JP2014069224A - 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法 - Google Patents

鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法 Download PDF

Info

Publication number
JP2014069224A
JP2014069224A JP2012218589A JP2012218589A JP2014069224A JP 2014069224 A JP2014069224 A JP 2014069224A JP 2012218589 A JP2012218589 A JP 2012218589A JP 2012218589 A JP2012218589 A JP 2012218589A JP 2014069224 A JP2014069224 A JP 2014069224A
Authority
JP
Japan
Prior art keywords
thermal conductivity
metal layer
casting apparatus
high thermal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012218589A
Other languages
English (en)
Inventor
Akira Matsuba
朗 松葉
Akira Terayama
朗 寺山
Toshio Fujii
敏男 藤井
Nobuyuki Fuyama
伸行 府山
Shinya Ikeda
慎哉 池田
Hironori Nishida
裕紀 西田
Takuya Yamazaki
拓哉 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
SEKISOU KANAGATA CO Ltd
Original Assignee
Hiroshima Prefecture
SEKISOU KANAGATA CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture, SEKISOU KANAGATA CO Ltd filed Critical Hiroshima Prefecture
Priority to JP2012218589A priority Critical patent/JP2014069224A/ja
Publication of JP2014069224A publication Critical patent/JP2014069224A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

【課題】急速に、かつ温度分布が生じないようにキャビティ面を含む溶湯接触面を冷却あるいは加熱可能な、またキャビティ面を含む溶湯接触面上の任意の領域を所定温度に制御することも可能な鋳造装置を提供する。
【解決手段】固定型7と可動型9とを備えるダイカスト金型5であって、前記可動型9は、高熱伝導性金属層19及び前記高熱伝導性金属層19に比較して熱伝導度の小さい高硬度金属層18が積層された複合層20を備え、前記可動型9のキャビティ面15上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層19及び/又は高硬度金属層18の厚さが場所に応じて異なる厚さに設定されている。
【選択図】図4

Description

本発明は、鋳造工程で使用する鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法に関する。本発明において、鋳造装置には鋳造金型単体も含まれる。
ダイカスト金型などの加圧鋳造金型において、鋼製部材に直接冷却水流路を作ると冷却性能に優れる一方で、水素脆化によって割れが生じ易くなる。キャビティ面にまで割れが達すると冷却水が金属溶湯(以下、溶湯と記す)と接触して水蒸気爆発を起こす危険性があるなど安全上問題がある。そこで鋼製部材の背面(キャビティの反対側)に耐食性の良い銅などで製作されたブッシュを挿入し、該ブッシュに冷却水流路を設けることで金型の長寿命化と安全性を図るとともに、銅の良好な熱伝導特性により冷却性能を向上させた金型が開発されている(例えば特許文献1、特許文献2参照)。
ダイカスト金型の冷却に関しては、半凝固ダイカスト装置において、キャビティに供給する半凝固金属スラリーを射出スリーブで得るべく、射出スリーブに冷却回路を設け、供給される溶湯をここで冷却させる方法がある(例えば特許文献3参照)。
特開2009−195914号公報 特開2008−284555号公報 特開2011−147973号公報
これまでに提案されているダイカスト金型等の冷却方法は、特許文献1及び特許文献2に代表されるように金型の中でも特に高温となりやすい部分にのみ冷却水を供給しスポット的に冷却させるものが多く、冷却効果が特定の場所に限定され易く、キャビティを含む溶湯接触面上において温度が不均一になりやすいという問題があった。金型に温度の不均一が生じると金型自体の熱変形によりバリが生じやすく、また成形後の製品において熱ひずみや組織の不均一などの不具合が発生する。そこで寸法や表面性などに精度が要求される精密ダイカストでは、加熱・冷却媒体を使用した金型の温度調節が行われている。
さらにキャビティが凹凸を含む複雑な曲面の場合には温度調節が難しく、キャビティ面上を適切な温度に均一に保持するのが難しい。特に、冷却流路を形成しにくい細長く突出したキャビティ面形状の場合には、当該部分の冷却が難しいために焼き付きが生じやすく、金型の消耗が激しくなり、寿命が低下しやすい。
また目的の金属を完全に溶融させるのではなく、固相と液相が共存した状態で加圧鋳造を行うことにより鋳造欠陥を抑制する半凝固あるいは半溶融鋳造法においては、金属をキャビティ内に射出する前の射出スリーブ内において所定の液相率を生成・維持するために射出スリーブの適切な温度管理が求められる。例えば、特許文献3では温度の異なる2種類の媒体を用いて入口側では溶湯を速やかに冷却して半凝固状態にし、出口側では高温媒体による加熱で過凝固を防止している。しかし異なる温度の2つの媒体を使用するため、射出スリーブの冷却流路構造が複雑となり、また温調関連装置も2系統必要となりコスト増が避けられない。このように複雑な媒体流路設計や複数の温調装置などを必要としない低コストな金型温度調節機能が必要とされている。
以上の問題は、ダイカスト金型などの加圧鋳造金型のみならず重力鋳造を行う鋳造金型等においても散見される。
本発明の目的は、急速に、かつ温度分布が生じないようにキャビティ面を含む溶湯接触面を冷却あるいは加熱可能な、またキャビティ面を含む溶湯接触面上の任意の領域を所定温度に制御することも可能な鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法を提供することである。
本発明は、鋳造金型からなる鋳造装置であって、前記鋳造金型は、少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層された複合層を備え、キャビティ面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする鋳造装置である。
本発明の鋳造金型は、少なくとも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることでキャビティ面上の温度を制御するので、凹凸が大きい複雑なキャビティ面形状の場合であっても、キャビティ面上に温度分布が生じないようにすることができる。冷却流路を形成し難い細長く突出したキャビティ面形状の場合であっても当該部分を適切に冷却することが可能となるので、消耗が抑制され金型の寿命低下を防止することができる。またキャビティ面上の任意の領域を所定温度に制御することも可能であり、これらを急速に行うことができる。
また本発明は、鋳造金型、前記鋳造金型に取付けられ前記鋳造金型のキャビティ部に溶湯を案内する分流子を備える鋳造装置であって、前記鋳造金型及び/又は分流子は、少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層された複合層を備え、前記鋳造金型のキャビティ面上及び/又は前記分流子の溶湯接触面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする鋳造装置である。
本発明の鋳造装置によれば、分流子を熱伝導度の異なる材料で形成された2種の層が積層された複合層で形成し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることで溶湯接触面上の温度を制御することができるので、熱負荷の高い分流子を効率的に冷却し適正に保護することができる。
また本発明の鋳造装置は、前記鋳造装置の他に、前記鋳造金型に取付けられ前記鋳造金型に溶湯を供給する射出スリーブと、前記射出スリーブに摺動自在に挿通され、供給された溶湯をキャビティ部に射出する射出プランジャと、を備え、前記射出スリーブは、少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層された複合層を備え、前記射出スリーブの内壁面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする。
本発明の鋳造装置は、射出スリーブも熱伝導度の異なる材料で形成された2種の層が積層された複合層を有し、この熱伝導度の異なる材料で形成された層の厚さを場所に応じて変えることで射出スリーブの内壁面上の温度を制御するので、射出スリーブを容易に適正温度にすることができる。
また本発明の鋳造装置は、前記鋳造装置が半凝固ダイカスト用の鋳造装置であり、前記射出スリーブが、供給される溶湯を所定の温度に冷却し半凝固金属スラリーにすることを特徴とする。
本発明の鋳造装置は、射出スリーブが供給される溶湯を冷却し半凝固金属スラリーを製造するので、半凝固ダイカスト用の鋳造装置として好適に使用することができる。
また本発明の鋳造装置において、前記射出スリーブは、給湯口側と反給湯口側とで前記高熱伝導性金属層の厚さが異なり、給湯口側の方が前記高熱伝導性金属層が厚く設定されていることを特徴とする。
本発明の鋳造装置は、射出スリーブにおいて、反給湯口側に比較し給湯口側に多くの高熱伝導性金属材が使用されているので給湯口側の方が熱伝達に優れる。このため射出スリーブ全体に冷却媒体流路を設けると、給湯口側がよく冷却される一方で反給湯口側は冷却能力が小さい。このような射出スリーブに溶湯を供給すると、溶湯は給湯口側で冷却され半凝固金属スラリーとなり、反給湯口側では半凝固金属スラリーに大きな温度変化は生じずそのままの状態で保持される。このように本射出スリーブを使用すれば、簡単な構成で効率的かつ安定的に半凝固金属スラリーを製造可能であり、本発明の鋳造装置を半凝固ダイカスト用の鋳造装置として好適に使用することができる。
また本発明の鋳造装置は、前記鋳造金型、前記分流子、前記射出スリーブにおいて、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を含む複数の金属層、前記複数金属層中における各金属層間の境界部のうち、少なくとも1つに冷却及び/又は加熱媒体の流路が設けられていることを特徴とする。
また本発明の鋳造装置は、前記冷却及び/又は加熱媒体の流路が、前記キャビティ面及び/又は前記分流子の溶湯接触面を急速かつ均一に所定温度に成さしめるべく、前記キャビティ面及び/又は前記分流子の溶湯接触面の近傍に立体的に配置されていることを特徴とする。
本発明の鋳造装置は、冷却及び/又は加熱媒体の流路がキャビティ面近傍等に立体的に配置されているので、キャビティ面等を急速かつ均一に冷却し又は所定の温度にすることができる。
また本発明の鋳造装置は、前記高熱伝導性金属層が、純銅、銅合金、純アルミニウム、アルミニウム合金から選択される材種により形成されていることを特徴とする。
本発明の鋳造装置において、高熱伝導性金属層として、熱伝導性及び熱拡散率に優れる純銅、銅合金、純アルミニウム、アルミニウム合金を好適に使用することができる。
また本発明の鋳造装置は、前記熱伝導度の小さい材料で形成された層が高硬度金属層からなり、該高硬度金属層の上面に前記キャビティ面が形成され、前記分流子の溶湯接触面及び前記射出スリーブの内壁面が高硬度金属層からなり、該高硬度金属層と前記高熱伝導性金属層とが冶金接合されていることを特徴とする。
本発明の鋳造装置は、各金属層が冶金接合されているので、熱伝達に優れ、また強度的にも優れる。
また本発明の鋳造装置は、前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が、所定の形状に加工された単一又は複数の部材を積層し、該積層体を拡散接合することにより形成されていることを特徴とする。
本発明の鋳造装置は、キャビティ面上等を急速に所定温度にすべく、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層の厚さが、それぞれ場所に応じて適正に設定されるので、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層が複雑な形状となり易いが、これらの製作に複数枚の板等からなる部材を積層、接合する積層接合法を採用することで所望の金型を得ることができる。積層金型で用いられる複数枚の板等からなる部材を積層、接合してなる積層接合法は、積層、接合する部材の形状が比較的単純なため、金型内部で熱伝導度の小さい材料で形成された層及び/又は高熱伝導性金属層の厚さが変化する金型であっても対応が容易であり、接合に拡散接合法を用いることで接合を確実に行うことができる。なお、キャビティ形状が単純な場合は、ブロック材を拡散接合することもできる。
また本発明の鋳造装置は、少なくとも前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が電気めっき法又は溶射法により形成されていることを特徴とする。
また本発明の鋳造装置は、前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との間に第三の材種からなる中間層を備え、該中間層の線膨張係数が前記熱伝導度の小さい材料の線膨張係数と前記高熱伝導性金属層の線膨張係数との中間の値であることを特徴とする。
鋳造工程において、鋳造装置は金属溶湯により高温に熱せられるため、熱伝導度の小さい材料と高熱伝導性金属材との間で熱膨張の差が大きい場合には異材界面において高い応力集中が発生し、破壊が生じやすくなる。そこで、線膨張係数が熱伝導の小さい材料と高熱伝導性金属材との中間の値であるような第三の材料を中間層として使用することによって、異材界面の応力集中を緩和し、装置の寿命を向上できる。このような前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との間に第三の材種からなる中間層を備える鋳造装置においても、中間層を備えない鋳造装置と同様に、熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層、さらには中間層の厚さを場所に応じて適正に設定することで、前記キャビティ面、前記分流子の溶湯接触面、前記射出スリーブの内壁面の全域又は任意の領域を急速に所定温度にすることができることは当然である。
また本発明の鋳造装置は、前記鋳造装置が、ダイカスト用鋳造装置又は半凝固ダイカスト用鋳造装置又は半溶融ダイカスト用鋳造装置であることを特徴とする。
本発明の鋳造装置は、ダイカスト用鋳造装置又は半凝固ダイカスト用鋳造装置又は半溶融ダイカスト用鋳造装置として好適に使用することができる。
本発明の鋳造装置の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数の部材を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、所定の組み合わせと順序で積層された熱伝導度の小さい部材と高熱伝導性金属部材とからなる積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする。
また本発明の鋳造装置の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数の部材を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、所定の組み合わせと順序で積層された熱伝導度の小さい部材と高熱伝導性金属部材とからなる積層体の外側を囲むように、前記熱伝導度の小さい部材及び前記高熱伝導性金属部材よりも線膨張係数の小さい材料で製作された外枠材を設置し、前記積層体と前記外枠材との間にくさび形状をした少なくとも一対の板材を挟んで加熱することにより、加熱時における前記外枠材、前記熱伝導度の小さい部材、前記高熱伝導性金属部材及び前記くさび形板材のそれぞれの熱膨張差を利用して外力を負荷することなく積層方向に対して平行な異材界面の拡散接合を行うことを特徴とする。
本発明の鋳造装置では、熱伝導度の小さい材料で形成された層及び/又は高熱伝導性金属層の各層厚さが金型内で変化するため、金型内の同一平面上において熱伝導度の小さい材料で形成された層と高熱伝導性金属層とが混在する領域が発生する。該領域では、平板状に加工された熱伝導度の小さい材料の板あるいは高熱伝導性金属板のどちらか一方に対して、ある特定部分を除去した後、該部分に同一の輪郭形状に加工されたもう一方の材種の板をはめ込んだ複合板を作製し、それらを複数積層して拡散接合することにより、熱伝導度の小さい材料で形成された層と高熱伝導性金属層が任意面積及び任意厚さで混在する異種材料複合積層金型を製作できる。しかし、前記方法で異種材料を積層して拡散接合する場合、加圧のための外力は積層方向であり、前記嵌合部、すなわち、熱伝導度の小さい材料の板と高熱伝導性金属板との界面は負荷方向と平行であるために、該界面には外力が直接負荷されない。特に、線膨張係数が大きい高熱伝導性金属板の内側に、線膨張係数の小さい板を嵌合した場合には、拡散接合時の熱膨張は外側の高熱伝導性金属板の方が大きいために前記嵌合部にすき間が生じ、接合が困難となる。
これに対し本発明の製造方法を用いて金型を製造するときは、拡散接合時における板積層体の最外郭部、すなわち、金型外形部の熱変形を拘束する。これにより、最外郭部を有する各積層板は加熱により熱膨張するものの、最外郭での寸法が増加しないよう熱変形が拘束されているため、前記嵌合部の寸法は熱ひずみにより縮小する結果となり、外側の板は内側にはめ込まれた異種材料の板と圧力を伴いながら接触し、拡散接合がなされる。このように、板の積層方向には外力による加圧によって、また、負荷方向と平行な異種材嵌合部の界面においては金型外形部の熱変形を拘束することによって、全方向において完全な加圧がなされた拡散接合が実現できる。これは分流子を製造する場合も同様である。
また本発明の鋳造装置の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数の部材を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層をそれぞれ、所定の厚さと輪郭形状に加工された複数の部材を積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合し製作し、拡散接合した前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、又は拡散接合した前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との接合面を形状加工した後に積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合することを特徴とする。
本発明の鋳造装置の製造方法は、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層をそれぞれ積層接合法で製作し、その後、この熱伝導度の小さい材料で形成された層及び高熱伝導性金属層を拡散接合するので、複雑な形状の、熱伝導度の小さい材料で形成された層及び高熱伝導性金属層を備える金型、分流子であっても、確実に製作することができる。
また本発明の鋳造装置の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、積層方向に圧力を加えて拡散接合することにより製作する場合において、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、該積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする。
本発明の鋳造装置の製造方法は、拡散接合時に積層体の最外郭部、すなわち、金型外形部の熱変形を拘束する。この方法は、ブロック状素材を形状加工し形成した高熱伝導性金属層と熱伝導度の小さい材料で形成された層とを拡散接合し鋳造装置を製造する場合にも好適に用いることができ、全方向において完全な加圧がなされた拡散接合が実現できる。
また本発明の鋳造装置の製造方法は、同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、各々ブロック材を機械加工し、積層し、該部材を積層方向に圧力を加えて拡散接合することにより製作する場合において、ブロック材を機械加工するとき異種金属界面をテーパ状に加工することを特徴とする。
本発明の鋳造装置の製造方法は、異種金属界面をテーパ状に加工した部材を用いて拡散接合するので、テーパ状部がくさびとして作用し接触性を高めると共に、積層方向に対する直交方向に対しても十分に荷重が加わり接合性に優れる鋳造装置を得ることができる。
また本発明の鋳造装置の製造方法は、パイプ状部材を互いに挿通し、異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とを含む前記鋳造装置の円筒状部材を拡散接合することにより製作する場合において、最も内側のパイプ状部材の内面を先細テーパ状とし、該パイプ状部材に嵌合する先細テーパ状の芯材を挿通し、最も外側のパイプ状部材に嵌合する、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層よりも線膨張係数の小さい材料で製作されたパイプ状部材を被せ、前記芯材の基端部にのみ圧力を加えて拡散接合することを特徴とする。
また本発明の鋳造装置の製造方法は、前記本発明の鋳造装置の製造方法において、最も内側のパイプ状部材及び芯材に代え、中実材を使用し、該中実材の外面を先細テーパ状とし、該中実材と接合するパイプ状部材の内面を該中実材と隙間なく嵌合する先細テーパ状とし、該中実材の基端部にのみ圧力を加えて拡散接合することを特徴とする。
また本発明の鋳造装置の製造方法は、パイプ状部材を互いに挿通し、異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とを含む前記鋳造装置の円筒状部材を拡散接合することにより製作する場合において、最も内側のパイプ状部材に嵌合する、前記高熱伝導性金属層よりも線膨張係数の大きい材料で製作された芯材を挿通し、最も外側のパイプ状部材に嵌合する、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層よりも線膨張係数の小さい材料で製作されたパイプ状部材を被せ、さらにこれらの長手方向の変形を拘束し、それぞれの熱膨張差を利用することで外力を負荷することなく全方向に荷重を加え拡散接合することを特徴とする。
上記3つのパイプ状部材の製造方法を用いることで、金型、分流子と同様に、複合層からなる射出スリーブにおいても全方向において完全な加圧がなされた拡散接合を実現することができる。
また本発明の鋳造装置の製造方法は、さらに前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との間に、線膨張係数が前記熱伝導度の小さい材料の線膨張係数と前記高熱伝導性金属層の線膨張係数との中間の値の第三の材種からなる中間層を備え、前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層に代え、前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層と前記中間層、前記熱伝導度の小さい部材と前記高熱伝導性金属部材に代え、前記熱伝導度の小さい部材と前記高熱伝導性金属部材と前記中間層を形成する金属部材とすることを特徴とする。
上記鋳造装置の製造方法は、前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との間に第三の材種からなる中間層を備える複合層を有する鋳造装置の製造にも同様に適用することができ、同様の作用効果が得られる。
また本発明は、前記鋳造装置を利用して、鋳造成形品を製造する方法である。
本発明の鋳造装置は、鋳造金型のキャビティ面上の全域又は任意の領域を急速かつ均一に所定温度に成さしめるべく、熱伝導度の異なる材料で形成された層が金型の場所に応じて厚さを変えて積層されているので、金型への投熱量が場所によって異なっても、キャビティ面が凹凸の大きい複雑な形状であっても、キャビティ面上に温度分布が生じないように冷却あるいは加熱することができる。
また、分流子の溶湯接触面、射出スリーブの内壁面の任意の領域を所定温度に制御することも可能であり、重力鋳造装置の他、ダイカスト用鋳造装置、半凝固ダイカスト用鋳造装置などの加圧鋳造装置として好適に使用することができる。例えば,射出スリーブの内壁面温度を入口側と出口側でそれぞれ異なる温度に制御することで、金属の半凝固組織を所定の液相率に維持することが可能となり、複雑な加熱冷却媒体流路の設計や高額な温調設備などを使用せずとも、組織が均一で欠陥の少ない鋳造製品を成形できる。
さらに、本発明の鋳造装置を、板、パイプ等の部材を積層、拡散接合する接合法を用いて製作することで、金型、分流子又は射出スリーブ内部で熱伝導度の異なる2つの層の厚さが変化しても容易に製作することができる。また本発明の製造方法を用いることで、確実な接合を実現することができる。
本発明の第1実施形態としての鋳造金型1の要部断面図である。 図1の鋳造金型1の製造手順を説明するフローチャートである。 図1の鋳造金型1の拡散接合工程における金属板積層体と接合治具との組み付け方法を示した断面図である。 本発明の第2実施形態としての鋳造装置2の要部断面図である。 本発明の第3実施形態としての鋳造装置3の要部断面図である。 本発明の第4実施形態としての鋳造装置4の要部断面図である。 図6の鋳造装置4の射出スリーブ62の要部断面図である。 図6の鋳造装置4の射出スリーブ62の拡散接合要領を説明するための図である。 図6の鋳造装置4の射出スリーブ62の他の拡散接合要領を説明するための図である。 図6の鋳造装置4の射出スリーブ62の他の拡散接合要領を説明するための図である。
図1は、本発明の第1実施形態としての鋳造金型1の要部断面図である。ここでは可動型を示しており、固定型は表示されない。
鋳造金型1(以下、金型と記す)は、キャビティ面15が上部に形成された高硬度金属層18、高硬度金属層18の下側に高熱伝導性金属層19が冶金接合された複合層20を有する。
キャビティ面15を有する高硬度金属層18は、目的の成形に必要な成形温度や加圧条件および使用回数に耐えられる十分な強度や耐久性を有するよう、必要な硬度を有する金属により製作される。材質は、成形の種類や条件によって異なるが、例えば各種鉄鋼材に必要な熱処理を施し、所定の硬度及び機械的性質が得られるよう調質したものを用いるとよい。また高硬度金属層18は、熱伝導度が高熱伝導性金属層19の熱伝導度に比較し小さいものを使用する。
高硬度金属層18の下側、すなわち、キャビティ面15の反対側には高熱伝導性金属層19が設けられている。高熱伝導性金属層19は、熱伝導性及び熱拡散性に優れた材料を使用する。定常温度分布状態にある材料中では、Δx(m)離れた2点間の温度差がΔT(K)であるとき、2点間の熱流束q(W/m)は式(1)のようなフーリエの法則によって表される。なお、熱流束とは、2点間を移動する単位面積および単位時間当たりの熱量である。
q=−λ・(ΔT/Δx)・・・(1)
ここで、λ:熱伝導度(W/(m・K))である。
このように、定常状態において熱流束qの値を一定とすると、熱伝導度λが小さければ温度勾配ΔT/Δxが大きくなるが、λが大きい、すなわち、熱伝導度の高い材料では温度勾配ΔT/Δxが小さくなり、材料中の温度分布が小さくなることから、熱伝導度の高い材料を使用することにより、本質的に金型に生じる温度分布を軽減できる。
また、実際の成形過程では、金型内の温度は位置だけでなく時間によっても変化する非定常状態であるので、該高熱伝導性金属層19には、式(2)によって表される熱拡散率a(m/s)が大きい材料を用いることが望ましい。
a=λ/(c・ρ)・・・(2)
ここで、c:比熱(J/(kg・K))、ρ:密度(kg/m)である。この値aが大きいほど、温度分布が材料中を非定常的に広がっていく速度が速く、短時間のうちに温度分布が緩和しやすいことを示している。
熱伝導度λ及び熱拡散率aが大きい材料として、純銅、銅合金、純アルミニウム、アルミニウム合金が例示され、高熱伝導性金属層19としてこのような材料を使用することが好ましい。高熱伝導性金属層19と高硬度金属層18との接合については、良好な熱伝導性を得るために、拡散接合による冶金接合が好ましい。例えば、鉄鋼材により製作した高硬度金属層18との接合を高温・加圧を伴う拡散接合により行う場合には、鉄との親和性がよく、金属間化合物を生じない純銅及び銅合金を使用するのが好ましい。なお、高硬度金属層18及び/又は高熱伝導性金属層19は、電気めっき又は溶射法により形成してもよい。
金型1には、高熱伝導性金属層19内であって高硬度金属層18との境界面24近傍に、キャビティ面15に沿うように金型1を冷却するための冷却流路27が設けられている。キャビティ面15に沿うように冷却流路27を配置することで高い冷却性能が得られる。ここでは冷却流路27を銅など腐食し難い高熱伝導性金属層19に設けているので、従来の直接冷却方式の冷却路と異なり、応力腐食割れは生じ難い。高熱伝導性金属層19に冷却流路27を設ける方法は、従来の間接冷却方式と同様に高硬度金属層18を直接冷却しないため冷却性能の低下が懸念されるが、高硬度金属層18と高熱伝導性金属層19とを拡散接合等により隙間なく接合するので高い冷却性能が得られる。
高硬度金属層18及び高熱伝導性金属層19は、後述する方法により最適な層厚さが決定され、各層の厚さは金型内において変化する。金型1のようにキャビティ面15が自由曲面を含む複雑な三次元形状をしている場合においても、該面上に温度分布が生じないようにするため、高硬度金属層18と高熱伝導性金属層19のそれぞれの厚さを金型内で適切に変化させて製作される。すなわち、キャビティ面15のうち熱が逃げ難い領域は、高硬度金属層18の厚さを薄く、逆に高熱伝導性金属層19の厚さを厚くしてキャビティ面15の過度な温度上昇を抑制する。一方、キャビティ面15のうち熱が逃げ易い領域は、高硬度金属層18の厚さを厚く、逆に高熱伝導性金属層19の厚さを薄くして極端な温度低下を抑制し、結果としてキャビティ面15上の温度がほぼ均一となるようにする。
以上のようなキャビティ面15が自由曲面を含む複雑な三次元形状、又は凹凸が大きい複雑な形状の金型の場合、高硬度金属層18及び高熱伝導性金属層19の厚さが場所毎で異なり、高硬度金属層18と高熱伝導性金属層19の境界、すなわち、異種材料の接合界面24も三次元的に起伏を伴った複雑な形状となる。さらに冷却流路27を立体的に配置した金型は、製造が難しいが、厚さの薄い複数枚の金属板を輪郭形状加工した後に、積層、接合する積層接合法を用いることで確実に製作することができる。
金型1は、溶湯により高温に熱せられるため、高硬度金属層18と高熱伝導性金属層19との間で熱膨張の差が大きい場合には異材界面において高い応力集中が発生し、破壊が生じやすくなる。このような場合には、線膨張係数が高硬度金属層18を形成する材料と高熱伝導性金属層19を形成する材料との中間の値であるような第三の材料を中間層として使用することによって、異材界面の応力集中を緩和し、装置の寿命を向上させることができる。
中間層の素材には、銅やアルミニウムのような熱伝導率の高い金属と熱膨張率の低い素材から成る合金あるいは複合材料であって、線膨張係数が12〜15×10-6/Kの範囲のものが望ましく、例えば、銅−モリブデン、銅−タングステン、銅−炭素および銅−ダイヤモンドなどを用いるとよい。また、中間層の板厚は0.01〜5mm程度の範囲内とするとよい。この点は、後述の分流子51、射出スリーブ62においても同じである。
線膨張係数が高硬度金属層18を形成する材料と高熱伝導性金属層19を形成する材料との中間の値であるような第三の材料を中間層として使用する場合も、高硬度金属層18及び/又は高熱伝導性金属層19、さらには中間層の厚さを場所に応じて適正に設定することで、キャビティ面15上をほぼ均一とし、あるいは任意の領域を所定温度にすることができる。この点は、後述の分流子51、射出スリーブ62においても同じである。
以下に、金型1の製造要領を示す。図2及び図3は、図1の鋳造金型1の製造要領を説明するための図であり、図2は、製造手順を説明するフローチャート、図3は、拡散接合工程における金属板積層体33と接合治具との組み付け方法を示した断面図である。以下の鋳造金型1の製造要領は、線膨張係数が高硬度金属層18を形成する材料と高熱伝導性金属層19を形成する材料との中間の値であるような第三の材料を中間層として使用する場合にも同じように適用することができる。
金型1は、厚さの薄い複数枚の金属板を輪郭形状加工した後に、積層、接合されたいわゆる積層金型である。積層金型は、積層、接合する1枚1枚の金属板の形状が比較的単純なため、金型内部で高硬度金属層18と高熱伝導性金属層19の厚さが変化する金型であっても対応が容易であり、特にキャビティ面15の凹凸が複雑な場合には、好ましい製作方法である。図3では、高硬度金属層18を形成する金属板35が8枚、高熱伝導性金属層19を形成する金属板37が10枚、金属ブロック38が1つとなっているが、金属板の枚数は、特定の枚数に限定されるものではない。キャビティ面15の形状等に応じて適宜設定することができる。一般的にキャビティ面15の凹凸が単純であれば、金属板の枚数は少なく、逆にキャビティ面15の凹凸が複雑であれば枚数は多くなる。例えば、後述の第2及び第3実施形態で示す鋳造金型のようなキャビティ面15の凹凸が非常に単純であれば、高硬度金属層18を形成する金属板35及び高熱伝導性金属層19を形成する金属板37をそれぞれブロックとすることもできる。
まず、ステップS1では、金型1の外形形状、キャビティ面15の形状、高硬度金属層18の厚さ、高熱伝導性金属層19の厚さ、さらには冷却流路27の形状からなる各情報を与えて、金型の初期形状を3次元CADでモデリングする。ここでの形状は最適設計がなされる前の初期段階のものであり冷却流路27の形状は暫定的に与える。また、高硬度金属層18、高熱伝導性金属層19の各層厚さも、金型1内で全て均一な厚さとして暫定的に定める。
ステップS2では、コンピュータによる有限要素法シミュレーション(CAE)などの手法を用いて、熱伝導解析を行い、キャビティ面15上の温度分布を予測する。本ステップの目的は、キャビティ面15上に生じる温度分布を抑制しながら高速に冷却できる金型1の各構成要素の形状寸法を最適に設計することである。そのための手法は種々あるが、好ましい一例として、まず、高熱伝導性金属層19の厚さを一定として熱伝導解析を行い、キャビティ面15上の温度分布を予測する。その結果から、キャビティ面15の温度が高い領域周辺においては高熱伝導性金属層19の厚さを厚く、かつ高硬度金属層18の厚さを薄くする。また一方で、キャビティ面15の温度が低い領域周辺においては、逆に高熱伝導性金属層19を薄く、高硬度金属層18を厚くして温度低下を抑制することにより、キャビティ面15上の温度が均一になるような、金型1内における高熱伝導性金属層19及び高硬度金属層18の最適な層厚さの分布を導出する。なお、高熱伝導性金属層19及び高硬度金属層18の最適な層厚さの算出には、冷却流路27の配置が考慮されることは当然である。
また、キャビティ面15上の温度が均一かつ急速に下がるような、最適な冷却流路27の形状を決定する。本目的を達成するために、冷却流路27はキャビティ面15のできるだけ近傍に設置するのが好ましいが、キャビティ面15に近づけすぎると温度分布が生じやすくなるため、冷却時間と温度均一化の均整がとれるよう、キャビティ面15の形状に対応した立体的な配置とするのがよい。但し、応力腐食割れを考慮し、冷却流路27は高熱伝導性金属層19に配置する。
金型構成要素の設計が終了後、ステップS3では、3次元CADデータを基にスライスデータの作成を行う。スライスデータの作成は予めスライスデータを作成するためのプログラムをインストールしたコンピュータを用いて行う。コンピュータはインストールされたプログラムに従い、入力された3次元CADデータから、所定の厚さのスライスデータを作成する。ここで所定の厚さが、金属板の厚さとなる。金属板の厚さは、金型1の形状、キャビティ面15の形状、高熱伝導性金属層19及び高硬度金属層18の厚さ、さらには冷却流路27の配置に基づき、加工容易性等を考慮し、所望の金型が容易に製作できるように決定する。このとき金属板の規格(寸法)、入手性、価格を考慮することが好ましい。高硬度金属層18を形成する金属板35は、通常、同一の厚さの金属板を使用するが、厚さの異なる金属板35を使用してもよい。高熱伝導性金属層19を形成する金属板37についても同様である。この点については、公知の積層金型(例えば特開2010−94903号公報)と同様に考えればよい。
ステップS4では、ステップS3で作成したスライスデータに基づいて、各金属板35、37の加工を行う。金属板35は高硬度金属板、金属板37は高熱電導性金属板であり、それぞれ高硬度金属層18、高熱電導性金属層19に対応する。金属板の加工は、輪郭形状、冷却流路27のための溝40、及び積層時における位置決め用の基準穴(図示省略)を行う。ここで、同一高さに異なる材料の金属板35、37を組み合わせて積層する場合、例えば、どちらか一方の金属板35(37)の一部を機械加工により除去し、該除去部分に同一輪郭形状に切出した他方の金属板37(35)をはめ込んで使用する場合には、該嵌合部のすき間が所定の値になるように、両金属板35、37の輪郭を精度よく加工する必要がある。該嵌合部のすき間は両金属板35、37の熱膨張係数や金属板の寸法および加工温度を考慮して適宜決定するとよい。また、両異種金属の拡散接合の際にインサート材を用いる場合には、インサート材厚さを考慮して、嵌合部すき間を決定するのが望ましい。なお、後述のように、拡散接合時において金型外形を変形拘束するので、金型外形に相当する部分についても、各金属板35、37を所定の寸法交差内で精度よく加工しておくのがよい。
ステップS5では、加工した金属板35、37を所定の組み合わせにより所定の順序で積層する。金属板35、37は、位置決め用基準穴(図示省略)が設けられているので、基準ピン(図示省略)を使用することで、正確に位置決めすることができる。
次ステップS6では、積層した金属板積層体33を拡散接合法により接合する。拡散接合は、加熱炉内に金属板積層体33を設置し、真空雰囲気下で所定の温度になるように加熱しながら積層方向に荷重を負荷し、一定時間保持した後に冷却して金属板積層体33(金属板接合体)を炉外へ搬出する。拡散接合時の加熱温度、加熱時間等は、使用する金属板の種類などにより適宜設定すればよい。ここで、金属板同士を重ね合わせる積層面22には荷重が直接負荷されるために拡散接合が可能であるが、同一高さに異種材である高硬度金属板35と高熱伝導性金属板37とを嵌合させた領域では、嵌合部の異種金属界面23は荷重の負荷方向43に対して平行であるために、該異種金属界面23には外力は直接負荷されない。特に、高熱伝導性金属板37の内側の一部を除去して、線膨張係数が相対的に小さい高硬度金属板35を嵌合した場合には、界面に生じる隙間が拡大する傾向となり、事実上接合が困難となる。
そこで、図3に記載のような治具を用いて拡散接合を行う。高硬度金属板35及び高熱伝導性金属板37よりも線膨張係数の小さい材料で製作された外枠材45の中に前記金属板積層体33を設置し、金属積層体33と外枠材45との間に一対のくさび形状をした板材を挿入する。ここで、2つのくさび形板材47のうちどちらか一方の挿入深さを調節することによって、金属板積層体33、外枠材45、くさび形板材47をすき間なく接触する状態にすることができる。なお、図3は、金属板積層体33、外枠材45及びくさび形板材47のある一断面を示した図であるが、本図と直交する任意の断面においても、同様にすき間なく金属板積層体33と外枠材45とが接触するよう、もう一対のくさび形板材47を用いるとよい。すなわち、合計2対のくさび形板材47を使用し、縦横両方向に対して金属板積層体33と外枠材45とをすき間なく接触および固定するのが好ましい。
ここで、外枠材45にはグラファイトなど金属よりも線膨張係数の小さい材料を使用し、くさび形板材47は繰り返しの使用に耐えうる適度な一般機械用炭素鋼および機械構造用炭素鋼などを用いるとよい。ただし、拡散接合過程において金属板積層体33とくさび形板材47が相互に接合されないよう、くさび形板材47の表面には離型材を塗布しておく必要がある。
上記の固定状態で加熱すると、線膨張係数が金属よりも小さい外枠材45の熱ひずみは金属板積層体33及びくさび形板材47のそれと比較して小さいため、結果として、くさび形板材47を経由して金型外形部49の熱膨張を拘束する。これにより、外形部を有する各積層金属板35、37及び金属ブロック38は、加熱により熱膨張するものの、外形部での熱変形が治具である外枠材45及びくさび形板材47により拘束されるため、前記嵌合部の寸法は熱ひずみにより縮小する結果となり、内側にはめ込まれた異種金属板と圧力を伴いながら界面23において接触し、拡散接合がなされる。事実、無拘束状態では加熱時において嵌合部にすき間が生じやすい異種複合金属板、例えば、高熱伝導性金属板37の内側に高硬度金属板35を嵌合した場合において、外形部の変形を拘束した状態で加熱すると、嵌合部の寸法は熱ひずみにより収縮し、嵌合部を境界23として両異種金属同士が圧力を伴いながら接触することを有限要素解析により確認している。
このように、金属板積層体33の積層面22には外力による加圧により、また、積層面22と直交する嵌合部の異種金属界面23においては金型最外郭部の熱変形の拘束を利用することによって、全方向において完全な加圧がなされた拡散接合が実現できる。
続くステップS7では、拡散接合した金属板積層体(金属板接合体)を熱処理する。本工程は金属板接合体のうち、特にキャビティ面15を有する高硬度金属層18を硬化させ、強度及び耐摩耗性の向上を目的として行う熱処理であり、鋳造金型で一般的に行われる焼入れ及び焼戻しである。ここでは、最終的にキャビティ面15が所定の硬度となるように処理を行う。なお、本熱処理工程は金型の用途によっては必ずしも実施する必要はなく、次工程のステップS8の形状加工後に熱処理を行い、その後必要に応じて再度形状加工を行ってもよい。
ステップS8では、金型1の仕上げ工程として、形状加工を行う。ここでは、一般的な金型と同様に、汎用のCAD/CAM装置及びNCあるいはCNC装置を用いることで容易かつ高精度に加工することができる。ここでは、公知の切削加工及び研削加工の使用が可能である。なお、前記熱処理を形状加工後に行う場合には、その後の熱処理に伴う変形分を考慮して仕上げ代を残して加工を行い、熱処理後に仕上げの最終形状加工を行うことが効率的である。
上記鋳造金型1の製造要領において、さらに、高硬度金属層18と高熱伝導性金属層19との間に第三の材種からなる中間層を挿入する場合には、ペースト状にした粉末あるいは箔や板状といった形態の該中間層素材を高硬度金属材と高熱伝導性金属材との間に挟み、上記実施形態と同様に拡散接合することによって製作できる。これについては、後述の射出スリーブ62の製造においても同じである。
図4は、本発明の第2実施形態としての鋳造装置2、図5は、本発明の第3実施形態としての鋳造装置3の要部断面図である。図5(A)は、鋳造装置3の全体構成を示し、(B)は、キャビティ部の突出部12近傍の拡大図である。図1から図3に示す第1実施形態の鋳造金型1と同一の構成には同一の符号を付して説明を省略する。なお、第2実施形態の鋳造装置2と第3実施形態の鋳造装置3とは、キャビティ部11の形状及び構造を除き同一の構成からなる。このため以下、主として鋳造装置2を用いて構成を説明する。
鋳造装置2は、ダイカスト法により成形品を鋳造するダイカスト用鋳造装置であり、ダイカスト金型5、該ダイカスト金型5に溶湯を供給する射出スリーブ61及び射出プランジャ91を有する。
ダイカスト金型5は、固定型7と可動型9とからなり、固定型7と可動型9とを型締めすることで成形品を形成するキャビティ(キャビティ部)11を形成する。固定型7は、高硬度金属材で形成され、表面にキャビティ面13を有する。
一方、可動型9は、第1実施形態の金型1と同様に高硬度金属層18及び高熱伝導性金属層19が冶金接合された複合層20からなり、高硬度金属層18の表面にキャビティ面15が形成されている。可動型9を形成する高硬度金属層18及び高熱伝導性金属層19の材質、高硬度金属層18及び高熱伝導性金属層20の厚さは、第1実施形態の金型1と同様に考えればよい。また可動型9の製造要領も基本的に第1実施形態の金型1と同じである。
可動型9には、金型及びキャビティ面15を冷却するための冷却管28が設けられている。可動型9は、第1実施形態の金型1と異なり、キャビティ部11の形状が単純であるから、冷却管28は可動型9の中央部の下方に1本のみ設けられている。冷却管28は、2重管構造のシンプルな冷却水管であり、高熱伝導性金属層19に設けられた有底の冷却水孔(図示省略)に挿入されている。冷却水内管29から冷却水を供給すると、冷却水は、冷却水内管29の先端から冷却水外管30に流入し、冷却水内管29と冷却水外管30との間を流れて外部に流出する。
第3実施形態のダイカスト金型6は、極端に細長く突出したキャビティ部11を有するが、この部分には、物理的に冷却管28を配置することができないため、可動型10の突出部12の真下に冷却管28が配置されている。第2、第3実施形態に示すような冷却管28が1本のみ設けられたダイカスト金型5、6であっても、高硬度金属層18及び高熱伝導性金属層19の厚さを適正に制御することで、キャビティ面15の温度を均一に制御することができる。このようなダイカスト金型5、6は、冷却管28の取付け位置の制約が緩和され、冷却管28の設置、取り回しが簡単となり、金型を設計及び製作する点からも非常に好ましい。
また可動型9には、射出スリーブ61を通じて供給される溶湯をキャビティ部11に案内する分流子51が設けられている。分流子51も可動型9と同様に、高硬度金属層18及び高熱伝導性金属層19が冶金接合された複合層20からなり、高硬度金属層18の表面が溶湯接触面53となっている。高硬度金属層18及び高熱伝導性金属層19は、可動型9と同一の要領で設定されている。また分流子51には、可動型9と同様の要領で分流子51及び溶湯接触面53を冷却するための冷却管55が設けられている。
第2実施形態の可動型9及び分流子51は、共に高硬度金属層18と高熱伝導性金属層19との界面24の形状が単純であるから、高硬度金属層18を形成する金属ブロック材及び高熱伝導性金属層19を形成する金属ブロック材を形状加工し、これを拡散接合することで製造することができる。ブロック材と金属板との違いはあるが、第2実施形態の可動型9及び分流子51の製造は、高硬度金属層18の厚さ、高熱伝導性金属層19の厚さの設定方法、拡散接合の要領を含め、第1実施形態の金型1の製造要領に基づき行うことができる。なお、第3実施形態の可動型10も同じ要領で製造することができる。
第2実施形態の可動型9及び分流子51は、高硬度金属層18及び高熱伝導性金属層19の界面24が、負荷方向と平行な界面25及び傾斜した界面26からなるため拡散接合時に積層方向に圧力を負荷した場合、平行な界面25のみならず傾斜した界面26にも圧力が負荷されるため、拡散接合をきちっと行うことができる。
図6は、本発明の第4実施形態としての鋳造装置4の要部断面図、図7は、鋳造装置4の射出スリーブ62の要部断面図である。図1〜図3に示す第1実施形態の鋳造金型1、図4及び図5に示す第2及び第3実施形態の鋳造装置2、3と同一の部材には、同一の符号を付して説明を省略する。
第4実施形態の鋳造装置4は、第2実施形態の鋳造装置2と類似の構成からなるが、第2実施形態の鋳造装置2がダイカスト用の鋳造装置であるのに対して、第4実施形態の鋳造装置4は、半凝固ダイカスト用の鋳造装置である。このため射出スリーブ62の構造が、第2実施形態の鋳造装置2の射出スリーブ61と異なる。
周知のように半凝固ダイカスト用の鋳造装置では、溶湯を冷却し半凝固金属スラリーとし、これをキャビティ部11に供給する。第4実施形態の鋳造装置4は、供給される溶湯を射出スリーブ62で半凝固金属スラリーとする。このため射出スリーブ62には、冷却流路65が設けられている。
射出スリーブ62は、可動型9及び分流子51と同様に、高硬度金属層18及び高熱伝導性金属層19を有するが、さらに金属層63を有する。これら金属層が、内側から順に高硬度金属層18、高熱伝導性金属層19、金属層63の順に積層、冶金接合された複合層64からなる。高硬度金属層18及び高熱伝導性金属層19の厚さは、長手方向で変化しているが、溶湯及び半凝固金属スラリーが接触する内側の面は、全て高硬度金属層18である。高硬度金属層18の内径が、長手方向で一定であることは言うまでもない。
射出スリーブ62は、溶湯口68側では冷却を促進して半凝固組成を生成させ、出口側(反溶湯口側)では、冷却を抑えて組織の安定を維持すべく、溶湯口68側と反溶湯口側とで高硬度金属層18及び高熱伝導性金属層19との厚さを変えている。本実施形態では、中央部から溶湯口68側は、高硬度金属層18が薄く、高熱伝導性金属層19が厚くなっており、逆に中央部から反溶湯口側は、高硬度金属層18が厚く、高熱伝導性金属層19が薄くなっており、中央部から溶湯口68側と中央部から反溶湯口側とを比較すると中央部から溶湯口68側の方が、高硬度金属層18の厚さが薄い。高硬度金属層18及び高熱伝導性金属層19の厚さの設定要領は、第1実施形態の金型1の複合層20と同様の考え方に基づき行う。
冷却流路65は、高熱伝導性金属層19と金属層63との境界部69に設けられている。詳細には、高熱伝導性金属層19の外壁面67に、外壁面側が開口した螺旋状の溝70が設けられ、この溝70の外表面を金属層63で覆い、冷却流路65が形成されている。冷却流路65は、1つの連続した流路であり、溶湯口68側から供給された冷却水は、反溶湯口側から排出される。本実施形態の冷却流路65は、溶湯口68側で螺旋状のピッチが短く密となっており、反溶湯口側で螺旋状のピッチが長く疎となっている。なお、冷却流路65の螺旋状のピッチ、換言すれば冷却流路の配置、密度は、必ずしも本実施形態に限定されるものではない。また、冷却流路の断面積は必ずしも同一である必要はなく、溶湯口68側と反溶湯口側とで異なるなど、場所によって断面積が変化してもよい。
以上の構成からなる射出スリーブ62に溶湯を供給すると、溶湯は、射出スリーブ62の内壁面66に接触し、熱を奪われる。溶湯口68側は、高硬度金属層18が薄く、逆に高熱伝導性金属層19が厚くなっているので伝熱性に優れる。さらに冷却流路65が密となっているので溶湯口68側は、冷却性に優れ、溶湯は迅速に所定温度まで冷却され半凝固金属スラリーとなる。
一方、反溶湯口側は、高硬度金属層18が厚く、逆に高熱伝導性金属層19が薄くなっているので伝熱性が悪い。さらに冷却流路65も溶湯口68側に比較して疎となっているので反溶湯口側は、冷却能力が小さく、溶湯口68側で生成した半凝固金属スラリーをほぼそのまま保持することができる。
以上のように本実施形態の射出スリーブ62は、スリーブ自体を複合層64で形成し、長手方向で熱伝導度の異なる高熱伝導性金属層19と高硬度金属層18との厚さを変化させることで供給される溶湯を冷却し、半凝固金属スラリーとするので、温度の異なる冷却流路を設ける必要もなく簡単な構成で、効率的に半凝固金属スラリーを得ることができる。
次に、射出スリーブ62の製造要領を説明する。射出スリーブ62の高硬度金属層18の厚さ、高熱伝導性金属層19の厚さ、最適な冷却流路65の形状は、射出スリーブ62の内壁面66が所定の温度となるように設定するが、その設定要領は、第1実施形態の金型1の高硬度金属層18の厚さ、高熱伝導性金属層19の厚さ、最適な冷却流路27の形状の決定方法と基本的に同一であるので説明を省略し、以下、拡散接合の要領を主に射出スリーブ62の製造要領を説明する。
図8は、射出スリーブ62の拡散接合要領を説明するための図である。高硬度金属層18を形成するパイプ状の高硬度金属材72、高熱伝導性金属層19を形成するパイプ状の高熱伝導性金属材73、金属層63を形成するパイプ状の金属材74、さらには高硬度金属材72に嵌合する芯材75及び金属材74を覆う外筒材76を準備する。
高硬度金属材72は、外形形状及び外径を高硬度金属層18の外形形状及び外径と同一とし、内径を高硬度金属層18の内径よりも僅かに小さくする。高さは、拡散接合後に下端を仕上げ加工するためその仕上げ代(加工代)分だけ、高硬度金属層18の高さよりも高くする。さらに高硬度金属材72の内面を、加圧方向43から見て下方78を上方79よりも僅かに小さくしたテーパ形状とする。高熱伝導性金属材73及び金属材74の形状、寸法は、高さを除きそれぞれ高熱伝導性金属層19、金属層63と同じとし、高熱伝導性金属材73には、冷却流路65となる溝70を加工する。高熱伝導性金属材73及び金属材74の高さは、高硬度金属材72と同様に下端の仕上げ代(加工代)分だけ、高熱伝導性金属層19、金属層63より高くする。
芯材75は、高硬度金属材72と同じテーパ角度を有する先細円柱部材であり、高硬度金属材72に嵌め込むと、基端部84が僅かに突出し、先端部85は高硬度金属材72の下端80から僅かに浮き上がるように形成されている。芯材75は、繰り返しの使用に耐えうる適度な一般機械用炭素鋼および機械構造用炭素鋼などを用いるとよい。外筒材76は、拡散接合時における射出スリーブ62の変形を拘束する部材であり、金属材74と同じ高さで金属材74を隙間なく覆う。外筒材76は、グラファイトなど金属よりも線膨張係数の小さい材料を使用する。
高硬度金属材72に高熱伝導性金属材73を、高熱伝導性金属材73に金属材74を挿通すると共に、高硬度金属材72に芯材75を挿入し、外筒材76を金属材74に挿通する。このとき拡散接合過程において高硬度金属材72と芯材75、金属材74と外筒材76とが相互に接合されないよう、芯材75及び外筒材76には離型材を塗布しておく。
以降は、第1実施形態の金型1と同様の要領で拡散接合するが、荷重は芯材75にのみ加える。これにより芯材75が、くさび様に作用し、さらに外筒材76による熱変形の拘束により荷重が加わり、立壁界面だけでなく荷重方向43と直交する水平界面77の両方により強い加圧力が与えられ、全方向において完全な加圧がなされた拡散接合が実現できる。拡散接合後は、高硬度金属材72の内壁面及び拡散接合体の下端部を所定の寸法に機械加工する。図8中、破線86が射出スリーブの内壁面66、破線87が射出スリーブの端面となる。なお、拡散接合後の熱処理は、第1実施形態の金型1と同様に考えることができる。
射出スリーブ62の他の拡散接合要領を、図9を用いて説明する。ここに示す射出スリーブ62の拡散接合要領は、図8を用いて説明した拡散接合要領とほぼ同じであるが、高硬度金属材72を中実材とする。
高硬度金属材72は、先端部81が基端部82に比較して僅かに細い先細テーパ形状であり、段差部83も下向きに僅かに傾斜させる。また高硬度金属材72の高さは、高硬度金属層18の高さよりも僅かに高く高熱伝導性金属材73に嵌め込むと、基端部82が僅かに突出し、先端部81は高熱伝導性金属材73の下端88から僅かに浮き上がるように形成されている。
高熱伝導性金属材73は、高硬度金属材72が隙間なく嵌り込む形状とし、高熱伝導性金属材73及び金属材74の高さは、拡散接合後に下端を仕上げ加工するためその仕上げ代(加工代)分だけ、高熱伝導性金属層19、金属層63より高くする。
図8に示す拡散接合と同様に、高硬度金属材72のみに下向きに荷重を加えると、高硬度金属材72がくさび様に作用し、さらに外筒材76による熱変形の拘束により荷重が加わり、立壁界面だけでなく荷重方向43と直交する方向にも加圧した荷重が加わり、全方向において完全な加圧がなされた拡散接合が実現できる。拡散接合後は、高硬度金属材72の突出部を機械加工により除去すると共に、拡散接合体の下端部を所定の寸法に機械加工する。さらに射出プランジャ91が挿通する貫通孔を加工する。図9中、破線86が射出スリーブの内壁面66、破線87が射出スリーブの端面となる。この方法を用いれば、拡散接合時に芯材75が不要となる。拡散接合後の熱処理は、第1実施形態の金型1と同様に考えることができる。
図9に示す先細テーパ形状の高硬度金属材72を拡散接合する方法は、高硬度金属材72の外壁面の形状、高熱伝導性金属材73の内壁面の形状がそのまま残り、最終的に高硬度金属層18及び高熱伝導性金属層19の厚さに影響を与えるので、テーパ角度は小さな角度とする。
射出スリーブ62の他の拡散接合要領を、図10を用いて説明する。高硬度金属層18を形成するパイプ状の高硬度金属材72、高熱伝導性金属層19を形成するパイプ状の高熱伝導性金属材73、金属層63を形成するパイプ状の金属材74、さらには高硬度金属材72に嵌合する芯材75及び金属材74を覆う外筒材76、拡散接合時の長手方向の変形を拘束する外枠材45及びくさび形板材47を準備する。
高硬度金属材72、高熱伝導性金属材73及び金属材74の形状、寸法は、それぞれ高硬度金属層18、高熱伝導性金属層19及び金属層63と同一とする。芯材75は、高硬度金属材72に隙間なく嵌り込む円柱状部材、外筒材76は金属材74を隙間なく覆うパイプ状部材であり、共に長さは高硬度金属材72等と同一である。
芯材75は、高硬度金属材72よりも線膨張係数の大きい部材、好ましくは高熱伝導性金属材73よりも線膨張係数の大きい部材を使用する。例えば、高熱伝導性金属材73に純銅を用いる場合には,芯材75には青銅あるいは黄銅などを使用するとよい。一方、外筒材76は、拡散接合時における射出スリーブ62の変形を拘束する部材であり、グラファイトなど金属よりも線膨張係数の小さい材料を使用する。外枠材45及びくさび形板材47は、図3に示した外枠材45及びくさび形板材47と同一である。
図10に示すように芯材75、高硬度金属材72、高熱伝導性金属材73、金属材74及び外筒材76を順に挿入し、これを外枠材45にセットする。外枠材45へのセット要領は、図3に示す第1実施形態の金型1を拡散接合するときの要領と同じである。なお、高硬度金属材72と芯材75、金属材74と外筒材76、高硬度金属材72等とくさび形板材47とが相互に接合されないよう、芯材75、外筒材76及びくさび形板材47の表面には離型材を塗布しておく。
以降は、第1実施形態の金型1と同様の要領で拡散接合するが、外部から強制的に荷重を加えず、加熱のみ行う。加熱されることにより芯材75が膨張する一方で、半径方向は外筒材76が熱変形を拘束し、長手方向は、外枠材45が変形を拘束するので、全方向において完全な加圧がなされた拡散接合が実現できる。拡散接合後の熱処理は、第1実施形態の金型1と同様に考えることができる。
以上、第1〜第4実施形態の鋳造金型1、鋳造装置2、3、4に示すように本発明に係る鋳造装置は、熱伝導特性の異なる2種類の金属(高硬度金属層および高熱伝導性金属層)の板厚比を金型、分流子内で適正に変えることによって、金型等の表面上の全域あるいは任意の一領域内における面上の温度差を抑制できるようにしたことを特徴とする。これにより金型への投熱量が場所によって異なっても、キャビティ面が凹凸の大きい複雑な形状であっても、キャビティ面上に温度分布が生じないように、あるいは意図的に制御された温度分布を実現することが可能となり、サイクルタイム短縮及び製品の品質向上が可能となる。
従来の方法ではキャビティ面近傍に冷却流路を設置できないようなアスペクト比の高いキャビティ面形状においても、熱伝導特性の異なる2種類の金属の組み合わせを調整できる本金型を使用すれば面上温度差を最小化することが可能となり、金型の寿命が延びる。
キャビティ面が凹凸の大きい複雑な形状の金型において、熱伝導特性の異なる2種類の金属(高硬度金属層および高熱伝導性金属層)の板厚比を変化させると製作が困難となるが、本発明に係る鋳造装置の製造方法を用いることで確実に製作することができる。
また、金型と同様の方法で射出スリーブの内壁面の任意の領域を所定温度に制御することも可能であるので、例えば,射出スリーブの内壁面温度を入口側と出口側とでそれぞれ異なる温度に制御することで、金属の半凝固組織を所定の液相率に維持することが可能となり、複雑な加熱冷却媒体流路の設計や高額な温調設備などを使用せずとも、半凝固ダイカスト法により組織が均一で欠陥の少ない鋳造製品を成形できる。
熱伝導特性の異なる2種類の金属(高硬度金属層および高熱伝導性金属層)の板厚比が変化する射出スリーブも、本発明に係る鋳造装置の製造方法を用いることで確実に製作することができる。
本発明に係る鋳造装置は、上記実施形態に限定されず、要旨を逸脱しない範囲で変形することが可能である。また本発明に係る鋳造装置の製造方法も上記製造方法に限定されるものではない。
例えば、第1実施形態において、金属板積層体33を拡散接合する際、金属板積層体33の外形部の変形拘束手段として、金属よりも熱膨張係数が小さい外枠材45とくさび形板材47を用いたが、HIPなどの手段を用いて、積層方向及びその直角方向のいずれにも圧力をかけるなど、別の手段で外力をかけてもよい。
さらに、第1実施形態の複合層20を製作する場合、高硬度金属層18又は高熱伝導性金属層19を別々に製作し、その後これらを拡散接合し製作してもよい。さらには高硬度金属層18又は高熱伝導性金属層19を別々に製作した後、高硬度金属層18と高熱伝導性金属層19と接合面(境界面)24を、段差をなくす形状加工を行った後に、これらを拡散接合し製作してもよい。
以下、製作手順の一例を示す。第1実施形態の金型1と同様に、図2に示すステップS1からステップS5の手順により加工した高硬度金属板35を所定の順序で積層し、高硬度金属板35の積層体を得る。この積層体を拡散接合するに際し、積層体の外周に、外周と僅かな隙間を有した状態で外周拘束用の金属板を配置する。これらを加熱炉内に設置し、加熱炉内を真空とし、加熱しながらプレス装置を用いて積層体にのみ積層方向に荷重を加えて積層体を拡散接合する。この拡散接合方法では、積層体の外周に金属板が配置されているので、加圧方向と直交する方向への変形量が拘束され、接合強度の高い接合体が得られる。
高熱伝導性金属板37の接合体も同様の方法により製作する。その後、高硬度金属板35の接合体と高熱伝導性金属板37の接合体を積層し、接合体の製作と同様に外周に金属板、又は金属ブロックを配置し、接合体と同様の方法で高硬度金属板35の接合体と高熱伝導性金属板37の接合体を拡散接合する。
強度、熱膨張係数、クリープ特性等が大きく異なる2種類の金属材料の場合、拡散接合条件、例えば温度、加える荷重も異なる。金属材料を拡散接合する場合、高い接合強度を得るにはその金属材料特性に合った条件で拡散接合することが好ましい。上記方法は、高硬度金属板接合体と高熱伝導性金属板接合体とを別々に製作するので、各々高い接合強度が得られる。高硬度金属板35の接合体と高熱伝導性金属板37の接合体とを拡散接合するときは、接合面は一つであるので、拡散接合も容易である。
高硬度金属層18及び高熱伝導性金属層19の形状によっては、高硬度金属板接合体と高熱伝導性金属板接合体との段差をなくした後に拡散接合した方が、接合が容易となり、かつ接合強度が高まる場合もある。このような場合には、高硬度金属板接合体及び高熱伝導性金属板接合体を製作する際、形状加工代を考慮した接合体とし、各々の接合体の接合面(境界面24)を、段差をなくす形状加工を行った後に拡散接合する。
また上記実施形態では、鋳造装置を拡散接合法を用いて製造するが、高硬度金属層18と高熱伝導性金属層19、さらには高熱伝導性金属層19と金属層63とを、ろう付けにより接合し鋳造装置を製造することもできる。
上記第1実施形態に示す金型1は、キャビティ面15上の全領域を均一温度にすることを目的としたものであるが、成形によっては、キャビティ面15の特定の領域のみについて意図的に温度を変化させたい状況も存在する。例えば、ダイカスト成形、半凝固ダイカスト成形、半溶融ダイカスト成形において、溶湯が流れにくい薄肉部分周辺のみを高温にすることにより、溶湯の粘度を下げて流動性を改善する場合などがある。このように、キャビティ面15における特定の部位のみを他の領域とは異なる温度に制御したい場合には、目的とする温度が異なる個々の領域において、それぞれが所定の温度となるように、高熱伝導性金属層19と高硬度金属層18の厚さを制御すればよい。
また上記第1実施形態では、金型1を熱伝導度の異なる2つの層を積層し形成しているが、場合によっては、熱伝導度の異なる層を3層積層してもよい。例えば、キャビティ面15が設けられる高硬度金属層18と高熱伝導性金属層19との冶金接合が難しい場合、高硬度金属層18と高熱伝導性金属層19との間に他の金属層を介在させることで、3層間の接合強度を高めることができる。
また熱伝導度の異なる2つの層を積層する場合、キャビティ面15の形状に応じて領域で積層する金属層の材質を変えてもよい。例えば中央部には、高硬度金属層18と高熱伝導性金属層19とを積層し、周辺部は、高硬度金属層18の代わりに異なる熱伝導度の高硬度金属層と高熱伝導性金属層19とを積層してもよい。このように熱伝導度の異なる金属層を用いることで、金型の設計自由度が高まり、よりサイクルタイムを短縮することもできる。
また上記実施形態では、可動型9、10を高硬度金属層18および高熱伝導性金属層19からなる複合層20で形成する例を示したが、可動型9、10に代え固定型7を複合層としてもよく、さらには可動型9、10及び固定型7の両方を複合層としてもよい。また金型自身が過熱される心配が少ない場合や金型の温度精度がさほど要求されない場合は、分流子51のみの冷却としても良い。
また上記実施形態では金型を冷却する場合のみを示したが、必要に応じて流路に加熱用の媒体を流してもよい。例えば、鋳造開始時に加熱油などにより金型の予熱を行うことで初期の捨て打ちを減少させたり、製品の薄肉部に相当する金型部分を加熱し、溶湯の凝固時間を適度に延長させることによって、割れや湯じわおよび表面のピンホールなどを防止し、鋳肌の出来栄えを向上させるといった効果を得ることができる。
また第3実施形態の射出スリーブ62では、冷却流路を螺旋状としているが、冷却流路の配置は、それに限定されるものではない。例えば冷却流路は、平行状やジグザグ状に配置されていてもよく、冷却水供給母管と冷却水排水母管との間を冷却管で結んだ構成からなる冷却流路であってもよい。
また上記実施形態では、鋳造装置としてダイカスト金型、ダイカスト用鋳造装置、半凝固ダイカスト用鋳造装置を示したが、本発明は、通常のダイカスト法、半凝固ダイカスト法以外に、真空ダイカスト法、無孔性ダイカスト法、スクイーズキャスティング法、局部加圧ダイカスト法の装置として、又は重力鋳造(金型鋳造法)の装置として好適に使用することができる。重力鋳造の金型においては、通常、型は上型、下型と呼ばれるが、本実施形態のダイカスト金型の固定型及び可動型を上型及び下型と考えればよい。また本発明の金型は、直彫り金型、入れ子式金型など金型の種類によらず適用可能である。
1:鋳造金型(金型)
2:鋳造装置
3:鋳造装置
4:鋳造装置
5:ダイカスト金型
6:ダイカスト金型
7:固定型
9:可動型
10:可動型
11:キャビティ部
12:突出部
13:キャビティ面
15:キャビティ面
18:高硬度金属層
19:高熱伝導性金属層
20:複合層
22:異種金属の積層面(界面)
23:積層面と直交する異種金属界面
24:異種材料の境界面
25:平行な界面
26:傾斜した界面
27:冷却流路
28:冷却管
33:金属板積層体
34:金属板積層体の積層面
35:金属板
37:金属板
38:金属ブロック
39:金型外形部
43:負荷方向
45:外枠材
47:くさび形板材
49:金型外形部
51:分流子
53:溶湯接触面
55:冷却管
61:射出スリーブ
62:射出スリーブ
63:金属層
64:複合層
65:冷却流路
66:射出スリーブの内壁面
68:溶湯口
69:高熱伝導性金属層と高硬度金属層との境界部
72:高硬度金属材
73:高熱伝導性金属材
74:金属材
75:芯材
76:外筒材
77:水平界面
91:射出プランジャ

Claims (23)

  1. 鋳造金型からなる鋳造装置であって、
    前記鋳造金型は、少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層された複合層を備え、
    キャビティ面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする鋳造装置。
  2. 鋳造金型、前記鋳造金型に取付けられ前記鋳造金型のキャビティ部に溶湯を案内する分流子を備える鋳造装置であって、
    前記鋳造金型及び/又は分流子は、少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層された複合層を備え、
    前記鋳造金型のキャビティ面上及び/又は前記分流子の溶湯接触面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする鋳造装置。
  3. 請求項1又は請求項2に記載の鋳造装置の他に、前記鋳造金型に取付けられ前記鋳造金型に溶湯を供給する射出スリーブと、
    前記射出スリーブに摺動自在に挿通され、供給された溶湯をキャビティ部に射出する射出プランジャと、を備え、
    前記射出スリーブは、少なくとも高熱伝導性金属層及び前記高熱伝導性金属層に比較して熱伝導度の小さい材料で形成された層が積層された複合層を備え、
    前記射出スリーブの内壁面上の全域又は任意の領域を急速に所定温度に成さしめるべく、前記高熱伝導性金属層及び/又は熱伝導度の小さい材料で形成された層の厚さが場所に応じて異なる厚さに設定されていることを特徴とする鋳造装置。
  4. 前記鋳造装置が半凝固ダイカスト用の鋳造装置であり、
    前記射出スリーブが、供給される溶湯を所定の温度に冷却し半凝固金属スラリーにすることを特徴とする請求項3に記載の鋳造装置。
  5. 前記射出スリーブは、給湯口側と反給湯口側とで前記高熱伝導性金属層の厚さが異なり、給湯口側の方が前記高熱伝導性金属層が厚く設定されていることを特徴とする請求項4に記載の鋳造装置。
  6. 前記鋳造金型、前記分流子、前記射出スリーブにおいて、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を含む複数の金属層、前記複数金属層中における各金属層間の境界部のうち、少なくとも1つに冷却及び/又は加熱媒体の流路が設けられていることを特徴とする請求項1から請求項5のいずれか一項に記載の鋳造装置。
  7. 前記冷却及び/又は加熱媒体の流路が、前記キャビティ面及び/又は前記分流子の溶湯接触面を急速かつ均一に所定温度に成さしめるべく、前記キャビティ面及び/又は前記分流子の溶湯接触面の近傍に立体的に配置されていることを特徴とする請求項6に記載の鋳造装置。
  8. 前記高熱伝導性金属層が、純銅、銅合金、純アルミニウム、アルミニウム合金から選択される材種により形成されていることを特徴とする請求項1から請求項7のいずれか一項に記載の鋳造装置。
  9. 前記熱伝導度の小さい材料で形成された層が高硬度金属層からなり、該高硬度金属層の上面に前記キャビティ面が形成され、前記分流子の溶湯接触面及び前記射出スリーブの内壁面が高硬度金属層からなり、該高硬度金属層と前記高熱伝導性金属層とが冶金接合されていることを特徴とする請求項1から請求項8のいずれか一項に記載の鋳造装置。
  10. 前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が、所定の形状に加工された単一又は複数の部材を積層し、該積層体を拡散接合することにより形成されていることを特徴とする請求項1から請求項9のいずれか一項に記載の鋳造装置。
  11. 少なくとも前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが拡散接合又はろう付けにより接合され、又は前記熱伝導度の小さい材料で形成された層及び/又は前記高熱伝導性金属層が電気めっき法又は溶射法により形成されていることを特徴とする請求項1から請求項9のいずれか一項に記載の鋳造装置。
  12. 前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との間に第三の材種からなる中間層を備え、該中間層の線膨張係数が前記熱伝導度の小さい材料の線膨張係数と前記高熱伝導性金属層の線膨張係数との中間の値であることを特徴とする請求項1から請求項11のいずれか一項に記載の鋳造装置。
  13. 前記鋳造装置が、ダイカスト用鋳造装置又は半凝固ダイカスト用鋳造装置又は半溶融ダイカスト用鋳造装置であることを特徴とする請求項1から請求項12のいずれか一項に記載の鋳造装置。
  14. 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数の部材を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、
    所定の組み合わせと順序で積層された熱伝導度の小さい部材と高熱伝導性金属部材とからなる積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  15. 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数の部材を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、
    所定の組み合わせと順序で積層された熱伝導度の小さい部材と高熱伝導性金属部材とからなる積層体の外側を囲むように、前記熱伝導度の小さい部材及び前記高熱伝導性金属部材よりも線膨張係数の小さい材料で製作された外枠材を設置し、前記積層体と前記外枠材との間にくさび形状をした少なくとも一対の板材を挟んで加熱することにより、加熱時における前記外枠材、前記熱伝導度の小さい部材、前記高熱伝導性金属部材及び前記くさび形板材のそれぞれの熱膨張差を利用して外力を負荷することなく積層方向に対して平行な異材界面の拡散接合を行うことを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  16. 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、所定の厚さと輪郭形状に加工された複数の部材を積層し、積層方向に圧力を加えて拡散接合することにより製作する場合において、
    前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層をそれぞれ、所定の厚さと輪郭形状に加工された複数の部材を積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合し製作し、拡散接合した前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、又は拡散接合した前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との接合面を形状加工した後に積層し、外周を拘束した状態で積層方向に荷重を加え拡散接合することを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  17. 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、積層方向に圧力を加えて拡散接合することにより製作する場合において、
    前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層を積層し、該積層体に生じる加熱時の熱ひずみ、及び加圧により生じる積層方向に対して直交方向のひずみを外形部において拘束することによって、積層方向に対して平行な異材界面にも接合圧力を生じせしめ、拡散接合を行うことを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  18. 同一高さに異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とが混在する領域を、各々ブロック材を機械加工し、積層し、該部材を積層方向に圧力を加えて拡散接合することにより製作する場合において、
    ブロック材を機械加工するとき異種金属界面をテーパ状に加工することを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  19. パイプ状部材を互いに挿通し、異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とを含む前記鋳造装置の円筒状部材を拡散接合することにより製作する場合において、
    最も内側のパイプ状部材の内面を先細テーパ状とし、該パイプ状部材に嵌合する先細テーパ状の芯材を挿通し、最も外側のパイプ状部材に嵌合する、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層よりも線膨張係数の小さい材料で製作されたパイプ状部材を被せ、前記芯材の基端部にのみ圧力を加えて拡散接合することを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  20. 最も内側のパイプ状部材及び芯材に代え、中実材を使用し、該中実材の外面を先細テーパ状とし、該中実材と接合するパイプ状部材の内面を該中実材と隙間なく嵌合する先細テーパ状とし、該中実材の基端部にのみ圧力を加えて拡散接合することを特徴とする請求項19に記載の鋳造装置の製造方法。
  21. パイプ状部材を互いに挿通し、異種材料である前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層とを含む前記鋳造装置の円筒状部材を拡散接合することにより製作する場合において、
    最も内側のパイプ状部材に嵌合する、前記高熱伝導性金属層よりも線膨張係数の大きい材料で製作された芯材を挿通し、最も外側のパイプ状部材に嵌合する、前記熱伝導度の小さい材料で形成された層及び前記高熱伝導性金属層よりも線膨張係数の小さい材料で製作されたパイプ状部材を被せ、さらにこれらの長手方向の変形を拘束し、それぞれの熱膨張差を利用することで外力を負荷することなく全方向に荷重を加え拡散接合することを特徴とする請求項1から請求項13のいずれか一項に記載の鋳造装置の製造方法。
  22. さらに前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層との間に、線膨張係数が前記熱伝導度の小さい材料の線膨張係数と前記高熱伝導性金属層の線膨張係数との中間の値の第三の材種からなる中間層を備え、
    前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層に代え、前記熱伝導度の小さい材料で形成された層と前記高熱伝導性金属層と前記中間層、
    前記熱伝導度の小さい部材と前記高熱伝導性金属部材に代え、前記熱伝導度の小さい部材と前記高熱伝導性金属部材と前記中間層を形成する金属部材とすることを特徴とする請求項14から請求項21のいずれか一項に記載の鋳造装置の製造方法。
  23. 請求項1から請求項13のいずれか一項に記載の鋳造装置を利用して、鋳造成形品を製造する方法。
JP2012218589A 2012-09-28 2012-09-28 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法 Pending JP2014069224A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012218589A JP2014069224A (ja) 2012-09-28 2012-09-28 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012218589A JP2014069224A (ja) 2012-09-28 2012-09-28 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法

Publications (1)

Publication Number Publication Date
JP2014069224A true JP2014069224A (ja) 2014-04-21

Family

ID=50744938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012218589A Pending JP2014069224A (ja) 2012-09-28 2012-09-28 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法

Country Status (1)

Country Link
JP (1) JP2014069224A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059952A (ja) * 2014-09-19 2016-04-25 リョービ株式会社 分流子及びこの分流子を用いるダイカスト法
KR20170005668A (ko) * 2015-07-06 2017-01-16 주식회사 유도 히팅부재가 구비된 다이캐스팅 금형
JP2017164791A (ja) * 2016-03-17 2017-09-21 株式会社スグロ鉄工 鋳込口ブッシュおよびそれを備えた鋳造用金型
KR101825399B1 (ko) * 2016-06-08 2018-02-09 한국철도기술연구원 복합소재부재와 복합소재부재 제조장치
KR20230016891A (ko) * 2021-07-27 2023-02-03 주식회사 경안금속 차량 제어기 하우징 제조를 위한 고압다이캐스팅 장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059952A (ja) * 2014-09-19 2016-04-25 リョービ株式会社 分流子及びこの分流子を用いるダイカスト法
KR20170005668A (ko) * 2015-07-06 2017-01-16 주식회사 유도 히팅부재가 구비된 다이캐스팅 금형
KR101725334B1 (ko) * 2015-07-06 2017-04-10 주식회사 유도 히팅부재가 구비된 다이캐스팅 금형
JP2017164791A (ja) * 2016-03-17 2017-09-21 株式会社スグロ鉄工 鋳込口ブッシュおよびそれを備えた鋳造用金型
KR101825399B1 (ko) * 2016-06-08 2018-02-09 한국철도기술연구원 복합소재부재와 복합소재부재 제조장치
KR20230016891A (ko) * 2021-07-27 2023-02-03 주식회사 경안금속 차량 제어기 하우징 제조를 위한 고압다이캐스팅 장치
KR102555462B1 (ko) * 2021-07-27 2023-07-13 주식회사 경안금속 차량 제어기 하우징 제조를 위한 고압다이캐스팅 장치

Similar Documents

Publication Publication Date Title
JP5967834B2 (ja) 樹脂成形用金型、該樹脂成形用金型の製造方法及び樹脂成形品の製造方法
JP2006082096A (ja) 射出成形用積層金型、射出成形方法及びダイカスト用積層金型
JP2014069224A (ja) 鋳造装置、該鋳造装置の製造方法及び鋳造成形品の製造方法
JP6022229B2 (ja) ホットスタンピング成形用金型及びその製作方法
US10155350B2 (en) Mold insert for improved heat transfer
JP5148277B2 (ja) 高速押し出し成型
TWI292728B (en) Liquid-cooled chilled-casting
JP2008049385A (ja) 連続鋳造用鋳型
KR20210094628A (ko) 캐스트인 냉각제 파이프들을 갖는 블록 냉각기들의 전체 열 전도의 장기 안정화를 개선하고, 장기 안정화를 위한 제조 방법들
JP2010194720A (ja) 金型用入れ子、金型用入れ子の製造方法及び樹脂成形用金型
JP4578894B2 (ja) 積層金型の製造方法
KR102398651B1 (ko) 다이캐스팅 금형 냉각 장치
Müller et al. Metal Additive Manufacturing for tooling applications-Laser Beam Melting technology increases efficiency of dies and molds
WO2013100576A1 (ko) 열변위 저감을 위한 공작기계용 베이스 구조물 제조방법 및 그 방법에 의해 제조된 베이스 구조물
CN105208835A (zh) 一种弯折铝管水冷散热压铸腔体的加工工艺
JP2010194719A (ja) スプルーブッシュ及びスプルーブッシュの製造方法
JP5195328B2 (ja) 金型、金型を用いた成形方法、及び、金型の製造方法
CN109080055A (zh) 用于模压淬火工具的成形工具部件的制造方法
US20220016685A1 (en) Production method for a shape-imparting tool part of a forming tool
JP7242286B2 (ja) ホットランナーノズル、射出成形金型、樹脂成形品の製造方法、ホットランナーノズルの製造方法
JP4508150B2 (ja) 鋳造用金型及びその冷却方法
CN111842849B (zh) 工件加工模具、工件加工方法及埋管结构
WO2018138076A1 (en) Pressing tool for press hardening and the use thereof for production of press hardened sheet metal components
JP3657600B2 (ja) ダイキャスト用金型の冷却路形成方法、シリンダブロックのウォータジャケット用入子金型及び圧縮機用スクロール製造用金型
KR102555462B1 (ko) 차량 제어기 하우징 제조를 위한 고압다이캐스팅 장치