WO2012136002A1 - 调节立体图像的方法、装置、系统、电视机及立体眼镜 - Google Patents

调节立体图像的方法、装置、系统、电视机及立体眼镜 Download PDF

Info

Publication number
WO2012136002A1
WO2012136002A1 PCT/CN2011/072476 CN2011072476W WO2012136002A1 WO 2012136002 A1 WO2012136002 A1 WO 2012136002A1 CN 2011072476 W CN2011072476 W CN 2011072476W WO 2012136002 A1 WO2012136002 A1 WO 2012136002A1
Authority
WO
WIPO (PCT)
Prior art keywords
sight
line
dimensional
image
stereoscopic image
Prior art date
Application number
PCT/CN2011/072476
Other languages
English (en)
French (fr)
Inventor
洪烨
Original Assignee
青岛海信信芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信信芯科技有限公司 filed Critical 青岛海信信芯科技有限公司
Priority to US13/701,907 priority Critical patent/US9082225B2/en
Priority to AU2011364912A priority patent/AU2011364912B2/en
Priority to PCT/CN2011/072476 priority patent/WO2012136002A1/zh
Publication of WO2012136002A1 publication Critical patent/WO2012136002A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking

Definitions

  • the present invention relates to the field of electrical appliances, and in particular to a method, device, system, television, and stereoscopic glasses for adjusting a stereoscopic image.
  • BACKGROUND OF THE INVENTION At present, 3D stereoscopic display technology is developing rapidly. The principle of 3D stereoscopic vision is to give a three-dimensional "virtual image" by slightly giving two images that are slightly different to the left and right eyes. Thereby producing a three-dimensional feeling. Due to the rapid development of technology, its corresponding standards, especially the evaluation criteria, are relatively immature, and it is impossible to guide the evaluation of 3D stereoscopic display effects in the design and development of 3D stereoscopic display products.
  • the purpose of the 3D stereoscopic display is to create an immersive experience that can be "pseudo-real".
  • the principle of 3D stereoscopic vision is to give the three-dimensional "virtual image" to the left and right eyes by separately giving the images to the left and right eyes.
  • 3D stereoscopic display needs to produce a true proportion of stereoscopic virtual image needs to take into account the following factors: First, from 26 inches to 32 inches, 42 inches, 50 inches, 60 inches to the movie screen, the display size varies greatly, and the image content is It is full of the screen. The image forms a virtual image through both eyes, so the size of the virtual image is proportional to the screen size and cannot be unified. At this time, if the 50-inch screen can achieve the best 3D display effect, then look at the 32-inch screen to see the feeling of "little country", while watching the 70-inch screen has the feeling of "big man country”.
  • FIG. 1 is a schematic diagram of viewing a stereoscopic image according to the related art.
  • the human eye is usually located on the vertical line of the screen. That is, the line of sight of the human eye is perpendicular to the plane of the screen, and the projection on the plane of the screen is at the center of the screen.
  • the 2D screen plane perpendicular to the line of sight usually does not have scale distortion (as mentioned earlier, the image is already filled with the entire screen, so as long as the aspect ratio of the screen remains the same, eg 16:9, the image is no longer in this xy 2D direction Will be distorted).
  • geometric distortion may occur in the z direction.
  • Fig. 1 when the human eye moves in the z-axis direction, the position and size of the virtual image in the z direction may vary. Specifically, when the human eye is close to the "0" point, the virtual image is compressed in the z direction; and when the human eye is away from the "0" point, the virtual image is stretched in the z direction.
  • a primary object of the present invention is to provide a method, an apparatus, a system, a television, and a stereoscopic eyeglass for adjusting a stereoscopic image to solve the limitation of the prior art due to environmental factors, resulting in geometric distortion of the 3D stereo image and reducing viewing. 3D stereo display effect.
  • a method of adjusting a stereoscopic image includes: the display terminal receives and displays the three-dimensional stereoscopic image; acquires the viewing distance between the display terminal and the user; and adjusts the size of the three-dimensional stereoscopic image according to the viewing distance.
  • an apparatus for adjusting a stereoscopic image is provided.
  • the apparatus for adjusting a stereoscopic image includes: a receiving module, configured to receive and display a three-dimensional stereoscopic image; a detecting module, configured to send a sensing signal, and obtain a line of sight between the display terminal and the user according to the sensing signal; A module for adjusting the size of a three-dimensional stereoscopic image according to the line of sight.
  • a system for adjusting a stereoscopic image is provided.
  • the system for adjusting a stereoscopic image includes: a display terminal that receives and displays a three-dimensional stereoscopic image, simultaneously emits a sensing signal, and acquires a viewing distance according to the sensing signal to adjust the three-dimensional stereoscopic image.
  • the size of the image; the stereo glasses receive the sensing signal and return the feedback signal of the sensing signal to the display terminal.
  • a television set including any one of the above-described devices for adjusting a stereoscopic image is provided.
  • a stereoscopic glasses includes: a distance sensor for detecting a line of sight between a display terminal and a user; and processing means for The comparison result of the best line of sight issues a prompt message to prompt the user to adjust the line of sight.
  • the display terminal receives and displays the three-dimensional stereoscopic image; the distance sensor sends the sensing signal, and the sensing signal is used to obtain the viewing distance between the display terminal and the user; and the viewing distance adjusts the size of the three-dimensional stereo image, and the solution is solved.
  • FIG. 1 is a schematic diagram of viewing a stereoscopic image according to the related art
  • FIG. 2 is a schematic structural diagram of an apparatus for adjusting a three-dimensional stereoscopic image according to an embodiment of the present invention
  • FIG. 3 is a stereoscopic test image according to the embodiment shown in FIG.
  • FIG. 4 is a schematic diagram of a viewer viewing a 3D stereoscopic image according to the embodiment shown in FIG. 1.
  • FIG. 5 is a schematic cross-sectional structural view of acquiring a stereoscopic test image depth according to the embodiment shown in FIG. 4.
  • the present invention provides an apparatus for adjusting a stereoscopic image.
  • 1 is a schematic structural diagram of an apparatus for adjusting a three-dimensional stereoscopic image according to an embodiment of the present invention. As shown in FIG.
  • the device includes: a receiving module 10, configured to receive and display a three-dimensional stereoscopic image; and a detecting module 30, configured to send a sensing signal, and obtain a line of sight between the display terminal and the user according to the sensing signal;
  • the adjustment module 50 is configured to adjust the size of the three-dimensional stereo image by the viewing distance.
  • the adjustment module 50 in the above embodiment of the present invention may include: a first determining module, configured to determine whether a difference between the line of sight and the optimal line of sight is within a predetermined range, wherein when the difference is within a predetermined range, The three-dimensional image is maintained by the holding module.
  • the size of the three-dimensional image is adjusted according to the optimal viewing distance by the first adjusting module; or the second determining module is configured to determine whether the viewing distance is the same as the optimal viewing distance, wherein In the same case, the three-dimensional image is maintained by the hold module, otherwise the size of the three-dimensional image is adjusted according to the optimal line of sight by the second adjustment module.
  • the first determining module or the second determining module in the mediation module 50 in this embodiment determines a point at which the 3D view is located if an optimal viewing distance is to be obtained.
  • the best line of sight means that when the human eye views the 3D picture at this position, the stereoscopic image is undistorted.
  • Distortion occurs outside this point, for example, when a cube rotates, it becomes a cuboid.
  • the viewing distance of the user affects the stereo geometric distortion, affecting the 3D stereoscopic display effect.
  • the image size can be adjusted according to the optimal viewing distance, usually by using a scaling technique.
  • the optimal line of sight is obtained by adjusting the size of the image.
  • the first determining module or the second determining module may further include: a comparing module, configured to compare a line of sight and an optimal line of sight to obtain a comparison result; and an amplifying module, configured to compare the result When the distance is greater than the optimal line of sight, the three-dimensional image is enlarged according to the scaling formula; and the reduction module is configured to reduce the three-dimensional image according to the scaling formula when the comparison result is that the viewing distance is smaller than the optimal viewing distance.
  • a comparing module configured to compare a line of sight and an optimal line of sight to obtain a comparison result
  • an amplifying module configured to compare the result When the distance is greater than the optimal line of sight, the three-dimensional image is enlarged according to the scaling formula
  • the reduction module is configured to reduce the three-dimensional image according to the scaling formula when the comparison result is that the viewing distance is smaller than the optimal viewing distance.
  • the display terminal can determine the optimal viewing distance by the following methods: First, design a stereoscopic image card (for a shutter, a polarized, a red-blue, etc., the specific manufacturing method of the 3D test chart card is different, but the principle can be Be applicable).
  • 3 is a schematic diagram of a stereo test image according to the embodiment shown in FIG. 1.
  • the card designed by the present invention may be a translucent sphere with the center of the sphere on the screen plane.
  • the diameter in the xy-axis plane is equal to the screen height, and the z-axis diameter should be such that the user is equal to the diameter of the xy plane when viewed at a distance of 3 times the screen height (for a 16:9 display).
  • the above is the calibration preparation process, that is, the best line of sight, the definition of the best line of sight for flat-panel TVs by the International Radio Consultative Committee (CCIR):
  • CCIR International Radio Consultative Committee
  • FIG. 4 is a schematic diagram of a viewer viewing a 3D stereoscopic image according to the embodiment shown in FIG. 1.
  • the parallax distance between the left and right eye images on the screen is lout (out), lin (into the screen).
  • d is the abbreviation of line of sight distance.
  • Dout and Din are the depth of field (the distance between the virtual image and the display screen) and the depth of field (the distance between the virtual image and the display screen).
  • the research and development personnel can create a stereo sphere card according to the above formula.
  • the signal source and the display screen are not completely unified, and the signal source has no size 4, but is represented by pixels. According to the main 3 ⁇ 43 ⁇ 4 55 inch 16:9 1080P TV, lout 13mm, lin 9.3mm respectively
  • the method for measuring the depth of field can use the "stereo ruler, method. As shown in FIGS. 3 and 4, the method is described in detail as follows: For the exhibition point, that is, the quadrangle in the above figure, Use the tape to measure the dout. During the measurement, the position of the human eye must be fixed and cannot move. The human eye is usually located on the vertical line of the exhibition. That is, the line of sight of the human eye is perpendicular to the plane of the screen, and the projection on the plane of the screen is at the center of the screen. With a soft ruler, the measurement zero point is on the projection point of the virtual image on the screen plane.
  • the human eye can be translated back and forth to determine the depth of field of the virtual image and the coincidence with the marker.
  • Figure 4 Triangle in the middle.
  • the human eye must be fixed on the vertical line on the midpoint of the screen. With a soft ruler, the measurement zero point is at the midpoint of the virtual image on the screen. At this time, try to keep the virtual image and the tape (or marker) at the same time. Then, when the marker coincides with the virtual image, the marker tip and the screen distance are measured.
  • the evaluation of the 3D stereoscopic display effect in the present invention is the current objective measurement index: brightness, crosstalk, etc.
  • FIG. 6 is a diagram of a method of adjusting a three-dimensional stereoscopic image according to an embodiment of the present invention. Cheng shown in Figure 6, the method comprising the steps of: Step S102: Receive and display a three-dimensional stereoscopic image through the display terminal. Step S104, the sensing signal is sent by the distance sensor, and the visual giant between the display terminal and the user is obtained according to the sensing signal.
  • Step S106 adjusting the size of the three-dimensional stereoscopic image according to the line of sight.
  • the above embodiment of the present invention obtains the line of sight between the user viewing the three-dimensional stereoscopic image and the display terminal, and adjusts the size of the three-dimensional stereoscopic image according to the obtained viewing distance, thereby realizing a stereoscopic display effect of reducing or eliminating stereo geometric distortion, thereby The 3D stereoscopic display effect is improved, and the user's viewing of the 3D stereoscopic display is also improved.
  • the step of adjusting the size of the three-dimensional stereoscopic image according to the line of sight may include: determining whether the difference between the viewing distance and the optimal viewing distance is within a predetermined range, wherein when the difference is within a predetermined range , maintain a three-dimensional image, otherwise, adjust the size of the three-dimensional image according to the optimal line of sight.
  • This embodiment achieves a wide range of distortion adjustment, that is, when the line of sight is not the same as the optimal line of sight, if the error is within a predetermined working range, the three-dimensional image size may not need to be adjusted, and the user experience is improved.
  • the step of adjusting the size of the three-dimensional stereoscopic image according to the line of sight may further include: determining whether the viewing distance is the same as the optimal viewing distance, wherein, in the same case, maintaining the three-dimensional stereoscopic image, otherwise, the best The line of sight adjusts the size of the three-dimensional image.
  • the step of adjusting the size of the three-dimensional stereo image according to the optimal viewing distance in each of the above embodiments includes: comparing the visual line of sight with the optimal viewing distance, wherein when the viewing distance is greater than the optimal viewing distance, the three-dimensional image is enlarged according to the scaling formula. Stereoscopic image; when the viewing distance is smaller than the optimal viewing distance, the three-dimensional stereoscopic image is reduced according to the scaling formula.
  • the developer can obtain the optimal viewing distance based on a 3D sphere image as a standard, and then the optimal viewing distance can be used as the optimal viewing distance for viewing other three-dimensional images, that is, the simplest
  • the method calculates the optimal line of sight, and then the user can view other stereoscopic images at the optimal viewing distance, which reduces development costs and improves the efficiency and accuracy of the developer.
  • a simplified 3D test chart card can be made.
  • FIG. 5 is a schematic cross-sectional view showing the depth of field of a stereoscopic test image according to the embodiment shown in FIG. 4.
  • the present invention can use only the closest point and the farthest point of the sphere to be a 3D test chart card, that is, the depth of field measurement is performed by using the point without the ball. Considering that the point is too small and inconvenient, and considering the consistency of the human eye in the y direction, a straight line in the y direction can be further made at the nearest point and the outermost point of the sphere for depth of field measurement. In the end, two test chart cards are formed to be used for measurement (for convenience of explanation, the top-bottom format is used up and down. Since the current 3D decoder is mostly a full-format decoder, the specific stereo format has no effect).
  • the above embodiment of the present invention realizes that when the stereo image is geometrically distorted, the correction can be realized by adjusting the distance difference of the entire image of the left and right eyes. Since it is impossible to adjust lout and lin separately for the same left and right eye stereoscopic image, that is, when lout increases X, lin also increases x, and vice versa. Therefore, the present invention achieves correction by adjusting the scaling ratio of the entire image of the left and right eyes, thereby improving user's ease of use, enabling the television to intelligently adjust the optimal viewing distance of the user and the television, and improving the user's viewing of the three-dimensional image. User body - risk.
  • the present invention can provide a system for adjusting a stereoscopic image, and the system can include: a display terminal that receives and displays a three-dimensional stereoscopic image, simultaneously emits a sensing signal, and acquires a viewing distance according to the sensing signal to adjust the three-dimensional stereoscopic image.
  • the size of the stereo glasses receiving the sensing signal, and returning the feedback signal of the sensing signal to the display terminal.
  • the display terminal may include: a distance sensor, configured to send a sensing signal to the stereo glasses, and receive a feedback signal returned by the stereo glasses; and a processor configured to calculate an interval between the sensing signal and the feedback signal sent by the distance sensor, To obtain the line of sight and adjust the three-dimensional standing according to the line of sight
  • the size of the volume image The method for adjusting the size of the stereoscopic image in the above system can use the embodiment of the method for adjusting the three-dimensional stereoscopic image described in FIG. 6, and the method for obtaining the optimal viewing distance is also the same.
  • a television set including any one of the above-described devices for adjusting a stereoscopic image is provided.
  • a stereoscopic glasses includes: a distance sensor for detecting a line of sight between a display terminal and a user; and processing means for The comparison result of the best line of sight issues a prompt message to prompt the user to adjust the line of sight.
  • the processing device may include: a calculator, configured to calculate a difference between the line of sight and the optimal line of sight; and a voice device, configured to emit a voice if the difference exceeds a predetermined range or the difference is not zero Prompt for the difference.
  • the processing device of the stereo glasses may further include: a calculator for calculating a difference between the viewing distance and the optimal viewing distance; and a display device, configured to: when the difference is beyond a predetermined range or the difference is not zero In the case, the difference is displayed.
  • the solution can realize the display device of the stereo glasses through software or hardware (can be built in or external to the stereo glasses), and the obtained optimal line of sight and the calculation result of the existing line of sight are displayed, the device is from the line of sight.
  • the angle indicates whether the user is in a timely viewing position, the user can adjust the position of the television according to the display information, and the user can control whether to turn on the display function.
  • the stereo image has two sources, one is image or video playback (such as Blu-ray DVD playback), and the other is real-time computing graphics generation (such as 3D virtual reality game).
  • image or video playback such as Blu-ray DVD playback
  • real-time computing graphics generation such as 3D virtual reality game
  • the invention can also adjust the image display content according to the measured distance parameter by using the powerful real-time computing capability of the computer on the basis of increasing the distance sensor. This method is for real time
  • this patent proposes a method of making a stereo test chart card, and correspondingly, a correction method in 3D generation and 3D display is given. From the description of the above embodiments, it can be seen that the present invention achieves the following technical effects: By measuring the depth of field of the 3D solid virtual image, the display parameter index is standardized, and the consistency of the stereoscopic display effect is improved. At the same time, the depth of field indicator is increased, and the 3D display parameters are refined to provide a basis for 3D effect evaluation.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

调节立体图像的方法、 装置、 系统、 电*^立体眼镜 技术领域 本发明涉及电器领域, 具体而言, 涉及一种调节立体图像的方法、 装置、 系统、 电视机及立体眼镜。 背景技术 目前 3D立体显示技术发展迅速, 3D立体视觉的原理是通过把有细微不 同的两幅图像分别送给左、 右眼, 让人眼反向延长至图像重合, 看到立体"虚 像", 从而产生立体感。 而由于技术发展快, 其相应的标准, 尤其是评测标准 相对不成熟,无法指导 3D立体显示产品的设计开发中对于 3D立体显示效果 的评估。
3D 立体显示的体验目的是产生可以"以假乱真"的沉浸性体验感受。 3D 立体视觉的原理, 是通过把有细微不同的图像分别送给左右眼, 让人眼反向 延长至图像重合, 看到立体"虚像", 从而产生立体感。
3D立体显示需要产生一个真实比例的立体虚像需要考虑到如下因素: 首先, 从 26寸到 32寸、 42寸、 50寸、 60寸到电影屏幕, 显示展的大 小差别很大, 而图像内容都是塞满整个屏幕的。 图像通过双眼形成虚像, 因 而虚像的大小与屏幕大小成比例, 也是无法统一的。 此时, 若 50 寸屏幕能 达到最佳 3D显示效果, 则看 32寸屏幕有看"小人国 "的感觉, 而看 70寸屏 幕有看 "大人国"的感觉。 其次, 摄影师在拍摄中, 出于艺术加工目的, 可能从鸟瞰或仰视等特殊 视角等手法表现其艺术内涵, 此时, 是否是以人的视觉角度来感知虚像尺寸 已经不重要。 因此, 3D立体显示中, 立体虚像的真实比例比真实尺寸更重要。 图 1是根据相关技术的观看立体图像的示意图。 如图 1所示, 观看 3D 立体显示, 人眼通常位于屏幕的中垂线上。 即人眼视线垂直于屏幕平面, 且 在屏幕平面的投影就在屏幕的中心点。 垂直于视线的 2D屏幕平面, 通常不会出现比例失真 (如前所述, 图像 已经填充满整个屏幕, 所以只要屏幕宽高比保持不变, 如 16: 9, 图像在此 x-y 2D方向已经不会失真)。 而对于 3D图像则在 z方向则有可能出现几何失 真。 如图 1所示, 当人眼沿 z轴方向移动时, 虚像在 z方向的位置和尺寸会 有变化。 具体来说, 当人眼靠近" 0"点时, 虚像在 z方向会压缩; 而当人眼远 离" 0"点时, 虚像在 z方向会伸展。 虚像的压缩与伸展比等于人眼与屏幕的压 缩与伸展比。 针对上述现有技术的由于环境等因素的限制, 导致 3D立体图像几何失 真, 降低了观看 3D立体显示效果的问题, 目前尚未提出有效的解决方案。 发明内容 本发明的主要目的在于提供一种调节立体图像的方法、 装置、 系统、 电 视机及立体眼镜, 以解决现有技术的由于环境等因素的限制, 导致 3D立体 图像几何失真, 降低了观看 3D立体显示效果的问题。 为了实现上述目的, 根据本发明的一方面, 提供了一种调节立体图像的 方法。 才艮据本发明调节立体图像的方法的包括: 显示终端接收并显示三维立体 图像; 获取显示终端与用户之间的视距;根据视距调节三维立体图像的大小。 为了实现上述目的, 根据本发明的另一个方面, 提供了一种调节立体图 像的装置。 根据本发明的调节立体图像的装置包括: 接收模块, 用于接收并显示三 维立体图像; 检测模块, 用于发出传感信号, 根据传感信号来获取显示终端 与用户之间的视距; 调节模块, 用于根据视距调节三维立体图像的大小。 为了实现上述目的, 居本发明的又一个方面, 提供了一种调节立体图 像的系统。 才艮据本发明的调节立体图像的系统包括: 显示终端, 接收并显示三维立 体图像, 同时发出传感信号, 并根据传感信号来获取视距, 以调节三维立体 图像的大小; 立体眼镜, 接收传感信号, 并将传感信号的反馈信号返回至显 示终端。 为了实现上述目的, 才艮据本发明的再一方面, 提供了一种电视机, 该电 视机包括上述任意一种调节立体图像的装置。 为了实现上述目的, 根据本发明的再一方面, 提供了一种立体眼镜, 该 立体眼镜包括: 距离传感器, 用于检测显示终端与用户之间的视距; 处理装 置, 用于根据视距与最佳视距的比较结果发出提示信息, 以提示用户调整视 距。 通过本发明, 釆用显示终端接收并显示三维立体图像; 距离传感器发出 传感信号, 居传感信号来获取显示终端与用户之间的视距; 居视距调节 三维立体图像的大小, 解决了现有技术的由于环境等因素的限制, 导致 3D 立体图像几何失真, 降低了观看 3D立体显示效果的问题, 达到了减少甚至 消除立体几何失真, 提高 3D立体显示的观看真实体验感的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的观看立体图像的示意图; 图 2是根据本发明实施例的调节三维立体图像的装置结构示意图; 图 3是根据图 1所示实施例的立体测试图像的示意图; 图 4是根据图 1所示实施例的观看者观看 3D立体图像的示意图; 图 5 是根据图 4 所示实施例的获取立体测试图像景深的剖面结构示意 图; 以及 图 6是根据本发明实施例的调节三维立体图像的方法的工作流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明提供了一种调节立体图像的装置。 图 1是根据本发明实施例的调 节三维立体图像的装置结构示意图。如图 1所示,该装置包括:接收模块 10, 用于接收并显示三维立体图像; 检测模块 30, 用于发出传感信号, 根据传感 信号来获取显示终端与用户之间的视距; 调节模块 50, 用于 居视距调节三 维立体图像的大小。 本发明上述实施例通过检测模块 30 来获得观看三维立体图像的用户与 显示终端之间的视距, 根据获得的视距来调整三维立体图像的大小, 实现减 少甚至消除立体几何失真的立体显示效果, 从而提高了 3D立体显示效果, 也提高了用户观看 3D立体显示的观看真实感体 -险。 本发明上述实施例中的调节模块 50 可以包括: 第一判断模块, 用于判 断视距与最佳视距的差值是否在预定范围之内, 其中, 当差值在预定范围之 内时, 通过保持模块来保持三维立体图像, 否则, 通过第一调整模块来根据 最佳视距调整三维立体图像的大小; 或第二判断模块, 用于判断视距是否与 最佳视距相同, 其中, 在相同的情况下, 通过保持模块来保持三维立体图像, 否则, 通过第二调整模块来根据最佳视距调整三维立体图像的大小。 该实施 例中的调解模块 50 中的第一判断模块或第二判断模块来确定一个如果要获 得最佳视距则 3D视图所在的点。最佳视距是指当人眼在此位置观看 3D画面 时, 立体图像是没有失真的。 而在这个点之外则会出现失真, 例如, 当一个 正方体旋转过程中, 会变成长方体的现象。 综上, 用户的观看距离影响立体几何失真, 影响 3D立体显示效果, 为 了减小甚至消除立体几何失真, 可以根据最佳视距来调节图像的大小, 通常 是釆用等比缩放的技术使得在用户现有的视距的情况下, 通过调节图像的大 小来获得最佳视距。 优选的,在上述第一判断模块或第二判断模块中还可以包括: 比较模块, 用于比较视距与最佳视距的大小, 以获取比较结果; 放大模块, 用于当比较 结果为视距大于最佳视距时,根据缩放公式来放大三维立体图像; 缩小模块, 用于当比较结果为视距小于最佳视距时,根据缩放公式来缩小三维立体图像。 具体来说, 本专利提出显示终端可以通过如下方法测定最佳视距: 首先, 设计立体图卡 (对于快门式、 偏光式、 红蓝式等 3D测试图卡的 具体制作方法不同, 但原理都可以适用)。 图 3是才艮据图 1 所示实施例的立 体测试图像的示意图。 如图 3所示, 本发明设计的图卡可以为一个半透明球 体, 球心在屏幕平面。 在 x-y轴平面的直径等于屏幕高度, z轴直径应使用 户在 3倍屏幕高度的距离(对于 16:9的显示屏)观看时等于 x-y平面的直径。 以上为校准准备过程, 即最佳视距釆用国际无线电咨询委员会 ( CCIR )对平 板电视的最佳视距的定义: 当观看距离为屏幕高度的三倍时, 平板电视系统 显示效果应该等于或接近于一名正常视力者在观看原视景物或演示时的临场 感觉。 然后, 可以通过测量最近点 (出屏) 与最远点 (入屏) 的景深, 获得景 深差即球体 z轴直径, 以球体在 x-y平面的直径 (由于垂直无失真, X轴 y 轴直径应相等)作为基准对视距进行调节, 直至球体 z轴直径等于球体在 x-y 平面的直径。 图 4是才艮据图 1所示实施例的观看者观看 3D立体图像的示意图。如图 4 所示, 令左右眼图像在屏幕上的视差距离为 lout (出展), lin (入屏)。 d为 视距 distance缩写。 Dout、 Din分别是出展景深 (出屏虚像与显示屏之间距 离)和入屏景深(入屏虚像与显示屏之间的距离)。 S为双眼距离 (一般人在 65mm左右 ), 可得: lout/Dout = S/(d - Dout) = (S+ lout)/d lin/Din = S/(d + Din) = (S - lin)/d 注: 上式中各数值为正值。 若将 Dout定义为正, Din定义为负, 则上两 式可以统一成一个公式。 方便起见, 还是用两式。 由前所述的最佳视巨原则, 可知 d应为 3倍屏幕高度, 而立体球体图卡 制作中, 球直径等于屏高度。 令球半径为 D, 故: Dout = Din =D; d = 3 * 2 * Dout = 3 * 2 * Din = 6*D。 其 中 , 若取 S=65mm , 则 lout = S* Dout /(d - Dout) = 65*D/(6*D-D)=13mm, 而 lin = S* Din /(d + Dout) = 65*D/(6*D+D)=9.3mm。 具体的, 研发人员可以根据上述公式制作立体球体图卡。 但信号源与显示屏 不完全统一, 信号源无尺寸 4既念, 而是用像素表示。 以主 ¾¾的 55寸 16:9 1080P电视为准, lout 13mm, lin 9.3mm分别对应
11个像素和 8个像素。 所以, 可据此制作简化的 3D测试图卡。 本发明上述实施例中, 用于测量景深的方法可以釆用"立体尺,,方法。 如 图 3和 4所示, 该方法详细描述如下: 对于出展点, 即上图中的四角形, 可以直接用软尺测量 dout。 测量中, 人眼位置须固定不能移动。 人眼通常位于展幕的中垂线上。 即人眼视线垂直 于屏幕平面, 且在屏幕平面的投影就在屏幕的中心点。 用软尺测量, 测量零 点位于虚像在屏幕平面的投影点上。 可以找一个细小标记物, 如笔尖进行定 位标记, 当笔尖与虚像重合时, 对笔尖与屏幕距离进行测量。 标记与虚像重合的判断, 有时不易判断。 这时可以釆用单目判断: 闭上 一只眼, 只用另一只眼瞄准标记物和物像 (此时没有立体虚像, 但是有单目 物像) 在一条直线上; 然后交换观察眼, 若标记物和物像仍在一条直线, 即 可判断标记与虚像重合。 由于人眼对活动物体比较敏感, 而当人眼横向(平行屏幕平面)移动时, 景深是不变的。 所以也可以通过左右来回平移人眼, 判断虚像的景深以及与 标记物的重合。 对于入屏点, 即图 4中的三角形。 须将人眼固定在屏幕上边中点的中垂 线上。 用软尺测量, 测量零点位于虚像在屏幕上边中点。 此时, 尽量保持虚像 与软尺 (或标记物) 同时可见。 然后, 当标记物与虚像重合时, 对标记物笔 尖与屏幕距离进行测量。 本发明中对于 3D立体显示效果的评估, 是在目前的客观测量指标: 亮 度、 串扰度 (crosstalk ) 等之外的从观看者视觉角度出发的测量方法。 具体 使用中,可以在上述客观测量指标基础上,增加立体几何失真作为测量项目 , 从而改善用户对于 3D立体显示的体 -险。 本发明还提供了一种调节立体图像的方法。 图 6是根据本发明实施例的 调节三维立体图像的方法的工作流程图。如图 6所示,该方法包括如下步骤: 步骤 S 102, 通过显示终端接收并显示三维立体图像。 步骤 S 104, 通过距离传感器发出传感信号, 才艮据传感信号来获取显示终 端与用户之间的视巨。 步骤 S 106 , 根据视距调节三维立体图像的大小。 本发明上述实施例通过获得观看三维立体图像的用户与显示终端之间的 视距, 才艮据获得的视距来调整三维立体图像的大小, 实现减少甚至消除立体 几何失真的立体显示效果, 从而提高了 3D立体显示效果, 也提高了用户观 看 3D立体显示的观看真实感体 -险。 本发明上述实施例中, 根据视距调节三维立体图像的大小的步骤可以包 括: 判断视距与最佳视距的差值是否在预定范围之内, 其中, 当差值在预定 范围之内时, 保持三维立体图像, 否则, 根据最佳视距调整三维立体图像的 大小。该实施例实现较宽范围的失真度调整, 即当视距与最佳视距不相同时, 如果误差在预定的工作范围内, 则可以不需要调整三维图像大小, 改善了用 户体验。 另外的, 根据视距调节三维立体图像的大小的步骤还可以是包括: 判断 视距是否与最佳视距相同, 其中, 在相同的情况下, 保持三维立体图像, 否 则, 才艮据最佳视距调整三维立体图像的大小。 本发明上述实施例通过精确方 式, 使得将用户的视距精确为最佳视距, 完全消除了三维图像的失真。 上述各个实施例中的根据最佳视距调整三维立体图像的大小的步骤包 括: 比较视距与最佳视距的大小, 其中, 当视距大于最佳视距时, 根据缩放 公式来放大三维立体图像; 当视距小于最佳视距时, 根据缩放公式来缩小三 维立体图像。 其中, 当三维立体图像为球体时, 通过以下公式获得最佳视距 d: Γ Dout=Din=D
Figure imgf000009_0001
其中, Dout是出屏景深, Din是入屏景深, D是球体的半径。 在具体的 实际应用中,研发人员可以根据一幅 3D球体图像作为标准来获取最佳视距, 然后该最佳视距可以作为观看其他三维立体图像的最佳视距, 即可以通过最 简单的方式计算得到最佳视距, 然后用户可以 居这个最佳视距来观看其它 立体图像, 降低了开发成本, 提高了研发人员的工作效率和准确度。 优选的, 上述实施例中涉及到的缩放公式是: 缩放比例=视距 /最佳视距。 作为本方法的延伸, 可以制作简化的 3D测试图卡。 图 5 是根据图 4 所示实施例的获取立体测试图像景深的剖面结构示意 图。 如图 4所示, 本发明在制作 3D测试图卡时, 可以釆用仅将球体最近点 和最远点制作成 3D测试图卡, 即不用球而用点来进行景深测量。 考虑点太 小不方便, 又考虑到人眼对于 y方向的一致性, 可以进一步在球体最近点和 最外点制作 y方向的直线用来进行景深测量。 最终, 就形成了两幅测试图卡 就可以用来进行测量 (为方便说明, 釆用上下立体格式 top-bottom, 由于目 前 3D解码器多为全格式解码器, 故具体立体格式没有影响)。 测量时, 直接测出最近点直线和最远点直线的景深。 调节失真时, 直接 将测得景深与标准的景深进行对比, 反复调节视距直至与标准相等。 在用前述信号源进行校准时, 由之前公式可知, 出屏景深 Dout = lout*d/(S+lout),入屏景深 Din = lin*d/(S-lin),针对本发明的球体三维立体图, 当满足 Dout = Din =D时,此时用户的视距 d为最佳视距,可得: lout*d/(S+lout) = lin*d/(S-lin) = D, 由上分析可知必须满足此式才能保证显示端还原图像没 有失真。 本发明上述实施例实现当立体图像发生几何失真时, 可以通过调节左右 眼整幅图像的距离差来实现校正。 由于对于同一幅左右眼立体图像来说, 不 可能分别调整 lout和 lin, 即 lout增大 X时, lin也同样增大 x, 反之亦然。 因此, 本发明通过调节左右眼整幅图像的缩放比例来实现校正, 由此来提高 用户的易用性, 使得电视机具有智能的调节用户和电视机的最佳视距, 改善 用户观看三维图像的用户体 -险。 本发明可以提供一种调节立体图像的系统,该系统可以包括: 显示终端, 接收并显示三维立体图像, 同时发出传感信号, 并才艮据传感信号来获取视距, 以调节三维立体图像的大小; 立体眼镜, 接收传感信号, 并将传感信号的反 馈信号返回至显示终端。 优选的, 上述显示终端可以包括: 距离传感器, 用于发出传感信号至立 体眼镜, 并接收立体眼镜返回的反馈信号; 处理器, 用于计算距离传感器发 出传感信号和反馈信号的间隔时间, 以获取视距, 并根据视距来调节三维立 体图像的大小。 上述系统中用于调节立体图像大小的方式可以釆用图 6所述 的调节三维立体图像的方法的实施例, 获取最佳视距的方法也相同。 为了实现上述目的, 才艮据本发明的再一方面, 提供了一种电视机, 该电 视机包括上述任意一种调节立体图像的装置。 为了实现上述目的, 根据本发明的再一方面, 提供了一种立体眼镜, 该 立体眼镜包括: 距离传感器, 用于检测显示终端与用户之间的视距; 处理装 置, 用于根据视距与最佳视距的比较结果发出提示信息, 以提示用户调整视 距。 优选的, 上述处理装置可以包括: 计算器, 用于计算视距与最佳视距的 差值; 语音装置, 用于在差值在超出预定范围或差值不为零的情况下, 发出 语音提示该差值。 该方案可以实现立体眼镜通过简单的语音提示装置将获取 到的最佳视距与现有视距的计算结果, 用语言的方式提示给用户是否处于合 适的观看位置, 用户可以根据这个提示信息来调整与电视机的位置, 并且可 以控制是否开启这个提示功能。 另外的, 上述立体眼镜的处理装置也可以是包括: 计算器, 用于计算视 距与最佳视距的差值; 显示装置, 用于在差值在超出预定范围或差值不为零 的情况下, 显示该差值。 该方案可以实现立体眼镜通过软件或硬件实现的显 示装置 (可以内置或外置在立体眼镜中) 将获取到的最佳视距与现有视距的 计算结果进行显示, 该装置从视距的角度来提示用户是否出于合时的观看位 置, 用户可以根据这个显示信息来调整与电视机的位置, 并且用户可以控制 是否开启这个显示功能。 具体的, 在实际应用过程中, 立体图像具有两种来源方式, 一种是图像 或视频的回放 (比如蓝光 DVD回放), 一种是实时计算的图形生成 (如 3D 虚拟现实游戏)。 对于回放, 除了尽量保证播放参数不变也减轻失真之外, 也 可以在立体眼镜或者电视机上增加距离传感器, 根据距离检测, 当用户视距 大于最佳视巨时, 可以使用显示方式或者声音方式来提醒用户应靠近一些; 而当用户视距小于最佳视距时, 则自动缩小图像显示比例, 实现减轻以及消 除失真的效果。 另外的, 本发明也可以在增加距离传感器的基础之上, 利用计算机强大 的实时计算能力, 根据测量的距离参数调节图像显示内容。 此方式针对实时 生成的三维立体图像而不是预先录制的图像, 所以可以分别调节 lout* d/(S+lout)=lin* d/(S -lin) = D式中 lout和 lin, 获得最佳的立体效果。 总之, 本专利提出了一种制作立体测试图卡的方法, 并相应地, 给出了 3D生成中和 3D显示中的校正方法。 从以上的实施例描述中, 可以看出, 本发明实现了如下技术效果: 通过 测量 3D立体虚像的景深, 规范显示参数指标, 提高立体显示效果的一致性。 同时, 增加了景深指标, 细化 3D显示参数, 从而为 3D效果评估提供依据。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成多个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种调节立体图像的方法, 其特征在于, 包括:
显示终端接收并显示三维立体图像;
获取所述显示终端与用户之间的视距;
根据所述视距调节所述三维立体图像的大小。
2. 居权利要求 1所述的方法, 其特征在于, -据所述视距调节所述三 维立体图像的大小的步骤包括:
判断所述视距与最佳视距的差值是否在预定范围之内, 其中, 当所述差值在所述预定范围之内时, 保持所述三维立体图像, 否 则, 居所述最佳视距调整所述三维立体图像的大小。
3. 居权利要求 1所述的方法, 其特征在于, -据所述视距调节所述三 维立体图像的大小的步骤包括:
判断所述视巨是否与最佳视巨相同, 其中,
在相同的情况下, 保持所述三维立体图像, 否则, 根据所述最佳 视距调整所述三维立体图像的大小。
4. 根据权利要求 2或 3所述的方法, 其特征在于, 根据所述最佳视距调 整所述三维立体图像的大小的步骤包括:
比较所述视距与所述最佳视距的大小, 其中,
当所述视距大于所述最佳视距时, 据缩放公式来放大所述三维 立体图像;
当所述视距小于所述最佳视距时, 才艮据所述缩放公式来缩小所述 三维立体图像。
5. 根据权利要求 4所述的方法, 其特征在于, 所述三维立体图像为球体 时, 通过以下公式获得所述最佳视距 d:
Figure imgf000013_0001
其中, Dout是出屏景深, Din是入屏景深, D是所述球体的半径。
6. 根据权利要求 5所述的方法, 其特征在于, 所述缩放公式是: 缩放比 例=视距 /最佳视距。
7. 一种调节立体图像的装置, 其特征在于, 包括:
接收模块, 用于接收并显示三维立体图像;
检测模块, 用于发出传感信号, 根据所述传感信号来获取所述显 示终端与用户之间的视 3巨;
调节模块, 用于根据所述视距调节所述三维立体图像的大小。
8. 根据权利要求 7所述的装置, 其特征在于, 所述调节模块包括:
第一判断模块, 用于判断所述视距与最佳视距的差值是否在预定 范围之内, 其中, 当所述差值在所述预定范围之内时, 保持所述三维 立体图像, 否则, 才艮据所述最佳视距调整所述三维立体图像的大小; 或
第二判断模块, 用于判断所述视距是否与最佳视距相同, 其中, 在相同的情况下, 保持所述三维立体图像, 否则, 才艮据所述最佳视距 调整所述三维立体图像的大小。
9. 根据权利要求 7所述的装置, 其特征在于, 所述第一判断模块或第二 判断模块包括:
比较模块, 用于比较所述视距与所述最佳视距的大小, 以获取比 较结果;
放大模块,用于当所述比较结果为所述视距大于所述最佳视距时, 根据缩放公式来放大所述三维立体图像;
缩小模块,用于当所述比较结果为所述视距小于所述最佳视距时, 根据所述缩放公式来缩小所述三维立体图像。
10. —种调节立体图像的系统, 其特征在于, 包括:
显示终端, 接收并显示三维立体图像, 同时发出传感信号, 并才艮 据所述传感信号来获取视距, 以调节所述三维立体图像的大小; 立体眼镜, 接收所述传感信号, 并将所述传感信号的反馈信号返 回至所述显示终端。
11. 根据权利要求 10所述的系统, 其特征在于, 所述显示终端包括: 距离传感器, 用于发出所述传感信号至所述立体眼镜, 并接收所 述立体眼镜返回的所述反馈信号;
处理器, 用于计算所述距离传感器发出所述传感信号和所述反馈 信号的间隔时间, 以获取所述视巨, 并才艮据所述视巨来调节所述三维 立体图像的大小。
12. 一种电视机, 其特征在于, 包括权利要求 7-9 中任一项所述的调节立 体图像的装置。
13. —种立体眼镜, 其特征在于, 包括:
距离传感器, 用于检测所述显示终端与用户之间的视距; 处理装置, 用于根据所述视距与最佳视距的比较结果发出提示信 息, 以提示用户调整所述视巨。
14. 根据权利要求 13所述的立体眼镜, 其特征在于, 所述处理装置包括: 计算器, 用于计算所述视距与所述最佳视距的差值; 语音装置, 用于在所述差值在超出预定范围或所述差值不为零的 情况下, 发出语音提示所述差值。
15. 根据权利要求 13所述的立体眼镜, 其特征在于, 所述处理装置包括: 计算器, 用于计算所述视距与所述最佳视距的差值; 显示装置, 用于在所述差值在超出预定范围或所述差值不为零的 情况下, 显示所述差值。
PCT/CN2011/072476 2011-04-06 2011-04-06 调节立体图像的方法、装置、系统、电视机及立体眼镜 WO2012136002A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/701,907 US9082225B2 (en) 2011-04-06 2011-04-06 Method, apparatus and system for adjusting stereoscopic image, television set and stereoscopic glasses
AU2011364912A AU2011364912B2 (en) 2011-04-06 2011-04-06 Method,device,system,television and stereo glasses for adjusting stereo image
PCT/CN2011/072476 WO2012136002A1 (zh) 2011-04-06 2011-04-06 调节立体图像的方法、装置、系统、电视机及立体眼镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072476 WO2012136002A1 (zh) 2011-04-06 2011-04-06 调节立体图像的方法、装置、系统、电视机及立体眼镜

Publications (1)

Publication Number Publication Date
WO2012136002A1 true WO2012136002A1 (zh) 2012-10-11

Family

ID=46968534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072476 WO2012136002A1 (zh) 2011-04-06 2011-04-06 调节立体图像的方法、装置、系统、电视机及立体眼镜

Country Status (3)

Country Link
US (1) US9082225B2 (zh)
AU (1) AU2011364912B2 (zh)
WO (1) WO2012136002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179380A1 (zh) * 2018-03-19 2019-09-26 北京国双科技有限公司 移动终端定位方法、装置及收视记录处理方法、装置、系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581112B (zh) * 2013-10-14 2016-10-05 钰立微电子股份有限公司 快速产生摄像机的距离对视差关系表的系统及其相关方法
US10652525B2 (en) * 2013-10-31 2020-05-12 3Di Llc Quad view display system
WO2016003101A1 (en) * 2014-06-30 2016-01-07 Alticast Corporation Method for displaying stereoscopic image and apparatus thereof
KR102590132B1 (ko) * 2016-03-24 2023-10-18 삼성전자주식회사 디스플레이 장치, 및 디스플레이 장치의 제어방법
CN205563004U (zh) * 2016-04-16 2016-09-07 深圳市兼明科技有限公司 具有距离监测功能的智能眼镜
CN109584285B (zh) * 2017-09-29 2024-03-29 中兴通讯股份有限公司 一种显示内容的控制方法、装置及计算机可读介质
US11741673B2 (en) * 2018-11-30 2023-08-29 Interdigital Madison Patent Holdings, Sas Method for mirroring 3D objects to light field displays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286125A1 (en) * 2004-06-24 2005-12-29 Henrik Sundstrom Proximity assisted 3D rendering
CN1949823A (zh) * 2005-10-10 2007-04-18 深圳Tcl新技术有限公司 一种调节电视屏显的方法
JP2008229000A (ja) * 2007-03-20 2008-10-02 Samii Kk 画像生成装置、遊技機、及びプログラム
US20100091098A1 (en) * 2008-10-15 2010-04-15 Sony Corporation Display apparatus, display method, and display system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219484A (ja) * 2003-01-09 2004-08-05 Pioneer Electronic Corp 表示装置
US7787886B2 (en) * 2003-02-24 2010-08-31 Invisitrack, Inc. System and method for locating a target using RFID
DE112008000271B4 (de) * 2007-01-30 2021-06-17 Ntn Corp. Kugellagerkäfig
GB2471137B (en) * 2009-06-19 2011-11-30 Sony Comp Entertainment Europe 3D image processing method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286125A1 (en) * 2004-06-24 2005-12-29 Henrik Sundstrom Proximity assisted 3D rendering
CN1949823A (zh) * 2005-10-10 2007-04-18 深圳Tcl新技术有限公司 一种调节电视屏显的方法
JP2008229000A (ja) * 2007-03-20 2008-10-02 Samii Kk 画像生成装置、遊技機、及びプログラム
US20100091098A1 (en) * 2008-10-15 2010-04-15 Sony Corporation Display apparatus, display method, and display system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179380A1 (zh) * 2018-03-19 2019-09-26 北京国双科技有限公司 移动终端定位方法、装置及收视记录处理方法、装置、系统
CN110290401A (zh) * 2018-03-19 2019-09-27 北京国双科技有限公司 移动终端定位方法、装置及收视记录处理方法、装置、系统

Also Published As

Publication number Publication date
US20130088488A1 (en) 2013-04-11
AU2011364912B2 (en) 2014-03-20
US9082225B2 (en) 2015-07-14
AU2011364912A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2012136002A1 (zh) 调节立体图像的方法、装置、系统、电视机及立体眼镜
CN102158721B (zh) 调节三维立体图像的方法、装置及电视机
US8711204B2 (en) Stereoscopic editing for video production, post-production and display adaptation
TWI523488B (zh) 處理包含在信號中的視差資訊之方法
US11477430B2 (en) Methods for controlling scene, camera and viewing parameters for altering perception of 3D imagery
WO2012147363A1 (ja) 画像生成装置
CN103533340B (zh) 移动终端的裸眼3d播放方法和移动终端
US20110187827A1 (en) Method and apparatus for creating a stereoscopic image
CN102789058A (zh) 立体图像生成装置和立体图像生成方法
US10136121B2 (en) System, method and software for producing virtual three dimensional images that appear to project forward of or above an electronic display
JP2011164781A (ja) 立体画像生成プログラム、情報記憶媒体、立体画像生成装置、及び立体画像生成方法
JP2015520961A (ja) 立体視ディスプレイにおける調節効果による歪み誤差を補正する方法および装置
CN112995638A (zh) 自动调节视差的裸眼3d采集和显示系统及方法
CN104159099A (zh) 一种3d立体影视制作中双目立体摄像机的设置方法
JP2003348621A (ja) 二視点カメラの設定手段
Park et al. 48.2: Light field rendering of multi‐view contents for high density light field 3D display
TW202205851A (zh) 可透光顯示系統及其圖像輸出方法與處理裝置
TW201327470A (zh) 調整立體影像之景深的方法以及顯示立體影像的方法與相關裝置
US9269177B2 (en) Method for processing image and apparatus for processing image
WO2023201864A1 (zh) 图像显示方法、图像显示装置、设备及存储介质
KR20110139623A (ko) 입체영상 구현을 위한 양안융합계측기
KR20140000831A (ko) 디스플레이 장치 및 방법
WO2020135746A1 (zh) 裸眼 3d 头盔显示器及其投影图像梯形校准方法
JP2013223133A (ja) 誘導装置、誘導方法、及び誘導プログラム
TWI436147B (zh) 投影元件投影三維影像之方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011364912

Country of ref document: AU

Date of ref document: 20110406

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13701907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863060

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 21-07-2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11863060

Country of ref document: EP

Kind code of ref document: A1