WO2012133439A1 - 電気抵抗層付き金属箔及びその製造方法 - Google Patents

電気抵抗層付き金属箔及びその製造方法 Download PDF

Info

Publication number
WO2012133439A1
WO2012133439A1 PCT/JP2012/057979 JP2012057979W WO2012133439A1 WO 2012133439 A1 WO2012133439 A1 WO 2012133439A1 JP 2012057979 W JP2012057979 W JP 2012057979W WO 2012133439 A1 WO2012133439 A1 WO 2012133439A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance layer
metal foil
electric resistance
ion beam
foil
Prior art date
Application number
PCT/JP2012/057979
Other languages
English (en)
French (fr)
Inventor
俊雄 黒澤
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US14/008,254 priority Critical patent/US9099229B2/en
Publication of WO2012133439A1 publication Critical patent/WO2012133439A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a metal foil with an electric resistance layer and a manufacturing method thereof, for example, a metal foil with an electric resistance layer that can be used as a resistance element that can be mounted on the surface or inside of a circuit board and a manufacturing method thereof.
  • Copper foil is generally used as a wiring material for printed circuit boards. Copper foil is classified into electrolytic copper foil and rolled copper foil according to its production method, and has been used as a printed circuit board by being bonded to a resin substrate such as epoxy or polyimide.
  • a resistive element When forming a resistive element by forming a resistive layer on the surface of a metal foil such as a copper foil, it is necessary to improve the adhesive strength to such an extent that peeling does not occur at least between the resistive layer and the metal foil.
  • the rougher the surface roughness of the metal foil surface the better the adhesion between the metal foil and the resistance layer. Therefore, conventionally, surface treatment such as roughening treatment is performed on the surface of the metal foil to reduce the surface roughness. Increasing has been done.
  • the resistance value of the resistance layer formed on the metal foil may vary greatly.
  • the resistance layer is thinned, it is difficult to form a uniform thin-film resistance layer on the surface of the rough metal foil by, for example, sputtering.
  • the resistance value of the resistance layer varies widely, and it becomes difficult to stably obtain the desired electrical characteristics of the resistance element.
  • the present invention provides a metal foil with an electric resistance layer capable of suppressing peeling between the metal foil and the resistance layer disposed on the metal foil and reducing variations in the resistance value of the resistance layer, and the metal foil A manufacturing method is provided.
  • the present inventor has considered to adopt a new metal foil different from the conventional one as the metal foil on which the resistance layer is disposed. That is, until now, considering the balance of adhesion between the metal foil and the resistance layer, the surface of the metal foil is adjusted to a surface having a specific surface roughness range (for example, Rz 6 to 8 ⁇ m) by roughening treatment.
  • the metal foil and the resistance layer are formed by adopting a metal foil that has been subjected to a smoothing treatment on the surface of the metal foil so that the surface roughness is reduced rather than the conventional one.
  • the metal foil with an electrical resistance layer and the method of manufacturing the same were found, which can simultaneously suppress the peeling of the film and reduce the variation in resistance value of the resistance layer.
  • thermoplastic resin layer on the above-mentioned resistance layer
  • the peel strength between the resistance layer and the metal foil can be suppressed, and the peel strength of the electric resistance layer can be further improved. I found.
  • variation in sheet resistance value of the electric resistance layer is less than ⁇ 5%.
  • the metal foil with an electric resistance layer of the present invention further includes a thermoplastic resin layer disposed on the electric resistance layer.
  • the metal foil with an electric resistance layer of the present invention has a peel strength of 0.7 kN or more.
  • the electric resistance layer is made of aluminum, nickel, chromium, copper, iron, indium, zinc, tantalum, tin, vanadium, tungsten, zirconium, molybdenum, and these.
  • a metal selected from the group consisting of:
  • the electric resistance layer contains any of a NiCr alloy, a NiCrAlSi alloy, and a NiCrSiO alloy.
  • the metal foil includes an electrolytic copper foil or a rolled copper foil.
  • an ion beam is irradiated at an ion beam intensity of 0.70 to 2.10 sec ⁇ W / cm 2 on the surface of a metal foil having a ten-point average roughness Rz measured by an optical method of 1 ⁇ m or less. And forming an electric resistance layer on the surface of the metal foil irradiated with an ion beam.
  • the method for producing a metal foil with an electric resistance layer of the present invention further includes disposing a thermoplastic resin layer on the electric resistance layer.
  • metal foil with an electrical resistance layer which can suppress peeling between metal foil and the resistance layer arrange
  • the metal foil with an electric resistance layer according to the first embodiment of the present invention includes a metal foil and an electric resistance layer (hereinafter also referred to as “resistance layer”) disposed on the metal foil.
  • the metal foil for example, an electrolytic copper foil or a rolled copper foil can be used.
  • the “copper foil” in this embodiment includes a copper alloy foil in addition to the copper foil.
  • an electrolytic copper foil when used as the metal foil, it can be manufactured using a general electrolysis apparatus, but in this embodiment, an appropriate additive is selected in the electrolysis process, and the drum rotation speed is adjusted. It is preferable to form an electrolytic copper foil having a uniform surface roughness and a uniform thickness, such as stabilization.
  • the thickness of the metal foil is not particularly limited, and for example, a metal foil having a foil thickness of 5 to 70 ⁇ m, particularly a foil thickness of 5 to 35 ⁇ m can be used.
  • At least one surface of the metal foil is a surface having a ten-point average roughness Rz measured by an optical method adjusted to 1 ⁇ m or less.
  • the surface having a “10-point average roughness Rz measured by an optical method of 1 ⁇ m or less” has a resolution of 0.2 ⁇ m ⁇ 0.2 ⁇ m or less, and is measured by an optical surface shape measuring device using an optical interference method. It means a surface having a value of ten-point average roughness Rz obtained in this case.
  • the correlation between the surface roughness of the metal foil surface and the resistance value of the resistance layer can be grasped more specifically.
  • a resistance layer having a desired electric resistance value can be manufactured more stably.
  • a non-contact three-dimensional surface shape roughness measuring system product number NT1100 (WYKO optical profiler (resolution 0.2 ⁇ m ⁇ 0.2 ⁇ m or less: manufactured by Veeco)) can be used.
  • the measurement method is a vertical scanning interference method (Vertical Scan Interferometry / VSI method), the field of view is 120 ⁇ m ⁇ 90 ⁇ m, and the measurement scan density is 7.2 ⁇ m / sec.
  • the interference method is the Mirau interference method (objective lens 50). 2 times, internal lens 1 time).
  • the roughness Rz of the metal foil is 1 ⁇ m or less, sufficient adhesion strength can be obtained, but the roughness Rz is 0.55 ⁇ m or less, further 0.5 ⁇ m or less, Furthermore, even if it is 0.4 ⁇ m or less, the effect can be sufficiently exhibited.
  • roughness Rz can be made into Rz0.1nm or more which is the vertical resolution of this measuring method.
  • the surface of the metal foil is surface treated for cleaning.
  • ion beam irradiation is preferably performed.
  • the ion beam intensity is 0.70 to 2.10 sec ⁇ W / cm 2 , more preferably 0.78 to 1.50 sec ⁇ W / cm 2 . Is preferred.
  • the “ion beam intensity (Wmin / m 2 )” described in the present embodiment is calculated by the following equation.
  • V Ion beam voltage
  • A treatment area
  • m 2 treatment area
  • sec treatment time
  • the ion beam power is about 30 W or more, the irradiation dose is sufficient.
  • the thickness, size, shape, or electrical characteristics of the electrical resistance layer on the metal foil is arbitrarily determined according to the circuit design. That is, the selection of the material type and film thickness of the electric resistance layer is determined in consideration of the function of the resistance element to be manufactured, and there is no particular limitation. As an example, an electric resistance layer having a sheet resistance value of 10 to 250 ⁇ / sq or more can be suitably formed. According to the electrical resistance layer obtained in the first embodiment, an electrical resistance layer having a small variation in sheet resistance value can be obtained. Specifically, it is possible to obtain an electric resistance layer in which variation in sheet resistance value is less than ⁇ 5%, more preferably within ⁇ 3% in the length direction and width direction of the metal foil.
  • the material of the electric resistance layer for example, a metal selected from the group consisting of aluminum, nickel, chromium, copper, iron, indium, zinc, tantalum, tin, vanadium, tungsten, zirconium, molybdenum, and alloys thereof is used. Can be mentioned. If the metal has a relatively high electrical resistance, each metal can be suitably used as a single layer or as an alloy layer with other elements.
  • an electrical resistance layer can be used as long as the electrical resistance is increased by alloying these with other elements. It may be used as a material.
  • a material containing any one of NiCr alloy, NiCrAlSi alloy and NiCrSiO alloy is preferably used.
  • the electrical resistance layer When forming the electrical resistance layer, physical surface treatment methods such as sputtering, vacuum deposition, and ion beam plating, chemical surface treatment methods such as pyrolysis and vapor phase reaction, or electroplating, electroless It can be formed using a wet surface treatment method such as a plating method.
  • electroplating method can be manufactured at low cost.
  • the sputtering method has an advantage that a high-quality resistive element can be obtained because an isotropic film having a uniform thickness can be formed.
  • the surface of the metal foil is subjected to additives / additives such that the ten-point average roughness Rz measured by an optical method is 1 ⁇ m or less.
  • a copper foil made of copper or copper alloy adjusted by carrying out foil thickness control is prepared.
  • the surface of the metal foil may be cleaned by ion beam irradiation, and an electric resistance layer may be formed on the surface of the metal foil after the surface treatment by, for example, sputtering. It is preferable to control the thickness of the electric resistance layer to a predetermined thickness by masking according to the characteristics of the sputtering apparatus so that the thickness of the electric resistance layer is uniform.
  • the circuit board When incorporating the metal foil with an electric resistance layer according to the first embodiment into the circuit board, for example, the circuit board is brought into contact with the electric resistance layer side of the metal foil with the electric resistance layer on the circuit board by thermocompression bonding or the like. And a metal foil with an electric resistance layer are joined. Next, a dry film is thermocompression-bonded as a photoresist film on the metal foil, and is patterned using a photolithography technique. Next, a part of the metal foil and the electric resistance layer is removed with an iron chloride etching solution or the like using the patterned photoresist film as an etching mask, and the photoresist film is removed.
  • a photoresist film is further formed on the metal foil remaining on the circuit board, and patterned into a shape according to the length and surface area of the resistance element by using a photolithography technique.
  • the metal foil is removed using the patterned photoresist film as an etching mask, and the photoresist film is removed, thereby forming a resistance element on the circuit board. Thereafter, if an insulating layer and a wiring layer are formed on the resistance element by a known multilayer wiring technique, the resistance element can be embedded in the circuit board.
  • the metal foil with an electric resistance layer according to the second embodiment is different from the metal foil with an electric resistance layer according to the first embodiment in that the metal foil with an electric resistance layer further includes a thermoplastic resin layer disposed on the electric resistance layer. . Since the others are substantially the same, redundant description is omitted.
  • thermoplastic resin layer for example, an epoxy-based, polyimide-based, or glass-epoxy-based bonding sheet applied to a circuit board, a bonding film, or a primer (paint) containing polyimide and an epoxy resin is preferably used.
  • a primer containing polyimide and an epoxy resin
  • a solid sheet or film may be stacked on the electric resistance layer and bonded by thermocompression bonding, or a liquid primer may be applied on the surface of the electric resistance layer, dried, and bonded by thermocompression bonding. it can.
  • the layer thickness of the thermoplastic resin layer is not particularly limited, but if a resin layer of at least 1 ⁇ m or more is formed, the bonding strength can be improved, and the layer thickness of the resin layer is more preferably 5 to 50 ⁇ m.
  • a copper or copper alloy metal foil having a 10-point average roughness Rz measured by an optical method of 1 ⁇ m or less is prepared.
  • the surface of a metal foil is surface-treated by ion beam irradiation as needed.
  • an electric resistance layer is formed on the surface of the metal foil after the surface treatment by, for example, sputtering.
  • a liquid primer or a bonding sheet may be arranged to form a thermoplastic resin layer.
  • the metal foil with an electric resistance layer according to the second embodiment When the metal foil with an electric resistance layer according to the second embodiment is incorporated in a circuit board, the circuit board and the metal foil with an electric resistance layer having a thermoplastic resin layer are joined by thermocompression bonding or the like. Next, a dry film is thermocompression-bonded as a photoresist film on the metal foil, and is patterned using a photolithography technique. Next, using the photoresist film patterned with an iron chloride etching solution or the like as an etching mask, the metal foil, the electric resistance layer, and the thermoplastic resin layer are partially removed, and the photoresist film is removed.
  • a photoresist film is formed on the metal foil remaining on the circuit board, and after determining the length of the resistance element, patterning is performed using a photolithography technique. Using the patterned photoresist film as an etching mask, the metal foil, the resistance layer, and the thermoplastic resin layer are removed, and the photoresist film is removed to form a resistance element on the circuit board. Thereafter, if an insulating layer and a wiring layer are formed on the resistance element by a known multilayer wiring technique, the resistance element can be embedded in the circuit board.
  • the peel strength is 0.7 kN / m or more, preferably 0.9 kN / m or more.
  • a metal foil with an electric resistance layer having a sufficient adhesive strength can be provided.
  • ion beam source a Calfman type ion beam source 6.0 cm ⁇ 40 cm Linear Ion Source (manufactured by ION TECH INC) was used.
  • the power source of the ion beam source is the company's MPS-5001, and the maximum output of the ion beam is about 3 W / cm 2 .
  • the resistance value of the obtained electric resistance layer and the variation of the resistance value were determined by a four-probe method based on JIS-K7194. The results are shown in Table 1.
  • the electric resistance layer of Example 1 had a small variation in resistance value as compared with Comparative Examples 1 to 5, and was less than ⁇ 5%.
  • the ion beam intensities of Examples 2 to 4 and Comparative Examples 6 to 8 are 1.03 sec ⁇ W / cm 2 (Example 2), 1.37 sec ⁇ W / cm 2 (Example 3) and 1.71 sec, respectively.
  • W / cm 2 (Example 4) 0.43 sec ⁇ W / cm 2 (Comparative Example 6), 0.69 sec ⁇ W / cm 2 (Comparative Example 7), 0.51 sec ⁇ W / cm 2 (Comparative Example) 8).
  • an alloy (NiCr alloy) composed of 80% by mass nickel (Ni) and 20% by mass chromium (Cr) was deposited on the surface-treated electrolytic copper foil with a power of 3.2 kW to form an electric resistance layer.
  • electrolytic copper foils having a thickness of 18 ⁇ m were prepared.
  • the roughness Rz of Examples 5 to 7 is 0.51 ⁇ m.
  • the line speed, IB voltage, and IB current were adjusted to the same conditions as in Examples 2 to 4 where no peeling occurred at the copper foil-resistive layer interface in Table 2, and the electrolytic copper foil The rough surface of was surface-treated.
  • the ion beam intensities of Examples 5 to 7 are 1.03 sec ⁇ W / cm 2 (Example 5), 1.37 sec ⁇ W / cm 2 (Example 6), 1.71 sec ⁇ W / cm 2 (Example) 7).
  • an alloy NiCr alloy
  • Ni nickel
  • Cr chromium
  • peel strength in Table 3 is the peel strength (room temperature (normal state) peel value) when the method is substantially the same as the method shown in Table 2, and “peel strength after soldering” Means the peel strength after the test piece is immersed in a molten solder bath at 260 ° C. for 20 seconds (that is, after being subjected to heat treatment), that is, the peel strength after being affected by heat.
  • HCL degradation resistance is the percentage of degradation rate of peel strength of the electrical resistance layer before and after immersing the test piece in 18 wt% hydrochloric acid (room temperature) for 1 hr. It is an index value indicating sex. The results are shown in Table 3.
  • the peel strength was improved as compared with Examples 2 to 4 by further disposing a thermoplastic resin layer on the surface of the electric resistance layer.
  • good results are shown in both post-peel peel strength and HCl degradation resistance.
  • Examples 8 to 11 and Comparative Example 9 18 ⁇ m thick electrolytic copper foil was prepared.
  • the roughness Rz of Examples 8 to 11 and Comparative Example 9 is 0.51 ⁇ m.
  • the line speed, IB voltage, and IB current were adjusted to the conditions shown in Table 4, and the rough surface of the electrolytic copper foil was surface-treated.
  • the ion beam intensities of Examples 8 to 11 and Comparative Example 9 were 0.84 sec ⁇ W / cm 2 (Example 8), 1.25 sec ⁇ W / cm 2 (Example 9), and 1.67 sec ⁇ W / cm, respectively.
  • Examples 12 to 15 electrolytic copper foils having a thickness of 18 ⁇ m were prepared.
  • the roughness Rz of Examples 12 to 15 is 0.51 ⁇ m.
  • the line speed, IB voltage, and IB current were adjusted to the conditions of Examples 8 to 11 in which peeling at the copper foil-resistance layer interface did not occur in Table 4, and the electrolytic copper foil was roughened. The surface was surface treated.
  • the ion beam intensities of Examples 12 to 15 are 0.84 sec ⁇ W / cm 2 (Example 12), 1.25 sec ⁇ W / cm 2 (Example 13), and 1.67 sec ⁇ W / cm 2 (Example), respectively. 14), 2.09 sec ⁇ W / cm 2 (Example 15).
  • an electric resistance layer of an alloy NiCrAlSi alloy made of 55 mass% nickel (Ni), 40 mass% chromium (Cr), 1 mass% aluminum (Al), and 4 mass% silicon (Si) is supplied with a power of 3.2 kW. And deposited on the electrolytic copper foil to form an electric resistance layer.
  • a liquid primer was applied to the surface of the electrical resistance layer so as to have an average coating thickness of 5 ⁇ m, and dried after the coating to form a thermoplastic resin layer. Furthermore, the above-mentioned epoxy base material was joined on the thermoplastic resin layer by thermocompression bonding, and the peel strength, the peel strength after soldering, and the HCl deterioration resistance were measured. The results are shown in Table 5.
  • the peel strength was improved as compared with Examples 8 to 11 by disposing a thermoplastic resin layer on the surface of the electric resistance layer. Also, good results are shown for both the peel strength after soldering and the resistance to HCl deterioration.
  • Comparative Examples 10 to 12 and Examples 16 and 17 were 0.24 sec ⁇ W / cm 2 (Comparative Example 10), 0.39 sec ⁇ W / cm 2 (Comparative Example 11), and 0.58 sec ⁇ W, respectively. / Cm 2 (Comparative Example 12), 0.78 sec ⁇ W / cm 2 (Example 16), 0.97 sec ⁇ W / cm 2 (Example 17).
  • an electric resistance layer of an alloy (NiCrSiO alloy) made of 5 mass% nickel (Ni), 75 mass% chromium (Cr), 13 mass% silicon (Si), and 7 mass% oxygen (O) is supplied with a power of 1.5 kW. And deposited on the electrolytic copper foil to form an electric resistance layer. Furthermore, the above-mentioned epoxy base material was joined on the electric resistance layer by thermocompression bonding, and the peel strength was measured. The results are shown in Table 6.
  • Examples 18 and 19 electrolytic copper foils having a thickness of 18 ⁇ m were prepared.
  • the roughness Rz of Examples 18 and 19 is 0.51 ⁇ m.
  • the line speed, IB voltage, and IB current were adjusted to the conditions shown in Table 7, and the rough surface of the electrolytic copper foil was surface-treated.
  • the ion beam intensities of Examples 18 and 19 are 0.78 sec ⁇ W / cm 2 (Example 18) and 0.97 sec ⁇ W / cm 2 (Example 19), respectively.
  • an electric resistance layer of an alloy made of 5 mass% nickel (Ni), 75 mass% chromium (Cr), 13 mass% silicon (Si), and 7 mass% oxygen (O) is supplied with a power of 1.5 kW. And deposited on the electrolytic copper foil to form an electric resistance layer.
  • a liquid primer was applied to the surface of the electrical resistance layer so as to have an average coating thickness of 5 ⁇ m, and dried after the coating to form a thermoplastic resin layer.
  • An epoxy base material was joined on the thermoplastic resin layer by thermocompression bonding, and peel strength, peel strength after soldering, and resistance to HCl deterioration were measured by a peel test. The results are shown in Table 7.
  • electrolytic copper foils having a thickness of 18 ⁇ m were prepared.
  • the roughness Rz of Examples 20 to 22 is 0.51 ⁇ m.
  • the line speed, IB voltage, and IB current sputtering power were adjusted to the conditions shown in Table 8, and the rough surface of the electrolytic copper foil was surface-treated.
  • the three types of alloys shown in Table 8 NiCr alloy, NiCrAlSi alloy, NiCrSiO alloy: alloy compositions are the same as those described above) were deposited on the electrolytic copper foil with each power to form an electric resistance layer. .
  • a 25 ⁇ m-thick bonding sheet (manufactured by Shin-Etsu Chemical Co., Ltd., E53) was disposed on the surface of the electrical resistance layer to form a thermoplastic resin layer, and the above-mentioned epoxy base material was bonded onto the thermoplastic resin layer by thermocompression bonding. . Thereafter, the normal peel strength, the post-solder peel strength, and the HCl deterioration resistance rate were measured by a peel test. The results are shown in Table 8.
  • the peel strength was significantly improved even when a bonding sheet was used as the thermoplastic resin. Moreover, both the peel strength after soldering and the HCl deterioration resistance were good results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 本発明は、金属箔と金属箔上に配置される抵抗層との間の剥離を抑制し、且つ抵抗層の抵抗値のばらつきを低減可能な電気抵抗層付き金属箔及びその製造方法を提供することを目的とし、光学的方法で測定した十点平均粗さRzが1μm以下であり、イオンビーム強度0.70~2.10sec・W/cm2のイオンビーム照射により処理された表面を有する金属箔と、金属箔の前記表面上に配置された電気抵抗層とを備える電気抵抗層付き金属箔である。

Description

電気抵抗層付き金属箔及びその製造方法
 本発明は電気抵抗層付き金属箔及びその製造方法に関し、例えば、回路基板の表面又は内部に搭載可能な抵抗素子として利用可能な電気抵抗層付き金属箔及びその製造方法に関する。
 プリント回路基板の配線材料として、一般に銅箔が使用されている。銅箔は、その製造法により電解銅箔と圧延銅箔に分類されており、エポキシ又はポリイミド等の樹脂基板に接合されてプリント回路用基板として使用されてきている。
 一方、近年の各種電子機器の高密度化、高機能化、小型化への要求に伴い、配線材料である銅箔上に更に電気抵抗材料からなる薄膜(電気抵抗層)を形成する技術が提案されている(例えば特許文献1、2参照)。電子回路基板には電気抵抗素子が不可欠であるが、抵抗層を備えた銅箔を使用すれば、銅箔上に形成された電気抵抗層をエッチングすることで、回路基板上又は内部に所望の電気抵抗を有する抵抗素子が作製できる。これにより、従来のようにチップ抵抗素子を半田接合法等により基板上に表面実装する場合に比べて、基板の表面積を有効に利用することが可能となり、高集積化が図れる。また、回路基板内部に抵抗素子を形成することで、回路基板の表面に抵抗素子を実装する場合に比べて、回路設計上の制約もより少なくなるため、回路長の短縮が可能となり、電気的特性及び信頼性の改善も図れる。
特許第3311338号公報 特許第3452557号公報
 抵抗層を銅箔等の金属箔の表面上に形成して抵抗素子を形成する場合、少なくとも抵抗層と金属箔との間において剥離を生じさせない程度に接着強度を向上させる必要がある。一般に、金属箔表面の表面粗さを粗くすればするほど、金属箔と抵抗層との密着が向上するため、従来は、金属箔表面に粗化処理等の表面処理を行って表面粗さを増大させることが行われてきた。
 しかしながら、金属箔の表面粗さを大きくしすぎると、金属箔上に形成される抵抗層の抵抗値のばらつきが大きくなる場合がある。特に、抵抗層を薄膜化する場合には、粗い金属箔の表面上に、例えばスパッタリング等により均一な薄膜状の抵抗層を形成することが困難になる。その結果、抵抗層の抵抗値のばらつきが大きくなり、所望の抵抗素子の電気的特性を安定的に得ることが難しくなる。
 上記課題を鑑み、本発明は、金属箔と金属箔上に配置される抵抗層との間の剥離を抑制し、且つ抵抗層の抵抗値のばらつきを低減可能な電気抵抗層付き金属箔及びその製造方法を提供する。
 上記課題を解決するために鋭意検討した結果、本発明者は、抵抗層を配置する金属箔として、従来とは別の新規な金属箔を採用することを考えた。即ち、これまでは、金属箔と抵抗層との密着性のバランスを考慮して、金属箔の表面を、粗化処理により特定の表面粗さの範囲(例えばRz6~8μm)を有する表面に調節した金属箔を採用してきたが、本発明では、金属箔の表面に平滑化処理を施して従来よりもむしろ表面粗さが小さくなるようにした金属箔を採用することによって、金属箔と抵抗層との剥離の抑制と、抵抗層の抵抗値ばらつきの低減を同時に実現可能な電気抵抗層付き金属箔及びその製造方法を見出した。
 更に、本発明者は、上述の抵抗層上に熱可塑性樹脂層を配置したところ、抵抗層と金属箔との間の剥離を抑制しつつ、更に電気抵抗層のピール強度を向上可能であることを見出した。
 かかる知見を基礎として完成した本発明は一側面において、光学的方法で測定した十点平均粗さRzが1μm以下であり、イオンビーム強度0.70~2.10sec・W/cm2のイオンビーム照射により処理された表面を有する金属箔と、金属箔の表面上に配置された電気抵抗層とを備える電気抵抗層付き金属箔である。
 本発明の電気抵抗層付き金属箔は一実施形態において、電気抵抗層のシート抵抗値のばらつきが±5%未満である。
 本発明の電気抵抗層付き金属箔は別の一実施形態において、電気抵抗層上に配置された熱可塑性樹脂層を更に備える。
 本発明の電気抵抗層付き金属箔は更に別の一実施形態において、ピール強度が0.7kN以上である。
 本発明の電気抵抗層付き金属箔は更に別の一実施形態において、電気抵抗層が、アルミニウム、ニッケル、クロム、銅、鉄、インジウム、亜鉛、タンタル、スズ、バナジウム、タングステン、ジルコニウム、モリブデン及びこれらの合金からなる群の中から選択された金属から形成される。
 本発明の電気抵抗層付き金属箔は更に別の一実施形態において、電気抵抗層が、NiCr合金、NiCrAlSi合金及びNiCrSiO合金のいずれかを含む。
 本発明の電気抵抗層付き金属箔は更に別の一実施形態において、金属箔が電解銅箔又は圧延銅箔を含む。
 本発明は別の一側面において、光学的方法で測定した十点平均粗さRzが1μm以下の金属箔の表面上にイオンビーム強度0.70~2.10sec・W/cm2でイオンビーム照射することと、イオンビーム照射した金属箔の表面上に電気抵抗層を形成することを含む電気抵抗層付き金属箔の製造方法である。
 本発明の電気抵抗層付き金属箔の製造方法は別の一実施態様において、電気抵抗層上に熱可塑性樹脂層を配置することを更に含む。
 本発明によれば、金属箔と金属箔上に配置される抵抗層との間の剥離を抑制し、且つ抵抗層の抵抗値のばらつきを低減可能な電気抵抗層付き金属箔及びその製造方法が提供できる。
(第1の実施の形態)
 本発明の第1の実施の形態に係る電気抵抗層付き金属箔は、金属箔と、金属箔上に配置された電気抵抗層(以下「抵抗層」ともいう)とを備える。金属箔としては、例えば電解銅箔又は圧延銅箔を用いることができる。本実施形態の「銅箔」とは、銅箔の他に銅合金箔も含まれるものとする。なお、金属箔として電解銅箔を用いる場合は一般的な電解装置を用いて製造することが出来るが、本実施形態では、その電解プロセスにおいて適切な添加剤を選択することや、ドラム回転速度の安定化など、銅箔の表面粗さが均一で厚みの一様な電解銅箔を形成しておくと好ましい。金属箔の厚みにも特に制限はないが、例えば箔厚が5~70μm、特に箔厚が5~35μmの金属箔が使用できる。
 金属箔は、少なくとも一方の表面が、光学的方法で測定した十点平均粗さRzが1μm以下に調整された表面であることが好ましい。ここで、「光学的方法で測定した十点平均粗さRzが1μm以下」の表面とは、0.2μm×0.2μm以下の分解能を持ち、光干渉式による光学的表面形状測定装置で測定した場合に得られる十点平均粗さRzの値を有する表面を意味する。
 即ち、光干渉的表面形状測定装置により得られた粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線から縦倍率の方向に測定した最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表した値で規定した場合の値を十点平均粗さRzとして定義するものである。
 この測定方法を採用することにより、金属箔表面の表面粗さと抵抗層の抵抗値の相関関係をより具体的に把握することができる。言い換えれば、この測定方法によれば、平均粗さRzを所定の範囲内で大きくするにつれて一次関数的に抵抗層の抵抗値も上昇する傾向を評価できるため、製造者が、目標とする電気抵抗値に合わせて抵抗層の平均粗さRzを制御することにより、所望の電気抵抗値を有する抵抗層をより安定的に製造できる。
 光干渉的表面形状測定機器としては、非接触3次元表面形状粗さ測定システム、品番NT1100(WYKOオプティカルプロファイラ(分解能0.2μm×0.2μm以下:Veeco社製)を用いることができる。システムの測定方式は、垂直走査型干渉方式(Vertical Scan Interferometry/VSI方式)であり、視野範囲は120μm×90μm、測定スキャン濃度が7.2μm/secである。干渉方式は、ミラウ干渉方式(対物レンズ50倍、内部レンズ1倍)である。
 本実施形態に係る金属箔においては、金属箔の粗さRzが1μm以下であれば、十分な密着強度を得ることができるが、粗さRzが0.55μm以下、更には0.5μm以下、更には0.4μm以下としても、その効果を十分に発揮できる。粗さRzの下限値に特に制限はないが、例えば粗さRzは本測定方法の垂直分解能であるRz0.1nm以上とすることができる。
 金属箔の表面には清浄化の為、表面処理が施される。具体的な表面処理手段としては、イオンビーム照射が行われるのが好ましい。金属箔表面をイオンビーム照射して金属箔の表面の洗浄処理を図ることにより、金属箔とその上面に配置される抵抗層との密着強度が向上する。
 イオンビーム照射は、照射量が少なすぎると密着強度が十分に得られない場合があり、逆に多すぎる場合は、電力消費量の増大により生産性が低下する。以下の条件に制限されるものではないが、例えば、イオンビーム強度が、0.70~2.10sec・W/cm2、より好ましくは0.78~1.50sec・W/cm2とするのが好ましい。本実施形態で説明する「イオンビーム強度(Wmin/m2)」とは次の式で算出される。

   イオンビーム電圧(V)×電流(A)/処理面積(m2)×処理時間(sec)

 金属箔に対して照射する際のイオンビーム電力は、例えば製品幅が35cm、ラインスピードが0.65m/min(= 1.08cm/sec)の場合、
     0.78(sec・W/cm2)×35(cm)×1.08(cm/sec)
    = 29.5 (W)
となり、イオンビーム電力が約30W以上であれば充分な照射量となる。
 金属箔上の電気抵抗層の厚み、大きさ、形状又は電気的特性は、回路設計に応じて任意に決定される。即ち、電気抵抗層の材料の種類や膜厚等の選択は、作製する抵抗素子の機能を考慮して決定されるものであり、特に制限はない。一例としては、シート抵抗値が10~250Ω/sq或いはそれ以上の電気抵抗層が好適に形成できる。第1の実施の形態で得られる電気抵抗層によれば、シート抵抗値のばらつきの小さい電気抵抗層が得られる。具体的には、シート抵抗値のばらつきが、金属箔の長さ方向及び幅方向においてそれぞれ±5%未満、更に好ましくは±3%以内の電気抵抗層が得られる。
 電気抵抗層の材料としては、例えば、アルミニウム、ニッケル、クロム、銅、鉄、インジウム、亜鉛、タンタル、スズ、バナジウム、タングステン、ジルコニウム、モリブデン及びこれらの合金からなる群の中から選択された金属を挙げることができる。電気抵抗が比較的高い金属であれば、それぞれの金属を単独層として又は他の元素との合金層として好適に使用することができる。
 アルミニウム、シリコン、銅、鉄、インジウム、亜鉛、錫等の比較的電気抵抗の低い材料であっても、これらを他の元素と合金化することにより電気抵抗が高くなる材料であれば電気抵抗層の材料として使用しても構わない。電気抵抗層の材料としては、例えば、NiCr合金、NiCrAlSi合金及びNiCrSiO合金のいずれかを含む材料が好適に用いられる。
 電気抵抗層の形成に際しては、スパッタリング法、真空蒸着法、イオンビームめっき法などの物理的表面処理法、熱分解法、気相反応法などの化学的表面処理法、又は電気めっき法、無電解めっき法などの湿式表面処理法を用いて形成することができる。一般には、電気めっき法が低コストで製造できる利点がある。スパッタリング法は、均一な厚みで等方性を備えた膜が形成できるため、品質の高い抵抗素子を得ることができるという利点がある。
 第1の実施の形態に係る電気抵抗層付き金属箔を製造する場合は、まず、金属箔の表面を、光学的方法で測定した十点平均粗さRzが1μm以下となるように添加剤・箔厚制御を実施することにより調整した銅又は銅合金製の金属箔を用意する。次いで、イオンビーム照射により金属箔の表面を清浄化し、表面処理後の金属箔の表面上に、例えばスパッタリング等により電気抵抗層を形成すればよい。電気抵抗層の膜厚が均一化されるように、スパッタリング装置の特性に合わせてマスキングを付して所定の厚みに制御することが好ましい。
 第1の実施の形態に係る電気抵抗層付き金属箔を回路基板内に組み込む際は、例えば、回路基板上に電気抵抗層付き金属箔の電気抵抗層側を接触させ、熱圧着等により回路基板と電気抵抗層付き金属箔とを接合する。次いで、金属箔上にフォトレジスト膜としてドライフィルムを熱圧着し、フォトリソグラフィ技術を用いてパターニングする。次いで、塩化鉄系エッチング液等で、パターニングされたフォトレジスト膜をエッチングマスクとして金属箔及び電気抵抗層の一部を除去し、フォトレジスト膜を除去する。回路基板上に残る金属箔上に更にフォトレジスト膜を形成し、フォトリソグラフィ技術を用いて抵抗素子の長さ、表面積に準じた形状にパターニングする。パターニングされたフォトレジスト膜をエッチングマスクとして金属箔を除去し、フォトレジスト膜を除去することによって、回路基板上に抵抗素子を形成する。その後公知の多層配線技術により抵抗素子上に絶縁層及び配線層を形成すれば、回路基板内に抵抗素子が埋設できる。
(第2の実施の形態)
 第2の実施の形態に係る電気抵抗層付き金属箔は、電気抵抗層上に配置された熱可塑性樹脂層を更に備える点が、第1の実施の形態に係る電気抵抗層付き金属箔と異なる。他は実質的に同様であるので重複した記載を省略する。
 熱可塑性樹脂層としては、例えば回路基板に適用されるエポキシ系、ポリイミド系、ガラスエポキシ系のボンディングシート、ボンディングフィルム、又はポリイミド及びエポキシ樹脂を含むプライマー(塗料)等が好適に使用される。熱可塑性樹脂層の形成方法に特に制限はない。例えば、電気抵抗層上に固体状のシート又はフィルムを重ね、熱圧着により接合させてもよいし、液状のプライマーを電気抵抗層の表面上に塗布し、乾燥後、熱圧着により接合させることもできる。熱可塑性樹脂層の層厚にも特に制限はないが、少なくとも1μm以上の樹脂層を形成すれば接合強度を向上させることができ、樹脂層の層厚はより好ましくは、5~50μmである。
 第2の実施の形態に係る電気抵抗層付き金属箔を製造する場合は、例えば、光学的方法で測定した十点平均粗さRzが1μm以下となる銅又は銅合金製の金属箔を用意する。そして、金属箔の表面を必要に応じてイオンビーム照射により表面処理する。次いで、表面処理後の金属箔の表面上に例えばスパッタリング等により電気抵抗層を形成する。その後、液状のプライマー又はボンディングシート等を配置して、熱可塑性樹脂層を形成すればよい。
 第2の実施の形態に係る電気抵抗層付き金属箔を回路基板内に組み込む際は、熱圧着等により回路基板と熱可塑性樹脂層を具備する電気抵抗層付き金属箔とを接合する。次いで、金属箔上にフォトレジスト膜としてドライフィルムを熱圧着し、フォトリソグラフィ技術を用いてパターニングする。次いで、塩化鉄系エッチング液等でパターニングされたフォトレジスト膜をエッチングマスクとして金属箔、電気抵抗層及び熱可塑性樹脂層の一部を除去し、フォトレジスト膜を除去する。その後、回路基板上に残る金属箔上にフォトレジスト膜を形成し、抵抗素子の長さを決定後、フォトリソグラフィ技術を用いてパターニングする。パターニングされたフォトレジスト膜をエッチングマスクとして金属箔、抵抗層及び熱可塑性樹脂層を除去し、フォトレジスト膜を除去することによって、回路基板上に抵抗素子を形成する。その後、公知の多層配線技術により抵抗素子上に絶縁層及び配線層を形成すれば、回路基板内に抵抗素子を埋設できる。第2の実施の形態に係る電気抵抗層付き金属箔によれば、金属箔-電気抵抗層間で剥離が生じにくく且つピール強度が0.7kN/m以上、好ましくは0.9kN/m以上を示す程度に十分な接着強度を有する電気抵抗層付き金属箔が提供できる。
 以下に本発明の実施例を示すが、以下の実施例に本発明が限定されることを意図するものではない。
 (スパッタ装置)
 以下の実施例に示す各サンプルは、電気抵抗層スパッタの前処理としてイオンビーム源を備えた、CHA社製Vaccume WEB Chamber(14inch幅)を使用して作製した。イオンビーム源にはカーフマン型イオンビーム源6.0cm×40cm Linear Ion Source(ION TECH INC製)を使用した。イオンビーム源の電源は同社MPS-5001で、イオンビームの最大出力はおよそ3W/cm2である。
(金属箔の表面粗さの違いによる電気抵抗層の抵抗値ばらつきの評価)
 厚さ12μm及び18μmの6種類の電解銅箔を用意した。同一厚みの箔の中での粗さの違いは、粗化処理工程における粗化処理電流値を変えて、こぶ付け処理の量を変えることで調整した。それぞれの粗面(マット面)に対して、上述の光干渉的表面形状測定機器を用いて、十点平均粗さRzを求めた。電気抵抗層のシート抵抗値については、銅箔をエポキシ樹脂基材と積層後、アルカリエッチング液により銅箔層を全面エッチングして抵抗層を基材表面に露出させ、JIS-K7194に基づく四探針法により測定した。結果を表1に示す。
 80質量%ニッケル(Ni)と20質量%クロム(Cr)よりなる合金(Ni/Cr合金)の電気抵抗層を、上記スパッタリング装置を用いて、Rz=0.51~7.2μmの表面粗さを持った電解銅箔上にそれぞれのシート抵抗値の平均値が25Ω/sq前後となる厚みに堆積させて形成した。得られた電気抵抗層の抵抗値及び抵抗値のばらつきをJIS-K7194に基づく四探針法により求めた。結果を表1に示す。実施例1の電気抵抗層は、比較例1~5に比べて抵抗値のばらつきが小さく、±5%未満となった。
Figure JPOXMLDOC01-appb-T000001
(接着強度評価)
-電気抵抗層(NiCr合金)と金属箔との界面の強度評価-
 実施例2~4及び比較例6~8として、厚さ18μmの電解銅箔を用意した。実施例2~4および比較例6~8の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、イオンビーム電圧(以下IB電圧)、イオンビーム電流(以下IB電流)を表2に示す条件に調整し、電解銅箔の粗面を表面処理した。なお、実施例2~4、比較例6~8のイオンビーム強度はそれぞれ1.03sec・W/cm2(実施例2)、1.37sec・W/cm2(実施例3)、1.71sec・W/cm2(実施例4)、0.43sec・W/cm2(比較例6)、0.69sec・W/cm2(比較例7)、0.51sec・W/cm2(比較例8)である。
 次いで、80質量%ニッケル(Ni)と20質量%クロム(Cr)よりなる合金(NiCr合金)を電力3.2kWで表面処理後の電解銅箔上に堆積させ、電気抵抗層を形成した。
 電気抵抗層の接着強度評価のため、電気抵抗層上にエポキシ樹脂をガラスクロスに含浸させたエポキシ基材(プリプレグ:パナソニック電工製R-1661)を熱圧着により接合させ、IPC規格(IPC-TM-650)に基づくピール試験により電気抵抗層のピール強度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、適切なイオンビーム処理を実施した実施例2~4では、金属箔-電気抵抗層間の剥離は生じなかった。一方、比較例6~8では、金属箔-電気抵抗層間の剥離が生じ、ピール強度は測定不能であった。
-熱可塑性樹脂層付き電気抵抗層(NiCr合金)付き金属箔の強度評価-
 実施例5~7として厚さ18μmの電解銅箔を用意した。実施例5~7の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、IB電圧、IB電流を表2において銅箔-抵抗層界面での剥離が発生しなかった実施例2~4と同様の条件に調整し、電解銅箔の粗面を表面処理した。実施例5~7のイオンビーム強度はそれぞれ1.03sec・W/cm2(実施例5)、1.37sec・W/cm2(実施例6)、1.71sec・W/cm2(実施例7)である。
 次に、80質量%ニッケル(Ni)と20質量%クロム(Cr)よりなる合金(NiCr合金)を電力3.2kWで表面処理後の電解銅箔上に堆積させて電気抵抗層を形成した。電気抵抗層の表面には、液状プライマーを平均塗布厚み5μmとなるように塗布し、塗布後に乾燥させて、電気抵抗層上に熱可塑性樹脂層を形成した。更に、熱可塑性樹脂層上にエポキシ基材を熱圧着により更に接合させた積層体を作製し、ピール強度、半田後のピール強度、耐HCl劣化特性を測定した。表3中の「ピール強度」の評価は、表2に示した方法と実質的に同様な方法で行った場合のピール強度(室温(常態)ピール値)であり、「半田後のピール強度」とは、260℃の溶融半田浴中に試験片を20秒間、浸漬した(すなわち加熱処理を受けた状態)後のピール強度、すなわち熱影響を受けた後のピール強度を示すものである。「耐HCL劣化」の評価は、18wt%塩酸(室温)に試験片を1hr浸漬した前後での電気抵抗層のピール強度の劣化率を百分率で表したものであり、回路基板形成工程における耐薬品性を示す指標値である。結果を表3に示す。 
Figure JPOXMLDOC01-appb-T000003
 実施例5~7に示すように、電気抵抗層の表面上に更に熱可塑性樹脂層を配置することにより、実施例2~4に比べてピール強度が向上した。また、実施例5~7では、半田後ピール強度、耐HCl劣化特性ともに良好な結果を示している。
-電気抵抗層(NiCrAlSi合金)と金属箔との界面の強度評価-
 実施例8~11及び比較例9として厚さ18μmの電解銅箔を用意した。実施例8~11および比較例9の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、IB電圧、IB電流を表4に示す条件に調整し、電解銅箔の粗面を表面処理した。実施例8~11、比較例9のイオンビーム強度はそれぞれ0.84sec・W/cm2(実施例8)、1.25sec・W/cm2(実施例9)、1.67sec・W/cm2(実施例10)、2.09sec・W/cm2(実施例11)、0.52sec・W/cm2(比較例9)である。
 次いで、55質量%ニッケル(Ni)と40質量%クロム(Cr)と1質量%アルミニウム(Al)と4質量%シリコン(Si)よりなる合金(NiCrAlSi合金)の電気抵抗層を、電力3.2kWで電解銅箔上に堆積させ、表面処理後の電解銅箔上に電気抵抗層を形成した。更に、電気抵抗層上には上述のエポキシ基材を熱圧着により接合させ表2と同様な方法でピール強度を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、イオンビームの照射条件を適正な範囲に調整した実施例8~11では、金属箔-電気抵抗層間の剥離は生じず、抵抗層-基板間で剥離した。一方、比較例9では、金属箔-電気抵抗層間の剥離が生じ、電気抵抗層のピール強度は測定不能であった。
-熱可塑性樹脂層付き電気抵抗層(NiCrAlSi合金)付き金属箔の強度評価-
 実施例12~15として、厚さ18μmの電解銅箔を用意した。実施例12~15の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、IB電圧、IB電流を表4において銅箔-抵抗層界面での剥離が発生しなかった実施例8~11の条件に調整し、電解銅箔の粗面を表面処理した。実施例12~15のイオンビーム強度はそれぞれ0.84sec・W/cm2(実施例12)、1.25sec・W/cm2(実施例13)、1.67sec・W/cm2(実施例14)、2.09sec・W/cm2((実施例15)である。
 次いで、55質量%ニッケル(Ni)と40質量%クロム(Cr)と1質量%アルミニウム(Al)と4質量%シリコン(Si)とよりなる合金(NiCrAlSi合金)の電気抵抗層を電力3.2kWで電解銅箔上に堆積させ、電気抵抗層を形成した。電気抵抗層の表面には液状プライマーを平均塗布厚み5μmとなるように塗布し、塗布後に乾燥させて熱可塑性樹脂層を形成した。更に、熱可塑性樹脂層上には上述のエポキシ基材を熱圧着により接合させ、ピール強度、半田後のピール強度、耐HCl劣化特性を測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例12~15に示すように、電気抵抗層の表面上に熱可塑性樹脂層を配置することにより、実施例8~11に比べてピール強度が向上した。また、半田後のピール強度、耐HCl劣化特性ともに良好な結果を示している。
-電気抵抗層(NiCrSiO合金)と金属箔との界面の強度評価-
 比較例10~12、実施例16、17として、厚さ18μmの電解銅箔を用意した。比較例10~12の粗さおよび実施例16、17の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、IB電圧、IB電流を表6に示す条件に調整し、電解銅箔の粗面を表面処理した。比較例10~12、実施例16、17のイオンビーム強度はそれぞれ0.24sec・W/cm2(比較例10)、0.39sec・W/cm2(比較例11)、0.58sec・W/cm2(比較例12)、0.78sec・W/cm2(実施例16)、0.97sec・W/cm2(実施例17)である。
 次いで、5質量%ニッケル(Ni)と75質量%クロム(Cr)と13質量%シリコン(Si)と7質量%酸素(O)とよりなる合金(NiCrSiO合金)の電気抵抗層を電力1.5kWで電解銅箔上に堆積させ、電気抵抗層を形成した。更に電気抵抗層上には上述のエポキシ基材を熱圧着により接合させピール強度を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、イオンビームの照射条件を適正な範囲に調整した実施例16、17では、金属箔-電気抵抗層間の剥離は生じず、抵抗層-基板間で剥離した。一方、比較例10~12では、金属箔-電気抵抗層間の剥離が生じ、電気抵抗層のピール強度は測定不能であった。
-熱可塑性樹脂層付き電気抵抗層(NiCrSiO合金)付き金属箔の強度評価-
 実施例18、19として厚さ18μmの電解銅箔を用意した。実施例18、19の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、IB電圧、IB電流を表7に示す条件に調整し、電解銅箔の粗面を表面処理した。実施例18、19のイオンビーム強度はそれぞれ0.78sec・W/cm2(実施例18)、0.97sec・W/cm2(実施例19)である。
 次いで、5質量%ニッケル(Ni)と75質量%クロム(Cr)と13質量%シリコン(Si)と7質量%酸素(O)とよりなる合金(NiCrSiO合金)の電気抵抗層を電力1.5kWで電解銅箔上に堆積させ、電気抵抗層を形成した。電気抵抗層の表面には液状プライマーを平均塗布厚み5μmとなるように塗布し、塗布後に乾燥させて熱可塑性樹脂層を形成した。熱可塑性樹脂層上にはエポキシ基材を熱圧着により接合させピール試験によりピール強度、半田後のピール強度、耐HCl劣化特性を測定した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例18、19に示すように、電気抵抗層の表面上に熱可塑性樹脂層を配置することにより、実施例16、17に比べてピール強度が向上した。また、半田後のピール強度、耐HCl劣化特性ともに良好な結果を示している。
-熱可塑性樹脂層(ボンディングシート)付き電気抵抗層付き金属箔の強度評価-
 実施例20~22として厚さ18μmの電解銅箔を用意した。実施例20~22の粗さRzは0.51μmである。上述のスパッタ装置を用いて、ラインスピード、IB電圧、IB電流スパッタ電力を表8に示す条件に調整し、電解銅箔の粗面を表面処理した。次いで、表8に示す3種類の合金(NiCr合金、NiCrAlSi合金、NiCrSiO合金:合金組成はそれぞれ前記と同様)を用いて、それぞれの電力で電解銅箔上に堆積させ、電気抵抗層を形成した。電気抵抗層の表面には厚さ25μmのボンディングシート(信越化学社製、E53)を配置して熱可塑性樹脂層を形成し、熱可塑性樹脂層上に上述エポキシ基材を熱圧着により接合させた。その後、ピール試験により常態ピール強度、半田後ピール強度、耐HCl劣化率を測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例20~22に示すように、熱可塑性樹脂としてボンディングシートを用いた場合でもピール強度が有意に向上した。また、半田後のピール強度、耐HCl劣化特性ともに良好な結果であった。

Claims (9)

  1.  光学的方法で測定した十点平均粗さRzが1μm以下であり、イオンビーム強度0.70~2.10sec・W/cm2のイオンビーム照射により処理された表面を有する金属箔と、
     前記金属箔の前記表面上に配置された電気抵抗層と
     を備える電気抵抗層付き金属箔。
  2.  前記電気抵抗層のシート抵抗値のばらつきが±5%未満である請求項1に記載の電気抵抗層付き金属箔。
  3.  前記電気抵抗層上に配置された熱可塑性樹脂層を更に備える請求項1又は2に記載の電気抵抗層付き金属箔。
  4.  ピール強度が0.7kN以上である請求項3に記載の電気抵抗層付き金属箔。
  5.  前記電気抵抗層が、アルミニウム、ニッケル、クロム、銅、鉄、インジウム、亜鉛、タンタル、スズ、バナジウム、タングステン、ジルコニウム、モリブデン及びこれらの合金からなる群の中から選択された金属から形成される請求項1~4のいずれか1項に記載の電気抵抗層付き金属箔。
  6.  前記電気抵抗層が、NiCr合金、NiCrAlSi合金及びNiCrSiO合金のいずれかを含む請求項1~5のいずれか1項に記載の電気抵抗層付き金属箔。
  7.  前記金属箔が電解銅箔又は圧延銅箔を含む請求項1~6のいずれか1項に記載の電気抵抗層付き金属箔。
  8.  光学的方法で測定した十点平均粗さRzが1μm以下の金属箔の表面上にイオンビーム強度0.70~2.10sec・W/cm2でイオンビーム照射することと、
     イオンビーム照射した前記金属箔の表面上に電気抵抗層を形成すること
     を含む電気抵抗層付き金属箔の製造方法。
  9.  前記電気抵抗層上に熱可塑性樹脂層を配置することを更に含む請求項8に記載の電気抵抗層付き金属箔の製造方法。
PCT/JP2012/057979 2011-03-28 2012-03-27 電気抵抗層付き金属箔及びその製造方法 WO2012133439A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/008,254 US9099229B2 (en) 2011-03-28 2012-03-27 Metal foil having electrical resistance layer, and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011070760A JP2012201980A (ja) 2011-03-28 2011-03-28 電気抵抗層付き金属箔及びその製造方法
JP2011-070760 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133439A1 true WO2012133439A1 (ja) 2012-10-04

Family

ID=46931154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057979 WO2012133439A1 (ja) 2011-03-28 2012-03-27 電気抵抗層付き金属箔及びその製造方法

Country Status (4)

Country Link
US (1) US9099229B2 (ja)
JP (1) JP2012201980A (ja)
TW (1) TWI524822B (ja)
WO (1) WO2012133439A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346408B2 (ja) * 2011-03-28 2013-11-20 Jx日鉱日石金属株式会社 電気抵抗膜を備えた金属箔及びその製造方法
JP2012211370A (ja) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp 電気抵抗層付き金属箔の製造方法
EP2693852A4 (en) * 2011-03-31 2014-09-03 Jx Nippon Mining & Metals Corp METALLIC SHEET HAVING AN ELECTRO-RESISTIVE LAYER, AND CIRCUIT BOARD USING SAID SHEET
TWI713424B (zh) * 2018-10-15 2020-12-11 鼎展電子股份有限公司 銅箔電阻與具有該銅箔電阻的電路板結構
TWI694752B (zh) * 2018-10-26 2020-05-21 鼎展電子股份有限公司 內嵌式被動元件結構

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247371A (ja) * 1989-03-20 1990-10-03 Nisshin Steel Co Ltd イオンビーム照射前処理を施すことを特徴とする金属帯への連続真空蒸着またはイオンプレーテイング方法
JPH05320874A (ja) * 1991-11-21 1993-12-07 Nisshin Steel Co Ltd 蒸着めっき層の形成方法及び蒸着Al−Zn合金めっき材料
JP2009177180A (ja) * 2008-01-25 2009-08-06 Ls Mtron Ltd 印刷回路基板用抵抗積層導電体及びその製造方法、並びに印刷回路基板
WO2010110061A1 (ja) * 2009-03-25 2010-09-30 日鉱金属株式会社 電気抵抗膜付き金属箔及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010275A1 (en) 1991-11-21 1993-05-27 Nisshin Steel Co., Ltd. Method of forming layer of evaporation coating
US6489034B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Method of forming chromium coated copper for printed circuit boards
US6489035B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Applying resistive layer onto copper
US6610417B2 (en) * 2001-10-04 2003-08-26 Oak-Mitsui, Inc. Nickel coated copper as electrodes for embedded passive devices
JP2004040073A (ja) * 2002-01-11 2004-02-05 Shipley Co Llc 抵抗器構造物
JP4217778B2 (ja) * 2003-04-11 2009-02-04 古河電気工業株式会社 抵抗層付き導電性基材、抵抗層付き回路基板及び抵抗回路配線板
US8749342B2 (en) * 2008-10-14 2014-06-10 Jx Nippon Mining & Metals Corporation Metal foil with electric resistance film and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247371A (ja) * 1989-03-20 1990-10-03 Nisshin Steel Co Ltd イオンビーム照射前処理を施すことを特徴とする金属帯への連続真空蒸着またはイオンプレーテイング方法
JPH05320874A (ja) * 1991-11-21 1993-12-07 Nisshin Steel Co Ltd 蒸着めっき層の形成方法及び蒸着Al−Zn合金めっき材料
JP2009177180A (ja) * 2008-01-25 2009-08-06 Ls Mtron Ltd 印刷回路基板用抵抗積層導電体及びその製造方法、並びに印刷回路基板
WO2010110061A1 (ja) * 2009-03-25 2010-09-30 日鉱金属株式会社 電気抵抗膜付き金属箔及びその製造方法

Also Published As

Publication number Publication date
US9099229B2 (en) 2015-08-04
JP2012201980A (ja) 2012-10-22
US20140015635A1 (en) 2014-01-16
TWI524822B (zh) 2016-03-01
TW201242450A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
JP5710737B1 (ja) 表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器
TWI434965B (zh) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
US8624125B2 (en) Metal foil laminated polyimide resin substrate
JP4968266B2 (ja) 2層フレキシブル基板とその製造方法及び該2層フレキシブル基板より得られたフレキシブルプリント配線基板
JP2008536292A (ja) 抵抗器及びコンデンサ形成のための多層構造体
WO2014006781A1 (ja) 極薄銅箔及びその製造方法、並びに極薄銅層
JP5399474B2 (ja) 電気抵抗膜付き金属箔及びその製造方法
CN103430635B (zh) 印刷布线板用铜箔及使用它的层叠体
WO2012133439A1 (ja) 電気抵抗層付き金属箔及びその製造方法
TW201352087A (zh) 2層可撓性配線用基板及可撓性配線板暨其製造方法
KR101188146B1 (ko) 저항막층을 구비한 구리박
JP5576514B2 (ja) 表面処理銅箔、積層板、プリント配線板及びプリント回路板
JP2015105440A (ja) 表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器
JP2010005800A (ja) 2層フレキシブル基板及びその製造方法、並びに、該2層フレキシブル基板を用いたプリント配線基板及びその製造方法
JP2011171621A (ja) 抵抗層付き銅箔並びに銅張積層板及びその製造方法
JP7017369B2 (ja) 表面処理銅箔、銅張積層板及びプリント配線板
CN103262665B (zh) 铜箔、层叠体、印刷布线板及电子电路的形成方法
JP2013028128A (ja) 電気抵抗層付き金属箔及びその製造方法
TWI530390B (zh) A metal foil having a resistive layer, and a substrate for a printed circuit using the metal foil
JP2011116074A (ja) 電気抵抗膜を備えた金属箔及び同金属箔を用いたプリント回路用基板
WO2012133567A1 (ja) 電気抵抗層付き金属箔の製造方法
JP2005340635A (ja) プリント配線板用圧延銅箔及びその製造方法
JP2012214840A (ja) 電気抵抗層付き金属箔の製造方法
WO2012132592A1 (ja) 電気抵抗膜を備えた金属箔及びその製造方法
JPS6031918B2 (ja) フレキシブル銅張板の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14008254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765736

Country of ref document: EP

Kind code of ref document: A1