WO2012136114A1 - 一种板带材的厚度凸度检测装置 - Google Patents

一种板带材的厚度凸度检测装置 Download PDF

Info

Publication number
WO2012136114A1
WO2012136114A1 PCT/CN2012/073227 CN2012073227W WO2012136114A1 WO 2012136114 A1 WO2012136114 A1 WO 2012136114A1 CN 2012073227 W CN2012073227 W CN 2012073227W WO 2012136114 A1 WO2012136114 A1 WO 2012136114A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
thickness
tested
detector
detector arrays
Prior art date
Application number
PCT/CN2012/073227
Other languages
English (en)
French (fr)
Inventor
吴志芳
安继刚
张玉爱
苗积臣
李立涛
邢桂来
王立强
王振涛
刘锡明
郑健
黄毅斌
郭肖静
谈春明
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US14/009,123 priority Critical patent/US9689670B2/en
Priority to RU2013147693/28A priority patent/RU2545385C1/ru
Publication of WO2012136114A1 publication Critical patent/WO2012136114A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/633Specific applications or type of materials thickness, density, surface weight (unit area)

Definitions

  • Thickness convexity detecting device for plate and strip
  • the invention belongs to the field of application of nuclear technology, and particularly relates to a detecting device for thickness, crown and shape of a strip on an industrial hot rolling or cold rolling production line. Background technique
  • the crown gauge is the key equipment for the production and control of strip and strip, and plays an important role in improving the yield and quality of strip and strip. Due to the high rolling temperature of hot-rolled steel sheets (above 800 °C), dust and moisture in the environment, non-contact ray measurement methods have great advantages.
  • the detector performance of the ray convexity meter is one of the key factors determining the accuracy and speed of the convexity measurement.
  • the existing convexity meter has a single-row solid-state detector (as described in the product data of American Thermoelectric Company). Although it has the advantages of fast response, small size and light weight, it also has some defects:
  • the afterglow is long, the photodiode is not resistant to radiation, the life is short, the temperature of the working environment is high, and the working environment needs constant temperature control.
  • the distance between the detection positions of the two sources on the steel plate is related to the running speed of the steel plate, and the thickness reconstruction of the steel plate utilizes two rays.
  • the measurement data of the source is obtained, so the measurement accuracy is degraded when the running speed of the steel plate is fast.
  • a novel thickness detecting device for a strip of sheet material is provided, which can conveniently simultaneously obtain the cross-section of the strip Two ray projections on the section are used to detect the strip thickness, crown, and plate shape, and only two sources are used, and two exhaust ionization chamber detector arrays and an information processing system are employed.
  • the detector Compared with the system using single-row solid-state detector, the detector has the advantages of small temperature drift, radiation resistance, good stability, high cost performance, and the mechanical structure is simple; at the same time, it has higher resolution than the existing apparatus using ionization chamber.
  • the dynamic performance is good, the number of radiation sources is reduced, and the mechanical structure is single.
  • the invention relates to a plate and strip thickness convexity detecting device, which comprises a C-shaped frame, two radiation sources arranged in the upper arm of the C-shaped frame and spaced apart in the width direction of the steel plate, and is mounted on the lower arm of the C-shaped frame.
  • Two rows of high-pressure gas-filled ionization chamber detector arrays arranged inside and along the direction of movement of the strip and strip, mounted on a collimator below the two sources, the collimator illuminating the radiation of each source only to the corresponding one a detector array, a preamplifier module connected to the detector array, a data acquisition machine connected to the preamplifier module, and a data processing and display computer connected to the data acquisition machine to ensure system operation and monitoring Water gas service system, control system.
  • the invention adopts a high-pressure gas-filled ionization chamber as a detector, and has less influence on temperature than a solid-state detector using "Cs l scintillator + photodiode", and has low temperature drift, and does not require constant temperature control like a solid detector. At the same time, it has the advantages of radiation resistance, small leakage current, long service life, high reliability, self-collimation and low cost.
  • the layout of the dual exhaust ionization chamber detector array and the high-i operation rotary shutter using a single-row solid-state detector array the mechanical structure is integrated, the reliability of the system is increased, and the two rows are guaranteed.
  • the detector array can acquire data at the same time, which improves the dynamic measurement accuracy of the system.
  • two sources are used less, and the high pressure gas-filled ionization chamber detector is smaller than its ionization chamber detector, unlike the current IMS
  • the system needs to creep the C-frame along the width of the steel plate to meet the spatial resolution requirements, greatly simplifying the complexity of the mechanical and control systems, and improving the dynamic detection performance of the system.
  • Fig. 1 is a front elevational view showing the thickness convexity detecting device of the strip of the present invention.
  • FIG. 2 is a schematic view showing the thickness measurement of the thickness convexity detecting device of the strip of the present invention.
  • Fig. 3 is a side elevational view showing the thickness convexity detecting device of the strip of the present invention.
  • FIG. 4 is an algorithmic schematic diagram of a thickness convexity detecting device for a strip of the present invention. detailed description
  • the thickness convexity detecting device of the strip and strip proposed by the present invention comprises a C-shaped frame 9 which is installed in the upper arm of the C-shaped frame and arranged at two spaced positions in the width direction of the steel plate.
  • two rows of high-pressure gas-filled ionization chamber detector arrays 1, 2 installed in the lower arm of the convexity C-frame and spaced along the direction of movement of the strip, and collimators 10, 11 installed under the two radiation sources,
  • the collimator causes the radiation of each ray source to illuminate only a corresponding row of detector arrays, a preamplifier module 6 connected to the detector array, a data acquisition machine 7 connected to the preamplifier module, and
  • the data processing and display computer 8 connected to the above data acquisition machine is respectively connected with the computer 8, the convexity meter C-frame 9, the control system 12 for ensuring system operation and monitoring, and the water gas service system 13.
  • the positional relationship of the detector arrays 1, 2 in the width direction of the steel sheet 5 is as shown in Fig. 2.
  • the two sources 3, 4 can be directly above the two rows of detector arrays 1 and 2, or directly above the centerlines of the two rows of detector arrays 1 and 2.
  • a support base 14 that secures two rows of detector arrays that are symmetrically distributed on either side of the support base 14. Since the center distance of the detector array 1 and the detector array 2 is short (in this embodiment, it is 4.6 cm, which is converted to about 3. 6 cm on the steel plate), the thickness of the steel plate is considered to be uniform within this range. It can be approximated that the two rows of detector arrays detect the same section of the steel plate.
  • the detector arrays 1, 2 are respectively composed of hundreds of small-sized centripetal layout high-pressure gas-filled ionization chambers (for the applicant's independent intellectual property products, the invention patent has been applied for) gas ionization type medium and low energy X, Y-ray detectors
  • the high-pressure gas-filled ionization chamber used in this embodiment has a width X length X height of 10 X 20 X 100 ⁇ , and has the advantages of small temperature drift, radiation resistance, high spatial resolution, and high cost performance. The specific number is determined by the width of the steel plate 5 to be tested.
  • the size of the detector array in the width direction of the steel plate is generally less than 20 mm; wherein the detector array 1 corresponds to the radiation source 3, and each ionization in the detector array 1
  • the ray windows of the chamber are all directed towards the source 3; the detector array 2 corresponds to the source 4, and the ray window of each of the ionization chambers of the detector array 2 faces the source 4 .
  • the sources 3 and 4 can be either X-ray sources or radioisotope sources. In this embodiment, an X-ray source of 225 KV from COMET is used.
  • I m I 0 - e ⁇ (1)
  • I. Indicates the X-ray intensity before passing through the object 18 to be measured
  • I m represents the X-ray intensity after passing through the object 18 to be measured
  • represents the linear absorption coefficient of the X-ray of the object to be measured
  • h represents the thickness of the object 18 to be measured.
  • is related to the composition of the object 18 to be measured and the energy of the ray. Since the composition of the object 18 to be measured is complicated, and the X-ray has a wide spectrum of energy, in practical applications, it cannot be based on (1)
  • the equation gives the relationship between I m and h, and it is necessary to measure ⁇ by experiment and determine the relationship between h and I m . This process is also called calibration.
  • the detector 16 converts the detected radiation intensity signal I m into a current signal proportional thereto and is amplified by the signal processor 17.
  • the thickness h of the measured object can be known from the amplified detector output signal and the relationship between h and I m .
  • the preamplifier 6 amplifies the weak current signal output from the ionization chambers in the detector arrays 1, 2, and the signal amplifying circuit for every 16 ionization chambers in this embodiment is integrated in a preamplifier module.
  • the amplifier uses electronic components with high gain and low noise.
  • the data acquisition machine 7 is composed of a conventional current input analog-to-digital converter, a CPLD (complex programmable logic device), and a single-chip device. Hundreds of ionization chamber signals amplified by the preamplifier 6 of the two rows of detector arrays are collected, and the collected data is quickly transmitted to the data processing display computer 8. In this embodiment, the data of all the detectors is collected and transmitted every 10 ms.
  • the data processing display computer 8 is configured to store calibration curves, scatter correction data, alloy compensation and temperature compensation coefficients, read the transmission data of the data acquisition machine 7, reconstruct the cross-sectional thickness of the steel plate, calculate the convexity and other parameters and display them.
  • the data processing display computer of this embodiment can adopt a conventional industrial computer with a network card. All of the above calibration curves are stored in the data processing display computer 8.
  • the data processing shows that the computer 8 receives the two rows of detector array data transmitted by the data acquisition machine 7 every 10 ms. Then, the measured value of the detector is corrected by a certain scatter to obtain I m , and then the relationship between h and I m is used to check the table to obtain the thickness h of the steel plate.
  • Each detector can obtain a thickness
  • a row of detector arrays can obtain a thickness projection of the cross section of the steel sheet.
  • Two projections of the cross section of the steel sheet are obtained from the two rows of detector array data.
  • the lateral thickness distribution of the strip can be calculated, and the convexity data can be obtained in real time according to the thickness distribution.
  • FIG. 19 is one detector unit in the detector array 1 corresponding to the ray source 3
  • 20 is one detector unit in the detector array 2 corresponding to the ray source 4
  • 21 is a roller table (for the steel sheet rolling production line for conveying An apparatus for rolling a steel sheet on which a steel sheet to be tested of the measuring device is located. As shown in FIG. 19 is one detector unit in the detector array 1 corresponding to the ray source 3
  • 20 is one detector unit in the detector array 2 corresponding to the ray source 4
  • 21 is a roller table (for the steel sheet rolling production line for conveying An apparatus for rolling a steel sheet on which a steel sheet to be tested of the measuring device is located.
  • the detector units 19, 20 and the corresponding X-ray sources 3, 4 are each at an angle (such as ⁇ , ⁇ 2 , these angle values are known and input into the computer in advance), the length of the AB, CD can be
  • the measured data of the detector unit 19 of the detector array 1 and the detector unit 20 of the detector array 2 are respectively subjected to scatter correction, and the respective h and I m curves are inversely obtained to obtain thicknesses In and h 2 , and then according to geometry The relationship gets AB, CD.
  • the thickness EF of the shell 'J 0 point and the inclination angle ⁇ 0 of the steel sheet can be expressed by ⁇ 2 , hj , h 2 .
  • ⁇ 2 , hj , h 2 In a range of 4 inches, it can be considered that AC and BD are straight lines and parallel to each other; EF is the thickness of the steel plate at 0 points, perpendicular to AC and BD.
  • AB and CD are the auxiliary lines of the algorithm, the calculated thickness EF and the angle ⁇ . , are only related to ⁇ , ⁇ 2 , hj, h 2 .
  • the target of the source may be directly above or below the detector array, as shown in Figure 2.
  • the above algorithm is applicable to both cases.
  • AB, CD is the path through which the ray actually passes. Otherwise, when the detector array is not directly below the source, AB and CD are just the auxiliary lines of the algorithm. However, from the perspective of improving the detection efficiency of the detector, the target of the radiation source is better above the detector array.
  • the C-frame 9 is used to place the inspection equipment, the width of which is determined by the width of the steel plate that can be detected, and the design height is determined by factors such as the coverage angle of the radiation.
  • This embodiment can be made by welding a certain thickness of stainless steel, and the upper and lower arms can be connected by bolts for disassembly.
  • the lower surface of the upper arm and the upper portion of the lower arm are welded with a water jacket, and the inside of the water jacket is provided with circulating cooling water.
  • the collimators 10 and 11 are used to collimate the X-rays into a narrow sheet-like fan beam.
  • This embodiment can be made of a metal such as lead, tungsten or the like or an alloy thereof.
  • Control system 12 is used to monitor the operational status of the system, send control commands, and coordinate the normal operation of each subsystem.
  • This embodiment is constituted by a conventional touch panel and a PLC (Programmable Controller).
  • the water and gas service system 13 supplies the C-frame 9 water jacket and the radiation source 3, 4 with cooling circulating water, and at the same time, the lower arm is provided with dry air to ensure the environmental humidity required for the normal operation of the detector, which can be made by conventional techniques. .
  • the measurement process will now be described with reference to Fig. 1: When the rolled steel plate 5 passes through the passage surrounded by the convexity gauge C-frame 9, and the control system 12 detects that the steel plate reaches the irradiation area of the two X-ray sources, then two One X-ray source emits radiation.
  • the rays emitted from the X-ray source 3 are collimated into a narrow-plate fan beam by the collimator 10 mounted thereon, and the steel plate 5 is irradiated from the viewing angle shown in Fig. 1, and the rays are transmitted through the steel plate 5 and then collimated.
  • the detector (to remove the scattered rays) is incident on the aligned detector array 1, and the signal of the detector array 1 is amplified by the preamplifier 6.
  • the detector array 2 detects the attenuation signal after the radiation source 4 passes through the steel plate, and is amplified by the preamplifier 6.
  • the data acquisition machine 7 collects the signals amplified by the two rows of detector arrays 1 and 2 via the preamplifier at regular intervals, and transmits the measurement data to the data processing display computer 8, and the data processing display computer 8 calculates the cross section according to the above measurement principle.
  • the angle of inclination of each point is ⁇ .
  • the thickness EF, and the thickness value is automatically further modified, such as alloy compensation, temperature compensation, etc., the final calculation gives the true thickness of each point on the cross section, and according to formula (9), the convexity value can be further obtained:
  • the data acquisition machine acquires measurement data every 10 ms, and the data acquisition time interval can be adjusted up and down according to the requirements of the factory.
  • the salient feature of the present invention is the measurement of the cross-sectional thickness, crown and other parameters of the steel sheet using two radiation sources and two rows of high-pressure gas-filled detector arrays.
  • the present invention avoids the high-speed rotating shutters necessary for the time-sharing use of two sources of single-row detectors.
  • the mechanical structure is added, and the reliability of the system is increased.
  • the two rows of detector arrays can acquire data at the same time, the distance between the two sets of data on the steel plate is fixed and short (in this embodiment, 3. 6 cm).
  • the distance between the two sets of data on the steel plate varies with the running speed of the steel plate (if the running speed of the steel plate is 20m/s, each set of data is measured every 5ms) Then the distance is 10cm), thereby improving the measurement accuracy; and in addition to the solid detector, the gas ionization chamber detector has the advantages of small temperature drift, radiation resistance, high cost performance and the like.
  • the width X length X height is: 10 X 20 X 100mm
  • the data consists of two parts, the two The position of the partial data on the steel plate may be far apart (for example, the running speed of the steel plate is 20m/s, the distance is not less than 13m), which will result in poor dynamic performance of the system, so the present invention is improved.
  • the dynamic performance of the system is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)

Description

一种板带材的厚度凸度检测装置
技术领域
本发明属于核技术应用领域, 特別涉及一种工业热轧或冷轧生产线 上板带材厚度、 凸度和板形等的检测装置。 背景技术
凸度仪是板带材生产和控制的关键设备, 对于提高板带材的产量和 质量有重要作用。 由于热轧钢板的轧制温度高 ( 800 °C以上), 环境中有 粉尘和水汽等, 非接触射线式测量方法具有很大的优势。 射线法凸度仪 的探测器性能是决定凸度仪测量精度和检测速度的关键因素之一。
现有的凸度仪有采用单排固体探测器的 (如美国热电公司的产品资 料中所述),虽然有响应速度快、 体积小、 重量轻的优点, 但也存在着一 些缺陷:
其一, 余晖长、 光电二极管不耐辐照、 寿命短, 对工作环境温度要 求高, 工作环境需要恒温控制。
其二, 由于不同射线源共用一排探测器, 需要一个旋转快门让 2个 X 射线源交替发出 X射线, 机械结构复杂, 存在振动干扰。
其三, 由于两个 X射线源的射线由同一排探测器先后测量, 导致两 个射线源在钢板上的检测位置之间的距离与钢板运行速度有关, 而钢板 的厚度重建是利用两个射线源的测量数据得到的, 因此当钢板运行速度 快时测量精度下降。
另外也有采用气体电离室探测器的 (如德国 IMS公司的产品资料中 所述), 但其使用的电离室体积大, 因此分辨率不能满足钢厂的要求, 需 要 C型架沿钢板宽度方向来回摆动来提高分辨率。 这一方面导致其机械、 控制系统复杂;同时由于 C型架重量大,摆动频率不能过快,一般在 1. 5Hz 到 2Hz , 这使得当钢板运动时, 用于计算同一横断面上的厚度数据取自两 个不同的断面 (相距数米到数十米), 从而使仪表的动态性能下降。 且在 射线源方面, 由于其采用的 X射线源张角小, 不能覆盖钢板的宽度, 在 钢板的宽度方向上一个投影需要两个射线源, 如果加上用于获取另外一 个投影的射线源, 共需要 4个射线源, 结构复杂。 发明内容 供一种新型的板带材的厚度凸度检测装置, 能方便地同时获取板带材横 断面上的两个射线投影, 从而进行板带材厚度、 凸度、 板型的检测, 而 且只采用两个射线源, 采用两排气体电离室探测器阵列及信息处理系统。 与采用单排固体探测器的系统相比探测器具有温漂小、 耐辐照、 稳定性 好、 性价比高等优点, 机械结构筒单; 同时又比已有的采用电离室的装 置分辨率高, 动态性能好, 减少了射线源的个数, 机械结构筒单。
本发明提出的一种板带材厚度凸度检测装置, 其特征在于, 包括 C 型架, 安装在 C型架上臂内沿钢板宽度方向间隔布置的两个射线源, 安 装在 C型架下臂内并沿板带材运动方向间隔布置的两排高压充气电离室 探测器阵列, 安装在两个射线源下方的准直器, 该准直器使每个射线源 的射线只照射到相应的一排探测器阵列, 与所述探测器阵列相连的前置 放大器模块, 与所述前置放大器模块相连的数据采集机, 与所述数据采 集机相连的数据处理及显示计算机, 保证系统运行与监控的水气服务系 统、 控制系统。
本发明的特点及有益效果:
本发明采用高压充气电离室作为探测器, 与采用 "Cs l 闪烁体 +光电 二极管" 的固体探测器相比受温度的影响小, 温漂小, 不需要像固体探 测器那样需要恒温控制。 同时具有比固体探测器耐辐照、 漏电流小、 使 用寿命长、 可靠性高、 自准直、 成本低等优点。
采用双排气体电离室探测器阵列的布局与采用单排固体探测器阵列 的高 i运转的旋转快门, 筒化了机械 构,、 增加了系统的可靠性, 另、外 还保证了两排探测器阵列可同时获取数据, 从而提高了系统的动态测量 精度。 与采用四个射线源和四排气体电离室探测器的系统相比, 少使用 两个射线源, 且采用的高压充气电离室探测器比其电离室探测器体积小, 不必像目前 IMS的系统一样需要沿钢板宽度方向蠕动 C型架, 就能满足 空间分辨率的要求, 大大地筒化了机械和控制系统的复杂性, 提高了系 统的动态检测性能。 附图说明
图 1为本发明所述板带材的厚度凸度检测装置的正视示意图。
图 2 为本发明所述板带材的厚度凸度检测装置的测厚原理图。
图 3为本发明所述板带材的厚度凸度检测装置的侧视示意图。
图 4为本发明所述板带材的厚度凸度检测装置的算法原理图。 具体实施方式
以下结合附图来详细说明本发明的具体内容: 本发明提出的一种板带材的厚度凸度检测装置, 如在图 1 所示, 包 括 C型架 9 ,安装在 C型架上臂内沿钢板宽度方向间隔布置的两个射线源 3、 4 , 安装在凸度仪 C型架下臂内并沿板带材运动方向间隔布置的两排 高压充气电离室探测器阵列 1、 2 , 安装在两个射线源下方的准直器 10、 11 , 该准直器使每个射线源的射线只照射到相应的一排探测器阵列, 与 所述探测器阵列相连的前置放大器模块 6 ,与上述前置放大器模块相连的 数据采集机 7 , 与上述数据采集机相连的数据处理及显示计算机 8 , 分別 与计算机 8、 凸度仪 C型架 9相连, 保证系统运行与监控的控制系统 12、 水气服务系统 1 3。
探测器阵列 1、 2在钢板 5宽度方向上的位置关系如图 2所示。 两个 射线源 3、 4 , 可分別在两排探测器阵列 1和 2的正上方, 也可在两排探 测器阵列 1和 2 中心线的正上方。 还包括固定两排探测器阵列的支撑座 14 , 两排探测器阵列对称分布在支撑座 14的两侧。 由于探测器阵列 1和 探测器阵列 2的中心距离 ^艮短(本实施例中, 为 4. 6cm, 折算到钢板上约 为 3. 6cm ), 在此范围内可认为钢板的厚度一致, 因此可近似认为两排探 测器阵列检测的是钢板的同一个断面。
各组成部件的具体实施方式及功能分別说明如下:
探测器阵列 1、 2 , 分別由数百个小尺寸向心布局的高压充气电离室 构成(为本申请人的自主知识产权产品, 已申请发明专利 "气体电离型 中低能 X、 Y射线探测器"。 本实施例选用的高压充气电离室的宽 X长 X 高为: 10 X 20 X 100匪 ), 具有温漂小、 耐辐照、 空间分辨率高、 性价比 高等优点。 具体个数由被检测钢板 5 的宽度决定, 为了保证分辨率, 探 测器阵列在钢板宽度方向上的尺寸一般小于 20mm; 其中探测器阵列 1对 应射线源 3 , 探测器阵列 1中的每个电离室的射线窗都朝向射线源 3; 探 测器阵列 2对应射线源 4 ,探测器阵列 2中的每个电离室的射线窗都朝向 射线源 4。 射线源 3和 4可以采用 X射线源, 也可采用放射性同位素源。 本实施例中, 采用 COMET公司 225KV的 X射线源。
现结合图 3说明一下探测器获取厚度信号的原理。 X射线源 15发出 的 X射线在经过被测物体 18之后,强度会有所衰减,并遵循下面的公式:
Im = I0 - e^ (1) 式中: I。表示穿过被测物体 18之前的 X射线强度; Im表示穿过被测 物体 18后的 X射线强度; μ表示被测物体对 X射线的线性吸收系数; h 表示被测物体 18的厚度。
μ与被测物体 18的成分和射线的能量有关。 由于被测物体 18的成 分复杂, 且 X射线有一个很宽的能谱, 因此在实际应用中, 不能根据(1 ) 式给出 Im和 h的关系, 而需要通过实验测量 Ιο并确定 h与 Im之间的关系 曲线, 这一过程也叫校准。探测器 16将检测到的辐射强度信号 Im转换为 与之成比例的电流信号, 并通过信号处理器 17放大处理。 由放大的探测 器输出信号以及 h与 Im之间的关系曲线, 可以知道被测物体的厚度 h。 前置放大器 6对探测器阵列 1、 2中的电离室输出的微弱电流信号放大, 本实施例中每 16 个电离室的信号放大电路集成在一个前置放大器模块 中。 放大器采用增益大、 噪声低的电子元器件。
本实施例中数据采集机 7 由常规的电流输入模数转换器、 CPLD (复 杂可编程逻辑器件)和单片机器件构成。 对两排探测器阵列的几百个经 过前置放大器 6放大的电离室信号进行采集, 并将采集数据快速传输给 数据处理显示计算机 8。 本实施例中每 10ms要完成采集、 传输所有探测 器的数据。
数据处理显示计算机 8 , 用来储存校准曲线、散射校正数据、 合金补 偿和温度补偿系数, 读取数据采集机 7 的传输数据, 重建钢板的横断面 厚度, 计算凸度等参数并显示。 本实施例的数据处理显示计算机可采用 带网卡的常规的工控机。 上述所有的校准曲线都存储在数据处理显示计 算机 8中。 数据处理显示计算机 8每 10ms接收到数据采集机 7发送的两 排探测器阵列数据。 然后将探测器的测量值, 经过一定的散射校正后得 到 Im, 再利用 h与 Im之间的关系曲线查表得到钢板厚度 h。 每个探测器 可以获得一个厚度, 一排探测器阵列就可以获得钢板横断面的一个厚度 投影。 由两排探测器阵列数据可得到钢板横断面的两个投影。 根据两个 投影, 以及几何布置参数, 按照一定的重建算法, 可以计算出板带材横 向厚度分布, 根据厚度分布可实时得到凸度数据。
下面结合图 4介绍一下重建算法的基本原理。 19是射线源 3对应的 探测器阵列 1 中的一个探测器单元, 20是射线源 4对应的探测器阵列 2 中的一个探测器单元, 21是辊道(钢板轧制生产线上用于输送被轧钢板 的设备, 所述测量装置的待测钢板位于其上。)表面。 如图 4所示, 探测 器单元 19、 20和对应的 X射线源 3、 4各成一定角度(如 θ、 θ2, 这些角 度值已知并事先输入计算机), 图中 AB、 CD长度可以分別通过探测器阵 列 1的探测器单元 19和探测器阵列 2的探测器单元 20的测量数据, 并 经过散射校正, 反查各自的 h与 Im关系曲线得到厚度 In和 h2, 然后根据 几何关系得到 AB、 CD。
Figure imgf000006_0001
CD=h2/ sin92 (3)
贝' J 0点的厚度 EF及钢板的倾斜角度 θ0可以由 θ2、 hj , h2表示出 来。 在一个 4艮小的范围内, 可以认为 AC、 BD都是直线, 且相互平行; EF 为 0点处钢板的厚度, 垂直于 AC和 BD。 通过几何关系, 可以看出:
Figure imgf000007_0001
ZCDB = 92 + θ。 (5) 根据三角函数的定义, 有:
EF = AB - sin^ _ θ0) (6)
EF = CD - sin(92 + θ0) (7) 消去 EF , 并令
Figure imgf000007_0002
sin(92 + θ0) _
(8) θ θ。)_ η
展开三角函数, 并整理可得:
Figure imgf000007_0003
从而得到倾斜角度 θ。,再将其带回 EF的表达式,则可以得到厚度 EF。 上述算法中, AB、 CD是算法的辅助线, 所算出的厚度 EF和角度 θ。, 都只与 θ、 θ2、 hj, h2有关。 射线源的靶心可在探测器阵列的正上方, 也 可不在, 如图 2 所示。 以上算法对这两种情况都是适用的。 当射线源 3 的靶心在探测器阵列 1的正上方, 射线源 4的靶心在探测器阵列 2的正 上方时, AB、 CD是射线实际穿过的路径。 否则, 当探测器阵列不在射线 源的正下方时, AB、 CD就只是算法的辅助线。 但从提高探测器的探测效 率的角度, 射线源的靶心在探测器阵列正上方更好。
C型架 9用来放置检测设备, 其宽度由所能检测的钢板宽度决定,设 计高度由射线的覆盖角度等因素决定。 本实施例可用一定厚度的不锈钢 焊接制成, 上下臂可通过螺栓连接以便于拆装。 上臂的下表面和下臂的 上部焊有水套, 水套内部通有循环冷却水。
准直器 10和 11 , 用来将 X射线准直成窄片状扇形束, 本实施例可由 铅、 钨等金属或其合金制成。
控制系统 12用来监测系统的运行状态、 发送控制命令及协调各个子 系统的正常运行。本实施例中由常规的触摸屏和 PLC (可编程控制器) 构 成。
水气服务系统 1 3给 C型架 9水套和射线源 3、 4 供给冷却循环水, 同时给下臂通有干燥空气, 以保证探测器正常工作所需要的环境湿度, 可用常规技术制成。 现结合图 1说明一下测量过程: 当被轧制钢板 5从凸度仪 C型架 9 所围成的通道通过, 且控制系统 12检测到钢板到达两个 X射线源照射区 域时, 则让两个 X射线源发出射线。 X射线源 3发出的射线通过安装在其 下的准直器 10, 被准直成窄片状扇形束从图 1中所示的视角照射钢板 5 , 射线透过钢板 5后再经后准直器(用以去除散射线)射入对准好的探测 器阵列 1 中, 探测器阵列 1的信号经前置放大器 6被放大。 同理探测器 阵列 2探测的是射线源 4经过钢板之后的衰减信号, 并经前置放大器 6 放大。 数据采集机 7每隔一定时间采集两排探测器阵列 1和 2经前置放 大器放大的信号, 并将测量数据传递给数据处理显示计算机 8 ,数据处理 显示计算机 8根据上述测量原理计算出横断面上各点的倾斜角度 Θ。和厚 度 EF , 并对厚度值自动进行进一步的修正, 如合金补偿、 温度补偿等, 最后计算给出横断面上每点的真实厚度, 而根据公式(9 )可进一步得到 凸度值:
C = e - (e1 + e2) (10) 式中: e表示带钢中心的厚度; ei、 e2表示带钢两端的厚度。
在本实施例中, 数据采集机每 10ms获取一次测量数据, 该数据获取 时间间隔可以视工厂的要求上下调整。
本发明的突出特点是用两个射线源和两排高压充气探测器阵列实现 对钢板的横断面厚度、 凸度等参数的测量。
与采用双源和单排固体探测器的系统相比(如瑞美公司的产品), 本 发明避免了两个射线源对单排探测器的分时使用所必需的高速运转的旋 转快门, 筒化了机械结构, 增加了系统的可靠性; 另外, 由于两排探测 器阵列可同时获取数据, 此两组数据对应在钢板上的距离固定且 ^艮短(本 实施例中为 3. 6cm) , 避免了单排探测器分时获取数据时两组数据对应在 钢板上的距离随钢板的运行速度变化而变化(如果钢板的运行速度为 20m/ s,每个源每隔 5ms测一组数据 则此距离为 10cm)从而提高了测量精 度; 此外相对固体探测器, 气体电离室探测器具有温漂小、 耐辐照、 性 价比高等优点。
与采用四个射线源和四排气体电离室探测器的系统相比(如 IMS公 司的产品), 少使用两个射线源, 且采用具有自主知识产权的高压充气电 离室探测器, 与其电离室探测器相比体积小 (本实施例中宽 X长 X高为: 10 X 20 X 100mm ),不必像目前 IMS的系统一样需要沿钢板宽度方向蠕动 C 型架, 就能满足空间分辨率的要求, 大大地筒化了机械和控制系统的复 杂性; 同时由于 C型架的蠕动频率不高, 一般在每秒 1. 5次左右, 这使 得需要蠕动 C型架的测量装置获取一个投影的数据由两部分组成, 此两 部分数据对应在钢板上的位置可能相距较远(以钢板的运行速度 20m/s 为例,则此距离不低于 13m), 这将导致系统的动态性能差, 因此本发明与 之相比提高了系统的动态性能。

Claims

权利 要求
1. 一种板带材的厚度凸度检测装置, 包括 c型架, 安装在 C型架上 臂内沿待测板带材宽度方向间隔布置的两个射线源, 安装在 c型架下臂 内并沿板带材运动方向间隔布置的两排高压充气电离室探测器阵列, 安 装在两个射线源下方的准直器, 该准直器使每个射线源的射线只照射到 相应的一排探测器阵列, 与所述探测器阵列相连的前置放大器模块, 与 所述前置放大器模块相连的数据采集机, 与所述数据采集机相连的数据 处理及显示计算机, 保证系统运行与监控的水气服务系统、 控制系统, 其特征在于, 所述两排探测器阵列每排对应一个射线源, 且两排探测器 阵列对称地固定在支撑座两侧, 每排探测器阵列由数百个以对应射线源 靶心为圓心向心布置的高压充气电离室单元组成, 所述探测器阵列成一 字形排列, 每个高压充气电离室单元的尺寸能满足板带材空间分辨率的 要求; 所述高压充气电离室单元在待测板带材宽度方向上的尺寸小于 准直成窄片状扇形束照射到所述待测板带材上, 透过所述待测板带材后 测器阵列产生的信号经与其相连的所述前置放大器模块放大, 所述数据 采集机每隔一定时间采集所述两排探测器阵列经所述前置放大器模块放 大的信号, 并将测量数据传递给所述数据处理及显示计算机, 所述数据 处理及显示计算机计算出所述待测板带材横断面上各点的倾斜角度和厚 度, 最后计算出该横断面上每点的真实厚度, 并根据以下公式得到所述 待测板带材的凸度值 C:
C = e - (e1 + e2 ) 式中: e表示所述待测板带材中心的厚度, ei、 e2表示所述待测板带 材两端的厚度。
2. 根据权利要求 1所述的检测装置, 其特征在于, 所用射线源是 X 射线源、 同位素射线源中的任一种, 每个射线源的张角能覆盖整个板带 材的宽度。
3. 根据权利要求 1所述的检测装置, 其特征在于, 所述待测板带材 是工业热轧或冷轧生产线上的板带材。
PCT/CN2012/073227 2011-04-02 2012-03-29 一种板带材的厚度凸度检测装置 WO2012136114A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/009,123 US9689670B2 (en) 2011-04-02 2012-03-29 Thickness and convexity detection device for plate strip
RU2013147693/28A RU2545385C1 (ru) 2011-04-02 2012-03-29 Устройство для детектирования толщины и плоскостности пластин и полос

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110084366.8 2011-04-02
CN201110084366A CN102200434B (zh) 2011-04-02 2011-04-02 一种板带材的厚度凸度检测装置

Publications (1)

Publication Number Publication Date
WO2012136114A1 true WO2012136114A1 (zh) 2012-10-11

Family

ID=44661292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073227 WO2012136114A1 (zh) 2011-04-02 2012-03-29 一种板带材的厚度凸度检测装置

Country Status (4)

Country Link
US (1) US9689670B2 (zh)
CN (1) CN102200434B (zh)
RU (1) RU2545385C1 (zh)
WO (1) WO2012136114A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406014A (zh) * 2022-01-31 2022-04-29 上海务宝机电科技有限公司 带钢边裂缺陷在线检测系统及方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200434B (zh) 2011-04-02 2012-10-10 清华大学 一种板带材的厚度凸度检测装置
CN102607476B (zh) * 2012-01-05 2016-07-13 黑龙江省科学院技术物理研究所 可调节高精度x射线测厚仪及测试方法
US10281318B1 (en) 2017-03-31 2019-05-07 SolveTech, lnc. In line web process measurement apparatus and method
CN108031716B (zh) * 2017-12-29 2023-07-18 绿华能源(福建)有限公司 一种标准化移动式轻钢生产线及其自适应送料方法
CN108645357B (zh) * 2018-05-15 2021-02-05 中冶宝钢技术服务有限公司 凸度仪自动标定装置及标定方法
DE102018222873A1 (de) * 2018-12-20 2020-06-25 Micro-Epsilon Messtechnik Gmbh & Co. Kg Vorrichtung zur Bestimmung der Dicke eines Objekts
CN109798851A (zh) * 2018-12-26 2019-05-24 日照钢铁控股集团有限公司 一种非接触式带钢厚度测量装置
CN110595403A (zh) * 2019-10-15 2019-12-20 天津津航计算技术研究所 大尺寸芯片翘曲度测量方法
CN111482465A (zh) * 2020-03-17 2020-08-04 洛阳和远控制系统有限公司 一种板带材的板形控制方法和装置
CN111412845A (zh) * 2020-04-30 2020-07-14 宝信软件(武汉)有限公司 一种用于测量倾斜目标厚度的测量方法
CN111750780B (zh) * 2020-07-31 2024-05-24 湖南工业大学 一种高分辨曲面工业成像设备及成像方法
CN112496056B (zh) * 2020-12-28 2022-10-11 日照钢铁控股集团有限公司 一种提高射线式测厚仪检测精度的温度补偿方法及装置
CN116858145B (zh) * 2023-08-31 2024-08-16 钛玛科(江苏)工业科技有限公司 一种can总线接口数字x射线测厚传感器及方法
CN117214206A (zh) * 2023-09-12 2023-12-12 常州锐奇精密测量技术有限公司 一种面密度全检方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138561A (en) * 1983-04-21 1984-10-24 Schlumberger Electronics Strip profile gauge
CN1936498A (zh) * 2006-10-13 2007-03-28 清华大学 气体电离型中低能X、γ射线探测器
CN1958184A (zh) * 2006-11-22 2007-05-09 苏州有色金属加工研究院 厚度/凸度测量装置冷却系统
CN1962102A (zh) * 2006-11-22 2007-05-16 苏州有色金属加工研究院 X射线凸度测量仪
CN2928283Y (zh) * 2006-06-15 2007-08-01 北京北科合作仪器厂 连续高精度金属带材x射线测厚仪
CN201455009U (zh) * 2009-04-27 2010-05-12 北京金自天正智能控制股份有限公司 具有自动合金补偿功能的x射线测厚仪
CN102200434A (zh) * 2011-04-02 2011-09-28 清华大学 一种板带材的厚度凸度检测装置
CN202092619U (zh) * 2011-04-02 2011-12-28 清华大学 一种板带材的厚度凸度检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655979A (en) * 1968-05-10 1972-04-11 Industrial Nucleonics Corp Radiation gauge for monitoring sheet properties employing a scanned source
US4777610A (en) * 1986-01-23 1988-10-11 Amp Incorporated Thickness monitor
GB8811459D0 (en) * 1988-05-13 1988-06-15 Dmc Boyle Ltd Method & apparatus for measuring thickness of coating on substrate
FR2827966B1 (fr) * 2001-07-26 2003-09-12 Commissariat Energie Atomique Detecteur de rayonnements ionisants, a lame solide de conversion des rayonnements, et procede de fabrication de ce detecteur
US20070280415A1 (en) * 2006-05-31 2007-12-06 Keith Waterson Method of and apparatus for measuring the thickness of moving metal sheet articles
US8326011B2 (en) * 2008-05-21 2012-12-04 Varian Medical Systems, Inc. Methods, systems, and computer-program products for estimating scattered radiation in radiographic projections

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138561A (en) * 1983-04-21 1984-10-24 Schlumberger Electronics Strip profile gauge
CN2928283Y (zh) * 2006-06-15 2007-08-01 北京北科合作仪器厂 连续高精度金属带材x射线测厚仪
CN1936498A (zh) * 2006-10-13 2007-03-28 清华大学 气体电离型中低能X、γ射线探测器
CN1958184A (zh) * 2006-11-22 2007-05-09 苏州有色金属加工研究院 厚度/凸度测量装置冷却系统
CN1962102A (zh) * 2006-11-22 2007-05-16 苏州有色金属加工研究院 X射线凸度测量仪
CN201455009U (zh) * 2009-04-27 2010-05-12 北京金自天正智能控制股份有限公司 具有自动合金补偿功能的x射线测厚仪
CN102200434A (zh) * 2011-04-02 2011-09-28 清华大学 一种板带材的厚度凸度检测装置
CN202092619U (zh) * 2011-04-02 2011-12-28 清华大学 一种板带材的厚度凸度检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, KAI ET AL., RESEARCH ON NUMBERS OF RADIATION SOURCES IN STRIP CROWN MEASUREMENT, vol. 29, no. 2, March 2009 (2009-03-01), pages 474 - 476 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406014A (zh) * 2022-01-31 2022-04-29 上海务宝机电科技有限公司 带钢边裂缺陷在线检测系统及方法

Also Published As

Publication number Publication date
US20150226549A1 (en) 2015-08-13
RU2545385C1 (ru) 2015-03-27
CN102200434A (zh) 2011-09-28
US9689670B2 (en) 2017-06-27
CN102200434B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2012136114A1 (zh) 一种板带材的厚度凸度检测装置
CN100425361C (zh) X射线凸度测量仪
JP4868034B2 (ja) 放射線検査装置
EP0705420B1 (en) Online tomographic gauging of sheet metal
JP2010500576A5 (zh)
CN110072459A (zh) 用于自校准的自校准ct检测器、系统和方法
CN103245601B (zh) 一种测颗粒物浓度的方法及应用该方法的装置
BR122019000064B1 (pt) método e aparelho de medição de espessura de refratários
US6480802B1 (en) Method for determining the flatness of a material strip
CN112857275B (zh) 一种在线厚度检测双伺服系统及方法
US3412249A (en) Backscatter thickness measuring gauge utilizing different energy levels of bremsstrahlung and two ionization chambers
JPH05501608A (ja) パイプライン内の欠損箇所検知装置
CN203299094U (zh) 基于β射线和PIV法测颗粒物浓度的装置
CN202092619U (zh) 一种板带材的厚度凸度检测装置
JPH0311646B2 (zh)
JP6645709B2 (ja) 線量分布モニタおよび放射線照射システム
CN109813235B (zh) 一种长距离激光位移检测装置
KR20190091200A (ko) 피사체 방사선 촬영 장치 및 피사체 방사선 촬영 장치의 상태를 결정하는 방법
JP4983366B2 (ja) シート物理量測定装置
JP6199151B2 (ja) X線検査装置
JP2013096796A (ja) 放射線測定装置
JP2008003060A (ja) 厚さプロファイル測定装置、及び厚さプロファイルの測定方法
JP5666117B2 (ja) X線撮像装置
JP2006170883A (ja) 厚さプロファイル測定装置
JP6634292B2 (ja) 配管検査方法、及び、配管検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013147693

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009123

Country of ref document: US