WO2012134227A2 - 폴리에스테르 원단 및 그의 제조 방법 - Google Patents

폴리에스테르 원단 및 그의 제조 방법 Download PDF

Info

Publication number
WO2012134227A2
WO2012134227A2 PCT/KR2012/002396 KR2012002396W WO2012134227A2 WO 2012134227 A2 WO2012134227 A2 WO 2012134227A2 KR 2012002396 W KR2012002396 W KR 2012002396W WO 2012134227 A2 WO2012134227 A2 WO 2012134227A2
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
polyester
airbag
strength
measured
Prior art date
Application number
PCT/KR2012/002396
Other languages
English (en)
French (fr)
Other versions
WO2012134227A3 (ko
Inventor
김재형
곽동진
이상목
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110029870A external-priority patent/KR20120111418A/ko
Priority claimed from KR1020110029869A external-priority patent/KR20120111417A/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to US14/008,980 priority Critical patent/US20140021704A1/en
Priority to EP12763036.6A priority patent/EP2692919A4/en
Priority to JP2014502481A priority patent/JP2014514469A/ja
Priority to CN201280027055.0A priority patent/CN103649393A/zh
Publication of WO2012134227A2 publication Critical patent/WO2012134227A2/ko
Publication of WO2012134227A3 publication Critical patent/WO2012134227A3/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition

Definitions

  • the present invention relates to a fabric for airbags and a method of manufacturing the same. More specifically, the polyester yarn of high strength, high elongation and low modulus polyester yarn has excellent toughness and energy absorption performance even after prolonged high temperature and humid heat treatment.
  • the present invention relates to a fabric, a method of manufacturing the same, and an airbag for a vehicle including the same.
  • an air bag detects a stratified impact applied to a vehicle when the vehicle is in front at a speed of about 40 km / h or more, and then explodes a gunpowder into the airbag cushion.
  • a stratified impact applied to a vehicle when the vehicle is in front at a speed of about 40 km / h or more, and then explodes a gunpowder into the airbag cushion.
  • it refers to a device to protect the driver and passengers.
  • Items required for fabrics for airbags include low breathability for smooth deployment during stratification, high strength to prevent damage and rupture of the airbag itself, high heat resistance, and flexibility to reduce stratification to passengers.
  • the airbag fabric has excellent mechanical properties.
  • flexibility and flexibility to enjoy the impact on the passengers is very important.
  • nylon 66 Conventionally, polyamide fibers such as nylon 66 are used as a material for yarn for airbags. Although it is used, nylon 66 has excellent layer resistance, but it is inferior in terms of moisture resistance, light resistance, and shape stability compared to polyester fiber, and has a very high raw material price.
  • Japanese Patent Application Laid-Open No. 04-214437 proposes the use of polyester fibers in which such defects are alleviated.
  • it is difficult to store them in a narrow space when mounted in a vehicle due to high stiffness, and excessive heat shrinkage at high temperature heat treatment due to high elasticity and low elongation. Occurs, and there has been a limit to maintaining abundant mechanical properties and development performance under high temperature harsh conditions.
  • the airbag cushion maintains excellent mechanical properties and air blocking effect, which is suitable for use as a vehicle airbag fabric, and is flexible, storage, and long-term storage state to reduce the stratification applied to passengers.
  • a textile fabric having properties that maintain excellent physical properties even under high temperature and high humidity conditions.
  • the present invention is to provide a polyester fabric that ensures excellent mechanical properties, flexibility, storage properties to be used in the fabric for airbags, and maintains sufficient performance under prolonged high temperature and humid conditions.
  • the present invention also provides a method for producing the 3 ⁇ 4 polyester fabric.
  • the present invention also provides a vehicle airbag comprising the polyester fabric ⁇
  • the present invention includes a polyester yarn having a fineness of 300 to 700 denier, the inclined direction PTSRI wa index of the fabric as shown in the following calculation 1 is 0.8 or more, the weft direction PTSRI we of the fabric as shown in the following formula 2 The index is 0.8 or more, the inclination direction PSSRI wa index of the fabric as shown in the following formula 3 is 0.8 or more, as shown in the formula (4) It provides polyester fabric with weft direction PSSRI we index of 0.8 or more. [Calculation 1]
  • PTSRI wa PTS 30 oo wa / PTS ffa
  • PSSRI wa PSS 300 o wa / PSS wa
  • PSSRI we PSS 30 oo w 7 PSS we
  • PTSRI wa and PTSRI we were maintained at 110 ° C for 3,000 hours, respectively, and the tear strength retention index (PTSRI: Polyester) was measured according to the fabric specification E668992 test specification for Autoliv airbags. Tearing Strength Retention Index)
  • Polyester Seam PSSRI ffa and PSSRI we are each then subjected to heat treatment at 110 ° C for 3000 hours auto rib (Autoliv) airbag fabrics specification bongmok strength is maintained in an oblique direction and a weft direction of the fabric measured according to E668992 test specifications for index (PSSRI Strength Retention Index)
  • PTS wa and PTS we are the tear strength (kgf) in the warp direction and weft direction of the fabric measured at room temperature according to the fabric specification E668992 test specification for Autoliv airbag, respectively.
  • PSS wa and PSS we are the bark strength (N) in the warp direction and weft direction of fabric measured at room temperature according to the fabric specification E668992 test specification for Autoliv airbags, respectively. '
  • the present invention also includes a polyester yarn having a fineness of 300 to 700 denier, the inclined direction PWTSRI wa index of the fabric as shown in the following formula 5 is 0.83 or more, and the weft direction PWTSRI of the fabric as shown in the following formula 6 It provides a polyester fabric having a ffe index of 0.83 or more, a warp direction PWSSRI wa index of a fabric as shown in Equation 7 above 0.83, and a weft direction PWSSRI we index of a fabric as shown in Equation 8 below 0.83.
  • PWTSRI wa P TS 30 oo wa / PWTS wa
  • PWTSRI we PWTS 30 oo w 7 PWTS ffe
  • PWSSRI wa PWSS 30 oo wa / PWSS wa
  • PWTSRI wa and PWTSRI we have the tear strength of the warp direction and the weft direction of the fabric measured according to each of 65 ° C and 95% RH condition, and then heat-treated for 3000 hours auto rib (Autoliv) fabric specification for an air bag E668992 test standard under Fig. PWTSRI (Polyester Tearing Strength Retention Index)
  • PWSSRI wa and PWSSRI we are fabricated for AutoUv airbags after heat treatment for 3,000 hours under 65 ° and 95 RH conditions, respectively.
  • PWSSRI Polyester Seam Strength Retention Index
  • PWTS wa and PWTS we are the tear strength in the warp and weft directions of fabric measured at room temperature according to the fabric specification E668992 test specification for Autoliv airbags, respectively.
  • PWTS 30 oo wa and? 3 ⁇ 4 00 ( ⁇ is the fabric specification for Autoliv airbags after heat treatment for 3,000 hours under 65 ° C and 95% RH conditions, respectively E668992 Tear strength (kgf) of the warp and weft direction of the fabric measured according to the test standard, PWSS wa and PWSS we are the fabric warp measured at room temperature according to the test specification E668992 fabric specification for the Autoliv airbag The bark strength in the direction and weft direction (N),
  • the present invention also provides the steps of weaving the dough for airbags with a polyester yarn having a fineness of 300 to 700 denier, refining the dough for the woven airbag, and the refined fabric. It provides a method for producing the polyester fabric for the air bag comprising the step of tentering.
  • the present invention also provides a vehicle airbag comprising the polyester fabric for the airbag.
  • a polyester fabric according to a specific embodiment of the present invention, a manufacturing method thereof, and a vehicle airbag including the same will be described in more detail.
  • this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
  • the airbag fabric refers to a fabric or a nonwoven fabric used in the manufacture of an airbag for an automobile.
  • a nylon 66 plain fabric or a nylon 66 nonwoven fabric woven with a rapier loom or an airjet loom As a general airbag fabric, a nylon 66 plain fabric or a nylon 66 nonwoven fabric woven with a rapier loom or an airjet loom.
  • the airbag fabric of the present invention is characterized by excellent physical properties such as form stability, toughness, air permeability, ductility using a polyester yarn.
  • polyester instead of polyamide fiber such as conventional nylon 66
  • polyester instead of polyamide fiber such as conventional nylon 66
  • it is possible to reduce the properties of the polyester yarn under high temperature and humidity heat treatment conditions due to high folding and low melting heat capacity due to high modulus and stiffness of the polyester yarn, and thus to lower the development performance. You must be able to overcome it.
  • Polyester has a high stiffness structure compared to the nylon round in the molecular structure has a high modulus characteristics. Because of this, when used as a fabric for the air bag to be mounted on the car (packing) is significantly reduced.
  • the carboxyl end groups (hereinafter referred to as "CEG") in the polyester molecular chain attack the ester bond under high temperature and high humidity conditions to cause molecular chain cleavage, thereby deteriorating physical properties after aging.
  • CEG carboxyl end groups
  • the present invention by using a high modulus low modulus polyester yarn to optimize the physical range of the fineness of the yarn and the tear strength of the fabric, bark strength, etc., while significantly lowering the ductility and excellent mechanical properties and air As the blocking performance can be maintained, improved physical properties can be obtained as an airbag fabric.
  • the experimental results of the present inventors according to the manufacture of the airbag cushion with a polyester fabric having a predetermined characteristics, exhibiting improved folding properties, shape stability, and air blocking effect, when used as a fabric for airbags excellent storage properties (e.g. It has been found that excellent mechanical properties, air leakage prevention, and airtightness can be maintained even under dark conditions of packing and high temperature and high humidity.
  • a polyester fabric having a predetermined characteristic comprising a polyester yarn having a fineness of 300 to 700 denier, the inclination direction PTSRI wa index of the fabric as shown in the following formula 1 is 0.8 or more, The weft direction PTSRI we index of the fabric as shown is 0.8 or more, the warp direction PSSRI wa index of the fabric as shown in the following formula 3 is 0.8 or more, and the weft direction PSSRI we index of the fabric as shown in the following formula 4 is 0.8 It can be abnormal. [Calculation 1]
  • PTSRI wa PTS 30 oo wa / PTS wa
  • PSSRI wa PSS 30 oo wa / PSS wa
  • PSSRI we PSS 30 oo w 7 PSS we
  • PTSRI wa and PTSRI we were maintained at 110 ° C for 3,000 hours, respectively, and then showed the tear strength retention index (PTSRI: Polyester) of the fabric measured according to the fabric specification E668992 test standard for Autoliv airbags. Tearing Strength Retention Index)
  • PSSRI wa and!! ⁇ are heat-treated at 110 ° C for 3, 000 hours, respectively, and the bark strength retention index in the direction of warp and weft direction of fabric measured according to the fabric specification E668992 test standard for Autoliv airbags (PSSRI) : Polyester Seam Strength Retention Index)
  • PTS 30 oo wa and ⁇ 000 are the inclination and weft direction tear strength (kgf) of the fabric measured according to the fabric specification E668992 test specification for Autoliv airbag after heat treatment at 110 ° C for 3,000 hours. ,
  • PSS wa and PSS we are inclined and weft direction of fabric measured at room temperature according to the fabric specification E668992 test specification for Autoliv airbag respectively.
  • PSS 30 oo wa and PSS 3000 we are the warp strength (N) for the warp and weft direction of the fabric measured according to the fabric specification E668992 test specification for Autoliv airbags after heat treatment at 110 ° C for 3,000 hours. .
  • the polyester fabric of the present invention as shown in the following formula 5
  • the inclined direction PWTSRI wa index of the same fabric is 0.83 or more
  • the weft direction PWTSRI we index of the fabric as shown in Equation 6 is 0.83 or more
  • the inclined direction PWSSRI wa index of the fabric as shown in Equation 7 is 0.83 or more
  • the weft direction PWSSRI we index of the fabric as shown in Equation 8 may be 0.83 or more.
  • PWTSRI wa PWTS 30 oo wa / PffTS wa
  • PWTSRI we PWTS 30 oo we / PWTS we
  • PWSSRI wa PWSS 30 oo wa / PWSS wa
  • PWTSRI wa and PWTSRI we heat-treated for 3,000 hours under 65 ° C 3 ⁇ 4 95% RH, respectively, and maintain tear strength in the warp and weft directions of fabric measured according to the fabric specification E668992 test specification for Autoliv airbag.
  • PWTSRI Poly Tearing Strength Retention Index
  • PWSSRI wa and? ⁇ are inclined and weft direction bar strength of fabric measured according to fabric specification E668992 test specification for Autoliv airbag after heat treatment for 3, 000 hours under 65 ° C and 95% RH conditions, respectively.
  • PWSSRI Polyester Seam Strength Retention Index (PWSSRI), PWTS wa and PWTS we are the tearing steel in the warp direction and weft direction of fabric measured at room temperature according to the fabric specification E668992 test specification for Autoliv airbag. Degrees (kgf)
  • PWTS 30 oo wa and ⁇ 13 ⁇ 4 000 ⁇ are fabricated in the direction of weaving and weft of fabric measured according to fabric specification E668992 test specification for Autoliv airbag after heat treatment for 3,000 hours under 65 ° C and 95% RH conditions, respectively.
  • Direction tear strength (kgf), P SS wa and PWSS we are the fabric specifications for Autoliv airbag, respectively E668992 The bark strength (N) in the warp and weft directions of fabric measured at room temperature according to the test standard.
  • the polyester yarns having low modulus of high strength and high elongation compared to conventional polyester yarns are used to optimize the tear strength, strength, and bark strength of the fabric. It has been found that a fabric for an airbag can be provided that can effectively absorb and withstand energy, in particular, the fabric may comprise a low fineness high strength polyester yarn, the polyester yarn having a fineness of 300 to 700 denier Can be
  • the polyester fabric is PTSRI wa PTSRI we , PSSRI wa , and PSSRI we index of the fabric as shown in the formula 1 to 4 measured after the heat treatment for 3,000 hours at 110 ° C is 0.80 or more, preferably 0.82 or more It may be more preferably 0.84 or more, which can be achieved by optimizing the physical properties of the polyester yarn and the fabric.
  • the polyester fabric for airbags has improved toughness and energy absorption performance compared to conventional PET fabrics, solves high stiffness problems, and has excellent flexibility and storage properties. Can be represented.
  • the polyester fabric is also PWTSRI wa PWTS I we , PWSSRI wa , and PWSSRI we index of the fabric as shown in the formulas 5 to 8 measured after heat treatment for 3,000 hours at 65 ° C and 95 RH conditions is 0.83 Above, preferably 0.85 or more, more preferably 0.87 or more, which can be achieved by optimizing the physical properties of the polyester yarn and fabric.
  • the polyester fabric for airbags has improved toughness and energy absorption performance compared to conventional PET fabrics, solves high stiffness problems, and has excellent flexibility and storage properties. Can be represented.
  • the tear strength and the bark strength of the fabric in the present invention needs to be able to meet the range of the tear strength maintenance index and the bark strength maintenance index of the fabric as described above.
  • the tear strength of the PTS we , PTS 3000 wa , and PTS 3000 we ie, fabrics measured after heat treatment at room temperature before heat treatment and for 3,000 hours at 110 ° C., is at least 20 kgf or 20 to 90 kgf, respectively, preferably 22 It may be at least kgf or 22 to 88 kgf, more preferably at least 25 kgf or 25 to 85 kgf, more preferably at least 27 kgf or 27 to 83 kgf.
  • the bark strength of the fabric represented by the formulas 3 and 4 PSS wa , PSS we , PSS 30 oo wa , and PSS 30 oo we that is, the fabric measured after the heat treatment at room temperature and 110 ° C for 3,000 hours before heat treatment
  • the tear strength of the fabric represented by the formulas 5 and 6 PWTS wa , PWTS we , PWTS 3 ooo wa , and PWTS 3000 we that is, for 3,000 hours at room temperature and 65 ° C and 95% RH conditions before heat treatment
  • the tear strength of the fabric measured after the heat treatment is at least 20 kgf or 20 to 90 kgf, preferably at least 22 kgf or 22 to 88 kgf, more preferably at least 25 kgf or 25 to 85 kgf, more preferably 27 It may be greater than or equal to kgf or from 27 to 83 kgf.
  • the bark strength of the fabric represented by the formulas 3 and 4 PWSS wa , PWSS we , PWSS 30 oo wa , and PWSS 3000 we that is, heat treatment for 3,000 hours at room temperature and 65 ° C and 95% RH conditions before heat treatment
  • the bar strength of the fabric measured afterwards is 670 N each.
  • at least 670 N to 1650 N, preferably at least 690 N or at 690 N to 1600 N, more preferably at least 700 N or at 700 N to 1,600 N, more preferably at least 750 N or at 750 N to 1,500 N This can be
  • the polyester fabric of the present invention is required to have a good level of tear strength because it is expanded rapidly by hot-high pressure gas .
  • Tear strength indicating the burst strength of the fabric for airbag is 20 kgf or more or 20 to 90 kgf, preferably 22 when measured at room temperature according to the test specification for Autoliv airbag fabric specification E668992 in the coating fabric state It may be at least kgf or 22 to 88 kgf, more preferably at least 25 kgf or 25 to 85 kgf, more preferably at least 27 kgf or 27 to 83 kgf.
  • the tear strength of the polyester fabric in an uncoated fabric state is 17 kgf or more or 17 to 85 kgf, preferably 20 kgf, measured at room temperature according to the test specification E668992 for Autoliv airbag fabric specification. Or at least 20 to 83 kgf, more preferably at least 22 kgf or at least 22 to 80 kgf, more preferably at least 24 kgf or 24 to 78 kgf.
  • the tear strength of the airbag fabric is less than the lower limit, that is, 17 kgf and 20 kgf, respectively, in the uncoated fabric and the coated fabric, the airbag bursts when the airbag is deployed, which may cause a great risk to the airbag function. It may be. It is desirable to keep the tear strength of the fabric as high as possible, but if it is excessively increased, the edge comb resistance of the fabric is lowered and the air barrier property may deteriorate rapidly during airbag deployment.
  • the fabric for polyester airbags It is possible to ensure a sufficient energy absorption performance in the actual airbag cushion deployment. If the tear strength and the bark strength of the fabric cannot be maintained above the minimum value, it may cause tearing of the fabric and slipping of the sewing part when the airbag cushion is developed by the actual car stratification, which may not protect the passengers of the car. It can be worn.
  • the PTSRI wa PTSRI we , PSSRI wa , and PSSRI we indexes of the fabric after heat treatment should be maintained at 0.8 or more, as shown in Equations 1 to 4 above, before the airbag deployment by the automobile stratification. Due to the nature of the airbag cushion, which can be stored in a car module under high temperature and climatic conditions for a long time, the airbag fabric absorbs high-pressure inflator pressure during airbag deployment by car stratification even if it is stored in the airbag module for a long time.
  • the meaning of the figure is important in terms of protecting the occupants. If the value is less than 0.8, it is left for a long time under the high temperature conditions of the airbag models so that the safety of passengers in the vehicle during the airbag deployment due to the actual car crash is never guaranteed. The worst can happen without protection.
  • the PWTSRI wa PWTSRI we , PWSSRI wa , and PWSSRI we index of the fabric after the heat treatment of the fabric should be maintained at 0.83 or more, as shown in the equations 5 to 8, which is for a long time before the air bag deployment by car stratification Due to the nature of the airbag cushion, which can be stored in the car module under high temperature and high humidity conditions, the airbag fabric absorbs high-pressure inflator pressure during airbag deployment by car stratification even if it is stored for a long time in the airbag module.
  • the meaning of the value is important in terms of protecting the system. If the value is less than 0.83, it is left for a long time under the high temperature and high humidity conditions of the airbag module to protect the safety of passengers in the vehicle when the airbag is deployed by the actual car stratification. The worst can happen.
  • Polyester fabric for the air bag of the present invention may be a toughness (Toughness) defined by the following formula (5) of 3.2 kJ / m 3 or more or 3.2 kJ / m 3 to 6.5 kJ / m 3 .
  • Toughness (toughness, breaking date) J 0 cutting F, dl
  • F represents the load applied when the length of the polyester fabric is increased by dl
  • dl represents the length of the polyester fabric.
  • the polyester fabric can effectively absorb and withstand the energy of hot-high pressure gas by striking a higher level of toughness (fracture) than the conventional fabric.
  • the toughness is the energy consumed until the fabric is broken by the tensile force, as shown in the formula 5, and means the resistance of the fiber to the rapid stratification. If a fiber extends from I to I + dl at a load F, then the work is F. Since dl, the toughness required to cut the fiber is as shown in the above formula (5). That is, the toughness represents the cross-sectional area of the yarn and the fabric's strength-elongation curve (see FIG. 1), and the higher the strength and elongation of the yarn used in the fabric, the higher the toughness expressed in the fabric.
  • the lower the toughness of the fabric for the airbag the lower the resistance of the fabric that can absorb the instant deployment layer of the inflator having a high temperature-high pressure during airbag deployment, resulting in easy tearing of the fabric for the airbag . Therefore, when the toughness of the fabric in the present invention, for example, less than 3.2 kJ / m 3 may be difficult to apply to the fabric for the air bag.
  • the polyester fabric as described above, by using a high strength, low modulus yarn of high elongation, to secure excellent edge resistance (Ebge Comb Resistance) to the mechanical properties of the final fabric, energy absorption performance of high temperature and high pressure gas, and folding You can improve your sex at the same time.
  • the polyester fabric according to the present invention may have a sliding resistance of 280 N or more or 280 N to 1100 N measured at room temperature (25 ° C) by the American Society for Testing and Materials Standard ASTM D 6479 method.
  • the polyester fabric may have a deactivation resistance measured at 90 ° C or more than 240 N or 240 N to 1000 N.
  • the desorption resistance of the polyester fabric is measured at room temperature (25 ° C) and 90 ° C, the case of less than 280 N and less than 240 N, respectively, when the fabric strength of the airbag cushion sewing portion rapidly deteriorates during airbag deployment Pinholes in the fabric during airbag deployment and fabric tearing due to bark push The phenomenon may occur and may not be desirable.
  • the polyester fabric may have a warp density and a weft density, that is, a weaving density of the warp direction and the weft direction may be 36 to 65, respectively.
  • the inclined density and the weft density of the polyester fabric may be 36 or more in terms of securing the toughness and desorption resistance of the fabric for the airbag, respectively, and 65 or less in terms of improving the folding property and lowering the tear strength of the fabric. Can be.
  • the airtightness in the polyester fabric is to minimize the elongation by high-pressure air, etc., and at the same time to maximize the energy absorption performance in the discharge of gas at high temperature and high pressure in order to ensure the mechanical properties when operating the air bag. It is very important. Accordingly, the fabric may be further woven and processed so that the cover factor of the fabric becomes 1,800 to 2,460 according to the following formula 10, thereby improving airtightness and energy absorption performance during airbag deployment.
  • CF Cover Factor
  • the shrinkage and weft direction of the fabric shrinkage measured by the method of the American Society for Testing and Materials ASTM D 1776 can be 1.0% or less, preferably 0.8% or less, respectively. Later, the fabric shrinkage in the warp direction and the weft direction may be 1.0% or less, preferably 0.8% or less, respectively.
  • the shrinkage ratio of the fabric in the warp direction and the weft direction does not exceed 1.03 ⁇ 4.
  • the polyester fabric can maintain a toughness and tear strength of the fabric by using a polyester yarn having high strength and low modulus properties, and at the same time, significantly lower the stiffness of the fabric.
  • the stiffness of the fabric is significantly lowered than that of the conventional polyester fabric, and thus, the fabric for the airbag of the present invention may exhibit excellent folding and flexibility, and improved storage performance when the airbag is mounted.
  • the stiffness of the fabric is significantly lowered than that of the conventional polyester fabric, and thus, the fabric for the airbag of the present invention may exhibit excellent folding and flexibility, and improved storage performance when the airbag is mounted.
  • the fabric of the present invention preferably maintains the range of the stiffness in order to use for airbags, and if the stiffness is too low, it may not have a sufficient protective support function when inflating and deploying the airbag, and maintain the shape even when the vehicle is mounted. Poor performance may deteriorate storage property.
  • the stiffness is preferably 2.0 kgf or less, particularly in the case of less than 460 denier, 0.8 kgf or less, Even if it is 550 denier or more, it should be 2.0 kgf or less.
  • Static air permeability according to the American Society for Testing and Materials Test standard ASTM D 737 method of the polyester fabric is 10.0 cfm or less or 0.3 to 10.0 cfm, preferably 8.0 cfm or less or 0.3 to ⁇ of 125 pa for an uncoated fabric. It may be less than or equal to 8.0 cfm, more preferably less than 5.0 cfm or 0.3 to 5.0 cfm, and may be less than 14 cfm or 4 to 14 cfm, preferably less than 12 cfm or 4 to 12 cfm when ⁇ is 500 pa. .
  • the dynamic air permeability according to the American Society for Testing and Materials Standard ASTM D 6476 method is 1,700 mm / s or less, preferably 1,600 mm / s or less or 200 to 1,600 mm / s, more preferably 1,400 It may be up to mm / s or from 400 to 1,400 kW / s.
  • the static air permeability refers to the amount of air that penetrates into the fabric when a certain pressure is applied to the fabric for the air bag.
  • the yarn per filament is small and the density of the fabric may be high and low.
  • the dynamic air permeability refers to the degree of air permeation into the fabric when the average instantaneous differential pressure of 30 to 70 kPa is applied. The smaller the fineness and the higher the density of the fabric, the lower the fineness.
  • the porosity of the polyester fabric can be significantly lowered by including a rubber coating layer in the fabric, it is possible to ensure an air permeability of approximately 0 cfm.
  • the coating fabric for airbags of the present invention has a static air permeability of 0.1 cfm or 0 to 0.1 cfm when the ⁇ is 125 pa according to the American Society for Testing and Materials Standard ASTM D 737 method.
  • it may be 0.05 cfm or less or 0 to 0.05 cfm, and when ⁇ is 500 pa 0.3 cfm or less or 0 to 0.3 cfm, preferably 0.1 cfm or less or 0 to 0.1 cfm.
  • the polyester fabric of the present invention maintains the airtightness of the fabric for the airbag when the uncoated fabric and the coated fabric exceed the upper limit of the static air permeability range, or exceed the upper limit of the dynamic air permeability range, respectively. In terms of aspect, this may not be desirable.
  • the polyester fabric may preferably further comprise a rubber component coating layer coated or laminated to the surface.
  • the rubber component may be at least one selected from the group consisting of powder type silicone, liquid type silicone, polyurethane, chloroprene, neoprene rubber, and emulsion type silicone resin. Is not limited to the above-mentioned blocky. However, the liquid silicone coating is preferable in terms of environment and mechanical properties.
  • the coating amount per unit area of the rubber component coating layer may be used to 20 to 200 g / m 2 , preferably 20 to 100 g / m 2 .
  • the coating amount is preferably 30 g / m 2 to 95 g / m 2
  • the coating amount is 20 g / m 2 to 50 g / m 2 levels are preferred.
  • the polyester fabric of the present invention may have a scrub resistance of 600 times or 600 to 2,500 times according to the method of the International Organization for Standardization ISO 5981.
  • the coating layer is severe when the airbag is deployed by the actual car stratification when the airbag cushion is stored in the modal under high temperature and humidity conditions. Peeling may result in a situation where the airbag cushion cannot withstand the hot-high pressure inflator compressed gas pressure.
  • the polyester fabric of the present invention can satisfy the excellent scrub resistance performance by applying a liquid silicone coating agent suitable for the polyester fabric for airbags rather than the conventional liquid silicone coating agent for nylon 66.
  • the liquid silicone coating agent that can be used in the polyester fabric of the present invention may further include an adhesion promoter and a crosslinking agent to enhance the adhesion between the polyester fabric and the silicone agent together with viscosity control of the base silicone polymer.
  • the adhesion promoter may include about 0.2 to 8.0 parts by weight, preferably 0.5 to 7.5 parts by weight, based on 100 parts by weight of the total coating agent, the cross-linking agent component is about 0.2 to 8.0 parts by weight, preferably 0.5 To 7.5 parts by weight.
  • 1,3,5-tris (trimethoxysilylpropyl) isocyanate " or 3 'glycidoxypropyltrimethoxy silane may be used, and as the crosslinking agent, at least two semi-amorphous silicon hydride functional groups are used.
  • the liquid silicone coating agent may have a viscosity measured at room temperature (25 t>) of 30,000 to 350,000 mPa ⁇ s, preferably 35,000 to 330,000 mPa-s.
  • the coating fabric it is required not only in terms of securing excellent storage and folding properties when applied as an airbag cushion, but also in order to withstand high friction and high friction in inflator gas pressure at the time of deploying the airbag cushion. If the coating agent layer is easily peeled off over time in a situation where the vehicle is mounted in a long-term storage state, serious fabric damage may occur at the time of airbag deployment, thereby preventing the passenger safety of the vehicle.
  • polyester fabric made of a polyester yarn having a predetermined characteristic.
  • Polyester yarns used in the polyester fabric for airbags should be maintained at a low fineness and high strength, the fineness may be 300 to 700 denier.
  • the present invention has a conventional high strength, low elongation, high modulus
  • a separate end group blocker Antioxidants, hydrolysis inhibitors and the like can be applied to the polyester polymer chip.
  • a polyester yarn further comprising a separate end group blocker, an antioxidant, and a hydrolysis inhibitor may be used.
  • polyester yarns By applying these polyester yarns to airbag products (cushions / fabrics), not only are they capable of absorbing high-pressure inflator deployment energy when airbag cushions are deployed by actual vehicle collisions, but also long-term high-temperature and humid climates. Even if the airbag cushion is stored in the condition, it is possible to provide a polyester fabric for an airbag having excellent shape stability and toughness without deterioration of the material properties.
  • yarns exhibiting an improved intrinsic point i.e., 0.8 dl / g or more or 0.8 to 1.3 dl / g, may be used as compared to polyester yarns previously known.
  • a polyester yarn having an intrinsic viscosity in the above range it is preferable to use a polyester yarn having an intrinsic viscosity in the above range.
  • the intrinsic viscosity of the yarn may be more than 0.8 dl / g, by increasing the molecular weight of the polyester polymer by a high intrinsic viscosity can produce a yarn for air bags that can exhibit high strength properties even under low stretching conditions,
  • the use of such a yarn is preferred because it can satisfy the strength required in manufacturing the fabric for airbags. If not, it will be forced to express the properties of high strength under high stretching conditions. In this case, the orientation of the fiber is increased, resulting in high modulus properties, and thus it is difficult to achieve excellent folding properties. Therefore, it is preferable to maintain the intrinsic viscosity of the yarn at 0.8 dl / g or more to enable low modulus expression by applying low stretching.
  • the stretching tension may be increased during stretching, which may cause a process problem, and more preferably, 1.3 dl / g or less.
  • the polyester yarn of the present invention maintains such a high degree of intrinsic viscosity, providing low ductility with low stretching and at the same time mechanically divided into airbag fabric Higher strength properties that can provide physical and impact resistance, toughness, tear strength, bark strength, and the like can be further imparted.
  • the polyester polymer main chain due to high temperature and long heat treatment may further comprise a short-term blockade, a hydrolysis inhibitor, an antioxidant and the like.
  • the end group blocking agent, hydrolysis inhibitor, antioxidant and the like may be included in 0.1 to 2.0 parts by weight, preferably 0.3 to 1.7 parts by weight based on 100 parts by weight of the polyester polymer.
  • the polyester polymer is a phenolic amine-based antioxidant ⁇ , ⁇ ' -nucleic acid -1,6-diylbis (3— (3,5-di-tert-butyl-) as a primary antioxidant 4-hydroxyphenyl-propionamide) containing 200 to 1 ⁇ 500 ppm and a secondary antioxidant, N, N'-trimethylenebis- (3-3, 5-diphenyl t-butyl-4-hydroxy Phenyl) propionamide) in an amount of 0.2 to 1.0 wt%.
  • the hydrolysis inhibitor may contain from 0.1 to 0.7% of carbodiimide-based hydrolysis inhibitor.
  • the end group sewing chain may be used one or more of the compounds represented by the following formula (1), may be used in 0.5 to 5 equivalents relative to the hydroxyl equivalent of the crosslinking agent.
  • X is hydrogen, a C1-C6 aliphatic hydrocarbon radical, an alkoxy group, an aryloxy group, or a halogen element.
  • the polyester yarn is 60 to 115 g / de, preferably 75 at the point where the Young's modulus of the yarn measured by the method of the American Society for Testing and Materials Test ASTM D 885 at room temperature is 1% elongation, ie, V elongated.
  • 105 g / de and may be from 50 to 90 g / de, preferably from 55 to 88 g / de at 2% elongation, ie at 2% elongation.
  • the modulus of the polyester yarn is a physical property value of the elastic modulus obtained from the slope of the elastic section of the stress-strain diagram obtained during the tensile test, and the elastic modulus indicating the degree of stretching and deformation of the object when the object is stretched from both sides
  • the value corresponds to If the modulus of the fiber is high, the elasticity is good, but the stiffness of the fabric may be deteriorated. If the modulus is too low, the stiffness of the fabric may be good, but the elasticity of the fabric may be lowered, thereby lowering the toughness of the fabric.
  • airbag fabrics made from polyester yarns having a lower initial modulus than conventional ones at room temperature as well as after heat treatment solve high stiffness problems of conventional polyester fabrics, and have excellent folding properties. And flexibility.
  • Toughness of the polyester yarn can be measured using a polyester yarn in place of the polyester fabric in the formula 5, the toughness of the yarn measured at room temperature may be 60 to 130 J / m 3 .
  • the toughness of the yarn measured at room temperature may be 60 to 130 J / m 3 .
  • by using a specific polyester yarn striking a higher level of toughness (breaking) than conventional polyester yarn for airbags that can effectively absorb and withstand the energy of hot-high pressure gas Fabric may be provided.
  • the polyester fabric of the present invention is made of a fabric for an air bag using the polyester yarn, showing a lower stiffness, folding, flexibility, storage, while showing excellent layer resistance, form stability, mechanical properties, and airtightness. Can be.
  • polyester fabrics have excellent mechanical properties, shape stability, air
  • it provides excellent folding properties and storage properties, and at the same time, it can protect the occupants safely by minimizing the impact on the passengers with excellent flexibility, and thus can be preferably applied to fabrics for airbags.
  • the shrinkage force in the temperature range of 150 ° C to 200 ° C corresponding to the coating temperature of the general coating fabric of the yarn is 0.005 to 0.075 g / d. That is, the shrinkage stress at 150 ° C. and 200 ° C. should be 0.005 g / d or more, respectively, to prevent sagging of the fabric due to heat during the coating process, and should be 0.075 g / d or less at room temperature after the coating process. When stressed, relaxation stress can be alleviated.
  • the shrinkage stress is based on values measured under a fixed load of 0.10 g / d.
  • the polyester yarn has a dry heat shrinkage measured at room temperature of at least 1.0% or 1.0% to 10%, preferably at least 1.5% or 1.5% to 8.03 ⁇ 4, more preferably at least 2.0% or 2.0% to 6.0% Can be represented.
  • a dry heat shrinkage measured at room temperature of at least 1.0% or 1.0% to 10%, preferably at least 1.5% or 1.5% to 8.03 ⁇ 4, more preferably at least 2.0% or 2.0% to 6.0%.
  • the polyester yarn In order to prevent deformation in the heat treatment process, such as coating, as described above, the polyester yarn also has a crystallinity of 40% to 55%, preferably 41% to 52%, more preferably 41% to 50% Can be.
  • the degree of crystallinity of the yarn should be 40% or more to maintain thermal morphological stability when applied to the fabric for airbags, and when the crystallinity exceeds 55%, there may be a problem that the layer-absorption performance is lowered because the amorphous region is reduced. It is preferable to become 55% or less.
  • the polyester yarn may have a tensile strength of 8.5 g / d to 11.0 g / d at room temperature, preferably 8.7 g / d to 10 g / d, preferably 9.0 g / d to 9.8 g / d, and the elongation at break may be 15% to 30%, preferably 16% to 26%, and more preferably 173 ⁇ 4 to 25%.
  • the said polyester yarn is a polyethylene terephthalate (PET) yarn among normal polyester, More preferably, it is a PET yarn containing 90 mol% or more of PET.
  • the fabric of the present invention may use a polyester polymer having an intrinsic viscosity of at least 1.05 dl / g or 1.05 to 2.0 dl / g, that is, a polyester yarn made of PET chips.
  • a polyester polymer having an intrinsic viscosity of 1.05 dl / g or more In order to maintain excellent physical properties even after high temperature heat treatment of the polyester yarn, it is preferable to prepare a polyester polymer having an intrinsic viscosity of 1.05 dl / g or more.
  • polyester polymer having an intrinsic viscosity of 2.0 dl / g or less, as well as a poly
  • polyester yarns containing an end group blocker, a hydrolysis inhibitor, an antioxidant, and the like may be included.
  • the polyester yarn is a carboxyl end group (CEG, Carboxyl
  • the polyester yarn may be a single yarn fineness of 2.5 to 6.8 DPF.
  • the single yarn fineness of the yarn is preferably 2.5 DPF or more in terms of weaving performance and yarn manufacturing (spinning) performance of the airbag fabric, and 6.8 DPF or less in terms of air barrier property and storage property of the fabric for airbags.
  • the more filaments of the yarn may give a soft touch, but if too many may not have good radioactivity, the number of filaments may be 96 to 160 3 ⁇ 4.
  • the polyester fabric of the present invention can exhibit excellent performance when manufactured as a fabric for airbags by using a polyester yarn having an intrinsic viscosity, heat resistance, initial modulus and elongation range in an optimum range.
  • Polyester yarn used in the manufacture of the fabric of the present invention is a PET polymer
  • the process of manufacturing undrawn yarn by melt spinning and the process of drawing the undrawn yarn may be manufactured by a method connected in one process.
  • the specific conditions or the progress method of each step is directly or indirectly reflected in the physical properties of the polyester yarn can be produced a polyester yarn that can be effectively used in the fabric for the air bag of the present invention.
  • the high strength high modulus low modulus polyester yarn is 270 to 320 ° using a high viscosity polymer containing at least 90 mol% polyethylene terephthalate and intrinsic viscosity of at least 1.05 dl / g Melt spinning at a low temperature of C to produce a polyester non-drawn yarn, and the polyester non-drawn yarn can be prepared by a method comprising the step of stretching under the draw ratio conditions of 4.8 to 6.7.
  • the high viscosity PET polymer having a low carboxyl end group (CEG) content preferably 30 meq / kg or less melt melt spinning under low temperature conditions, more preferably under low temperature / low speed conditions, the intrinsic viscosity of the yarn It is possible to suppress the degradation and increase the CEG content to the maximum, and to maintain the excellent mechanical properties of the yarn and at the same time secure high elongation characteristics. Furthermore, in the subsequent drawing process, the drawing is carried out under optimized drawing ratio conditions of 4.8 to 6.7 to suppress the lowering of yarn elongation as much as possible, thereby producing polyester yarns having high strength and low modulus of low modulus to effectively fabricate airbags. Applicable
  • melt spinning process is performed at a high temperature, for example,
  • the temperature exceeds 320 ° C.
  • thermal decomposition of the PET polymer occurs in a large amount, and the intrinsic viscosity and the increase of the CEG content may be large, which is not preferable.
  • an increase in intramolecular orientation at high temperature may cause a decrease in elongation and increase in modulus.
  • the drawing yarn may be over-stretched, so that cutting or mousse may occur in the drawn yarn. It is difficult to exhibit desirable physical properties for use as an airbag fabric.
  • the polyester produced therefrom Since the strength of the yarn may be partially lowered, it is possible to prepare a polyester yarn of high strength, high elongation low modulus, which is preferably suitable for application to airbag fabrics, etc., preferably by carrying out the stretching process under an elongation ratio of 4.8 or more.
  • the relaxation rate may be 16% or less or 1% to 16%, preferably 10% or less or 1% to 10%, more preferably T or less or 1.1% to 7%.
  • the lower limit of the relaxation rate may be selected in a range capable of expressing sufficient shrinkage in the yarn, for example, may be 1% or more. In some cases, if the relaxation rate is too small, for example, less than 1%, it may be difficult to manufacture high elongation low mole fibers as the formation of high fiber orientation as well as under high draw ratio conditions. In addition, this relaxation
  • a method for producing an airbag fabric using a polyester yarn comprises the steps of weaving the dough for airbags using a polyester yarn having a fineness of 300 to 700 denier, refining the woven fabric for airbags, and heat-setting the refined fabric It may include a step.
  • the polyester yarn may be manufactured as a final airbag fabric through a conventional weaving method, refining and tentering process.
  • the weaving form of the fabric is not limited to a specific form and the plain weave type
  • the fabric for the airbag of the present invention can be produced through a beaming, weaving, refining, and heat setting process using the polyester yarn as a weft and warp yarn.
  • the fabric can be produced using a conventional weaving machine, and is not limited to using any particular loom.
  • plain weave fabrics can be made using Rapier Loom, Air Jet Loom or Water Jet Loom, and 0PW fabrics are Jacquard loom. Loom).
  • the present invention by using a polyester yarn having a high shrinkage of high strength and high elongation compared to the conventional polyester yarn, it is possible to perform a heat treatment process at a higher temperature than conventional.
  • the present invention undergoes a process of refining and heat-setting the woven raw material, and expresses excellent physical properties as an airbag fabric and maintains the physical properties of the fabric even after prolonged high temperature heat treatment. It is also desirable to maintain the feed (OF) at a level of 1.5-6.0% and to treat the heat setting process about two to three times in a row.
  • the vulcanization temperature is hardened at 140 to 210 ° C.
  • the vulcanization temperature should be at least 140 ° C in terms of maintaining mechanical properties such as tear strength of the fabric. , It should be less than 210 ° C in terms of lecture.
  • the heat treatment process may be performed in multiple stages, for example, after performing the first heat treatment process at 150 to 170 ° C., the second heat treatment at ⁇ 70 to 190 ° C. After performing the process, the third heat treatment may be performed at 190 to 210 ° C.
  • the optimized shrinkage characteristics of the polyester yarn itself can provide more morphological stability, air barrier effect, ductility improvement, and tear strength improvement effect. Can be.
  • the curing time at the vulcanization temperature is 30 to 120 seconds, preferably 35 to 100 seconds, and most preferably 40 to 90 seconds.
  • the curing time is less than 30 seconds, there is a problem that the hardening of the coating layer due to the rubber component is not effectively performed and the mechanical properties of the fabric are lowered, so that the coating is peeled off, and the curing time is greater than 120 seconds. Due to the increase in the stiffness and thickness of the final fabric is produced a problem of poor folding properties.
  • the airbag fabric of the present invention can be coated on the one or both sides of the fabric by the rubber component as described above, the coating layer of the rubber component can be applied by knife coating method, doctor blade method, or spray coating method. However, this also is not limited to the above-mentioned method.
  • the coated airbag fabric may be manufactured in the form of an airbag cushion having a predetermined shape while cutting and sewing.
  • the airbag is not limited to a particular form and may be manufactured in a general form.
  • a vehicle airbag comprising the polyester fabric described above.
  • an airbag system including the above airbag is provided, and the airbag system may be provided with a conventional apparatus well known to those skilled in the art.
  • the airbag may be largely classified into a frontal airbag and a side curtain airbag.
  • the frontal airbag includes a driver's seat, a passenger seat, a side protection, a knee protection, ankle protection, a pedestrian protection airbag, and the side curtain type airbag protects a passenger in case of a side stone accident or rollover of an automobile.
  • the airbag of the present invention includes both a frontal airbag and a side curtain airbag.
  • polyester fabric having excellent energy absorption performance and the like, and a vehicle airbag obtained using the same.
  • These polyester fabrics use low modulus, high strength and high elongation polyester yarns to achieve heat shrinkage even through high temperature heat treatment process.
  • it is possible to secure excellent folding properties and flexibility at the same time. Can be protected safely.
  • the polyester fabric of the present invention can be used very preferably for the production of vehicle airbags.
  • Figure 1 shows an example of the strength and elongation curve of a general fiber, the area of this elongation curve can be defined as toughness (breaking days, J / m 3 ).
  • Figure 2 is a schematic diagram showing a scrub resistance measuring apparatus according to the International Organization for Standardization ISO 5981.
  • Figure 3 is a schematic diagram showing a tear strength measurement apparatus and a measuring method according to the test specification for fabric fabric E668992 for Autoliv airbag.
  • Figure 4 is a schematic diagram showing the measuring device and measuring method of the bark strength according to the fabric specification E668992 test standard for Autoliv airbag.
  • Example 5 is a graph showing the tear strength in the warp direction and the weft direction of the polyester fabric according to Example 5 before and after aging (at room temperature, 25 ° C.) and after heat aging at 110 ° C. for 3,000 hours.
  • FIG. 6 is a graph of bark strength in the warp direction and the weft direction of the polyester fabric according to Example 5 measured after heat aging for 3,000 hours before aging (at room temperature, 25 ° C.) and 110 ° C.
  • FIG. 7 is a graph showing the tear strength in the warp and weft directions before and after aging (at room temperature, 25 ° C.) and after heat aging at 110 ° C. for a polyester fabric according to Comparative Example 5 of the present invention.
  • 8 is a graph showing the bark strength in the warp direction and the weft direction of the polyester fabric according to Comparative Example 5 measured after heat aging for 3,000 hours before aging (at room temperature, 25 ° C) and 110 ° C.
  • FIG. 9 is a warp and weft direction measured before and after aging (normal temperature, 25 ° C.) and after aging for 3,000 hours under 65 ° C. and 95% RH conditions for a polyester fabric according to Example 5 of the present invention.
  • Example 10 is a bark strength of the warp direction and the weft direction of the polyester fabric according to Example 5 measured after wet aging for 3,000 hours before aging (at room temperature, 25 ° C) and under conditions of 65 "C and 95 RH. It is a graph.
  • FIG. 11 is a warp and weft direction of the polyester fabric according to Comparative Example 5 before and after aging (at room temperature, 25 ° C.) and after aging for 3, 000 hours at 65 ° C. and 95% RH.
  • Example 3-5 is merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
  • Example 3-5
  • the liquid silicone coating agent has a viscosity of 55,000 mPa's measured at room temperature (25 ° C.), and the total coating agent with the silicone rubber (LSR) resin 0.65% of 1 3 5-tris (trimethoxysilylpropyl) isocyanate as an adhesion promoter with respect to 100 parts by weight of the total weight, and 0.65 wt% of a silicone crosslinking agent having two or more semi-amorphous silicon hydride functional groups as a crosslinking agent. will be.
  • LSR silicone rubber
  • the physical properties of the modulus, tensile strength, cutting elongation, dry heat shrinkage at the intrinsic viscosity, toughness, elongation 1% and 2% of the polyester yarn is as shown in Table 1 below, the physical properties of the yarn (25) ° CX 65% RH).
  • the warp and weft density of the fabric, weaving form, heat treatment temperature, rubber components, resin coating amount is as shown in Table 1, the remaining conditions were in accordance with the conventional conditions for the production of polyester fabric for airbags.
  • PET content (mol 100 100 100 100 100 100 100 Intrinsic viscosity of yarn (dl / g) 1.03 1.05 1.10 1.05 1.10 Toughness of yarn
  • each of the upper and lower portions of the specimen was placed on the upper and lower bite surfaces of the device according to the fabric specification E668992 test specification for an Autoliv airbag. Between the left and right spaces of the jaw face, that is, as shown in Fig. 3, A and B were positioned at the intermediate point of the bite surface. Thereafter, the spacing of the jaw face is based on 100 mm, respectively, in the opposite direction, ie with the upper bite device moving upwards and the lower material device moving downwards at 200 mm / rain. The strength at which the fabric broke was measured.
  • PTSRI wa PTS 30 oo wa / PTS wa [Calculation 2 ]
  • FIG. 4 is a view showing the measuring device and measuring method of such bark strength.
  • each specimen was cut to exactly 1/2 size so that the longitudinal length of the specimen was 85mm, and then the two specimens cut to 1/2 size were combined.
  • sewing was performed at a point where the longitudinal length of the combined specimens was 15 mm, that is, at a point of 30 to 50ea / 100 mm using nylon 66 sewing thread (840D to 1260D) at points C and D of FIG. 4.
  • Both sides of the finished specimen were placed between the top and bottom jaw faces in a device according to Fabric Spec E668992 Test Specification for Autoliv Airbags. Thereafter, the spacing of the jaw face is based on 76.2 mm, each moving in the opposite direction, ie with the upper biting device moving upwards and the lower material device moving downwards at 200 mm / min. The strength at which the fabric broke was measured.
  • PSS 3000 we the warp direction bar strength strength index (PSSRI wa ) of the fabric as shown in Equation 3 below and the weft direction bar strength strength index (PSSRI we ) as shown in Equation 4 below were obtained. It was acid-side.
  • PSSRI wa PSS 30 oo wa / PSS wa
  • PSS wa (N) 924 948 963 1013 1042
  • Example 5 and 6 are graphs showing the degree of tear strength in the warp and weft direction and the bark strength in the warp and weft direction of the fabric heat-treated at 110 ° C for 3,000 hours according to Example 5 compared to room temperature.
  • the polyester fabric of Example 5 shows excellent tear strength and bark strength even after 3,000 hours. This means that even if the airbag cushion is stored in the car for a long time, the bursting of the cushion sewing portion and the tearing of the fabric will not occur when the airbag cushion is developed by the car stratification, thereby protecting the passengers safely due to the car crash. There is a big meaning as a measure.
  • Figures 7 and 8 are graphs showing the degree of tear strength in the warp and weft direction and the bark strength in the warp and weft direction of the fabric heat-treated for 3 000 hours at 110 ° C according to Comparative Example 5 compared to room temperature to be. But As shown in Figure 7 and 8, the polyester fabric of Comparative Example 5 has a large drop in physical properties as the heat treatment time is increased, the tear strength and bark strength of only about 723 ⁇ 4 ⁇ 75 »compared to room temperature at the end of the final 3,000 hours Notice the value.
  • the polyester fabric using the high strength, high modulus low modulus yarn can show a very excellent performance in terms of protecting the safety of passengers in the event of car stratification even in the case of high temperature and long standing when applied as an airbag cushion.
  • the polyester fabric produced according to Examples 1 to 5 after the heat treatment under high temperature and high humidity conditions for a long time, tear strength retention index (PWTSRI: Polyester Wet Tearing Strength Retention Index) and bark strength retention index (PWSSRI: Polyester Wet Seam Strength Retention Index) was measured by the following method, and measured physical property values are shown in Table 3 below.
  • PWTSRI ffa PWTS 30 oo wa / PWTS wa
  • PWTSRI we PWTS 300 o w 7 PWTS we ''
  • the bark strength before and after heat treatment of the coated fabric was measured according to the fabric specification E668992 test specification for the Autoliv airbag.
  • PWSSRI wa PWSS 30 oo wa / PWSS wa
  • 9 and 10 show the tear strength of the warp and weft direction and the bark strength of the warp and weft direction of the fabric woven at a high temperature and high humidity (Wet) for 3,000 hours under 65 ° C. and 95% RH conditions according to Example 5. This graph shows how much you can maintain. 9 and 10, the polyester fabric of Example 5 shows excellent tear strength and bark strength even after 3,000 hours. This is because even if the airbag cushion is stored in the car for a long time under high temperature and high humidity conditions, when the airbag cushion is developed by the car stratification, the phenomenon of bursting of the cushion sewing part and the tearing of the fabric do not occur. It is a great measure of safety for passengers.
  • Figure 11 and Figure 12 is 65 ° C and 95% RH conditions according to Comparative Example 5 It is a graph showing the degree of tear strength in the warp and weft direction and the bark strength in the warp and weft direction of the fabric after hot and humid aging for 3,000 hours.
  • the polyester fabric of Comparative Example 5 has a large drop in physical properties as the heat treatment time is increased, and only about 72% to 753 ⁇ 4> of room temperature when the final 3,000 hours have elapsed. It can be seen that the tear strength and the bark strength values.
  • F represents the load applied when the length of the polyester fabric is increased by dl
  • dl represents the elongated length of the polyester fabric.
  • the toughness of the fabric was measured with an uncoated fabric before coating treatment.
  • the deactivation resistance of the fabric was measured at room temperature (25 ° C) and 90 ° C, respectively, by the method according to the American Society for Testing and Materials, ASTM D 6479.
  • Fabric shrinkage in the weft and weft directions was measured according to the American Society for Testing and Materials, ASTM D 1776. First, after cutting the specimen with an uncoated fabric before coating, mark 20 cm, the length before shrinking, in the warp and weft directions. The shrinkage length of the specimens heat-treated in the chamber at 149 ° C. for 1 hour was measured to measure the fabric shrinkage ratio ⁇ (length before shrinkage-length after shrinkage) / length before shrinkage X 100% ⁇ in the warp and weft directions.
  • the ductility of the fabric was measured by the Circular Bend method.
  • the cantilever method can be applied as a method of measuring the stiffness, and the stiffness can be measured by measuring the bend length of the fabric using a cantilever measuring device, which is a test bench that is inclined at an angle to give a bend to the fabric.
  • the thickness of uncoated fabric before coating treatment was measured according to the American Society for Testing and Materials, ASTM D 1777.
  • the scrub resistance measurement is measured by measuring the total number of reciprocating motions of the wearer under a pressure force of 10 N. If the coating layer does not peel off after every 3 ⁇ 4 stroke, it is "passed” and continues. By doing a reciprocating motion, the coating layer is peeled off and stops the reciprocating motion as "fail". At this time, the number of times when the coating was peeled off was measured.
  • PET content 100 100 100 100 100 100 100 100 Intrinsic viscosity of yarn (dl / g) 0.57 0.59 0.59 0.57 0.61 Toughness of yarn
  • PWTSRI we 0.64 0.67 0.66 0.67 0.71 PWSS "(N) 502 505 509 648 650
  • 11 and 12 show the tear strength and the bark strength of the warp direction and the weft direction, respectively, measured after Wet aging for 3,000 hours under 25 ° C), 65 ° C. and 95% RH.
  • Toughness of 3.90 to 5.95 kJ / m 3 showed excellent mechanical properties capable of withstanding the hot-high pressure inflator gas during airbag deployment.
  • the fabric has very excellent characteristics of the shrinkage of the fabric in the warp direction and the weft direction of 0.3% to 0.5% and 0.3% to 0.5%, respectively.
  • the polyester fabrics of Examples 1 to 5 have an excellent optimum range of 0.63 to 1.22 kgf, and thus have excellent foldability and excellent storage stability as well as excellent shape stability.
  • the polyester fabrics of Examples 1 to 5 using high-strength, low-modulus yarn, the cover factor of the fabric is 2,081 to 2, 226, and the desorption resistance values at 25 ° C and 90 ° C, respectively
  • the seal slipping at the seam area of the cushion during airbag cushion deployment is greatly improved, and the airtightness and energy absorption performance of the cushion is further improved. It can be seen that it can be improved.
  • the fabrics of Comparative Examples 1 to 5 show a cover factor similar to that of the fabrics of Examples 1 to 5, but the sliding resistance values at 25 ° C. and 90 ° C. are 215 N to 250 N and 198 N, respectively. It is remarkably dropped to 230 N, and when the airbag cushion is deployed, the bark sliding phenomenon occurs in the cushion seam seam, which can be a big problem for the safety of the customer.
  • Experimental Example 1
  • Example 1 to 5 and Comparative Examples 1 to 5 an air-coated cushion was manufactured using a non-coated fabric not coated with a polyester coated chopped cloth, which was subjected to a coating process, as shown in Table 9 below.
  • DAB driver airbag
  • a vehicle airbag was fabricated with a passenger airbag cushion assembly.
  • three heat treatment conditions under static expansion room temperature: 25 ° CX 4 hr oven allowed to stand, Hot:: 85 ° C x 4 hr oven left, Cold -30 ° C x 4 hr oven left
  • Performance A static test was conducted.
  • the upper limit test (upper limit test) was carried out by manufacturing the front airbag hole in the same manner as in Experimental Example 1 except that the cushion assembly specifications and inflator pressure as shown in Table 8 below, the evaluation result Is as shown in Table 10 below.
  • PAB 380 740 Pass Pass Pass Example 5 PAB 380 740 Pass Pass Pass Table 9 and Table As shown in FIG. 10, three heat treatments were performed for vehicle airbags comprising the polyester fabrics of Examples 1 to 5, each of which optimized the tear strength and the bark strength range by using a polyester yarn in a specific fineness range according to the present invention. After leaving in the oven under temperature conditions, both static test and upper limit test were conducted, fabric tearing, sewing pinholes, fabric carbonization, etc. It can be seen that they do not occur and all have excellent performance as vehicle airbags.
  • the static deployment test is the most basic deployment test in which an initial airbag cushion is designed and evaluated, and is evaluated only in a state where the airbag cushion is installed, and the normal temperature that the inflator can produce. And evaluation under development pressure.
  • the evaluation proceeding to the next step is the upper limit test.
  • the upper limit test is conducted at the highest temperature and development pressure that the inflator can produce, and is actually at this stage because it is conducted at the darkest (high temperature and high pressure) conditions. In many cases, the performance is not satisfied.
  • the static test and the upper limit test must be evaluated as "Pass" to be mass-produced as an airbag cushion.
  • the fabric tearing occurs because the physical properties of the polyester yarn and the fabric itself are very low. (pin hole) generation, lack of friction resistance, it can be confirmed that due to the occurrence of the carbonization due to the phenomenon. Therefore, the airbag fabric of Comparative Examples 1 to 5 may cause a great risk to the airbag function due to airbag rupture, etc. when applied as an actual vehicle airbag cushion.
  • the airbag fabric of Comparative Examples 1 to 5 may cause a great risk to the airbag function due to airbag rupture, etc. when applied as an actual vehicle airbag cushion.
  • even under short heat treatment conditions of room temperature, high temperature, and low temperature if a car stratification accident occurs when a fabric that does not satisfy the performance as an airbag cushion is stored for a long time at high temperature, passenger safety is not guaranteed at all. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

본 발명은 에어백용 원단 및 그의 제조방법에 관한 것으로, 좀더 상세하게는 고강력 고신율 및 저모듈러스의 폴리에스테르 원사를 포함하여 장기간의 다습한 열처리 이후에도 강인성 및 에너지 흡수 성능이 우수한 폴리에스테르 원단 및 그의 제조 방법, 이를 포함하는 차량용 에어백에 관한 것이다. 본 발명의 폴리에스테르 원단은 섬도가 300 내지 700 데니어인 폴리에스테르 원사를 포함하고, 장시간의 고온 및 다습 조건 하에서 경사방향 및 위사방향의 인열강도 및 봉목강도 지수를 각각 소정의 범위로 최적화하여 유지함으로써, 승객에게 가해지는 충격을 최소화하여 탑승자를 안전하게 보호할 수 있다.

Description

【명세서】
【발명의 명칭】
폴리에스테르 원단 및 그의 제조 방법
【기술분야】
본 발명은 에어백용 원단 및 그의 제조방법에 관한 것으로, 좀더 상세하게는 고강력 고신율 및 저모들러스의 폴리에스테르 원사를 포함하여 장기간의 고온 및 다습한 열처리 이후에도 강인성 및 에너지 흡수 성능이 우수한 폴리에스테르 원단 및 그의 제조 방법, 이를 포함하는 차량용 에어백에 관한 것이다.
【배경기술】
일반적으로 에어백 (air bag)은, 주행중인 차량이 약 40 km/h 이상의 속도에서 정면의 층돌시, 차량에 가해지는 층돌충격을 층격감지센서에서 감지한 후, 화약을 폭발시켜 에어백 쿠션 내부로 가스를 공급하여 팽창시킴으로써, 운전자 및 승객을 보호하는 장치를 말한다.
에어백용 원단으로서 요구되는 항목은 층돌시에 원활하게 전개되기 위한 저통기성, 에어백 자체의 손상 및 파열을 막기 위한 고강력, 고내열성 및 승객에게 가해지는 층격을 줄이기 위한 유연성 등이 있다.
특히, 자동차에 사용되는 에어백은 일정한 형태로 제조된 후, 그 부피를 최소화하기 위하여 접힌 상태로 자동차의 핸들이나 자동차 측면 유리창 또는 측면 구조물 등에 장착되어 접힌 상태를 유지하였다가 인플레이터 등이 작동시 에어백이 팽창되어 전개될 수 있도록 한다.
따라서, 자동차 장착시 에어백의 폴딩성 및 패키지성을 효과적으로 유지하며, 에어백 자체의 손상 및 파열을 막고 우수한 에어백 쿠션 전개 성능을 발휘하고, 승객에게 가해지는 충격을 최소화하기 위해서는, 에어백 원단의 우수한 기계적 물성과 함께 폴딩성 및 승객에게 가해지는 충격을 즐이기 위한 유연성이 매우 중요하다. 그렇지만, 승객의 안전을 위하여 우수한 공기 차단효과 및 유연성을 동시에 유지하며, 에어백이 받는 층격에 충분히 견디고 자동차내에 효과적으로 장착되어 사용할 수 에어백용 원단은 제안되어 있지 않은 상황이다.
종래에는 나일론 66 등의 폴리아미드 섬유가 에어백용 원사의 재료로 사용되고 있으나 나일론 66은 내층격성이 우수하지만 폴리에스테르 섬유에 비해 내습열성, 내광성, 형태안정성의 측면에서 뒤떨어지고 원료 가격이 매우 높은 단점이 있다.
한편, 일본특허공개공보 평 04ᅳ 214437호에는 이러한 결점이 경감되는 폴리에스테르 섬유의 사용이 제안되어 있다. 그러나, 이같이 기존의 폴리에스테로 원사를 사용하여 에어백을 제조하는 경우에는 높은 강연도 (stiffness)로 인해 자동차내에 장착시 좁은 공간에 수납하기 어렵고, 고탄성율과 저신율로 인해 고온의 열처리 등에서 과도한 열수축 발생하며, 고온의 가혹 조건 하에서 층분한 기계적 물성 및 전개 성능을 유지하는 데 한계가 있어 왔다.
따라서, 차량용 에어백용 원단으로 사용하기에 적합하게 우수한 기계적 물성 및 공기차단 효과를 유지하며, 승객에게 가해지는 층격을 줄이기 위한 유연성, 수납성, 및 장시간 수납상태로 존재하게 되는 에어백 쿠션의 특징상, 장기간의 고온 및 다습한 가혹 조건 하에서도 우수한 물성을 유지하는 특성을 갖는 섬유 원단 개발에 대한 연구가 필요하다.
[발명의 내용]
【해결하려는 과제】
본 발명은 에어백용 원단에 사용 가능하도록 우수한 기계적 물성, 유연성, 수납성을 확보하며, 장시간의 고온 및 다습한 가혹 조건 하에서 충분한 성능을 유지하는 폴리에스테르 원단을 제공하고자 한다.
본 발명은 또한, 상기 ¾리에스테르 원단을 제조하는 방법을 제공하고자 한다.
본 발명은 또한 상기 폴리에스테르 원단을 포함하는 차량용 에어백을 제공하고자 한다ᅳ
[과제의 해결 수단】
본 발명은 섬도가 300 내지 700 데니어인 폴리에스테르 원사를 포함하고, 하기 계산삭 1에 나타낸 바와 같은 원단의 경사방향 PTSRIwa 지수가 0.8 이상이고, 하기 계산식 2에 나타낸 바와 같은 원단의 위사방향 PTSRIwe 지수가 0.8 이상이고, 하기 계산식 3에 나타낸 바와 같은 원단의 경사방향 PSSRIwa 지수가 0.8 이상이고, 하기 계산식 4에 나타낸 바와 같은 원단의 위사방향 PSSRIwe 지수가 0.8 이상인 폴리에스테르 원단을 제공한다. [계산식 1]
PTSRIwa = PTS30oowa/PTSffa
[계산식 2]
PTSRIwe = PTS30oow7PTSwe
[계산식 3]
PSSRIwa = PSS300owa/PSSwa
[계산식 4]
PSSRIwe = PSS30oow7PSSwe
상기 식 중에서,
PTSRIwa 및 PTSRIwe는 각각 110 °C에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 유지 지수 (PTSRI: Polyester Tearing Strength Retention Index)를 나타낸 것이고,
PSSRIffa 및 PSSRIwe는 각각 110 °C에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 유지 지수 (PSSRI: Polyester Seam Strength Retention Index)를 나타낸 것이고,
PTSwa 및 PTSwe는 각각 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PTS300owa 및 ^¾00(^는 각각 110 °C에서 3,000시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PSSwa 및 PSSwe는 각각 오토리브 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이고'
PSS30oowa 및 ?3¾00(^는 각각 110 °C에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이다. 본 발명은 또한, 섬도가 300 내지 700 데니어인 폴리에스테르 원사를 포함하고, 하기 계산식 5에 나타낸 바와 같은 원단의 경사방향 PWTSRIwa 지수가 0.83 이상이고, 하기 계산식 6에 나타낸 바와 같은 원단의 위사방향 PWTSRIffe 지수가 0.83 이상이고, 하기 계산식 7에 나타낸 바와 같은 원단의 경사방향 PWSSRIwa 지수가 0.83 이상이고, 하기 계산식 8에 나타낸 바와 같은 원단의 위사방향 PWSSRIwe 지수가 0.83 이상인 폴리에스테르 원단을 제공한다.
[계산식 5]
PWTSRIwa = P TS30oowa/PWTSwa
[계산식 6]
PWTSRIwe = PWTS30oow7PWTSffe
[계산식 7] '
PWSSRIwa = PWSS30oowa/PWSSwa
[계산식 8]
PWSSRIwe = PWSS30oow7PWSSwe
상기 식 중에서,
PWTSRIwa 및 PWTSRIwe는 각각 65 °C 및 95 %RH 조건 '하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 유지 지수 (PWTSRI: Polyester Tearing Strength Retention Index)를 나타낸 것이고,
PWSSRIwa 및 PWSSRIwe는 각각 65 ° 및 95 RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (AutoUv) 에어백용 원단.스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 유지 지수 (PWSSRI: Polyester Seam Strength Retention Index)를 나타낸 것이고, PWTSwa 및 PWTSwe는 각각 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PWTS30oowa 및 ? ¾00(^는 각각 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고, PWSSwa 및 PWSSwe는 각각 오토리브 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이고,
PWSS30oowa 및 ?¥3 00(^는 각각 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이다. 본 발명은 또한, 섬도가 300 내지 700 데니어인 폴리에스테르 원사로 에어백용 생지를 제직하는 단계, 상기 제직된 에어백용 생지를 정련하는 단계, 및 상기 정련된 직물을 텐터링하는 단계를 포함하는 상기 에어백용 폴리에스테르 원단의 제조 방법을 제공한다.
본 발명은 또한, 상기 에어백용 폴리에스테르 원단을 포함하는 차량용 에어백을 제공한다. 이하, 발명의 구체적인 구현예에 따른 폴리에스테르 원단, 그의 제조 방법, 및 이를 포함하는 차량용 에어백에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명에 대한 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함'' 또는
"함유 "라 함은 어떤 구성 요소 (또는 구성 성분)를 별다론 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
본 발명에서 에어백용 원단이라 함은 자동차용 에어백의 제조에 사용되는 직물 또는 부직포 등을 말하는 것으로, 일반적인 에어백용 원단으로는 래피어 직기나 에어젯 직기로 제직된 나일론 66 평직물 또는 나일론 66 부직포를 사용하고 있으나, 본 발명의 에어백용 원단은 폴리에스테르 원사를 사용하여 형태안정성, 강인성, 공기투과도, 강연도 등의 기본적인 물성이 우수한 특징을 갖는다.
다만, 종래의 나일론 66 등 폴리아미드 섬유 대신에 폴리에스테르를 에어백용 원사로 적용하기 위해서는, 기존에 폴리에스테르 원사의 높은 모들러스와 강연도 등에 따른 폴딩성 저하 및 낮은 용융 열용량으로부터 기인한 장기간의 고온 및 다습한 열처리 조건 하에서 물성 저하, 이에 따른 전개 성능 저하를 극복할 수 있어야 한다.
폴리에스테르는 분자구조상 나일론 둥에 비해 강연성 (stiffness)이 높은 구조를 가지게 되어 높은 모들러스 (high modulus)의 특성을 갖게 된다. 이로 인해, 에어백용 원단으로 사용하여 자동차에 장착할 경우 수납성 (packing)이 현저히 떨어지게 된다. 또한, 폴리에스테르 분자쇄내의 카르복실 말단기 (Carboxyl End Group, 이하, "CEG"라 함)는 고온 및 고습 조건에서 에스테르기 (ester bond)를 공격하여 분자쇄 절단을 가져와 에이징후 물성을 저하시키는 원인이 된다.
이에 따라, 본 발명은 고강력 고신율의 저모듈러스 폴리에스테르 원사를 사용하여 원사의 섬도 및 원단의 인열강도, 봉목강도 등의 물성 범위를 최적화함으로써, 강연도를 현저히 낮추면서도 우수한 기계적 물성 및 공기 차단 성능 등을 유지할 수 있어 에어백용 원단으로서 향상된 물성 개선 효과를 얻을 수 있다.
특히, 본 발명자들의 실험 결과, 소정의 특성을 갖는 폴리에스테르 원단으로 에어백 쿠션을 제조함에 따라, 보다 향상된 폴딩성, 형태안정성, 및 공기 차단 효과를 나타내어 에어백용 원단으로 사용시 자동차 장착 등에서 보다 우수한 수납성 (packing) 및 고온 고습의 가흑 조건 하에서도 우수한 기계적 물성, 공기 유출 방지, 기밀성 등을 유지할 수 있음이 밝혀졌다.
이에 발명의 일 구현예에 따라, 소정의 특성을 갖는 플리에스테르 원단이 제공된다. 이러한 플리에스테르 원단, 즉, 에어백용 폴리에스테르 원단은 섬도가 300 내지 700 데니어인 폴리에스테르 원사를 포함하고, 하기 계산식 1에 나타낸 바와 같은 원단의 경사방향 PTSRIwa 지수가 0.8 이상이고, 하기 계산식 2에 나타낸 바와 같은 원단의 위사방향 PTSRIwe 지수가 0.8 이상이고, 하기 계산식 3에 나타낸 바와 같은 원단의 경사방향 PSSRIwa 지수가 0.8 이상이고, 하기 계산식 4에 나타낸 바와 같은 원단의 위사방향 PSSRIwe 지수가 0.8 이상이 될 수 있다. [계산식 1]
PTSRIwa = PTS30oowa/PTSwa
[계산식 2]
PTSRIwe = PTS3ooow7PTSwe
[계산식 3]
PSSRIwa = PSS30oowa/PSSwa
[계산식 4]
PSSRIwe = PSS30oow7PSSwe
상기 식 중에서,
PTSRIwa 및 PTSRIwe는 각각 110 °C에서 3,000시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 유지 지수 (PTSRI: Polyester Tearing Strength Retention Index)를 나타낸 것이고,
PSSRIwa 및 ! ! ^는 각각 110 °C에서 3, 000시간 동안 열처리한후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992시험규격에 따라 측겋한 원단의 경사방향 및 위사방향의 봉목강도 유지 지수 (PSSRI: Polyester Seam Strength Retention Index)를 나타낸 것이고,
PTSwa 및 PTSwe는 각각 오토리브 (Autoliv) 에어백용 원단 스펙
E668992시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PTS30oowa 및 ^ 000 는 각각 110 °C에서 3,000시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PSSwa 및 PSSwe는 각각오토리브 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의
봉목강도 (N)이고,
PSS30oowa 및 PSS3000 we는 각각 110 °C에서 3,000시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이다.
또한, 본 발명의 폴리에스테르 원단은, 하기 계산식 5에 나타낸 바와 같은 원단의 경사방향 PWTSRIwa 지수가 0.83 이상이고, 하기 계산식 6에 나타낸 바와 같은 원단의 위사방향 PWTSRIwe 지수가 0.83 이상이고, 하기 계산식 7에 나타낸 바와 같은 원단의 경사방향 PWSSRIwa 지수가 0.83 이상이고, 하기 계산식 8에 나타낸 바와 같은 원단의 위사방향 PWSSRIwe 지수가 0.83 이상이 될 수 있다.
[계산식 5]
PWTSRIwa = PWTS30oowa/PffTSwa
[계산식 6]
PWTSRIwe = PWTS30oowe/PWTSwe
[계산식 7]
PWSSRIwa = PWSS30oowa/PWSSwa
[계산식 8]
PWSSRIwe = PWSS30oow7PWSSwe
상기 식 중에서,
PWTSRIwa 및 PWTSRIwe는 각각 65 °C ¾ 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 유지 지수 (PWTSRI: Polyester Tearing Strength Retention Index)를 나타낸 것이고, ᅳ
PWSSRIwa 및 ? ^는 각각 65 °C 및 95 %RH 조건 하에서 3, 000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 유지 지수 (PWSSRI: Polyester Seam Strength Retention Index)를 나타낸 것이고, PWTSwa 및 PWTSwe는 각각 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
、 PWTS30oowa 및 ?¥1¾000^는 각각 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고, P SSwa 및 PWSSwe는 각각 오토리 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이고,
PWSS30oowa 및 ? 3¾00(^는 각각 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이다. 본 발명자들의 실험 결과, 기존의 폴리에스테르 원사에 비해 고강력 고신율의 낮은 모들러스를 갖는 폴리에스테르 원사를 사용하여 원단의 인열강、도 및 봉목강도를 최적화함에 따라, 고온 -고압 가스의 에너지를 효과적으로 흡수하고 견딜 수 있는 에어백용 원단이 제공될 수 있음이 밝혀졌다. 특히, 상기 원단은 저섬도 고강력의 폴리에스테르 원사를 포함할 수 있으며, 상기 폴리에스테르 원사는 섬도가 300 내지 700 데니어가 될 수 있다.
특히, 상기 폴리에스테르 원단은 110 °C에서 3,000시간 동안 열처리 후 측정한 상기 계산식 1~4에 나타낸 바와 같은 원단의 PTSRIwa PTSRIwe, PSSRIwa, 및 PSSRIwe 지수는 0.80 이상, 바람직하게는 0.82 이상, 좀더 바람직하게는 0.84 이상이 될 수 있는데, 이는 폴리에스테르 원사와 원단의 물성을 최적화하여 달성할 수 있다. 이러한 원사 및 원단의 물성의 최적화를 통해, 상기 에어백용 폴리에스테르 원단은 기존의 PET 원단에 비해 향상된 강인성 및 에너지 흡수 성능을 확보하고, 높은 강연도 (stiffness) 문제 등을 해결하며 우수한 유연성, 및 수납성을 나타낼 수 있다.
상기 폴리에스테르 원단은 또한, 65 °C 및 95 RH조건 하에서 3,000 시간 동안 열처리 후 측정한 상기 계산식 5~8에 나타낸 바와 같은 원단의 PWTSRIwa PWTS Iwe, PWSSRIwa, 및 PWSSRIwe 지수는 0.83 이상, 바람직하게는 0.85 이상, 좀더 바람직하게는 0.87 이상이 될 수 있는데, 이는 폴리에스테르 원사와 원단의 물성을 최적화하여 달성할 수 있다. 이러한 원사 및 원단의 물성의 최적화를 통해, 상기 에어백용 폴리에스테르 원단은 기존의 PET 원단에 비해 향상된 강인성 및 에너지 흡수 성능을 확보하고, 높은 강연도 (stiffness) 문제 등을 해결하며 우수한 유연성, 및 수납성을 나타낼 수 있다. 본 발명에서는 에어백 작동시 순간적으로 발생하는 충격에너지를 효과적으로 흡수하기 위해서는 원단을 구성하는 원사의 섬도, 인열강도 및 봉목강도를 동시에 최적 범위로 조절함으로써 최종 직물의 기계적 물성 및 폴딩성 등을 함께 높일 수 있다. 에어백 내부의 화약 폭발로 발생하는 배출 가스의 순간적인 층격 에너지를 초기에 직물이 안전하게 흡수하고, 이와 동시에 효과적인 전개가 이뤄지고 우수한 폴딩성을 갖기 위해서는 인열강도 및 봉목강도를 함께 최적화할 필요가 있다. 이때, 본 발명에서 원단의 인열강도 및 봉목강도는 상술한 바와 같은 원단의 인열강도 유지 지수와 봉목강도 유지 지수 범위를 충족시킬 수 있도록 하는 것이 필요하다.
특히, 상기 계산식 1 및 2에서 표현되는 원단의 인열강도 PTSwa,
PTSwe, PTS3000 wa, 및 PTS3000 we, 즉, 열처리 전 상온에서 및 110 °C에서 3,000 시간 동안 열처리 후에 측정한 원단의 인열강도는 각각 20 kgf 이상 또는 20 내지 90 kgf, 바람직하게는 22 kgf 이상 또는 22 내지 88 kgf, 좀더 바람직하게는 25 kgf 이상 또는 25 내지 85 kgf, 더욱 바람직하게는 27 kgf 이상 또는 27 내지 83 kgf 가 될 수 있다. 또한, 상기 계산식 3 및 4에서 표현되는 원단의 봉목강도 PSSwa, PSSwe, PSS30oowa, 및 PSS30oowe, 즉, 열처리 전 상온에서 및 110 °C에서 3,000 시간 동안 열처리 후에 측정한 원단의 봉목강도는 각각 670 N 이상 또는 670 N 내지 1650 N, 바람직하게는 690 N 이상 또는 690 N 내지 1600 N, 좀더 바람직하게는 700 N 이상 또는 700 N 내지 1,600 N, 더욱 바람직하게는 750 N 이상 또는 750 N 내지 1,500 N이 될 수 있다.
또한, 상기 계산식 5 및 6에서 표현되는 원단의 인열강도 PWTSwa, PWTSwe, PWTS3ooowa, 및 PWTS3000 we, 즉, 열처리 전 상온에서 및 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리 후에 측정한 원단의 인열강도는 각각 20 kgf 이상 또는 20 내지 90 kgf, 바람직하게는 22 kgf 이상 또는 22 내지 88 kgf, 좀더 바람직하게는 25 kgf 이상 또는 25 내지 85 kgf, 더욱 바람직하게는 27 kgf 이상 또는 27 내지 83 kgf가 될 수 있다. 또한, 상기 계산식 3 및 4에서 표현되는 원단의 봉목강도 PWSSwa, PWSSwe, PWSS30oowa, 및 PWSS3000 we, 즉, 열처리 전 상온에서 및 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리 후에 측정한 원단의 봉목강도는 각각 670 N 이상 또는 670 N 내지 1650 N, 바람직하게는 690 N 이상 또는 690 N 내지 1600 N, 좀더 바람직하게는 700 N 이상 또는 700 N 내지 1,600 N, 더욱 바람직하게는 750 N 이상 또는 750 N 내지 1,500 N이 될 수 있다.
여기서, 본 발명의 폴리에스테르 원단은 고온-고압의 가스에 의해 급속하게 팽창됨으로 우수한 인열강도 수준이 요구되는데., 상기 에어백용 원단의 파열 강도를 나타내는 인열강도는 코팅 원단 상태에서 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정하였을 때 20 kgf 이상 또는 20 내지 90 kgf, 바람직하게는 22 kgf 이상 또는 22 내지 88 kgf, 좀더 바람직하게는 25 kgf 이상 또는 25 내지 85 kgf, 더욱 바람직하게는 27 kgf 이상 또는 27 내지 83 kgf가 될 수 있다. 다만, 비코팅 원단 상태에서 상기 폴리에스테르 원단의 인열강도는 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정하였을 때, 17 kgf 이상 또는 17 내지 85 kgf, 바람직하게는 20 kgf 이상 또는 20 내지 83 kgf, 좀더 바람직하게는 22 kgf 이상 또는 22 내지 80 kgf, 더욱 바람직하게는 24 kgf 이상 또는 24 내지 78 kgf가 될 수 있다. 여기서, 에어백용 원단의 인열강도가 비코팅 원단 및 코팅 원단 각각에서 상기 하한값, 즉, 각각 17 kgf 및 20 kgf 미만인 경우에는, 에어백의 전개시 에어백의 파열이 발생하여 에어백 기능에 커다란 위험을 초래할 수도 있다. 이러한 원단의 인열강도는 가능한 한 높은 수준으로 유지하는 것이 바람직합니다만, 너무 과도하게 증가하는 경우에는 원단의 활탈저항력 (Edge Comb Resistance)이 낮아지며 에어백 전개시 공기차단성이 급격히 나빠질 수도 있다.
이와 같이 원단의 인열강도를 20 kgf 이상으로 유지함과 동시에 원단의 봉목강도를 670 N 이상으로 유지함으로써, 기본적으로 높은 원단의 강인성과 함께 높은 인열강도 및 봉목강도를 갖출 경우 폴리에스테르 에어백용 원단은 실제 에어백 쿠션 전개시 층분한 에너지 흡수 성능을 확보할 수 있다. 상기 원단의 인열강도 및 봉목강도를 최소값 이상으로 유지하지 못할 경우, 실제 자동차 층돌에 의한 에어백 쿠션 전개시 원단 찢어짐과 봉제부 봉목 미어짐의 원인으로 작용하여 자동차 승객을 안전하게 보호하지 못하여 큰 손상을 입힐 수도 있다 . 본 발명의 폴리에스테르 원단은 열처리 후의 원단의 PTSRIwa PTSRIwe, PSSRIwa, 및 PSSRIwe 지수는 상기 계산식 1~4에 나타낸 바와 같이 0.8 이상으로 유지되어야 하는데, 이는 자동차 층돌에 의한 에어백 전개가 되기 전까지 장기간 동안 고온의 기후 조건에서 자동차 모듈에 수납된 상태로 유지되어 있을 수 있는 에어백 쿠션의 특성상, 에어백 모듈에 장기간 수납되어 있더라도 자동차 층돌에 의한 에어백 전개시 고온-고압의 인플레이터 압력을 에어백 원단이 흡수함으로써, 탑승자를 보호하는 측면에서는 그 수치가 갖는 의미가 중요하며, 만약 0.8 미만의 수치를 나타낼 경우 에어백 모들의 고온의 기후 조건에서 장기간 방치되어서 실제 자동차 충돌에 의한 에어백 전개시 차량 내 승객의 안전을 절대 보호하지 못한 최악의 상황이 일어날 수 있다.
또한, 상기 원단의 열처리 후의 원단의 PWTSRIwa PWTSRIwe, PWSSRIwa, 및 PWSSRIwe 지수는 상기 계산식 5~8에 나타낸 바와 같이 0.83 이상으로 유지되어야 하는데, 이는 자동차 층돌에 의한 에어백 전개가 되기 전까지 장기간 동안 고온 다습한 기후 조건에서 자동차 모듈에 수납된 상태로 유지되어 있을 수 있는 에어백 쿠션의 특성상, 에어백 모들에 장기간 수납되어 있더라도 자동차 층돌에 의한 에어백 전개시 고온-고압의 인플레이터 압력을 에어백 원단이 흡수함으로써 탑승자를 보호하는 측면에서는 그 수치가 갖는 의미가 중요하며, 만약 0.83 미만의 수치를 나타낼 경우 에어백 모듈의 고온 다습한 기후 조건에서 장기간 방치되어서 실제 자동차 층돌에 의한 에어백 전개시 차량 내 승객의 안전을 절대 보호하지 못한 최악의 상황이 일어날 수 있다.
본 발명의 에어백용 폴리에스테르 원단은 하기 계산식 5로 정의되는 강인성 (Toughness)이 3.2 kJ/m3 이상 또는 3.2 kJ/m3 내지 6.5 kJ/m3인 것이 될 수 있다.
[계산식 9] 강인성 (toughness,파단일 ) = J0절단 F , dl 상기 계산식 9에서, F는 폴리에스테르 원단의 길이가 dl만큼 늘어날 때에 가해지는 하중을 나타내고,
dl은 폴리에스테르 원단의 길이가 늘어난 길이를 나타낸다.
상기 폴리에스테르 원단은 기존의 원단에 비해 높은 수준의 강인성 (Toughness, 파단일)을 층족함에 따라 고온-고압의 가스의 에너지를 효과적으로 흡수하고 견딜 수 있다. 이때, 강인성이라 함은 상기 계산식 5로 나타낸 바와 같이 원단이 인장력에 의하여 끊어질 때까지 소비되는 에너지로서, 급격한 층격에 대한 섬유의 저항성을 의미한다. 어떤 섬유가 하중 F에서 그 길이가 I에서 I+dl로 늘어날 경우, 이 때 한 일 (work)은 F . dl이 되므로, 섬유를 절단하는 데 필요한 강인성은 상기 계산식 5와 같다. 즉, 이러한 강인성은 원사 및 원단의 강 -신도 곡선의 단면적을 나타내는 것으로서 (도 1 참조), 원단에 사용되는 원사의 강도 및 신도 값이 높을수록 원단에서 발현되는 강인성은 높은 값을 가지게 된다. 특히, 에어백용 원단의 강인성이 낮아지면 에어백 전개시 고온-고압을 갖는 인플레이터의 순간적인 전개 층격을 층분히 흡수할 수 있는 원단의 저항성이 낮아지기 때문에, 에어백용 원단이 쉽게 찢어지는 결과를 초래하게 된다. 따라서, 본 발명에서 원단의 강인성이, 예를 들어, 3.2 kJ/m3 미만이 될 경우에는 에어백용 원단으로 적용이 어렵게 될 수 있다. 상기 폴리에스테르 원단은 상술한 바와 같이 고강력 고신율의 저모들러스 원사를 사용함으로써, 우수한 활탈저항력 (Edge Comb Resistance)를 확보하여 최종 직물의 기계적 물성, 고온 고압 가스에 대한 에너지 흡수 성능, 및 폴딩성 등을 동시에 향상시킬 수 있다. 특히, 본 발명에 따른 폴리에스테르 원단은 미국재료시험협회규격 ASTM D 6479 방법으로 상온 (25 °C)에서 측정한 활탈저항력이 280 N 이상 또는 280 N 내지 1100 N이 될 수 있다. 또한, 상기 폴리에스테르 원단은 90 °C에서 측정한 활탈저항력이 240 N 이상 또는 240 N내지 1000 N이 될 수 있다. 이 때, 상기 폴리에스테르 원단의 활탈저항력은 상온 (25 °C) 및 90 °C에서 측정시, 각각 280 N 미만 및 240 N 미만인 경우에는 에어백 전개시 에어백 쿠션 봉제부위의 원단 강도가 급격히 나빠짐으로써 실제 에어백 전개시 원단에서 핀홀 (pin hole) 발생과 、봉목 밀림 현상으로 인한 원단 찢어짐 현상이 발생되어 바람직하지 못할 수 있다.
이 때, 상기 폴리에스테르 원단은 경사밀도 및 위사밀도, 즉, 경사방향 및 위사방향의 제직밀도가 각각 36 내지 65가 될 수 있다. 상기 폴리에스테르 원단의 경사밀도 및 위사밀도는 에어백용 원단의 강인성 및 활탈저항력을 확보하는 측면에서는 각각 36 이상이 될 수 있으며, 원단의 폴딩성을 향상시키고 인열강도를 낮추는 측면에서 각각 65 이하가 될 수 있다.
또한, 상기 폴리에스테르 원단에서 기밀성을 위해서는 고압의 공기 등에 의한 인장력에 견뎌서 신장이 최소한으로 되고, 이와 동시에 에어백 작동시 층분한 기계적 물성을 확보하기 위해서는 고온 고압의 가스 배출에서 에너지 흡수 성능이 최대한으로 되는 것이 매우 중요하다. 이에 따라, 상기 원단은 하기 계산식 10에 의하여 원단의 커버팩터가 1,800 내지 2 ,460이 되도록 제직 및 가공함으로써 에어백 전개시 기밀성 및 에너지 흡수 성능을 더욱 좋게 할 수 있다.
[계산식 10]
커버팩터 (CF) 여기서, 상기 원단의 커버팩터가 1,800 미만일 때는 공기 팽창시 공기가 외부로 쉽게 배출되는 문제가 발생할 수 있으며, 상기 원단의 커버팩터가 2, 460을 초과할 경우 에어백 장착시 에어백 쿠션의 수납성 및 폴딩성이 현저히 떨어질 수 있다.
본 발명에 따른 폴리에스테르 원단은 미국재료시험협회규격 ASTM D 1776의 방법으로 측정한 경사방향 및 위사방향의 원단수축율이 각각 1.0% 이하, 바람직하게는 0.8% 이하가 될 수 있으며, 상기 에이징을 실시한 후에 경사방향 및 위사방향의 원단수축율이 각각 1.0% 이하, 바람직하게는 0.8% 이하가 될 수 있다. 여기서, 원단의 형태안정성 측면에서는 경사방향 및 위사방향의 원단수축율이 1.0¾를 초과하지 않는 것이 가장 바람직하다.
상기 폴리에스테르 원단은 전술한 바와 같이, 고강력 저모들러스의 특성 갖는 폴리에스테르 원사를 사용하여 원단의 강인성 및 인열강도를 -유지함과 동시에, 원단의 강연도 (stiffness)를 현저히 낮출 수 있다. 상기 에어백용 원단은 미국재료시험협회규격 ASTM D 4032 방법에 따른 강연도가 2.0 kgf 이하 또는 0.3 내지 2.0 kgf를 나타낼 수 있다. 이같이 기존의 폴리에스테르 원단에 비해 원단의 강연도 (stiffness)를 현저히 낮추게 됨에 따라, 본 발명의 에어백용 원단은 우수한 폴딩성과 유연성, 및 에어백 장착시 향상된 수납성을 나타낼 수 있다. 이같이 기존의 폴리에스테르 원단에 비해 원단의 강연도 (stiffness)를 현저히 낮추게 됨에 따라, 본 발명의 에어백용 원단은 우수한 폴딩성과 유연성, 및 에어백 장착시 향상된 수납성을 나타낼 수 있다.
본 발명의 원단은 에어백용으로 사용하기 위해서는 상기 강연도 범위를 유지하는 것이 바람직하고, 강연도가 너무 낮은 경우에는 에어백 팽창 전개시 층분한 보호 지지 기능을 하지 못할 수도 있으며, 차량 장착시에도 형태 유지 성능이 떨어져 수납성이 저하될 수 있다. 또한, 너무 딱딱한 상태가 되어 접기 어렵게 되어 수납성이 저하되는 것을 방지하고 원단의 변색 현상을 방지하기 위해서는, 상기 강연도는 2.0 kgf 이하가 바람직하고, 특히 460 데니어 미만인 경우에는 0.8 kgf 이하가 바람직하며, 550 데니어 이상인 경우에도 2.0 kgf 이하가 되는 것이 좋다.
상기 폴리에스테르 원단의 미국재료시험협회규격 ASTM D 737 방법에 따른 정적 공기투과도는, 비코팅 원단에 대하여 ΔΡ가 125 pa일 때 10.0 cfm 이하 또는 0.3 내지 10.0 cfm, 바람직하게는 8.0 cfm 이하 또는 0.3 내지 8.0 cfm, 더욱 바람직하게는 5.0 cfm 이하 또는 0.3 내지 5.0 cfm로 될 수 있으며, ΔΡ가 500 pa일 때 14 cfm 이하 또는 4 내지 14 cfm, 바람직하게는 12 cfm 이하 또는 4 내지 12 cfm로 될 수 있다. 또한, 미국재료시험협회규격 ASTM D 6476 방법에 따른 동적 공기투과도는 1,700 mm/s 이하, 바람직하게는 1,600 mm/s 이하 또는 200 내지 1,600 mm/s, 보다 바람직하게는 1,400 mm/s 이하 또는 400 내지 1,400 誦 /s로 될 수 있다. 이때, 정적 공기투과도라 함은 에어백용 원단에 일정한 압력 부여시 원단으로 투과하는 공기량을 의미하는 것으로, 원사의 단섬도 (Denier per Filament)가 작고 원단의 밀도가 높을수톡 낮은 값을 가질 수 있다. 또한, 동적 공기투과도라 함은 30~70 kPa의 평균 순간 차등 압력을 부여할 경우 원단으로의 공기투과 정도를 의미하는 것으로, 정적 공기투과도처럼 원사의 단섬도가 작고 원단의 밀도가 높을수록 낮은 값을 가질 수 있다.
특히, 상기 폴리에스테르 원단의 공가투과도는 원단에 고무성분 코팅층을 포함시킴으로써 현저히 낮출 수 있으며, 거의 0 cfm에 근사한 값의 공기투과도를 확보할 수도 있다. 다만, 이같이 고무성분 코팅을 수행한 경우에, 본 발명의 에어백용 코팅 원단은 미국재료시험협회규격 ASTM D 737 방법에 따른 정적 공기투과도가 ΔΡ가 125 pa일 때 0.1 cfm 이하 또는 0 내지 0.1 cfm, 바람직하게는 0.05 cfm 이하 또는 0 내지 0.05 cfm으로 될 수 있으며, ΔΡ가 500 pa일 때 0.3 cfm 이하 또는 0 내지 0.3 cfm, 바람직하게는 0.1 cfm 이하 또는 0 내지 0.1 cfm으로 될 수 있다.
여기서, 본 발명의 폴리에스테르 원단은 비코팅 원단 및 코팅 원단에 대하여, 각각 상기 정적 공기투과도 범위의 상한값을 초과하거나, 또는 동적 공기투과도 범위의 상한값을 초과하는 경우에는 에어백용 원단의 기밀성을 유지하는 측면에서는 바람직하지 않올 수 있다.
상기 폴리에스테르 원단은 바람직하게는 표면에 코팅 또는 라미네이트된 고무 성분 코팅층을 더욱 포함할 수 있다. 상기 고무성분으로는 분말 (powder)형 실리콘, 액상 (liquid)형 실리콘, 폴리우레탄, 클로로프렌, 네오프렌고무, 및 에멀젼형 실리콘 수지로 이루어진 군에서 선택된 1종 이상을 들 수 있으며, 코팅 고무 성분의 종류는 상기 언급된 블질에만 한정되지는 않는다. 다만, 친환경 및 기계적 특성 측면에서 액상 실리콘 코팅이 바람직하다.
상기 고무성분 코팅층의 단위면적당 코팅량은 20 내지 200 g/m2, 바람직하게는 20 내지 100 g/m2가 되도록 사용할 수 있다. 특히, 0PW(0ne Piece Woven) 타입의 사이드 커튼 에어백용 원단의 경우에 있어서는 상기 코팅량이 30 g/m2 내지 95 g/m2가 바람직하고, 에어백용 평직 원단의 경우는 상기 코팅량이 20 g/m2 내지 50 g/m2 수준이 바람직하다.
또한, 본 발명의 폴리에스테르 원단은 국제표준화기구규격 ISO 5981의 방법에 따른 내스크럽성 횟수가 600 회 이상 또는 600 내지 2, 500 회가 될 수 있다. 특히, 에어백용 원단이 층분한 내스크럽 특성을 갖지 못하는 경우, 고온 다습한 기후 조건에 에어백 쿠션이 모들에 수납된 상태에 있을 경우 실제 자동차 층돌에 의한 에어백 전개시 코팅층이 심하게 벗겨지게 되어 고온-고압의 인플레이터 압축 가스 압력을 에어백 쿠션이 견디지 못하는 상황이 발생될 수 있다. 본 발명의 폴리에스테르 원단은 바람직하게는, 기존의 나일론 66용 액상 실리콘 코팅 약제가 아닌 에어백용 폴리에스테르 원단에 적합한 액상 실리콘 코팅 약제를 적용함으로써 우수한 내스크럽 성능을 만족할 수 있다.
본 발명의 폴리에스테르 원단에 사용 가능한 액상 실리콘 코팅 약제는 기본 (base) 실리콘 고분자의 점도 조절과 함께 폴리에스테르 원단과 실리콘 약제와의 접착력 강화를 위하여, 접착촉진제 및 가교제를 추가로 포함할 수 있다. 이때, 상기 접착 촉진제는 전체 코팅 약제의 총중량 100 중량부에 대하여 약 0.2 내지 8.0 중량부, 바람직하게는 0.5 내지 7.5 중량부를 포함될 수 있으며, 상기 가교제 성분은 약 0.2 내지 8.0 중량부, 바람직하게는 0.5 내지 7.5 중량부를 포함할 수 있다. 상기 접착촉진제로는 1,3,5-트리스 (트리메록시실릴프로필) 이소시아네이트 " 혹은 3ᅳ 글리시독시프로필트리메록시 실란 등올 사용할 수 있으며, 상기 가교제로는 2개 이상의 반웅성 수소화규소 관능기를 갖는 실리콘 가교 결합제를 사용할 수 있다. 또한, 상기 액상 실리콘 코팅 약제는 상온 (25t>)에서 측정한 점도가 30,000 내지 350,000 mPa · s, 바람직하게는 35,000 내지 330,000 mPa- s가 될 수 있다.
상기 코팅원단의 경우 에어백 쿠션으로 적용시 우수한 수납성 및 폴딩성 확보 측면에서뿐만 아니라, 에어백 쿠션 전개시 고온-고압의 인플레이터 가스 압력을 견디면서 강한 마찰에도 견디기 위해서는 층분한 내스크럽성이 필요한데 특히, 에어백 쿠션이 자동차내에서 장기 수납상태로 장착되어 있는 상황에서 시간 경과에 따른 코팅약제 층이 쉽게 벗겨질 경우 에어백전개시에 심각한 원단 손상이 유발되어 자동차 승객의 안전을 확보할 수 없게 된다.
한편, 발명의 다른 구현예에 따라, 소정의 특성을 갖는 폴리에스테르 원사로 제조된 폴리에스테르 원단이 제공된다. 이러한 에어백용 폴리에스테르 원단에 사용되는 폴리에스테르 원사는 저섬도 고강력으로 유지해야 하므로, 섬도가 300 내지 700 데니어로 될 수 있다.
특히, 본 발명은 기존에 고강력, 저신율, 높은 모듈러스를 갖는 폴리에스테르 원사가 아닌 고강력, 고신율, 낮은 모들러스의 특성을 가질 뿐만 아니라, 장기간 동안 고온 다습한 조건 하에서도 물성 저하 없이 우수한 물성을 유지하는 폴리에스테르 원사를 개발하기 위해서 별도의 말단기 봉쇄제, 산화방지제, 가수분해 방지제 등을 폴리에스테르 고분자 칩에 적용할 수 있다. 이같이 별도의 말단기 봉쇄제, 산화방지제, 가수분해 방지제를 추가로 포함하는 폴리에스테르 원사를 사용할 수 있다. 이러한 폴리에스테르 원사를 에어백 제품 (쿠션 /원단)에 적용함으로써, 실제 자동차 충돌에 의한 에어백 쿠션 전개시 고온-고압의 인플레이터 전개 에너지를 흡수할 수 있는 성능이 우수할 뿐만 아니라, 장기간의 고온 다습한 기후 조건에서 에어백 쿠션이 수납된 상태에 있더라도 원단 물성의 저하 없이 우수한 형태안정성과 강인성을 갖는 에어백용 폴리에스테르 원단을 제공할 수 있다.
본 발명의 원단에는 이전에 알려진 폴리에스테르 원사에 비해 보다 향상된 고유점두, 즉, 0.8 dl/g 이상 또는 0.8 내지 1.3 dl/g의 고유점도를 나타내는 원사를 사용할 수 있다. 상기 에어백용 원단이 장기간의 고온 열처리 조건에서 우수한 물성을 유지하기 위해서는, 상기 범위의 고유점도를 갖는 폴리에스테르 원사를 사용하는 것이 바람직하다.
상기 원사의 고유점도는 0.8 dl/g 이상이 될 수 있으며, 높은 고유점도에 의한 폴리에스테르 고분자의 분자량이 증대됨으로써 저연신 조건으로도 고강력의 물성을 발휘할 수 있는 에어백용 원사를 제작할 수 있으며, 이러한 원사의 사용을 통해 에어백용 원단으로 제조시 요구 강력을 만족시킬 수 있어 바람직하다. 그렇지 못할 경우 고연신 조건으로 고강력의 물성을 발현할 수 밖에 없게 되는데 이럴 경우 섬유의 배향도가 상승하여 높은 모듈러스의 물성이 나타나므로, 원단의 우수한 폴딩성 등을 달성하기 어렵다. 따라서, 상기 원사의 고유점도를 0.8 dl/g이상으로 유지하여 저연신을 적용하여 저모들러스 발현이 가능하도록 하는 것이 바람직하다. 또한, 원사 점도가 1.3 dl/g 이상이면 연신시 연신 장력이 상승하여 공정상 문제를 발생시킬 수 있으므로, 1.3 dl/g 이하가 좀더 바람직하다. 특히 , 본 발명의 폴리에스테르 원사는 이같이 높은 정도의 고유점도를 유지함으로써, 저연신으로 낮은 강연도를 제공함과 동시에 에어백용 원단에 층분한 기계적 물성 및 내충격성, 강인성 (toughness), 인열강도, 봉목강도 등을 제공할 수 있는 고강력 특성이 더욱 부여될 수 있다.
이와 동시에, 장기간의 고온 열처리 이후에도 인열강도 및 봉목강도 등의 물성 저하를 방지하기 위해서는 기존의 폴리에스테르 고분자 제법과 달리, 고온의 장시간 열처리에 따른 폴리에스테르 고분자 주쇄의 체인 절단 현상을 방지하기 위하여 말단기 봉쇄제, 가수분해 방지제, 산화방지제 등을 추가로 포함할 수 있다. 이때, 상기 말단기 봉쇄제, 가수분해 방지제, 산화방지제 등은 폴리에스테르 중합체 100 중량부에 대하여 0.1에서 2.0 중량부, 바람직하게는 0.3 내지 1.7 중량부로 포함될 수 있다. 예컨대, 상기 폴리에스테르 고분자는 1차 산화방지제로서 페놀릭아민 (Phenolic amine)계 산화방지제인 Ν,Ν' -핵산 -1,6-디일비스 (3— (3,5-디 -tert-부틸 -4- 하이드록시페닐 -프로피온아미드)를 200 내지 1ᅳ 500 ppm 함유하고, 2차 산화방지제인 N, N ' -트리메틸렌비스 -(3-3, 5-디ᅳ t -부틸 -4- 하이드록시페닐)프로피온아미드)를 0.2 내지 1.0 wt%로 함유할 수 있다. 또한, 가수분해 방지제로는 카보디이미드계 가수분해 방지제를 0.1 내지 0.7 %로 함유할 수 있다. 상기 말단기 봉제쇄로는 하기 화학식 1로 표시되는 화합물 중에서 1종 이상을 사용할 수 있으며, 가교제의 수산기 당량에 대하여 0.5 내지 5 당량으로 사용할 수 있다.
1] '
Figure imgf000021_0001
식 중에서, X는 수소, 탄소수 1~6의 지방족 탄화수소 라디칼, 알콕시기, 아릴옥시기 또는 할로겐 원소이다.
상기 폴리에스테르 원사는 상온에서 미국재료시험협회규격 ASTM D 885의 방법으로 측정한 원사의 모듈러스 (Young's modulus)가 신도 1%에서 즉, V 신장된 지점에서 60 내지 115 g/de, 바람직하게는 75 내지 105 g/de이며, 신도 2%에서 즉, 2% 신장된 지점에서 50 내지 90 g/de, 바람직하게는 55 내지 88 g/de가 될 수 있다. 그러나 기존의 일반 산업용사 폴리에스테르 원사의 경우 상온에서 측정한 1¾ 신장된 지점에서의 모듈러스 (Young's modulus)는 115 g/de 이상이며, 2% 신장된 지점에서의 모듈러스는 90 g/de 이상이 값을 가짐으로써, 본 발명의 폴리에스테르 원사는 기존 폴리에스테르 산업용사 대비 현저히 낮은 모듈러스를 갖는 것을 알 수 있다.
이 때, 상기 폴리에스테르 원사의 모듈러스는 인장시험시 얻어지는 응력ᅳ변형도 선도의 탄성 구간 기울기로부터 얻어지는 탄성계수의 물성값으로, 물체를 양쪽에서 잡아 늘일 때, 물체의 늘어나는 정도와 변형되는 정도를 나타내는 탄성률에 해당하는 값이다. 상기 섬유의 모듈러스가 높으면 탄성은 좋으나 원단의 강연도 (stiffness)가 나빠질 수 있으며, 모듈러스가 너무 낮올 경우 원단의 강연도는 좋으나 탄성회복력이 낮아져서 원단의 강인성이 나빠질 수 있다. 이같이, 상온에서뿐만 아니라 열처리 후에서도 기존에 비해 낮은 범위의 초기 모들러스를 갖는 폴리에스테르 원사로부터 제조된 에어백용 원단은 기존의 폴리에스테르 원단의 높은 강연도 (stiffness) 문제 등을 해결하고, 우수한 폴딩성, 유연성, 및 수납성을 나타낼 수 있다.
상기 폴리에스테르 원사의 강인성 (Toughness)은 상기 계산식 5에서 폴리에스테르 원단 대신에 폴리에스테르 원사를 사용하여 측정할 수 있으며, 상온에서 측정한 원사의 강인성은 60 내지 130 J/m3가 될 수 있다. 특히, 본 발명에서는 기존의 폴리에스테르 원사에 비해 높은 수준의 강인성 (Toughness, 파단일)을 층족하는 특정 폴리에스테르 원사를 사용함에 따라, 고온-고압의 가스의 에너지를 효과적으로 흡수하고 견딜 수 있는 에어백용 원단이 제공될 수 있다.
따라서, 이러한 낮은 초기 모들러스 및 높은 신율, 바람직하게는 높은 고유점도를 나타내는 폴리에스테르 원사를 이용하여 우수한 기계적 물성 및 수납성, 형태안정성, 내충격성, 공기 차단 효과를 동시에 나타내는 에어백용 원단을 제조하는 것이 가능해진다. 그러므로, 본 발명의 폴리에스테르 원단은 상기 폴리에스테르 원사를 이용하여, 보다 낮은 강연도 및 폴딩성, 유연성, 수납성을 나타내면서도, 우수한 내층격성, 형태안정성, 기계적 물성, 기밀성을 나타내는 에어백용 원단으로 제조될 수 있다. 이러한 폴리에스테르 원단은 우수한 기계적 물성, 형태 안정성, 공기 차단 효과를 나타내면서도 자동차의 좁은 공간에 장착시 우수한 폴딩성, 수납성을 제공함과 동시에 우수한 유연성으로 승객에게 가해지는 충격을 최소화하여 탑승자를 안전하게 보호할 수 있으므로, 에어백용 원단 등으로 바람직하게 적용될 수 있다.
또한, 상기 폴리에스테르 원사는, 원사의 일반적인 코팅 직물의 코팅 온도에 해당하는 150 °C에서 200 °C의 온도 범위에서의 수축웅력이 0.005 내지 0.075 g/d인 것이 바람직하다. 즉, 상기 150 °C와 200 °C에서의 수축응력이 각각 0.005 g/d 이상은 되어야 코팅 공정중에서 열에 의한 원단의 처짐 현상을 막을 수 있고, 0.075 g/d 이하가 되어야 코팅공정을 지나 상온에서 넁각될 때 이완응력을 완화시킬 수 있다. 상기 수축응력은 0.10 g/d의 고정 하중 하에서 측정한 값을 기준으로 한다.
특히, 상기 폴리에스테르 원사는 상온에서 측정한 건열수축율이 1.0% 이상 또는 1.0% 내지 10%, 바람직하게는 1.5% 이상 또는 1.5% 내지 8.0¾, 좀더 바람직하게는 2.0% 이상 또는 2.0% 내지 6.0%를 나타낼 수 있다. 이와 같이 폴리에스테르 원사의 건열수축율을 최적 범위로 유지함으로써, 고강도 고신율의 저모들러스 특성으로 우수한 강도 및 유연성을 확보함과 동시에 우수한 수축율 특성을 통하여 원단의 공기투과도를 효과적으로 제어하고 활탈저항력 등의 기계적 물성을 향상시킬 수 있다.
이상과 같이 코팅 등의 열처리 공정에서 변형을 방지하기 위해서는, 상기 폴리에스테르 원사는 또한, 결정화도가 40% 내지 55%이며, 바람직하게는 41% 내지 52%, 더욱 바람직하게는 41% 내지 50%가 될 수 있다. 이러한 상기 원사의 결정화도는 에어백용 원단에 적용시 열적 형태안정성 유지 등을 위하여 40% 이상이 되어야 하며, 상기 결정화도가 55%를 초과하는 경우에 비결정 영역이 감소함으로 층격 흡수 성능이 떨어지는 문제점이 발생할 수 있어 55% 이하가 되는 것이 바람직하다.
또한, 상기 폴리에스테르 원사는 상온에서 원사의 인장강도는 8.5 g/d 내지 11.0 g/d가 될 수 있으며, 바람직하게는 8.7 g/d 내지 10 g/d, 바람직하게는 9.0 g/d 내지 9.8 g/d를 나타낼 수 있으며, 절단신도는 15% 내지 30%, 바람직하게는 16% 내지 26%, 좀더 바람직하게는 17¾ 내지 25%를 나타낼 수 있다. 상기 폴리에스테르 원사는 통상의 폴리에스테르 중에서도 폴리에틸렌테레프탈레이트 (PET) 원사인 것이 바람직하고, 더욱 바람직하게는 PET를 90몰% 이상 포함하는 PET 원사인 것이 바람직하다. 특히, 본 발명의 원단에는 고유점도가 1.05 dl/g 이상 또는 1.05 내지 2.0 dl/g인 폴리에스테르 중합체, 즉, PET 칩으로 제조된 폴리에스테르 원사를 사용할 수 있다, 상기 에어백용 원단이 상온 및 장기간의 고온 열처리 이후에도 우수한 물성올 유지하기 위해서는, 폴리에스테르 원사를 고유점도 1.05 dl/g 이상인 폴리에스테르 중합체로 제조하는 것이 바람직하다. 또한, 원사 제조시 중합체의 열적 안정성을 확보하고 분자쇄 절단에 따론 카르복실 말단기 함량 증가를 최소화하기 위해서는 고유점도 2.0 dl/g 이하인 폴리에스테르 중합체로 제조함을 물론, 고온의 장시간 열처리에 따른 폴리에스테르 고분자 주쇄의 체인 절단 현상을 방지하기 위하여 말단기 봉쇄제, 가수분해 방지제, 산화방지제 등이 함유된 폴리에스테르 원사를 포함할수 있다.
이 때, 상기 폴리에스테르 원사는 카르복실 말단기 (CEG, Carboxyl
End Group) 함량이 낮은, 바람직하게는 30 meq/kg 이하의 고점도 PET 중합체를 사용하여 제조된 것으로, 고강력 고신율의 특성을 갖는 것이 될 수 있다.
또한, 상기 폴리에스테르 원사는 단사섬도가 2.5 내지 6.8 DPF인 것이 될 수 있다. 상기 원사의 단사섬도는 에어백용 원단의 제직성능 및 원사 제조 (방사) 성능 측면에서 2.5 DPF 이상이 바람직하고, 에어백용 원단의 공기차단성 및 수납성 측면에서 6.8 DPF 이하가 바람직하다. 상기 원사의 필라멘트수는 많을수록 소프트한 촉감을 줄 수 있으나, 너무 많은 경우에는 방사성이 좋지 않올 수 있으므로, 필라멘트수는 96 내지 160으로 ¾ 수 있다.
이미 상술한 바와 같이, 본 발명의 폴리에스테르 원단은 고유점도, 내열성, 초기 모듈러스 및 신율 범위를 최적 범위로 갖는 폴리에스테르 원사를 사용함으로써, 에어백용 원단으로 제조시 우수한 성능을 발휘할 수 있다.
본 발명의 원단 제조에 사 되는 폴리에스테르 원사는 PET 중합체를 용융 방사하여 미연신사를 제조하는 공정과 상기 미연신사를 연신하는 공정이 하나의 공정으로 연결된 방법으로 제조될 수 있다. 이러한 원사 제조 공정에서, 각 단계의 구체적 조건이나 진행 방법이 폴리에스테르 원사의 물성에 직 /간접적으로 반영되어 본 발명의 에어백용 원단에 효과적으로 사용할 수 있는 폴리에스테르 원사가 제조될 수 있다.
특히, 좀더 바람직한 일 구현예에서, 상기 고강력 고신율의 저모들러스 폴리에스테르 원사는 폴리에틸렌테레프탈레이트를 90 몰% 이상을 포함하고 고유점도가 1.05 dl/g 이상인 고점도 중합체를 사용하여 270 내지 320 °C의 저온에서 용융 방사하여 폴리에스테르 미연신사를 제조하는 단계, 및 상기 폴리에스테르 미연신사를 4.8 내지 6.7의 연신비 조건 하에서 연신하는 단계를 포함하는 방법으로 제조할 수 있다. 이 때, 카르복실 말단기 (CEG) 함량이 낮은, 바람직하게는 30 meq/kg 이하의 고점도 PET 중합체를 사용하여 저온 조건 하에서, 더욱 바람직하게는 저온 /저속 조건 하에서 용융 방사함으로써, 원사의 고유점도 저하 및 CEG 함량 증가를 최대한으로 억제하고, 원사의 우수한 기계적 물성을 유지하면서 동시에 고신율 특성을 확보할 수 있다. 더욱이, 후속의 연신 공정에서 4.8 내지 6.7의 최적화된 연신비 조건 하에서 연신을 수행하여 원사의 신율 저하를 최대한 억제함으로써, 고강력 고신율의 저모들러스를 갖는 폴리에스테르 원사를 제조하여 에어백용 원단에 효과적으로 적용할 수 있다.
여기서, 상기 용융 방사 공정을 고온으로 수행할 경우, 예컨대,
320 °C를 초과하여 수행할 경우에는 PET 중합체의 열분해가 다량으로 발생하며 고유점도 저하 및 CEG 함량의 증가가 커질 수 있어 바람직하지 않다. 또한, 고온에서 분자내 배향성 증가로 신율의 저하 및 모들러스 증가가 커질 수 있고, 원사의 표면 손상으로 전반적인 물성 저하를 초래할 수 있어 바람직하지 않다. 이와 함께, 너무 높은 연신비, 예컨대 6.7을 초과하는 연신비 조건 하에서 상기 연신 공정을 진행하면, 과연신 수준이 되어 상기 연신사에 절사 또는 모우 등이 발생할 수 있어 위 제조 방법을 통해 제조된 폴리에스테르 원사 역시 에어백용 원단으로 사용하기에 바람직한 물성을 나타내기 어렵다. 그리고, 비교적 낮은 연신비 하에서 연신 공정을 진행하면, 섬유 배향도가 낮아 이로부터 제조된 폴리에스테르 원사의 강도가 일부 낮아질 수 있으므로, 바람직하게는 4.8 이상의 연신비 하에서 연신 공정을 수행하는 것이 에어백용 원단 등에 적용되기에 적합한 고강력 고신율 저모듈러스의 폴리에스테르 원사의 제조가 가능하다.
한편, 이같이 높은 연신비 조건 하에서 고강력이면서도 저모들러스의 고신율인 폴리에스테르 원사를 제조하는 측면에서, 후속 공정의 제반 조건, 예를 들어, 이완율 등을 적절한 범위로 조절하여 수행할 수 있다. 이 때, 상기 이완률은 16% 이하 또는 1% 내지 16%가 될 수 있으며, 바람직하게는 10% 이하 또는 1% 내지 10%, 좀더 바람직하게는 T 이하 또는 1.1% 내지 7%가 될 수 있다. 상기 이완률의 하한값은 원사에 충분한 수축율을 발현할 수 있도톡 하는 범위에서 선정할 수 있으며, 예컨대, 1% 이상이 될 수 있다. 경우에 따라, 상기 이완율이 너무 작으면, 예컨대, 1% 미만이 될 경우에는, 높은 연신비 조건 하에서와 마찬가지로 높은 섬유 배향도 형성쎄 따라 고신율 저모 ½러스 섬유 제조가 어려워질 수 있다. 또한, 상기 이완를이
16%를 초과할 경우에는 고뎃 를러상에서 사떨림이 심해져서 작업성을 확보하기 어려을 수 있다.
상기와 같은 공정 최적화를 통해 낮은 초기 모듈러스를 갖고 고강력 고신율의 에어백용 폴리에스테르 원사를 확보할 수 있다. 또한, 이러한 용융 방사 및 연신 공정의 최적화를 통해, 높은 습도 조건 하에서 산으로 존재하여 폴리에스테르 원사의 기본 분자쇄 절단을 유발시키는 카르복실 말단기 (CEG, Car boxy 1 End Group)를 최소화할 수 있다. 따라서, 이러한 폴리에스테르 원사는 낮은 초기 모들러스 및 높은 신율 범위를 동시에 나타내어 우수한 기계적 물성 및 수납성, 형태안정성, 강인성, 내층격성, 공기 차단 효과를 갖는 에어백용원단에 바람직하게 적용될 수 있다.
한편, 발명의 또다른 구현예에 따라, 폴리에스테르 원사를 사용한 에어백용 원단의 제조 방법이 제공된다. 본 발명에 따른 에어백용 원단의 제조방법은 섬도 300 내지 700 데니어인 폴리에스테르 원사를 사용하여 에어백용 생지를 제직하는 단계, 상기 제직된 에어백용 생지를 정련하는 단계, 및 상기 정련된 직물을 열고정하는 단계를 포함할 수 있다.
본 발명에서 상기 폴리에스테르 원사는 통상적인 제직 방법과, 정련 및 텐터링 공정을 거쳐서 최종적인 에어백용 원단으로 제조될 수 있다. 이때, 원단의 제직형태는 특정 형태에 국한되지 않으며 평직 타입과
OPW(One Piece Woven) 타입의 제직형태 모두가 바람직하다.
특히, 본 발명의 에어백용 원단은 상기 폴리에스테르 원사를 위사 및 경사로 이용하여 비밍 (beaming), 제직, 정련, 및 열고정 공정을 거쳐 제조될 수 있다. 상기 원단은 통상적인 제직기를 사용하여 제조할 수 있으며, 어느 특정 직기를 사용하는 것에 한정되지 않는다. 다만, 평직형태의 원단은 레피어 직기 (Rapier Loom)나 에어제트 직기 (Air Jet Loom) 또는 워터제트 직기 (Water Jet Loom) 등을 사용하여 제조할 수 있으며, 0PW 형태의 원단은 자카드 직기 (Jacquard Loom)를 사용하여 제조할 수 있다.
다만, 본 발명은 기존의 폴리에스테르 원사에 비해 고강력 고신율의 낮은 수축율을 갖는 폴리에스테르 원사를 사용함에 따라, 기존에 비해 좀더 높은 온도에서 열처리 공정을 수행할 수 있다. 즉, 본 발명에서는 상기 제직된 생자를 정련 및 열고정을 하는 공정을 거치게 되는데, 에어백용 원단으로서 우수한 물성을 발현하고 장기간의 고온 열처리 후에도 원단의 물성 유지를 위해서는 열고정 공정중 pin 타입 설비의 오버피드 (OF)를 1.5-6.0% 수준으로 유지하고, 열고정 공정을 연속 2회에서 3회 정도로 처리하는 것도 바람직하다. 열고정된 직물에 고무성분으로 코팅하고 건조한 후에 가황온도를 140 내지 210 °C에서 경화시키는 과정을 수행하는데, 상기 가황온도는 원단의 인열강도 등 기계적 물성 유지 측면에서 140 °C 이상이 되어야 하며, 강연도 측면에서 210 °C 이하가 되어야 한다. 특히, 장기간의 고온 열처리후에도 우수한 물성 유지를 위해서는 상기 열처리 공정을 다단계로 수행할 수 있으며, 예를 들어 150 내지 170 °C에서 1차 열처리 공정을 수행한 후에, Γ70 내지 190 °C에서 2차 열처리 공정을 수행한 후에, 190 내지 210 °C에서 3차 열처리 공정을 수행할 수 있다.
이같이 본 발명의 폴리에스테르 원단을 고온 열처리 공정을 통해 제조하는 경우에, 폴리에스테르 원사 자체의 최적화된 수축율 특성으로 수한 형태안정성 및 공기 차단 효과, 강연성 향상 및 인열강도 개선 효과를 더욱 크게 부여할 수 있다.
또한, 상기 가황온도에서 경화 시간은 30 내지 120초, 바람직하게는 35 내지 100 초, 및 가장 바람직하게는 40 내지 90 초 범위에서 수행할 수 있다. 여기서, 상기 경화시간이 30 초 미만인 경우에 고무성분에 의한 코팅층의 경화 작업이 효과적으로 이뤄지지 않아 원단의 기계적 물성이 저하되어 코팅이 벗겨지는 등의 문제가 있으며, 상기 경화 시간이 120 초를 초과하는 경우에 최종 제조된 원단의 강연도 및 후도가 증가하여 폴딩성이 떨어지는 문제가 발생한다.
본 발명의 에어백용 원단은 직물의 일면 또는 양면에 전술한 바와 같은 고무성분에 의한 코팅을 실시할 수 있으며, 상기 고무성분의 코팅층은 나이프 코트법, 닥터블레이드법, 또는 분무코팅법으로 적용할 수 있지만, 이 또한 상기 언급된 방법에만 한정되지는 않는다.
이렇게 코팅된 에어백용 원단은 재단과 봉제공정을 거치면서 일정한 형태를 갖는 에어백 쿠션 형태로 제조될 수 있다. 상기 에어백은 특별한 형태에 국한되지 아니하며 일반적인 형태로 제조될 수 있다.
한편, 발명의 또 다른 구현예에 따라, 상술한 폴리에스테르 원단을 포함하는 차량용 에어백이 제공된다. 또한, 상기의 에어백을 포함하는 에어백 시스템이 제공되며, 상기 에어백 시스템은 관련 업자들에게 잘 알려진 통상의 장치를 구비할 수 있다.
상기 에어백은 크게 프론탈 에어백 (Frontal Airbag)과 사이드 커튼 에어백 (Side Curtain Airbag)으로 구분될 수 있다. 상기 프론탈용 에어백에는 운전석용, 조수석용, 측면보호용, 무릎보호용, 발목보호용, 보행자 보호용 에어백 등이 있으며, 사이드 커튼 타입 에어백은 자동차 측면층돌이나 전복사고시 승객을 보호하게 된다. 따라서, 본 발명의 에어백은 프론탈용 에어백과사이드 커튼 에어백을 모두 포함한다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
【발명의 효과】
본 발명에 따르면, 에어백 전개시 에너지 흡수 성능 등이 우수한 플리에스테르 원단 및 이를 이용해 얻어지는 차량용 에어백이 제공된다. 이러한 폴리에스테르 원단은 낮은 모듈러스, 고강력, 고신율의 폴리에스테르 원사를 사용하여 고온의 열처리 공정을 통해서도 열수축을 최소화하며 우수한 형태안정성, 기계적 물성, 및 공기 차단 효과를 얻을 수 있을 뿐만 아니라, 이와 동시에 우수한 폴딩성 및 유연성을 확보할 수 있어 자동차 장착시 수납성을 현저히 개선하고 동시에 승객에게 가해지는 층격을 최소화하여 탑승자를 안전하게 보호할 수 있다.
특히, 장기간의 고온 및 다습한 열처리 이후에도 인열강도, 봉목강도 등의 물성 유지 수준이 매우 우수한 에어백용 원단 및 쿠션을 제조함으로써, 실제 고온의 다습한 가흑 조건 하에서 장기간 동안 수납된 상태로 있던 에어백이 자동차 층돌사고로 쿠션이 전개될 경우에도 안전하게 승객을 보호할 수 있는 우수한 장점을 가지게 된다.
따라서, 본 발명의 폴리에스테르 원단은 차량용 에어백 제조 등에 매우 바람직하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 일반적인 섬유의 강ᅳ신도 곡선의 예를 나타내는 것으로, 이러한 강신도 곡선의 면적이 강인성 (Toughness; 파단일, J/m3)으로 정의 1 수 있다.
도 2는 국제표준화기구규격 ISO 5981에 따른 내스크럽성 측정장치를 도시한모식도이다.
도 3은 오토리브 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따른 인열강도의 측정 장치 및 측정 방법을 도시한 모식도이다.
도 4는 오토리브 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따른 봉목강도의 측정 장치 및 측정 방법을 도시한 모식도이다.
도 5는 본 발명의 실시예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 110 °C에서 3,000 시간 동안 Heat 에이징 후에 측정한 경사방향 및 위사방향의 인열강도 그래프이다.
도 6은 본 발명의 실시예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 110 °C에서 3,000 시간 동안 Heat 에이징 후에 측정한 경사방향 및 위사방향의 봉목강도 그래프이다.
도 7은 본 발명의 비교예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 110 °C에서 3,000 시간 동안 Heat 에이징 후에 측정한 경사방향 및 위사방향의 인열강도 그래프이다. 도 8은 본 발명의 비교예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 110 °C에서 3,000 시간 동안 Heat 에이징 후에 측정한 경사방향 및 위사방향의 봉목강도 그래프이다.
도 9는 본 발명의 실시예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 Wet 에이징 후에 측정한 경사방향 및 위사방향의 인열강도 그래프이다.
도 10은 본 발명의 실시예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 65 "C 및 95 RH 조건 하에서 3,000 시간 동안 Wet 에이징 후에 측정한 경사방향 및 위사방향의 봉목강도 그래프이다.
도 11은 본 발명의 비교예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 65 °C 및 95 %RH 조건 하에서 3, 000 시간 동안 Wet 에이징 후에 측정한 경사방향 및 위사방향의 인열강도 그래프이다.
도 12는 본 발명의 비교예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 Wet 에이징 후에 측정한 경사방향 및 위사방향의 봉목강도 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 3-5
1.18-1.83 dl/g의 고유점도를 갖는 PET 칩을 용융 방사기를 통해 방사온도 306-312 °C 및 연신비 6.10의 조건 하에서 1 step으로 폴리에스테르 원사를 제조한 후에, 상기 원사를 사용하여 래피어직기를 통해 에어백용 원단 생지를 제직하였다. 상기 원단 생지를 정련 후 OF는 약 4.5¾를 주고 열처리 공정을 연속 3회로 진행하여 에어백용 원단을 제조하고, 상기 원단에 액상 실리콘 고무 (LSR) 수지를 나이프 코팅 (knife over roll coating)방법으로 코팅하여 실리콘 코팅된 원단을 제조하였다.
상기 액상 실리콘 코팅 약제는 상온 (25 °C)에서 측정한 점도가 55,000 mPa ' s이며, 상기 실리콘 고무 (LSR) 수지와 함께 전체 코팅 약제의 총중량 100 중량부에 대하여 접착촉진제로서 1 3 5- 트리스 (트리메톡시실릴프로필) 이소시아네이트를 0.65 %를 포함하고, 가교제로서 2개 이상의 반웅성 수소화규소 관능기를 갖는 실리콘 가교 결합제를 0.65 wt% 포함하는 것이다.
이때, 폴리에스테르 원사의 고유점도, 강인성, 신도 1% 및 2%에서 모들러스, 인장강도, 절단신도, 건열수축율 둥의 물성은 하기 표 1에 나타낸 바와 같으며, 상기 원사의 물성은 상온 (25°C X 65%RH)에서 측정하였다.
또한, 원단의 경사 및 위사 제직밀도, 제직형태, 열처리 온도, 고무성분, 수지 코팅량은 하기 표 1에 나타낸 바와 같으며, 나머지 조건은 에어백용 폴리에스테르 원단 제조를 위한 통상적인 조건에 따랐다.
【표 1]
구 분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
PET 함량 (몰 100 100 100 100 100 원사의 고유점도 (dl/g) 1.03 1.05 1.10 1.05 1.10 원사의 강인성
106 111 112 110 113 (Toughness, J/m3)
원사의 모들러스
97 97 96 94 93 (신도 1 >에서, g/de)
원사의 모들러스
76 75 75 75 73 (신도 2%에서, g/de)
원사의 인장강도 (g/de) 9.18 9.25 9.35 9.39 9.45 원사의 절단신도 (¾) 17.8 18.1 18.6 18.5 18.8 단사섬도 (DPF) 4.08 3.77 3.40 4.92 4.44 총섬도 (de) 490 490 490 640 640 필라멘트수 120 130 144 130 144 · 제직밀도 (경사 X위사) 47x47 47x47 47x47 44x44 44x44 제직형 평직 평직 평직 평직 평직 열처리 /가황온도 rc) 165-185 165-190 170-190 170-195 170-195 고무성분 액상실리콘 액상실리콘 액상실리콘 액상실리콘 액상실리콘 고무 코팅량 (g/m2) 25 25 25 25 25 상기 실시예 1~5에 따라 제조된 폴리에스테르 원단에 대하여, 장시간의 고온 열처리한 후에 인열강도 유지 지수 (PTSRI: Polyester Tearing Strength Retention Index) 및 봉목강도 유지 지수 (PSSRI: Polyester Seam Strength Retention Index)를 다음과 같은 방법으로 측정하였으며, 측정된 물성 값은 하기 표 2에 나타낸 바와 같다.
(a) 장시간 고온 열처리 후 인열강도 유지 지수
오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 코팅 원단의 열처리 전 -후의 인열강도 (PTSwa, PTSffe, PTS30oowa, PTS3000 we)를 측정하였으며, 도 3은 이러한 인열강도의 측정 장치 및 측정방법을 나타낸 도면이다.
먼저, 가로 70mmX세로 250瞧의 사이즈를 갖는 시편 3개를 재단한 후, 상기 시편의 윗쪽과 아랫쪽 각각을 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따른 장치에서 상단 및 하단의 물림 장치면 (jaw face)의 좌우공간 사이에, 즉, 도 3에 나타낸 바와 같이 A와 B가 물림 장치면의 증간시점에 오도록 위치시켰다. 그 후에, 상기 물림 장치면 (jaw face)의 간격은 100 mm를 기준으로 하여, 각각 반대 방향으로, 즉, 상단의 물림 장치는 상부쪽으로 하단의 물질 장치는 하부쪽으로 200 mm/rain 속도로 이동시키면서 원단이 파열될 때의 강도를 측정하였다.
한편, 이렇게 측정한 원단의 상온에서의 경사방향 인열강도 (PTSwa) 및 위사방향 인열강도 (PTSwe)와 110 °C에서 3,000 시간 동안 열처리한 원단의 경사방향 인열강도 (PTS3000 wa) 및 위사방향 인열강도 (PTS3000 we) 값을 사용하여, 하기 계산식 1에 나타낸 바와 같은 원단의 경사방향 인열강도 유지 지수 (PTSRIwa) 및 하기 계산식 2에 나타낸 바와 같은 위사사방향 인열강도 유지 지수 (PTSRIwe)를 산측하였다.
[계산식 1]
PTSRIwa = PTS30oowa/PTSwa [계산식 2]
PTSRIwe = PTS30oow7PTSwe
(b) 장시간 고온 열처리 후 봉목강도 유지 지수
오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 코팅 원단의 열처리 전 -후의 봉목강도를 측정하였으며, 도 4는 이러한 봉목강도의 측정 장치 및 측정방법을 나타낸 도면이다.
먼저, 가로 lOOmmX세로 170mm의 사이즈를 갖는 시편 3개를 재단한 후, 각 시편의 세로 방향길이가 85mm가 되도록 정확히 1/2 사이즈로 자른 후에 1/2 사이즈로 자른 두 시편을 합쳤다. 그리고, 합친 시편의 세로 방향 길이가 15mm 되는 지점에, 즉, 도 4의 C와 D 시점에 나일론 66 봉제사 (840D ~ 1260D)를 사용하여 땀수 30~50ea/100mm가 되도록 봉제를 실시하였다. 봉제를 끝낸 시편의 양쪽을 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따른 장치에서 상단 및 하단의 물림 장치면 (jaw face) 사이에 위치시켰다. 그 후에, 상기 물림 장치면 (jaw face)의 간격은 76.2 mm를 기준으로 하여, 각각 반대 방향으로, 즉, 상단의 물림 장치는 상부쪽으로 하단의 물질 장치는 하부쪽으로 200 mm/min 속도로 이동시키면서 원단이 파열될 때의 강도를 측정하였다.
한편, 이렇게 측정한 원단의 상온에서의 경사방향 봉목강도 (PSSwa) 및 위사방향 봉목강도 (PSSwe)와 110 °C에서 3,000 시간 동안 열처리한 원단의 경사방향 봉목강도 (PSS3000 wa) 및 위사방향 봉목강도 PSS3000 we) 값을 사용하여, 하기 계산식 3에 나타낸 바와 같은 원단의 경사방향 봉목강도 유지 지수 (PSSRIwa) 및 하기 계산식 4에 나타낸 바와 같은 위사방향 봉목강도 유지 지수 (PSSRIwe)를 산측하였다.
[계산식 3]
PSSRIwa = PSS30oowa/PSSwa
[계산식 4]
PSSRIwe = PSS30oow7PSSwe 【표 2】 구 분 실시예 1 실시예 2 실시예 3' 실시예 4 실시예 5
PTSra(kgf) 40.2 40.5 41.0 64.3 65.5
PTS30oowa(kgf) 40.2 39.7 42.3 62.4 67.5
PTSRIwa 1.00 0.98 1.03 0.97 1.03
PTSwe(kgf) 40.8 41.2 41.8 65.3 66.2
PTS30oowe(kgf) 39.2 40.8 42.2 64.0 67.5
PTSR 0.96 0.99 1.01 0.98 1.03
PSSwa(N) 1027 1030 1035 1113 1120
PSS wa(N) 924 948 963 1013 1042
PSSRI" 0.90 0.92 0.93 0.91 0.93
PSSwe(N) 1020 1033 1035 1120 1125
PSS we(N) 908 961 973 1064 1091
PSSRIwe 0.89 0.93 0.94 0.95 0.97 한편, 실시예 5에 따른 폴리에스테르 원단에 대하여 장시간 고온 에이징 전 (상온, 25 °C)과 110 °C에서 3,000 시간 동안 고온 (Heat) 에이징 후에 측정한 경사방향, 위사방향의 인열강도 및 봉목강도를 각각 도 5 및 도 6에 나타내었다.
도 5 및 도 6는 실시예 5에 따른 110 °C 에서 3,000 시간 동안 열처리 한 원단의 경사 및 위사방향의 인열강도와 경사 및 위사방향의 봉목강도를 상온대비 어느 정도 유지하는 가를 보여주는 그래프이다. 도 5 및 도 6에 나타난 바와 같이, 실시예 5의 폴리에스테르 원단은 3,000 시간이 경과한 후에도 우수한 인열강도와 봉목강도의 안정성을 보여주고 있다. 이는 에어백 쿠션이 장시간 동안 자동차에 수납되어 있는 상태로 존재하더라도 자동차 층돌에 의한 에어백 쿠션이 전개될 경우 쿠션 봉제부의 터짐 현상과 원단 찢어짐 현상이 발생되지 않음으로써, 자동차 충돌에 의한 승객을 안전적으로 보호할 수 있는 척도로써 큰 의미기 있다. 한편, 도 7 및 도 8은 비교예 5에 따른 110 °C 에서 3 000 시간 동안 열처리 한 원단의 경사 및 위사방향의 인열강도와 경사 및 위사방향의 봉목강도를 상온대비 어느 정도 유지하는가를 보여주는 그래프이다. 그러나 도 7 및 도 8에 나타낸 바와 같이, 비교예 5의 폴리에스테르 원단은 열처리 시간이 증대될수록 물성 하락이 크며, 최종 3,000 시간이 경과한 시점에서는 상온 대비 약 72¾~75»에 불과한 인열강도와 봉목강도 값을 것을 알 수 있다. 이로써, 비교예 5의 폴리에스테르 원단을 사용한 에어백 쿠션이 장시간 동안 자동차에 수납되어 있는 상태에 존재할 경우 자동차 층돌에 의한 에어백 쿠션이 전개되더라도 고온-고압의 인플레이터 가스에 의해 쉽게 찢어지고 봉제부위가 터지는 현상이 발생되어 결국에는 승객을 안전을 보호하지 못하는 결과를 초래하게 된다.
상기 표 2에 나타낸 바와 같이, 자동차충돌사고가 없올 경우 고온의 기후조건에서 장시간 동안 자동차 안에서 수납된 상태로 있을 수 있는 에어백 쿠션 모들이 실제 어느 수준까지 물성 유지가 될 수 있는지를 파악할 수 있는 고온의 열처리 (110 °C X 3,000 시간) 후에 측정한 실시예 1~5의 폴리에스테르 원단에 대한 경사방향 인열강도 유지 지수 (PTSRIwa) 및 위사방향 인열강도 유지 지수 (PTSRIwe)는 각각 0.97-1.03 및 0.96~1.03의 우수한 수치를 보이고 있으며, 원단의 경사방향 붑목강도 유지 지수 (PSSRIwa) 및 위사방향 봉목강도 유지 지수 (PSSRIwe)는 각각 0.90~0.93 및 0.89-0.97의 우수한 수치를 보이고 있음을 알 수 있다. 이로써, 본 발명에 따라 고강력 고절신의 저모들러스 원사를 사용한 폴리에스테르 원단은 에어백 쿠션으로 적용시 고온의 장기간 방치된 상황에서도 자동차 층돌 사고시 승객의 안전을 보호하는 측면에서 매우 뛰어난 성능을 보일 수 있다. 또한, 상기 실시예 1~5에 따라 제조된 폴리에스테르 원단에 대하여, 장시간 고온 다습한 조건 하에서 열처리한 후에 인열강도 유지 지수 (PWTSRI: Polyester Wet Tearing Strength Retention Index) 및 봉목강도 유지 지수 (PWSSRI: Polyester Wet Seam Strength Retention Index)를 다음과 같은 방법으로 측정하였으며, 측정된 물성 값은 하기 표 3에 나타낸 바와 같다. (a) 장시간 고온 다습 열처리 후 인열강도유지 지수 도 3에 나타낸 바와 같은 장치를 이용하여 전술한 바와 같은 방법에 따라, 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 코팅 원단의 열처리 전ᅳ후의 인열강도 (PWTSwa, PWTSwe, PWTS30oowa, PWTS3000 we)를 측정하였다.
이렇게 측정한 원단의 상온에서의 경사방향 인열강도 (PWTSwa) 및 위사방향 인열강도 (PWTSwe)와 65 °C 95 %RH 조건 하에서 3,000 시간 동안 열처리한 원단의 경사방향 인열강도 (PWT¾000 wa) 및 위사방향 인열강도 (PWTS3000 we) 값을 사용하여, 하기 계산식 5에 나타낸 바와 같은 원단의 경사방향 인열강도 유지 지수 (PWTSRIwa) 및 하기 계산식 6에 나타낸 바와 같은 위사사방향 인열강도 유지 지수 (PWTSRIwe)를 산측하였다.
[계산식 5]
PWTSRIffa = PWTS30oowa/PWTSwa
[계산식 6]
PWTSRIwe = PWTS300ow7PWTSwe '
(b) 장시간 고온 다습 열처리 후 봉목강도 유지 지수
도 4에 나타낸 바와 같은 장치를 이용하여 전술한 바와 같은 방법에 따라, 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 코팅 원단의 열처리 전 -후의 봉목강도를 측정하였다.
이렇게 측정한 원단의 상온에서의 경사방향 봉목강도 (PWSSwa) 및 위사방향 봉목강도 (PWSSwe)와 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 원단의 경사방향 봉목강도 (PWSS3000 wa) 및 위사방향 봉목강도 PWSS3ooowe) 값을 사용하여, 하기 계산식 7에 나타낸 바와 같은 원단의 경사방향 봉목강도 유지 지수 (PWSSRIwa) 및 하기 계산식 8에 나타낸 바와 같은 위사방향 봉목강도 유지 지수 (PWSSRIwe)를 산측하였다.
[계산식 7]
PWSSRIwa = PWSS30oowa/PWSSwa
[계산식 8]
PWSSRIwe = PWSS30oow7PWSSwe 【표 3】
Figure imgf000037_0001
한편, 실시예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온, 25 °C)과 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 고온 다습 (Wet) 에이징 후에 측정한 경사방향, 위사방향의 인열강도 및 봉목강도를 각각 도 9 및 도 10에 나타내었다.
도 9 및 도 10은 실시예 5에 따른 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 고온 다습 (Wet) 에이징한 원단의 경사 및 위사방향의 인열강도와 경사 및 위사방향의 봉목강도를 상온대비 어느 정도 유지하는 가를 보여주는 그래프이다. 도 9 및 도 10에 나타난 바와 같이, 실시예 5의 폴리에스테르 원단은 3,000 시간이 경과한 후에도 우수한 인열강도와 봉목강도의 안정성을 보여주고 있다. 이는 에어백 쿠션이 고온 다습한 기후 조건 하에서 장시간 동안 자동차에 수납되어 있는 상태로 존재하더라도 자동차 층돌에 의한 에어백 쿠션이 전개될 경우 쿠션 봉제부의 터짐 현상과 원단 찢어짐 현상이 발생되지 않음으로써, 자동차 층돌에 의한 승객을 안전적으로 보호할 수 있는 척도로써 큰 의미기 있다.
한편, 도 11 및 도 12는 비교예 5에 따른 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 고온 다습 (Wet) 에이징한 원단의 경사 및 위사방향의 인열강도와 경사 및 위사방향의 봉목강도를 상온대비 어느 정도 유지하는가를 보여주는 그래프이다. 그러나, 도 11 및 도 12에 나타낸 바와 같이, 비교예 5의 폴리에스테르 원단은 열처리 시간이 증대될수록 물성 하락이 크며, 최종 3,000 시간이 경과한 시점에서는 상온 대비 약 72%~75¾>에 불과한 인열강도와 봉목강도 값을 것을 알 수 있다. 이로써, 비교예 5의 폴리에스테르 원단을 사용한 에어백 쿠션이 장시간 동안 자동차에 수납되어 있는 상태에 존재할 경우 자동차 층돌에 의한 에어백 쿠션이 전개되더라도 고온-고압의 인플레이터 가스에 의해 쉽게 찢어지고 봉제부위가 터지는 현상이 발생되며 결국에는 승객을 안전을 보호하지 못하는 결과를 초래하게 된다.
상기 표 3에 나타낸 바와 같이, 자동차 층돌사고가 없을 경우 고온의 기후조건에서 장시간 동안 자동차 안에서 수납된 상태로 있을 수 있는 에어백 쿠션 모들아 실제 어느 수준까지 물성 유지가 될 수 있는지를 파악할 수 있는 고온 다습한 (65°C X 95%RH) 조건에서 3,000 시간 동안 열처리한 후에 측정한 실시예 1~5의 폴리에스쩨르 원단의 경사방향 인열강도 유지 지수 ( TSRIwa) 및 위사방향 인열강도 유지 지수 (PWTSRIwe)는 각각 0.93-0.96 및 0.93-0.98의 우수한 수치를 보이고 있으며, 원단의 경사방향 봉목강도 유지 지수 (PWSSRIwa) 및 위사방향 봉목강도 유지 지수 (PWSSRIwe)는 각각 0.95-0.97 및 0.93-0.98의 우수한 수치를 보임으로써, 본 발명에서 개발한 고강력 고절신의 저모듈러스의 원사를 사용한 폴리에스테르 원단의 경우 에어백 쿠션으로 적용시 고온의 장기간 방치된 상황에서도 자동차 층돌 사고시 승객의 안전을 보호하는 측면에서 매우 뛰어난 성능을 보일 수 있다. 또한, 상기 실시예 1~5에 따라 제조된 폴리에스테르 원단에 대하여 다음의 방법으로 다양한 원단 물성을 측정하였으며, 측정된 원단 물성은 하기 표 4에 정리하였다.
(c) 인장강도 및 인장신도 상기 폴리에스테르 원단은 코팅 및 비코팅의 원단 시편을 재단하여, 국제표준화기구 규격 ISO 13934-1 방법에 따른 인장강도 측정장치의 하부 클램프에 고정시키고, 상부 클램프를 위로 이동시키면서 에어백 원단 시편이 파단될 때의 인장강도 및 인장신도를 측정하였다.
(d) 원단의 강인성 (Toughness)
하기 계산식 9에 의해 강인성 (Toughness, J/m3) 값을 계산하였다. [계산식 9]
Figure imgf000039_0001
상기 계산식 9에서,
F는 폴리에스테르 원단의 길이가 dl만큼 늘어날 때에 가해지는 하중을 나타내고,
dl은 폴리에스테르 원단의 길이가늘어난 길이를 나타낸다.
이때, 원단의 강인성은 코팅 처리 전의 비코팅된 원단으로 측정하였다.
(e) 활탈저항력
코팅 처리 전의 비코팅된 원단을 사용하여 미국재료시험협회규격 ASTM D 6479에 따른 방법으로 상온 (25 °C) 및 90 °C에서 원단의 활탈저항력을 각각 측정하였다.
(f) 커버팩터 (CF)
하기 계산식' 10에 의해 비코팅 원단에 대한 커버팩터 값을 계산하였다.
[계산식 10]
커버팩터 (CF)
= 사 도 (^인치) x (경사데나 (본
(g) 원단수축율
미국재료시험협회규격 ASTM D 1776에 따라 경 /위사 방향의 원단수축율을 측정하였다. 먼저, 코팅 처리 전의 비코팅된 원단으로 시편을 재단한 후, 경사 및 위사 방향으로 수축 전 길이인 20 cm씩을 표시하고 149 °C에서 1 시간 동안 챔버에서 열처리한 시편의 수축한 길이를 측정하여 경사방향 및 위사방향의 원단수축율 { (수축전 길이 - 수축후 길이) / 수축전 길이 X 100%} 측정하였다.
(h) 강연도
코팅 처리 전의 비코팅된 원단에 대하여 미국재료시험협회규격 ASTM
D 4032에 따른 강연도 측정장치를 이용하여 써큘라벤드법 (Circular Bend)법으로 원단의 강연도를 측정하였다. 또한, 강연도 측정법으로 켄티레버법을 적용할 수 있으며, 원단에 굽힘을 주기 위하여 일정각도의 경사를 준 시험대인 켄티레버 측정기기를 이용하여 원단 굽힘 길이 측정을 통해 강연도를 측정할 수 있다.
(i) 후도
' 미국재료시험협회규격 ASTM D 1777 에 따라 코팅 처리 전의 비코팅된 원단의 후도를 측정하였다.
(j) 내스크럽성
도 2에 나타낸 바와 같은 국제표준화기구 규격 ISO 5981에 따른 내스크럽성 측정장치를 사용하여 원단의 내스크럽 특성을 평가하였다.
먼저, 코팅 원단으로 시편을 재단하여 상기 스크럽 테스트 장치에서 프레스 (PRESS)로 원단 시편을 눌러주고 원단 시편의 양쪽을 잡고 반복 운동시켜주며 스크럽 테스트를 실시하여, 원단에 코팅층이 벗겨지기 시작하기 전까지의 횟수를 측정하였다.
이때, 내스크럽성 측정은 하중 (pressure force) 10 N의 조건 하에서 마모자의 왕복운동 전체 횟수를 측정하여 나타내는데, 매 ¾)회 (stroke)마다의 왕복운동 후 코팅층이 벗져지지 않으면 "pass"되어 계속해서 왕복운동을 진행하고, 코팅층이 벗겨지게 되면 "fail"로 상기 왕복운동을 중지하게 되는데. 이때의 코팅충이 벗겨지는 시점의 흿수를 측정하였다.
이와 같이 측정한 내스크럽성 횟수가 600회 이상인 경우를 "양호"로 평가하고 600회 미만인 경우를 "불량 "으로 평가하였다. 【표 4】 구 분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 원단의 강인성
3.90 4.02 4.12 5.76 5.95
(Toughness, kJ/m')
원단의 활탈저항력 (25°C) 495 500 506 625 ' 630 원단의 활탈저항력 (90 'C) 472 478 481 605 610 원단의 커버팩터 2081 2081 2081 2≥26 2226 원단수축율 경사 0.5 0.3 0.5 0.3 0.4 (%) 위사 0.3 0.5 0.3 0.4 0.5 강연도 (kgf) 0.87 0.85 0.83 1.22 1.20 후도 (mm) 287 287 287 345 345 내스크럽 횟수 (회) 2000 2000 2000 2000 2000 내스크럽성 평가 양호 양호 양호 양호 양호 비교예 1~5
하기 표 5에 기재된 조건을 제외하고는 실시예 1~5와 동일한 따라 비교예 1~5의 에어백용 폴리에스테르 원단을 제조하였다.
【표 5]
구 분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
PET 함량 (몰 %) 100 100 100 100 100 원사의 고유점도 (dl/g) 0.57 0.59 0.59 0.57 0.61 원사의 강인성
53 55 57 58 60 (Toughness, J/m')
원사의 모들러스
113 1113 114 122 125 (신도 1¾에서, g/de)
원사의 모들러스
95 96 97 97 98 (신도 2%에서 , g/de)
원사의 인장강도 (g/de) 6.6 6.7 6.9 6.8 7.3 원사의 절단신도 (%) 11.4 12.2 13.4 13.7 14.2 건열수축율 (%) 14.9. 13.1 11.0 11.4 11.3 단사섬도 (DPF) 9.8 8.17 6.81 10.7 8.89 총섬도 (de) ' 490 490 490 640 640 필라멘트수 50 60 72 60 72 제직밀도 (경사 X위사) 47x47 47x47 47x47 44x44 44x44 제직형태 평직 평직 평직 평직 평직 열처리 /가황 은도 rc) 165 170 175 170 175 고무성분 액상실리콘 액상실리콘 액상실리콘 액상실리콘 액상실리콘 고무 코팅량 (g/m2) 25 25 25 25 25 상기 비교예 1~5에 따라 제조된 폴리에스테르 원단의 장시간 고온 열처리 후 인열강도 유지 지수 (PTSRI: Polyester Tearing Strength Retention Index) 및 봉목강도 유지 지수 (PSSRI: Polyester Seam Strength Retention Index) 등은 하기 표 6 에 나타낸 바와 같다.
【표 6】
Figure imgf000042_0001
한편, 비교예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온 25 °C)과 110 °C에서 3, 000 시간 동안 고온 (Heat) 에이징 후에 측정한 경사방향, 위사방향의 인열강도 및 봉목강도를 각각 도 7 및 도 8에 나타내었다.
상기 표 6에 나타낸 바와 같이, 자동차 층돌사고가 없을 경우고온의 기후 조건에서 장시간 동안 자동차 안에서 수납된 상태로 있을 수 있는 에어백 쿠션 모들이 실제 어느 수준까지 물성 유지가 될 수 있는지를 파악할 수 있는 고온의 열처리 (50°C X 3,000 시간) 후에 측정한 비교예 1~5의 폴리에스테르 원단에 대한 경사방향 인열강도 유지 지수 (PTSRIwa) 및 위사방향 인열강도 유지 지수 (PTSRIwe)는 각각 0.70-0.75 및 0·67~0· 72이며, 원단의 경사방향 봉목강도 유지 지수 (PSSRIwa)및 위사방향 봉목강도 유지 지수 (PSSRIwe)는 각각 0.68-0.75 및 0.66-0.75가 되며, 인열강도와 봉목강도 수준이 급격하게 하락되는 것을 알 수 있다.
이로써, 실제 고온의 기후 조건에서 장시간 동안 자동차 모들 안에서 에어백 쿠션이 수납된 상태로 있을 경우 실제 자동차 층돌에 의한 에어백 쿠션이 전개되더라도 자동차 승객의 안전을 절대 보호하지 못하는 문제점을 보일 수 있다. 또한, 상기 비교예 1~5에 따라 제조된 폴리에스테르 원단의 장시간 고온 다습 열처리 후 인열강도 유지 지수 (PWTSRI: Polyester Wet Tearing Strength Retention Index) 및 봉목강도 유지 지수 (PWSSRI: Polyester Wet Seam Strength Retention Index) 등은 하기 표 7 에 나타낸 바와 같다.
【표 7]
구 분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
PWTSwa(kgf) 18.5 18.8 19.0 21.3 22.0
PWTS30oowa(kgf) 12.0 12.6 13.1 14.5 15.4
PWTSRIwa 0.65 0.67 0.69 0.68 0.70
PWTSwe(kgf) 18.1 18.5 18.6 20.8 21.5
PWTS30oowe(kgf) 11.6 12.4 12.3 14.0 15.3
PWTSRIwe 0.64 0.67 0.66 0.67 0.71 PWSS"(N) 502 505 509 648 650
PWSS30oowa(N) 326 338 346 454 468
PWSSRIwa 0.65 0.67 0.68 0.70 0.72
PWSSwe(N) 495 500 505 654 649
PWSS30oore(N) 307 320 328 425 448
PWSSRIwe 0.62 0.64 0.65 0.65 0.69 한편, 비교예 5에 따른 폴리에스테르 원단에 대하여 에이징 전 (상온
25 °C)과 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 고온 다습 (Wet) 에이징 후에 측정한 경사방향, 위사방향의 인열강도 및 봉목강도를 각각 도 11 및 도 12에 나타내었다.
상기 표 7에 나타낸 바와 같이, 자동차 층돌사고가 없을 경우 고온의 기후 조건에서 장시간 동안 자동차 안에서 수납된 상태로 있을 수 있는 에어백 쿠션 모듈이 실제 어느 수준까지 물성 유지가 될 수 있는지를 파악할 수 있는 고온 다습한 (65°C X 95%RH) 조건에서 3,000 시간 동안 열처리한 후에 측정한 비교예 1~5의 폴리에스테르 원단의 경사방향 인열강도 유지 지수 (PWTSRIwa) 및 위사방향 인열강도 유지 지수 (PWTSRIwe)는 각각 0.65-0.70 및 0.64~0.기이고, 원단의 경사방향 봉목강도 유지 지수 (PWSSRIwa) 및 위사방향 봉목강도 유지 지수 (PWSSRITO)는 각각 0.65-0.72 및 0.62-0.69가 되며, 인열강도와 봉목강도 수준이 급격하게 하락되는 것을 알 수 있다. 이로써,' 실제 고온의 기후 조건에서 장시간 동안 자동차 모듈 안에서 에어백 쿠션이 수납된 상태로 있을 경우 실제 자동차 층돌에 의한 에어백 쿠션이 전개되더라도 자동차 승객의 안전을 절대 보호하지 못하는 문제점을 보일 수 있다. 또한, 상기 비교예 1~5에 따라 제조된 폴리에스테르 원단에 대한 다양한 원단 물성을 하기 표 8 에 정리하였다.
【표 8】
구 분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 원단의 강인성 2.1 2.12 2.20 2.5 2.7 (Toughness, kJ/ra') - 원단의 활탈저항력 (25°C) 215 220 220 245 250 원단의 활탈저항력 (90 °C) 198 198 202 225 230 원단의 커버팩터 2057 2057 2057 2,141 2,141 원단수축율 경사 1.3 1.3 1.4 1.2 1.4 (%) 위사 1.2 1.2 1.1 1.0 1.0 강연도 (kgf) 2.05 2.05 2.04 2.66 2.65 후도 (mm) 287 287 287 345 345 내스크럽 횟수 (회) 30 30 30 30 30 내스크럽성 평가 ᄇ 불량 ᄇ ᄇ 상기 표 1~4에 나타낸 바와 같이, 본 발명에 따라 고강력 고신율의 저모들러스 폴리에스테르 원사를 사용하여 인열강도 및 봉목강도 지수를 최적화한 실시예 1~5의 폴리에스테르 원단은 강인성이 3.90 내지 5.95 kJ/m3으로 에어백 전개시 고온-고압의 인플레이터 가스 (gas)를 층분히 견딜 수 있는 우수한 기계적 물성을 나타내었다. 또한, 상기 원단은 경사방향 및 위사방향에서 원단 수축율이 각각 0.3% 내지 0.5% 및 0.3% 내지 0.5%로 매우 우수한 특성을 갖는 것을 알 수 있다. 이와 동시에, 실시예 1~5의 폴리에스테르 원단은 강연도가 0.63 내지 1.22 kgf로 우수한 최적 범위를 가짐으로써, 우수한 형태안정성과 함께 우수한 폴딩성, 수납성을 갖는 것임을 확인할 수 있다.
특히, 실시예 1~5의 폴리에스테르 원단은 고강력 고절신의 저모들러스의 원사를 사용하여 원단의 커버팩터는 2,081 내지 2, 226이며, 25 °C 및 90 °C에서의 활탈저항력 값이 각각 495 N 내지 630 N 및 472 N 내지 610 N로 매우 우수한 값을 보임으로써, 에어백 쿠션 전개시 쿠션 외곽시접 (seam) 부위에서의 봉목 미어짐 현상이 크게 향상되고, 쿠션의 기밀성 및 에너지 흡수 성능을 더욱 향상시킬 수 있음을 알 수 있다.
반면에, 상기 표 5~8에서 보는 것과 같이 , 저점도의 일반 산업용 폴리에스테르 원사를 사용한 비교예 1~5의 폴리에스테르 원단의 경우 이러한 특성을 층족하지 못함이 확인되었다. 특히, 비교예 1~5의 폴리에스테르 원단은 강인성이 2,1 내지 2.7 kJ/m3이고, 경사방향 빛 위사방향의 수축율이 각각 1.2% 내지 1.4% 및 1.0% 내지 1.2%으로 현저히 떨어짐을 알 수 있다. 이같이 기계적 물성이 현저히 떨어지는 원단이 에어백 장치에 사용되는 경우, 에어백 전개시 에어백이 파열되는 등의 기계적 물성 저하에 따른 문제가 발생할 수 있다.
또한, 상기 비교예 1~5의 원단은 실시예 1~5의 원단과 유사한 정도의 커버팩터를 나타내지만, 25 °C 및 90 °C에서의 활탈저항력 값이 각각 215 N 내지 250 N 및 198 N 내지 230 N로 현저히 떨어지며, 에어백 쿠션 전개시 쿠션 외곽시접 (seam) 부위에서의 봉목 미어짐 현상이 크게 발생됨으로써, 고객의 안전에 큰 문제점이 될 수 있음을 알 수 있다. 실험예 1
상기 실시예 1~5 및 비교예 1~5에서 코팅 공정을 수행하지 않은 비코팅 원단과 코팅공정을 수행한 폴리에스테르 코팅 휜단을 함께 사용하여 에어백 쿠션을 제조하고, 각각 하기 표 9에 나타낸 바와 같이 DAB(driver airbag) 쿠션 어셈블리와. PAB(passenger airbag) 쿠션 어셈블리로 차량용 에어백을 제작하였다. 이렇게 완성된 차량용 에어백에 대하여, 3 가지 열처리 조건 (상온: 25 °C X 4 hr 오븐 방치, Hot: 85 °C x 4 hr 오븐 방치, Cold: -30 °C x 4 hr 오븐 방치) 하에서 정적 전개 성능 테스트 (static test)를 실시하였다.
상기 정적 전개 성능 테스트 (static test)를 실시한 결과, 원단 찢어짐, 핀홀 (pin hole) 발생, 및 원단 탄화 현상이 발생하지 않는 경우에 "Pass"로 평가하고, 원단 찢어짐, 봉제부 핀홀 (pin hole) 발생, 또는 원단 탄화 현상 중 어느 한 가지라도 발생한 경우에는 "Fail"로 평가하였다. 여기서 전개 테스트 결과가 "Pass' '인 경우는 에어백용 쿠션으로 사용이 가능하나, "Fail"인 경우는 에어백용 쿠션으로 사용이 불가능함을 의미한다. 상기 실시예 1~5 및 비교예 1~5의 폴리에스테르 비코팅 원단을 사용하여 제조된 에어백 쿠션에 대한 정적 전개 성능 테스트 (static test) 결과는 하기 표 9에 나타내었다. 【표 9】
Figure imgf000047_0001
실험예 2
상기 실험예 1의 정적 전개 성능 테스트 (static test)에서 "Pass"로 평가된 실시예 1~5의 폴리에스테르 비코팅 원단을 사용하여 제조된 에어백 쿠션에 대학여, 추가로 한계 전개 성능 테스트 (upper limit test)를 실시하였다.
상기 한계 전개 성능 테스트 (upper limit test)는 하기 표 8에 나타낸 바와 같이 쿠션 어셈블리 사양 및 인플레이터 압력을 달리한 것을 제외하고는 실험예 1과 동일한 방법으로 전면용 에어백홀 제작하여 실시하였으며, 그의 평가 결과는 하기 표 10에 나타낸 바와 같다.
【표 10】
' 화약식 화약식 상온 Hot Cold 쿠션 인플레이터 인플레이터 전개테스트 전개테스트 전개테스트 구분
사양 압력 온도 (Upper (Upper (Upper
(kPa) CO Limit) Limit ) Limit) 실시예 1 DAB 245 550 Pass Pass Pass 실시예 2 DAB 245 550 Pass Pass Pass 실시예 3 DAB 245 550 Pass Pass Pass 실시예 4 PAB 380 740 Pass Pass Pass 실시예 5 PAB 380 740 Pass Pass Pass 상기 표 9 및 표 10에서 보는 바와 같이, 본 발명에 따라 특정 섬도 범위의 폴리에스테르 원사를 사용하여 인열강도 및 봉목강도 범위를 최적화한 실시예 1~5의 폴리에스테르 원단을 포함하는 차량용 에어백에 대하여 각각 3가지 열처리 온도 조건 하에서 오븐에 방치한 후 정적 전개 성능 테스트 (static test) 및 한계 전개 성능 테스트 (upper limit test)를 모두 진행한 결과, 원단 찢어짐, 봉제부 핀홀 (pin hole) 발생, 및 원단 탄화 현상 등이 발생하지 않아 모두 차량용 에어백으로서 우수한 성능을 갖는 것임을 알 수 있다.
여기서 정적 전개 성능 테스트 (static test)의 경우는 초기 에어백용 쿠션이 설계되어 평가를 받는 가장 기본적인 전개 테스트로서 에어백쿠션이 장착된 모들 상태에서만 평가를 하며, 인플레이터가 낼 수 있는 가장 정상적인 (normal) 온도와 전개 압력 하에서 평가가 진행된다. 상기 정적 전개 성능 테스트 (static test)가 정상적으로 완료될 경우에, 다음 단계로 진행되는 평가가 한계 전개 성능 테스트 (upper limit test)이다. 상기 한계 전개 성능 테스트 (upper limit test)는 인플레이터가 낼 수 있는 가장 높은 온도와 전개 압력하에서 평가가 진행되는 것인데, 가장 가흑한 (고온의 온도와 높은 압력) 조건에서 진행되는 평가이기에 실제 이 단계에서 성능이 만족되지 못하는 경우가 매우 많으며, 최종적으로는 정적 전개 성능 테스트 (static test)와 한계 전개 성능 테스트 (upper limit test)가 함께 "Pass"로 평가되아야 에어백용 쿠션으로 양산 적용될 수 있다.
반면에, 비교예 1~5의 폴리에스테르 원단을 포함하는 차량용 에어백에 대한 정적 전개 성능 테스트 (static test) 결과에서는, 에어백 전개시 원단 찢어짐, 원단 마찰에 의한 원단 판단현상, 봉제부 핀홀 (pin hole) 발생으로 인한 원단 판단현상, 원단 탄화 현상 등으로 인해 각 쿠션 모두가 "Fail"로 평가되었다. 이로써, 비교예 1~5의 폴리에스테르 원단을 포함하는 차량용 에어백은 한계 전개 성능 테스트 (upper limit test)가 평가를 진행하기 전에, 이미 실제 에어백으로서 사용이 불가능한 것임을 알 수 있다. 특히, 비교예 1, 2, 3의 원단을 포함하는 DAB(driver airbag) 쿠션 어셈블리에 대한 전개 테스트에서는 쿠션의 외곽 봉제부와 테더부에서 원단 찢어짐 현상이 발생하였으며, 비교예 4, 5의 경우에서는 인플레이터 입구부에서 원단 찢어짐과 함께 외곽 봉제부에서 봉목미어짐 현상이 발생하였다.
또한, 이러한 비교예 1~5의 원단을 포함하는 차량용 에어백에 대한 전개 테스트 (static test)에서, 원단 찢어짐 발생은 기본적으로 폴리에스테르 원사 및 원단 자체의 물성이 매우 낮기 때문에 발생되는데, 원단봉제부 핀홀 (pin hole) 발생, 내마찰성 부족, 원단 탄화 현상 등으로부터 기인하여 함께 발생되었음을 확인할 수 있었다. 따라서, 비교예 1~5의 에어백용 원단은 실제 차량용 에어백 쿠션으로 적용시 에어백 파열 등으로 에어백 기능에 커다란 위험을 초래할 수 있다. 아울러, 상온과 고온, 저온의 짧은 열처리 시간 조건 하에서도 에어백 쿠션으로서의 성능을 만족하지 못하는 원단이 고온의 장시간 동안 수납된 상태에서 자동차 층돌 사고가 발생될 경우 승객의 안전은 전혀 보장하지 못하는 결과가 초래될 수 있다.

Claims

【특허청구범위】 【청구항 1】 섬도가 300 내지 700 데니어인 폴리에스테르 원사를 포함하고, 하기 계산식 1에 나타낸 바와 같은 원단의 경사방향 PTSRIwa 지수가 0.8 이상이고, 하기 계산식 2에 나타낸 바와 같은 원단의 위사방향 PTSRIwe 지수가 0.8 이상이고, 하기 계산식 3에 나타낸 바와 같은 원단의 경사방향 PSSRIwa 지수가 0.8 이상이고, 하기 계산식 4에 나타낸 바와 같은 원단의 위사방향 PSSRIwe 지수가 0.8 이상인 폴리에스테르 원단:
[계산식 1]
PTSRIwa = PTS30oowa/PTSffa
[계산식 2]
PTSRIwe = PTS3ooow7PTSwe
[계산식 3]
PSSRIwa = PSS30oowa/PSSwa
[계산식 4]
PSSRIwe = PSS30oow7PSSwe
상기 식 중에서, ,
PTSRIwa 및 PTSRIwe는 각각 110 °C에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 유지 지수 (PTSRI: Polyester Tearing Strength Retention Index)를 나타낸 것이고,
PSSRIwa 및 PSSRIwe는 각각 110 °C에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 유지 지수 (PSSRI: Polyester Seam Strength Retention Index)를 나타낸 것이고,
PTSwa 및 !^^는 각각 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PTS30oowa 및 PTS3000 we는 각각 110 °C에서 3, 000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PSSwa 및 ? ^는 각각 오토리브 (Autoliv) 에어백용 원단스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이고,
PSS30oowa 및 ?3¾000^는 각각 110 °C에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)임 .
【청구항 2】
제 1항에 있어서,
상기 원단의 인열강도 PTSwa, PTSwe, PTS30oowa, 및 PTS3000 we는 20 kgf 이상이고, 상기 원단의 봉목강도 PSSwa, PSSwe, PSS30oowa, 및 PSS3000 we는 670 N 이상인 폴리에스테르 원단.
【청구항 3】 ,
제 1항에 있어서,
섬도가 300 내지 700 데니어인 폴리에스테르 원사를 포함하고, 하기 계산식 5에 나타낸 바와 같은 원단의 경사방향 PWTSRIwa 지수가 0.83 이상이고, 하기 계산식 6에 나타낸 바와 같은 원단의 위사방향 PWTSRIwe 지수가 0.'83 이상이고., 하기 계산식 7에 나타낸 바와 같은 원단의 경사방향 PWSSRIwa 지수가 0.83 이상이고, 하기 계산식 8에 나타낸 바와 같은 원단의 위사방향 PWSSRIwe 지수가 0.83 이상인 폴리에스테르 원단:
[계산식 5]
PWTSRIwa = PWTS30oowa/PWTSwa
「계산식 6]
PWTSRIwe = PWTS30oow7PWTSwe
[계산식 7]
PWSSRIwa = PWSS30oowa/PWSSwa
[계산식 8]
PWSSRIwe = PWSS30oow7PWSSwe
、 상기 식 중에서,
PWTSRIwa 및 PWTSRIwe는 각각 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 유지 지수 (PWTSRI: Polyester Tearing Strength Retention Index)를 나타낸 것이고,
PWSSRIwa 및 PWSSRIwe는 각각 65 °C 및 95 %RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 유지 지수 (PWSSRI: Polyester Seam Strength Retention Index)를 나타낸 것이고,
PWTSwa 및 PWTSwe는 각각 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고,
PWTS30oowa 및 PWTS3000 we는 각각 65 "C 및 95 RH 조건 하에서 3, 000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 인열강도 (kgf)이고, i
PWSSwa 및 PWSSwe는 각각 오토리브 (Autoliv) 에어백용 원단수펙
E668992 시험규격에 따라 상온에서 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)이고,
PWSS30oowa 및 ?\ ¾00(^는 각각 65 및 95 RH 조건 하에서 3,000 시간 동안 열처리한 후 오토리브 (Autoliv) 에어백용 원단 스펙 E668992 시험규격에 따라 측정한 원단의 경사방향 및 위사방향의 봉목강도 (N)임.
【청구항 4]
거 13항에 있어서,
상기 원단의 인열강도 PWTSwa, PWTSwe, PWTS30oowa, 및 ? ¾000^는 20 kgf 이상이고, 상기 원단의 봉목강도 PWSSwa, PWSSwe, PWSS30oowa, 및 PWSS3000 we는 670 N 이상인 폴리에스테르 원단.
【청구항 5】
제 1항에 있어서,
하기 계산식 9로 정의되는 강인성 (Toughness)이 3.2 kJ/m3 이상인 폴리에스테르 원단:
[계산식 9]
Figure imgf000053_0001
상기 식 중에서, F는 폴리에스테르 원단의 길이가 dl만큼 늘어날 때에 가해지는 하중을 나타냄 .
【청구항 6】 , 제 1항에 있어서,
미국재료시험협회규격 ASTM D 4032 방법에 따른 강연도가 2.0 kgf 이하인 폴리에스테르 원단.
[청구항 7】
제 1항에 있어서,
미국재료시험협회규격 ASTM D 6479 방법으로 상온에서 측정한 활탈저항력이 300 N 이상이고, 90 °C에서 측정한 활탈저항력이 280 N 이상인 폴리에스테르 원단.
【청구항 8】
제 1항에 있어서,
상온에서 측정한 원사의 인장강도가 8.5 g/d 내지 11.0 g/d이며 절단신도가 15% 내지 30%인 폴리에스테르 원사를 포함하는 폴리에스테르 원단.
【청구항 9]
제 1항에 있어서,
미국재료시험협회규격 ASTM D 885의 방법으로 상온에서 측정한 모들러스 (Young's modulus)가 신도 1%에서 60 내지 110 g/de이며, 신도 2%에서 50 내지 87 g/de인 폴리에스테르 원사를 포함하는 폴리에스테르 원단.
【청구항 10】
제 1항에 있어서,
하기 계산식 10으로 정의되는 원단의 커버팩터가 1,800 내지 2,460인 에어백용 폴리에스테르 원단:
[계산식 10] 커버팩터 (CF)
= 도 인치) x 경^데니 )+위 도 (본/인:
【청구항 11】
제 1항에 있어서,
분말 (powder)형 실리콘, 액상 (liquid)형 실리콘, 폴리우레탄, 클로로프렌 네오프렌고무, 및 에멀견형 실리콘 수지로 이루어진 군에서 선택된 1종 이상의 고무성분으로 코팅되어 있는 폴리에스테르 원단.
【청구항 12]
계 11항에 있어서,
상기 고무성분의 단위면적당 코팅량이 20 내지 200 g/m2인 폴리에스테르 원단.
【청구항 13】
섬도 300 내지 700 데니어인 폴리에스테르 원사로 에어백용 생지를 제직하는 단계,
상기 제직된 에어백용 생지를 정련하는 단계, 및
상기 정련된 직물을 텐터링하는 단계
를 포함하는, 계 1항 내지 제 12항 증 어느 한 항에 따른 플리에스테르 원단의 제조 방법 .
【청구항 14】
제 13항에 있어서,
상기 텐터링 단계에서 열처리 온도는 140 내지 210 °C인 플리에스테르 원단의 제조방법.
【청구항 15】
계 1항 내지 제 12항 중 어느 한 항에 따른 폴리에스테르 원단을 포함하는 차량용 에어백.
【청구항 16]
제 15항에 있어서,
상기 에어백은 프론탈용 에어백 또는 사이드 커튼형 에어백인 차량용 에어백.
PCT/KR2012/002396 2011-03-31 2012-03-30 폴리에스테르 원단 및 그의 제조 방법 WO2012134227A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/008,980 US20140021704A1 (en) 2011-03-31 2012-03-30 Polyester fabric and production method thereof
EP12763036.6A EP2692919A4 (en) 2011-03-31 2012-03-30 POLYESTER FABRIC AND METHOD FOR MANUFACTURING THE SAME
JP2014502481A JP2014514469A (ja) 2011-03-31 2012-03-30 ポリエステル織物およびその製造方法
CN201280027055.0A CN103649393A (zh) 2011-03-31 2012-03-30 聚酯织物及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0029869 2011-03-31
KR10-2011-0029870 2011-03-31
KR1020110029870A KR20120111418A (ko) 2011-03-31 2011-03-31 폴리에스테르 원단 및 그의 제조 방법
KR1020110029869A KR20120111417A (ko) 2011-03-31 2011-03-31 폴리에스테르 원단 및 그의 제조 방법

Publications (2)

Publication Number Publication Date
WO2012134227A2 true WO2012134227A2 (ko) 2012-10-04
WO2012134227A3 WO2012134227A3 (ko) 2013-03-07

Family

ID=46932169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002396 WO2012134227A2 (ko) 2011-03-31 2012-03-30 폴리에스테르 원단 및 그의 제조 방법

Country Status (5)

Country Link
US (1) US20140021704A1 (ko)
EP (1) EP2692919A4 (ko)
JP (1) JP2014514469A (ko)
CN (2) CN104499147A (ko)
WO (1) WO2012134227A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132343A (zh) * 2011-11-29 2013-06-05 东丽纤维研究所(中国)有限公司 一种气囊用涂层织物
CN104411872A (zh) * 2012-06-29 2015-03-11 可隆工业株式会社 气囊织物及其制造方法
EP3118358B1 (en) * 2014-03-14 2020-12-30 Toray Industries, Inc. Airbag base fabric and manufacturing method therefor
CN105771045A (zh) * 2014-12-23 2016-07-20 周宇 新鲜空气采集及使用装置
PT3279376T (pt) * 2015-03-30 2021-01-25 Toray Industries Tecido à base de poliéster para airbag, airbag de poliéster e método de fabrico de tecido à base de poliéster para airbag
BR112018009095A2 (pt) * 2015-11-06 2019-02-19 Invista Textiles Uk Ltd panos, artigos, airbags e método para formar um pano
CN111304803B (zh) 2017-05-02 2021-09-03 英威达纺织(英国)有限公司 低渗透性和高强度织造织物及其制造方法
TWI642385B (zh) * 2017-08-31 2018-12-01 川湖科技股份有限公司 滑軌總成及其滑軌機構
MX2020003165A (es) 2017-09-29 2022-04-05 Invista Textiles Uk Ltd Bolsas de aire y metodos para producir bolsas de aire.
CN109881335A (zh) * 2019-03-29 2019-06-14 吕庆菊 一种折叠丝垫布及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214437A (ja) 1990-02-12 1992-08-05 Hoechst Ag エアバッグ用布帛

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214632A (ja) * 1992-01-31 1993-08-24 Unitika Ltd エアーバツグ用シート
JPH07186856A (ja) * 1993-12-27 1995-07-25 Toray Ind Inc エアバッグ用基布
WO1996022876A1 (fr) * 1995-01-24 1996-08-01 Toray Industries, Inc. Produit polyester et son procede de production
JP3336931B2 (ja) * 1996-12-02 2002-10-21 東レ株式会社 エアバッグ用基布およびエアバッグ
AR010847A1 (es) * 1997-01-20 2000-07-12 Rhone Poulenc Filtec Ag TEJIDO TÉCNICO EN PARTICULAR, PARA BOLSAS DE AIRE, Y METODO PARA LA FABRICACIoN DEL HILO DE FILAMENTO PARA EL TEJIDO.
JPH11293540A (ja) * 1998-04-10 1999-10-26 Toray Ind Inc エアバッグ用基布およびその製造方法
WO2004106120A1 (en) * 2003-05-15 2004-12-09 Invista Technologies S.A.R.L. Polyester filament woven fabric for air bags
KR101055393B1 (ko) * 2009-03-20 2011-08-09 코오롱인더스트리 주식회사 에어백용 폴리에스테르 원단 및 그의 제조 방법
KR101025598B1 (ko) * 2009-04-23 2011-03-30 주식회사 코오롱 에어백용 폴리에스테르 원사 및 그의 제조방법
KR101055394B1 (ko) * 2009-04-23 2011-08-09 코오롱인더스트리 주식회사 에어백용 폴리에스테르 원단 및 그의 제조 방법
KR20100117527A (ko) * 2009-04-24 2010-11-03 주식회사 코오롱 에어백 가스 주입용 튜브형 직물 부재 및 그의 제조방법
KR20110001498A (ko) * 2009-06-30 2011-01-06 코오롱인더스트리 주식회사 사이드 커튼형 에어백, 그의 제조방법, 및 이를 포함하는 에어백 시스템
KR20110001498U (ko) * 2009-08-05 2011-02-11 박삼술 차량용 바닥매트
CN101634052B (zh) * 2009-08-24 2011-05-18 浙江海利得新材料股份有限公司 汽车安全气囊用聚酯工业丝制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214437A (ja) 1990-02-12 1992-08-05 Hoechst Ag エアバッグ用布帛

Also Published As

Publication number Publication date
EP2692919A4 (en) 2014-09-03
US20140021704A1 (en) 2014-01-23
JP2014514469A (ja) 2014-06-19
WO2012134227A3 (ko) 2013-03-07
CN104499147A (zh) 2015-04-08
EP2692919A2 (en) 2014-02-05
CN103649393A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2012134227A2 (ko) 폴리에스테르 원단 및 그의 제조 방법
KR101055394B1 (ko) 에어백용 폴리에스테르 원단 및 그의 제조 방법
KR101032792B1 (ko) 에어백용 폴리에스테르 원단 및 그의 제조 방법
WO2012036511A2 (ko) 폴리에스테르 원사 및 그의 제조 방법
KR101736421B1 (ko) 폴리에스테르 원사 및 그의 제조방법
JP6040146B2 (ja) ポリエステル織物およびその製造方法
JP2014514469A5 (ko)
WO2011122800A2 (ko) 폴리에스테르 원단 및 그의 제조 방법
WO2011122802A2 (ko) 폴리에스테르 원사 및 그의 제조 방법
WO2012091524A2 (ko) 폴리에스테르 원사 및 그의 제조방법
KR101621079B1 (ko) 에어백용 폴리에스테르 원단 및 그의 제조 방법
KR20120029958A (ko) 폴리에스테르 원사 및 그의 제조방법
KR20120111418A (ko) 폴리에스테르 원단 및 그의 제조 방법
KR20120111416A (ko) 폴리에스테르 원단 및 그의 제조 방법
KR101680203B1 (ko) 폴리에스테르 원단 및 그의 제조 방법
KR101055393B1 (ko) 에어백용 폴리에스테르 원단 및 그의 제조 방법
KR20120111417A (ko) 폴리에스테르 원단 및 그의 제조 방법
KR101680202B1 (ko) 폴리에스테르 원단 및 그의 제조 방법
KR20120067767A (ko) 폴리에스테르 원사 및 그의 제조방법
KR20120067768A (ko) 폴리에스테르 원사 및 그의 제조방법
KR101802475B1 (ko) 폴리에스테르 원단 및 그의 제조 방법
KR101709259B1 (ko) 폴리에스테르 원사 및 그의 제조방법
KR101621080B1 (ko) 에어백용 폴리에스테르 원단 및 그의 제조 방법
KR20110109116A (ko) 에어백용 폴리에스테르 원사 및 그의 제조방법
KR20120000932A (ko) 에어백용 폴리에스테르 원사 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763036

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014502481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008980

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012763036

Country of ref document: EP