WO2012133406A1 - 樹脂成形用金型、該樹脂成形用金型の製造方法及び樹脂成形品の製造方法 - Google Patents
樹脂成形用金型、該樹脂成形用金型の製造方法及び樹脂成形品の製造方法 Download PDFInfo
- Publication number
- WO2012133406A1 WO2012133406A1 PCT/JP2012/057930 JP2012057930W WO2012133406A1 WO 2012133406 A1 WO2012133406 A1 WO 2012133406A1 JP 2012057930 W JP2012057930 W JP 2012057930W WO 2012133406 A1 WO2012133406 A1 WO 2012133406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal conductivity
- metal layer
- layer
- high thermal
- resin molding
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/02—Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
- B29C33/06—Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3828—Moulds made of at least two different materials having different thermal conductivities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0008—Magnetic or paramagnetic
Definitions
- the present invention relates to a mold for resin molding excellent in temperature uniformity on a cavity surface, temperature controllability, and shortening of heating and cooling time, and a manufacturing method thereof.
- an inductor is arranged so as to surround an upper mold and a lower mold, and a high frequency current is applied to the inductor, thereby generating an eddy current on a mold surface portion having a cavity surface. And a technique for heating the cavity surface by Joule heat generated thereby. If this method is used, it is not necessary to heat the inside of the mold, which is not a direct working surface during molding, so that only the vicinity of the cavity surface necessary for molding can be heated at high speed and efficiently.
- the electromagnetic induction heating method is effective for shortening the molding time, but on the other hand, it is difficult to generate a uniform eddy current field on the heated surface. It is known that significant temperature unevenness occurs on the cavity surface. Due to the occurrence of such temperature unevenness, various molding defects such as resin filling defects and warpage and cracking are likely to occur.
- Patent Document 3 discloses a technique in which an inductor is installed inside a mold, a part of the mold near the inductor is heated, and the cavity surface is heated by the heat conduction.
- Patent Document 1 and Patent Document 2 in which the cavity surface is directly heated because heat diffusion occurs in the heat conduction process up to the cavity surface. Compared to the above, there is an advantage that the temperature distribution on the cavity surface can be reduced.
- Patent Document 3 in which the temperature on the cavity surface is made uniform by arranging the inductor corresponding to the cavity surface shape, in the case where the cavity surface is a complicated uneven shape with a large height difference, Since it is difficult to handle the inductor, the variation in the heat conduction distance in the mold becomes large, and there arises a problem that the nonuniformity of the cavity surface temperature tends to increase. Thus, there is a demand for both shortening the heating time of the cavity surface and making the temperature uniform.
- An object of the present invention is to provide a mold for resin molding capable of heating a cavity surface rapidly so that temperature distribution does not occur, and controlling an arbitrary region on the cavity surface to a predetermined temperature, And a preferred method of manufacturing the mold.
- the present invention is a composite in which at least a high thermal conductivity metal layer and a layer made of a material having a lower thermal conductivity than the high thermal conductivity metal layer are laminated on a heating element, and a cavity surface is formed on the upper surface.
- the resin molding die is characterized in that it has a different thickness depending on the location.
- the resin molding die of the present invention has a composite layer in which at least two layers formed of materials having different thermal conductivities are laminated on a heating element, and is formed of materials having different thermal conductivities.
- the temperature on the cavity surface is controlled by changing the thickness of the layer according to the location, even in the case of a complicated cavity surface shape with large irregularities and / or the temperature of the heating element varies depending on the location.
- heating can be performed so that no temperature distribution occurs on the cavity surface. It is also possible to control an arbitrary region on the cavity surface to a predetermined temperature, which can be performed rapidly.
- the heating element a plurality of metal layers including the layer formed on the heating element and formed of the material having low thermal conductivity, and the high thermal conductivity metal layer
- a cooling medium flow path is provided in at least one of a boundary portion between the metal layers in the plurality of metal layers or a boundary portion between the heating element and the plurality of metal layers.
- the heating element is a magnetic metal layer, and usually a high thermal conductivity metal layer and thermal conductivity on the magnetic metal layer.
- the heating element is either in the high thermal conductivity metal layer or high thermal conductivity.
- a layer made of a material having a low thermal conductivity is laminated on the upper part of the high thermal conductivity metal layer, embedded in the metal layer laminated under the metal layer.
- a heating medium such as heating steam, a heating medium, or hot water as the heating element
- a metal layer having a flow path for circulating the heating medium is prepared, and a highly thermally conductive metal layer is formed on the metal layer.
- a layer formed of a material having a low thermal conductivity is laminated, or a flow path for circulating a heating medium in the high thermal conductivity metal layer is formed, and the thermal conductivity is formed on the high thermal conductivity metal layer.
- layers formed of small materials are laminated to form a resin molding die.
- a magnetic metal layer, a high thermal conductivity metal layer, a layer formed of a material with low thermal conductivity, a pipe heater, an electric heater, etc. are embedded or a heating medium is distributed.
- the cavity surface can be cooled uniformly.
- heating media such as heating steam, a heat medium, and warm water, for a heat generating body, you may use the flow path for distribute
- the cooling medium flow path is three-dimensionally arranged in the vicinity of the cavity surface so that the cavity surface can be cooled rapidly and uniformly.
- the flow path of the cooling medium is three-dimensionally arranged near the cavity surface, the cavity surface can be rapidly and uniformly cooled.
- the high thermal conductivity metal layer is formed of a material selected from pure copper, copper alloy, pure aluminum, and aluminum alloy.
- pure copper, copper alloy, pure aluminum, and aluminum alloy that are excellent in thermal conductivity and thermal diffusivity can be suitably used as the high thermal conductive metal layer.
- the resin molding die of the present invention is an electromagnetic induction heating type resin molding die, wherein the heating element is a magnetic metal layer, on the anti-composite layer side of the magnetic metal layer or the magnetic metal layer.
- An inductor is provided.
- the resin molding die of the present invention has a composite layer in which at least two kinds of layers formed of materials having different thermal conductivities are laminated on a magnetic metal layer, and is formed of materials having different thermal conductivities. Since the temperature on the cavity surface is controlled by changing the thickness of the layer depending on the location, it solves the problem of temperature non-uniformity that occurs on the cavity surface, which is a disadvantage of conventional electromagnetic induction heating molds In addition, the advantage of shortening the heating time of the electromagnetic induction heating mold can be fully utilized.
- the layer formed of the material having a low thermal conductivity is a high hardness metal layer, and the cavity surface is formed on the upper surface of the high hardness metal layer, and the high hardness
- the metal layer, the high thermal conductivity metal layer, and the magnetic metal layer are metallurgically bonded in this order.
- the resin molding die of the present invention is excellent in heat transfer and strength because each metal layer is metallurgically bonded.
- the inductor is provided on the same plane.
- an electromagnetic induction heating mold since it is difficult to generate a uniform eddy current field in the magnetic metal layer, a temperature distribution is generated on the cavity surface.
- the position of the inductor is also changed according to the position of the cavity surface, but if the shape of the cavity surface is complicated and / or the resin molded product is small, the handling of the inductor is also limited. In other words, it is impossible to heat the cavity surface uniformly or at any place to any temperature.
- the resin molding die of the present invention has a composite layer in which at least two kinds of layers formed of materials having different thermal conductivities are laminated on a magnetic metal layer. Since the temperature on the cavity surface is controlled by changing the thickness of the layer made of different materials depending on the location, inductors can be placed on the same plane, resulting in freedom of mold design The degree will increase and the production will be easier.
- the resin molding die of the present invention further includes a layer formed of a nonmagnetic material and / or a low thermal conductivity material, and the inductor includes the magnetic metal layer and the nonmagnetic material and / or a low thermal conductivity material. And is surrounded by these layers.
- the inductor is sandwiched between and surrounded by a magnetic metal layer and a layer formed of a nonmagnetic material and / or a low thermal conductivity material. The eddy current is concentrated on the magnetic metal layer, and the generated heat can be moved to the cavity surface side without loss.
- Nonmagnetic stainless steel or ceramic plate is preferably used for the nonmagnetic material or the low thermal conductivity material.
- the magnetic metal layer is formed of a material selected from pure iron, steel, pure nickel, and a nickel alloy.
- the layer formed of the material having low thermal conductivity and / or the high thermal conductive metal layer is laminated with a plurality of plates processed into a predetermined shape, The laminate is formed by diffusion bonding.
- the thickness of the layer made of a material having a low thermal conductivity and the thickness of the high thermal conductive metal layer depend on the location in order to rapidly bring the cavity surface to a predetermined temperature. Since it is set appropriately, the layer made of a material with low thermal conductivity and the high thermal conductivity metal layer are likely to have a complicated shape. A desired mold can be obtained.
- the shape of each of the laminated and joined plates is relatively simple, so the thermal conductivity is low inside the die. Even a mold in which the thickness of the layer formed of the material and / or the high thermal conductivity metal layer is changed can be easily handled, and the bonding can be reliably performed by using a diffusion bonding method.
- the layer formed of the material having low thermal conductivity and the high thermal conductive metal layer are bonded by diffusion bonding or brazing, or the material having low thermal conductivity. And / or the high thermal conductivity metal layer is formed by electroplating.
- the layer formed of the material having a low thermal conductivity and the high thermal conductivity metal layer are bonded by diffusion bonding or brazing, or the material having the low thermal conductivity.
- the formed layer and / or the high thermal conductivity metal layer is formed by electroplating, the magnetic metal layer and the high thermal conductivity metal layer are joined by diffusion bonding or brazing, or the magnetic metal layer is electrically It is formed by a plating method.
- a region where a layer formed of a material having a low thermal conductivity, which is a different material at the same height, and the metal layer having a high thermal conductivity are mixed with a predetermined region.
- a region where a layer formed of a material having a low thermal conductivity, which is a different material at the same height, and the metal layer having a high thermal conductivity are mixed with a predetermined region.
- the layer thickness of the layer formed of a material having a low thermal conductivity and / or the high thermal conductivity metal layer varies in the die, and therefore, on the same plane in the die.
- a region in which a layer formed of a material having a low thermal conductivity and a highly thermally conductive metal layer are mixed is generated. In this region, after removing a specific portion of either the flat plate-processed low-conductivity material plate or the high thermal conductivity metal plate, the portion is processed into the same contour shape.
- a composite plate in which a plate of the other material type is fitted is manufactured, and a plurality of them are laminated and diffusion-bonded, so that a layer formed of a material having a low thermal conductivity and a high thermal conductive metal layer have an arbitrary area and Dissimilar material composite laminated molds mixed in any thickness can be manufactured.
- the external force for pressurization is in the laminating direction, and the fitting portion, that is, a plate of a material having a low thermal conductivity and a highly thermally conductive metal plate, Since the interface is parallel to the load direction, no external force is directly applied to the interface.
- the resin molding die manufacturing method of the present invention constrains the thermal deformation of the outermost portion of the plate laminate, that is, the outer portion of the die during diffusion bonding.
- the outer plate comes into contact with a plate made of a different material fitted inside, with pressure, and diffusion bonding is performed. In this way, complete pressing in all directions is achieved by pressing with external force in the stacking direction of the plates and constraining thermal deformation of the outer shape of the mold at the interface of the dissimilar material fitting portion parallel to the load direction. Diffusion bonding with pressure can be realized.
- a region where a layer formed of a material having a low thermal conductivity, which is a different material at the same height, and the metal layer having a high thermal conductivity are mixed with a predetermined region.
- the layer formed of the material having low thermal conductivity and the high thermal conductivity is formed by laminating a plurality of flat plates processed to have a predetermined thickness and contour shape, and by applying a load in the laminating direction while constraining the outer periphery, diffusion bonding is performed, and diffusion bonding is performed with low thermal conductivity.
- a layer formed of a material and the high thermal conductivity metal layer are stacked, or a layer formed by diffusion bonding and a layer formed after processing the shape of a bonding surface between the layer formed of a material having a low thermal conductivity and the high thermal conductivity metal layer.
- a layer formed of a material having a low thermal conductivity and a metal layer having a high thermal conductivity are each manufactured by a laminate bonding method, and then formed using a material having a low thermal conductivity. Because the diffusion layer and the high thermal conductivity metal layer are diffusion-bonded, even a resin mold having a complicated shape, a layer formed of a material having a low thermal conductivity and a high thermal conductivity metal layer can be reliably Can be produced.
- a region in which a layer formed of a material having a low thermal conductivity and a different material at the same height and the metal layer having a high thermal conductivity are mixed in a stacking direction
- the layer formed of the material having a low thermal conductivity and the high thermal conductive metal layer are stacked, and the thermal strain generated during heating in the stacked body, and It is characterized in that diffusion bonding is performed by constraining strain in a direction orthogonal to the stacking direction caused by pressurization in the outer shape portion to generate a bonding pressure on the interface between different materials parallel to the stacking direction.
- the method for manufacturing a resin molding die of the present invention restrains thermal deformation of the outermost portion of the laminated body, that is, the outer shape of the die during diffusion bonding.
- This method is also preferably used when a resin mold is manufactured by diffusion bonding a high thermal conductivity metal layer formed by processing a block material and a layer formed of a material having low thermal conductivity. Diffusion bonding with complete pressure applied in all directions can be realized.
- the present invention is a method for producing a resin molded product using the resin molding die.
- the resin molding die of the present invention has a layer formed of a material having different thermal conductivity depending on the location of the die so that the entire region or an arbitrary region on the cavity surface can be rapidly formed at a predetermined temperature. Since the layers are laminated with different thicknesses, even if the mold has a complex cavity surface shape with large irregularities and / or the temperature of the heating element varies depending on the location, the temperature distribution on the cavity surface It can be heated so that it does not occur. It is also possible to control an arbitrary region on the cavity surface to a predetermined temperature, and it can be suitably used as a resin molding die.
- the mold for resin molding according to the present invention is manufactured by using a lamination joining method in which plates are laminated and diffusion-bonded, so that even if the thicknesses of two layers having different thermal conductivities change inside the mold Can be produced.
- the cooling flow path can be three-dimensionally arranged at an optimal position near the cavity surface, and uniform and rapid cooling can be realized even in the cooling process.
- reliable bonding can be realized by using the manufacturing method of the present invention.
- FIG. 1 is a sectional view of a resin molding die 1 as a first embodiment of the present invention. Here, only the lower half of the mold, that is, the lower mold is shown, and the upper mold on the opposite side is not displayed.
- the resin molding die 1 is an electromagnetic induction heating type resin molding die, and includes a high-hardness metal layer 2 having a cavity surface 10 formed thereon, and a highly thermally conductive metal below the high-hardness metal layer 2.
- a composite layer 5 in which a magnetic metal layer 4 is metallurgically bonded is provided below the layer 3 and the high thermal conductive metal layer 3, and an inductor 6 is provided below the magnetic metal layer 4.
- the high-hardness metal layer 2 having the cavity surface 10 is made of a metal having a necessary hardness so as to have sufficient strength and durability to withstand the molding temperature and pressure conditions necessary for the desired molding and the number of times of use.
- the material differs depending on the type and conditions of molding, but for example, it is preferable to use a material that has been subjected to a heat treatment necessary for various steel materials to obtain a predetermined hardness and mechanical properties.
- the high hardness metal layer 2 has a smaller thermal conductivity than the high thermal conductivity metal layer 3.
- a highly thermally conductive metal layer 3 is provided below the high hardness metal layer 2, that is, on the opposite side of the cavity surface 10.
- the high thermal conductivity metal layer 3 uses a material having excellent thermal conductivity and thermal diffusibility.
- the heat flux q (W / m 2 ) between the two points is expressed by the equation (1). It is expressed by the Fourier law.
- the heat flux is the amount of heat per unit area and unit time moving between two points.
- q ⁇ ⁇ ( ⁇ T / ⁇ x) (1)
- ⁇ thermal conductivity (W / (m ⁇ K)).
- the temperature gradient ⁇ T / ⁇ x increases if the thermal conductivity ⁇ is small. Since / ⁇ x becomes smaller and the temperature distribution in the material becomes smaller, the use of a material having a high thermal conductivity can essentially reduce the temperature distribution generated in the mold.
- Examples of materials having large thermal conductivity ⁇ and thermal diffusivity a include pure copper, copper alloy, pure aluminum, and aluminum alloy, and such a material is preferably used as the high thermal conductive metal layer 3.
- metallurgical joining by diffusion joining is preferable in order to obtain good thermal conductivity.
- the high hardness metal layer 2 and / or the high thermal conductivity metal layer 3 may be formed by electroplating.
- the optimum layer thickness of the high-hardness metal layer 2 and the high thermal conductivity metal layer 3 is determined by the method described later, and the thickness of each layer varies in the mold.
- the cavity surface 10 has a complicated three-dimensional shape including a free-form surface as in the mold 1 in FIG. 1, the cavity surface 10 is suppressed in order to suppress the temperature distribution on the cavity surface 10.
- the boundary between the high hardness metal layer 2 and the high thermal conductivity metal layer 3, that is, the bonding interface 14 of different materials often has a complicated shape with three-dimensional relief.
- the magnetic metal layer 4 is located below the high thermal conductivity metal layer 3.
- the magnetic metal layer 4 bonded to the lower side of the high thermal conductive metal layer 3 is preferably manufactured from a material selected from pure iron, steel, pure nickel, and nickel alloy.
- the thickness of the magnetic metal layer 4 may be about several times the skin depth ⁇ of the eddy current, and is preferably as thin as possible from the viewpoint of reducing thermal energy loss and reducing the weight of the mold.
- the skin depth ⁇ ( ⁇ m) is obtained by the equation (3).
- FIG. 1 shows a diffusion-bonded thin steel plate having a thickness of about 1 mm.
- a nickel film of about 200 to 300 ⁇ m may be formed by plating or the like.
- the inductor 6 is disposed below the magnetic metal layer 4 on the same plane.
- the term “on the same plane” as used herein includes the case where they are arranged at substantially the same height as well as completely the same.
- the inductor 6 is a metal pipe made of copper or the like and provided with an insulating coating, and a cooling medium flows inside the pipe to prevent overheating when a high-frequency current is applied. Moreover, depending on use conditions, cooling may be unnecessary, and in that case, it is preferable to use a copper rod or a copper stranded wire with an insulating coating.
- the inductor 6 is three-dimensionally arranged according to the unevenness of the cavity surface 10, but it is not easy to arrange the inductor 6 three-dimensionally. .
- the temperature of the cavity surface 10 is controlled by appropriately controlling the thicknesses of the high hardness metal layer 2 and the high thermal conductivity metal layer 3. They can be arranged on the same plane. For this reason, installation and handling of the inductor 6 are simplified, which is very preferable from the viewpoint of designing and manufacturing the mold.
- Patent Document 3 in which the temperature on the cavity surface is made uniform by arranging the inductor in accordance with the shape of the cavity surface.
- a nonmagnetic / low thermal conductive layer 8 is provided below the inductor 6, and the inductor 6 is sandwiched between and surrounded by the magnetic metal layer 4 and the nonmagnetic / low thermal conductive layer 8.
- the nonmagnetic / low thermal conductive layer 8 is provided with a groove 7 for accommodating an inductor, and the inductor 6 is installed in the groove.
- the storage groove may be provided in the storage.
- the nonmagnetic / low thermal conductive layer 8 is manufactured in a plate shape and inserted between the mold base 9 and the magnetic metal layer 4, or the nonmagnetic / low thermal conductive layer 8 is integrated with the mold base 9.
- the composite layer 5 having the cavity surface 10 and the inductor 6 may be mechanically fastened with a bolt or the like.
- the nonmagnetic / low thermal conductive layer 8 prevents a magnetic field generated by applying a high-frequency current to the inductor 6 from being transmitted to the opposite side of the magnetic metal layer 4, and generates an efficient eddy current field in the magnetic metal layer 4. It is installed for the purpose of promoting the generation of Joule heat and preventing the heat generated in the magnetic metal layer 4 from diffusing to the opposite side of the cavity surface 10. Therefore, since a material having a magnetic field and heat shielding effect is suitable, it is preferable to use a metal such as non-magnetic stainless steel or ceramics.
- a mold base 9 is installed under the nonmagnetic / low thermal conductive layer 8.
- the mold base 9 is used to obtain the necessary rigidity and strength as a mold, and it is desirable to use a steel material having a predetermined hardness.
- the non-magnetic / low thermal conductive layer 8 is a material having sufficient rigidity, strength, and toughness
- the non-magnetic / low thermal conductive layer 8 and the mold base 9 may be integrally used with the same material. .
- the present mold 1 is provided with a cooling flow path 11 for cooling the mold 1 at the boundary surface 14 between the high hardness metal layer 2 and the high thermal conductivity metal layer 3.
- the cooling flow path 11 is provided in the vicinity of the cavity surface 10 and along the cavity surface 10. Such an arrangement is a preferred arrangement that can quickly cool the cavity surface 10. If the cavity surface 10 becomes complicated, it is not easy to provide the cooling flow path 11 along the cavity surface 10, but the resin molding die 1 is configured to process a plurality of thin metal plates with a contour shape. After that, since it is manufactured using a lamination joining method of lamination and joining, the complicated cooling flow path 11 can be easily produced.
- the mold 1 having the above configuration transmits the heat received from the magnetic metal layer 4 heated non-uniformly to the high-hardness metal layer 2 while diffusing, and even in the case of a complicated cavity surface shape with large irregularities,
- the thicknesses of the high-hardness metal layer 2 and the high thermal conductivity metal layer 3 are appropriately changed in the mold. That is, in a region where the cavity surface 10 is relatively close to the magnetic metal layer 4 which is a heat generating portion, the thickness of the high heat conductive metal layer 3 is reduced and the thickness of the high hardness metal layer 2 is increased to increase the cavity surface.
- the high thermal conductive metal layer 3 is thickened.
- the high hardness metal layer 2 is thinned to increase the temperature, and as a result, the temperature on the cavity surface 10 is made substantially uniform.
- FIG. 2 and 3 are diagrams for explaining the manufacturing procedure of the resin molding die 1 of FIG. 1, particularly the manufacturing procedure of the composite layer 5 of the resin molding die 1.
- FIG. 2 explains the manufacturing procedure.
- FIG. 3 is a cross-sectional view showing a method for assembling the metal plate laminate 25 and the joining jig in the diffusion joining step.
- the composite layer 5 of the resin molding die 1 is a so-called laminated die obtained by laminating and joining a plurality of thin metal plates after contour processing.
- a laminated mold is a mold in which the thicknesses of the high-hardness metal layer 2 and the high thermal conductive metal layer 3 change within the mold because the shape of each metal plate to be laminated and bonded is relatively simple. Even if it exists, it is easy to deal with, and this is a preferable manufacturing method especially when the unevenness of the cavity surface 10 is complicated.
- FIG. 3 there are six metal plates 22 that form the high-hardness metal layer 2, six metal plates 23 that form the highly thermally conductive metal layer 3, and one metal plate 24 that forms the magnetic metal layer 4.
- the number of metal plates is not limited to a specific number.
- the unevenness of the cavity surface 10 is simple, the number of metal plates is small. Conversely, if the unevenness of the cavity surface 10 is complicated, the number of metal plates is large. For example, if the unevenness of the cavity surface 10 is very simple, the metal plate 22 that forms the high-hardness metal layer 2 and the metal plate 23 that forms the high thermal conductivity metal layer 3 can each be two.
- step S1 the outer shape of the mold 1, the shape of the cavity surface 10, the thickness of the high hardness metal layer 2, the thickness of the high thermal conductivity metal layer 3, the thickness of the magnetic metal layer 4,
- Each information including the shape of the inductor 6 and the cooling channel 11 is given, and the initial shape of the mold is modeled by three-dimensional CAD.
- the shape here is an initial stage before the optimum design is made, and the shapes of the inductor 6 and the cooling flow path 11 are provisionally given.
- the thicknesses of the high hardness metal layer 2, the high thermal conductivity metal layer 3, and the magnetic metal layer 4 are also provisionally determined as uniform thicknesses in the mold 1.
- step S2 electromagnetic field analysis and heat conduction analysis are performed using a computer-based method such as finite element method simulation (CAE) to obtain an eddy current field generated inside the mold, and heat generation and heat of the metal generated by the eddy current.
- the conduction is calculated and the temperature distribution on the cavity surface 10 is predicted.
- the purpose of this step is to optimally design the shape and size of each mold component that can be heated and cooled at high speed while suppressing the temperature distribution generated on the cavity surface 10.
- There are various methods for this but as a preferable example, first, attention is paid to the heat generation state in the magnetic metal layer 4, and the arrangement shape of the inductor 6 is changed so that a remarkable temperature distribution does not occur on the magnetic metal layer 4.
- the heat conduction analysis is performed with the thickness of the high heat conductive metal layer 3 being constant, and the temperature distribution on the cavity surface 10 is predicted.
- the thickness of the high thermal conductivity metal layer 3 is reduced and the thickness of the high hardness metal layer 2 is increased in the vicinity of the region where the temperature of the cavity surface 10 is high.
- the high heat conductive metal layer 3 is thickened and the high hardness metal layer 2 is thinned to promote the temperature rise.
- the optimum layer thickness distribution of the high thermal conductivity metal layer 3 and the high hardness metal layer 2 in the mold is derived so that the temperature on the cavity surface becomes uniform.
- the heat conduction analysis of the cooling process is performed in the same manner, and the optimum shape of the cooling flow path 11 is determined so that the temperature on the cavity surface 10 is uniformly and rapidly lowered.
- the cooling flow path 11 is preferably installed as close to the cavity surface 10 as possible, so that it is preferable to have a three-dimensional arrangement corresponding to the shape of the cavity surface 10. Since the design of the cooling channel 11 naturally affects the heat conduction during heating, the design of the thicknesses of the high-hardness metal layer 2 and the high thermal conductivity metal layer 3 during the heating is the same as that of the cooling channel 11. It is done in consideration of its existence and its shape. When the shape of the cooling channel 11 is changed, it is necessary to confirm whether or not an unacceptable change has occurred in the temperature distribution on the cavity surface 10 during heating.
- slice data is created based on the three-dimensional CAD data.
- the slice data is created using a computer in which a program for creating slice data is installed in advance.
- the computer creates slice data of a predetermined thickness from the input three-dimensional CAD data according to the installed program.
- the predetermined thickness is the thickness of the metal plate.
- the thickness of the metal plate is based on the shape of the resin molding die 1, the shape of the cavity surface 10, the thickness of the high thermal conductivity metal layer 3 and the high hardness metal layer 2, and the arrangement of the cooling flow path 11. In consideration of ease of processing, etc., it is determined so that a desired mold can be easily manufactured.
- the metal plate 22 that forms the high-hardness metal layer 2 is usually a metal plate having the same thickness, but metal plates 22 having different thicknesses may be used. The same applies to the metal plate 23 forming the high thermal conductive metal layer 3. This point may be considered in the same manner as a known laminated mold (for example, JP 2010-94903 A).
- each metal plate 22, 23, 24 is processed based on the slice data created in step S3.
- the metal plate 22 is a high hardness metal plate
- the metal plate 23 is a high thermal conductivity metal plate
- the metal plate 24 is a magnetic metal plate.
- Corresponding to The metal plate is processed by forming a contour shape, a groove 27 for a cooling channel, and a positioning reference hole (not shown) for stacking.
- a part of one of the metal plates 22 (23) is removed by machining, and the same contour is formed in the removed portion.
- each metal plate 22, 23, 24 is processed with high accuracy within a predetermined dimension crossing for the portion corresponding to the outer shape of the mold. It is good to leave.
- step S5 the processed metal plates 22, 23, and 24 are laminated in a predetermined order by a predetermined combination. Since the metal plates 22, 23, and 24 are provided with positioning reference holes (not shown), they can be accurately positioned by using reference pins (not shown).
- the laminated metal plate laminate 25 is joined by a diffusion joining method.
- a metal plate laminate 25 is installed in a heating furnace, a load is applied in the laminating direction while heating to a predetermined temperature in a vacuum atmosphere, and the metal plate is laminated after being held for a certain time and then cooled.
- the body 25 (metal plate assembly) is carried out of the furnace. What is necessary is just to set suitably the heating temperature at the time of diffusion bonding, a heating time, etc. by the kind etc. of the metal plate to be used.
- the load is directly applied to the laminated surface 12 on which the metal plates are overlapped with each other, diffusion bonding is possible.
- the high hardness metal plate 22 and the high thermal conductivity metal plate 23 which are different materials at the same height. Since the dissimilar metal interface 13 of the fitting part is parallel to the load application direction 16, no external force is directly applied to the dissimilar metal interface 13. In particular, when a part of the inside of the high thermal conductive metal plate 23 is removed and the high hardness metal plate 22 having a relatively small linear expansion coefficient is fitted, the gap generated at the interface tends to be enlarged, which is a fact. Upper joining becomes difficult.
- FIG. 3 is a view showing one cross section of the metal plate laminate 25, the outer frame member 17, and the wedge plate member 18.
- the metal plate laminate is similarly formed in any cross section orthogonal to this figure.
- Another pair of wedge-shaped plate members 18 may be used so that 25 and the outer frame member 17 are in contact with each other. That is, it is preferable to use a total of two pairs of wedge-shaped plate members 18 and to contact and fix the metal plate laminate 25 and the outer frame member 17 without gaps in both the vertical and horizontal directions.
- the outer frame member 17 is made of a material having a coefficient of linear expansion smaller than that of metal such as graphite
- the wedge-shaped plate member 18 is made of carbon steel for general machinery and carbon steel for machine structure that can withstand repeated use. Use it.
- the thermal strain of the outer frame member 17 having a smaller linear expansion coefficient than that of the metal is smaller than that of the metal plate laminate 25 and the wedge-shaped plate material 18.
- the thermal expansion of the mold outer shape portion 19 is constrained via the via.
- each of the laminated metal plates 22, 23, and 24 having the outer shape portion is thermally expanded by heating, but thermal deformation in the outer shape portion is restrained by the outer frame member 17 and the wedge-shaped plate member 18 that are jigs.
- the size of the fitting portion is reduced due to thermal strain, and contacts with the dissimilar metal plate fitted inside at the interface 13 with pressure, and diffusion bonding is performed.
- the lamination surface 12 of the metal plate laminate 25 is pressed by an external force, and at the dissimilar metal interface 13 of the fitting portion orthogonal to the lamination surface 12, the thermal deformation of the outermost portion of the mold is restrained. By using it, diffusion bonding in which complete pressurization is performed in all directions can be realized.
- step S7 the diffusion-bonded metal plate laminate (metal plate assembly) is heat-treated.
- This process is a heat treatment performed for the purpose of improving the strength and wear resistance by curing the hard metal layer 2 having the cavity surface 10 in the metal plate assembly, and is generally used for resin molding dies. Quenching and tempering performed.
- the process is performed so that the cavity surface 10 finally has a predetermined hardness.
- this heat treatment process does not necessarily need to be implemented depending on the use of the mold, and heat treatment may be performed after the shape processing in Step S8 of the next process, and then the shape processing may be performed again as necessary.
- step S8 shape processing is performed as a finishing process of the resin molding die 1.
- a general-purpose CAD / CAM device and NC or CNC device can be used for easy and high-precision processing.
- the heat treatment is performed after the shape processing, it is efficient to perform the processing while leaving a finishing allowance in consideration of the deformation due to the subsequent heat treatment, and to perform the final shape processing of the finishing after the heat treatment.
- the manufactured composite layer 5, the inductor 6, the nonmagnetic / low thermal conductive layer 8, and the mold base 9 are combined.
- a structure that can be attached and detached by bolt fastening or the like may be used so that insertion and removal of the inductor 6 and various maintenance can be facilitated.
- the heat generation in the magnetic metal layer 4 is also non-uniform, but due to the highly thermally conductive metal layer 3 having an optimally configured layer thickness distribution in the mold.
- the heat generated in the magnetic metal layer 4 is rapidly transferred to the high-hardness metal layer 2 on the surface while diffusing, and on the outermost cavity surface 10, a uniform heating state in which the temperature distribution is suppressed is within a short time. Can be realized.
- the cooling flow path 11 is three-dimensionally arranged at an optimal position in the vicinity of the cavity surface 10, so that uniform and rapid cooling is possible. This shortens the cycle time from heating, holding and cooling to demolding, and enables resin molding in the high-temperature range, which has been considered difficult so far. Any high-quality resin molding that can be realized.
- FIG. 4 is a cross-sectional view of a resin molding die 30 as a second embodiment of the present invention.
- the resin molding die 30 is an electromagnetic induction heating type die like the resin molding die 1 shown in the first embodiment, and the configuration is basically the same as the resin molding die 1.
- the shape of the cavity surface 10 is not a free-form surface, but a relatively simple shape mainly composed of horizontal and vertical surfaces with respect to the mold reference surface.
- the dissimilar metal interface 14 existing between the high-hardness metal layer 2 and the high-heat conductive metal layer 3 can also have a flat simple shape, the high-hardness metal layer 2 and the high-heat conductivity are provided.
- diffusion bonding may be performed under the same heating and pressurization conditions as those of the resin molding die 1 shown in the first embodiment.
- the cooling flow path 11 is produced in the same manner as the resin molding die 1 shown in the first embodiment.
- the high-hardness metal layer 2 and the high thermal conductivity metal layer 3 are cut out from the block material, a three-dimensional and complicated cooling channel arrangement is not possible, so the shape of the cavity surface 10 is relatively It is applied only when it is flat and the occurrence of temperature distribution during cooling is relatively insignificant.
- the groove 7 for accommodating the inductor 6 is formed by machining or the like under the high thermal conductivity metal layer 3 and the high thermal conductivity metal layer 3 including the inner wall of the inductor accommodation groove 7 is formed.
- a magnetic metal layer 4 is formed on the entire lower surface of the substrate by plating.
- the resin molding die according to the present invention is not limited to the above embodiment, and can be deformed without departing from the gist. Moreover, the manufacturing method of the resin mold according to the present invention is not limited to the above manufacturing method.
- the outer frame material 17 and the wedge-shaped plate material 18 having a smaller coefficient of thermal expansion than the metal are used as deformation restraining means for the outer portion of the metal plate laminate 25.
- an external force may be applied by another means such as applying pressure in both the stacking direction and the direction perpendicular thereto using a means such as HIP.
- the high-hardness metal layer 2 or the high thermal conductivity metal layer 3 may be manufactured separately, and then these may be manufactured by diffusion bonding. Furthermore, after the high-hardness metal layer 2 or the high-heat conductive metal layer 3 is separately manufactured, the high-hardness metal layer 2, the high-heat conductive metal layer 3, and the joint surface (boundary surface) 14 are processed to eliminate steps. After that, they may be produced by diffusion bonding.
- the high-hardness metal plates 22 processed by the procedure from step S1 to step S5 shown in FIG. Get Similar to the resin molding die 1 of the first embodiment, the high-hardness metal plates 22 processed by the procedure from step S1 to step S5 shown in FIG. Get.
- a metal plate for restraining the outer circumference is disposed on the outer circumference of the laminated body with a slight gap from the outer circumference.
- These are installed in a heating furnace, the inside of the heating furnace is evacuated, and the laminate is diffusion bonded by applying a load only to the laminate using the press device while heating.
- this diffusion bonding method since the metal plate is disposed on the outer periphery of the laminated body, the deformation amount in the direction orthogonal to the pressing direction is restricted, and a bonded body with high bonding strength is obtained.
- the joined body of the high thermal conductive metal plate 23 is manufactured by the same method. Thereafter, the joined body of the high-hardness metal plate 22 and the joined body of the high thermal conductive metal plate 23 are laminated, and a metal plate or a metal block is arranged on the outer periphery in the same manner as the manufacture of the joined body, and the same method as the joined body. The joined body of the high hardness metal plate 22 and the joined body of the high thermal conductivity metal plate 23 are diffusion-bonded.
- diffusion bonding conditions such as temperature and applied load are also different.
- a metal material is diffusion bonded, it is preferable to perform diffusion bonding under conditions suitable for the characteristics of the metal material in order to obtain high bonding strength.
- high-hardness metal plate assembly and the high thermal conductivity metal plate assembly are separately manufactured, high joint strength can be obtained.
- the bonded body of the high-hardness metal plate 22 and the bonded body of the high thermal conductive metal plate 23 are diffusion-bonded, since there is only one bonding surface, diffusion bonding is also easy.
- the bonding strength is increased.
- Diffusion bonding is performed after performing shape processing to eliminate the step.
- the resin molding dies 1 and 30 are manufactured by the diffusion bonding method.
- the high hardness metal layer 2 and the high thermal conductivity metal layer 3, and the high thermal conductivity metal layer 3 and the magnetic metal layer are used. 4 can be joined by brazing to produce a resin molding die.
- the molds 1 and 30 for resin molding shown in the above embodiment are intended to bring the entire area on the cavity surface 10 to a uniform temperature. However, depending on the molding, a specific area of the cavity surface 10 may be used. There are situations where you only want to change the temperature intentionally. For example, in injection molding, by increasing the temperature only around the thin-walled part where the resin does not flow easily, the resin viscosity is lowered to improve fluidity, and in the press molding of fiber reinforced composite materials, minute irregularities that are difficult to shape While increasing the temperature of the part and softening the material to improve the shapeability, the material is hardened by lowering the temperature near the outer periphery of the blank material where wrinkles are likely to occur, so that appropriate tension is generated and wrinkles are generated. May be suppressed.
- each target region has a predetermined temperature.
- the thicknesses of the conductive metal layer 3 and the high-hardness metal layer 2 may be controlled, or individual inductors and high-frequency power sources may be used in individual regions.
- the cooling flow path 11 is three-dimensionally arranged at an optimum position in the vicinity of the cavity surface 10, so that uniform and rapid cooling is possible. It is very preferable for shortening a series of cycle times from holding, cooling to demolding.
- the cooling flow path 11 is provided in the vicinity of the cavity surface 10, the cavity surface 10 is cooled unevenly unless properly disposed.
- the cooling flow The path 11 may be disposed in the high thermal conductive metal layer 3.
- two layers having different thermal conductivities are laminated on the magnetic metal layer 4 serving as a heating element.
- three layers having different thermal conductivities may be laminated.
- another metal layer is interposed between the high hardness metal layer 2 and the high thermal conductivity metal layer 3. By interposing, the bonding strength between the three layers can be increased.
- the material of the metal layer to be laminated in the region may be changed according to the shape of the cavity surface 10.
- the high hardness metal layer 2 and the high thermal conductivity metal layer 3 are laminated in the central portion, and the high hardness metal layer and the high thermal conductivity metal layer having different thermal conductivities are used instead of the high hardness metal layer 2 in the peripheral portion. 3 may be laminated.
- the metal material is used for the laminated material laminated
- an electromagnetic induction heating mold is shown as the resin molding mold.
- the resin molding mold according to the present invention is not limited to the electromagnetic induction heating mold.
- a pipe heater or an electric heater is used as a heating element, a heating channel is arranged, and a heating medium is circulated and heated in the heating channel, as in the above embodiment, a pipe heater, an electric heater, etc.
- the cavity surface 10 can be heated rapidly so that no temperature distribution occurs, and any region on the cavity surface 10 can be formed.
- a resin molding die that can be controlled to an arbitrary temperature can be obtained.
- the heating element When a pipe heater, an electric heater, or the like is used as the heating element, the heating element may be embedded in the high thermal conductivity metal layer 3 and the high hardness metal layer 2 may be laminated on the high thermal conductivity metal layer 3. It is common.
- a pipe heater, an electric heater, or the like is embedded in a metal layer laminated under the high thermal conductivity metal layer 3, and a layer made of a material having a low thermal conductivity is laminated on the high thermal conductivity metal layer 3. May be.
- the cooling channel 11 In the case of such a resin molding die, as in the case of the electromagnetic induction heating type die, when the cavity surface 10 is cooled rapidly and uniformly, the cooling channel 11 has a high hardness in the vicinity of the cavity surface 10.
- the cavity surface 10 is made uniform.
- the cooling channel 11 may be arranged in the high thermal conductive metal layer 3.
- a heating medium such as heating steam, heating medium, or hot water
- a metal layer having a heating channel for circulating the heating medium is prepared, and a highly thermally conductive metal layer is formed on the metal layer.
- 3 and the high-hardness metal layer 2 are laminated, or a heating channel for circulating a heating medium is formed in the high-thermal-conductivity metal layer 3, and the high-hardness metal layer 2 is formed on the high-heat-conduction metal layer 3.
- resin molds are formed by laminating. In the case of such a resin molding die, as in the case of the electromagnetic induction heating type die, when the cavity surface 10 is cooled rapidly and uniformly, the cooling channel 11 has a high hardness in the vicinity of the cavity surface 10.
- the cavity surface 10 is made uniform.
- a heating channel for circulating the high thermal conductive metal layer 3 or the heating medium is provided in the cooling channel 11 What is necessary is just to arrange
- FIG. 5 shows a cross-sectional view of the model mold 50.
- the model mold 50 has a stepped top surface in front view, and the depth direction is parallel to the bottom surface in each step.
- the approximate dimensions of the model mold are such that the length of the bottom portion is 150 mm, the height of each step is 100 mm, 80 mm, 65 mm, and the depth is 100 mm.
- the model mold 50 is composed of a composite layer 5 in which the high-hardness metal layer 2 is SKD61, the high thermal conductivity metal layer 3 is oxygen-free copper, and the magnetic metal layer 4 is SKD61, which are bonded by a diffusion bonding method.
- the thicknesses of the high-hardness metal layer 2 and the high thermal conductivity metal layer 3 are such that when the periphery of the four inductor housing grooves 7 in the model mold 50 is evenly heated via the inductor 6 installed in the magnetic metal layer 4, Then, heat conduction analysis was carried out using a computer-based finite element method simulation (CAE) method so that the center temperatures of the upper and middle stages were the same.
- CAE finite element method simulation
- the thickness of the high hardness metal layer 2 is lower> middle> upper
- the thickness of the high thermal conductive metal layer 3 is lower ⁇ middle> upper.
- the thickness of the magnetic metal layer 4 is the same.
- the inductor 6 was inserted into four inductor housing grooves 7 drilled at equal intervals in the magnetic metal layer 4 with the periphery of the inductor (copper pipe) 6 covered with an insulating material (glass fiber cloth) 51.
- a cooling channel 11 is formed in the center of the model mold 50 so that the model mold 50 can be cooled.
- thermocouple Prior to heating, a thermocouple is applied to the center (the points A, B, and C in FIG. 5) of the lower, middle, and upper stages and the surface of the magnetic metal layer 4 near the inductor housing groove 7 (the point D in FIG. 5). installed. While flowing water through the copper pipe 6, high-speed induction heating is performed until the point D reaches 300 ° C. via a high-frequency power supply device (rated capacity 25 kW), and then the part becomes constant at 300 ° C. Heating was controlled, and the heating experiment was terminated when the point B reached 220 ° C.
- the temperature change with time of points A, B, and C during the heating experiment is shown in FIG.
- the point B reached 220 ° C. in about 4 minutes.
- the temperature difference between points A, B, and C including heating is very small.
- point A is 216.4 ° C
- point B is 220.0 ° C
- point C is 220.5 ° C
- the maximum temperature difference was 4.1 ° C. Since the model die 50 used in this experiment has the cooling flow path 11 in the central portion, the temperature at the point A tends to be slightly lower. Compared with the point B in the adjacent stage, two points are obtained at the end of heating.
- the temperature difference was 3.6 ° C., it has been confirmed by thermal analysis simulation that the temperature difference is further reduced (about 0.5 ° C.) when the cooling channel 11 is not provided.
- FIG. 7 shows a cross-sectional view of the model mold 60. Since the configuration of the model mold 60 is basically the same as that of the model mold 50, detailed description thereof is omitted.
- the thickness of the high hardness metal layer 2 (material: SKD61) and the high thermal conductivity metal layer 3 (material: oxygen-free copper) is supplied to the heating channel 61 provided in the magnetic metal layer 4 (material: SKD61).
- heat conduction analysis was performed using a computer-based finite element method simulation (CAE) method so that the temperature at the center of the upper surface of the lower, middle, and upper stages was the same.
- the heating channel 61 provided in the magnetic metal layer 4 is a heating / cooling channel 61 that is a heating channel that supplies steam and a cooling channel that supplies cooling water.
- thermocouples Prior to heating, thermocouples were installed at the center (points A, B, and C in FIG. 7) of the upper surfaces of the lower, middle, and upper stages. After supplying the steam at 155 ° C. to the heating / cooling flow path 61 for 5 minutes to heat the model mold 60, cooling water at 15 ° C. was supplied to the heating / cooling flow path 61 for 10 minutes to cool the model mold 60.
- Comparative Example 1 Steam Heating and Cooling Experiment Using Model Mold 70 Consists of a high-hardness metal layer 2 (material: SKD61) having exactly the same size and shape as the model mold 60 used in Example 2. Steam heating and cooling experiments were performed using the model mold 70.
- FIG. 8 shows a cross-sectional view of the model mold 70. The heating and cooling procedures are the same as in Example 2.
- FIG. 9 shows changes with time in points A, B, and C of Example 2 and Comparative Example 1.
- Table 1 shows temperatures at points A, B, and C at the end of heating
- Table 2 shows temperatures at points A, B, and C at the end of cooling.
- the model mold 60 of Example 2 composed of a metal composite layer has better heating and cooling responsiveness than the model mold 70 of Comparative Example 1 composed of a single steel.
- the temperature difference between the points A, B, and C is very small in the entire heating and cooling process.
- the maximum temperature difference at the end of heating of the model mold 60 is 1.1 ° C.
- the maximum temperature difference at the end of cooling was 0.5 ° C.
- the maximum temperature difference at the end of heating of the model mold 70 was 44.7 ° C.
- the maximum temperature difference at the end of cooling was 20.1 ° C.
- Example 3 Steam Heating and Cooling Experiment Using Model Mold 60 Using the model mold 60 used in Example 2, steam heating and cooling experiments were performed in the following manner. The steam at 155 ° C. is supplied to the heating / cooling channel 61, and when the point B reaches 120 ° C., the supply of the steam is stopped, and the cooling water at 15 ° C. is immediately supplied to the heating / cooling channel 61. The cooling experiment was terminated when the temperature reached 30 ° C.
- Comparative Example 2 Steam Heating and Cooling Experiment Using Model Mold 70 Steam heating and cooling experiments were performed in the same manner as in Example 3 using the model mold 70 used in Comparative Example 1.
- FIG. 10 shows changes with time in points A, B, and C of Example 3 and Comparative Example 2.
- Table 3 shows the heating time required to reach 120 ° C. and the time required for the entire heating / cooling process.
- the model mold 60 of Example 3 composed of a metal composite layer is significantly shorter in heating time and cooling time than the model mold 70 of Comparative Example 2 composed of a single steel. It was done. Further, in the case of the model mold 60 of Example 3 composed of the metal composite layer, as shown in FIG. 10, the temperature difference between the points A, B, and C was very small in the entire heating and cooling process.
- Mold for resin molding 2 High hardness metal layer 3: High thermal conductivity metal layer 4: Magnetic metal layer 5: Composite layer 6: Inductor 7: Inductor receiving groove (groove) 8: Nonmagnetic / low thermal conductive layer 9: Mold base 10: Cavity surface 11: Cooling flow path 12: Laminated surface (interface) of different metals 13: Dissimilar metal interface parallel to the stacking direction 14: Boundary surface (joint surface) of dissimilar metal material 16: Load direction 17: Outer frame material 18: Wedge-shaped plate material pair 19: Mold external part 22: Metal plate (high hardness metal plate) 23: Metal plate (metal plate with high thermal conductivity) 24: Metal plate (magnetic metal plate) 25: Metal plate laminate 27: Groove 30: Resin molding die 50: Model die 51: Insulating material 60: Model die 61: Heating / cooling channel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
急速に、かつ温度分布が生じないようにキャビティー面を加熱可能な、またキャビティー面上の任意の領域を所定温度に制御することも可能な樹脂成形用金型を提供する。 キャビティー面10が上部に形成された高硬度金属層2と、前記高硬度金属層2の下側、すなわち、キャビティー面10の反対側に冶金接合された高熱伝導性金属層3と、前記高熱伝導性金属層3の下側に冶金接合された磁性金属層4と、前記磁性金属層4の下側、すなわち、高熱伝導性金属層3の反対側に設置したインダクタ6とを備える電磁誘導加熱方式の樹脂成形用金型1であり、キャビティー面10における加熱時の温度不均一を抑制できるよう、前記高硬度金属層2及び前記高熱伝導性金属層3のそれぞれの層厚さを金型内で変化させる。
Description
本発明は、キャビティー面上の温度均一性、温度制御性及び加熱冷却時間の短縮化に優れた樹脂成形用金型及びその製造方法に関する。
樹脂成形、すなわち、プラスチックや繊維強化プラスチック部品を対象とした射出成形及びプレス成形においては、成形時間短縮のために金型の加熱冷却の高速化が強く求められており、金型の高速加熱の一手法として、近年高周波電磁誘導加熱を利用した技術が多数提案されている。
例えば、特許文献1のように、上金型及び下金型を囲むようにインダクタを配置し、該インダクタに高周波電流を印加することによって、キャビティー面のある金型表面部にうず電流を発生させ、それにより生じるジュール熱によりキャビティー面を加熱する技術が開示されている。この方法を用いれば、成形時の直接の作用面ではない金型内部までを加熱する必要がないため、成形に必要なキャビティー面近傍のみを高速かつ効率的に加熱できる。
また、同様の電磁誘導加熱式金型において、冷却工程の高速化を主目的として、キャビティー面の直下に熱伝導性に優れる銅やアルミニウムなどの高熱伝導性金属層を設けることにより、冷却時の熱交換を促進して冷却時間を短縮し、加熱と冷却の両面で高速化を図る方法が提案されている。(例えば特許文献2参照)
このように、電磁誘導加熱方式は成形時間の短縮に有効であるが、一方で被加熱面において均一なうず電流場を生成することが難しいため、被加熱面では均一な加熱ができず、結果としてキャビティー面上では顕著な温度むらが生じることが知られている。このような温度むらの発生によって、樹脂充填の不良や、そりや割れの発生などの各種成形不良が生じやすい。
そこで、キャビティー面を直接加熱するのではなく、まずキャビティー面から少し離れた金型内部の一領域を加熱し、該発熱部からの熱伝導によってキャビティー面を加熱する手法が提案されている。例えば、特許文献3では、金型の内部にインダクタを設置し、インダクタ近傍における金型の一部を加熱して、その熱伝導によりキャビティー面を昇温する手法が開示されている。これにより、金型内部の発熱部においては温度が不均一であるものの、キャビティー面までの熱伝導過程において熱拡散を伴うため、キャビティー面を直接加熱する特許文献1や特許文献2の手法と比較して、キャビティー面上の温度分布を軽減できる利点がある。
特許文献3のように熱伝導により間接的にキャビティー面を加熱するインダクタ内装型電磁誘導加熱式金型の場合、キャビティー面を直接加熱する方法に比べて、熱伝導を伴う分だけ加熱時間が長く、エネルギー効率も悪化するなど、電磁誘導加熱方式の長所が十分得られない。熱伝導時間短縮のためには、インダクタをキャビティー面のできるだけ近傍に設置し、内部の発熱部からキャビティー面までの距離、すなわち、熱伝導距離を短縮すればよいが、その場合には熱拡散が不十分となり、キャビティー面の温度不均一が解消されにくい。さらに、キャビティー面形状に対応させたインダクタの配置によってキャビティー面上温度の均一化を図る特許文献3の場合、キャビティー面が緻密で高低差の大きい複雑な凹凸形状である場合には、インダクタの取り回しが困難であるために金型内における熱伝導距離のばらつきが大きくなり、キャビティー面温度の不均一が増加しやすいという問題が生じる。このように、キャビティー面の加熱時間短縮と温度均一化の両立が求められている。
本発明の目的は、急速に、かつ温度分布が生じないようにキャビティー面を加熱可能な、またキャビティー面上の任意の領域を所定温度に制御することも可能な樹脂成形用金型、及びその金型の好適な製造方法を提供することである。
本発明は、発熱体上に少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層され、上面にキャビティー面が形成された複合層を備え、前記キャビティー面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする樹脂成形用金型である。
本発明の樹脂成形用金型は、発熱体上に少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティー面上の温度を制御するので、凹凸が大きい複雑なキャビティー面形状の場合及び/又は発熱体の温度が場所によって異なる場合であっても、キャビティー面上に温度分布が生じないように加熱することができる。またキャビティー面上の任意の領域を所定温度に制御することも可能であり、これらを急速に行うことができる。
本発明の樹脂成形用金型は、発熱体上に少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティー面上の温度を制御するので、凹凸が大きい複雑なキャビティー面形状の場合及び/又は発熱体の温度が場所によって異なる場合であっても、キャビティー面上に温度分布が生じないように加熱することができる。またキャビティー面上の任意の領域を所定温度に制御することも可能であり、これらを急速に行うことができる。
また本発明の樹脂成形用金型において、前記発熱体、前記発熱体上に積層された前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を含む複数の金属層、前記複数金属層中における各金属層間の境界部、又は前記発熱体と前記複数金属層との境界部のうち、少なくとも一つに冷却媒体の流路が設けられていることを特徴とする。
本発明の樹脂成形用金型が電磁誘導加熱式の樹脂成形用金型の場合、発熱体は、磁性金属層であり、通常、該磁性金属層の上に高熱伝導性金属層及び熱伝導度の小さい材料で形成された層が積層され樹脂成形用金型が形成され、発熱体にパイプヒータ、電熱ヒータ等を使用する場合、該発熱体は、高熱伝導性金属層内、あるいは高熱伝導性金属層の下に積層された金属層内に埋設され、高熱伝導性金属層の上部に熱伝導度の小さい材料で形成された層が積層されることが多い。さらに発熱体に加熱蒸気、熱媒、温水などの加熱媒体を使用する場合、加熱媒体を流通させるための流路を穿設した金属層を準備し、該金属層の上に高熱伝導性金属層及び熱伝導度の小さい材料で形成された層を積層し、あるいは高熱伝導性金属層に加熱媒体を流通させるための流路を穿設し、該高熱伝導性金属層の上に熱伝導度の小さい材料で形成された層を積層し樹脂成形用金型が形成される場合が多い。このような樹脂成形用金型の場合、磁性金属層、高熱伝導性金属層、熱伝導度の小さい材料で形成された層、さらにはパイプヒータ、電熱ヒータ等を埋設あるいは加熱媒体を流通させるための流路を穿設した金属層、又はこれら金属層の境界部に冷却媒体の流路(冷却流路)を設けることができるが、特に冷却流路を高熱伝導性金属層に配置することでキャビティー面を均一に冷却することができる。また発熱体に加熱蒸気、熱媒、温水などの加熱媒体を使用する場合、加熱媒体を流通させるための流路を冷却媒体の流路として使用してもよい。
本発明の樹脂成形用金型が電磁誘導加熱式の樹脂成形用金型の場合、発熱体は、磁性金属層であり、通常、該磁性金属層の上に高熱伝導性金属層及び熱伝導度の小さい材料で形成された層が積層され樹脂成形用金型が形成され、発熱体にパイプヒータ、電熱ヒータ等を使用する場合、該発熱体は、高熱伝導性金属層内、あるいは高熱伝導性金属層の下に積層された金属層内に埋設され、高熱伝導性金属層の上部に熱伝導度の小さい材料で形成された層が積層されることが多い。さらに発熱体に加熱蒸気、熱媒、温水などの加熱媒体を使用する場合、加熱媒体を流通させるための流路を穿設した金属層を準備し、該金属層の上に高熱伝導性金属層及び熱伝導度の小さい材料で形成された層を積層し、あるいは高熱伝導性金属層に加熱媒体を流通させるための流路を穿設し、該高熱伝導性金属層の上に熱伝導度の小さい材料で形成された層を積層し樹脂成形用金型が形成される場合が多い。このような樹脂成形用金型の場合、磁性金属層、高熱伝導性金属層、熱伝導度の小さい材料で形成された層、さらにはパイプヒータ、電熱ヒータ等を埋設あるいは加熱媒体を流通させるための流路を穿設した金属層、又はこれら金属層の境界部に冷却媒体の流路(冷却流路)を設けることができるが、特に冷却流路を高熱伝導性金属層に配置することでキャビティー面を均一に冷却することができる。また発熱体に加熱蒸気、熱媒、温水などの加熱媒体を使用する場合、加熱媒体を流通させるための流路を冷却媒体の流路として使用してもよい。
また本発明の樹脂成形用金型において、前記冷却媒体の流路が、キャビティー面を急速かつ均一に冷却可能に前記キャビティー面の近傍に立体的に配置されていることを特徴とする。
本発明の樹脂成形用金型は、冷却媒体の流路がキャビティー面近傍に立体的に配置されているので、キャビティー面を急速かつ均一に冷却することができる。
本発明の樹脂成形用金型は、冷却媒体の流路がキャビティー面近傍に立体的に配置されているので、キャビティー面を急速かつ均一に冷却することができる。
また本発明の樹脂成形用金型において、前記高熱伝導性金属層が、純銅、銅合金、純アルミニウム、アルミニウム合金から選択される材種により形成されていることを特徴とする。
本発明の樹脂成形用金型において、高熱伝導性金属層として、熱伝導性及び熱拡散率に優れる純銅、銅合金、純アルミニウム、アルミニウム合金を好適に使用することができる。
本発明の樹脂成形用金型において、高熱伝導性金属層として、熱伝導性及び熱拡散率に優れる純銅、銅合金、純アルミニウム、アルミニウム合金を好適に使用することができる。
また本発明の樹脂成形用金型は、電磁誘導加熱式の樹脂成形用金型であり、前記発熱体が磁性金属層であり、前記磁性金属層中又は前記磁性金属層の反複合層側にインダクタを備えることを特徴とする。
本発明の樹脂成形用金型は、磁性金属層上に少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティー面上の温度を制御するので、従来の電磁誘導加熱式金型の短所であるキャビティー面上に発生する温度不均一の問題を解決するとともに、電磁誘導加熱式金型の加熱時間の短縮という長所を最大限活用することができる。
本発明の樹脂成形用金型は、磁性金属層上に少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティー面上の温度を制御するので、従来の電磁誘導加熱式金型の短所であるキャビティー面上に発生する温度不均一の問題を解決するとともに、電磁誘導加熱式金型の加熱時間の短縮という長所を最大限活用することができる。
また本発明の樹脂成形用金型において、前記熱伝導度の小さい材料で形成された層が高硬度金属層からなり、該高硬度金属層の上面に前記キャビティー面が形成され、該高硬度金属層、前記高熱伝導性金属層、前記磁性金属層の順にそれぞれ冶金接合されていることを特徴とする。
本発明の樹脂成形用金型は、各金属層が冶金接合されているので、熱伝達に優れ、また強度的にも優れる。
本発明の樹脂成形用金型は、各金属層が冶金接合されているので、熱伝達に優れ、また強度的にも優れる。
また本発明の樹脂成形用金型において、前記インダクタが同一平面上に設けられていることを特徴とする。
一般的に電磁誘導加熱式金型の場合、磁性金属層において均一なうず電流場を生成することが難しいため、キャビティー面上に温度分布が生じる。このため従来、キャビティー面の位置に応じてインダクタの位置を変えることもなされているが、キャビティー面の形状が複雑な場合及び/又は樹脂成形品が小さい場合には、インダクタの取り回しも限定され、キャビティー面上を均一に、又は任意の場所を任意の温度に加熱することはできない。これに対して、本発明の樹脂成形用金型は、磁性金属層上に少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティー面上の温度を制御するので、インダクタを同一平面上に配置することが可能であり、結果、金型の設計自由度が増し、製作も容易となる。
一般的に電磁誘導加熱式金型の場合、磁性金属層において均一なうず電流場を生成することが難しいため、キャビティー面上に温度分布が生じる。このため従来、キャビティー面の位置に応じてインダクタの位置を変えることもなされているが、キャビティー面の形状が複雑な場合及び/又は樹脂成形品が小さい場合には、インダクタの取り回しも限定され、キャビティー面上を均一に、又は任意の場所を任意の温度に加熱することはできない。これに対して、本発明の樹脂成形用金型は、磁性金属層上に少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティー面上の温度を制御するので、インダクタを同一平面上に配置することが可能であり、結果、金型の設計自由度が増し、製作も容易となる。
また本発明の樹脂成形用金型は、さらに非磁性材料及び/又は低熱伝導性材料で形成された層を有し、前記インダクタは、前記磁性金属層と該非磁性材料及び/又は低熱伝導性材料で形成された層とで挟まれ、かつこれらで囲まれていることを特徴とする。
本発明の電磁誘導加熱式の樹脂成形用金型において、インダクタは、磁性金属層と非磁性材料及び/又は低熱伝導性材料で形成された層とで挟まれ、かつこれらで囲まれているので、うず電流が磁性金属層に集中して生じ、発生した熱を損失することなくキャビティー面側へ移動させることができる。非磁性材料又は低熱伝導性材料には、非磁性ステンレス鋼又はセラミックプレートなどを用いるのが好ましい。
本発明の電磁誘導加熱式の樹脂成形用金型において、インダクタは、磁性金属層と非磁性材料及び/又は低熱伝導性材料で形成された層とで挟まれ、かつこれらで囲まれているので、うず電流が磁性金属層に集中して生じ、発生した熱を損失することなくキャビティー面側へ移動させることができる。非磁性材料又は低熱伝導性材料には、非磁性ステンレス鋼又はセラミックプレートなどを用いるのが好ましい。
また本発明の樹脂成形用金型において、前記磁性金属層が、純鉄、鉄鋼、純ニッケル、ニッケル合金から選択される材種により形成されていることを特徴とする。
また本発明の樹脂成形用金型において、前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が、所定の形状に加工された複数枚の板を積層し、該積層体を拡散接合することにより形成されていることを特徴とする。
本発明の樹脂成形用金型は、キャビティー面上を急速に所定温度にすべく、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層の厚さが、それぞれ場所に応じて適正に設定されるので、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層が複雑な形状となり易いが、これらの製作に板を積層、接合する積層接合法を採用することで所望の金型を得ることができる。積層金型で用いられる複数枚の板を積層、接合してなる積層接合法は、積層、接合する1枚1枚の板の形状が比較的単純なため、金型内部で熱伝導度の小さい材料で形成された層及び/又は高熱伝導性金属層の厚さが変化する金型であっても対応が容易であり、接合に拡散接合法を用いることで接合を確実に行うことができる。
本発明の樹脂成形用金型は、キャビティー面上を急速に所定温度にすべく、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層の厚さが、それぞれ場所に応じて適正に設定されるので、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層が複雑な形状となり易いが、これらの製作に板を積層、接合する積層接合法を採用することで所望の金型を得ることができる。積層金型で用いられる複数枚の板を積層、接合してなる積層接合法は、積層、接合する1枚1枚の板の形状が比較的単純なため、金型内部で熱伝導度の小さい材料で形成された層及び/又は高熱伝導性金属層の厚さが変化する金型であっても対応が容易であり、接合に拡散接合法を用いることで接合を確実に行うことができる。
また本発明の樹脂成形用金型において、少なくとも前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が電気めっき法により形成されていることを特徴とする。
また本発明の樹脂成形用金型において、前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され又は、前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が電気めっき法により形成され、前記磁性金属層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記磁性金属層が電気めっき法により形成されていることを特徴とする。
また本発明の樹脂成形用金型の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、所定の組み合わせと順序で積層された熱伝導度の小さい材料の板と高熱伝導性金属板とからなる積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする。
また本発明の樹脂成形用金型の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、所定の組み合わせと順序で積層された熱伝導度の小さい材料の板と高熱伝導性金属板とからなる積層体の外側を囲むように、前記熱伝導度の小さい材料の板及び前記高熱伝導性金属板よりも線膨張係数の小さい材料で製作された外枠材を設置し、前記積層体と前記外枠材との間にくさび形状をした少なくとも一対の板材を挟んで加熱することにより、加熱時における前記外枠材、前記熱伝導度の小さい材料の板、前記高熱伝導性金属板及び前記くさび形板材のそれぞれの熱膨張差を利用して外力を負荷することなく積層方向に対して平行な異材界面の拡散接合を行うことを特徴とする。
本発明の樹脂成形用金型では、熱伝導度の小さい材料で形成された層及び/又は高熱伝導性金属層の各層厚さが金型内で変化するため、金型内の同一平面上において熱伝導度の小さい材料で形成された層と高熱伝導性金属層とが混在する領域が発生する。該領域では、平板状に加工された熱伝導度の小さい材料の板あるいは高熱伝導性金属板のどちらか一方に対して、ある特定部分を除去した後、該部分に同一の輪郭形状に加工されたもう一方の材種の板をはめ込んだ複合板を作製し、それらを複数積層して拡散接合することにより、熱伝導度の小さい材料で形成された層と高熱伝導性金属層が任意面積及び任意厚さで混在する異種材料複合積層金型を製作できる。しかし、前記方法で異種材料を積層して拡散接合する場合、加圧のための外力は積層方向であり、前記嵌合部、すなわち、熱伝導度の小さい材料の板と高熱伝導性金属板との界面は負荷方向と平行であるために、該界面には外力が直接負荷されない。特に、線膨張係数が大きい高熱伝導性金属板の内側に、線膨張係数の小さい板を嵌合した場合には、拡散接合時の熱膨張は外側の高熱伝導性金属板の方が大きいために前記嵌合部にすき間が生じ、接合が困難となる。
これに対し本発明の樹脂成形用金型の製造方法は、拡散接合時における板積層体の最外郭部、すなわち、金型外形部の熱変形を拘束する。これにより、最外郭部を有する各積層板は加熱により熱膨張するものの、最外郭での寸法が増加しないよう熱変形が拘束されているため、前記嵌合部の寸法は熱ひずみにより縮小する結果となり、外側の板は内側にはめ込まれた異種材料の板と圧力を伴いながら接触し、拡散接合がなされる。このように、板の積層方向には外力による加圧によって、また、負荷方向と平行な異種材嵌合部の界面においては金型外形部の熱変形を拘束することによって、全方向において完全な加圧がなされた拡散接合が実現できる。
また本発明の樹脂成形用金型の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層をそれぞれ、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合し製作し、拡散接合した前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、又は拡散接合した前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との接合面を形状加工した後に積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合することを特徴とする。
本発明の樹脂成形用金型の製造方法は、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層をそれぞれ積層接合法で製作し、その後、この熱伝導度の小さい材料で形成された層及び高熱伝導性金属層を拡散接合するので、複雑な形状の、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層を備える樹脂成形用金型であっても、確実に製作することができる。
本発明の樹脂成形用金型の製造方法は、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層をそれぞれ積層接合法で製作し、その後、この熱伝導度の小さい材料で形成された層及び高熱伝導性金属層を拡散接合するので、複雑な形状の、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層を備える樹脂成形用金型であっても、確実に製作することができる。
また本発明の樹脂成形用金型の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、積層方向に圧力を加えて拡散接合することにより製作する場合において、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、該積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする。
本発明の樹脂成形用金型の製造方法は、拡散接合時に積層体の最外郭部、すなわち、金型外形部の熱変形を拘束する。この方法は、ブロック状素材を形状加工し形成した高熱伝導性金属層と熱伝導度の小さい材料で形成された層とを拡散接合し樹脂成形用金型を製造する場合にも好適に用いることができ、全方向において完全な加圧がなされた拡散接合が実現できる。
本発明の樹脂成形用金型の製造方法は、拡散接合時に積層体の最外郭部、すなわち、金型外形部の熱変形を拘束する。この方法は、ブロック状素材を形状加工し形成した高熱伝導性金属層と熱伝導度の小さい材料で形成された層とを拡散接合し樹脂成形用金型を製造する場合にも好適に用いることができ、全方向において完全な加圧がなされた拡散接合が実現できる。
また本発明は、前記樹脂成形用金型を利用して樹脂成形品を製造する方法である。
本発明の樹脂成形用金型は、キャビティー面上の全域又は任意の領域を急速に所定温度に成さしめるべく、熱伝導度の異なる材料で形成された層が金型の場所に応じて厚さを変えて積層されているので、凹凸が大きい複雑なキャビティー面形状を有する金型及び/又は発熱体の温度が場所によって異なる金型であっても、キャビティー面上に温度分布が生じないように加熱することができる。またキャビティー面上の任意の領域を所定温度に制御することも可能であり、樹脂成形用金型として好適に使用することができる。これを電磁誘導加熱式樹脂成形用金型に適用することで、従来の電磁誘導加熱式金型の最大の弱点である発熱不均一の問題を克服し、なおかつ内部の熱伝導を速めることによって、高速かつ均一にキャビティー面を昇温できる、樹脂成形用金型の理想的な電磁誘導加熱が可能となる。
また本発明の樹脂成形用金型を、板を積層、拡散接合する積層接合法を用いて製作することで、金型内部で熱伝導度の異なる2つの層の厚さが変化しても容易に製作することができる。また冷却流路をキャビティー面近傍の最適な位置へ立体的に配置することが可能となり、冷却工程においても、均一かつ急速な冷却が実現できる。また本発明の樹脂成形用金型を、積層接合法を用いて製作するとき、本発明の製造方法を用いることで、確実な接合を実現することができる。
加熱と冷却の両方で均一かつ急速な金型の温度調節を行うことにより、通常の射出成形やプレス成形時では実用上困難であった高温域での成形が可能となる。これにより、例えば射出成形では、ウエルドラインを低減あるいは消失させることができるだけでなく、表面性向上による塗装工程の削減が可能になるとともに、樹脂流動性向上により薄肉部品や複雑形状品などが成形できる。また、繊維強化樹脂などのプレス成形では、樹脂粘度低下に伴う賦形性向上により、従来では難しかった厚肉かつ複雑形状を有する物の成形が実現できる。
図1は、本発明の第1実施形態としての樹脂成形用金型1の断面図である。ここでは金型の下側半分、すなわち下金型のみを示しており、反対側の上金型は表示されない。
樹脂成形用金型1は、電磁誘導加熱式の樹脂成形用金型であり、キャビティー面10が上部に形成された高硬度金属層2、高硬度金属層2の下側に高熱伝導性金属層3、高熱伝導性金属層3の下側に磁性金属層4がそれぞれ冶金接合された複合層5を有し、磁性金属層4の下側にインダクタ6を備える。
キャビティー面10を有する高硬度金属層2は、目的の成形に必要な成形温度や加圧条件および使用回数に耐えられる十分な強度や耐久性を有するよう、必要な硬度を有する金属により製作される。材質は、成形の種類や条件によって異なるが、例えば各種鉄鋼材に必要な熱処理を施し、所定の硬度及び機械的性質が得られるよう調質したものを用いるとよい。また高硬度金属層2は、熱伝導度が高熱伝導性金属層3の熱伝導度に比較し小さいものを使用する。
高硬度金属層2の下側、すなわち、キャビティー面10の反対側には高熱伝導性金属層3が設けられている。高熱伝導性金属層3は、熱伝導性及び熱拡散性に優れた材料を使用する。定常温度分布状態にある材料中では、Δx(m)離れた2点間の温度差がΔT(K)であるとき、2点間の熱流束q(W/m2)は式(1)のようなフーリエの法則によって表される。なお、熱流束とは、2点間を移動する単位面積および単位時間当たりの熱量である。
q=-λ・(ΔT/Δx)・・・(1)
ここで、λ:熱伝導度(W/(m・K))である。
このように、定常状態において熱流束qの値を一定とすると、熱伝導度λが小さければ温度勾配ΔT/Δxが大きくなるが、λが大きい、すなわち、熱伝導度の高い材料では温度勾配ΔT/Δxが小さくなり、材料中の温度分布が小さくなることから、熱伝導度の高い材料を使用することにより、本質的に金型に生じる温度分布を軽減できる。
q=-λ・(ΔT/Δx)・・・(1)
ここで、λ:熱伝導度(W/(m・K))である。
このように、定常状態において熱流束qの値を一定とすると、熱伝導度λが小さければ温度勾配ΔT/Δxが大きくなるが、λが大きい、すなわち、熱伝導度の高い材料では温度勾配ΔT/Δxが小さくなり、材料中の温度分布が小さくなることから、熱伝導度の高い材料を使用することにより、本質的に金型に生じる温度分布を軽減できる。
また、実際の成形過程では、金型内の温度は位置だけでなく時間によっても変化する非定常状態であるので、該高熱伝導性金属層3には、式(2)によって表される熱拡散率a(m2/s)が大きい材料を用いることが望ましい。
a=λ/(c・ρ)・・・(2)
ここで、c:比熱(J/(kg・K))、ρ:密度(kg/m3)である。この値aが大きいほど、温度分布が材料中を非定常的に広がっていく速度が速く、短時間のうちに温度分布が緩和しやすいことを示している。
a=λ/(c・ρ)・・・(2)
ここで、c:比熱(J/(kg・K))、ρ:密度(kg/m3)である。この値aが大きいほど、温度分布が材料中を非定常的に広がっていく速度が速く、短時間のうちに温度分布が緩和しやすいことを示している。
熱伝導度λ及び熱拡散率aが大きい材料として、純銅、銅合金、純アルミニウム、アルミニウム合金が例示され、高熱伝導性金属層3としてこのような材料を使用することが好ましい。高熱伝導性金属層3と高硬度金属層2との接合については、良好な熱伝導性を得るために、拡散接合による冶金接合が好ましい。例えば、鉄鋼材により製作した高硬度金属層2との接合を高温・加圧を伴う拡散接合により行う場合には、鉄との親和性がよく、金属間化合物を生じない純銅及び銅合金を使用するのが好ましい。なお、高硬度金属層2及び/又は高熱伝導性金属層3は、電気めっきにより形成してもよい。
高硬度金属層2及び高熱伝導性金属層3は、後述する方法により最適な層厚さが決定され、各層の厚さは金型内において変化する。例えば、図1中の金型1のようにキャビティー面10が自由曲面を含む複雑な三次元形状をしている場合には、キャビティー面10上の温度分布を抑制するため、該キャビティー面10の形状に対応して、高硬度金属層2と高熱伝導性金属層3の境界、すなわち、異種材料の接合界面14も三次元的に起伏を伴った複雑な形状となることが多い。
磁性金属層4は、高熱伝導性金属層3の下側に位置する。高熱伝導性金属層3の下側に接合される磁性金属層4は、純鉄、鉄鋼、純ニッケル、ニッケル合金から選択される材種により製作されることが好ましい。一般に導電体に高周波電流が流れる場合、電流は表皮効果により導電体の表面近傍のみに生じることが知られている。したがって、磁性金属層4の厚さは、うず電流の表皮深さδの数倍程度あればよく、熱エネルギーの損失低減や金型軽量化の観点から、できるだけ薄い層であることが望ましい。表皮深さδ(μm)は式(3)により得られる。
δ=√(2P/(2π・f・μ))×1,000,000・・・(3)
ここで、Ρ:体積抵抗率(Ω・m)、f:電流の周波数(Hz)、μ:絶対透磁率(H/m)である。例えば、電流周波数fが1kHzの場合、表皮深さδは純鉄で約71μm、ニッケルで約172μmであり、電流周波数fが100kHzの場合では、表皮深さδは純鉄で約7μm、ニッケルで約17μmとなる。種々の電流周波数を使用する場合を考慮し、数百μm以上の厚さがあればよい。図1は厚さ1mm程度の薄鋼板を拡散接合したものを記載しているが、周波数が高い場合には200~300μm程度のニッケル皮膜をめっきなどにより作製して用いても良い。
δ=√(2P/(2π・f・μ))×1,000,000・・・(3)
ここで、Ρ:体積抵抗率(Ω・m)、f:電流の周波数(Hz)、μ:絶対透磁率(H/m)である。例えば、電流周波数fが1kHzの場合、表皮深さδは純鉄で約71μm、ニッケルで約172μmであり、電流周波数fが100kHzの場合では、表皮深さδは純鉄で約7μm、ニッケルで約17μmとなる。種々の電流周波数を使用する場合を考慮し、数百μm以上の厚さがあればよい。図1は厚さ1mm程度の薄鋼板を拡散接合したものを記載しているが、周波数が高い場合には200~300μm程度のニッケル皮膜をめっきなどにより作製して用いても良い。
インダクタ6は、磁性金属層4の下に、同一平面上に配置されている。ここでいう同一平面上とは、完全な同一の他、ほぼ同一の高さに配置されている場合も含む。通常、インダクタ6には銅などで製作される金属製パイプに絶縁被膜を施したものを用い、パイプ内部には冷却媒体が流れ、高周波電流印加時の過熱を防止するように使用される。また、使用条件によっては冷却が不要な場合もあり、その際には銅ロッドあるいは銅撚り線などに絶縁被膜したものを用いるとよい。従来、キャビティー面10を均一加熱するために、キャビティー面10の凹凸に応じてインダクタ6を立体的に配置することがなされているが、インダクタ6を立体的に配置することは容易ではない。特に金型が小さくなると、インダクタ6の取り回しが非常に難しくなる。これに対し、本樹脂成形用金型1では、高硬度金属層2及び高熱伝導性金属層3の厚さを適正に制御することで、キャビティー面10の温度を制御するので、インダクタ6を同一平面上に配置することができる。このためインダクタ6の設置、取り回しが簡単となり、金型を設計する点及び製作する点からも非常に好ましい。キャビティー面形状に合わせたインダクタの配置によって、キャビティー面上温度の均一化を図る特許文献3とは、この点において異なる。
またインダクタ6の下方には、非磁性・低熱伝導層8が設けられ、インダクタ6は、磁性金属層4と非磁性・低熱伝導層8との間に挟まれ、かつこれらで囲まれる。図1では、非磁性・低熱伝導層8にインダクタ収納用の溝7を設け、該溝内にインダクタ6を設置しているが、変形として、高熱伝導性金属層3及び磁性金属層4の側に該収納用溝を設けても良い。非磁性・低熱伝導層8は、板状に製作して、金型基材9と磁性金属層4との間に挿入するか、あるいは非磁性・低熱伝導層8を金型基材9とともに一体として用いるなどして、キャビティー面10を有する複合層5とインダクタ6とをボルトなどで機械的に締結しても良い。
非磁性・低熱伝導層8は、インダクタ6への高周波電流印加により発生する磁界が磁性金属層4の反対側へ透過するのを防ぎ、磁性金属層4において効率的なうず電流場を生成してジュール熱の発生を促すこと、また、磁性金属層4に生じた熱がキャビティー面10の反対側に拡散するのを防ぐ目的で設置される。したがって、磁界及び熱の遮蔽効果のある材料が適しているため、非磁性ステンレス鋼などの金属またはセラミックスを使用することが好ましい。
さらに非磁性・低熱伝導層8の下には、金型基材9が設置されている。金型基材9は、金型としての必要な剛性や強度を得るために用いるものであり、所定の硬度を有する鉄鋼材を使用するのが望ましい。また、非磁性・低熱伝導層8が十分な剛性・強度・じん性を有する材料である場合、非磁性・低熱伝導層8と金型基材9とを同一の材料により一体で用いてもよい。
また本金型1には、高硬度金属層2と高熱伝導性金属層3との境界面14に金型1を冷却するための冷却流路11が設けられている。冷却流路11は、キャビティー面10の近傍であって、キャビティー面10に沿うように設けられている。このような配置は、キャビティー面10を迅速に冷却することができる好ましい配置である。キャビティー面10が複雑となるとキャビティー面10に沿うように冷却流路11を設けることは容易ではないが、樹脂成形用金型1は、厚さの薄い複数枚の金属板を輪郭形状加工した後に、積層、接合する積層接合法を用いて製作するので、複雑な冷却流路11の製作も容易である。
上記構成からなる金型1は、不均一に加熱される磁性金属層4から収受した熱を拡散させながら高硬度金属層2へ伝達し、かつ凹凸が大きい複雑なキャビティー面形状の場合でも該面上に温度分布が生じないようにするため、高硬度金属層2と高熱伝導性金属層3のそれぞれの厚さを金型内で適切に変化させて製作される。すなわち、キャビティー面10が発熱部である磁性金属層4に比較的近い領域では、高熱伝導性金属層3の厚さを薄く、かつ高硬度金属層2の厚さを厚くしてキャビティー面10の過度な温度上昇を抑制する一方で、キャビティー面10が発熱部である磁性金属層4から離れた領域では昇温不足が懸念されるため、逆に高熱伝導性金属層3を厚く、高硬度金属層2を薄くして温度上昇を促し、結果としてキャビティー面10上の温度がほぼ均一となるようにする。
図2及び図3は、図1の樹脂成形用金型1の製造要領、特に樹脂成形用金型1の複合層5の製造要領を説明するための図であり、図2は製造手順を説明するフローチャート、図3は、拡散接合工程における金属板積層体25と接合治具との組み付け方法を示した断面図である。
樹脂成形用金型1の複合層5は、厚さの薄い複数枚の金属板を輪郭形状加工した後に、積層、接合されたいわゆる積層金型である。積層金型は、積層、接合する1枚1枚の金属板の形状が比較的単純なため、金型内部で高硬度金属層2と高熱伝導性金属層3の厚さが変化する金型であっても対応が容易であり、特にキャビティー面10の凹凸が複雑な場合には、好ましい製作方法である。図3では、高硬度金属層2を形成する金属板22が6枚、高熱伝導性金属層3を形成する金属板23が6枚、磁性金属層4を形成する金属板24が1枚となっているが、金属板の枚数は、特定の枚数に限定されるものではない。キャビティー面10の形状等に応じて適宜設定することができる。一般的にキャビティー面10の凹凸が単純であれば、金属板の枚数は少なく、逆にキャビティー面10の凹凸が複雑であれば枚数は多くなる。例えば、キャビティー面10の凹凸が非常に単純であれば、高硬度金属層2を形成する金属板22及び高熱伝導性金属層3を形成する金属板23を各2枚とすることもできる。
まず、ステップS1では、金型1の外形形状、キャビティー面10の形状、高硬度金属層2の厚さ、高熱伝導性金属層3の厚さ、磁性金属層4の厚さ、さらには、インダクタ6や冷却流路11の形状からなる各情報を与えて、金型の初期形状を3次元CADでモデリングする。ここでの形状は最適設計がなされる前の初期段階のものであり、インダクタ6及び冷却流路11の形状は暫定的に与える。また、高硬度金属層2、高熱伝導性金属層3、磁性金属層4の各層厚さも、金型1内で全て均一な厚さとして暫定的に定める。
ステップS2では、コンピュータによる有限要素法シミュレーション(CAE)などの手法を用いて、電磁場解析及び熱伝導解析を行い、金型内部に生じるうず電流場を求めるとともに、うず電流によって生じる金属の発熱と熱伝導を計算し、キャビティー面10上の温度分布を予測する。本ステップの目的は、キャビティー面10上に生じる温度分布を抑制しながら高速に加熱冷却できる金型各構成要素の形状寸法を最適に設計することである。そのための手法は種々あるが、好ましい一例として、まず、磁性金属層4での発熱状態に注目し、磁性金属層4上で顕著な温度分布が生じないようにインダクタ6の配置形状を変更する。次に、高熱伝導性金属層3の厚さを一定として熱伝導解析を行い、キャビティー面10上の温度分布を予測する。その結果から、キャビティー面10の温度が高い領域周辺においては高熱伝導性金属層3の厚さを薄く、かつ高硬度金属層2の厚さを厚くする。また一方で、キャビティー面10が該磁性金属層4から遠い領域では昇温不足となるため、逆に高熱伝導性金属層3を厚く、高硬度金属層2を薄くして温度上昇を促すことにより、キャビティー面上の温度が均一になるような、金型内における高熱伝導性金属層3及び高硬度金属層2の最適な層厚さの分布を導出する。
また、冷却過程の熱伝導解析も同様に行い、キャビティー面10上の温度が均一かつ急速に下がるような、最適な冷却流路11の形状を決定する。本目的を達成するために、冷却流路11はキャビティー面10のできるだけ近傍に設置するのが好ましいため、キャビティー面10の形状に対応した立体的な配置とするのがよい。なお、前記冷却流路11の設計は当然ながら加熱時の熱伝導にも影響を与えるので、加熱時における高硬度金属層2及び高熱伝導性金属層3の厚さの設計は冷却流路11の存在とその形状を考慮して行われる。冷却流路11の形状を変更した場合、それにより加熱時のキャビティー面10上温度分布に許容しがたい変化が生じていないかどうか確認する必要がある。
金型構成要素の設計が終了後、ステップS3では、3次元CADデータを基にスライスデータの作成を行う。スライスデータの作成は予めスライスデータを作成するためのプログラムをインストールしたコンピュータを用いて行う。コンピュータはインストールされたプログラムに従い、入力された3次元CADデータから、所定の厚さのスライスデータを作成する。ここで所定の厚さが、金属板の厚さとなる。金属板の厚さは、樹脂成形用金型1の形状、キャビティー面10の形状、高熱伝導性金属層3及び高硬度金属層2の厚さ、さらには冷却流路11の配置に基づき、加工容易性等を考慮し、所望の金型が容易に製作できるように決定する。このとき金属板の規格(寸法)、入手性、価格を考慮することが好ましい。高硬度金属層2を形成する金属板22は、通常、同一の厚さの金属板を使用するが、厚さの異なる金属板22を使用してもよい。高熱伝導性金属層3を形成する金属板23についても同様である。この点については、公知の積層金型(例えば特開2010-94903号公報)と同様に考えればよい。
ステップS4では、ステップS3で作成したスライスデータに基づいて、各金属板22、23、24の加工を行う。金属板22は、高硬度金属板、金属板23は、高熱電導性金属板、金属板24は、磁性金属板であり、それぞれ高硬度金属層2、高熱電導性金属層3、磁性金属層4に対応する。金属板の加工は、輪郭形状、冷却流路のための溝27、及び積層時における位置決め用の基準穴(図示省略)を行う。ここで、同一高さに異なる材料の金属板22、23を組み合わせて積層する場合、例えば、どちらか一方の金属板22(23)の一部を機械加工により除去し、該除去部分に同一輪郭形状に切出した他方の金属板23(22)をはめ込んで使用する場合には、該嵌合部のすき間が所定の値になるように、両金属板22、23の輪郭を精度よく加工する必要がある。該嵌合部のすき間は両金属板22、23の熱膨張係数や金属板の寸法および加工温度を考慮して適宜決定するとよい。また、両異種金属の拡散接合の際にインサート材を用いる場合には、インサート材厚さを考慮して、嵌合部すき間を決定するのが望ましい。なお、後述のように、拡散接合時において金型外形を変形拘束するので、金型外形に相当する部分についても、各金属板22、23、24を所定の寸法交差内で精度よく加工しておくのがよい。
ステップS5では、加工した金属板22、23、24を所定の組み合わせにより所定の順序で積層する。金属板22、23、24は位置決め用基準穴(図示省略)が設けられているので、基準ピン(図示省略)を使用することで、正確に位置決めすることができる。
次ステップS6では、積層した金属板積層体25を拡散接合法により接合する。拡散接合は、加熱炉内に金属板積層体25を設置し、真空雰囲気下で所定の温度になるように加熱しながら積層方向に荷重を負荷し、一定時間保持した後に冷却して金属板積層体25(金属板接合体)を炉外へ搬出する。拡散接合時の加熱温度、加熱時間等は、使用する金属板の種類などにより適宜設定すればよい。ここで、金属板同士を重ね合わせる積層面12には荷重が直接負荷されるために拡散接合が可能であるが、同一高さに異種材である高硬度金属板22と高熱伝導性金属板23とを嵌合させた領域では、嵌合部の異種金属界面13は荷重の負荷方向16に対して平行であるために、該異種金属界面13には外力は直接負荷されない。特に、高熱伝導性金属板23の内側の一部を除去して、線膨張係数が相対的に小さい高硬度金属板22を嵌合した場合には、界面に生じる隙間が拡大する傾向となり、事実上接合が困難となる。
そこで、図3に記載のような治具を用いて拡散接合を行う。高硬度金属板22及び高熱伝導性金属板23よりも線膨張係数の小さい材料で製作された外枠材17の中に前記金属板積層体25を設置し、金属積層体25と外枠材17との間に一対のくさび形状をした板材を挿入する。ここで、2つのくさび形板材18のうちどちらか一方の挿入深さを調節することによって、金属板積層体25、外枠材17、くさび形板材18をすき間なく接触する状態にすることができる。なお、図3は金属板積層体25、外枠材17及びくさび板材18のある一断面を示した図であるが、本図と直交する任意の断面においても、同様にすき間なく金属板積層体25と外枠材17とが接触するよう、もう一対のくさび形板材18を用いるとよい。すなわち、合計2対のくさび形板材18を使用し、縦横両方向に対して金属板積層体25と外枠材17とをすき間なく接触および固定するのが好ましい。
ここで、外枠材17にはグラファイトなど金属よりも線膨張係数の小さい材料を使用し、くさび形板材18は繰り返しの使用に耐えうる適度な一般機械用炭素鋼および機械構造用炭素鋼などを用いるとよい。ただし、拡散接合過程において金属板積層体25とくさび形板材18が相互に接合されないよう、くさび形板材18の表面には離型材を塗布しておく必要がある。
上記の固定状態で加熱すると、線膨張係数が金属よりも小さい外枠材17の熱ひずみは金属板積層体25及びくさび形板材18のそれと比較して小さいため、結果として、くさび形板材18を経由して金型外形部19の熱膨張を拘束する。これにより、外形部を有する各積層金属板22、23、24は、加熱により熱膨張するものの、外形部での熱変形が治具である外枠材17及びくさび形板材18により拘束されるため、前記嵌合部の寸法は熱ひずみにより縮小する結果となり、内側にはめ込まれた異種金属板と圧力を伴いながら界面13において接触し、拡散接合がなされる。事実、無拘束状態では加熱時において嵌合部にすき間が生じやすい異種複合金属板、例えば、高熱伝導性金属板23の内側に高硬度金属板22を嵌合した場合において、外形部の変形を拘束した状態で加熱すると、嵌合部の寸法は熱ひずみにより収縮し、嵌合部を境界13として両異種金属同士が圧力を伴いながら接触することを有限要素解析により確認している。
このように、金属板積層体25の積層面12には外力による加圧により、また、積層面12と直交する嵌合部の異種金属界面13においては金型最外郭部の熱変形の拘束を利用することによって、全方向において完全な加圧がなされた拡散接合が実現できる。
続くステップS7では、拡散接合した金属板積層体(金属板接合体)を熱処理する。本工程は金属板接合体のうち、特にキャビティー面10を有する高硬度金属層2を硬化させ、強度及び耐摩耗性の向上を目的として行う熱処理であり、樹脂成型用金型で一般的に行われる焼入れ及び焼戻しである。ここでは、最終的にキャビティー面10が所定の硬度となるように処理を行う。なお、本熱処理工程は金型の用途によっては必ずしも実施する必要はなく、次工程のステップS8の形状加工後に熱処理を行い、その後必要に応じて再度形状加工を行ってもよい。
ステップS8では、樹脂成形用金型1の仕上げ工程として、形状加工を行う。ここでは、一般的な樹脂成形用金型と同様に、汎用のCAD/CAM装置及びNCあるいはCNC装置を用いることで容易かつ高精度に加工することができる。ここでは、公知の切削加工及び研削加工の使用が可能である。なお、前記熱処理を形状加工後に行う場合には、その後の熱処理に伴う変形分を考慮して仕上げ代を残して加工を行い、熱処理後に仕上げの最終形状加工を行うことが効率的である。
最終ステップのS9では、上記製作された複合層5と、インダクタ6、非磁性・低熱伝導層8及び金型基材9とを結合する。好ましい結合形態としては、ボルト締結などにより脱着が可能な構造とし、インダクタ6の挿入及び取り外しや各種メンテナンスが容易となるようにするとよい。
以下、上記構成の動作を説明する。
本金型を目的の成形機、すなわち、射出成形機あるいはプレス機に装着し、インダクタ6を成形機の外部に設置した高周波電源に接続して、インダクタ6に所定の高周波電流を印加することにより、磁性金属層4が加熱される。ここで、インダクタ6を挟んで磁性金属層4の反対側には非磁性・低熱伝導層8が設置されているため、磁性金属層4での熱損失が抑制された効率的な発熱状態が実現できる。ただし、磁性金属層4内に発生するうず電流場は均一ではないために、発熱も不均一となるが、金型内で層厚さの分布が最適に構成された高熱伝導性金属層3により、磁性金属層4に生じた熱は拡散しながら急速に表面の高硬度金属層2に伝わり、最表面のキャビティー面10上では、温度分布が抑制された均一な加熱状態が短時間のうちに実現できる。
本金型を目的の成形機、すなわち、射出成形機あるいはプレス機に装着し、インダクタ6を成形機の外部に設置した高周波電源に接続して、インダクタ6に所定の高周波電流を印加することにより、磁性金属層4が加熱される。ここで、インダクタ6を挟んで磁性金属層4の反対側には非磁性・低熱伝導層8が設置されているため、磁性金属層4での熱損失が抑制された効率的な発熱状態が実現できる。ただし、磁性金属層4内に発生するうず電流場は均一ではないために、発熱も不均一となるが、金型内で層厚さの分布が最適に構成された高熱伝導性金属層3により、磁性金属層4に生じた熱は拡散しながら急速に表面の高硬度金属層2に伝わり、最表面のキャビティー面10上では、温度分布が抑制された均一な加熱状態が短時間のうちに実現できる。
また、冷却時においても、冷却流路11がキャビティー面10近傍の最適な位置に立体的に配置されているため、均一かつ急速に冷却が可能である。これにより、加熱、保持、冷却から脱型に至るまでの一連のサイクルタイムを短縮するとともに、これまで困難とされてきた高温域での樹脂成型が可能となるため、成形不良が少ない、薄肉化が可能などの高品位な樹脂成形が実現できる。
図4は、本発明の第2実施形態としての樹脂成形用金型30の断面図である。図1に示す第1実施形態としての樹脂成形用金型1と同一の部材には、同一の符号を付して説明を省略する。樹脂成形用金型30は、第1実施形態に示す樹脂成形用金型1と同様に電磁誘導加熱式の金型であり、構成は、樹脂成形用金型1と基本的に同じであるが、キャビティー面10の形状が自由曲面ではなく、金型基準面に対して水平及び垂直な面を主体とした比較的単純な形状である。ここで、高硬度金属層2と高熱伝導性金属層3との間に存在する異種金属界面14も平坦な単純形状とすることが可能である場合には、高硬度金属層2及び高熱伝導性金属層3ともにブロック状素材から機械加工により削り出すなどしたのちに、第1実施形態に示す樹脂成形用金型1と同様の加熱及び加圧条件で拡散接合してもよい。
また、本実施形態の場合、負荷方向と平行な界面13にテーパ角度を設けると、拡散接合時に積層方向に圧力を負荷した場合、該界面13にも圧力が負荷されるため、拡散接合が可能となる。ただし、高硬度金属層2と高熱伝導性金属層3との間の界面12及び13を合わせた異種金属界面全域で必要な圧力が負荷されるよう、適切な寸法精度で界面部の形状を加工しておくことが必要である。
高硬度金属層2又は高熱伝導性金属層3及び両層間の界面14の周辺では、第1実施形態に示す樹脂成形用金型1と同様に冷却流路11が作製される。本実施形態では、高硬度金属層2及び高熱伝導性金属層3をブロック材より削り出していることから、立体的かつ複雑な冷却流路配置はできないため、キャビティー面10の形状が比較的平坦で、かつ冷却時の温度分布発生が比較的問題となりにくい場合にのみ適用される。
さらに、本実施形態においては、高熱伝導性金属層3の下部にインダクタ6を収納するための溝7を機械加工などにより作製するとともに、該インダクタ収納溝7の内壁を含む高熱伝導性金属層3の下面全域に、めっきにより磁性金属層4を作製している。このように、インダクタ収納用溝7の内壁に磁性金属層4を形成することによって、インダクタ6近傍の全周にわたる広い面積を均等に加熱でき、発熱後の熱拡散も方向依存性が少ないため、効率的に均一加熱を実現できる長所がある。
本発明に係る樹脂成形用金型は、上記実施形態に限定されず、要旨を逸脱しない範囲で変形することが可能である。また本発明に係る樹脂成形用金型の製造方法も上記製造方法に限定されるものではない。
例えば、上記実施形態では、金属板積層体25を拡散接合する際、金属板積層体25の外形部の変形拘束手段として、金属よりも熱膨張係数が小さい外枠材17とくさび形板材18を用いたが、HIPなどの手段を用いて、積層方向及びその直角方向のいずれにも圧力をかけるなど、別の手段で外力をかけてもよい。
さらに、第1実施形態の複合層5を製作する場合、高硬度金属層2又は高熱伝導性金属層3を別々に製作し、その後これらを拡散接合し製作してもよい。さらには高硬度金属層2又は高熱伝導性金属層3を別々に製作した後、高硬度金属層2と高熱伝導性金属層3と接合面(境界面)14を、段差をなくす形状加工を行った後に、これらを拡散接合し製作してもよい。
以下、製作手順の一例を示す。第1実施形態の樹脂成形用金型1と同様に、図2に示すステップS1からステップS5の手順により加工した高硬度金属板22を所定の順序で積層し、高硬度金属板22の積層体を得る。この積層体を拡散接合するに際し、積層体の外周に、外周と僅かな隙間を有した状態で外周拘束用の金属板を配置する。これらを加熱炉内に設置し、加熱炉内を真空とし、加熱しながらプレス装置を用いて積層体にのみ積層方向に荷重を加えて積層体を拡散接合する。この拡散接合方法では、積層体の外周に金属板が配置されているので、加圧方向と直交する方向への変形量が拘束され、接合強度の高い接合体が得られる。
高熱伝導性金属板23の接合体も同様の方法により製作する。その後、高硬度金属板22の接合体と高熱伝導性金属板23の接合体を積層し、接合体の製作と同様に外周に金属板、又は金属ブロックを配置し、接合体と同様の方法で高硬度金属板22の接合体と高熱伝導性金属板23の接合体を拡散接合する。
強度、熱膨張係数、クリープ特性等が大きく異なる2種類の金属材料の場合、拡散接合条件、例えば温度、加える荷重も異なる。金属材料を拡散接合する場合、高い接合強度を得るにはその金属材料特性に合った条件で拡散接合することが好ましい。上記方法は、高硬度金属板接合体と高熱伝導性金属板接合体とを別々に製作するので、各々高い接合強度が得られる。高硬度金属板22の接合体と高熱伝導性金属板23の接合体とを拡散接合するときは、接合面は一つであるので、拡散接合も容易である。
高硬度金属層2及び高熱伝導性金属層3の形状によっては、高硬度金属板接合体と高熱伝導性金属板接合体との段差をなくした後に拡散接合した方が、接合が容易となり、かつ接合強度が高まる場合もある。このような場合には、高硬度金属板接合体及び高熱伝導性金属板接合体を製作する際、形状加工代を考慮した接合体とし、各々の接合体の接合面(境界面14)を、段差をなくす形状加工を行った後に拡散接合する。
また上記実施形態では、樹脂成形用金型1、30を拡散接合法を用いて製造するが、高硬度金属層2と高熱伝導性金属層3、さらには高熱伝導性金属層3と磁性金属層4とを、ろう付けにより接合し樹脂成形用金型を製造することもできる。
上記実施形態に示す樹脂成形用金型1、30は、キャビティー面10上の全領域を均一温度にすることを目的としたものであるが、成形によっては、キャビティー面10の特定の領域のみについて意図的に温度を変化させたい状況も存在する。例えば、射出成形においては、樹脂が流れにくい薄肉部分周辺のみを高温にすることにより、樹脂粘度を下げて流動性を改善したり、繊維強化複合材料のプレス成形では、賦形が難しい微小な凹凸部分を高温にし、材料を柔らかくして賦形性を向上する一方で、しわが生じやすいブランク素材外周部付近の温度を逆に下げることで材料を硬くして、適度な張力を発生させてしわを抑制する場合などがある。このように、キャビティー面10における特定の部位のみ他の領域とは異なる温度に制御したい場合には、目的とする温度が異なる個々の領域において、それぞれが所定の温度となるように、高熱伝導性金属層3と高硬度金属層2の厚さを制御したり、個々の領域で個別のインダクタと高周波電源を用いるなどしてもよい。
また、上記実施形態に示す樹脂成形用金型1では、冷却流路11がキャビティー面10近傍の最適な位置に立体的に配置されているため、均一かつ急速に冷却が可能であり、加熱、保持、冷却から脱型に至るまでの一連のサイクルタイムの短縮には非常に好ましい。一方で、キャビティー面10近傍に冷却流路11を設ける場合、適切に配置しないとキャビティー面10が不均一に冷却される。キャビティー面10を均一に冷却することを特に重視するときや、キャビティー面10を均一に冷却するための冷却流路11の配置が複雑となり、製造コストが増加するようなときは、冷却流路11を高熱伝導性金属層3に配置すればよい。
また上記実施形態では、発熱体である磁性金属層4上に熱伝導度の異なる2つの層を積層しているが、場合によっては、熱伝導度の異なる層を3層積層してもよい。例えば、キャビティー面10が設けられる高硬度金属層2と高熱伝導性金属層3との冶金接合が難しい場合、高硬度金属層2と高熱伝導性金属層3との間に他の金属層を介在させることで、3層間の接合強度を高めることができる。
また発熱体である磁性金属層4上に熱伝導度の異なる2つの層を積層する場合、キャビティー面10の形状に応じて領域で積層する金属層の材質を変えてもよい。例えば中央部には、高硬度金属層2と高熱伝導性金属層3とを積層し、周辺部は、高硬度金属層2の代わりに異なる熱伝導度の高硬度金属層と高熱伝導性金属層3とを積層してもよい。このように熱伝導度の異なる金属層を用いることで、金型の設計自由度が高まり、よりサイクルタイムを短縮することもできる。
また上記実施形態では、磁性金属層4上に積層する積層材に金属材料を使用しているが、強度、熱伝導度などの物性値、接合性等を満足すれば金属材料以外の材料、さらには金属材料と他の材料とからなる複合材料を使用してもよい。
また上記実施形態では樹脂成形用金型として、電磁誘導加熱式の金型を示したが、本発明に係る樹脂成形用金型は、電磁誘導加熱式の金型に限定されるものではない。例えば発熱体としてパイプヒータ、電熱ヒータを用いる場合、加熱流路を配置し、加熱流路内に加熱媒体を流通させ加熱するような場合も、上記実施形態と同様に、パイプヒータ、電熱ヒータ等の上に熱伝導度の異なる層を所定の厚さ積層することで、急速に、かつ温度分布が生じないようにキャビティー面10を加熱可能な、またキャビティー面10上の任意の領域を任意温度に制御することも可能な樹脂成形用金型を得ることができる。
発熱体にパイプヒータ、電熱ヒータ等を使用する場合、該発熱体は、高熱伝導性金属層3内に埋設され、高熱伝導性金属層3の上部に高硬度金属層2が積層されることが一般的である。また、パイプヒータ、電熱ヒータ等を高熱伝導性金属層3の下に積層された金属層内に埋設し、高熱伝導性金属層3の上部に熱伝導度の小さい材料で形成された層を積層してもよい。このような樹脂成形用金型の場合、電磁誘導加熱式の金型と同様に、キャビティー面10を急速かつ均一に冷却するときは、冷却流路11をキャビティー面10の近傍の高硬度金属層2又は高硬度金属層2と高熱伝導性金属層3との境界部に立体的に配置し、キャビティー面10を均一に冷却することを特に重視するときや、キャビティー面10を均一に冷却するための冷却流路11の配置が複雑となり、製造コストが増加するようなときは、冷却流路11を高熱伝導性金属層3に配置すればよい。
発熱体に加熱蒸気、熱媒、温水などの加熱媒体を使用する場合、加熱媒体を流通させるための加熱流路を穿設した金属層を準備し、該金属層の上に高熱伝導性金属層3及び高硬度金属層2を積層し、あるいは高熱伝導性金属層3に加熱媒体を流通させるための加熱流路を穿設し、該高熱伝導性金属層3の上に高硬度金属層2を積層し樹脂成形用金型が形成される場合が多い。このような樹脂成形用金型の場合、電磁誘導加熱式の金型と同様に、キャビティー面10を急速かつ均一に冷却するときは、冷却流路11をキャビティー面10の近傍の高硬度金属層2又は高硬度金属層2と高熱伝導性金属層3との境界部に立体的に配置し、キャビティー面10を均一に冷却することを特に重視するときや、キャビティー面10を均一に冷却するための冷却流路11の配置が複雑となり、製造コストが増加するようなときは、冷却流路11を高熱伝導性金属層3又は加熱媒体を流通させるための加熱流路を穿設した金属層と高熱伝導性金属層3との境界部に配置すればよい。さらには、加熱流路を冷却媒体の流通させるための冷却流路として使用してもよい。
実施例1:モデル金型50を用いた誘導加熱実験
モデル金型を製作し、下記要領で誘導加熱実験を行った。図5にモデル金型50の断面図を示した。モデル金型50は、図5に示すように正面視において上面が階段状となっており、奥行き方向は、各段とも底面に平行である。モデル金型の概略寸法は、底面部の長さが150mm、各段の高さが100mm、80mm、65mm、奥行きが100mmである。
モデル金型を製作し、下記要領で誘導加熱実験を行った。図5にモデル金型50の断面図を示した。モデル金型50は、図5に示すように正面視において上面が階段状となっており、奥行き方向は、各段とも底面に平行である。モデル金型の概略寸法は、底面部の長さが150mm、各段の高さが100mm、80mm、65mm、奥行きが100mmである。
モデル金型50は、高硬度金属層2がSKD61、高熱伝導性金属層3が無酸素銅、磁性金属層4がSKD61であり、これらが拡散接合法により接合された複合層5からなる。高硬度金属層2及び高熱伝導性金属層3の厚さは、磁性金属層4に設置されたインダクタ6を介してモデル金型50における4つのインダクタ収納溝7周辺を均等に加熱したとき、上段、中段、下段の上面中央部温度が同一温度となるように、コンピュータによる有限要素法シミュレーション(CAE)手法を用いて熱伝導解析を行い決定した。高硬度金属層2の厚さは、下段>中段>上段であり、高熱伝導性金属層3の厚さは、下段<中段<上段である。磁性金属層4の厚さは同じである。
インダクタ6は、磁性金属層4に等間隔で穿設された4つのインダクタ収納溝7に、インダクタ(銅パイプ)6の周囲を絶縁材(ガラス繊維布)51で覆った状態で挿入した。また、今回の加熱実験では使用していないが、モデル金型50の中央部には冷却流路11を穿設し、モデル金型50を冷却できるようにした。
以下の要領で加熱実験を行った。加熱に先立ち、下段、中段、上段の上面の中央部(図5のA点、B点、C点)及びインダクタ収納溝7近傍の磁性金属層4表面(図5のD点)に熱電対を設置した。銅パイプ6内に水を流しながら、高周波電源装置(定格容量25kW)を介して、D点が300℃となるまで高速に誘導加熱を行った後、当該部が300℃で一定となるように加熱を制御し、B点が220℃となった時点で加熱実験を終了した。
加熱実験時のA点、B点、C点の温度経時変化を図6に示した。約4分でB点が220℃に達した。加熱途中を含めA点、B点、C点の温度差は非常に小さく、加熱終了時点でA点は216.4℃、B点は220.0℃、C点は220.5℃であり、最大温度差は、4.1℃であった。本実験に使用したモデル金型50は、中央部に冷却流路11を設けているためにA点の温度が少し低くなる傾向があり、隣接段のB点と比較すると加熱終了時点で2点の温度差は3.6℃であったが、冷却流路11を設けない場合には、さらに温度差が小さくなる(0.5℃程度)ことを熱解析シミュレーションで確認済みである。
実施例2:モデル金型60を用いた蒸気加熱及び冷却実験
図5とほぼ同じ大きさ、形状のモデル金型を用いて蒸気加熱及び冷却実験を行った。図7にモデル金型60の断面図を示した。モデル金型60の構成は、基本的にモデル金型50と同一であるので詳細な説明は省略する。高硬度金属層2(材質:SKD61)及び高熱伝導性金属層3(材質:無酸素銅)の厚さは、磁性金属層4(材質:SKD61)に設けられた加熱流路61に蒸気を供給したとき、下段、中段、上段の上面中央部温度が同一温度となるように、コンピュータによる有限要素法シミュレーション(CAE)手法を用いて熱伝導解析を行い決定した。磁性金属層4に設けられた加熱流路61は、蒸気を供給する加熱路であると共に冷却水を供給する冷却路でもある、加熱冷却流路61である。
図5とほぼ同じ大きさ、形状のモデル金型を用いて蒸気加熱及び冷却実験を行った。図7にモデル金型60の断面図を示した。モデル金型60の構成は、基本的にモデル金型50と同一であるので詳細な説明は省略する。高硬度金属層2(材質:SKD61)及び高熱伝導性金属層3(材質:無酸素銅)の厚さは、磁性金属層4(材質:SKD61)に設けられた加熱流路61に蒸気を供給したとき、下段、中段、上段の上面中央部温度が同一温度となるように、コンピュータによる有限要素法シミュレーション(CAE)手法を用いて熱伝導解析を行い決定した。磁性金属層4に設けられた加熱流路61は、蒸気を供給する加熱路であると共に冷却水を供給する冷却路でもある、加熱冷却流路61である。
以下の要領で加熱及び冷却実験を行った。加熱に先立ち、下段、中段、上段の上面の中央部(図7のA点、B点、C点)に熱電対を設置した。加熱冷却流路61に155℃の蒸気を5分間供給しモデル金型60を加熱した後、加熱冷却流路61に15℃の冷却水を10分間供給し、モデル金型60を冷却した。
比較例1:モデル金型70を用いた蒸気加熱及び冷却実験
実施例2で使用したモデル金型60と全く同一の大きさ、形状からなる、高硬度金属層2(材質:SKD61)のみからなるモデル金型70を用いて蒸気加熱及び冷却実験を行った。図8にモデル金型70の断面図を示した。加熱及び冷却要領は、実施例2と同一である。
実施例2で使用したモデル金型60と全く同一の大きさ、形状からなる、高硬度金属層2(材質:SKD61)のみからなるモデル金型70を用いて蒸気加熱及び冷却実験を行った。図8にモデル金型70の断面図を示した。加熱及び冷却要領は、実施例2と同一である。
実施例2及び比較例1のA点、B点、C点の温度経時変化を図9に示した。また表1に加熱終了時点のA点、B点、C点の温度を、表2に冷却終了時点のA点、B点、C点の温度を示した。
図9に示すように金属複合層からなる実施例2のモデル金型60は、鋼単体からなる比較例1のモデル金型70に比較して、加熱・冷却の応答性がよい。また、金属複合層からなる実施例2のモデル金型60の場合、図9に示すように加熱・冷却の全過程において、A点、B点、C点の温度差が極めて小さい。加熱終了時点及び冷却終了時点の温度をモデル金型60とモデル金型70とで比較すると、モデル金型60の加熱終了時点の最大温度差は、1.1℃、冷却終了時点の最大温度差は、0.5℃であったのに対して、モデル金型70の加熱終了時点の最大温度差は、44.7℃、冷却終了時点の最大温度差は、20.1℃であった。
実施例3:モデル金型60を用いた蒸気加熱及び冷却実験
実施例2で使用したモデル金型60を使用し、次の要領で蒸気加熱及び冷却実験を行った。加熱冷却流路61に155℃の蒸気を供給し、B点が120℃に達した時点で蒸気の供給を停止し、直ちに加熱冷却流路61に15℃の冷却水を供給し、B点が30℃に達した時点で冷却実験を終了した。
実施例2で使用したモデル金型60を使用し、次の要領で蒸気加熱及び冷却実験を行った。加熱冷却流路61に155℃の蒸気を供給し、B点が120℃に達した時点で蒸気の供給を停止し、直ちに加熱冷却流路61に15℃の冷却水を供給し、B点が30℃に達した時点で冷却実験を終了した。
比較例2:モデル金型70を用いた蒸気加熱及び冷却実験
比較例1で使用したモデル金型70を使用し、実施例3と同じ要領で蒸気加熱及び冷却実験を行った。
比較例1で使用したモデル金型70を使用し、実施例3と同じ要領で蒸気加熱及び冷却実験を行った。
実施例3及び比較例2のA点、B点、C点の温度経時変化を図10に示した。また表3に120℃に達するに要した加熱時間及び加熱・冷却全過程に要した時間を示した。
図10及び表3に示すように金属複合層からなる実施例3のモデル金型60は、鋼単体からなる比較例2のモデル金型70に比較して、加熱時間及び冷却時間が大幅に短縮された。また金属複合層からなる実施例3のモデル金型60の場合、図10に示すように加熱・冷却の全過程において、A点、B点、C点の温度差が極めて小さかった。
1:樹脂成形用金型
2:高硬度金属層
3:高熱伝導性金属層
4:磁性金属層
5:複合層
6:インダクタ
7:インダクタ収納溝(溝)
8:非磁性・低熱伝導層
9:金型基材
10:キャビティー面
11:冷却流路
12:異種金属の積層面(界面)
13:積層方向に平行な異種金属界面
14:異種金属材料の境界面(接合面)
16:負荷方向
17:外枠材
18:くさび形板材対
19:金型外形部
22:金属板(高硬度金属板)
23:金属板(高熱伝導性金属板)
24:金属板(磁性金属板)
25:金属板積層体
27:溝
30:樹脂成形用金型
50:モデル金型
51:絶縁材
60:モデル金型
61:加熱冷却流路
2:高硬度金属層
3:高熱伝導性金属層
4:磁性金属層
5:複合層
6:インダクタ
7:インダクタ収納溝(溝)
8:非磁性・低熱伝導層
9:金型基材
10:キャビティー面
11:冷却流路
12:異種金属の積層面(界面)
13:積層方向に平行な異種金属界面
14:異種金属材料の境界面(接合面)
16:負荷方向
17:外枠材
18:くさび形板材対
19:金型外形部
22:金属板(高硬度金属板)
23:金属板(高熱伝導性金属板)
24:金属板(磁性金属板)
25:金属板積層体
27:溝
30:樹脂成形用金型
50:モデル金型
51:絶縁材
60:モデル金型
61:加熱冷却流路
Claims (17)
- 発熱体上に少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層され、上面にキャビティー面が形成された複合層を備え、
前記キャビティー面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする樹脂成形用金型。 - 前記発熱体、前記発熱体上に積層された前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を含む複数の金属層、前記複数金属層中における各金属層間の境界部、又は前記発熱体と前記複数金属層との境界部のうち、少なくとも一つに冷却媒体の流路が設けられていることを特徴とする請求項1に記載の樹脂成形用金型。
- 前記冷却媒体の流路が、キャビティー面を急速かつ均一に冷却可能に前記キャビティー面の近傍に立体的に配置されていることを特徴とする請求項2に記載の樹脂成形用金型。
- 前記高熱伝導性金属層が、純銅、銅合金、純アルミニウム、アルミニウム合金から選択される材種により形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の樹脂成形用金型。
- 電磁誘導加熱式の樹脂成形用金型であり、
前記発熱体が磁性金属層であり、前記磁性金属層中又は前記磁性金属層の反複合層側にインダクタを備えることを特徴とする請求項1から請求項4のいずれか一項に記載の樹脂成形用金型。 - 前記熱伝導度の小さい材料で形成された層が高硬度金属層からなり、該高硬度金属層の上面に前記キャビティー面が形成され、該高硬度金属層、前記高熱伝導性金属層、前記磁性金属層の順にそれぞれ冶金接合されていることを特徴とする請求項5に記載の樹脂成形用金型。
- 前記インダクタが同一平面上に設けられていることを特徴とする請求項5又は請求項6に記載の樹脂成形用金型。
- さらに非磁性材料及び/又は低熱伝導性材料で形成された層を有し、
前記インダクタは、前記磁性金属層と該非磁性材料及び/又は低熱伝導性材料で形成された層とで挟まれ、かつこれらで囲まれていることを特徴とする請求項5から請求項7のいずれか一項に記載の樹脂成形用金型。 - 前記磁性金属層が、純鉄、鉄鋼、純ニッケル、ニッケル合金から選択される材種により形成されていることを特徴とする請求項5から請求項8のいずれか一項に記載の樹脂成形用金型。
- 前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が、所定の形状に加工された複数枚の板を積層し、該積層体を拡散接合することにより形成されていることを特徴とする請求項1から請求項9のいずれか一項に記載の樹脂成形用金型。
- 少なくとも前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が電気めっき法により形成されていることを特徴とする請求項1から請求項9のいずれか一項に記載の樹脂成形用金型。
- 前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が電気めっき法により形成され、
前記磁性金属層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記磁性金属層が電気めっき法により形成されていることを特徴とする請求項5から請求項9のいずれか一項に記載の樹脂成形用金型。 - 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、
所定の組み合わせと順序で積層された熱伝導度の小さい材料の板と高熱伝導性金属板とからなる積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする請求項1から請求項9のいずれか一項に記載の樹脂成形用金型の製造方法。 - 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、
所定の組み合わせと順序で積層された熱伝導度の小さい材料の板と高熱伝導性金属板とからなる積層体の外側を囲むように、前記熱伝導度の小さい材料の板及び前記高熱伝導性金属板よりも線膨張係数の小さい材料で製作された外枠材を設置し、前記積層体と前記外枠材との間にくさび形状をした少なくとも一対の板材を挟んで加熱することにより、加熱時における前記外枠材、前記熱伝導度の小さい材料の板、前記高熱伝導性金属板及び前記くさび形板材のそれぞれの熱膨張差を利用して外力を負荷することなく積層方向に対して平行な異材界面の拡散接合を行うことを特徴とする請求項1から請求項9のいずれか一項に記載の樹脂成形用金型の製造方法。 - 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、
前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層をそれぞれ、所定の厚さと輪郭形状に加工された複数枚の平板を積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合し製作し、拡散接合した前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、又は拡散接合した前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との接合面を形状加工した後に積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合することを特徴とする請求項1から請求項9のいずれか一項に記載の樹脂成形用金型の製造方法。 - 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、積層方向に圧力を加えて拡散接合することにより製作する場合において、
前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、該積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする請求項1から請求項9のいずれか一項に記載の樹脂成形用金型の製造方法。 - 請求項1から請求項12のいずれか一項に記載の樹脂成形用金型を利用して、樹脂成形品を製造する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507612A JP5967834B2 (ja) | 2011-03-31 | 2012-03-27 | 樹脂成形用金型、該樹脂成形用金型の製造方法及び樹脂成形品の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011077762 | 2011-03-31 | ||
JP2011-077762 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133406A1 true WO2012133406A1 (ja) | 2012-10-04 |
Family
ID=46931122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057930 WO2012133406A1 (ja) | 2011-03-31 | 2012-03-27 | 樹脂成形用金型、該樹脂成形用金型の製造方法及び樹脂成形品の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5967834B2 (ja) |
WO (1) | WO2012133406A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015014371A1 (en) * | 2013-08-02 | 2015-02-05 | Vestas Wind Systems A/S | Mould for a wind turbine component |
CN104870154A (zh) * | 2012-12-27 | 2015-08-26 | 泰克瑞典公司 | 用于加热模具或工具的装置和方法 |
JP2016153237A (ja) * | 2011-06-28 | 2016-08-25 | テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB | 成形型または金型を加熱する装置および方法 |
JP2017519639A (ja) * | 2014-05-27 | 2017-07-20 | カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツングKS Kolbenschmidt GmbH | 重力金型鋳造のレーザ溶融(sls)の際の積層式の製造法 |
WO2018023168A1 (en) * | 2016-08-04 | 2018-02-08 | Modi Consulting And Investments Pty Ltd | A multi material laminated tool having improved thermal coupling |
JP2018089823A (ja) * | 2016-12-01 | 2018-06-14 | 東レ株式会社 | 微細パターン転写装置及び微細パターン転写方法 |
WO2018177460A1 (de) * | 2017-03-27 | 2018-10-04 | Hotset Gmbh | Heizeinsatz für ein urformwerkzeug sowie urformwerkzeug |
CN108656417A (zh) * | 2018-05-03 | 2018-10-16 | 国电联合动力技术有限公司 | 一种风电叶片表面涂层的涂覆方法 |
WO2019150769A1 (ja) * | 2018-01-31 | 2019-08-08 | 三菱重工業株式会社 | 加圧ヘッド、複合材料成形装置及び複合材料成形方法 |
CN112659450A (zh) * | 2019-10-15 | 2021-04-16 | 阿迪达斯股份公司 | 在用于制造运动服装的缓冲元件的模具中使用的模具插件 |
WO2022049274A1 (de) * | 2020-09-07 | 2022-03-10 | Formenbau Althaus Gmbh | Temperiereinsatz für ein maschinen- oder werkzeugteil |
JP2023052317A (ja) * | 2017-10-24 | 2023-04-11 | ザ・ボーイング・カンパニー | 熱可塑性部分を有する部品のための誘導加熱成形 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61228914A (ja) * | 1985-04-04 | 1986-10-13 | Sumitomo Heavy Ind Ltd | 成形用金型 |
JPH07284189A (ja) * | 1994-04-05 | 1995-10-27 | Matsushita Electric Ind Co Ltd | スピーカ用振動板の成形金型 |
JPH11129305A (ja) * | 1997-03-31 | 1999-05-18 | Kuraray Co Ltd | 樹脂成形品の成形方法およびその方法に用いる金型 |
JP2008168456A (ja) * | 2007-01-09 | 2008-07-24 | Sumitomo Heavy Ind Ltd | 金型部材及び微細パターンの成形方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8304399A (nl) * | 1983-12-22 | 1985-07-16 | Philips Nv | Afwisselend verwarmbaar en koelbaar persblok. |
JPS62282798A (ja) * | 1986-05-30 | 1987-12-08 | Ngk Insulators Ltd | ろう付用合金 |
JPH066304B2 (ja) * | 1986-10-14 | 1994-01-26 | 三菱重工業株式会社 | 射出成形装置 |
JP4014232B2 (ja) * | 1994-08-03 | 2007-11-28 | 旭化成ケミカルズ株式会社 | 樹脂成形用電磁誘導加熱式金型 |
JPH10249862A (ja) * | 1997-03-10 | 1998-09-22 | Araco Corp | 加熱機構を備えた成形装置 |
FR2887739B1 (fr) * | 2005-06-22 | 2007-08-31 | Roctool Soc Par Actions Simpli | Dispositif de chauffage par induction et procede de fabrication de pieces a l'aide d'un tel dispositif |
-
2012
- 2012-03-27 JP JP2013507612A patent/JP5967834B2/ja active Active
- 2012-03-27 WO PCT/JP2012/057930 patent/WO2012133406A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61228914A (ja) * | 1985-04-04 | 1986-10-13 | Sumitomo Heavy Ind Ltd | 成形用金型 |
JPH07284189A (ja) * | 1994-04-05 | 1995-10-27 | Matsushita Electric Ind Co Ltd | スピーカ用振動板の成形金型 |
JPH11129305A (ja) * | 1997-03-31 | 1999-05-18 | Kuraray Co Ltd | 樹脂成形品の成形方法およびその方法に用いる金型 |
JP2008168456A (ja) * | 2007-01-09 | 2008-07-24 | Sumitomo Heavy Ind Ltd | 金型部材及び微細パターンの成形方法 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016153237A (ja) * | 2011-06-28 | 2016-08-25 | テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB | 成形型または金型を加熱する装置および方法 |
US9962861B2 (en) | 2011-06-28 | 2018-05-08 | Tctech Sweden Ab | Device and method for heating a mould or tool |
CN104870154A (zh) * | 2012-12-27 | 2015-08-26 | 泰克瑞典公司 | 用于加热模具或工具的装置和方法 |
CN104870154B (zh) * | 2012-12-27 | 2017-03-15 | 泰克瑞典公司 | 用于加热模具或工具的装置和方法 |
US10035286B2 (en) | 2012-12-27 | 2018-07-31 | Tctech Sweden Ab | Device and method for heating a mould or tool |
US10245761B2 (en) | 2013-08-02 | 2019-04-02 | Vestas Wind Systems A/S | Mould for a wind turbine component |
CN105592996A (zh) * | 2013-08-02 | 2016-05-18 | 维斯塔斯风力系统有限公司 | 用于风轮机部件的模具 |
WO2015014371A1 (en) * | 2013-08-02 | 2015-02-05 | Vestas Wind Systems A/S | Mould for a wind turbine component |
JP2017519639A (ja) * | 2014-05-27 | 2017-07-20 | カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツングKS Kolbenschmidt GmbH | 重力金型鋳造のレーザ溶融(sls)の際の積層式の製造法 |
WO2018023168A1 (en) * | 2016-08-04 | 2018-02-08 | Modi Consulting And Investments Pty Ltd | A multi material laminated tool having improved thermal coupling |
JP2018089823A (ja) * | 2016-12-01 | 2018-06-14 | 東レ株式会社 | 微細パターン転写装置及び微細パターン転写方法 |
WO2018177460A1 (de) * | 2017-03-27 | 2018-10-04 | Hotset Gmbh | Heizeinsatz für ein urformwerkzeug sowie urformwerkzeug |
JP2023052317A (ja) * | 2017-10-24 | 2023-04-11 | ザ・ボーイング・カンパニー | 熱可塑性部分を有する部品のための誘導加熱成形 |
JP7403011B2 (ja) | 2017-10-24 | 2023-12-21 | ザ・ボーイング・カンパニー | 熱可塑性部分を有する部品のための誘導加熱成形 |
WO2019150769A1 (ja) * | 2018-01-31 | 2019-08-08 | 三菱重工業株式会社 | 加圧ヘッド、複合材料成形装置及び複合材料成形方法 |
JP2019133853A (ja) * | 2018-01-31 | 2019-08-08 | 三菱重工業株式会社 | 加圧ヘッド、複合材料成形装置及び複合材料成形方法 |
JP7049613B2 (ja) | 2018-01-31 | 2022-04-07 | 三菱重工業株式会社 | 加圧ヘッド、複合材料成形装置及び複合材料成形方法 |
CN108656417A (zh) * | 2018-05-03 | 2018-10-16 | 国电联合动力技术有限公司 | 一种风电叶片表面涂层的涂覆方法 |
CN108656417B (zh) * | 2018-05-03 | 2020-07-10 | 国电联合动力技术有限公司 | 一种风电叶片表面涂层的涂覆方法 |
CN112659450A (zh) * | 2019-10-15 | 2021-04-16 | 阿迪达斯股份公司 | 在用于制造运动服装的缓冲元件的模具中使用的模具插件 |
US11904513B2 (en) | 2019-10-15 | 2024-02-20 | Adidas Ag | Mold insert for use in a mold for the manufacture of a cushioning element for sports apparel |
WO2022049274A1 (de) * | 2020-09-07 | 2022-03-10 | Formenbau Althaus Gmbh | Temperiereinsatz für ein maschinen- oder werkzeugteil |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012133406A1 (ja) | 2014-07-28 |
JP5967834B2 (ja) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967834B2 (ja) | 樹脂成形用金型、該樹脂成形用金型の製造方法及び樹脂成形品の製造方法 | |
JP6770505B2 (ja) | 金型の成形面を加熱するための装置 | |
US10155350B2 (en) | Mold insert for improved heat transfer | |
US5683607A (en) | β-annealing of titanium alloys | |
JP2006082096A (ja) | 射出成形用積層金型、射出成形方法及びダイカスト用積層金型 | |
EP2547501B1 (en) | Method and apparatus for curing a composite part layup | |
TWI527675B (zh) | 使用感應熱來預熱用於變換材料的裝置,其預熱方法以及模塑方法 | |
JP5905959B2 (ja) | 成形型または金型を加熱する装置および方法 | |
US6087640A (en) | Forming parts with complex curvature | |
US8375758B1 (en) | Induction forming of metal components with slotted susceptors | |
JP2014533608A (ja) | 薄鋼板製ワーク、特に亜鉛めっきされた薄鋼板製ワーク、を熱間成形およびプレス硬化する方法および成形工具 | |
EP3406412B1 (en) | Fiber-reinforced composite member molding apparatus | |
JP2013119119A (ja) | ホットスタンピング成形用金型及びその製作方法 | |
CN103328137A (zh) | 带调温通道模具部件的制造方法及该方法制造的模具部件 | |
EP3479981B1 (en) | Device and method for heating a mould or tool | |
US5914064A (en) | Combined cycle for forming and annealing | |
WO2012114933A1 (ja) | プリフォームの製造装置および製造方法ならびにその方法により製造されたプリフォーム | |
CN105312866A (zh) | 一种随形冷却型模具的制造方法 | |
JP2014069224A (ja) | 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法 | |
CN103586573A (zh) | 一种大型真空热压炉 | |
JP4578894B2 (ja) | 積層金型の製造方法 | |
WO2018023168A1 (en) | A multi material laminated tool having improved thermal coupling | |
JP2010194719A (ja) | スプルーブッシュ及びスプルーブッシュの製造方法 | |
JP5473711B2 (ja) | 樹脂成形用積層金型およびその製造法 | |
KR101576645B1 (ko) | 핫스템핑 금형의 제작방법 및 이 제작방법으로 제작된 핫스템핑 금형 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12765621 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013507612 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12765621 Country of ref document: EP Kind code of ref document: A1 |