WO2012132876A1 - 炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム - Google Patents

炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム Download PDF

Info

Publication number
WO2012132876A1
WO2012132876A1 PCT/JP2012/056399 JP2012056399W WO2012132876A1 WO 2012132876 A1 WO2012132876 A1 WO 2012132876A1 JP 2012056399 W JP2012056399 W JP 2012056399W WO 2012132876 A1 WO2012132876 A1 WO 2012132876A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
synthesis gas
synthesis
flow rate
reaction vessel
Prior art date
Application number
PCT/JP2012/056399
Other languages
English (en)
French (fr)
Inventor
大西 康博
和彦 田坂
智之 三栗谷
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国際石油開発帝石株式会社
Jx日鉱日石エネルギー株式会社
石油資源開発株式会社
コスモ石油株式会社
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国際石油開発帝石株式会社, Jx日鉱日石エネルギー株式会社, 石油資源開発株式会社, コスモ石油株式会社, 新日鉄エンジニアリング株式会社 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to BR112013024773A priority Critical patent/BR112013024773B1/pt
Priority to EA201391277A priority patent/EA023881B1/ru
Priority to CN201280015171.0A priority patent/CN103443249B/zh
Priority to CA2830598A priority patent/CA2830598C/en
Priority to EP12763512.6A priority patent/EP2692831B1/en
Priority to AP2013007133A priority patent/AP4062A/en
Priority to AU2012234879A priority patent/AU2012234879B2/en
Priority to US14/006,998 priority patent/US9434657B2/en
Publication of WO2012132876A1 publication Critical patent/WO2012132876A1/ja
Priority to ZA2013/07253A priority patent/ZA201307253B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0405Apparatus
    • C07C1/041Reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0033Optimalisation processes, i.e. processes with adaptive control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • B01J2208/00646Means for starting up the reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/00202Sensing a parameter of the reaction system at the reactor outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4031Start up or shut down operations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects

Definitions

  • the present invention relates to a hydrocarbon synthesis reaction apparatus, a startup method thereof, and a hydrocarbon synthesis reaction system.
  • FT synthesis reaction a Fischer-Tropsch synthesis reaction
  • a reaction vessel containing a slurry in which solid catalyst particles (for example, a cobalt catalyst) are suspended in a medium liquid (for example, a liquid hydrocarbon).
  • the hydrocarbon is synthesized by subjecting carbon monoxide gas and hydrogen gas in the synthesis gas to an FT synthesis reaction.
  • FIG. 7 shows a schematic configuration of a conventional hydrocarbon synthesis reaction apparatus.
  • the first compressor 34 compresses and supplies the synthesis gas (SG) delivered from the synthesis gas delivery means 3 for delivering synthesis gas mainly composed of carbon monoxide gas and hydrogen gas.
  • the synthesis gas supply passage 31 and a catalyst slurry in which solid catalyst particles are suspended in a liquid are accommodated, and hydrocarbons are synthesized by contact between the synthesis gas supplied from the synthesis gas supply passage 31 and the catalyst slurry.
  • Patent Document 1 A hydrocarbon synthesis reaction apparatus equipped with such a recirculation path (recycling line) is disclosed in Patent Document 1, for example.
  • nitrogen which is an inert gas
  • the circulation operation is performed with a certain amount of nitrogen circulation secured.
  • the nitrogen gas is gradually replaced with synthesis gas, and the synthesis gas amount is kept at a lower flow rate (for example, 70%) than the rated value.
  • the reactivity (conversion rate) is increased by raising the temperature of the reaction vessel 30, and while the stable reaction state is confirmed, the synthesis gas introduction amount is loaded up to 100% and the operation is shifted to the rated operation. .
  • the present invention has been made in view of the above-described circumstances, and an object thereof is a hydrocarbon synthesis reactor capable of starting up a system in a short time while ensuring a stable flow state and reaction state of a catalyst. And its start-up method, and hydrocarbon combination system.
  • the hydrocarbon synthesis reaction apparatus of the present invention is a synthesis gas that is supplied by compressing the synthesis gas delivered from synthesis gas delivery means for delivering synthesis gas mainly composed of carbon monoxide gas and hydrogen gas by a first compressor.
  • a gas-liquid separator that gas-liquid separates unreacted synthesis gas and hydrocarbons derived from the reaction vessel, and off-gas discharge that discharges a part of the gas separated by the gas-liquid separator as off-gas to the outside of the system
  • the gas-liquid separator during the start-up operation in which the introduction
  • the first recirculation path is used as an inert gas circulation path for replacing the inside of the system with an inert gas at the time of startup of the reaction vessel and fluidizing the catalyst slurry.
  • an inert gas circulation path that communicates from the gas-liquid separator to the suction side of the first compressor, and the inert gas circulation path may also be used as the second recirculation path.
  • the synthesis gas delivered from the synthesis gas delivery means is provided upstream of a location where the synthesis gas is introduced to the suction side of the first compressor, and is supplied from the second recirculation path.
  • the unmixed synthesis gas joins and mixes with the synthesis gas sent out from the synthesis gas delivery means, and the temperature of the mixed gas mixed in the joining and mixing unit is at least not from the second recirculation path.
  • a temperature control means for controlling the temperature to be equal to or higher than the temperature of the reactive synthesis gas may be further provided.
  • the hydrocarbon synthesis reaction system of the present invention is a hydrocarbon synthesis reaction system for producing a liquid fuel base material from a hydrocarbon raw material, the hydrocarbon synthesis reaction device and the hydrocarbon produced by the hydrocarbon synthesis reaction device.
  • a product purification unit for purifying a liquid fuel substrate from hydrogen, and the synthesis gas delivery means reforms the hydrocarbon raw material to produce the synthesis gas, and delivers the synthesis gas to the synthesis gas supply path A synthesis gas generation unit.
  • the synthesis gas sent from the synthesis gas sending means for sending the synthesis gas mainly composed of carbon monoxide gas and hydrogen gas is compressed and supplied by the first compressor.
  • a catalyst slurry formed by suspending solid catalyst particles in a liquid, and a hydrocarbon is synthesized by contact between the synthesis gas supplied from the synthesis gas supply path and the catalyst slurry.
  • the inside of the system is replaced with synthesis gas while discharging off-gas from the off-gas discharge path, and the synthesis gas supply flow rate from the synthesis gas supply path is set to a constant flow rate smaller than the processing flow rate during rated operation.
  • the third step of gradually decreasing the flow rate of the unreacted synthesis gas to be circulated and finally increasing the flow rate of the synthesis gas introduced into the reaction vessel through the synthesis gas supply path to the processing flow rate of the synthesis gas to be processed during rated operation.
  • the amount of synthesis gas introduced into the reaction vessel is increased during start-up operation in which it is necessary to gradually increase the flow rate of the synthesis gas from the low flow rate for safety to the rated flow rate while confirming the stability of the reaction. Since the unreacted synthesis gas can be introduced to the suction side of the first compressor to be compressed through the second recirculation path, the unreacted synthesis is performed for the insufficient flow rate relative to the rated flow rate of the synthesis gas when the first compressor is rated. Can be supplemented with gas.
  • the first compressor is rated for operation, and a mixed gas composed of synthesis gas and unreacted synthesis gas is used.
  • a mixed gas composed of synthesis gas and unreacted synthesis gas is used.
  • the system is replaced with an inert gas before introducing the synthesis gas into the reaction vessel, and the inert gas is circulated at the rated flow rate of the first compressor via the second recirculation path.
  • the inert gas is circulated at the rated flow rate of the first compressor via the second recirculation path.
  • the circulation path used as the inert gas circulation path is also used as the second recirculation path for circulating the unreacted synthesis gas. Can be suppressed.
  • the present invention it is possible to prevent trouble caused by condensation of a small amount of oil contained in unreacted synthesis gas when the unreacted synthesis gas is being circulated. As a result, the first compressor is stabilized. Driving can be ensured.
  • the liquid fuel base material that is the final product can be stably produced.
  • the inert gas is circulated at the start-up at the rated flow rate of the first compressor through the second recirculation path. It is possible to shift to introduction of synthesis gas.
  • the first compressor can be rated and the mixed gas of the synthesis gas and the unreacted synthesis gas can be introduced into the reaction vessel at the rated flow rate. Therefore, it is possible to maintain a stable flow state in the reaction vessel, thereby increasing the reactivity (conversion rate) by gradually raising the temperature of the reaction vessel with little consideration of the influence of the flow state.
  • the flow rate of the synthesis gas can be safely increased to the rated flow rate. Accordingly, the monitoring phenomenon requiring attention at start-up is reduced, and the driving operation is facilitated.
  • the flow state in the reaction vessel can be kept constant, the time required to shift to the rated stable operation can be shortened. Moreover, since the performance can be fully utilized without operating the first compressor for compressing the synthesis gas at a low flow rate, the efficiency can be improved.
  • FIG. 1 is a system diagram showing the overall configuration of a liquid fuel synthesis system including an embodiment of the present invention. It is a systematic diagram which shows schematic structure of the hydrocarbon synthesis reaction apparatus shown in FIG. It is a characteristic view which shows the flow volume change of each gas at the time of implementing the startup method of embodiment of this invention in the apparatus of FIG. It is a characteristic view which shows the ratio of the load of a synthesis gas (SG) at the time of implementing the start-up method of embodiment of this invention in the apparatus of FIG. 2, the total flow volume change of a reaction container, and CO conversion rate. It is a characteristic view which shows the comparative example with respect to FIG. It is a characteristic view which shows the comparative example with respect to FIG. It is a systematic diagram which shows schematic structure of the conventional hydrocarbon synthesis reaction apparatus.
  • SG synthesis gas
  • a liquid fuel synthesis system (hydrocarbon synthesis reaction system) 1 is a plant facility that executes a GTL process for converting a hydrocarbon feedstock such as natural gas into liquid fuel.
  • the liquid fuel synthesis system 1 includes a synthesis gas generation unit 3, an FT synthesis unit (hydrocarbon synthesis reaction apparatus) 5, and an upgrading unit 7.
  • the synthesis gas generation unit 3 reforms natural gas that is a hydrocarbon raw material to produce synthesis gas containing carbon monoxide gas and hydrogen gas.
  • the FT synthesis unit 5 generates a liquid hydrocarbon compound from the produced synthesis gas by an FT synthesis reaction.
  • the upgrading unit 7 hydrogenates and refines liquid hydrocarbon compounds synthesized by the FT synthesis reaction to produce liquid fuel and other products (naphtha, kerosene, light oil, wax, etc.).
  • liquid fuel and other products nophtha, kerosene, light oil, wax, etc.
  • the synthesis gas generation unit 3 mainly includes, for example, a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26.
  • the desulfurization reactor 10 is composed of a hydrodesulfurization apparatus or the like and removes sulfur components from natural gas as a raw material.
  • the reformer 12 reforms the natural gas supplied from the desulfurization reactor 10 to produce a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2 ) as main components.
  • the exhaust heat boiler 14 recovers the exhaust heat of the synthesis gas generated in the reformer 12 and generates high-pressure steam.
  • the gas-liquid separator 16 separates water heated by heat exchange with the synthesis gas in the exhaust heat boiler 14 into a gas (high-pressure steam) and a liquid.
  • the gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarboxylation device 20.
  • the decarboxylation device 20 includes an absorption tower (second absorption tower) 22 and a regeneration tower 24. In the absorption tower 22, the carbon dioxide gas contained in the synthesis gas supplied from the gas-liquid separator 18 is absorbed by the absorption liquid. In the regeneration tower 24, the absorbing liquid that has absorbed the carbon dioxide gas diffuses the carbon dioxide gas, and the absorbent is regenerated.
  • the hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20. However, the decarboxylation device 20 may not be provided depending on circumstances.
  • the reformer 12 for example, natural gas is reformed by carbon dioxide and steam using the steam / carbon dioxide reforming method represented by the following chemical reaction formulas (1) and (2), and carbon monoxide gas A high-temperature synthesis gas mainly composed of hydrogen gas is produced.
  • the reforming method in the reformer 12 is not limited to the steam / carbon dioxide reforming method.
  • steam reforming method, partial oxidation reforming method using oxygen (POX), autothermal reforming method (ATR) which is a combination of partial oxidation reforming method and steam reforming method, carbon dioxide gas reforming method, etc. It can also be used.
  • the hydrogen separator 26 is provided on a branch line branched from a main pipe connecting the decarbonator 20 or the gas-liquid separator 18 and the bubble column reactor 30.
  • the hydrogen separator 26 can be constituted by, for example, a hydrogen PSA (Pressure Swing Adsorption) device that performs adsorption and desorption of hydrogen using a pressure difference.
  • This hydrogen PSA apparatus has adsorbents (zeolite adsorbent, activated carbon, alumina, silica gel, etc.) in a plurality of adsorption towers (not shown) arranged in parallel.
  • the hydrogen gas separation method in the hydrogen separator 26 is not limited to the pressure fluctuation adsorption method using the hydrogen PSA device.
  • a hydrogen storage alloy adsorption method, a membrane separation method, or a combination thereof may be used.
  • the hydrogen storage alloy method is, for example, a hydrogen storage alloy having the property of adsorbing / releasing hydrogen by being cooled / heated (TiFe, LaNi 5 , TiFe 0.7 to 0.9 Mn 0.3 to 0.1 , Alternatively, TiMn 1.5 or the like) is used to separate hydrogen gas.
  • a hydrogen storage alloy method for example, in a plurality of adsorption towers containing a hydrogen storage alloy, hydrogen adsorption by cooling the hydrogen storage alloy and hydrogen release by heating the hydrogen storage alloy are alternately repeated. Thereby, hydrogen gas in the synthesis gas can be separated and recovered.
  • the membrane separation method is a method of separating hydrogen gas having excellent membrane permeability from a mixed gas using a membrane made of a polymer material such as aromatic polyimide. Since this membrane separation method does not require a phase change to be separated, the energy required for operation is small and the running cost is low. Further, since the structure of the membrane separation apparatus is simple and compact, the equipment cost is low and the required area of the equipment is small. Further, the separation membrane has no driving device and has a wide stable operation range, so that there is an advantage that maintenance management is easy.
  • the FT synthesis unit 5 mainly includes, for example, a bubble column reactor (reaction vessel) 30, a gas / liquid separator 40, a separator 41, a gas / liquid separator 38, and a first rectifying tower 42.
  • the bubble column reactor 30 synthesizes a liquid hydrocarbon compound from the synthesis gas produced by the synthesis gas generation unit 3, that is, carbon monoxide gas and hydrogen gas, by an FT synthesis reaction.
  • the gas-liquid separator 40 separates water heated through the heat transfer tube 39 provided in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid.
  • the separator 41 is connected to the center of the bubble column reactor 30 and separates the catalyst and the liquid hydrocarbon compound.
  • the gas-liquid separator 38 is connected to the top of the bubble column reactor 30, and separates the liquid hydrocarbon compound and the gas containing the unreacted synthesis gas by cooling the unreacted synthesis gas and the gaseous hydrocarbon compound. To do. Since this gas contains unnecessary components such as methane in the system, a part of the gas is discharged out of the system from the offgas discharge passage 37 as an offgas.
  • the first fractionator 42 fractionates the liquid hydrocarbon compound supplied from the bubble column reactor 30 through the separator 41 and the gas-liquid separator 38 into each fraction.
  • the bubble column reactor 30 is an example of a reactor that synthesizes a liquid hydrocarbon compound from synthesis gas, and serves as an FT synthesis reactor that synthesizes a liquid hydrocarbon compound from synthesis gas by an FT synthesis reaction.
  • the bubble column reactor 30 is, for example, a bubble column type slurry bed reactor in which a slurry mainly composed of catalyst particles and medium oil (medium liquid, liquid hydrocarbon) is accommodated inside a column type container. Composed.
  • the bubble column reactor 30 synthesizes a gaseous or liquid hydrocarbon compound from a synthesis gas by an FT synthesis reaction.
  • the synthesis gas as the raw material gas is supplied as bubbles from the sparger at the bottom of the bubble column reactor 30, and the catalyst particles are suspended in the medium oil. Pass through the slurry. Then, as shown in the following chemical reaction formula (3) in the suspended state, the hydrogen gas contained in the synthesis gas and the carbon monoxide gas react to synthesize a hydrocarbon compound.
  • CO conversion rate the ratio of the carbon monoxide gas consumed in the reactor to the carbon monoxide gas (CO) supplied to the FT synthesis unit 5
  • This CO conversion rate is determined by the molar flow rate of carbon monoxide gas (syngas CO molar flow rate) in the gas flowing into the FT synthesis unit 5 per unit time and from the FT synthesis unit 5 through the off-gas discharge passage 37 per unit time. It is calculated as a percentage from the molar flow rate of carbon monoxide gas (off-gas CO molar flow rate) in the off-gas extracted. That is, the CO conversion rate is obtained by the following equation (4).
  • the bubble column reactor 30 is a heat exchanger type in which a heat transfer tube 39 is disposed.
  • water Boiler Feed Water
  • the FT synthesis unit 5 is mainly composed of carbon monoxide gas and hydrogen gas in addition to the reaction vessel 30, the gas-liquid separator 38, and the off-gas discharge passage 37, as schematically shown in FIG.
  • the synthesis gas supplied from the synthesis gas generation unit 3 (synthesis gas delivery means) for delivering synthesis gas is compressed by the first compressor 34 and supplied, and the gas after the separation by the gas-liquid separator 38 is not supplied.
  • a first recirculation passage 32 that compresses the reaction synthesis gas by the second compressor 35 and recirculates the reaction synthesis gas to the reaction vessel 30, and a treatment flow rate smaller than the treatment flow rate of the synthesis gas to be treated during the rated operation (the treatment flow rate at the rated time is 100).
  • % For example, from 70% flow rate) to the synthesis gas processing flow rate during rated operation (100% flow rate), the amount of synthesis gas introduced from the synthesis gas generation unit 3 into the reaction vessel 30.
  • the remaining unreacted synthesis gas that is introduced into the first recirculation path 32 out of the unreacted synthesis gas separated by the gas-liquid separator 38 is supplied to the suction side of the first compressor 34.
  • one of the inert gas circulation paths circulated in the system at the start-up of the reaction vessel 30 also serves as the second recirculation path 33.
  • a suction strainer 36 for removing impurities in the introduced gas is provided at a location where the synthesis gas sent from the synthesis gas generation unit 3 is introduced to the suction side of the first compressor 34.
  • a merging and mixing unit 45 is provided on the upstream side of the suction strainer 36 to merge and mix the unreacted synthesis gas from the second recirculation path 33 with the synthesis gas sent from the synthesis gas generation unit 3. It has been.
  • temperature control means 47 for controlling the temperature Tc of the mixed gas mixed in the merging and mixing unit 45 to be at least equal to or higher than the temperature Ta of the unreacted synthesis gas from the second recirculation path 33. It is equipped.
  • the upgrading unit 7 includes, for example, a wax fraction hydrocracking reactor 50, a middle fraction hydrotreating reactor 52, a naphtha fraction hydrotreating reactor 54, and gas-liquid separators 56, 58, 60. And a second rectifying column 70 and a naphtha stabilizer 72.
  • the wax fraction hydrocracking reactor 50 is connected to the bottom of the first fractionator 40.
  • the middle distillate hydrotreating reactor 52 is connected to the center of the first rectifying column 40.
  • the naphtha fraction hydrotreating reactor 54 is connected to the top of the first fractionator 40.
  • the gas-liquid separators 56, 58 and 60 are provided corresponding to the hydrogenation reactors 50, 52 and 54, respectively.
  • the second rectification column 70 fractionates the liquid hydrocarbon compound supplied from the gas-liquid separators 56 and 58.
  • the naphtha stabilizer 72 rectifies the liquid hydrocarbon compound of the naphtha fraction supplied from the gas-liquid separator 60 and fractionated from the second fractionator 70.
  • the naphtha stabilizer 72 discharges butane and lighter components than butane as off-gas, and collects components having 5 or more carbon atoms as naphtha of the product.
  • the liquid fuel synthesis system 1 is supplied with natural gas (main component is CH 4 ) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
  • the synthesis gas generation unit 3 reforms the natural gas to produce a synthesis gas (a mixed gas containing carbon monoxide gas and hydrogen gas as main components).
  • the natural gas is introduced into the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26.
  • the sulfur content contained in the natural gas is converted into hydrogen sulfide by the introduced hydrogen gas and the hydrodesulfurization catalyst.
  • the produced hydrogen sulfide is adsorbed and removed by a desulfurizing agent such as ZnO.
  • the natural gas (which may contain carbon dioxide) desulfurized in this way is generated in carbon dioxide (CO 2 ) gas supplied from a carbon dioxide supply source (not shown) and the exhaust heat boiler 14. After being mixed with water vapor, it is supplied to the reformer 12.
  • the natural gas is reformed by carbon dioxide and steam by the steam / carbon dioxide reforming method described above, and a high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas is produced.
  • burner fuel gas and air (air) provided in the reformer 12 are supplied to the reformer 12.
  • the heat of combustion of the fuel gas in the burner covers the reaction heat necessary for the steam / carbon dioxide gas reforming reaction, which is an endothermic reaction.
  • the high-temperature synthesis gas (for example, 900 ° C., 2.0 MPaG) produced in the reformer 12 in this way is supplied to the exhaust heat boiler 14 and exchanges heat with water passing through the exhaust heat boiler 14. It is cooled (for example, 400 ° C.).
  • the exhaust heat of the synthesis gas is recovered with water.
  • the water heated by the synthesis gas in the exhaust heat boiler 14 is supplied to the gas-liquid separator 16.
  • the water heated by the synthesis gas is separated into high-pressure steam (for example, 3.4 to 10.0 MPaG) and water in the gas-liquid separator 16.
  • the separated high-pressure steam is supplied to the reformer 12 or other external device, and the separated water is returned to the exhaust heat boiler 14.
  • the synthesis gas cooled in the exhaust heat boiler 14 is supplied to the absorption tower 22 of the decarbonation apparatus 20 or the bubble column reactor 30 after the condensed liquid is separated and removed in the gas-liquid separator 18. Is done.
  • the carbon dioxide contained in the synthesis gas is absorbed by the absorption liquid stored in the absorption tower 22, and the carbon dioxide gas is removed from the synthesis gas.
  • the absorption liquid that has absorbed carbon dioxide gas in the absorption tower 22 is discharged from the absorption tower 22 and introduced into the regeneration tower 24.
  • the absorbing solution introduced into the regeneration tower 24 is heated, for example, with steam and stripped to release carbon dioxide.
  • the released carbon dioxide gas is discharged from the regeneration tower 24, introduced into the reformer 12, and reused in the reforming reaction.
  • a part of the synthesis gas from which the carbon dioxide gas is separated by the decarboxylation device 20 is also supplied to the hydrogen separation device 26.
  • the hydrogen gas contained in the synthesis gas is separated by the adsorption and desorption (hydrogen PSA) using the pressure difference as described above.
  • the separated hydrogen is subjected to various hydrogen utilization reactions in which a predetermined reaction is performed using hydrogen in the liquid fuel synthesizing system 1 from a gas holder (not shown) or the like via a compressor (not shown). It is continuously supplied to the apparatus (for example, desulfurization reactor 10, wax fraction hydrocracking reactor 50, middle fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.).
  • the FT synthesis unit 5 synthesizes a liquid hydrocarbon compound from the synthesis gas produced by the synthesis gas generation unit 3 by an FT synthesis reaction.
  • the synthesis gas from which the carbon dioxide gas has been separated in the decarboxylation device 20 is introduced into the bubble column reactor 30 and passes through the slurry containing the catalyst accommodated in the bubble column reactor 30.
  • carbon monoxide and hydrogen gas contained in the synthesis gas react with each other by the above-described FT synthesis reaction to generate a hydrocarbon compound.
  • the reaction heat of the FT synthesis reaction is recovered by the water passing through the heat transfer tube 39 of the bubble column reactor 30, and the water heated by the reaction heat is vaporized to become steam.
  • This water vapor is supplied to the gas-liquid separator 40 and separated into condensed water and gas, and the water is returned to the heat transfer tube 39, and the gas is externally supplied as medium pressure steam (eg, 1.0 to 2.5 MPaG). Supplied to the device.
  • medium pressure steam eg, 1.0 to 2.5 MPaG
  • the liquid hydrocarbon compound synthesized in the bubble column reactor 30 is discharged from the center of the bubble column reactor 30 as a slurry containing catalyst particles and introduced into the separator 41.
  • the separator 41 the introduced slurry is separated into a catalyst (solid content) and a liquid content containing a liquid hydrocarbon compound. Part of the separated catalyst is returned to the bubble column reactor 30, and the liquid component is introduced into the first rectifying column 42.
  • a gas by-product containing the synthesis gas that has not reacted in the FT synthesis reaction and the gaseous hydrocarbon compound produced by the FT synthesis reaction is discharged.
  • the gas by-product discharged from the bubble column reactor 30 is introduced into the gas-liquid separator 38.
  • the introduced gas by-product is cooled and separated into a condensed liquid hydrocarbon compound and a gas component.
  • the separated liquid hydrocarbon compound is discharged from the gas-liquid separator 38 and introduced into the first rectifying column 42.
  • the separated gas component is discharged from the gas-liquid separator 38 and a part thereof is reintroduced into the bubble column reactor 30.
  • unreacted synthesis gas (CO and H 2 ) contained in the reintroduced gas is reused for the FT synthesis reaction.
  • a part of the gas discharged from the gas-liquid separator 38 is discharged as off-gas from the off-gas discharge passage 37 and used as fuel, or fuel equivalent to LPG (liquefied petroleum gas) is used from this gas. It is collected.
  • the liquid hydrocarbon compound (having various carbon numbers) supplied from the bubble column reactor 30 through the separator 41 and the gas-liquid separator 38 as described above is converted into a naphtha fraction. (Boiling point lower than about 150 ° C.), middle fraction (boiling point about 150-360 ° C.) and wax fraction (boiling point over about 360 ° C.).
  • the wax fraction of liquid hydrocarbon compounds discharged from the bottom of the first fractionator 42 (mainly C 22 or more) is introduced into the wax fraction hydrocracking reactor 50.
  • the middle distillate liquid hydrocarbon compound (mainly C 11 to C 21 ) corresponding to kerosene / light oil discharged from the center of the first fractionator 42 is introduced into the middle distillate hydrotreating reactor 52.
  • the liquid hydrocarbon compound (mainly C 5 to C 10 ) of the naphtha fraction discharged from the top of the first rectifying column 42 is introduced into the naphtha fraction hydrotreating reactor 54.
  • Wax fraction hydrocracking reactor 50 carbon atoms discharged from the bottom of high wax fraction of liquid hydrocarbon compounds of the first fractionator 42 (approximately C 22 or more), from the hydrogen separator 26 Hydrocracking using the supplied hydrogen gas to reduce the carbon number to 21 or less.
  • this hydrocracking reaction the C—C bond of a hydrocarbon compound having a large number of carbon atoms is broken. Thereby, a hydrocarbon compound having a large number of carbon atoms is converted into a hydrocarbon compound having a small number of carbon atoms.
  • a linear saturated hydrocarbon compound normal paraffin
  • isoparaffin is hydroisomerized to form a branched saturated hydrocarbon compound (isoparaffin).
  • the reaction to produce is also advanced. Thereby, the low-temperature fluidity
  • the product containing the liquid hydrocarbon compound hydrocracked and discharged from the wax fraction hydrocracking reactor 50 is introduced into the gas-liquid separator 56 and separated into a gas and a liquid.
  • the separated liquid hydrocarbon compound is introduced into the second rectification column 70, and the separated gas component (including hydrogen gas) is separated into the middle distillate hydrotreating reactor 52 and the naphtha distillate hydrotreating reaction. Introduced into the vessel 54.
  • the middle fraction of liquid hydrocarbon compounds carbon atoms ejected from the central portion of the first fractionator 42 is equivalent to the kerosene and gas oil is medium (approximately C 11 ⁇ C 21 ) is hydrorefined.
  • the hydrogen gas supplied from the hydrogen separator 26 through the wax distillate hydrocracking reactor 50 is used for hydrotreating.
  • an olefin contained in the liquid hydrocarbon compound is hydrogenated to produce a saturated hydrocarbon compound
  • an oxygen-containing compound such as an alcohol contained in the liquid hydrocarbon compound is hydrogenated. Deoxygenated and converted to saturated hydrocarbon compound and water.
  • a hydroisomerization reaction in which a linear saturated hydrocarbon compound (normal paraffin) is isomerized and converted to a branched saturated hydrocarbon compound (isoparaffin) proceeds, Improves low-temperature fluidity required as fuel oil.
  • the product containing the hydrorefined liquid hydrocarbon compound is separated into a gas and a liquid by a gas-liquid separator 58.
  • the separated liquid hydrocarbon compound is introduced into the second rectification column 70, and the gas component (including hydrogen gas) is reused in the hydrogenation reaction.
  • the naphtha fraction hydrotreating reactor 54 the upper ejected fewer naphtha fraction of liquid hydrocarbon compounds carbons of the first fractionator 42 (approximately of C 10 or less) is hydrotreated.
  • the hydrogen gas supplied from the hydrogen separator 26 via the wax fraction hydrocracking reactor 50 is used for hydrotreating.
  • the hydrorefining reaction of the naphtha fraction mainly hydrogenation of olefins and hydrodeoxygenation of oxygen-containing compounds such as alcohols proceed.
  • the product containing the hydrorefined liquid hydrocarbon compound is separated into a gas and a liquid by the gas-liquid separator 60.
  • the separated liquid hydrocarbon compound is introduced into the naphtha stabilizer 72, and the separated gas component (including hydrogen gas) is reused in the hydrogenation reaction.
  • the wax fraction hydrocracking reactor 50 and the middle distillate hydrotreating reactor 52 C 10 The following hydrocarbon compounds the supplied liquid hydrocarbon compounds from (boiling point Is lower than about 150 ° C., kerosene (boiling point is about 150 to 250 ° C.), light oil (boiling point is about 250 to 360 ° C.), and undecomposed wax content (boiling point) from the wax fraction hydrocracking reactor 50. (Over about 360 ° C.). An undecomposed wax fraction is obtained from the bottom of the second rectification tower 70 and is recycled upstream of the wax fraction hydrocracking reactor 50. Kerosene and light oil are discharged from the center of the second rectifying tower 70. On the other hand, hydrocarbon compounds of C 10 or less are discharged from the top of the second rectifying column 70 and introduced into the naphtha stabilizer 72.
  • the hydrocarbon compound of C 10 or less supplied from the naphtha fraction hydrotreating reactor 54 and fractionated in the second rectifying column 70 is distilled to obtain a naphtha as a product. (C 5 -C 10 ) is obtained.
  • high-purity naphtha is discharged from the bottom of the naphtha stabilizer 72.
  • offgas carbon number of target products mainly composed of hydrocarbon compounds equal to or less than a predetermined number (C 4 or less) is discharged. This off gas is used as a fuel gas, or fuel equivalent to LPG is recovered from this off gas.
  • a method called spillback that returns the discharge side of the compressor to the suction side is mainly employed. Therefore, in order to realize a flow rate of 70%, a spillback of 30% is performed while actually operating at a capacity of 100%.
  • FIG. 3 is a characteristic diagram showing a change in the flow rate of each gas when the start-up method of the embodiment of the present invention is performed
  • FIG. 4 shows the ratio of the synthesis gas (SG) load at that time and the total flow rate of the reaction vessel. It is a characteristic view which shows a change and CO conversion rate.
  • 5 is a characteristic diagram showing a comparative example for FIG. 3
  • FIG. 6 is a characteristic diagram showing a comparative example for FIG.
  • the system is replaced with nitrogen gas, and the catalyst slurry in the reaction vessel 30 is fluidized (portion indicated by a in FIG. 3).
  • the remaining unreacted synthesis gas (flow rate 15) that is introduced into the recirculation path 32 is circulated through the second recirculation path 33 to the suction side of the first compressor 34 that is rated.
  • unreacted synthesis gas is indicated by R / C SG.
  • the inside of the system is replaced with the synthesis gas while discharging the off-gas from the off-gas discharge passage 37, and the supply flow rate of the synthesis gas from the synthesis gas supply passage 31 is a constant flow rate smaller than the processing flow rate during rated operation ( 35).
  • the CO conversion rate is increased by gradually increasing the temperature of the reaction vessel 30 (portion indicated by b in FIG. 3).
  • the flow rate of the synthesis gas introduced into the reaction vessel 30 through the synthesis gas supply passage 31 is gradually increased and circulated through the second recirculation passage 33.
  • the flow rate of the unreacted synthesis gas is gradually decreased, and the flow rate of the synthesis gas finally introduced into the reaction vessel 30 through the synthesis gas supply path 31 is increased to the treatment flow rate (50) of the synthesis gas to be treated during rated operation ( (Part indicated by c in FIG. 3). Shift to rated operation as described above.
  • fresh nitrogen gas (Fresh N2) is introduced into the reaction vessel 30 through the synthesis gas supply path 31 in advance before introduction of the synthesis gas into the reaction vessel 30.
  • the first compressor 34 is operated 70% (flow rate 35) and the second compressor 35 is rated (flow rate 50) to circulate nitrogen gas through the first recirculation path 32 and the second recirculation path 33.
  • the off gas is discharged from the off gas discharge passage 37, the inside of the system is replaced with nitrogen gas and the catalyst slurry in the reaction vessel 30 is fluidized.
  • the recycled nitrogen gas (R / C N2) circulates at a flow rate of 85 (portion indicated by a in FIG. 5).
  • the above operation replaces the inside of the system with synthesis gas while discharging off-gas from the off-gas discharge passage 37, and the synthesis gas supply flow rate from the synthesis gas supply passage 31 is constant smaller than the processing flow rate during rated operation.
  • the flow rate is maintained at 35.
  • the CO conversion rate is increased by gradually increasing the temperature of the reaction vessel 30 (portion indicated by b in FIG. 5).
  • the flow rate of the synthesis gas introduced into the reaction vessel 30 through the synthesis gas supply passage 31 is gradually increased, and finally through the synthesis gas supply passage 31.
  • the flow rate of the synthesis gas introduced into the reaction vessel 30 is increased to the treatment flow rate (50) of the synthesis gas to be processed during the rated operation (portion indicated by c in FIG. 5). Shift to rated operation as described above.
  • total Rx Feed total Rx Feed
  • amount of fresh synthesis gas introduced Frsh SG load
  • CO Conv. CO conversion rate
  • the circulation of the nitrogen gas at the start-up is performed by the first compressor 34 and the second compressor 35 via the first recirculation path 32 and the second recirculation path 33. Can be shifted to the next introduction of synthesis gas while the flow state in the reaction vessel 30 is kept stable.
  • the first compressor 34 is rated to introduce the mixed gas of the synthesis gas and the unreacted synthesis gas into the reaction vessel 30 at the rated flow rate. Can do.
  • the flow rate of the synthesis gas entering the first compressor 34 (35) and the flow rate (15) from the second recirculation path 33 are combined to be 50, and the flow rate of 50 from the first recirculation path 32 is Since a gas having a necessary and sufficient flow rate of 100 equivalent to the rating is introduced, it is possible to maintain a stable flow state in the reaction vessel 30, so that the reaction gradually takes place with little consideration of the influence of the flow state.
  • Increasing the temperature of the container 30 can increase the reactivity (conversion rate) and can safely increase the flow rate of the synthesis gas to the rated flow rate. Accordingly, the monitoring phenomenon requiring attention at start-up is reduced, and the driving operation is facilitated.
  • the flow state in the reaction vessel 30 can be kept constant as compared with the comparative example, the time taken to shift to the rated stable operation is greatly shortened (in comparison example, it took about 46 hours from 17 hours). Time). Moreover, since the performance can be fully utilized without operating the first compressor 34 for compressing the synthesis gas at a low flow rate, the efficiency can be improved.
  • the amount of synthesis gas introduced into the reaction vessel 30 is kept at a low flow rate in consideration of safety in advance, and the reactivity (conversion) is achieved by gradually raising the temperature of the reaction vessel 30 while confirming the stability of the reaction.
  • the unreacted synthesis gas through the second recirculation path 33 to the suction side of the first compressor 34 that compresses the synthesis gas during the start-up operation in which it is necessary to increase the synthesis gas flow rate to the rated flow rate. Therefore, the insufficient flow rate relative to the rated flow rate of the synthesis gas when the first compressor 34 is operated at the rated operation can be supplemented with the unreacted synthesis gas.
  • the first compressor 34 is rated for operation, and a mixed gas in which synthesis gas and unreacted synthesis gas are combined. Is introduced into the reaction vessel 30 at a rated flow rate, so that a stable flow state can be maintained in the reaction vessel 30, thereby gradually increasing the temperature of the reaction vessel 30 without substantially considering the influence of the flow state. By increasing the flow rate, the reactivity (conversion rate) can be increased, and the flow rate of the synthesis gas can be safely increased to the rated flow rate.
  • the equipment can be used to the maximum extent and the cost increase can be suppressed. it can.
  • the unreacted synthesis gas when the unreacted synthesis gas is circulated, the unreacted synthesis gas is controlled so that the temperature after the synthesis gas and the unreacted synthesis gas are combined is equal to or higher than the unreacted synthesis gas temperature. Problems caused by condensation of a small amount of oil contained in the synthesis gas can be prevented, and as a result, stable operation of the first compressor 34 can be ensured.
  • the synthesis gas temperature is 33 ° C., the unreacted synthesis gas.
  • the temperature of was 34 ° C.
  • the gas temperature after mixing was 33 ° C.
  • the differential pressure of the suction strainer 36 gradually increased and started to interfere with the operation. For this reason, the temperature of the amine solution that absorbs the carbon dioxide gas in the decarboxylation step was raised to make the synthesis gas temperature 38 ° C. Then, the gas temperature after mixing reached 38 ° C., and the differential pressure of the suction strainer 36 returned to a substantially steady value, and the operation could be continued.
  • the unreacted circulation of the temperature Tc of the mixed synthesis gas so that oil contained in a trace amount in the unreacted synthesis gas is not condensed due to a temperature drop due to the mixing.
  • the temperature is set higher than the temperature Ta of the synthesis gas.
  • the synthesis gas temperature is always higher by 2-5 ° C. than the circulating gas temperature. Set to and drive. By doing so, the temperature of the mixed gas when both are mixed becomes higher than the temperature of the unreacted synthesis gas, so that a minute amount of oil contained in the unreacted synthesis gas is not condensed, and as a result, in the circulation operation It becomes possible to operate the compressor stably.
  • the increase in the gas temperature after merging is small, the oil will not be sufficiently condensed, and if it is too high, the amount of gas sucked into the reaction vessel 30 will decrease because the amount of suction of the compressor will decrease. Further, the acid gas absorption capacity of the amine solution is lowered, and the required performance cannot be satisfied. Therefore, it is set high in the range of about 2 to 5 ° C. By doing so, it is possible to achieve both the avoidance of blockage of the suction strainer 36 of the compressor and the acid gas absorption performance of the amine solution.
  • the method of raising the temperature of the synthesis gas after mixing can be selected arbitrarily. Also, if the temperature control means is provided so that the temperature of the mixed gas finally becomes higher than the temperature of the unreacted synthesis gas, rather than increasing the temperature of the synthesis gas before mixing with the unreacted synthesis gas, The problem of oil condensation can be eliminated.
  • the present invention has been described by taking the start-up method of the hydrocarbon synthesis reactor as an example.
  • the present invention is not limited to this, and the synthesis gas amount to the reaction vessel is lower than the rated flow rate for some reason.
  • the present invention can also be applied to a low-load holding operation of the FT synthesis unit when it must be performed, and further to gradually increasing the flow rate of the synthesis gas from that state to increase it to the rated flow rate.
  • the present invention relates to a hydrocarbon synthesis reaction apparatus, a start-up method thereof, and a hydrocarbon synthesis reaction system. According to the present invention, the system can be started up in a short time while ensuring a stable flow state and reaction state of the catalyst.
  • Syngas production unit (syngas delivery means) 5 FT synthesis unit (hydrocarbon synthesis reactor) 7 Upgrade unit (Product purification unit) 30 Reaction vessel 31 Syngas supply path 32 First recirculation path 33 Second recirculation path 34 First compressor 35 Second compressor 36 Suction strainer 37 Off-gas discharge path 38 Gas-liquid separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

 合成ガスを第1コンプレッサにより圧縮して供給する合成ガス供給路と、触媒スラリーを収容する反応容器と、前記反応容器から導出される未反応合成ガス及び炭化水素を気液分離する気液分離器と、気液分離後の未反応合成ガスを第2コンプレッサにより圧縮して反応容器に再循環させる第1再循環路と、合成ガスの導入量を徐々に増加させる立ち上げ運転時に、気液分離後の残りの未反応合成ガスを第1コンプレッサの吸入側に再循環させる第2再循環路とを備える。

Description

炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム
 本発明は、炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システムに関する。
 本願は、2011年3月30日に日本に出願された特願2011-076649号について優先権を主張し、その内容をここに援用する。
 近年、天然ガスから液体燃料を合成するための方法の一つとして、天然ガスを改質して一酸化炭素ガス(CO)と水素ガス(H)とを主成分とする合成ガスを生成し、この合成ガスを原料ガスとしてフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という。)により触媒を用いて炭化水素を合成し、さらにこの炭化水素を水素化・精製することで、ナフサ(粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造するGTL(Gas To Liquids:液体燃料合成)技術が開発されている。
 このGTL技術に用いられる炭化水素合成反応装置では、媒体液(例えば、液体の炭化水素など)中に固体の触媒粒子(例えば、コバルト触媒など)を懸濁させてなるスラリーが収容された反応容器の内部で、合成ガス中の一酸化炭素ガスと水素ガスとをFT合成反応させることで炭化水素を合成する。
 図7は従来の炭化水素合成反応装置の概略構成を示している。
 この炭化水素合成反応装置は、一酸化炭素ガス及び水素ガスを主成分とする合成ガスを送出する合成ガス送出手段3から送出される前記合成ガス(SG)を第1コンプレッサ34により圧縮して供給する合成ガス供給路31と、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーを収容し、合成ガス供給路31から供給される合成ガスと触媒スラリーとの接触によって炭化水素を合成する反応容器30と、反応容器30から導出される未反応合成ガス及び炭化水素を気液分離する気液分離器38と、気液分離器38で分離後のガスのうち一部をオフガスとして系外に排出するオフガス排出路37と、気液分離器38で分離後の未反応合成ガスを第2コンプレッサ35により圧縮して反応容器30に再循環させる再循環路32と、を備えている。
 このような再循環路(リサイクルライン)を備えた炭化水素合成反応装置は、例えば特許文献1に開示されている。
 この種の炭化水素合成反応装置でスタートアップする場合には、まず予め合成ガス導入前に、系内のガス置換及び反応容器30の流動性確保のために不活性ガスである窒素を系内に吹き込み、再循環路32を介して循環させる。その際、窒素の循環量をある程度確保した状態で循環運転する。そして窒素ガスによる循環により反応容器内の触媒スラリーを流動状態にしたら、その後、徐々に窒素ガスを合成ガスに置換していくとともに、合成ガス量を定格よりも低流量(例えば70%)に保持したまま、反応容器30の温度を上げていくことで反応性(転化率)を上昇させ、安定した反応状態を確認しながら、合成ガス導入量を100%までロードアップして定格運転に移行する。
特表2005-517698号公報
 しかしながら、この方法は、反応容器30内に流れ込むガス流量が定格ガス流量の100%に達せず少ない流量であるため、反応容器30内のスラリーの攪拌が良好に行えず不安定となり、迅速に反応性(転化率)を向上させることができないという問題があった。
また、窒素循環から定格運転に移行するまでのスタートアップ時間が多くかかるという問題があった。
 本発明は、前述した事情に鑑みてなされたものであって、その目的は、触媒の安定した流動状態及び反応状態を確保しながら、短時間でシステムをスタートアップすることができる炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合システムを提供することである。
 本発明の炭化水素合成反応装置は、一酸化炭素ガス及び水素ガスを主成分とする合成ガスを送出する合成ガス送出手段から送出される前記合成ガスを第1コンプレッサにより圧縮して供給する合成ガス供給路と、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーを収容し、前記合成ガス供給路から供給される合成ガスと前記触媒スラリーとの接触によって炭化水素を合成する反応容器と、前記反応容器から導出される未反応合成ガス及び炭化水素を気液分離する気液分離器と、前記気液分離器で分離後のガスのうち一部をオフガスとして系外に排出するオフガス排出路と、前記気液分離器で分離後の未反応合成ガスを第2コンプレッサにより圧縮して前記反応容器に再循環させる第1再循環路と、定格運転時に処理する合成ガスの処理流量よりも小さい処理流量から定格運転時の合成ガスの処理流量まで、前記合成ガス送出手段から前記反応容器に導入する合成ガスの導入量を徐々に増加させる立ち上げ運転時に、前記気液分離器で分離後の未反応合成ガスのうち前記第1再循環路に導入する分の残りの未反応合成ガスを前記第1コンプレッサの吸入側に再循環させる第2再循環路とを備えている。
 本発明の炭化水素合成反応装置には、前記反応容器のスタートアップ時に系内を不活性ガスで置換し且つ前記触媒スラリーを流動化させるための不活性ガスの循環経路として、前記第1再循環路と、前記気液分離器から前記第1コンプレッサの吸入側に連通する不活性ガス循環路とが設けられ、前記不活性ガス循環路が前記第2再循環路として兼用されてもよい。
 本発明の炭化水素合成反応装置において、前記合成ガス送出手段から送出される前記合成ガスが前記第1コンプレッサの吸入側に導入される箇所の上流側に設けられ、前記第2再循環路からの未反応合成ガスが前記合成ガス送出手段から送出される合成ガスと合流し混合する合流混合部と、前記合流混合部にて混合される混合ガスの温度が少なくとも前記第2再循環路からの未反応合成ガスの温度と同等以上となるように制御する温度制御手段とをさらに備えていてもよい。
 本発明の炭化水素合成反応システムは、炭化水素原料から液体燃料基材を製造する炭化水素合成反応システムであって、前記炭化水素合成反応装置と、該炭化水素合成反応装置にて生成される炭化水素から液体燃料基材を精製する製品精製ユニットとを備え、前記合成ガス送出手段は、前記炭化水素原料を改質して前記合成ガスを生成し、該合成ガスを前記合成ガス供給路に送出する合成ガス生成ユニットである。
 本発明の炭化水素合成反応装置のスタートアップ方法は、一酸化炭素ガス及び水素ガスを主成分とする合成ガスを送出する合成ガス送出手段から送出される前記合成ガスを第1コンプレッサにより圧縮して供給する合成ガス供給路と、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーを収容し、前記合成ガス供給路から供給される合成ガスと前記触媒スラリーとの接触によって炭化水素を合成する反応容器と、前記反応容器から導出される未反応合成ガス及び炭化水素を気液分離する気液分離器と、前記気液分離器で分離後のガスのうち一部をオフガスとして系外に排出するオフガス排出路と、前記気液分離器で分離後の未反応合成ガスを第2コンプレッサにより圧縮して前記反応容器に再循環させる第1再循環路と、前記気液分離器から前記第1コンプレッサの吸入側に連通する第2再循環路とを備える炭化水素合成反応装置のスタートアップ方法であって、前記反応容器への合成ガスの導入前に予め、前記合成ガス供給路を通して不活性ガスを前記反応容器に導入し、前記第1コンプレッサ及び第2コンプレッサを共に定格運転して前記不活性ガスを前記第1再循環路および第2再循環路を介して循環させることで、前記オフガス排出路からオフガスを排出しながら系内を不活性ガスで置換すると共に前記触媒スラリーを流動化させる第1工程と、第1工程の実施により前記触媒スラリーが流動化した状態の前記反応容器に、前記第1コンプレッサを定格運転した状態で、前記合成ガス供給路を通して定格運転時の処理流量よりも小さい流量で合成ガスを導入し、前記反応容器から導出されて前記気液分離器で分離された未反応合成ガスを、前記第2コンプレッサを定格運転することで前記第1再循環路を介して循環させると共に、前記気液分離器で分離後の未反応合成ガスのうち前記第1再循環路に導入される分の残りの未反応合成ガスを前記第2再循環路を介して前記定格運転される第1コンプレッサの吸入側に循環させ、それにより、前記オフガス排出路からオフガスを排出しながら系内を合成ガスで置換すると共に、前記合成ガス供給路からの合成ガスの供給流量を定格運転時の処理流量よりも小さい一定流量に維持する第2工程と、該第2工程において反応が安定してきた段階で、前記合成ガス供給路を通して反応容器に導入する合成ガスの流量を徐々に増加させると共に前記第2再循環路を通して循環させる未反応合成ガスの流量を徐々に減少させ、最終的に前記合成ガス供給路を通して反応容器に導入する合成ガスの流量を、定格運転時に処理する合成ガスの処理流量まで上昇させる第3工程とを備える。
 本発明によれば、反応容器に導入する合成ガスの導入量を、予め安全をみた低流量から反応の安定を確認しながら徐々に定格流量まで増加させる必要のある立ち上げ運転時に、合成ガスを圧縮する第1コンプレッサの吸入側に、第2再循環路を通して未反応合成ガスを導入することができるので、第1コンプレッサを定格運転した際の合成ガスの定格流量に対する不足流量分を未反応合成ガスで補うことができる。即ち、例えば、反応の暴走を防ぐために低流量の合成ガスの導入からのスタートを余儀なくされるスタートアップ操作において、第1コンプレッサを定格運転して、合成ガスと未反応合成ガスを合わせた混合ガスを定格流量にて反応容器に導入することにより、反応容器内で安定した流動状態を保つことができ、それにより、流動状態による影響をほとんど考慮せずに、除々に反応容器の温度を上げていくことで反応性(転化率)を上昇させるとともに、合成ガスの流量を定格流量まで安全に増加させることができる。
 また、スタートアップに際し、合成ガスを反応容器に導入する前には不活性ガスで系内を置換するが、その不活性ガスの循環を第2再循環路を介して第1コンプレッサの定格流量で行うことにより、反応容器内の流動状態を安定に保った状態で、次の合成ガスの導入に移行することができる。従って、スタートアップ時の要注意監視現象が減り、運転操作が容易になる。また、反応容器内の流動状態を一定に保てるので、定格安定運転に移行するまでにかかる時間を短縮することができる。また、合成ガスを圧縮する第1コンプレッサを低流量にて操作することなく、その性能をフル活用することができるので、効率アップが図れる。
 本発明によれば、不活性ガスの循環経路として使う循環路を、未反応合成ガスを循環させる第2再循環路として兼用するので、設備を最大限有効利用することができて、コストアップを抑えることができる。
 本発明によれば、未反応合成ガスの循環運転を行っているときに、未反応合成ガスに含まれる微量の油分が凝縮して生じるトラブルを防ぐことができ、その結果、第1コンプレッサの安定的な運転を保障することができる。
 本発明によれば、炭化水素原料を改質して合成ガスを生成する工程と、合成ガスを反応させて炭化水素を生成する工程と、炭化水素から液体燃料基材を精製する工程とを一連の流れで実行することができ、最終製品である液体燃料基材を安定して生産することができる。
 本発明によれば、スタートアップ時の不活性ガスの循環を第2再循環路を介して第1コンプレッサの定格流量で行うことにより、反応容器内の流動状態を安定に保った状態で、次の合成ガスの導入に移行することができる。また、合成ガスの導入に移行する際および移行した後にも、第1コンプレッサを定格運転して、合成ガスと未反応合成ガスを合わせた混合ガスを定格流量にて反応容器に導入することができるので、反応容器内で安定した流動状態を保つことができ、それにより、流動状態による影響をほとんど考慮せずに、徐々に反応容器の温度を上げていくことで反応性(転化率)を上昇させるとともに、合成ガスの流量を定格流量まで安全に増加させることができる。従って、スタートアップ時の要注意監視現象が減り、運転操作が容易になる。
 また、反応容器内の流動状態を一定に保てるので、定格安定運転に移行するまでにかかる時間を短縮することができる。また、合成ガスを圧縮する第1コンプレッサを低流量にて操作することなく、その性能をフル活用することができるので、効率アップが図れる。
本発明の一実施形態を含む液体燃料合成システムの全体構成を示す系統図である。 図1に示す炭化水素合成反応装置の概略構成を示す系統図である。 図2の装置において本発明の実施形態のスタートアップ方法を実施した場合の各ガスの流量変化を示す特性図である。 図2の装置において本発明の実施形態のスタートアップ方法を実施した場合の合成ガス(SG)のロードの割合と、反応容器のトータルの流量変化とCO転化率を示す特性図である。 図3に対する比較例を示す特性図である。 図4に対する比較例を示す特性図である。 従来の炭化水素合成反応装置の概略構成を示す系統図である。
 以下、本発明の炭化水素合成反応装置を含む炭化水素合成反応システムの一実施形態を、図面を参照しながら説明する。
(液体燃料合成システム)
 図1に示すように、液体燃料合成システム(炭化水素合成反応システム)1は、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行するプラント設備である。この液体燃料合成システム1は、合成ガス生成ユニット3と、FT合成ユニット(炭化水素合成反応装置)5と、アップグレーディングユニット7とから構成される。合成ガス生成ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガスを製造する。FT合成ユニット5は、製造された合成ガスからFT合成反応により液体の炭化水素化合物を生成する。アップグレーディングユニット7は、FT合成反応により合成された液体の炭化水素化合物を水素化・精製して液体燃料その他の製品(ナフサ、灯油、軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する。
 まず、合成ガス生成ユニット3について説明する。
 合成ガス生成ユニット3は、例えば、脱硫反応器10と、改質器12と、排熱ボイラー14と、気液分離器16および18と、脱炭酸装置20と、水素分離装置26とを主に備える。脱硫反応器10は、水素化脱硫装置等で構成されて原料である天然ガスから硫黄成分を除去する。改質器12は、脱硫反応器10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス(H)とを主成分として含む合成ガスを製造する。排熱ボイラー14は、改質器12にて生成した合成ガスの排熱を回収して高圧スチームを発生する。気液分離器16は、排熱ボイラー14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム)と液体とに分離する。気液分離器18は、排熱ボイラー14にて冷却された合成ガスから凝縮分を除去し気体分を脱炭酸装置20に供給する。脱炭酸装置20は、吸収塔(第2吸収塔)22と、再生塔24と、を有する。吸収塔22では、気液分離器18から供給された合成ガスに含まれる炭酸ガスが吸収液によって吸収される。再生塔24では、炭酸ガスを吸収した吸収液が炭酸ガスを放散し、吸収剤が再生される。水素分離装置26は、脱炭酸装置20により炭酸ガスが分離された合成ガスから、当該合成ガスに含まれる水素ガスの一部を分離する。ただし、上記脱炭酸装置20は場合によっては設けないこともある。
 改質器12では、例えば、下記の化学反応式(1)、(2)で表される水蒸気・炭酸ガス改質法を用い、二酸化炭素と水蒸気によって天然ガスが改質され、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスが製造される。なお、この改質器12における改質法は、上記の水蒸気・炭酸ガス改質法に限定されない。例えば、水蒸気改質法、酸素を用いた部分酸化改質法(POX)、部分酸化改質法と水蒸気改質法の組合せである自己熱改質法(ATR)、炭酸ガス改質法などを利用することもできる。
Figure JPOXMLDOC01-appb-C000001
 水素分離装置26は、脱炭酸装置20又は気液分離器18と気泡塔型反応器30とを接続する主配管から分岐した分岐ライン上に設けられる。この水素分離装置26は、例えば、圧力差を利用して水素の吸着と脱着を行う水素PSA(Pressure Swing Adsorption:圧力変動吸着)装置などで構成できる。この水素PSA装置は、並列配置された複数の吸着塔(図示せず。)内に吸着剤(ゼオライト系吸着剤、活性炭、アルミナ、シリカゲル等)を有している。各吸着塔で水素の加圧、吸着、脱着(減圧)、パージの各工程を順番に繰り返すことで、合成ガスから分離した純度の高い水素ガス(例えば99.999%程度)を、連続して供給することができる。
 水素分離装置26における水素ガス分離方法は、上記の水素PSA装置による圧力変動吸着法に限定されない。例えば、水素吸蔵合金吸着法、膜分離法、或いはこれらの組合せなどを用いてもよい。
 水素吸蔵合金法は、例えば、冷却/加熱されることで水素を吸着/放出する性質を有する水素吸蔵合金(TiFe、LaNi、TiFe0.7~0.9Mn0.3~0.1、又はTiMn1.5など)を用いて、水素ガスを分離する手法である。水素吸蔵合金法では、例えば水素吸蔵合金が収容された複数の吸着塔において、水素吸蔵合金の冷却による水素の吸着と、水素吸蔵合金の加熱による水素の放出とが交互に繰り返される。これにより、合成ガス中の水素ガスを分離・回収することができる。
 膜分離法は、芳香族ポリイミド等の高分子素材の膜を用いて、混合ガスから膜透過性に優れた水素ガスを分離する手法である。この膜分離法は、分離対象の相変化を必要としないため、運転に必要なエネルギーが小さくて済み、ランニングコストが小さい。また、膜分離装置の構造が単純でコンパクトなため、設備コストが低く設備の所要面積も小さくて済む。さらに、分離膜には駆動装置がなく、安定運転範囲が広いため、保守管理が容易であるという利点がある。
 次に、FT合成ユニット5について説明する。
 FT合成ユニット5は、例えば、気泡塔型反応器(反応容器)30と、気液分離器40と、分離器41と、気液分離器38と、第1精留塔42と、を主に備える。気泡塔型反応器30は、上記合成ガス生成ユニット3で製造された合成ガス、即ち、一酸化炭素ガスと水素ガスとからFT合成反応により液体炭化水素化合物を合成する。気液分離器40は、気泡塔型反応器30内に配設された伝熱管39内を通過して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器41は、気泡塔型反応器30の中央部に接続され、触媒と液体炭化水素化合物を分離する。気液分離器38は、気泡塔型反応器30の塔頂に接続され、未反応合成ガス及び気体炭化水素化合物を冷却することにより、液体炭化水素化合物と未反応合成ガスを含むガスとに分離する。このガスには、系内において不要なメタン等の成分が含まれているので、一部をオフガスとしてオフガス排出路37から系外に排出する。第1精留塔42は、気泡塔型反応器30から分離器41、気液分離器38を介して供給された液体炭化水素化合物を各留分に分留する。
 このうち、気泡塔型反応器30は、合成ガスから液体の炭化水素化合物を合成する反応器の一例であり、FT合成反応により合成ガスから液体の炭化水素化合物を合成するFT合成用反応器として機能する。この気泡塔型反応器30は、例えば、塔型の容器内部に主に触媒粒子と媒体油(媒体液、液体の炭化水素)とからなるスラリーが収容された気泡塔型スラリー床式反応器で構成される。この気泡塔型反応器30は、FT合成反応により合成ガスから気体又は液体の炭化水素化合物を合成する。詳細には、この気泡塔型反応器30では、原料ガスである合成ガスは、気泡塔型反応器30の底部のスパージャーから気泡となって供給され、媒体油中に触媒粒子が懸濁されたスラリー内を通過する。そして、懸濁状態の中で下記化学反応式(3)に示すように、合成ガスに含まれる水素ガスと一酸化炭素ガスとが反応して炭化水素化合物が合成される。
Figure JPOXMLDOC01-appb-C000002
 ここで、このような反応において、FT合成ユニット5に供給された一酸化炭素ガス(CO)に対して、反応器内で消費された一酸化炭素ガスの割合を、本願では「CO転化率」としている。このCO転化率は、FT合成ユニット5に単位時間当たりに流入するガス中の一酸化炭素ガスのモル流量(合成ガスCOモル流量)と、FT合成ユニット5からオフガス排出路37より単位時間当たりに抜き出されるオフガス中の一酸化炭素ガスのモル流量(オフガスCOモル流量)とから、百分率で算出される。すなわち、CO転化率は、以下の式(4)によって求められる。
Figure JPOXMLDOC01-appb-C000003
 このFT合成反応は発熱反応であるため、気泡塔型反応器30は内部に伝熱管39が配設された熱交換器型になっている。気泡塔型反応器30には、冷媒として例えば水(BFW:Boiler Feed Water)が供給され、上記FT合成反応の反応熱を、スラリーと水との熱交換により中圧スチームとして回収できるようになっている。
 また、このFT合成ユニット5は、図2に概略構成を示すように、前記反応容器30や気液分離器38、オフガス排出路37の他に、一酸化炭素ガス及び水素ガスを主成分とする合成ガスを送出する合成ガス生成ユニット3(合成ガス送出手段)から送出される合成ガスを第1コンプレッサ34により圧縮して供給する合成ガス供給路31と、気液分離器38で分離後の未反応合成ガスを第2コンプレッサ35により圧縮して反応容器30に再循環させる第1再循環路32と、定格運転時に処理する合成ガスの処理流量よりも小さい処理流量(定格時の処理流量を100%とすると、例えば70%の流量)から定格運転時の合成ガスの処理流量(100%の流量)まで、合成ガス生成ユニット3から反応容器30に導入する合成ガスの導入量を徐々に増加させる立ち上げ運転時に、気液分離器38で分離後の未反応合成ガスのうち第1再循環路32に導入する分の残りの未反応合成ガスを第1コンプレッサ34の吸入側に再循環させる第2再循環路33と、を備えている。
この場合、反応容器30のスタートアップ時に系内に循環させる不活性ガスの循環経路の1つが、第2再循環路33を兼用している。また、図2に示すように、合成ガス生成ユニット3から送出される合成ガスが第1コンプレッサ34の吸入側に導入される箇所には、導入ガス中の夾雑物を取り除くためのサクションストレーナー36が設けられる場合があり、そのサクションストレーナー36の上流側に、第2再循環路33からの未反応合成ガスが合成ガス生成ユニット3から送出される合成ガスと合流し混合する合流混合部45が設けられている。そして、更に、この合流混合部45にて混合される混合ガスの温度Tcが少なくとも第2再循環路33からの未反応合成ガスの温度Taと同等以上となるように制御する温度制御手段47が備わっている。
 次に、アップグレーディングユニット7について説明する。アップグレーディングユニット7は、例えば、ワックス留分水素化分解反応器50と、中間留分水素化精製反応器52と、ナフサ留分水素化精製反応器54と、気液分離器56,58,60と、第2精留塔70と、ナフサ・スタビライザー72とを備える。ワックス留分水素化分解反応器50は、第1精留塔40の塔底に接続されている。中間留分水素化精製反応器52は、第1精留塔40の中央部に接続されている。ナフサ留分水素化精製反応器54は、第1精留塔40の塔頂に接続されている。気液分離器56,58,60は、これら水素化反応器50,52,54のそれぞれに対応して設けられている。第2精留塔70は、気液分離器56,58から供給された液体炭化水素化合物を分留する。ナフサ・スタビライザー72は、気液分離器60から供給された、及び第2精留塔70から分留されたナフサ留分の液体炭化水素化合物を精留する。その結果、ナフサ・スタビライザー72は、ブタン及びブタンより軽質の成分をオフガスとして排出し、炭素数5以上の成分を製品のナフサとして回収する。
 次に、以上のような構成の液体燃料合成システム1により、天然ガスから液体燃料を合成する定格運転時の工程(GTLプロセス)について説明する。
 液体燃料合成システム1には、天然ガス田又は天然ガスプラントなどの外部の天然ガス供給源(図示せず。)から、炭化水素原料としての天然ガス(主成分がCH)が供給される。上記合成ガス生成ユニット3は、この天然ガスを改質して合成ガス(一酸化炭素ガスと水素ガスを主成分とする混合ガス)を製造する。
 具体的には、まず、上記天然ガスは、水素分離装置26によって分離された水素ガスとともに脱硫反応器10に導入される。脱硫反応器10では、導入された水素ガスと水素化脱硫触媒により、天然ガスに含まれる硫黄分が硫化水素に転換される。更に、脱硫反応器10では、生成した硫化水素が例えばZnO等の脱硫剤により吸着除去される。このようにして天然ガスを予め脱硫しておくことにより、改質器12及び気泡塔型反応器30等で用いられる触媒の活性が硫黄により低下することを防止できる。
 このようにして脱硫された天然ガス(二酸化炭素を含んでもよい。)は、二酸化炭素供給源(図示せず。)から供給される二酸化炭素(CO)ガスと、排熱ボイラー14で発生した水蒸気とが混合された上で、改質器12に供給される。改質器12では、例えば、上述した水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とにより天然ガスが改質され、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスが製造される。このとき、改質器12には、例えば、改質器12が備えるバーナー用の燃料ガスと空気(エア)とが供給されている。そして、当該バーナーにおける燃料ガスの燃焼熱により、吸熱反応である上記水蒸気・炭酸ガス改質反応に必要な反応熱がまかなわれている。
 このようにして改質器12で製造された高温の合成ガス(例えば、900℃、2.0MPaG)は、排熱ボイラー14に供給され、排熱ボイラー14内を通過する水との熱交換により冷却(例えば400℃)される。そして、合成ガスの排熱が水により回収される。
このとき、排熱ボイラー14において合成ガスにより加熱された水は気液分離器16に供給される。そして、この合成ガスにより加熱された水は、気液分離器16において高圧スチーム(例えば3.4~10.0MPaG)と、水とに分離される。分離された高圧スチームは、改質器12または他の外部装置に供給され、分離された水は排熱ボイラー14に戻される。
 一方、排熱ボイラー14において冷却された合成ガスは、凝縮した液体分が気液分離器18において分離・除去された後、脱炭酸装置20の吸収塔22、又は気泡塔型反応器30に供給される。吸収塔22では、吸収塔22の内部に貯留されている吸収液によって、合成ガスに含まれる炭酸ガスが吸収され、当該合成ガスから炭酸ガスが除去される。吸収塔22内で炭酸ガスを吸収した吸収液は、吸収塔22から排出され、再生塔24に導入される。再生塔24に導入された吸収液は、例えばスチームで加熱されてストリッピング処理され、炭酸ガスを放散する。放散された炭酸ガスは、再生塔24から排出されて改質器12に導入され、上記改質反応に再利用される。
 このようにして、合成ガス生成ユニット3で製造された合成ガスは、上記FT合成ユニット5の気泡塔型反応器30に供給される。このとき、気泡塔型反応器30に供給される合成ガスの組成比は、FT合成反応に適した組成比(例えば、H:CO=2:1(モル比))に調整されている。なお、気泡塔型反応器30に供給される合成ガスは、脱炭酸装置20と気泡塔型反応器30とを接続する配管に設けられた第1コンプレッサ34により、FT合成反応に適した圧力(例えば3.6MPaG程度)まで昇圧される。
 また、上記脱炭酸装置20により炭酸ガスが分離された合成ガスの一部は、水素分離装置26にも供給される。水素分離装置26では、上記のように圧力差を利用した吸着、脱着(水素PSA)により、合成ガスに含まれる水素ガスが分離される。当該分離された水素は、ガスホルダー(図示せず。)等から圧縮機(図示せず。)を介して、液体燃料合成システム1内において水素を利用して所定反応を行う各種の水素利用反応装置(例えば、脱硫反応器10、ワックス留分水素化分解反応器50、中間留分水素化精製反応器52、ナフサ留分水素化精製反応器54など)に連続して供給される。
 次いで、上記FT合成ユニット5は、上記合成ガス生成ユニット3によって製造された合成ガスから、FT合成反応により、液体炭化水素化合物を合成する。
 具体的には、上記脱炭酸装置20において炭酸ガスが分離された合成ガスは、気泡塔型反応器30に導入され、気泡塔型反応器30内に収容された触媒を含むスラリー内を通過する。この際、気泡塔型反応器30内では、上述したFT合成反応により、当該合成ガスに含まれる一酸化炭素と水素ガスとが反応して、炭化水素化合物が生成する。さらに、このFT合成反応時には、気泡塔型反応器30の伝熱管39内を通過する水によって、FT合成反応の反応熱が回収され、反応熱によって加熱された水が気化して水蒸気となる。この水蒸気は気液分離器40に供給されて凝縮した水と気体分に分離され、水は伝熱管39に戻されて、気体分は中圧スチーム(例えば1.0~2.5MPaG)として外部装置に供給される。
 このようにして、気泡塔型反応器30で合成された液体炭化水素化合物は、気泡塔型反応器30の中央部から触媒粒子を含んだスラリーとして排出されて、分離器41に導入される。分離器41では、導入されたスラリーが触媒(固形分)と、液体炭化水素化合物を含んだ液体分とに分離される。分離された触媒の一部は気泡塔型反応器30に戻され、液体分は第1精留塔42に導入される。気泡塔型反応器30の塔頂からは、FT合成反応において反応しなかった合成ガスと、FT合成反応により生成した気体炭化水素化合物と、を含む気体副生成物が排出される。気泡塔型反応器30から排出された気体副生成物は、気液分離器38に導入される。気液分離器38では、導入された気体副生成物が冷却され、凝縮した液体炭化水素化合物と、ガス分とに分離される。分離された液体炭化水素化合物は、気液分離器38から排出され、第1精留塔42に導入される。
 分離されたガス分は、気液分離器38から排出され、その一部が気泡塔型反応器30に再導入される。気泡塔型反応器30では、再導入されたガス分に含まれる未反応の合成ガス(COとH)がFT合成反応に再利用される。また、気液分離器38から排出されたガス分の一部は、オフガスとしてオフガス排出路37から系外に排出され、燃料に使用されたり、このガス分からLPG(液化石油ガス)相当の燃料が回収されたりする。
 第1精留塔42では、上記のようにして気泡塔型反応器30から分離器41、気液分離器38を介して供給された液体炭化水素化合物(炭素数は多様)が、ナフサ留分(沸点が約150℃より低い)と、中間留分(沸点が約150~360℃)と、ワックス留分(沸点が約360℃を超える)とに分留される。この第1精留塔42の塔底から排出されるワックス留分の液体炭化水素化合物(主としてC22以上)は、ワックス留分水素化分解反応器50に導入される。第1精留塔42の中央部から排出される灯油・軽油に相当する中間留分の液体炭化水素化合物(主としてC11~C21)は、中間留分水素化精製反応器52に導入される。第1精留塔42の塔頂から排出されるナフサ留分の液体炭化水素化合物(主としてC~C10)は、ナフサ留分水素化精製反応器54に導入される。
 ワックス留分水素化分解反応器50は、第1精留塔42の塔底から排出された炭素数の多いワックス留分の液体炭化水素化合物(概ねC22以上)を、上記水素分離装置26から供給された水素ガスを利用して水素化分解して、炭素数を21以下に低減する。この水素化分解反応では、炭素数の多い炭化水素化合物のC-C結合が切断される。これにより、炭素数の多い炭化水素化合物が炭素数の少ない炭化水素化合物へと転換される。また、ワックス留分水素化分解反応器50においては、水素化分解反応と並行して、直鎖状飽和炭化水素化合物(ノルマルパラフィン)を水素化異性化して分枝状飽和炭化水素化合物(イソパラフィン)を生成する反応も進行する。これにより、ワックス留分水素化分解生成物の、燃料油基材として要求される低温流動性が向上する。さらに、ワックス留分水素化分解反応器50においては、原料であるワックス留分に含まれるアルコール等の含酸素化合物の水素化脱酸素反応及びオレフィンの水素化反応も進行する。水素化分解されワックス留分水素化分解反応器50から排出された液体炭化水素化合物を含む生成物は、気液分離器56に導入され、気体と液体とに分離される。分離された液体炭化水素化合物は、第2精留塔70に導入され、分離された気体分(水素ガスを含む。)は、中間留分水素化精製反応器52及びナフサ留分水素化精製反応器54に導入される。
 中間留分水素化精製反応器52では、第1精留塔42の中央部から排出された炭素数が中程度である灯油・軽油に相当する中間留分の液体炭化水素化合物(概ねC11~C21)が水素化精製される。中間留分水素化精製反応器52では、水素分離装置26からワックス留分水素化分解反応器50を介して供給された水素ガスが、水素化精製に用いられる。この水素化精製反応においては、上記液体炭化水素化合物中に含まれるオレフィンが水素化されて飽和炭化水素化合物を生成するとともに、上記液体炭化水素化合物中に含まれるアルコール等の含酸素化合物が水素化脱酸素され飽和炭化水素化合物と水とに転換される。更に、この水素化精製反応においては、直鎖状飽和炭化水素化合物(ノルマルパラフィン)を異性化して分枝状飽和炭化水素化合物(イソパラフィン)に転換する水素化異性化反応が進行し、生成油の燃料油として要求される低温流動性を向上させる。水素化精製された液体炭化水素化合物を含む生成物は、気液分離器58で気体と液体に分離される。
分離された液体炭化水素化合物は、第2精留塔70に導入され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
 ナフサ留分水素化精製反応器54では、第1精留塔42の上部から排出された炭素数が少ないナフサ留分の液体炭化水素化合物(概ねC10以下)が、水素化精製される。ナフサ留分水素化精製反応器54では、水素分離装置26からワックス留分水素化分解反応器50を介して供給された水素ガスが、水素化精製に用いられる。このナフサ留分の水素化精製反応においては、主としてオレフィンの水素化及びアルコール等の含酸素化合物の水素化脱酸素が進行する。水素化精製された液体炭化水素化合物を含む生成物は、気液分離器60で気体と液体に分離される。分離された液体炭化水素化合物は、ナフサ・スタビライザー72に導入され、分離された気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
 第2精留塔70では、上記のようにしてワックス留分水素化分解反応器50及び中間留分水素化精製反応器52から供給された液体炭化水素化合物をC10以下の炭化水素化合物(沸点が約150℃より低い)と、灯油(沸点が約150~250℃)と、軽油(沸点が約250~360℃)と、ワックス留分水素化分解反応器50からの未分解ワックス分(沸点が約360℃を超える)とに分留する。第2精留塔70の塔底からは未分解のワックス留分が得られ、これはワックス留分水素化分解反応器50の上流にリサイクルされる。第2精留塔70の中央部からは灯油及び軽油が排出される。一方、第2精留塔70の塔頂からは、C10以下の炭化水素化合物が排出されて、ナフサ・スタビライザー72に導入される。
 さらに、ナフサ・スタビライザー72では、上記ナフサ留分水素化精製反応器54から供給された、及び第2精留塔70において分留されたC10以下の炭化水素化合物が蒸留され、製品としてのナフサ(C~C10)が得られる。これにより、ナフサ・スタビライザー72の塔底からは、高純度のナフサが排出される。一方、ナフサ・スタビライザー72の塔頂からは、製品対象外である炭素数が所定数以下(C以下)の炭化水素化合物を主成分とするオフガスが排出される。このオフガスは、燃料ガスとして使用されたり、このオフガスからLPG相当の燃料が回収されたりする。
 次にFT合成ユニット5のスタートアップ方法について説明する。
 ここでは、第1コンプレッサ34と第2コンプレッサ35がほぼ同じ容量のものとして設定されている。定格運転時の反応容器30の処理流量を100とすると、第1コンプレッサ34及び第2コンプレッサ35はそれぞれ50ずつ流量を分け合って分担する。従って、例えば70%ロード運転を行う場合、第1コンプレッサ34は、反応容器30の定格処理流量を100とした場合、50×0.7=35の流量で運転することになる。コンプレッサを定格より小容量で運転する場合は、コンプレッサの吐出側を吸入側に戻すスピルバックといわれる方法が主に採用される。従って70%の流量を実現する場合は、実際は100%の能力で運転しながら、30%のスピルバックを行う。
 次にスタートアップ時の操作と流量等の変化について説明する。図3は本発明の一実施形態のスタートアップ方法を実施した場合の各ガスの流量変化を示す特性図、図4はそのときの合成ガス(SG)のロードの割合と、反応容器のトータルの流量変化とCO転化率を示す特性図である。また、図5は図3に対する比較例を示す特性図、図6は図4に対する比較例を示す特性図である。
 図3に示すように、スタートアップ時には、反応容器30への合成ガスの導入前に予め第1工程として、合成ガス供給路31を通して窒素ガス(Fresh N2)を反応容器30に導入し、第1コンプレッサ34及び第2コンプレッサ35を共に定格運転(50+50=100の流量で運転)して窒素ガスを第1再循環路32および第2再循環路33を介して循環させることで、オフガス排出路37からオフガスを排出しながら系内を窒素ガスで置換すると共に反応容器30内の触媒スラリーを流動化させる(図3中のaで示す部分)。
 次に第2工程として、第1工程の実施により触媒スラリーが流動化した状態の反応容器30に、第1コンプレッサ34を定格運転(100%運転=流量50)した状態で、合成ガス供給路31を通して定格運転時の処理流量(50)よりも小さい流量(例として35)で合成ガス(Fresh SG)を導入し、反応容器30から導出されて気液分離器38で分離された未反応合成ガスを、第2コンプレッサ35を定格運転(100%運転=流量50)することで第1再循環路32を介して循環させると共に、気液分離器38で分離後の未反応合成ガスのうち第1再循環路32に導入される分の残りの未反応合成ガス(流量15)を第2再循環路33を介して定格運転される第1コンプレッサ34の吸入側に循環させる。図中、未反応合成ガスはR/C SGで示してある。そして、それにより、オフガス排出路37からオフガスを排出しながら系内を合成ガスで置換すると共に、合成ガス供給路31からの合成ガスの供給流量を定格運転時の処理流量よりも小さい一定流量(35)に維持する。またこの間、反応容器30の温度を徐々に上げることでCO転化率を上げていく(図3中のbで示す部分)。
 次に第3工程として、第2工程において反応が安定してきた段階で、合成ガス供給路31を通して反応容器30に導入する合成ガスの流量を徐々に増加させると共に第2再循環路33を通して循環させる未反応合成ガスの流量を徐々に減少させ、最終的に合成ガス供給路31を通して反応容器30に導入する合成ガスの流量を、定格運転時に処理する合成ガスの処理流量(50)まで上昇させる(図3中のcで示す部分)。以上により定格運転に移行する。
 次に比較例を説明する。
 図5に示すように、比較例の第1工程では、反応容器30への合成ガスの導入前に予め、合成ガス供給路31を通してフレッシュな窒素ガス(Fresh N2)を反応容器30に導入し、第1コンプレッサ34を70%運転(流量35)すると共に第2コンプレッサ35を定格運転(流量50)して窒素ガスを第1再循環路32および第2再循環路33を介して循環させることで、オフガス排出路37からオフガスを排出しながら系内を窒素ガスで置換すると共に反応容器30内の触媒スラリーを流動化させる。この場合、リサイクルされる窒素ガス(R/C N2)は85の流量で循環する(図5中のaで示す部分)。
 次に第2工程として、第1工程の実施により触媒スラリーが流動化した状態の反応容器30に、第1コンプレッサ34を70%運転したまま、合成ガス供給路31を通して、流量35でフレッシュな合成ガス(Fresh SG)を導入し、反応容器30から導出されて気液分離器38で分離された未反応合成ガス(R/C SG)を、第2コンプレッサ35を定格運転(100%運転)することで第1再循環路32を介して循環させる。なお、合成ガスの導入を開始したら、第1コンプレッサ34の吸入ガスは全量が合成ガスに振り替わるため、第2再循環路33からのガス流量はゼロになる。そして、以上の操作により、オフガス排出路37からオフガスを排出しながら系内を合成ガスで置換すると共に、合成ガス供給路31からの合成ガスの供給流量を定格運転時の処理流量よりも小さい一定流量35に維持する。またこの間、反応容器30の温度を徐々に上げることでCO転化率を上げていく(図5中のbで示す部分)。
 次に第3工程として、第2工程において反応が安定してきた段階で、合成ガス供給路31を通して反応容器30に導入する合成ガスの流量を徐々に増加させ、最終的に合成ガス供給路31を通して反応容器30に導入する合成ガスの流量を、定格運転時に処理する合成ガスの処理流量(50)まで上昇させる(図5中のcで示す部分)。以上により定格運転に移行する。
 以上のように操作した場合の反応容器30に導入されるトータル導入ガス量(total Rx Feed)やフレッシュな合成ガスの導入量(Fresh SG load )やCO転化率(CO Conv.)は図4及び図6に示すように変化する。
 以上の説明のように、本発明の実施形態によれば、スタートアップ時の窒素ガスの循環を、第1再循環路32及び第2再循環路33を介して第1コンプレッサ34及び第2コンプレッサ35の定格流量(50+50)で行うことにより、反応容器30内の流動状態を安定に保った状態で、次の合成ガスの導入に移行することができる。また、合成ガスの導入に移行する際および移行した後にも、第1コンプレッサ34を定格運転して、合成ガスと未反応合成ガスを合わせた混合ガスを定格流量にて反応容器30に導入することができる。つまり、第1コンプレッサ34に入る合成ガスの流量(35)と第2再循環路33からの流量(15)を合わせて50の流量と、第1再循環路32からの50の流量とにより、定格と同等の100の必要十分な流量のガスが導入されるので、反応容器30内で安定した流動状態を保つことができ、それにより、流動状態による影響をほとんど考慮せずに、徐々に反応容器30の温度を上げていくことで反応性(転化率)を上昇させるとともに、合成ガスの流量を定格流量まで安全に増加させることができる。従って、スタートアップ時の要注意監視現象が減り、運転操作が容易になる。
 また、比較例と比べた場合、反応容器30内の流動状態を常に一定に保てるので、定格安定運転に移行するまでにかかる時間を大幅に短縮(比較例では46時間ほどかかっていたのを17時間ほどに短縮)することができる。また、合成ガスを圧縮する第1コンプレッサ34を低流量にて操作することなく、その性能をフル活用することができるので、効率アップが図れる。
 また、反応容器30に導入する合成ガスの導入量を、予め安全を考慮した低流量に保持し、反応の安定を確認しながら徐々に反応容器30の温度を上げていくことで反応性(転化率)を上昇させるとともに、合成ガスの流量を定格流量まで増加させる必要のある立ち上げ運転時に、合成ガスを圧縮する第1コンプレッサ34の吸入側に、第2再循環路33を通して未反応合成ガスを導入することができるので、第1コンプレッサ34を定格運転した際の合成ガスの定格流量に対する不足流量分を未反応合成ガスで補うことができる。
即ち、例えば、反応の暴走を防ぐために低流量の合成ガスの導入からのスタートを余儀なくされるスタートアップ操作において、第1コンプレッサ34を定格運転して、合成ガスと未反応合成ガスを合わせた混合ガスを定格流量にて反応容器30に導入することにより、反応容器30内で安定した流動状態を保つことができ、それにより、流動状態による影響をほとんど考慮せずに、徐々に反応容器30の温度を上げていくことで反応性(転化率)を上昇させるとともに、合成ガスの流量を定格流量まで安全に増加させることができる。
 また、不活性ガスの循環経路として使う循環路を、未反応合成ガスを循環させる第2再循環路33として兼用するので、設備を最大限有効利用することができて、コストアップを抑えることができる。
 また、未反応合成ガスの循環運転を行っているときに、合成ガスと、未反応合成ガスの合流後の温度が未反応合成ガス温度と同程度以上となるように制御することで、未反応合成ガスに含まれる微量の油分が凝縮して生じるトラブルを防ぐことができ、その結果、第1コンプレッサ34の安定的な運転を保障することができる。
 具体的な例を用いて述べる。
 反応容器30の流動安定化を図るため、第2再循環路34を使用して未反応合成ガスを第1コンプレッサ34の吸入側にリサイクルさせた場合、合成ガス温度は33℃、未反応合成ガスの温度は34℃、混合後のガス温度は33℃であった。運転開始直後よりサクションストレーナー36の差圧が徐々に上昇し、運転に支障を来し始めた。このため、脱炭酸工程の炭酸ガスを吸収するアミン溶液の温度を上げて合成ガス温度を38℃とした。そうしたら、混合後のガス温度も38℃に達し、サクションストレーナー36の差圧がほぼ定常値に戻り運転を継続することが可能となった。
 ちなみに、合成ガスの温度Tbが循環する未反応ガスの温度Taよりも低い場合には、合成ガスと未反応合成ガスを混合させると、未反応合成ガス中に微量含まれる油分が凝縮する可能性がある。この凝縮した油分がコンプレッサのサクションストレーナーに付着すると、ストレーナーを徐々に閉塞させるため、ストレーナーの差圧が経時的に上昇し、コンプレッサを安定運転できず、第2再循環路34を介した循環に必要なガス流速を安定して確保することが困難になる。そこで、循環する未反応合成ガスと合成ガスを混合した際に、未反応合成ガスに微量含まれる油分が混合による温度低下により凝縮しないように、混合後の合成ガスの温度Tcを循環する未反応合成ガスの温度Taよりも高温に設定して運転する。
 例えば、脱炭酸工程におけるアミンの酸性ガス吸収能低下及びコンプレッサの吸い込み量の低下による反応容器30への導入ガス量の低下を防ぐために、合成ガス温度を常に循環ガス温度よりも2~5℃高温に設定して運転する。そうすることで、両者を混合させた際の混合ガスの温度が未反応合成ガスの温度より高くなり、未反応合成ガスに含まれる微量の油分が凝縮することがなくなり、その結果、循環運転においてコンプレッサを安定的に運転することが可能となる。
 但し、合流後のガス温度の上昇幅が小さいと、油分の凝縮防止が不十分となり、高くしすぎると、コンプレッサの吸い込み量が減るため、反応容器30への導入ガス量の低下を招く。また、アミン溶液の酸性ガス吸収能が低下し、要求される性能を満たすことができなくなる。そこで、2~5℃程度の範囲で高く設定する。こうすることで、コンプレッサのサクションストレーナー36の閉塞回避とアミン溶液の酸性ガス吸収性能を両立させることが可能となる。
 その結果、コンプレッサのサクションストレーナー36においての油分の凝縮を防ぐことができ、コンプレッサ34を安定的に長時間運転することが可能となる。また、コンプレッサ34の長期安定運転により、反応容器30内の流動状態を安定的に保つことができるため、GTLオイルを安定して生産できるようになる。
 なお、混合後の合成ガスの温度を高める方法は任意に選択することができる。また、未反応合成ガスとの混合前の合成ガスの温度を高くするのではなく、最終的に混合ガスの温度が未反応合成ガスの温度よりも高くなるように温度制御手段を設ければ、油分の凝縮の問題は解消することができる。
 また、前記実施形態では、炭化水素合成反応装置のスタートアップ方法を例に挙げて本発明を説明したが、これに限られることなく、何らかの理由により反応容器への合成ガス量を定格流量より低い値にしなればならない時のFT合成ユニットの低ロード保持運転、さらにはその状態から徐々に合成ガスの流量を上げて定格流量まで増加させる場合にも本発明は適用可能である。
 本発明は、炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システムに関する。本発明によれば、触媒の安定した流動状態及び反応状態を確保しながら、短時間でシステムをスタートアップすることができる。
3 合成ガス生成ユニット(合成ガス送出手段)
5 FT合成ユニット(炭化水素合成反応装置)
7 アップグレーディングユニット(製品精製ユニット)
30 反応容器
31 合成ガス供給路
32 第1再循環路
33 第2再循環路
34 第1コンプレッサ
35 第2コンプレッサ
36 サクションストレーナー
37 オフガス排出路
38 気液分離器

Claims (5)

  1.  一酸化炭素ガス及び水素ガスを主成分とする合成ガスを送出する合成ガス送出手段から送出される前記合成ガスを第1コンプレッサにより圧縮して供給する合成ガス供給路と、
     液体中に固体の触媒粒子を懸濁させてなる触媒スラリーを収容し、前記合成ガス供給路から供給される合成ガスと前記触媒スラリーとの接触によって炭化水素を合成する反応容器と、
     前記反応容器から導出される未反応合成ガス及び炭化水素を気液分離する気液分離器と、
     前記気液分離器で分離後のガスのうち一部をオフガスとして系外に排出するオフガス排出路と、
     前記気液分離器で分離後の未反応合成ガスを第2コンプレッサにより圧縮して前記反応容器に再循環させる第1再循環路と、
     定格運転時に処理する合成ガスの処理流量よりも小さい処理流量から定格運転時の合成ガスの処理流量まで、前記合成ガス送出手段から前記反応容器に導入する合成ガスの導入量を徐々に増加させる立ち上げ運転時に、前記気液分離器で分離後の未反応合成ガスのうち前記第1再循環路に導入する分の残りの未反応合成ガスを前記第1コンプレッサの吸入側に再循環させる第2再循環路と
    を備える炭化水素合成反応装置。
  2.  前記反応容器のスタートアップ時に系内を不活性ガスで置換し且つ前記触媒スラリーを流動化させるための不活性ガスの循環経路として、前記第1再循環路と、前記気液分離器から前記第1コンプレッサの吸入側に連通する不活性ガス循環路とが設けられており、前記不活性ガス循環路が前記第2再循環路として兼用される請求項1に記載の炭化水素合成反応装置。
  3.  前記合成ガス送出手段から送出される前記合成ガスが前記第1コンプレッサの吸入側に導入される箇所の上流側に設けられ、前記第2再循環路からの未反応合成ガスが前記合成ガス送出手段から送出される合成ガスと合流し混合する合流混合部と、
     前記合流混合部にて混合される混合ガスの温度が少なくとも前記第2再循環路からの未反応合成ガスの温度と同等以上となるように制御する温度制御手段と
    をさらに備える請求項1または2に記載の炭化水素合成反応装置。
  4.  炭化水素原料から液体燃料基材を製造する炭化水素合成反応システムであって、
     請求項1から3のいずれか1項に記載の炭化水素合成反応装置と、
     該炭化水素合成反応装置にて生成される炭化水素から液体燃料基材を精製する製品精製ユニットと
    を備え、
     前記合成ガス送出手段は、前記炭化水素原料を改質して前記合成ガスを生成し、該合成ガスを前記合成ガス供給路に送出する合成ガス生成ユニットである炭化水素合成反応システム。
  5.  請求項1から請求項3のいずれか一項記載の炭化水素合成反応装置のスタートアップ方法であって、
     前記反応容器への合成ガスの導入前に予め、前記合成ガス供給路を通して不活性ガスを前記反応容器に導入し、前記第1コンプレッサ及び第2コンプレッサを共に定格運転して前記不活性ガスを前記第1再循環路および第2再循環路を介して循環させることで、前記オフガス排出路からオフガスを排出しながら系内を不活性ガスで置換すると共に前記触媒スラリーを流動化させる第1工程と、
     該第1工程の実施により前記触媒スラリーが流動化した状態の前記反応容器に、前記第1コンプレッサを定格運転した状態で、前記合成ガス供給路を通して定格運転時の処理流量よりも小さい流量で合成ガスを導入し、前記反応容器から導出されて前記気液分離器で分離された未反応合成ガスを、前記第2コンプレッサを定格運転することで前記第1再循環路を介して循環させると共に、前記気液分離器で分離後の未反応合成ガスのうち前記第1再循環路に導入される分の残りの未反応合成ガスを前記第2再循環路を介して前記定格運転される第1コンプレッサの吸入側に循環させ、それにより、前記オフガス排出路からオフガスを排出しながら系内を合成ガスで置換すると共に、前記合成ガス供給路からの合成ガスの供給流量を定格運転時の処理流量よりも小さい一定流量に維持する第2工程と、
     該第2工程において反応が安定してきた段階で、前記合成ガス供給路を通して反応容器に導入する合成ガスの流量を徐々に増加させると共に前記第2再循環路を通して循環させる未反応合成ガスの流量を徐々に減少させ、最終的に前記合成ガス供給路を通して反応容器に導入する合成ガスの流量を、定格運転時に処理する合成ガスの処理流量まで上昇させる第3工程と
    を備える炭化水素合成反応装置のスタートアップ方法。
PCT/JP2012/056399 2011-03-30 2012-03-13 炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム WO2012132876A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112013024773A BR112013024773B1 (pt) 2011-03-30 2012-03-13 processo de inicialização de um aparelho de reação de síntese de hidrocarboneto
EA201391277A EA023881B1 (ru) 2011-03-30 2012-03-13 Устройство для осуществления реакции синтеза углеводородов, способ его запуска и система для осуществления реакции синтеза углеводородов
CN201280015171.0A CN103443249B (zh) 2011-03-30 2012-03-13 烃合成反应装置、其启动方法及烃合成反应系统
CA2830598A CA2830598C (en) 2011-03-30 2012-03-13 Hydrocarbon synthesis reaction apparatus, start-up process thereof, and hydrocarbon synthesis reaction system
EP12763512.6A EP2692831B1 (en) 2011-03-30 2012-03-13 Method for starting up a hydrocarbon synthesis reaction apparatus
AP2013007133A AP4062A (en) 2011-03-30 2012-03-13 Hydrocarbon synthesis reaction apparatus, start-up process thereof, and hydrocarbon synthesis reaction system
AU2012234879A AU2012234879B2 (en) 2011-03-30 2012-03-13 Hydrocarbon synthesis reaction apparatus, start-up process thereof, and hydrocarbon synthesis reaction system
US14/006,998 US9434657B2 (en) 2011-03-30 2012-03-13 Hydrocarbon synthesis reaction apparatus, start-up process thereof, and hydrocarbon synthesis reaction system
ZA2013/07253A ZA201307253B (en) 2011-03-30 2013-09-27 Hydrocarbon synthesis reaction apparatus, start-up thereof and hydrocarbon synthesis reaction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011076649A JP5887063B2 (ja) 2011-03-30 2011-03-30 炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム
JP2011-076649 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132876A1 true WO2012132876A1 (ja) 2012-10-04

Family

ID=46930613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056399 WO2012132876A1 (ja) 2011-03-30 2012-03-13 炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム

Country Status (12)

Country Link
US (1) US9434657B2 (ja)
EP (1) EP2692831B1 (ja)
JP (1) JP5887063B2 (ja)
CN (1) CN103443249B (ja)
AP (1) AP4062A (ja)
AU (1) AU2012234879B2 (ja)
BR (1) BR112013024773B1 (ja)
CA (1) CA2830598C (ja)
EA (1) EA023881B1 (ja)
MY (1) MY163225A (ja)
WO (1) WO2012132876A1 (ja)
ZA (1) ZA201307253B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505749B2 (en) 2015-08-19 2022-11-22 Sasol Technology Proprietary Limited Method of operating a slurry bubble column reactor
RU204762U1 (ru) * 2019-07-19 2021-06-09 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Устройство для проведения реакций в суспензионном слое наноразмерного катализатора
US11884621B2 (en) 2021-03-25 2024-01-30 Enerflex Us Holdings Inc. System, apparatus, and method for hydrocarbon processing
RU2771006C1 (ru) * 2021-05-31 2022-04-25 Игорь Анатольевич Мнушкин Комплекс переработки в газохимическую продукцию углеводородного сырья месторождений, расположенных в сложных климатических условиях
CN115101139B (zh) * 2022-07-27 2023-09-15 南京安佰思生物科技有限公司 一种羟基频哪酮视黄酸酯的合成工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517698A (ja) 2002-02-13 2005-06-16 サソール テクノロジー(プロプライエタリー)リミテッド フィッシャー−トロプシュ反応器の始動方法
JP2010083998A (ja) * 2008-09-30 2010-04-15 Nippon Oil Corp ナフサ留分水素化処理反応器のスタートアップ方法
WO2011024651A1 (ja) * 2009-08-31 2011-03-03 独立行政法人石油天然ガス・金属鉱物資源機構 スラリー調製方法、スラリー調製装置、炭化水素合成反応装置、及び炭化水素合成反応システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003260828A1 (en) * 2002-09-19 2004-04-08 Sasol Technology (Proprietary) Limited Hydrocarbon synthesis
US7091251B2 (en) * 2003-03-05 2006-08-15 L'Air Liquide—Societe Anonyme a Directoire et Counseil de Survelliance pour L'Etude et L'Exploitation des Procedes Georges Claude Process and apparatus for the production of methanol
US6838487B1 (en) * 2003-12-04 2005-01-04 Rentech, Inc. Method and apparatus for regenerating an iron-based Fischer-Tropsch catalyst
CN101326145B (zh) * 2005-12-09 2013-09-18 国际壳牌研究有限公司 由合成气制烃工艺的起动方法
JP5424566B2 (ja) * 2008-03-14 2014-02-26 独立行政法人石油天然ガス・金属鉱物資源機構 天然ガスからの液状炭化水素製造プロセスにおける合成ガスの製造方法
EP2268775A4 (en) * 2008-04-21 2014-01-29 Karen Sue Kelly MANUFACTURE OF LIQUID HYDROCARBONS
WO2010038399A1 (ja) * 2008-09-30 2010-04-08 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
EA021749B1 (ru) * 2009-08-31 2015-08-31 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Установка для реакции синтеза углеводородов, реакционная система синтеза углеводородов и способ синтеза углеводородов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517698A (ja) 2002-02-13 2005-06-16 サソール テクノロジー(プロプライエタリー)リミテッド フィッシャー−トロプシュ反応器の始動方法
JP2010083998A (ja) * 2008-09-30 2010-04-15 Nippon Oil Corp ナフサ留分水素化処理反応器のスタートアップ方法
WO2011024651A1 (ja) * 2009-08-31 2011-03-03 独立行政法人石油天然ガス・金属鉱物資源機構 スラリー調製方法、スラリー調製装置、炭化水素合成反応装置、及び炭化水素合成反応システム

Also Published As

Publication number Publication date
CN103443249A (zh) 2013-12-11
AU2012234879B2 (en) 2015-05-14
US20140135410A1 (en) 2014-05-15
EP2692831B1 (en) 2019-03-13
US9434657B2 (en) 2016-09-06
JP2012211224A (ja) 2012-11-01
EA201391277A1 (ru) 2014-01-30
AP4062A (en) 2017-03-09
ZA201307253B (en) 2014-12-23
CA2830598C (en) 2016-01-19
MY163225A (en) 2017-08-30
EA023881B1 (ru) 2016-07-29
AP2013007133A0 (en) 2013-09-30
BR112013024773B1 (pt) 2020-02-04
CA2830598A1 (en) 2012-10-04
CN103443249B (zh) 2015-08-26
BR112013024773A2 (pt) 2016-12-20
JP5887063B2 (ja) 2016-03-16
EP2692831A1 (en) 2014-02-05
AU2012234879A1 (en) 2013-10-10
EP2692831A4 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
US8877821B2 (en) Method and system for synthesizing liquid hydrocarbon compounds
JP5501365B2 (ja) スラリー調製方法、スラリー調製装置、炭化水素合成反応装置、及び炭化水素合成反応システム
WO2010038396A1 (ja) 炭化水素化合物合成反応ユニット及びその運転方法
JP5887063B2 (ja) 炭化水素合成反応装置及びそのスタートアップ方法、並びに炭化水素合成反応システム
JP5501366B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに炭化水素合成反応方法
JP5138586B2 (ja) 液体燃料合成システム
WO2010038399A1 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
CA2867990C (en) Start-up method of bubble column slurry bed reactor
JP6071691B2 (ja) 炭化水素合成反応装置
JP5743643B2 (ja) 反応容器の運転停止方法
JP5364714B2 (ja) 液体燃料合成方法及び液体燃料合成装置
JP6088214B2 (ja) 炭化水素合成反応装置のスタートアップ方法
JP5364786B2 (ja) 触媒分離システム
JP5298133B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
JP5364329B2 (ja) 液体燃料混合システム及び液体燃料合成システム、並びに液体燃料混合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2830598

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14006998

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005387

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: IDW00201304553

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 201391277

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2012234879

Country of ref document: AU

Date of ref document: 20120313

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024773

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024773

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130926