the AA ′ cross section of FIG. It is in contact. Further, the intermediate member 71 is, for example, a magnetic material such as an SPCC material, and has an L-shaped cross section along the axial direction as shown in the AA ′ cross section of FIG. And is in contact with the lower surface. On the other hand, the sliding member 32 is, for example, an S50C material, and the upper frame 13 and the lower frame 14 are, for example, SPCC materials, all of which are magnetic materials. Here, the sliding member 32 is installed so as to coincide with the central axis of the inner space of the coil 11 arranged concentrically with respect to the central axis of the shaft 24. As a result, the gap between the sliding member 32 and the upper frame 13 and the gap between the sliding member 32 and the lower frame 14 are the sides where the slide bearing 31 and the intermediate member 71 having an L-shaped cross section are interposed ( In the AA ′ cross section of FIG. 7, it does not exist on the left side and bottom surface of the sliding member 32, and on the non-intervening side (the right side surface and top surface of the sliding member 32 in the AA ′ cross section of FIG. 7). It exists with a predetermined distance.
図7のA-A’断面において、磁束61が、磁性材である上フレーム13と永久磁石21の間、磁性材であるU字形状の下フレーム14の右側面と永久磁石21の間、磁性材である断面がL字形状の中間部材71の下面と永久磁石21の間、磁性材である断面がL字形状の中間部材71の右側面と永久磁石21の間でそれぞれ形成される。形成された磁束61の影響により、磁性材である摺動部材32と磁性材である上フレーム13とU字形状の下フレーム14とL字形状の中間部材71の間に磁気吸引力62aと62bが発生するが、磁気吸引力62aが、断面がL字形状のすべり軸受31と中間部材71が介在する側(図7のA-A’断面では、摺動部材32の左側面と下面)では強く作用し、磁気吸引力62bはL字形状のすべり軸受31と中間部材71の介在しない側(図7のA-A’断面では、摺動部材32の右側面と上面)ではほとんど作用しないことになる。 In the AA ′ cross section of FIG. 7, the magnetic flux 61 is magnetic between the upper frame 13, which is a magnetic material, and the permanent magnet 21, and between the right side surface of the U-shaped lower frame 14, which is a magnetic material, and the permanent magnet 21. A cross section that is a material is formed between the lower surface of the L-shaped intermediate member 71 and the permanent magnet 21, and a cross section that is a magnetic material is formed between the right side surface of the L-shaped intermediate member 71 and the permanent magnet 21. Under the influence of the formed magnetic flux 61, magnetic attractive forces 62a and 62b are formed between the sliding member 32, which is a magnetic material, the upper frame 13, which is a magnetic material, the U-shaped lower frame 14, and the L-shaped intermediate member 71. However, the magnetic attraction force 62a is on the side where the L-shaped slide bearing 31 and the intermediate member 71 are interposed (on the left side surface and the lower surface of the sliding member 32 in the AA 'cross section in FIG. 7). It acts strongly, and the magnetic attractive force 62b hardly acts on the side where the L-shaped slide bearing 31 and the intermediate member 71 are not interposed (the right side surface and the top surface of the sliding member 32 in the AA ′ cross section in FIG. 7). become.
このように構成されたシャフト型リニアモータにおいては、摺動部材32と断面がL字形状のすべり軸受31が、一定の磁気吸引力62aでもって常に接触した状態となるため、摺動部材32とすべり軸受31の間にはギャップが存在せず、その結果、従来のシャフト型リニアモータの構成では生じていたギャップに起因したがたつきや変動もなく、シャフト先端部25の位置決め精度を高くすることが可能となる。また、従来のシャフト型リニアモータの構成のままでギャップを小さくしようとした場合、摺動部材32とすべり軸受31の寸法を高精度に加工する必要があったが、この実施例1におけるシャフト型リニアモータの構成ではその加工も必要もない。 In the shaft type linear motor configured as described above, the sliding member 32 and the sliding bearing 31 having an L-shaped cross section are always in contact with each other with a constant magnetic attractive force 62a. There is no gap between the slide bearings 31. As a result, there is no rattling or fluctuation caused by the gap that has occurred in the configuration of the conventional shaft type linear motor, and the positioning accuracy of the shaft tip 25 is increased. It becomes possible. In addition, when trying to reduce the gap with the configuration of the conventional shaft type linear motor, it is necessary to process the dimensions of the sliding member 32 and the slide bearing 31 with high accuracy. The linear motor configuration does not require any processing.
以上、この実施例4で説明したシャフト型リニアモータの構成によれば、シャフト型リニアモータのシャフト先端部の位置決め精度を高くすることができるので、表面実装機や基板検査機へのシャフト型リニアモータの適用が可能となり、例えば、電子基板に実装する部品の高密度化が可能となる。 As described above, according to the configuration of the shaft-type linear motor described in the fourth embodiment, the positioning accuracy of the shaft tip portion of the shaft-type linear motor can be increased. A motor can be applied. For example, it is possible to increase the density of components mounted on an electronic substrate.
実施例5.
この発明の実施例4では、可動部2の一端部のみに中間部材71を適用した場合について説明したが、図8に示すように、可動部2の両端部に第1中間部材である中間部材71aと、第2中間部材である中間部材71bを適用しても良く、このような構成によっても同様の効果を得ることができる。
Example 5 FIG.
In the fourth embodiment of the present invention, the case where the intermediate member 71 is applied only to one end of the movable portion 2 has been described. However, as shown in FIG. 8, the intermediate member that is the first intermediate member at both ends of the movable portion 2. 71a and the intermediate member 71b which is a 2nd intermediate member may be applied, and the same effect can be acquired also by such a structure.
実施例6.
この発明の実施例4及び実施例5では、L字形状の中間部材71の二面を使用してX及びY方向の位置精度を確保した場合について説明したが、位置精度を必要とする方向が一方向のみ、例えばX方向だけの場合は、図9に示すように、中間部材75を軸方向に沿って下フレーム14の下面と平行な平板状にしても良い。この場合も、実施例4及び実施例5と同様の効果を得ることができる。
Example 6
In the fourth embodiment and the fifth embodiment of the present invention, the case where the positional accuracy in the X and Y directions is secured using the two surfaces of the L-shaped intermediate member 71 is described. In the case of only one direction, for example, only the X direction, the intermediate member 75 may be formed in a flat plate shape parallel to the lower surface of the lower frame 14 along the axial direction as shown in FIG. In this case, the same effects as those of the fourth and fifth embodiments can be obtained.
この実施例4から実施例6で説明したシャフト型リニアモータの構成では、中間部材71、71a、71bと下フレーム14をそれぞれ別部材として扱った場合について説明したが、下フレーム14に中間部材71、71a、71bの構造を有した新たな下フレーム14とした構成においても同様の効果を得ることができる。 In the configuration of the shaft type linear motor described in the fourth to sixth embodiments, the case where the intermediate members 71, 71a, 71b and the lower frame 14 are handled as separate members has been described. , 71a, 71b, the same effect can be obtained in the configuration of the new lower frame 14.
なお、この発明の実施例1から実施例6では、この発明をシャフト型リニアモータに適用する場合について説明したが、これに限るものではなく、他のリニアモータに適用しても同様の効果を得ることができる。 In the first to sixth embodiments of the present invention, the case where the present invention is applied to a shaft type linear motor has been described. However, the present invention is not limited to this, and the same effect can be obtained when applied to other linear motors. Obtainable.
1 固定部、2 可動部、11 コイル、12 ボビン、13 上フレーム、14 下フレーム、15 ベース、16 軸受、17 ブラケット、18 カバー、21 永久磁石、22 スペーサ、23 シャフト結合部材、24 シャフト、25 シャフト先端部、26 スケール結合部材、31 すべり軸受、31a すべり軸受、31b すべり軸受、32 摺動部材、32a 摺動部材、32b 摺動部材、35 すべり軸受、41 位置検出器、42 スケール、51 電源用リード線、52 位置検出器用リード線、61 磁束、62a 磁気吸引力、62b 磁気吸引力、71 中間部材、71a 中間部材、71b 中間部材、75 中間部材、 90、 制御部、91 位置制御回路、92 速度制御回路、93 電流制御回路、99 電流検出器、100 シャフト型リニアモータ。 1 fixed part, 2 movable part, 11 coil, 12 bobbin, 13 upper frame, 14 lower frame, 15 base, 16 bearing, 17 bracket, 18 cover, 21 permanent magnet, 22 spacer, 23 shaft coupling member, 24 shaft, 25 Shaft tip, 26 Scale coupling member, 31 Slide bearing, 31a Slide bearing, 31b Slide bearing, 32 Slide member, 32a Slide member, 32b Slide member, 35 Slide bearing, 41 Position detector, 42 Scale, 51 Power supply Lead wire, 52 lead wire for position detector, 61 magnetic flux, 62a magnetic attractive force, 62b magnetic attractive force, 71 intermediate member, 71a intermediate member, 71b intermediate member, 75 intermediate member, 90, control unit, 91 position control circuit, 92 Speed control circuit, 93 Current control Circuit, 99 current detector, 100 shaft type linear motor.

Claims (12)

  1. 固定部と、該固定部内部に位置し、該固定部に対して軸線方向に相対変位可能に設けられた可動部とを有するリニアモータであって、
    前記可動部は、軸線方向に積層された複数個の永久磁石から成る磁石部と、該磁石部の一方の先端部に配置され、前記固定部内部を軸線方向に摺動案内する磁性材から成る第1摺動部とを備え、
    前記固定部は、前記第1摺動部を摺動可能に支持する前記固定部内面に当接された非磁性材から成る第1軸受と、前記固定部内部に設けられ、自身の内空間に磁束を発生させ、前記磁石部に作用させて前記可動部を相対変位させる複数個のコイルとを備え、
    前記第1摺動部は、前記第1摺動部中心軸が前記コイルによって形成される内空間の断面中心軸から前記第1軸受側に偏心して配置されると共に前記第1軸受と当接することで、前記永久磁石からの磁気吸引力が偏心方向に作用させることを特徴とするリニアモータ。
    A linear motor having a fixed part and a movable part located inside the fixed part and provided so as to be relatively displaceable in the axial direction with respect to the fixed part,
    The movable part is composed of a magnet part composed of a plurality of permanent magnets stacked in the axial direction, and a magnetic material disposed at one tip of the magnet part and slidingly guiding the inside of the fixed part in the axial direction. A first sliding part,
    The fixed portion is provided inside the fixed portion with a first bearing made of a non-magnetic material that is in contact with the inner surface of the fixed portion that slidably supports the first sliding portion. A plurality of coils that generate magnetic flux and act on the magnet portion to relatively displace the movable portion;
    The first sliding portion is arranged such that the central axis of the first sliding portion is eccentric to the first bearing side from the central axis of the inner space formed by the coil, and abuts on the first bearing. The linear motor is characterized in that the magnetic attractive force from the permanent magnet acts in an eccentric direction.
  2. 前記固定部の内断面は矩形状であり、前記第1摺動部は矩形状であり、前記第1軸受の断面はL字形状であることを特徴とする請求項1に記載のリニアモータ。 2. The linear motor according to claim 1, wherein an inner cross section of the fixed portion is rectangular, the first sliding portion is rectangular, and a cross section of the first bearing is L-shaped.
  3. 前記第1軸受の断面は平板状であることを特徴とする請求項2に記載のリニアモータ。 The linear motor according to claim 2, wherein the first bearing has a flat cross section.
  4. 固定部と、該固定部内部に位置し、該固定部に対して軸線方向に相対変位可能に設けられた可動部とを有するリニアモータであって、
    前記可動部は、軸線方向に積層された複数個の永久磁石から成る磁石部と、該磁石部の両方の先端部に配置され、前記固定部内部を軸線方向に摺動案内する磁性材から成る第1及び第2摺動部とを備え、
    前記固定部は、前記第1及び第2摺動部を摺動可能に支持する前記固定部内面に当接された非磁性材から成る第1及び第2軸受と、前記固定部内部に設けられ、自身の内空間に磁束を発生させ、前記磁石部に作用させて前記可動部を相対変位させる複数個のコイルとを備え、
    前記第1及び第2摺動部は、前記第1及び第2摺動部中心軸が前記コイルによって形成される内空間の断面中心軸から前記第1及び第2軸受側に偏心して配置されると共に前記第1及び第2軸受と当接することで、前記永久磁石からの磁気吸引力が偏心方向に作用させることを特徴とするリニアモータ。
    A linear motor having a fixed part and a movable part located inside the fixed part and provided so as to be relatively displaceable in the axial direction with respect to the fixed part,
    The movable part is composed of a magnet part composed of a plurality of permanent magnets stacked in the axial direction, and a magnetic material that is disposed at both ends of the magnet part and slides and guides the inside of the fixed part in the axial direction. Comprising first and second sliding portions;
    The fixed portion is provided inside the fixed portion, and first and second bearings made of a nonmagnetic material abutted on the inner surface of the fixed portion that slidably supports the first and second sliding portions. A plurality of coils that generate magnetic flux in their own internal space and act on the magnet part to relatively displace the movable part,
    The first and second sliding portions are arranged such that the first and second sliding portion central axes are eccentric from the cross-sectional central axis of the inner space formed by the coil toward the first and second bearings. A linear motor in which the magnetic attraction force from the permanent magnet acts in an eccentric direction by contacting the first and second bearings.
  5. 前記固定部の内断面は矩形状であり、前記第1及び第2摺動部は矩形状であり、前記第1及び第2軸受の断面はL字形状であることを特徴とする請求項4に記載のリニアモータ。 5. An inner cross section of the fixed portion is rectangular, the first and second sliding portions are rectangular, and a cross section of the first and second bearings is L-shaped. The linear motor described in 1.
  6. 前記第1及び第2軸受の断面は平板状であることを特徴とする請求項5に記載のリニアモータ。 The linear motor according to claim 5, wherein the first and second bearings have a flat cross section.
  7. 固定部と、該固定部内部に位置し、該固定部に対して軸線方向に相対変位可能に設けられた可動部とを有するリニアモータであって、
    前記可動部は、軸線方向に積層された複数個の永久磁石から成る磁石部と、該磁石部の一方の先端部に配置され、前記固定部内部を軸線方向に摺動案内する磁性材から成る第1摺動部とを備え、
    前記固定部は、前記固定部中心軸に対して非回転対称形で前記固定部内面に固着された磁性材から成る第1中間部材と、前記第1摺動部を摺動可能に支持する前記第1中間部材に当接された非磁性材から成る第1軸受と、前記固定部内部に設けられ、自身の内空間に磁束を発生させ、前記磁石部に作用させて前記可動部を相対変位させる複数個のコイルとを備え、
    前記第1摺動部は、前記第1軸受と当接することで前記永久磁石からの磁気吸引力が前記第1中間部材側に作用させることを特徴とするリニアモータ。
    A linear motor having a fixed part and a movable part located inside the fixed part and provided so as to be relatively displaceable in the axial direction with respect to the fixed part,
    The movable part is composed of a magnet part composed of a plurality of permanent magnets stacked in the axial direction, and a magnetic material disposed at one tip of the magnet part and slidingly guiding the inside of the fixed part in the axial direction. A first sliding part,
    The fixed portion includes a first intermediate member made of a magnetic material fixed to the inner surface of the fixed portion in a non-rotation symmetric manner with respect to the fixed portion central axis, and the first sliding portion slidably supported. A first bearing made of a non-magnetic material that is in contact with the first intermediate member, and a relative displacement of the movable part that is provided inside the fixed part, generates a magnetic flux in its inner space, and acts on the magnet part. A plurality of coils to be
    The linear motor according to claim 1, wherein the first sliding portion abuts on the first bearing so that a magnetic attractive force from the permanent magnet acts on the first intermediate member side.
  8. 前記固定部の内断面は矩形状であり、前記第1摺動部は矩形状であり、前記第1軸受と前記第1中間部材の断面はL字形状であることを特徴とする請求項7に記載のリニアモータ。 The inner cross section of the fixed portion is rectangular, the first sliding portion is rectangular, and the first bearing and the first intermediate member have L-shaped cross sections. The linear motor described in 1.
  9. 前記第1軸受と前記第1中間部材の断面は平板状であることを特徴とする請求項8に記載のリニアモータ。 The linear motor according to claim 8, wherein a cross section of the first bearing and the first intermediate member is a flat plate shape.
  10. 固定部と、該固定部内部に位置し、該固定部に対して軸線方向に相対変位可能に設けられた可動部とを有するリニアモータであって、
    前記可動部は、軸線方向に積層された複数個の永久磁石から成る磁石部と、該磁石部の両方の先端部に配置され、前記固定部内部を軸線方向に摺動案内する磁性材から成る第1及び第2摺動部とを備え、
    前記固定部は、前記固定部中心軸に対して非回転対称形で前記固定部内面に固着された磁性材から成る第1及び第2中間部材と、前記第1及び第2摺動部を摺動可能に支持する前記第1及び第2中間部材に当接された非磁性材から成る第1及び第2軸受と、前記固定部内部に設けられ、自身の内空間に磁束を発生させ、前記磁石部に作用させて前記可動部を相対変位させる複数個のコイルとを備え、
    前記第1及び第2摺動部は、前記第1及び第2軸受と当接することで前記永久磁石からの磁気吸引力が前記第1及び第2中間部材側に作用させることを特徴とするリニアモータ。
    A linear motor having a fixed part and a movable part located inside the fixed part and provided so as to be relatively displaceable in the axial direction with respect to the fixed part,
    The movable part is composed of a magnet part composed of a plurality of permanent magnets stacked in the axial direction, and a magnetic material that is disposed at both ends of the magnet part and slides and guides the inside of the fixed part in the axial direction. Comprising first and second sliding portions;
    The fixed portion slides between the first and second intermediate members made of a magnetic material fixed to the inner surface of the fixed portion in a non-rotation symmetric manner with respect to the central axis of the fixed portion, and the first and second sliding portions. First and second bearings made of a non-magnetic material abutting against the first and second intermediate members that are movably supported, and provided inside the fixed portion, generate magnetic flux in its own internal space, A plurality of coils that act on the magnet portion to relatively displace the movable portion;
    The first and second sliding portions are in contact with the first and second bearings so that a magnetic attraction force from the permanent magnet acts on the first and second intermediate members. motor.
  11. 前記固定部の内断面は矩形状であり、前記第1及び第2摺動部は矩形状であり、前記第1及び第2軸受と前記第1及び第2中間部材の断面はL字形状であることを特徴とする請求項10に記載のリニアモータ。 An inner cross section of the fixed portion is rectangular, the first and second sliding portions are rectangular, and a cross section of the first and second bearings and the first and second intermediate members are L-shaped. The linear motor according to claim 10, wherein the linear motor is provided.
  12. 前記第1及び第2軸受と前記第1及び第2中間部材の断面は平板状であることを特徴とする請求項11に記載のリニアモータ。 12. The linear motor according to claim 11, wherein the first and second bearings and the first and second intermediate members have a flat cross section.
PCT/JP2011/001996 2011-04-04 2011-04-04 Linear motor WO2012137241A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013508620A JP5306558B2 (en) 2011-04-04 2011-04-04 Linear motor
PCT/JP2011/001996 WO2012137241A1 (en) 2011-04-04 2011-04-04 Linear motor
KR1020137026072A KR101374464B1 (en) 2011-04-04 2011-04-04 Linear motor
CN201180069957.6A CN103460575B (en) 2011-04-04 2011-04-04 Linear motor
TW100112932A TWI426684B (en) 2011-04-04 2011-04-14 Linear moto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001996 WO2012137241A1 (en) 2011-04-04 2011-04-04 Linear motor

Publications (1)

Publication Number Publication Date
WO2012137241A1 true WO2012137241A1 (en) 2012-10-11

Family

ID=46968692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001996 WO2012137241A1 (en) 2011-04-04 2011-04-04 Linear motor

Country Status (5)

Country Link
JP (1) JP5306558B2 (en)
KR (1) KR101374464B1 (en)
CN (1) CN103460575B (en)
TW (1) TWI426684B (en)
WO (1) WO2012137241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167720A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Movable element and linear motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274475A (en) * 1994-03-28 1995-10-20 Sofutoronikusu Kk Linear actuator
JPH09182408A (en) * 1995-12-27 1997-07-11 Hitachi Metals Ltd Linear motor
JPH09261942A (en) * 1996-03-26 1997-10-03 Sharp Corp Linear pulse motor
JP2010288423A (en) * 2009-06-15 2010-12-24 Kayaba Ind Co Ltd Linear actuator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820169B2 (en) * 2002-03-20 2006-09-13 三菱電機株式会社 Linear motor and manufacturing method thereof
JP2006280125A (en) * 2005-03-30 2006-10-12 Thk Co Ltd Linear motor actuator
CN101741215B (en) * 2008-11-20 2012-07-04 中国科学院宁波材料技术与工程研究所 Permanent magnet synchronous linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274475A (en) * 1994-03-28 1995-10-20 Sofutoronikusu Kk Linear actuator
JPH09182408A (en) * 1995-12-27 1997-07-11 Hitachi Metals Ltd Linear motor
JPH09261942A (en) * 1996-03-26 1997-10-03 Sharp Corp Linear pulse motor
JP2010288423A (en) * 2009-06-15 2010-12-24 Kayaba Ind Co Ltd Linear actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167720A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Movable element and linear motor
TWI500238B (en) * 2013-04-12 2015-09-11 Mitsubishi Electric Corp Mover and linear motor
JP5872108B2 (en) * 2013-04-12 2016-03-01 三菱電機株式会社 Mover and linear motor

Also Published As

Publication number Publication date
KR101374464B1 (en) 2014-03-17
TW201242222A (en) 2012-10-16
CN103460575A (en) 2013-12-18
TWI426684B (en) 2014-02-11
JP5306558B2 (en) 2013-10-02
KR20130115400A (en) 2013-10-21
JPWO2012137241A1 (en) 2014-07-28
CN103460575B (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP4702629B2 (en) Moving magnet type linear slider and machine tool using the same
US20150137627A1 (en) Vibration actuator and mobile information terminal
TWI343164B (en) Voice coil motor
JP5006579B2 (en) Slide device with built-in movable magnet type linear motor
JPWO2007026566A1 (en) Linear motor
JP2001352747A (en) Linear motor and press molding machine using the same as drive source
JP2565783Y2 (en) Slide displacement device
JP2007325389A5 (en)
JP2014506445A (en) Pipette device with linear motor
JP2006238540A (en) Slide device with built-in linear motor
JP5306558B2 (en) Linear motor
WO2014041589A1 (en) Linear dc motor
JP5372298B2 (en) Linear motor
JP2011193703A (en) Linear motor pair, moving stage, and electron microscope
JP6236298B2 (en) Vertical axis slide device with built-in moving coil linear motor
JP2012060756A (en) Linear motor
JP2016144257A (en) Magnet device
JP2021032654A (en) Motion detector and metal mold device
KR20140103226A (en) Haptic Actuator
JP2005184877A (en) Flat surface actuator moving member portion and flat surface actuator with moving member portion
JP2016019315A (en) Linear motor, and drive system employing the same
JP2016140191A (en) Slide device for vertical shaft with built-in movable-coil type linear motor
JP5669446B2 (en) Driving mechanism of moving body
JP2012175850A (en) Cylindrical linear motor
JP2010148293A (en) Built-in slider

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508620

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026072

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862983

Country of ref document: EP

Kind code of ref document: A1