WO2012133661A1 - 濃度差発電装置とその運転方法 - Google Patents

濃度差発電装置とその運転方法 Download PDF

Info

Publication number
WO2012133661A1
WO2012133661A1 PCT/JP2012/058389 JP2012058389W WO2012133661A1 WO 2012133661 A1 WO2012133661 A1 WO 2012133661A1 JP 2012058389 W JP2012058389 W JP 2012058389W WO 2012133661 A1 WO2012133661 A1 WO 2012133661A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
water
subunit
low
concentration water
Prior art date
Application number
PCT/JP2012/058389
Other languages
English (en)
French (fr)
Inventor
谷口雅英
前田智宏
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012518655A priority Critical patent/JP5991200B2/ja
Priority to ES12763989.6T priority patent/ES2551864T3/es
Priority to CA2831750A priority patent/CA2831750A1/en
Priority to KR1020137025441A priority patent/KR101822567B1/ko
Priority to CN201280015189.0A priority patent/CN103547798B/zh
Priority to SG2013072459A priority patent/SG193966A1/en
Priority to US14/008,949 priority patent/US20140284929A1/en
Priority to EP12763989.6A priority patent/EP2693050B1/en
Publication of WO2012133661A1 publication Critical patent/WO2012133661A1/ja
Priority to IL228489A priority patent/IL228489A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0021Forward osmosis or direct osmosis comprising multiple forward osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to an apparatus for performing hydroelectric power generation using low-concentration water with low osmotic pressure and high-concentration water with high osmotic pressure through a semipermeable membrane and using a permeate flow generated by a normal osmosis phenomenon as energy, and its operation It is about the method.
  • concentration difference power generation that extracts the difference in salt concentration between seawater and rivers as energy is a technology that uses natural energy sources that are almost inexhaustible, and is attracting expectations.
  • a representative example of a method for converting a salt concentration difference into energy is a concentration cell.
  • the anti-pressure osmosis method using the osmotic pressure generated through the semipermeable membrane was proposed by Sydney Rob (S. Rob, “Journal of Membrane Science”). 1, p. 49, 1976).
  • Sydney Rob S. Rob, “Journal of Membrane Science”. 1, p. 49, 1976.
  • two solutions having different salinity concentrations that is, low-concentration water and high-concentration water
  • the anti-pressure osmosis method uses this movement to drive the hydroelectric generator.
  • the object of the present invention is to contact a low-concentration water having a low osmotic pressure and a high-concentration water having a high osmotic pressure through a semipermeable membrane, and efficiently and stably using a permeate flow caused by a normal osmosis phenomenon as energy.
  • An object of the present invention is to provide an apparatus for performing hydroelectric power generation and an operation method thereof.
  • the concentration difference power generation device of the present invention uses a normal osmotic pressure when high-concentration water and low-concentration water having different concentrations are brought into contact with each other through a semipermeable membrane unit including a semipermeable membrane.
  • a concentration difference power generation device that generates power by driving an electric generator by using an increase in the amount of high-concentration water due to permeation of water from a low-concentration side to a high-concentration side.
  • a high-concentration-side intermediate flow path and a low-concentration-side intermediate flow path that connect the subunits, and the concentration difference power generation device includes the high-concentration-side intermediate flow path and A pressure changing mechanism provided in at least one of the intermediate flow paths on the low concentration side;
  • low-concentration water with low osmotic pressure and high-concentration water with high osmotic pressure are brought into contact with each other through a semipermeable membrane, and hydroelectric power generation is performed efficiently and stably by using the permeate flow generated by the normal osmosis phenomenon as energy. Can be performed.
  • FIG. 2 is a schematic flow diagram showing one aspect of a concentration difference power generation apparatus including a plurality of subunits and including a pressure regulating valve on a high concentration water flow path connecting the subunits (an aspect related to the invention of claim 1). .
  • FIG. 5 is a schematic flow diagram showing one embodiment of a concentration difference power generation device including a plurality of subunits and having an intermediate energy recovery unit on an intermediate flow path of high-concentration water connecting the subunits (related to the invention of claim 2) One mode).
  • FIG. 2 is a schematic flow diagram showing an embodiment of a concentration difference power generation device including a plurality of subunits and including an intermediate energy recovery unit and an intermediate booster pump on an intermediate flow path of high-concentration water connecting the subunits.
  • FIG. 10 is a schematic flow diagram showing one aspect of a concentration difference power generation apparatus including a plurality of subunits and having an intermediate booster pump on an intermediate flow path of low-concentration water connecting the subunits (related to the invention of claim 9).
  • FIG. 9 is a schematic flow diagram showing another aspect of the concentration difference power generation device including a plurality of subunits and including an intermediate booster pump on an intermediate flow path of low-concentration water connecting the subunits (invention of claim 9).
  • Other related aspects ).
  • FIG. 10 is a schematic flow diagram showing yet another aspect related to the invention of claim 9. Schematic flow showing one mode of a concentration difference power generation apparatus having a plurality of subunits and having a flow path for bypassing a part of low-concentration water supplied to an upstream subunit to the low-concentration side of a downstream subunit It is a figure (the aspect relevant to invention of Claim 4). In addition to the bypass flow path of FIG.
  • FIG. 7 an embodiment of a concentration difference power generation apparatus having a flow path for bypassing a part of the high concentration water supplied to the upstream subunit to the high concentration side of the downstream subunit is shown.
  • FIG. 8 a concentration difference having a channel that bypasses part of the high-concentration water supplied to the downstream subunit to the high-concentration water discharge channel of the downstream subunit. It is a schematic flowchart which shows the one aspect
  • Concentration difference power generation having a plurality of subunits and having a flow path for sending a part of the high-concentration side discharged water of the first subunit to the generator and a flow path for sending the remaining high-concentration waste water to the second subunit
  • schematic flowchart which shows the one aspect
  • FIG. 7 is a schematic flow diagram showing another aspect of the concentration difference power generation device including a plurality of subunits and a pressure energy recovery unit that boosts the second subunit (another flow related to the inventions of claims 3 and 6). Embodiment).
  • FIG. 7 is a schematic flow diagram showing another aspect of the concentration difference power generation device including a plurality of subunits and a pressure energy recovery unit that boosts the upstream subunit (a further flow chart related to the inventions of claims 3 and 6); (One embodiment).
  • FIG. 5 is a schematic flow diagram showing one embodiment of a concentration difference power generation device that includes a plurality of subunits and an intermediate energy recovery unit provided between the subunits and supplies high-concentration water and low-concentration water to face each other (claims). Aspect related to the invention of 8).
  • Concentration difference having a plurality of subunits and having a flow path for supplying high-concentration water and low-concentration water oppositely and bypassing a part of the low-concentration water supplied to the upstream subunit to the downstream subunit It is a general
  • FIG. 5 is a schematic flow diagram showing an embodiment of a concentration difference power generation device that includes a plurality of subunits and supplies a high-concentration water and a low-concentration water to each other and has a booster pump provided in an intermediate flow path of the low-concentration water (Aspects related to the inventions of claims 8 and 9).
  • a concentration difference power generation device including a plurality of subunits, a booster pump and a pressure exchange type energy recovery unit provided in an intermediate flow path of high-concentration water, and a generator provided in each branched high-concentration water discharge path
  • mode the aspect relevant to invention of Claim 11
  • schematic flowchart which shows the one aspect
  • concentration difference power generation apparatus provided with two pressure exchange type energy recovery units in the flow path of high concentration water while providing a some subunit (the aspect relevant to invention of Claim 11) ).
  • 26 is a schematic flow diagram showing an embodiment of a concentration difference power generation device including a bypass flow path extending from a desalted water tank to an intermediate flow path of low-concentration water between subunits in addition to the configuration of FIG. 25. Aspects related to the invention). 1 shows an embodiment of a concentration difference power generation device that includes a plurality of subunits and a desalting unit provided on an intermediate flow path of high-concentration water that connects the subunits, and that supplies high-concentration water and low-concentration water to face each other. .
  • parallel supply refers to supplying low-concentration water and high-concentration water so that they flow in parallel between subunits.
  • the high concentration water when the low concentration water flows in the order of the first subunit 8 and the second subunit 12, the high concentration water also flows in the order of the first subunit 8 and the second subunit 12.
  • parallel feed does not limit the direction of low and high concentration water flow within individual subunits.
  • the low-concentration water and the high-concentration water flow in the same direction across the semipermeable membrane inside each subunit.
  • they may flow in parallel (or may flow in parallel), or may flow in opposite directions (that is, they may flow so as to face each other).
  • the low-concentration water and the high-concentration water are supplied oppositely to each subunit.
  • Opposite supply is a supply method in which low-concentration water and high-concentration water flow in opposite directions. Similar to the parallel supply, in the counter supply, the low-concentration water and the high-concentration water are only required to flow in opposite directions between the subunits, that is, when they flow between the subunits. That is, in the subunit, the low-concentration water and the high-concentration water may flow in the same direction or in the opposite directions with the semipermeable membrane interposed therebetween.
  • reference numerals 101 to 123 and 125 to 127 denote semipermeable membrane units. These semipermeable membrane units are divided into two or more subunits. “Divided” means that a plurality of subunits functioning as a semipermeable membrane unit, a channel connecting the high concentration side of each subunit, and a channel connecting a low concentration are provided. means.
  • upstream and downstream stage may be interchanged.
  • concentration difference power generation device and “osmotic pressure power generation device” may be paraphrased.
  • the concentration difference power generation device shown in FIG. 1 includes a semipermeable membrane unit and a pressure changing mechanism.
  • the pressure changing mechanism in the apparatus of the present embodiment, the valve 11 is provided on the intermediate flow path L4 of the high concentration water.
  • a low concentration water tank 1 includes a low concentration water tank 1, a low concentration water intake pump 2, a low concentration pretreatment unit 3, a high concentration water tank 4, a high concentration water intake pump 5, a high concentration pretreatment unit 6, and a booster pump. 7, a semi-permeable membrane unit 100, a hydroelectric generator 13, a low concentration supply flow path L1, a high concentration supply flow path L2, a low concentration drainage flow path L5, and a high concentration drainage flow path L6.
  • a booster pump for example, a booster pump, an intermediate tank, a safety filter, and the like are further provided. May be.
  • the low concentration water intake pump 2 pumps low concentration water from the low concentration water tank 1 and sends it to the low concentration pretreatment unit 3.
  • the low concentration pretreatment unit 3 obtains low concentration water applicable to osmotic pressure power generation by filtering the low concentration water.
  • the low concentration supply flow path L ⁇ b> 1 supplies low concentration water from the low concentration water tank 1 to the first subunit 8.
  • the high concentration water intake pump 5 draws high concentration water from the high concentration water tank 4 and sends it to the high concentration pretreatment unit 6.
  • the high concentration pretreatment unit 6 obtains high concentration water applicable to osmotic pressure power generation by filtering the high concentration water.
  • the booster pump 7 increases the water pressure of the high-concentration water that has undergone the pretreatment by the high-concentration pretreatment unit 6.
  • the high concentration supply flow path L ⁇ b> 2 supplies high concentration water from the high concentration water tank 4 to the first subunit 8.
  • the semipermeable membrane unit 101 causes the movement of water from the low concentration water to the high concentration water due to the difference in osmotic pressure between the high concentration water and the low concentration water.
  • the semipermeable membrane unit 100 is divided into a plurality of subunits. Specifically, the semipermeable membrane unit 100 includes a first subunit 8 and a second subunit 12, a low-concentration water intermediate flow path L3 that connects the first subunit 8 and the second subunit 12, and a high An intermediate flow path L4 for concentrated water is provided. Note that the number of subunits included in one semipermeable membrane unit is not limited to two, and may be three or more.
  • the first subunit 8 and the second subunit 12 each include a semipermeable membrane, a flow path through which low-concentration water flows, and a flow path through which high-concentration water flows.
  • the low concentration water intermediate flow path L3 connects the low concentration side flow path of the first subunit 8 and the low concentration side flow path of the second subunit 12, and the high concentration water intermediate flow path L4 is: The flow path on the high concentration side of the first subunit 8 and the flow path on the high concentration side of the second subunit 12 are connected.
  • the low-concentration water that has undergone the pretreatment first flows into the low-concentration flow path of the first subunit 8.
  • the high-concentration water sent out from the booster pump 7 flows into the high-concentration flow path of the first subunit 8.
  • the low concentration water and the high concentration water come into contact with each other through the semipermeable membrane.
  • water moves through the semipermeable membrane from the low concentration side channel to the high concentration side channel based on the osmotic pressure.
  • the flow rate of the low-concentration water downstream of the first subunit 8 decreases from the upstream flow rate, and the flow rate of the high-concentration water downstream of the first subunit 8 increases than the upstream flow rate.
  • the low-concentration water thus reduced flows out from the first subunit 8, and then is sent to the low-concentration side flow path of the second subunit 12 through the intermediate path L3 of low-concentration water.
  • the increased high-concentration water flows out from the first subunit 8, and then is sent to the high-concentration side flow path of the second subunit 12 through the intermediate flow path L4 of high-concentration water.
  • water moves from the low concentration side flow path to the high concentration side flow path.
  • the concentration difference between the low concentration water and the high concentration water in the second subunit 12 is smaller than the concentration difference between the low concentration water and the high concentration water in the first subunit 8. That is, normally, the permeation flux in the second subunit 12 (that is, the permeation flow rate per membrane area) is smaller than the permeation flux in the first subunit 8.
  • the permeation in the first subunit 8 will be described.
  • the flux becomes very large.
  • impurities contained in the low-concentration water easily accumulate on the semipermeable membrane surface, so that the performance of the semipermeable membrane is likely to deteriorate due to fouling.
  • the permeation flux of the first subunit 8 is limited for the purpose of suppressing the occurrence of fouling in the first subunit, the permeation flux is further reduced in the second subunit 12, and high power generation efficiency can be obtained. It becomes difficult.
  • the inventors have found that such a problem can be solved by providing a pressure changing mechanism in the flow path between the subunits.
  • the pressure changing mechanism is a mechanism that makes a difference between the pressure upstream of the pressure changing mechanism and the pressure downstream.
  • a valve 11 is provided on the intermediate flow path L4 of high-concentration water.
  • the valve 11 causes a pressure loss in the intermediate flow path L4 of the high-concentration water, thereby applying a larger back pressure to the permeation side of the first subunit 8 than to the permeation side of the second subunit.
  • the valve 11 thus reduces the difference between the effective pressure difference in the semipermeable membrane of the first subunit 8 and the effective pressure difference in the semipermeable membrane of the second subunit 12 by creating a back pressure difference between the subunits.
  • the effective pressure difference is a value represented by (supply side pressure ⁇ permeation side pressure + osmotic pressure difference).
  • the high-concentration water is sent from the second subunit 12 to the hydroelectric generator 13 through the high-concentration drainage channel L6 and then discharged out of the system.
  • the hydroelectric generator 13 converts pressure energy held by the high-concentration water into electric power.
  • the low concentration water is discharged from the second subunit 14 through the low concentration drainage flow path 14.
  • the pressure changing mechanism is provided in the flow path on the high concentration side from the preceding subunit to the succeeding subunit.
  • the permeation flux of the unit that is, the first subunit 8 in FIG. 1
  • the permeation flux of the subsequent subunit that is, the second subunit 12 in FIG. 1
  • the configuration of the hydroelectric generator 13 is not particularly limited, and examples of the hydroelectric generator 13 include a Francis turbine, a propeller turbine, a Pelton turbine, a cross flow turbine, and a reverse pump.
  • the configuration of the hydroelectric generator 13 is selected according to the flow rate and the resulting pressure.
  • an intermediate energy recovery unit 16 may be provided as a mechanism for changing the pressure between the outlet of the first subunit 8 and the inlet of the second semipermeable membrane unit 12.
  • the intermediate energy recovery unit 16 may be used in combination with the valve 11 shown in FIG. 1 or may be used alone.
  • the intermediate energy recovery unit 16 reduces the pressure of the high concentration water downstream of the intermediate energy recovery unit 16 from the pressure of the high concentration water upstream. Even if the intermediate energy recovery unit 16 is provided, an appropriate pressure remains as high-concentration water supplied to the second subunit 12.
  • a hydroelectric generator of a type that can maintain the secondary side pressure (that is, the permeation side pressure) of the intermediate energy recovery unit 16 in-line is preferable.
  • Such hydroelectric generators include Francis turbines and propeller turbines.
  • an intermediate booster pump 17 may be provided on the downstream side of the intermediate energy recovery unit 16 and the upstream side of the second subunit 12.
  • the intermediate energy recovery unit 16 may be disposed at a position higher than the second subunit 12. In this configuration, it is possible to recover the pressure energy of the high-concentration water at the outlet of the first subunit 8 using a Pelton turbine or the like. Further, an intermediate tank may be provided after the intermediate energy recovery unit 16.
  • a booster pump may be provided in the intermediate flow path of the low concentration water.
  • the intermediate booster pump 21 is provided on the intermediate path L3 of the low-concentration water between the first subunit 8 and the second subunit 12.
  • the flow rate of the low-concentration water decreases as the low-concentration water passes through the first subunit 8.
  • the low concentration side pressure at the inlet of the second subunit 12 is higher than the low concentration side pressure at the outlet of the first subunit 8. Therefore, according to the first to third embodiments, the same effect as that obtained by reducing the pressure on the high concentration side can be obtained in this embodiment.
  • pressure energy generated by discharged water or the like can be used on either the high concentration side or the low concentration side.
  • a valve 11a may be provided on the low-concentration water discharge channel L15.
  • the valve 11 a can hold the low concentration side pressure of the second subunit 12.
  • FIG. 5 it replaces with the valve
  • a mechanism for reducing the pressure as in the intermediate energy recovery unit 16 may be provided on both the high concentration side and the low concentration side, and the pressure is increased as in the intermediate boost pump 21.
  • a mechanism may be provided.
  • the cross-sectional area ratio of the high-concentration water channel to the low-concentration water channel is preferably larger than the cross-sectional area ratio of the high-concentration water channel in the first subunit 8.
  • the flow path cross-sectional area ratio of the high concentration water flow path to the low concentration water flow path is preferably larger than the flow path cross-sectional area ratio in the first subunit 8.
  • the hollow fiber membrane is filled in the second subunit 12.
  • This can be realized by making the rate different from the filling rate in the first subunit 8. That is, if high-concentration water passes through the inside of the hollow fiber membrane, the membrane filling rate in the second subunit 12 is made higher than the membrane filling rate in the first subunit 8, whereby the second subunit 12 The cross-sectional area ratio of the high-concentration water flow path can be increased.
  • the membrane filling rate in the second subunit 12 is made lower than the membrane filling rate in the first subunit 8, whereby the second subunit 12 can increase the cross-sectional area ratio of the high concentration water flow path.
  • the thickness of the channel material may be different between the first subunit 8 and the second subunit 12.
  • a low concentration bypass flow path L ⁇ b> 11 provided in parallel with the first subunit 8 may be provided.
  • the low concentration water bypass flow path L11 bypasses the low concentration water from the upstream side of the first subunit 8 (that is, from the low concentration water supply flow path L1) to the second subunit 12 which is a downstream side subunit. To do.
  • the amount of low concentration supplied to the second subunit 12 can be increased by the low concentration bypass flow path L11.
  • a booster pump 18 and a valve 19 are provided in the low concentration water bypass flow path L11.
  • the booster pump 18 can apply pressure to the low-concentration water supplied to the second subunit 12 as necessary, but may be omitted depending on the pressure of the low-concentration water outlet of the first subunit 8. Is possible.
  • the valve 19 can be opened and closed to control the flow rate of the low-concentration water supplied to the second subunit 12.
  • a high-concentration bypass flow path L12 may be provided in parallel with the first subunit 8.
  • the high concentration bypass flow path L12 supplies high concentration water not passing through the first subunit 8 to the second subunit 12 from the upstream side of the first subunit 8 (that is, from the supply flow path L2 of high concentration water). To do.
  • the salt concentration of the high-concentration water in the bypass channel L12 and the second subunit 12 can be increased.
  • the high concentration bypass flow path L12 is also provided with a booster pump 18 and a valve 19.
  • a high concentration bypass flow path L ⁇ b> 13 parallel to the second subunit 12 may be provided.
  • One end of the high concentration bypass flow path L13 is connected to the intermediate flow path L4 downstream of the intermediate energy recovery unit 16 and upstream of the second subunit 12.
  • the other end of the bypass flow path L13 is connected to the high concentration water discharge flow path L6 upstream of the hydroelectric generator 13.
  • the high-concentration water flowing out from the first subunit 8 through the high-concentration bypass channel L13 does not pass through the second subunit 12 and flows into the high-concentration drain channel L6.
  • the flow rate of high concentration water supplied to the second subunit 12 is reduced.
  • a bypass channel L14 on the high concentration side may be provided.
  • the bypass flow path L14 branches from the high concentration water intermediate flow path L4 upstream of the intermediate energy recovery unit 16, and is connected downstream of the hydroelectric generator 13 to the high concentration water discharge flow path L6.
  • a water generator 13a is provided on the bypass flow path L14. That is, part of the high-concentration water discharged from the first subunit 8 is sent to the hydroelectric generator 13a by the bypass flow path L14. With this configuration, the flow rate of the high concentration water supplied to the second subunit 12 is reduced.
  • the concentration difference power generation device uses the pressure energy of water flowing out from each subunit downstream of each subunit to supply water supplied to the subunit or upstream from the subunit. You may provide the energy recovery unit arrange
  • An example of the configuration is as described below.
  • an energy recovery unit 20 is provided instead of the intermediate energy recovery unit 16 in the configuration shown in FIG. 11 and 12, the energy recovery unit 20 is provided in the intermediate flow path L4 of the high-concentration water, and uses the pressure energy of the high-concentration water discharged from the first subunit 8 to The high concentration water supplied to the unit 8 is boosted.
  • the energy recovery unit 20 boosts the high concentration water supplied to the first subunit 8 by boosting the high concentration water supplied to the high concentration pretreatment unit 6.
  • the energy recovery unit 20 boosts the high concentration water supplied to the first subunit 8 by boosting the high concentration water discharged from the high concentration pretreatment unit 6.
  • the configuration of the energy recovery unit 20 is not particularly limited.
  • the energy recovery unit 20 for example, an apparatus that uses a hydroelectric generator as described above and changes the water flow into electric power and rotates a pump can be applied.
  • FIG. 13 an energy recovery unit 22 is provided instead of the energy recovery unit 20.
  • a bypass flow path L14 may be provided that branches from the intermediate flow path L4 of the high-concentration water and is connected to the high-concentration drain flow path L6 downstream of the hydroelectric generator 13.
  • a part of the high concentration discharged water of the first subunit 8 is supplied to the energy recovery unit 22 by the bypass flow path L14.
  • the flow rate of the high concentration water supplied to the energy recovery unit 22 is equal to the flow rate of the high concentration water supplied to the first subunit 8. It is adjusted to become.
  • the flow rate supplied to the energy recovery unit 22 can be adjusted by opening / closing a valve, operating a pump, adjusting a flow path diameter, and the like.
  • pressure energy can be recovered at various other positions, and the recovered pressure energy can be applied to pressure increase in each part. .
  • the energy recovery unit 23 recovers pressure energy from a part of the high-concentration water discharged from the second subunit 12 (that is, high-concentration water passing through the high-concentration drainage channel L6),
  • the high-concentration water supplied to the second subunit 12 is boosted using the pressure.
  • a bypass flow path (branch path) L17 branches off from the high concentration water discharge flow path L6.
  • the high-concentration water that has passed through the flow path L17 supplies pressure energy to the energy recovery unit 22, and then rejoins the high-concentration water discharge flow path L6.
  • the valve 11 and the hydroelectric generator 13a may be provided on the bypass flow path L17.
  • bypass flow path L18 further branches from the bypass flow path L17 downstream of the energy recovery unit 23.
  • An energy recovery unit 23 is provided on the bypass flow path L18.
  • the energy recovery unit 23 further recovers pressure energy from a part of the high-concentration wastewater that has passed through the energy recovery unit L22, and boosts the high-concentration water supplied to the first subunit 8.
  • FIGS. 1 to 15, 25, and 26 describe the case of parallel supply (parallel flow).
  • high-concentration water and low-concentration water are supplied oppositely.
  • the high concentration water is first supplied to the second subunit 12 through the high concentration water intake pump 5, the high concentration pretreatment unit 6, and the booster pump 7.
  • the flow rate of the high-concentration water increases due to normal permeation of water from the low-concentration side to the high-concentration side.
  • the high-concentration water is sent to the first subunit 8 after the pressure is reduced by a valve or an intermediate hydroelectric generator (intermediate energy recovery unit 16 in FIG. 16).
  • the first subunit 8 water moves from the low concentration side to the high concentration side, and the amount of high concentration water further increases.
  • the high-concentration water that has passed through the first subunit 8 is discharged out of the system after passing through the hydroelectric generator 13.
  • the low concentration water that has passed through the low concentration water intake pump 2 and the low concentration pretreatment unit 3 is sent to the first subunit 8.
  • water moves by forward osmosis from the low concentration side to the high concentration side, and then is sent to the second subunit 12.
  • water moves from the low concentration side to the high concentration side as described above.
  • the low concentration water that has passed through the second subunit is discharged out of the system.
  • a bypass flow path L11 similar to that in FIG. 7 may be provided as illustrated in FIG.
  • the amount of low concentration water flowing through the first subunit 8 and the amount of low concentration water flowing through the second subunit 12 are adjusted by the bypass flow path L11.
  • bypass flow path L12 parallel to the second subunit 12 may be provided.
  • the bypass channel L12 supplies the high-concentration water from the high-concentration water supply channel L2 (that is, from the upstream of the second subunit 12) to the intermediate channel L4 of the high-concentration water. It is also possible to increase the concentration of highly concentrated feed water.
  • the number of locations where these bypass channels are provided may be one or more.
  • the pressure on the low concentration side may be increased in front of the second subunit 12. Is possible. The case where both of these are applied is illustrated in FIG. Further, as shown in FIG. 26, a semipermeable membrane desalting unit 27 can be provided as shown in FIG.
  • the low-concentration water and the high-concentration water flow between the subunits so that the low-concentration water and the high-concentration water face each other. It is not essential to flow like. However, if the low-concentration water and the high-concentration water flow inside the subunit so as to face each other, the balance of osmotic pressure is further improved, which is effective.
  • a part of the high-concentration discharged water is sent to the energy recovery unit 23, and the recovered energy is used for boosting the high-concentration water supplied to the first subunit 8.
  • the rest is sent to the hydroelectric generator 13.
  • a flow path L17 that branches from the high concentration water discharge flow path L6 and sends the high concentration water to the energy recovery unit 23 is provided.
  • the energy recovery device 23 is preferably a pressure exchange type device or a turbocharger. According to these devices, it is possible to directly recover energy (that is, pressurize highly concentrated water) without using a pump.
  • the high-concentration intermediate water 25 discharged from the energy recovery unit 23 often has a pressure close to the pressure of the high-concentration discharge water of the second subunit 12, and all of the high-pressure side and the low-pressure side Since pressure is applied to the flow path, an apparatus having pressure resistance suitable as an energy recovery unit is used.
  • the generator 13a may be provided on the flow path in which the energy recovery unit 23 is provided.
  • the valve 11 is provided between the energy recovery unit 23 and the generator 13a.
  • an intermediate booster pump 24 is provided on the intermediate flow path L4 of high-concentration water (invention of claim 10).
  • the intermediate boost pump 24 compensates for the shortage of energy recovery, and the high-concentration water is smoothly supplied to the first subunit 8 at the time of startup.
  • an inverter is preferably provided.
  • the intermediate water 25 on the high concentration side of the energy recovery unit 23 can be used for boosting the high concentration water as illustrated in FIG. That is, the flow path L ⁇ b> 17 may be branched into a flow path that supplies high-concentration intermediate water to the generator 13 a and a flow path that supplies the energy recovery unit 22.
  • the energy recovery unit 22 boosts the high concentration water supplied to the upstream subunit 12 using the pressure of the intermediate water 25. That is, the configuration of FIG. 22 is an example of a form in which the energy recovery unit provided at the downstream side of the downstream subunit 8, that is, at the outlet, boosts the upstream subunit 12.
  • the semipermeable membrane unit is composed of two subunits.
  • the semipermeable membrane unit may be composed of three or more subunits.
  • the difference in concentration between the low-concentration water and the initial high-concentration water is large, the amount of permeate in the upstream subunit is large, so that a more uniform permeation flux can be realized by increasing the number of subunits.
  • FIG. 23 shows an example in which the concentration difference power generation device of FIG. 22 composed of two subunits is changed to a concentration difference power generation device composed of three subunits.
  • a desalting unit 27 may be provided as a pressure changing mechanism.
  • the desalting unit 27 is a filtration desalting apparatus including a semipermeable membrane.
  • High concentration water discharged from the first subunit 8 is supplied to the desalting unit 27 through the intermediate flow path L4 of high concentration water.
  • demineralized water and concentrated water are obtained using pressure energy.
  • the concentrated water is supplied to the second unit 12 as high-concentration water.
  • a desalted water tank 29 and a flow path L7 from the desalting unit 27 to the desalted water tank 29 are further provided.
  • the desalted water may be used outside the system after being stored in the desalted water tank 29 through the flow path L7.
  • a flow path L8 that connects the demineralized water tank 29 and the intermediate flow path L3 of low-concentration water is provided.
  • Demineralized water is supplied as low-concentration water from the demineralized water tank 29 to the second subunit 12 through the flow path L8. That is, part of the high-concentration water that has come out of the first subunit 8 is supplied as low-concentration water in the second subunit 12, so that fluctuations in the amount of low-concentration water in the second subunit 12 can be suppressed. it can.
  • the desalting unit 27 applied here may have an appropriate desalting performance.
  • Appropriate desalination performance means that when the obtained desalted water is used as low-concentration water, demineralized water having a salt concentration lower than that of the high-concentration water flowing into the subunit to which the desalted water is supplied is obtained. As long as it is possible to do so.
  • the configuration of the semipermeable membrane and the operating conditions of the desalting unit may be set so that the desalting rate is 90% or more, more preferably 95% or more.
  • the semipermeable membrane desalting unit 27 may be provided on the intermediate flow path L4 of high-concentration water.
  • each subunit is not limited to a specific form.
  • a separation device including a pressure vessel and a fluid separation element (separation element) accommodated in the pressure vessel can be applied as a subunit.
  • the fluid separation element includes a housing and a hollow fiber membrane-shaped or flat membrane-shaped semipermeable membrane housed in the housing. If the semipermeable membrane is a flat membrane, the fluid separation element includes, for example, a laminate formed by laminating the semipermeable membrane and the flow path material, and a cylindrical central pipe having a large number of holes. . In such a fluid separation element, the semipermeable membrane and the channel material are attached around the center pipe and may be flat or wound around the center pipe. May be.
  • polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer are applied.
  • the semipermeable membrane may be an asymmetric membrane having a dense layer on at least one side of the membrane and having fine pores with gradually increasing pore diameters from the dense layer toward the inside of the membrane or the other side. It may be a composite film having a very thin functional layer formed of another material on the dense layer.
  • low concentration water and high concentration water should just be an aqueous solution which produces the permeation
  • the salt concentration of low concentration water and high concentration water is not limited to a specific numerical value. However, it is preferable that the concentration difference between the low-concentration water and the high-concentration water is large because the inherent energy is large.
  • the high-concentration water is preferably an aqueous solution containing a solute having high solubility, such as seawater, seawater concentrated water, saline, sugar solution, lithium bromide, and the like, and a high osmotic pressure can be obtained.
  • seawater and its concentrated water can be easily obtained from nature.
  • the low-concentration water may be a liquid having an osmotic pressure smaller than that of the high-concentration water, such as pure water, river water, ground water, or sewage treated water. Since the cost required for acquisition is low and the concentration is suitable as low-concentration water, river water and sewage treated water are preferably used.
  • the pretreatment unit 3 and the pretreatment unit 6 are not particularly limited, and removal of turbid components, sterilization, and the like can be applied as necessary, such as the quality of the water supplied to each.
  • Chlorine is preferably used as the disinfectant, and for example, chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l.
  • certain fungicides may not have chemical durability. In that case, add as much upstream as possible to the feed water, and further, near the feed water inlet side of the semipermeable membrane unit. It is preferable to disable the disinfectant.
  • a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
  • the agglomerated supply water is then subjected to sand filtration after settling on an inclined plate or the like, or by filtration through a microfiltration membrane or an ultrafiltration membrane in which a plurality of hollow fiber membranes are bundled. Supply water suitable for passing through the latter semipermeable membrane unit can be obtained.
  • sand filtration when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressurized filtration in which a pressure tank is filled with sand. .
  • sand to be filled single-component sand can be applied.
  • anthracite, silica sand, garnet, pumice, and the like can be combined to increase filtration efficiency.
  • the microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleat type, or any other shape can be used as appropriate.
  • the material of the membrane is also particularly limited, and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used. Moreover, even if it is a filtration system, any of the pressure filtration system which pressurizes and filters supply water, and the suction filtration system which sucks and filters the permeation
  • agglomerated membrane filtration or membrane-based activated sludge method in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank for filtration, may be applied.
  • MLR membrane-based activated sludge method
  • the organic matter when the supply water contains a lot of soluble organic matter, the organic matter can be decomposed by adding chlorine gas or sodium hypochlorite. Removal is possible.
  • a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like.
  • iron or manganese when iron or manganese is present in a soluble state, it is preferable to use an aeration oxidation filtration method or a contact oxidation filtration method.
  • nanofiltration membrane for pretreatment for the purpose of removing specific ions and polymers in advance and operating the fresh water production apparatus of the present invention with high efficiency.
  • the power generation method using the concentration difference power generation apparatus described in this document is also included in the technical scope of the present invention.
  • the maximum value of the permeation flux in each subunit must be controlled to be less than the set value so that the permeation flux of each subunit does not become excessively large. Is preferable (Invention of Claim 12).
  • the pressure on the high concentration side in that subunit is changed to the pressure on the low concentration side. What is necessary is just to make it increase relatively. That is, the pressure of the high concentration water in the subunit may be increased, the pressure of the low concentration water may be decreased, or the pressure of the low concentration water may be decreased while increasing the pressure of the high concentration water.
  • FIG. 1 The configuration of FIG. 1 will be described as an example.
  • the permeation flux of the first subunit 8 is likely to exceed the upper limit, (a) increasing the output of the booster pump 7 and / or (b) the valve 11
  • the pressure on the high concentration side can be relatively increased by lowering the opening.
  • an increase in the permeation flux in the first subunit 8 is suppressed.
  • the permeation flux of each subunit may be controlled according to SDI (Silt Density Index) measured in accordance with ASTM D 4189-95 for low-concentration water (claim 13).
  • SDI Silicon Density Index
  • the permeation flux of each subunit is controlled to be 42.5 lmh or less when SDI ⁇ 1, and (50 ⁇ 7.5 ⁇ SDI) Lmh or less when 1 ⁇ SDI ⁇ 5.
  • lmh is a unit representing liter per square meter per hour (L / m 2 / h).
  • the control further suppresses the fouling of the subunits and enables more stable operation.
  • the operation may be interrupted. However, the operation is possible even when SDI> 5, and the conditions for stopping the operation can be set depending on the state of the low-concentration water used.
  • the concentration difference power generation device includes a semipermeable membrane unit 200 that is not divided.
  • the concentration difference between the high concentration water and the low concentration water is large near the entrance of the high concentration water supplied by the flow path L102, so the permeation flux is large, and the concentration is near the exit of the high concentration water. Since the difference is small, the permeation flux is small. Therefore, the problem as described above is likely to occur.
  • L101 is a low-concentration water supply flow path
  • L105 is a low-concentration water discharge flow path
  • L106 is a high-concentration water discharge flow path.
  • the present invention relates to an apparatus for performing hydroelectric power generation using low-concentration water with low osmotic pressure and high-concentration water with high osmotic pressure through a semipermeable membrane and using a permeate flow generated by a normal osmosis phenomenon as energy, and its operation More specifically, it is possible to realize hydroelectric power generation efficiently and stably by optimizing each effective pressure difference while being constituted by a plurality of subunits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

半透膜を備えた半透膜ユニットを介して濃度の異なる高濃度水と低濃度水を接触させ、正浸透圧によって低濃度側から高濃度側に水を浸透させることによる高濃度水の水量増加を利用して、発電機を駆動させて発電する濃度差発電装置において、半透膜ユニットが複数のサブユニット(8,12)に分割されているとともに、前段のサブユニット(8)から次段のサブユニット(12)に至る高濃度側の流路(L4)または低濃度側の流路(L3)に圧力変更機構(11)を備えることを特徴とする濃度差発電装置。

Description

濃度差発電装置とその運転方法
 本発明は、浸透圧の低い低濃度水と浸透圧の高い高濃度水の間に半透膜を介して接触させ、正浸透現象によって生じる透過流をエネルギーとして、水力発電を行う装置およびその運転方法に関するものである。
 近年、世界の経済発展に伴う化石燃料の消費,資源の枯渇、炭酸ガス増加など様々な地球規模の環境問題が顕在化してきている。そのような状況の下で、エネルギー産生手段として、太陽光発電、風力発電、温度差発電など、新規の脱炭素エネルギー技術が開発され、さらには実用化され始めている。
 これらの技術の中で、特に、海水と河川などの塩分濃度差をエネルギーとして取り出す濃度差発電は、ほぼ無尽蔵に存在する天然エネルギー源を利用する技術であり、期待を集めている。塩分濃度差をエネルギーへ変換する方法の代表としては、濃淡電池が挙げられる。
 また、濃度差を利用した発電方法として、半透膜を介して生じる浸透圧を利用する抗圧浸透法が、シドニー・ロブによって提唱された(S.ロブ、「ジャーナル・オブ・メンブレン・サイエンス」、1巻、p49、1976)。塩分濃度の異なる2つの溶液(つまり低濃度水および高濃度水)を半透膜で隔てると、正浸透現象によって、淡水側から塩水側へと水が移動する。抗圧浸透法は、この移動を利用して水力発電機を駆動する。
 この技術は、提唱された当時は、半透膜の性能および水力発電機の効率など、コストパフォーマンスの観点から実用可能性が低いと考えられていた。よって、この技術について、実用化に対する検討はあまり進められてこなかった。しかし、近年のエネルギーコストの上昇、さらに半透膜および発電機の性能向上につれ、抗圧浸透法を用いた濃度差発電の実用可能性が見直されはじめている。国内においても福岡において、海水-淡水化プラントの濃縮排水を利用して、廃水処理と発電を同時に実施するといった試みが進められている(非特許文献1、特許文献1)。
 抗圧浸透法では、淡水から塩水への水の移動量が多い方が、コストパフォーマンスが向上する。しかしながら、海水および淡水を利用する方法では、浸透圧差が非常に大きいので、淡水中に含有される有機物が半透膜の表面に強く押し付けられる。その結果、半透膜が汚れて性能が低下する、いわゆるファウリングが起きやすいという問題がある。このような問題を考慮して、エネルギー回収ユニットを適用することで、エネルギーロスを抑えながら、半透膜にかかる圧力差を制御する技術が開発されている(特許文献2)。このような技術については、実用化検討が加速しており、ノルウェーには実用化前提の性能実証プラントが建設され、稼働するに至った。
特許第4166464号公報 国際公開WO02/13955号パンフレット
谷岡明彦、「ニューメンブレンテクノロジーシンポジウム2010(S5-4-1)」、2010年12月
 しかしながら、従来の技術においては、以下の問題が存在する。
 低濃度水から高濃度水側に多量の水を移動させると、高濃度水の濃度は大きく低下する。よって、半透膜を、半透膜を介して高濃度水と低濃度水とを接触させる1つの半透膜ユニットの中でも、上流と下流とでは、高濃度水の濃度に大きな差が生じる。高濃度水の濃度の差は、浸透圧の差を生じる。すなわち、半透膜ユニットにおける高濃度水(たとえば海水)の入り口付近では、半透膜面での淡水と海水の濃度差が大きいために、単位膜面積あたりの正浸透流が大きくなる一方で、高濃度水の出口では、すでに流入した淡水によって、高濃度水と低濃度水との間の濃度差が減少し、正浸透流が小さくなる。
 半透膜ユニットにおける高濃度水と低濃度水との間の圧力をエネルギー回収ユニットによって制御しても、高濃度水の入口と出口の間で生じる、浸透圧のこのような変動には対応できない。その結果、浸透流の大きなところでは半透膜のファウリングを招きやすく、それを抑えようとすると、全体の浸透流量、ひいては発電量が低下するという問題が生じる。大きな濃度差を利用して高効率に発電する目的で、海水淡水化後に得られる濃縮排水または死海の水のような高濃度塩水を用いることがあるが、濃度が高いほど、このような問題は顕著となる。よって、安定的な高効率発電が困難である。
 本発明の目的は、浸透圧の低い低濃度水と浸透圧の高い高濃度水の間に半透膜を介して接触させ、正浸透現象によって生じる透過流をエネルギーとして、効率的かつ安定的に水力発電を行う装置およびその運転方法を提供することにある。
 前記課題を解決するために、本発明の濃度差発電装置は、半透膜を備える半透膜ユニットを介して濃度の異なる高濃度水と低濃度水を接触させたときに、正浸透圧によって低濃度側から高濃度側に水が浸透することによる高濃度水の量の増加を利用して、発電機を駆動させて発電する濃度差発電装置であって、前記半透膜ユニットは、複数のサブユニットに分割されているとともに、前記サブユニット間を繋ぐ高濃度側の中間流路および低濃度側の中間流路を備え、前記濃度差発電装置は、高濃度側の前記中間流路および低濃度側の前記中間流路の少なくとも一方に設けられた圧力変更機構を備える。
 本発明によって、浸透圧の低い低濃度水と浸透圧の高い高濃度水の間に半透膜を介して接触させ、正浸透現象によって生じる透過流をエネルギーとして、効率的かつ安定的に水力発電を行うことが可能となる。
複数のサブユニットを備えるとともに、サブユニット間を繋ぐ高濃度水流路上に圧力調節バルブを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項1の発明に関連する一態様)。 複数のサブユニットを備えるとともに、サブユニット間を繋ぐ高濃度水の中間流路上に中間エネルギー回収ユニットを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項2の発明に関連する一態様)。 複数のサブユニットを備えるとともに、サブユニット間を繋ぐ高濃度水の中間流路上に中間エネルギー回収ユニットおよび中間昇圧ポンプを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項2の発明に関連する一態様)。 複数のサブユニットを備えるとともに、サブユニット間を繋ぐ低濃度水の中間流路上に中間昇圧ポンプを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項9の発明に関連する一態様)。 複数のサブユニットを備えるとともに、サブユニット間を繋ぐ低濃度水の中間流路上に中間昇圧ポンプを備える濃度差発電装置の他の一態様を示す、概略フロー図である(請求項9の発明に関連する他の態様)。 複数のサブユニットを備えるとともに、サブユニット間を繋ぐ低濃度水の中間流路上に中間昇圧ポンプを備え、高濃度水の中間流路上に中間エネルギー回収ユニットを備える濃度差発電装置の他の一態様を示す、概略フロー図である(請求項9の発明に関連するさらに他の態様)。 複数のサブユニットを備えるとともに、上流のサブユニットへ供給される低濃度水の一部を下流のサブユニットの低濃度側にバイパスする流路を有する濃度差発電装置の一態様を示す、概略フロー図である(請求項4の発明に関連する態様)。 図7のバイパス流路に加えて、上流のサブユニットへ供給される高濃度水の一部を下流のサブユニットの高濃度側へバイパスする流路を有する濃度差発電装置の一態様を示す、概略フロー図である。 図8に示す2本のバイパス流路に加えて、下流のサブユニットへ供給される高濃度水の一部を下流のサブユニットの高濃度水の排出流路にバイパスする流路を有する濃度差発電装置の一態様を示す、概略フロー図である。 複数のサブユニットを備えるとともに、第1サブユニットの高濃度側排出水の一部を発電機に送る流路と、残りの高濃度排水を第2サブユニットに送る流路とを有する濃度差発電装置の一態様を示す、概略フロー図である(請求項5の発明に関連する態様)。 複数のサブユニットと、第1サブユニットを昇圧するエネルギー回収ユニットとを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項6の発明に関連する態様)。 複数のサブユニットと、第1サブユニットを昇圧するエネルギー回収ユニットとを備える濃度差発電装置の他の態様を示す、概略フロー図である(請求項6の発明に関連する態様) 複数のサブユニットと、第1サブユニットを昇圧する圧力エネルギー回収ユニットを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項3,6の発明に関連する態様)。 複数のサブユニットと、第2サブユニットを昇圧する圧力エネルギー回収ユニットを備える濃度差発電装置の他の一態様を示す、概略フロー図である(請求項3,6の発明に関連する別の一態様)。 複数のサブユニットと、上流のサブユニットを昇圧する圧力エネルギー回収ユニットを備える濃度差発電装置の他の一態様を示す、概略フロー図である(請求項3,6の発明に関連するさらに別の一態様)。 複数のサブユニットと、サブユニット間に設けられた中間エネルギー回収ユニットとを備え、高濃度水と低濃度水とを対向供給する濃度差発電装置の一態様を示す概略フロー図である(請求項8の発明に関連する態様)。 複数のサブユニットを備えるとともに、高濃度水と低濃度水を対向供給し、下流側のサブユニットに上流側のサブユニットに供給される低濃度水の一部をバイパスする流路を有する濃度差発電装置の一態様を示す、概略フロー図である(請求項4,8の発明に関連する態様)。 複数のサブユニットを備えるとともに、高濃度水と低濃度水を対向供給し、下流側のサブユニットに、上流側のサブユニットに供給される高濃度水の一部をバイパスする流路を有する濃度差発電装置の一態様を示す、概略フロー図である。 複数のサブユニットを備えるとともに、高濃度水と低濃度水を対向供給し、上流側のサブユニットから流出した高濃度水を、高濃度水の排出用の流路にバイパスする流路を有する濃度差発電装置の一態様を示す、概略フロー図である。 複数のサブユニットを備えるとともに、高濃度水と低濃度水を対向供給し、低濃度水の中間流路に設けられた昇圧ポンプを有する濃度差発電装置の一態様を示す、概略フロー図である(請求項8,9の発明に関連する態様)。 複数のサブユニットを備えるとともに、高濃度水の中間流路に昇圧ポンプおよび圧力交換式エネルギー回収ユニットが設けられ、分岐した高濃度水の排出路のそれぞれに発電機が設けられる濃度差発電装置の一態様を示す、概略フロー図である(請求項11の発明に関連する態様)。 複数のサブユニットを備えるとともに、高濃度水の流路に2つの圧力交換式エネルギー回収ユニットを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項11の発明に関連する態様)。 3段のサブユニットを備えるとともに、高濃度水の流路に3つの圧力交換式エネルギー回収ユニットを備える濃度差発電装置の一態様を示す、概略フロー図である。 従来の濃度差発電装置を示す概略フロー図である。 複数のサブユニットと、サブユニット間を繋ぐ高濃度水の中間流路に脱塩ユニットを備える濃度差発電装置の一態様を示す、概略フロー図である(請求項2の発明に関連する態様)。 図25の構成に加えて、脱塩水タンクからサブユニット間の低濃度水の中間流路に至るバイパス流路を備える濃度差発電装置の一態様を示す、概略フロー図である(請求項2の発明に関連する態様)。 複数のサブユニットと、サブユニット間を繋ぐ高濃度水の中間流路上に設けられた脱塩ユニットとを備え、高濃度水と低濃度水とを対向供給する濃度差発電装置の一態様を示す。
 以下、本発明の実施の形態の一例を、図面を用いて説明する。ただし、本発明の範囲はこれらの実施態様に限られるものではない。
 なお、各形態において、特に言及しない構成については、他の形態における構成を適用することができる。また、各図について、他の図面と同様の機能を有する構成要素については、同符号を付してその説明を省略することがある。
 図1-図15および図25-図27に示す構成では、低濃度水と高濃度水とは、各サブユニットに並行供給される。本書において、並行供給とは、低濃度水と高濃度水とを、サブユニット間で並行に流れるように供給することを指す。具体的には、並行供給においては、低濃度水が第1サブユニット8、第2サブユニット12の順に流れるとき、高濃度水も、第1サブニット8、第2サブユニット12の順に流れる。しかし、並行供給という用語は、個々のサブユニットの内部における低濃度水および高濃度水の流れの方向を限定するものではない。したがって、低濃度水と高濃度水とが並行供給されているときも、各サブユニットの内部においては、半透膜を挟んで、低濃度水と高濃度水とが、同方向に流れていてもよいし(つまり並行に流れていてもよいし)、逆方向に流れていてもよい(つまり、対向するように流れていてもよい)。
 一方、図16-図23に示す構成では、低濃度水と高濃度水とは、各サブユニットに対向供給される。対向供給とは、低濃度水と高濃度水を逆向きに流す供給方法である。並行供給と同様に、対向供給においても、低濃度水と高濃度水とは、サブユニット間で逆方向に流れるように、つまりサブユニット間を流れるときに互いに対向流として流れていればよい。つまり、サブユニット内部においては、半透膜を挟んで、低濃度水と高濃度水とが、同方向に流れていてもよいし、逆方向に流れていてもよい。
 図1-図23および図25-図27において、符号101-123および125-127は、半透膜ユニットを指す。これらの半透膜ユニットは、2個以上のサブユニットに分割されている。「分割されている」とは、半透膜ユニットとして機能する複数のサブユニットと、各サブユニットの高濃度側を連結する流路と、低濃度を連結する流路と、が設けられることを意味する。
 なお、以下の説明において、「上流」と「前段」、「下流」と「後段」または「次段」とは、互いに言い換えられてもよい。
 また、「濃度差発電装置」と「浸透圧発電装置」とは、互いに言い換えられてもよい。
 1.第1-第3形態
 図1に示す濃度差発電装置は、半透膜ユニットと、圧力変更機構とを備える。圧力変更機構の一例として、本形態の装置においては、高濃度水の中間流路L4上に、バルブ11が設けられている。
 図1に示す濃度差発電装置は、低濃度水タンク1、低濃度取水ポンプ2、低濃度前処理ユニット3、高濃度水タンク4、高濃度取水ポンプ5、高濃度前処理ユニット6、昇圧ポンプ7、半透膜ユニット100、水力発電機13、低濃度供給流路L1、高濃度供給流路L2、低濃度排水流路L5、および高濃度排水流路L6を備える。
 なお、必要に応じて、図示された装置および部材の一部が設けられていなくてもよいし、図示されていない装置および部材、例えば昇圧ポンプ、中間タンク、保安フィルターなどが、さらに設けられていてもよい。
 図1に示すように、低濃度取水ポンプ2は、低濃度水タンク1から低濃度水を汲み上げて、低濃度前処理ユニット3に送る。低濃度前処理ユニット3は、低濃度水をろ過等することで、浸透圧発電に適用可能な低濃度水を得る。低濃度供給流路L1は、低濃度水タンク1から第1サブユニット8へ低濃度水を供給する。
 また、図1に示すように、高濃度取水ポンプ5は、高濃度水タンク4から高濃度水を汲み上げて、高濃度前処理ユニット6に送る。高濃度前処理ユニット6は、高濃度水をろ過等することで、浸透圧発電に適用可能な高濃度水を得る。昇圧ポンプ7は高濃度前処理ユニット6による前処理を経た高濃度水の水圧を高める。高濃度供給流路L2は、高濃度水タンク4から第1サブユニット8へ高濃度水を供給する。
 半透膜ユニット101は、高濃度水と低濃度水との浸透圧の差によって、低濃度水から高濃度水への水の移動を生じさせる。半透膜ユニット100は、複数のサブユニットに分割されている。具体的には、半透膜ユニット100は、第1サブユニット8および第2サブユニット12と、第1サブユニット8と第2サブユニット12とを連結する低濃度水の中間流路L3および高濃度水の中間流路L4を備える。なお、1つの半透膜ユニットが備えるサブユニットの数は、2個に限定されず、3個以上であってもよい。
 第1サブユニット8および第2サブユニット12は、それぞれ、半透膜と、低濃度水が流れる流路と、高濃度水が流れる流路と、を備える。
 低濃度水の中間流路L3は、第1サブユニット8の低濃度側の流路と第2サブユニット12の低濃度側の流路とを接続し、高濃度水の中間流路L4は、第1サブユニット8の高濃度側の流路と第2サブユニット12の高濃度側の流路とを接続する。
 前処理を経た低濃度水は、まず第1サブユニット8の低濃度側の流路に流入する。昇圧ポンプ7から送り出された高濃度水は、第1サブユニット8の高濃度側の流路に流入する。こうして、低濃度水と高濃度水とが半透膜を介して接触する。この接触によって、浸透圧に基づいて、低濃度側の流路から高濃度側の流路へと半透膜を通って水が移動する。その結果、第1サブユニット8の下流における低濃度水の流量は、上流における流量よりも減少し、第1サブユニット8の下流における高濃度水の流量は上流における流量よりも増加する。
 こうして減少した低濃度水は、第1サブユニット8から流出した後、低濃度水の中間流路L3を通って第2サブユニット12の低濃度側の流路に送られる。また、増加した高濃度水は、第1サブユニット8から流出した後、高濃度水の中間流路L4を通って第2サブユニット12の高濃度側の流路に送られる。第2サブユニット12では、第1サブユニット8と同様に、低濃度側の流路から高濃度側の流路へ水が移動する。
 このとき、第2サブユニット12における低濃度水と高濃度水との濃度差は、第1サブユニット8における低濃度水と高濃度水との濃度差よりも小さい。つまり、通常、第2サブユニット12における透過流束(すなわち膜面積あたりの透過流量)は、第1サブユニット8における透過流束よりも小さくなる。
 しかしながら、第2サブユニット12で大きな透過流束を得るために、第1サブユニット8に供給される低濃度水と高濃度水との濃度の差を大きくすると、第1サブユニット8での透過流束が非常に大きくなる。その結果、低濃度水に含まれる不純物が半透膜面に蓄積しやすくなるので、ファウリング(fouling)によって半透膜の性能が低下しやすい。一方で、第1サブユニットにおけるファウリング発生を抑える目的で、第1サブユニット8の透過流束を制限すると、第2サブユニット12ではさらに透過流束が小さくなり、高い発電効率を得ることが難しくなる。
 発明者らは、サブユニット間の流路に、圧力変更機構を設けることでこのような問題を解決できることを見出した。圧力変更機構とは、圧力変更機構の上流における圧力と下流におけるとの間に差異を生じさせる機構である。
 圧力変更機構の一例として、図1の装置においては、高濃度水の中間流路L4上に、バルブ11が設けられている。バルブ11は、高濃度水の中間流路L4において圧力損失を生じさせることで、第1サブユニット8の透過側に、第2サブユニットの透過側よりも大きな背圧をかける。バルブ11は、こうしてサブユニット間に背圧差を生じさせることによって、第1サブユニット8の半透膜における有効圧力差と、第2サブユニット12の半透膜における有効圧力差との差異を低減する。ここで、有効圧力差とは、(供給側圧力-透過側圧力+浸透圧差)で表される値である。
 高濃度水は、第2サブユニット12から高濃度排水流路L6を通って、水力発電機13に送られた後、系外に排出される。水力発電機13は、高濃度水が保有する圧力エネルギーを電力に変換する。
 一方、低濃度水は、第2サブユニット14から、低濃度排水流路14を通って排出される。
 以上に説明したように、図1の構成では、前段のサブユニットから次段のサブユニットに至る高濃度側の流路に圧力変更機構が設けられており、この圧力変更機構によって、前段のサブユニット(つまり図1における第1サブユニット8)の透過流束および後段のサブユニット(つまり図1における第2サブユニット12)の透過流束を最適に維持することが可能となる。
 水力発電機13の構成は、とくに制限されるものではなく、水力発電機13として、例えば、フランシス水車、プロペラ水車、ペルトン水車、クロスフロー水車、逆転ポンプなどを挙げることができる。水力発電機13の構成は、流量および生じる圧力等に応じて選択される。
 図2に示すように、第1サブユニット8の出口と第2の半透膜ユニット12の入口とで圧力を変えるための機構として、中間エネルギー回収ユニット16が設けられてもよい。中間エネルギー回収ユニット16は、図1に示すバルブ11と組み合わせて用いられてもよいし、または単独で用いられてもよい。
 中間エネルギー回収ユニット16により、中間エネルギー回収ユニット16の下流側の高濃度水の圧力は、上流側の高濃度水の圧力よりも低減される。なお、中間エネルギー回収ユニット16が設けられても、第2サブユニット12へ供給される高濃度水として適切な圧力は残される。中間エネルギー回収ユニット16としては、例えば、インラインで中間エネルギー回収ユニット16の二次側圧力(つまり透過側の圧力)を維持できる型式の水力発電機が好ましい。このような水力発電機としては、フランシス水車およびプロペラ水車が挙げられる。
 図3に示すように、中間エネルギー回収ユニット16の下流側かつ第2サブユニット12の上流側に、中間昇圧ポンプ17が設けられてもよい。
 本書に記載したいずれの形態においても、中間エネルギー回収ユニット16は、第2サブユニット12よりも高い位置に配置されてもよい。この構成においては、ペルトン水車等を用いて、第1サブユニット8の出口における高濃度水の圧力エネルギーを回収することが可能である。また、中間エネルギー回収ユニット16の後に中間タンクを設けてもよい。
 2.第4-第6形態
 有効圧力差をサブユニット間で均等にするための他の構成として、低濃度水の中間流路に昇圧ポンプが設けられてもよい。
 図4の形態では、第1サブユニット8と第2サブユニット12の間の低濃度水の中間流路L3上に、中間昇圧ポンプ21が設けられる。上述したように、低濃度水が第1サブユニット8を通過することで、低濃度水の流量は低下する。しかし、本形態では、第2サブユニット12の入口における低濃度側の圧力が、第1サブユニット8の出口における低濃度側の圧力よりも高められる。よって、上述の第1-第3形態によって、高濃度側の圧力を減じることによって得られる効果と同様の効果が、本形態においても得られる。
 また、中間昇圧ポンプの代わりに圧力交換式などのエネルギー回収ユニットを用いて、高濃度側および低濃度側のいずれにおいても、排出水などによって生じる圧力エネルギーを利用することもできる。
 図4に示すように、低濃度水の排出流路L15上にバルブ11aが設けられてもよい。バルブ11aは第2サブユニット12の低濃度側圧力を保持することができる。
 また、図5に示すように、図4のバルブ11aに代えて、低濃度水の排出流路L15上に水力発電機13aが設けられてもよい。
 また、図6に示すように、高濃度側および低濃度側の両方に、中間エネルギー回収ユニット16のように圧力を減じる機構が設けられてもよいし、中間昇圧ポンプ21のように圧力を上げる機構が設けられてもよい。
 3.第7-第10形態
 先に例示した図1~図6では、第1サブユニット8から第2サブユニット12まで、低濃度水と高濃度水とが並行供給されている。このような流れを並行流と称する。上述したように、第1サブユニット8では、低濃度水が高濃度側に移動するので、低濃度水の量が減少し、高濃度水の量が増加する。その結果、並行流では、第1サブユニット8における[低濃度水の流量/高濃度水の流量]の比率と、第2サブユニット12における[低濃度水の流量/高濃度水の流量]の比率とに、差異が生じる。
 そのため、第2サブユニット12において、低濃度水流路に対する高濃度水流路の断面積比は、第1サブユニット8における高濃度水流路の断面積比よりも大きいことが好ましい。このような構成によって、上記差異を小さく抑えることができる。
 そのため、第2サブユニット12において、低濃度水流路に対する高濃度水流路の流路断面積比は、第1サブユニット8における流路断面積比よりも大きいことが好ましい。このような構成によって、第2サブユニット12における[高濃度水の流量/低濃度水の流量]の比と、第1サブユニット8における[高濃度水の流量/低濃度水の流量]の比との差異を、小さく抑えることができる。
 このような構成は、例えば半透膜が中空糸膜であり、第1および第2サブユニットで同一径の中空糸膜が充填される場合には、第2サブユニット12における中空糸膜の充填率を第1サブユニット8における充填率と異ならせることによって、実現することができる。すなわち、中空糸膜の内側を高濃度水が通るのであれば、第2サブユニット12における膜の充填率を第1サブユニット8における膜の充填率よりも高くすることで、第2サブユニット12における高濃度水流路の断面積比を大きくすることができる。また、中空糸膜の外側を高濃度水が通るのであれば、第2サブユニット12における膜の充填率を、第1サブユニット8における膜の充填率よりも低くすることで、第2サブユニット12における高濃度水流路の断面積比を大きくすることができる。
 また、半透膜がスパイラル型または積層型の場合は、流路材の厚みを、第1サブユニット8と第2サブユニット12とで異ならせてもよい。
 第1サブユニット8と第2サブユニット12の仕様を変える以外にも、以下のような構成によって、同様の効果を得ることができる。
 すなわち、図7に示すように、第1サブユニット8と並列に設けられた低濃度バイパス流路L11が設けられていてもよい。低濃度水のバイパス流路L11は、第1サブユニット8の上流から(つまり低濃度水の供給流路L1から)、下流側のサブユニットである第2サブユニット12へと低濃度水をバイパスする。低濃度バイパス流路L11によって、第2サブユニット12に供給される低濃度の量を増やすことができる。
 低濃度水バイパス流路L11には、昇圧ポンプ18およびバルブ19が設けられる。昇圧ポンプ18は、必要に応じて第2サブユニット12に供給される低濃度水に圧力を付与することができるが、第1サブユニット8の低濃度水出口の圧力によっては、省略することも可能である。また、バルブ19は、開閉することで、第2サブユニット12に供給される低濃度水の流量を制御することができる。
 また、図8に示すように、第1サブユニット8と並列な高濃度パイパス流路L12が設けられていてもよい。高濃度バイパス流路L12は、第1サブユニット8の上流から(つまり高濃度水の供給流路L2から)、第2サブユニット12に、第1サブユニット8を通っていない高濃度水を供給する。こうしてバイパス流路L12、第2サブユニット12中の高濃度水の塩濃度を上げることができる。高濃度バイパス流路L12にも、昇圧ポンプ18およびバルブ19が設けられる。
 また、図9に示すように、第2サブユニット12と並列な高濃度バイパス流路L13が設けられていてもよい。高濃度バイパス流路L13の一端は、中間エネルギー回収ユニット16の下流かつ第2サブユニット12の上流で中間流路L4に接続する。バイパス流路L13の他端は、水力発電機13の上流で、高濃度水の排出流路L6に接続する。高濃度バイパス流路L13により、第1サブユニット8から流出した高濃度水は、第2サブユニット12を通らずに、高濃度排水流路L6に流入する。こうして、第2サブユニット12に供給される高濃度水流量が低減される。
 また、図10に示すように、高濃度側のバイパス流路L14が設けられてもよい。バイパス流路L14は、中間エネルギー回収ユニット16の上流で高濃度水の中間流路L4から分岐し、水力発電機13の下流で高濃度水の排出流路L6に接続する。バイパス流路L14上には水上発電機13aが設けられる。つまり、バイパス流路L14によって、第1サブユニット8から排出される高濃度水の一部が、水力発電機13aに送られる。この構成によって、第2サブユニット12に供給される高濃度水の流量が低減される。
 4.第11-15形態
 濃度差発電装置は、各サブユニットの下流に、そのサブユニットから流出する水の圧力エネルギーを利用して、そのサブユニットに供給される水、またはそのサブユニットよりも上流に配置されたサブユニットに供給される水を昇圧するように配置された、エネルギー回収ユニットを備えてもよい。このエネルギー回収ユニットとして、圧力交換式の装置およびターボチャージャーは、ポンプを不要とすることができるのでエネルギー効率が高い。構成の例は、以下に説明するとおりである。
 図11および図12に示す構成では、図6に示す構成における中間エネルギー回収ユニット16の代わりに、エネルギー回収ユニット20が設けられる。図11および図12において、エネルギー回収ユニット20は、高濃度水の中間流路L4に設けられており、第1サブユニット8から排出される高濃度水の圧力エネルギーを利用して、第1サブユニット8に供給される高濃度水を昇圧する。具体的には、図11において、エネルギー回収ユニット20は、高濃度前処理ユニット6に供給される高濃度水を昇圧することで、第1サブユニット8に供給される高濃度水を昇圧する。図12において、エネルギー回収ユニット20は、高濃度前処理ユニット6から排出された高濃度水を昇圧することで、第1サブユニット8に供給される高濃度水を昇圧する。エネルギー回収ユニット20の構成は特に制限されない。エネルギー回収ユニット20として、例えば、上述のような水力発電機を利用して、水流を電力に変えてポンプを回す装置が適用可能である。
 図11および図12の構成は、第1サブユニット8から排出される高濃度水をすべてエネルギー回収ユニット20に送る。これに対して、図13では、エネルギー回収ユニット20の代わりにエネルギー回収ユニット22が設けられる。また、図13に示すように、高濃度水の中間流路L4から分岐し、水力発電機13の下流で高濃度排水流路L6に接続するバイパス流路L14が設けられてもよい。バイパス流路L14によって、第1サブユニット8の高濃度の排出水の一部が、エネルギー回収ユニット22に供給される。エネルギー回収ユニット22として、圧力交換式のエネルギー回収装置が用いられる場合、エネルギー回収ユニット22に供給される高濃度水の流量は、第1サブユニット8に供給される高濃度水の流量と同等になるように調整される。エネルギー回収ユニット22に供給される流量は、バルブの開閉、ポンプの稼動および流路径の調節等によって、調整可能である。
 また、図14および図15に例示するように、濃度差発電装置において、他の様々な位置でも、圧力エネルギーを回収することができ、回収された圧力エネルギーを各部における昇圧に適用することができる。
 図14の形態では、エネルギー回収ユニット23は、第2サブユニット12から排出される高濃度水(つまり高濃度排水流路L6を通る高濃度水)の一部から圧力エネルギーを回収し、それを利用して第2サブユニット12に供給される高濃度水を昇圧する。具体的には、バイパス流路(分岐路)L17が高濃度水の排出流路L6から分岐している。流路L17を通った高濃度水は、エネルギー回収ユニット22に圧力エネルギーを供給した後、高濃度水の排出流路L6に再び合流する。バイパス流路L17上にも、高濃度排水流路L6と同様に、バルブ11および水力発電機13aが設けられてもよい。
 また、図15の形態では、エネルギー回収ユニット23の下流で、バイパス流路L17からバイパス流路L18がさらに分岐する。バイパス流路L18上にはエネルギー回収ユニット23が設けられる。エネルギー回収ユニット23は、エネルギー回収ユニットL22を通った高濃度排水の一部から、圧力エネルギーをさらに回収し、第1サブユニット8に供給される高濃度水を昇圧する。
 5.第16-第23形態
 図1~15、25、26においては、並行供給(並行流)の場合について述べた。図16-図23に示す構成では、高濃度水と低濃度水とが対向供給される。
 図16では、高濃度水は、高濃度取水ポンプ5、高濃度前処理ユニット6、昇圧ポンプ7を通って、まず第2サブユニット12に供給される。第2サブユニット12において、低濃度側から高濃度側への水の正浸透によって、高濃度水の流量は増加する。その後、高濃度水は、バルブまたは中間水力発電機(図16では中間エネルギー回収ユニット16)によって圧力が減じられた後に、第1サブユニット8に送られる。第1サブユニット8では、低濃度側から高濃度側に水が移動し、高濃度水の量はさらに増加する。第1サブユニット8を通った高濃度水は、水力発電機13を通った後に系外に排出される。
 一方、低濃度取水ポンプ2および低濃度前処理ユニット3を通った低濃度水は、第1サブユニット8に送られる。第1サブユニット8において、低濃度側から高濃度側へ正浸透により水が移動した後に、第2サブユニット12に送られる。第2サブユニット12においても、上述したように低濃度側から高濃度側へ水が移動する。第2サブユニットを通った低濃度水は、系外に排出される。
 図16においても、第1サブユニット8および第2サブユニット12として、設計上の流量に応じたサブユニットが適用される。
 また、対向流によって低濃度水と高濃度水とが供給される場合においても図17に例示するように、図7と同様のバイパス流路L11が設けられてもよい。バイパス流路L11によって、第1サブユニット8を流れる低濃度水の量、および第2サブユニット12を流れる低濃度水の量が調節される。
 また、図18に示すように、第2サブユニット12に並列なパイパス流路L12が設けられてもよい。バイパス流路L12は、高濃度水供給流路L2から(つまり第2サブユニット12の上流から)、高濃度水の中間流路L4へ高濃度水を供給することで、第1サブユニット8の高濃度供給水の濃度を上げることもできる。
 また、図19に示すように、第1サブユニット8に並列に高濃度水のバイパス流路L14を設けることで、第1サブユニット8に供給される高濃度水の量を調節することも可能である。
 もちろん、これらのバイパス流路が設けられる箇所の数は1つでも複数でもよい。さらに、対向供給の場合も、並行供給の場合と同様に高濃度側の圧力を第2サブユニット12の前で減じる以外に、低濃度側の圧力を第2サブユニット12の前で上げることも可能である。この両方を適用した場合を図20に例示する。さらに、図26と同様に、図27に示すように、半透膜脱塩ユニット27を備えることも可能である。
 なお、本書において、対向供給においては、上述したように、サブユニット間で低濃度水と高濃度水とが対向するように流れるが、サブユニットの内部では低濃度水と高濃度水とが対向するように流れることは必須ではない。ただし、サブユニットの内部においても低濃度水と高濃度水とが対向するように流れると、浸透圧のバランスがさらに良好になり、効果的である。
 さらに、対向供給方式においてエネルギー回収ユニットを適用する好適な例としては、例えば、図21に示す構成が挙げられる。図21では、高濃度の排出水の一部がエネルギー回収ユニット23に送られ、回収されたエネルギーが第1サブユニット8に供給される高濃度水の昇圧に利用され、高濃度の排出水の残りが、水力発電機13に送られる。具体的には、高濃度水の排出流路L6から分岐して、エネルギー回収ユニット23へと高濃度水を送る流路L17が設けられる。
 このとき、エネルギー回収装置23としては、圧力交換式の装置またはターボチャージャーが好ましい。これらの装置によると、ポンプを使わずにダイレクトにエネルギー回収(つまり高濃度水の昇圧)が可能である。
 なお、この場合は、エネルギー回収ユニット23から排出された高濃度側中間水25は、第2サブユニット12の高濃度排出水の有する圧力に近い圧力を有する場合が多く、高圧側と低圧側すべての流路に圧力がかかるため、エネルギー回収ユニットとして適切な耐圧性能を有する装置が用いられる。
 また、エネルギー回収ユニット23が設けられた流路上に、発電機13aが設けられてもよい。図21では、エネルギー回収ユニット23と発電機13aとの間に、バルブ11が設けられる。
 なお、図21では、高濃度水の中間流路L4上に中間昇圧ポンプ24が設けられる(請求項10の発明)。中間昇圧ポンプ24によって、エネルギー回収の不足分が補われ、また、起動時の第1サブユニット8への高濃度水の供給が円滑に行われる。特にフレキシビリティという意味からは、インバーターが設けられることが好ましい。
 エネルギー回収ユニット23の高濃度側の中間水25は、図22に例示するように、高濃度水の昇圧などに利用可能である。すなわち、流路L17は、高濃度の中間水を発電機13aに供給する流路と、エネルギー回収ユニット22に供給する流路とに分岐してもよい。エネルギー回収ユニット22は、中間水25の圧力を利用して、上流のサブユニット12に供給される高濃度水を昇圧する。つまり、図22の構成は、下流のサブユニット8の下流側、つまり出口に設けられたエネルギー回収ユニットが、上流のサブユニット12を昇圧する形態の一例である。
 5.第23形態
 以上では、半透膜ユニットが2つのサブユニットから構成される場合について説明したが、半透膜ユニットが3つ以上のサブユニットから構成されていてもよい。低濃度水と初期の高濃度水との濃度差が大きいときには、上流のサブユニットでの透過水量が大きいので、サブユニットの数を増やすことによって、より均等な透過流束を実現することができる。例として図23に、2つのサブユニットから構成される図22の濃度差発電装置を3つのサブユニットから構成される濃度差発電装置にした場合の例を示す。
 6.第25-第27形態
 図25に示すように、圧力変更機構として、脱塩ユニット27が設けられてもよい。脱塩ユニット27は、半透膜を備えるろ過脱塩装置である。
 第1サブユニット8から排出される高濃度水は、高濃度水の中間流路L4を通って脱塩ユニット27に供給される。脱塩ユニット27では、圧力エネルギーを利用して、脱塩水および濃縮水が得られる。濃縮水は、第2ユニット12に高濃度水として供給される。本形態では、脱塩水タンク29、および脱塩ユニット27から脱塩水タンク29にいたる流路L7が、さらに設けられる。脱塩水は、流路L7を通って脱塩水タンク29に貯留された後、系外で利用されてもよい。
 また、図26に示す構成では、脱塩水タンク29と、低濃度水の中間流路L3とを繋ぐ流路L8が設けられる。脱塩水は、脱塩水タンク29から、流路L8を通って第2サブユニット12へ、低濃度水として供給される。つまり、第1サブユニット8から出た高濃度水の一部が、第2サブユニット12の低濃度水として供給されるので、第2サブユニット12における低濃度水の量の変動を抑えることができる。
 ここで適用する脱塩ユニット27は、適切な脱塩性能を有していればよい。適切な脱塩性能とは、得られた脱塩水が低濃度水として利用される場合は、その脱塩水の供給対象であるサブユニットに流入する高濃度水よりも低い塩濃度の脱塩水を得られる程度であればよい。具体的には、脱塩率が90%以上、より好ましくは、95%以上になるように、半透膜の構成および脱塩ユニットの運転条件を設定すればよい。
 上述したように、図26と同様に、図27に示すように、半透膜脱塩ユニット27が高濃度水の中間流路L4上に設けられてもよい。
 6.サブユニットの構成
 各サブユニットの構成および大きさ等は、特定の形態には限定されない。例えば、耐圧容器と、この耐圧容器中に収容された流体分離素子(分離エレメント)とを備える分離装置が、サブユニットとして適用可能である。流体分離素子は、筐体、およびその筐体に納められた中空糸膜状または平膜状の半透膜を備える。半透膜が平膜であれば、流体分離素子は例えば、半透膜と流路材とが積層されることで形成された積層体と、多数の孔を穿設した筒状の中心パイプと、を備える。このような流体分離素子において、半透膜および流路材は、中心パイプの周りに貼り付けられており、平らな状態であってもよいし、中心パイプの周囲に巻きつけられた状態であってもよい。
 半透膜素材としては、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が適用される。
 また、半透膜は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜であってもよいし、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜であってもよい。
 7.他の構成要素等について
 以上の実施形態において、低濃度水および高濃度水とは、半透膜を介して互いに接したときに、浸透圧差による水の透過流を生じる水溶液であればよい。つまり、低濃度水は一般的には比較的低い塩濃度を有する水を指し、高濃度水とは、低濃度水よりも高い塩濃度を有する水を指す。低濃度水および高濃度水の塩濃度は、具体的な数値に限定されない。ただし、低濃度水と高濃度水との濃度差が大きい方が、内在するエネルギーも大きいので好ましい。具体的には、高濃度水は、例えば、海水、海水濃縮水、食塩水、糖液、臭化リチウムなど、高い溶解度を有する溶質を含有し、かつ高い浸透圧が得られる水溶液が好ましい。特に海水およびその濃縮水は、自然から容易に得ることができる。一方、低濃度水は、純水、河川水、地下水、下水処理水など、高濃度水よりも浸透圧が小さい液であればよい。入手にかかるコストが低く、低濃度水として好適な濃度を有するので、河川水および下水処理水が好適に用いられる。
 前処理ユニット3,前処理ユニット6についても特に制約はなく、それぞれの供給水の水質など必要に応じて、濁質成分の除去や殺菌などを適用することができる。
 供給水の濁質を除去する必要がある場合は、砂ろ過や精密ろ過膜、限外ろ過膜の適用が効果的である。このときバクテリアや藻類などの微生物が多い場合は、殺菌剤を添加することも好ましい。殺菌剤としては塩素を用いることが好ましく、たとえば塩素ガスや次亜塩素酸ナトリウムを遊離塩素として1~5mg/lの範囲内となるように供給水に添加するとよい。なお、半透膜によっては特定の殺菌剤に化学的な耐久性がない場合があるので、その場合は、なるべく供給水の上流側で添加し、さらに、半透膜ユニットの供給水入口側近傍にて殺菌剤を無効にすることが好ましい。例えば、遊離塩素の場合は、その濃度を測定し、この測定値に基づいて塩素ガスや次亜塩素酸ナトリウムの添加量を制御したり、亜硫酸水素ナトリウムなどの還元剤を添加したりするとよい。また、濁質以外にバクテリアやタンパク質、天然有機成分などを含有する場合は、ポリ塩化アルミニウム、硫酸バンド、塩化鉄(III)などの凝集剤を加えることも効果的である。凝集させた供給水は、その後に斜向板などで沈降させた上で砂ろ過を行ったり、複数本の中空糸膜を束ねた精密ろ過膜や限外ろ過膜によるろ過を行ったりすることによって後段の半透膜ユニットを通過させるのに適した供給水とすることができる。とくに、凝集剤の添加にあたっては、凝集しやすいようにpHを調整することが好ましい。
 ここで、前処理に砂ろ過を用いる場合は、自然に流下する方式の重力式ろ過を適用することもできれば、加圧タンクの中に砂を充填した加圧式ろ過を適用することも可能である。充填する砂も、単一成分の砂を適用することが可能であるが、例えば、アンスラサイト、珪砂、ガーネット、軽石など、を組み合わせて、ろ過効率を高めることが可能である。精密ろ過膜や限外ろ過膜についても、特に制約はなく、平膜、中空糸膜、管状型膜、プリーツ型、その他いかなる形状のものも適宜用いることができる。膜の素材についても、特に限定されるもの、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースや、セラミック等の無機素材を用いることができる。また、ろ過方式にしても供給水を加圧してろ過する加圧ろ過方式や透過側を吸引してろ過する吸引ろ過方式のいずれも適用可能である。とくに、吸引ろ過方式の場合は、凝集沈殿槽や生物処理槽に精密ろ過膜や限外ろ過膜を浸漬してろ過する、いわゆる凝集膜ろ過や膜利用活性汚泥法(MBR)を適用することも好ましい。
 一方、供給水に溶解性の有機物が多く含まれている場合は、塩素ガスや次亜塩素酸ナトリウムの添加によってそれら有機物を分解することができるが、加圧浮上や活性炭ろ過を行うことによっても除去が可能である。また、溶解性の無機物が多く含まれている場合は、有機系高分子電解質やヘキサメタ燐酸ソーダなどのキレート剤を添加したり、イオン交換樹脂などを用いて溶解性イオンと交換したりするとよい。また、鉄やマンガンが可溶な状態で存在しているときは、ばっ気酸化ろ過法や接触酸化ろ過法などを用いることが好ましい。
 あらかじめ特定イオンや高分子などを除去し、本発明における淡水製造装置を高効率で運転することを目的として、前処理にナノろ過膜を用いることも可能である。
 8.各形態の組み合わせ
 それぞれの形態において説明した、流路、エネルギー回収ユニット、バルブ、ポンプ等の構成要素の数および位置は、変更可能である。また、別の図面に示した構成は、それぞれ組み合わせることが可能である。すなわち、別の形態として説明された構成を、省略、付加、組み合わせることで得られる形態も、本発明の実施形態に含まれる。
 また、本書に記載した濃度差発電装置を用いた発電方法も、本発明の技術的範囲に含まれる。
 <運転方法>
 本書に記載する全ての形態の発電装置において、各サブユニットの透過流束が過剰に大きくならないように、各サブユニットにおける透過流束の最大値は、設定値以下になるように制御されることが好ましい(請求項12の発明)。透過流束をこのように制御するには、各サブユニットにおいて、設定された上限値を透過流束が超えそうになったときに、そのサブユニットにおける高濃度側の圧力を低濃度側の圧力よりも相対的に増加させればよい。つまり、サブユニットにおける高濃度水の圧力を上げるか、低濃度水の圧力を下げるか、高濃度水の圧力を上げながら低濃度水の圧力を下げればよい。
 図1の構成を例として説明すると、第1サブユニット8の透過流束が上限を超えそうになった場合は、(a)昇圧ポンプ7の出力を上げること、および/または(b)バルブ11の開度を下げることによって、高濃度側の圧力を相対的に高めることができる。こうして、第1サブユニット8における透過流束の増大が抑制される。
 また、第2サブユニット12において透過流束が設定された上限値を超えそうになった場合は、バルブ11の開度を上げることで、第2サブユニット12の高濃度側の圧力を上げることができる。
 また、第1および第2サブユニットのいずれにおいても、低濃度側の圧力を下げることによって、高濃度側の圧力を増大させるのと同様の効果を得ることができる。
 各サブユニットの透過流束は、より具体的には、低濃度水についてASTM D 4189-95に準拠して測定されたSDI(Silt Density Index)に応じて制御されてもよい(請求項13の発明の例)。例えば、各サブユニットの透過流束を、SDI<1のときは42.5lmh以下となるように制御し、1≦SDI≦5のときは(50-7.5×SDI)Lmh以下となるように制御してもよい。lmhとは、リットル毎平方メートル毎時(L/m/h)を表す単位である。このように制御によって、サブユニットのファウリングがより抑制され、より安定な運転が可能となる。
 なお、SDI>5である場合は、運転を中断してもよい。ただし、SDI>5のときも運転は可能であり、運転を停止するときの条件は、用いられる低濃度水の状態等にもよって設定可能である。
 <比較形態>
 図24に示す形態では、濃度差発電装置は分割されていない半透膜ユニット200を備える。半透膜ユニット200において、流路L102によって供給される高濃度水の入り口付近では、高濃度水と低濃度水との濃度差が大きいので透過流束が大きく、高濃度水の出口付近では濃度差が小さいので透過流束が小さくなる。よって、上述したような問題が起きやすい。なお、符号L101は低濃度水の供給流路であり、L105は低濃度水の排出流路であり、L106は高濃度水の排出流路である。
 本発明は、浸透圧の低い低濃度水と浸透圧の高い高濃度水の間に半透膜を介して接触させ、正浸透現象によって生じる透過流をエネルギーとして、水力発電を行う装置およびその運転方法に関するものであり、さらに詳しくは、複数のサブユニットから構成しつつ、それぞれの有効圧力差を最適にすることによって効率的かつ安定に水力発電を行うことを実現することができるものである。
1:低濃度水タンク
2:低濃度取水ポンプ
3:低濃度前処理ユニット
4:高濃度水タンク
5:高濃度取水ポンプ
6:高濃度前処理ユニット
7:昇圧ポンプ
8:第1サブユニット
11:バルブ(高濃度側中間)
11a:バルブ(低濃度側排水)
12:第2サブユニット
13:水力発電機(高濃度側排水)
13a:水力発電機(高濃度側中間)
13b:水力発電機(高濃度側中間第2)
16:中間エネルギー回収ユニット
17:中間昇圧ポンプ
18:昇圧ポンプ(第1)バイパス
18a:昇圧ポンプ(第2)バイパス
19:バルブ(第1)バイパス
19a:バルブ(第2)バイパス
20:エネルギー回収ユニット(高濃度水昇圧または高濃度側の前処理水の昇圧)
21:中間昇圧ポンプ
22:エネルギー回収ユニット(前処理水昇圧)
23:エネルギー回収ユニット(中間昇圧)
23a:エネルギー回収ユニット(中間昇圧第2)
24:中間昇圧ポンプ
24a:中間昇圧ポンプ(第2)
25:高濃度側中間水
26:第3のサブユニット
27:半透膜脱塩ユニット
29:脱塩水タンク
30:脱塩水供給ポンプ
101-127,200:半透膜ユニット
L1、L101:低濃度水の供給流路
L2、L102:高濃度水の供給流路
L5、L105:低濃度水の排出流路
L6、L106:高濃度水の排出流路
L7:脱塩水の流路
L8:脱塩水の供給流路
L11:低濃度水のバイパス流路
L12‐14:高濃度水のバイパス流路
L17、L18:高濃度水の排出流路の分岐路
L41‐L42:高濃度水の中間流路
L31‐L32:低濃度水の中間流路

Claims (13)

  1.  半透膜を備える半透膜ユニットを介して濃度の異なる高濃度水と低濃度水を接触させたときに、正浸透圧によって低濃度側から高濃度側に水が浸透することによる高濃度水の量の増加を利用して、発電機を駆動させて発電する濃度差発電装置であって、
     前記半透膜ユニットは、複数のサブユニットに分割されているとともに、前記サブユニット間を繋ぐ高濃度側の中間流路および低濃度側の中間流路を備え、
     前記濃度差発電装置は、高濃度側の前記中間流路および低濃度側の前記中間流路の少なくとも一方に設けられた圧力変更機構を備える、
    濃度差発電装置。
  2.  圧力変更機構が、エネルギー回収ユニットおよび脱塩ユニットの少なくとも一方を備える
    請求項1に記載の濃度差発電装置。
  3.  圧力変更機構が、圧力交換式エネルギー回収ユニットを備える、
    請求項2に記載の濃度差発電装置。
  4.  低濃度水の流れる方向において上流に位置するサブユニットへ供給される低濃度水の一部を、下流に位置するサブユニットの少なくとも1つへ供給するバイパス流路をさらに備える、
    請求項1-3のいずれかに記載の濃度差発電装置。
  5. 前記高濃度水の流れる方向において上流に位置するサブユニットから排出される高濃度水の一部を発電機に送る流路と
     前記高濃度排出水の残りを下流に位置するサブユニットの少なくとも1つに供給する流路と、をさらに備える
    請求項1-4のいずれかに記載の濃度差発電装置。
  6.  高濃度水の中間流路において、少なくとも1つのサブユニットの出口にエネルギー回収ユニットを備え、
     前記エネルギー回収ユニットが前記サブユニットまたはその上流側のサブユニットを昇圧する
    請求項1-5のいずれかに記載の濃度差発電装置。
  7.  前記サブユニットに高濃度水と低濃度水を実質的に並行供給するように構成されている
    請求項1-6のいずれかに記載の濃度差発電装置。
  8.  前記サブユニットに高濃度水と低濃度水を実質的に対向供給するように構成されている
    請求項1-6のいずれかに記載の濃度差発電装置。
  9.  前記圧力変更機構として、前記サブユニット間に設けられた低濃度水の中間流路の少なくとも1つに昇圧ポンプを備える
    請求項1-8のいずれかに記載の濃度差発電装置。
  10.  前記圧力変更機構として、前記サブユニット間に設けられた高濃度水の中間流路の少なくとも1つに昇圧ポンプを備える
    請求項1-9のいずれかに記載の濃度差発電装置。
  11.  圧力変更機構として、圧力交換式エネルギー回収ユニットを備え、
     前記圧力交換式エネルギー回収ユニットには、受圧側の排水流路が接続されており、
     前記受圧側の排水流路に発電ユニットが連結している
    請求項9または10に記載の濃度差発電装置。
  12.  濃度差発電装置の運転方法であって:
     前記濃度差発電装置は、半透膜を備えた半透膜ユニットを介して濃度の異なる高濃度水と低濃度水を接触させ、正浸透圧によって低濃度側から高濃度側に水を浸透させることによる高濃度水の水量増加を利用して、発電機を駆動させて発電し、
     前記半透膜ユニットは、複数のサブユニットに分割されているとともに、前記サブユニット間を繋ぐ高濃度水の流路および低濃度水の流路を備え、前記高濃度水の流路または低濃度水の流路の少なくとも一方に圧力変更機構を備えており;
     前記運転方法は、少なくとも1つのサブユニットの膜面積あたりの透過流量の最大値を、設定値以下になるように制御することを備える
    濃度差発電装置の運転方法。
  13.  ASTM D 4189-95に準拠して低濃度水について測定されたSDI(Silt Density Index)に応じて、SDI<1のときは、前記サブユニットの膜面積あたりの透過流量の最大値を42.5lmh以下とし、1≦SDI≦5のときは、前記最大値を(50-7.5×SDI)lmh以下とすることを備える
    請求項12に記載の濃度差発電装置の運転方法。
PCT/JP2012/058389 2011-03-30 2012-03-29 濃度差発電装置とその運転方法 WO2012133661A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012518655A JP5991200B2 (ja) 2011-03-30 2012-03-29 濃度差発電装置とその運転方法
ES12763989.6T ES2551864T3 (es) 2011-03-30 2012-03-29 Dispositivo de generación de energía por diferencia de concentración y método de funcionamiento del mismo
CA2831750A CA2831750A1 (en) 2011-03-30 2012-03-29 Concentration difference power generation device and method for operating same
KR1020137025441A KR101822567B1 (ko) 2011-03-30 2012-03-29 농도차 발전 장치 및 그 운전 방법
CN201280015189.0A CN103547798B (zh) 2011-03-30 2012-03-29 浓度差发电装置及其操作方法
SG2013072459A SG193966A1 (en) 2011-03-30 2012-03-29 Concentration difference power generation device and method for operating same
US14/008,949 US20140284929A1 (en) 2011-03-30 2012-03-29 Concentration difference power generation device and method for operating same
EP12763989.6A EP2693050B1 (en) 2011-03-30 2012-03-29 Concentration difference power generation device and method for operating same
IL228489A IL228489A (en) 2011-03-30 2013-09-17 Device for producing power based on difference in concentration and method for operating it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-074639 2011-03-30
JP2011074639 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133661A1 true WO2012133661A1 (ja) 2012-10-04

Family

ID=46931363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058389 WO2012133661A1 (ja) 2011-03-30 2012-03-29 濃度差発電装置とその運転方法

Country Status (10)

Country Link
US (1) US20140284929A1 (ja)
EP (1) EP2693050B1 (ja)
JP (1) JP5991200B2 (ja)
KR (1) KR101822567B1 (ja)
CN (1) CN103547798B (ja)
CA (1) CA2831750A1 (ja)
ES (1) ES2551864T3 (ja)
IL (1) IL228489A (ja)
SG (1) SG193966A1 (ja)
WO (1) WO2012133661A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236124A (ja) * 2011-05-10 2012-12-06 Kobe Univ 被処理水の濃縮方法及び濃縮装置
CN103726975A (zh) * 2013-12-17 2014-04-16 浙江理工大学 低品位热源驱动的两级渗透浓差做功装置及方法
CN103787464A (zh) * 2014-01-10 2014-05-14 河海大学 一种基于浓度差的介质可循环的海水淡化系统
JP2014097444A (ja) * 2012-11-13 2014-05-29 Jfe Engineering Corp 淡水製造装置およびその運転方法
JP5572740B1 (ja) * 2013-06-19 2014-08-13 株式会社神鋼環境ソリューション 発電設備および発電方法
KR101535719B1 (ko) * 2013-09-30 2015-07-09 성균관대학교산학협력단 하이브리드 해수 담수화 장치 및 방법
JP2015188787A (ja) * 2014-03-27 2015-11-02 東洋紡株式会社 正浸透処理方法および正浸透処理装置
KR20160055357A (ko) * 2014-11-07 2016-05-18 한양대학교 에리카산학협력단 수처리시스템
JP2016097331A (ja) * 2014-11-19 2016-05-30 東洋紡株式会社 造水システムおよび造水方法
JP2016525938A (ja) * 2013-06-03 2016-09-01 アイ・ディ・イー・テクノロジーズ・リミテッド 圧力遅延浸透プラントの運転方法
EP2982654A4 (en) * 2013-04-02 2016-12-21 Kyowakiden Ind Co Ltd DEVICE FOR DESALINTING SALTED WATER
KR20170052622A (ko) * 2014-09-08 2017-05-12 어플라이드 바이오미메틱 에이/에스 전기 생산 방법
KR20190002438A (ko) * 2016-03-04 2019-01-08 어플라이드 바이오미메틱 에이/에스 발전 방법
JP2019508240A (ja) * 2016-03-04 2019-03-28 アプライド・バイオミメティック・エイ/エス 浸透及び嫌気性廃水処理を用いる発電方法
JP2020015015A (ja) * 2018-07-26 2020-01-30 東洋紡株式会社 正浸透処理方法および正浸透処理装置
WO2020129707A1 (ja) * 2018-12-21 2020-06-25 国立大学法人高知大学 排水処理装置及び排水処理方法
US11231020B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
US11231021B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404930B (zh) * 2014-11-28 2016-02-24 张波 河流入海河口发电系统
WO2017019944A1 (en) 2015-07-29 2017-02-02 Gradiant Corporation Osmotic desalination methods and associated systems
CN105422399B (zh) * 2015-11-19 2018-01-05 浙江理工大学 超重力浓差发电装置及方法
WO2018027019A1 (en) * 2016-08-04 2018-02-08 Oasys Water, Inc. Systems and methods for improving performance of forward osmosis systems
JP7175636B2 (ja) * 2018-06-01 2022-11-21 オルガノ株式会社 スクラバ排水の浄化装置及び方法並びに塩分濃度差発電システム
CN110107445B (zh) * 2019-01-17 2021-03-09 上海电机学院 一种基于溶质浓度动力的小型水利发电装置
CN110963541B (zh) * 2019-12-11 2021-04-13 西安交通大学 自维持海水淡化系统及淡化方法
IL274695B (en) * 2020-05-14 2022-06-01 Fisher Shmuel Holdings Ltd System and method for adding water to bodies of salt water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906250A (en) * 1973-07-03 1975-09-16 Univ Ben Gurion Method and apparatus for generating power utilizing pressure-retarded-osmosis
WO2002013955A1 (en) 2000-08-04 2002-02-21 Statkraft Sf Semi-permeable membrane, method for providing electric power and a device
JP2004275954A (ja) * 2003-03-18 2004-10-07 Epoch:Kk 非常時水供給システム
JP2005279540A (ja) * 2004-03-30 2005-10-13 Toray Eng Co Ltd 淡水化装置
JP4166464B2 (ja) 2001-12-10 2008-10-15 国立大学法人東京工業大学 海水淡水化装置付き浸透圧発電システム
JP2008311166A (ja) * 2007-06-18 2008-12-25 Panasonic Corp 燃料電池システム
US20100212319A1 (en) * 2009-02-24 2010-08-26 Mark Donovan Method and apparatus for generating power utilizing forward osmosis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO329120B1 (no) * 2005-12-22 2010-08-30 Statkraft Dev As Fremgangsmate og system for a utfore vedlikehold pa en membran som har halvgjennomtrengelige egenskaper
AU2007249304B2 (en) * 2006-05-12 2012-03-08 Energy Recovery, Inc. Hybrid RO/PRO system
US8128821B2 (en) * 2006-06-14 2012-03-06 Fluid Equipment Development Company, Llc Reverse osmosis system with control based on flow rates in the permeate and brine streams
JP2008309014A (ja) 2007-06-13 2008-12-25 Kansai Electric Power Co Inc:The 浸透圧式圧縮空気貯蔵タービン発電機システム
JP2009047012A (ja) * 2007-08-14 2009-03-05 Mitsubishi Electric Corp 浸透圧発電システム
US8216473B2 (en) * 2008-06-13 2012-07-10 Solution Dynamics, Llc Apparatus and methods for solution processing using reverse osmosis
US8545701B2 (en) * 2009-08-18 2013-10-01 Maher Isaac Kelada Induced symbiotic osmosis [ISO] for salinity power generation
KR101272868B1 (ko) * 2010-11-11 2013-06-11 한국과학기술원 정삼투압을 이용한 저농도 발효액의 농축 방법
US9919936B2 (en) * 2012-11-16 2018-03-20 Samsung Electronics Co., Ltd. Water recovery method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906250A (en) * 1973-07-03 1975-09-16 Univ Ben Gurion Method and apparatus for generating power utilizing pressure-retarded-osmosis
WO2002013955A1 (en) 2000-08-04 2002-02-21 Statkraft Sf Semi-permeable membrane, method for providing electric power and a device
JP2004505764A (ja) * 2000-08-04 2004-02-26 スタットクラフト エスエフ 半透膜、電力を供給する方法及び装置
JP4166464B2 (ja) 2001-12-10 2008-10-15 国立大学法人東京工業大学 海水淡水化装置付き浸透圧発電システム
JP2004275954A (ja) * 2003-03-18 2004-10-07 Epoch:Kk 非常時水供給システム
JP2005279540A (ja) * 2004-03-30 2005-10-13 Toray Eng Co Ltd 淡水化装置
JP2008311166A (ja) * 2007-06-18 2008-12-25 Panasonic Corp 燃料電池システム
US20100212319A1 (en) * 2009-02-24 2010-08-26 Mark Donovan Method and apparatus for generating power utilizing forward osmosis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. LOEB, JOURNAL OFMEMBRANE SCIENCE, vol. 1, 1976, pages 49
TANIOKA AKIHIKO, NEW MEMBRANE TECHNOLOGY SYMPOSIUM, December 2010 (2010-12-01)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236124A (ja) * 2011-05-10 2012-12-06 Kobe Univ 被処理水の濃縮方法及び濃縮装置
JP2014097444A (ja) * 2012-11-13 2014-05-29 Jfe Engineering Corp 淡水製造装置およびその運転方法
EP2982654A4 (en) * 2013-04-02 2016-12-21 Kyowakiden Ind Co Ltd DEVICE FOR DESALINTING SALTED WATER
JP2016525938A (ja) * 2013-06-03 2016-09-01 アイ・ディ・イー・テクノロジーズ・リミテッド 圧力遅延浸透プラントの運転方法
JP5572740B1 (ja) * 2013-06-19 2014-08-13 株式会社神鋼環境ソリューション 発電設備および発電方法
WO2014203924A1 (ja) * 2013-06-19 2014-12-24 株式会社神鋼環境ソリューション 発電設備および発電方法
KR101535719B1 (ko) * 2013-09-30 2015-07-09 성균관대학교산학협력단 하이브리드 해수 담수화 장치 및 방법
CN103726975A (zh) * 2013-12-17 2014-04-16 浙江理工大学 低品位热源驱动的两级渗透浓差做功装置及方法
CN103787464A (zh) * 2014-01-10 2014-05-14 河海大学 一种基于浓度差的介质可循环的海水淡化系统
JP2015188787A (ja) * 2014-03-27 2015-11-02 東洋紡株式会社 正浸透処理方法および正浸透処理装置
JP2017529491A (ja) * 2014-09-08 2017-10-05 アプライド・バイオミメティック・エイ/エス 発電方法
KR20170052622A (ko) * 2014-09-08 2017-05-12 어플라이드 바이오미메틱 에이/에스 전기 생산 방법
KR102389991B1 (ko) * 2014-09-08 2022-04-22 어플라이드 바이오미메틱 에이/에스 전기 생산 방법
KR101710758B1 (ko) 2014-11-07 2017-02-28 한양대학교 에리카산학협력단 수처리시스템
KR20160055357A (ko) * 2014-11-07 2016-05-18 한양대학교 에리카산학협력단 수처리시스템
JP2016097331A (ja) * 2014-11-19 2016-05-30 東洋紡株式会社 造水システムおよび造水方法
KR20190002438A (ko) * 2016-03-04 2019-01-08 어플라이드 바이오미메틱 에이/에스 발전 방법
JP2019508240A (ja) * 2016-03-04 2019-03-28 アプライド・バイオミメティック・エイ/エス 浸透及び嫌気性廃水処理を用いる発電方法
JP2019510160A (ja) * 2016-03-04 2019-04-11 アプライド・バイオミメティック・エイ/エス 発電方法
KR102410905B1 (ko) * 2016-03-04 2022-06-17 어플라이드 바이오미메틱 에이/에스 발전 방법
US11231019B2 (en) 2016-03-04 2022-01-25 Applied Biomimetic A/S Electricity generation process
US10968128B2 (en) 2016-03-04 2021-04-06 Applied Biomimetic A/S Power generation process
US11231020B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
US11231021B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
WO2020022219A1 (ja) * 2018-07-26 2020-01-30 東洋紡株式会社 正浸透処理方法および正浸透処理装置
JP2020015015A (ja) * 2018-07-26 2020-01-30 東洋紡株式会社 正浸透処理方法および正浸透処理装置
JP7238233B2 (ja) 2018-07-26 2023-03-14 東洋紡株式会社 正浸透処理方法および正浸透処理装置
JPWO2020129707A1 (ja) * 2018-12-21 2021-12-23 国立大学法人高知大学 排水処理装置及び排水処理方法
WO2020129707A1 (ja) * 2018-12-21 2020-06-25 国立大学法人高知大学 排水処理装置及び排水処理方法
JP7421496B2 (ja) 2018-12-21 2024-01-24 国立大学法人高知大学 排水処理装置及び排水処理方法

Also Published As

Publication number Publication date
IL228489A0 (en) 2013-12-31
SG193966A1 (en) 2013-11-29
EP2693050A1 (en) 2014-02-05
CN103547798B (zh) 2016-08-17
ES2551864T3 (es) 2015-11-24
EP2693050B1 (en) 2015-09-09
JPWO2012133661A1 (ja) 2014-07-28
IL228489A (en) 2016-12-29
CA2831750A1 (en) 2012-10-04
US20140284929A1 (en) 2014-09-25
JP5991200B2 (ja) 2016-09-14
EP2693050A4 (en) 2014-08-27
KR20140015410A (ko) 2014-02-06
CN103547798A (zh) 2014-01-29
KR101822567B1 (ko) 2018-01-26

Similar Documents

Publication Publication Date Title
JP5991200B2 (ja) 濃度差発電装置とその運転方法
US9259686B2 (en) Water producing system and operation method therefor
KR100963536B1 (ko) 조수방법 및 조수장치
JP6192336B2 (ja) 塩水淡水装置
US20100212319A1 (en) Method and apparatus for generating power utilizing forward osmosis
AU2010274473B2 (en) Water producing system
JP5933926B2 (ja) 海水淡水化システム及び海水淡水化方法
EP2902595A1 (en) Method for employing semipermeable mebranes
KR20200089223A (ko) 감압 염수 처리 시스템
TW201121901A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
JP6965680B2 (ja) 海水淡水化方法および海水淡水化システム
WO2020027056A1 (ja) 膜分離装置、造水システム、膜分離方法および造水方法
JP2013223855A (ja) 海水淡水化装置
WO2014115769A1 (ja) 淡水製造装置の運転方法
WO2014133101A1 (ja) 脱塩水の製造方法
WO2022059737A1 (ja) 海水淡水化システム
Stover et al. Reverse osmosis and osmotic power generation with isobaric energy recovery
JP2017074532A (ja) 水処理装置および水処理方法
CN118317826A (zh) 压力延迟渗透和集成有压力延迟渗透的用于渗透能采集及存储的系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012518655

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012763989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025441

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2831750

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008949

Country of ref document: US