WO2012132823A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2012132823A1
WO2012132823A1 PCT/JP2012/056018 JP2012056018W WO2012132823A1 WO 2012132823 A1 WO2012132823 A1 WO 2012132823A1 JP 2012056018 W JP2012056018 W JP 2012056018W WO 2012132823 A1 WO2012132823 A1 WO 2012132823A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
emitting device
light
electrode
Prior art date
Application number
PCT/JP2012/056018
Other languages
French (fr)
Japanese (ja)
Inventor
基晋 青木
真吾 寳角
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012132823A1 publication Critical patent/WO2012132823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant

Definitions

  • the present invention relates to a light emitting device.
  • An organic EL element having a plate 203 has been proposed (Document 1 [Japanese Patent Publication No. 2000-277254]).
  • a sealing plate 203 is bonded and fixed to a substrate 201 with an adhesive 204.
  • a mixture 205 of a silicone resin and a desiccant is disposed in a recess formed on the inner surface side of the sealing plate 203 for the purpose of suppressing deterioration with time such as generation and expansion of dark spots. .
  • the present invention has been made in view of the above reasons, and an object thereof is to provide a light emitting device capable of improving reliability.
  • a light emitting device includes a first substrate, an organic EL element, a second substrate, a bonding portion, and a drying member.
  • the organic EL element has a light emitting unit that emits light.
  • the organic EL element is formed on one surface of the first substrate.
  • the second substrate is disposed to face the one surface of the first substrate.
  • the second substrate is configured to form a space for accommodating the light emitting unit between the second substrate and the first substrate.
  • the joining part is formed in a frame shape surrounding the light emitting part.
  • the bonding portion is configured to bond a surface of the second substrate facing the first substrate to the one surface of the first substrate.
  • the drying member is disposed at an outer edge of a region surrounded by the bonding portion on the facing surface of the second substrate so as not to contact the light emitting portion.
  • the light emitting part is located at the center of the joint part.
  • the second substrate in the first or second aspect, includes a polygonal recess in the facing surface.
  • the recess has an outer periphery that surrounds the light emitting part in a plane parallel to the one surface of the first substrate.
  • the second substrate is bonded to the first substrate through the bonding portion around the recess on the facing surface.
  • the said drying member is arrange
  • the corner portion has a predetermined inner angle.
  • the drying member is formed in a shape having an angle equal to the predetermined inner angle.
  • the drying member has two sides defining the corner respectively facing and parallel to the two sides defining the predetermined inner angle. Arranged.
  • the drying member is disposed at each corner of the bottom surface of the recess.
  • the drying member has an infrared absorption rate higher than that of the second substrate.
  • FIG. 1 shows a light-emitting device of Embodiment 1, wherein (a) is a schematic rear view, and (b) is a schematic cross-sectional view taken along line H-H ′ of (a). It is a rear view of the light-emitting device of the said Embodiment 1.
  • FIG. 3 is a schematic sectional view taken along line B-B ′ of FIG. 2.
  • FIG. 3 is a schematic sectional view taken along line C-C ′ of FIG. 2.
  • FIG. 3 is a schematic cross-sectional view taken along line G-G ′ of FIG. 2.
  • FIG. 3 is a schematic sectional view taken along line D-D ′ of FIG. 2.
  • FIG. 3 is a schematic sectional view taken along line E-E ′ of FIG. 2.
  • FIG. 3 is a schematic cross-sectional view taken along the line F-F ′ of FIG. 2. It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. It is a schematic rear view of the light-emitting device of Embodiment 2. It is a schematic sectional drawing of the organic EL element of a prior art example.
  • the light emitting device A includes a translucent substrate 1 and an element substrate (organic EL element module) 3 having an organic EL element 2 formed on one surface side (the upper surface side in FIG. 1B) of the translucent substrate 1. And a cover substrate 5 which is disposed opposite to the one surface side of the translucent substrate 1 and is bonded to the element substrate 3 via the bonding portion 4.
  • the light emitting device A includes a heat equalizing plate 6 (see FIGS. 3 to 8) disposed on the side of the cover substrate 5 opposite to the organic EL element 2 side.
  • the cover substrate 5 has a recess 51 formed on the surface facing the element substrate 3 (the lower surface in FIG. 1B), and the circumferential portion of the recess 51 on the facing surface extends over the entire circumference. Bonded to the element substrate 3.
  • the recess 51 has an outer periphery surrounding the light emitting unit 20 in a plane parallel to the one surface of the first substrate 1.
  • the recess 51 is formed in a rectangular shape.
  • the light emitting portion 20 of the organic EL element 2 is accommodated in an airtight space (accommodating space) 8 surrounded by the translucent substrate 1, the cover substrate 5, and the joint portion 4.
  • the translucent substrate 1 constitutes the first substrate
  • the cover substrate 5 constitutes the second substrate
  • the light-emitting device A of the present embodiment includes the first substrate (translucent substrate) 1, the organic EL element 2, the second substrate 5, and the bonding portion 4.
  • the organic EL element 2 includes a light emitting unit 20 that emits light.
  • the organic EL element 2 is formed on the one surface of the first substrate 1.
  • the second substrate 5 is disposed so as to face the one surface of the first substrate 1.
  • the second substrate 5 is configured to form a space 8 for accommodating the light emitting unit 20 between the second substrate 5 and the first substrate 1.
  • the joint portion 4 is formed in a frame shape surrounding the light emitting portion 20.
  • the bonding portion 4 is configured to bond the surface of the second substrate 5 facing the first substrate 1 to the one surface of the first substrate 1.
  • the light emitting device A includes a drying member (moisture absorbing member) 7 disposed on the light emitting unit 20 via a space on the side of the cover substrate 5 facing the light transmissive substrate 1 on the side facing the light transmitting device A.
  • a drying member moisture absorbing member
  • the recess 51 and the drying member 7 are both rectangular. That is, the drying member 7 is formed in a shape having an angle ⁇ 2 equal to a predetermined inner angle ⁇ 1 of the recess 51 (see FIG. 1A).
  • the drying member 7 is disposed on the outer edge of the region surrounded by the joint 4 on the facing surface (the lower surface in FIG. 1B) of the second substrate 5.
  • the drying member 7 is disposed on the inner bottom surface of the recess 51 in the cover substrate 5.
  • the drying member 7 has a function of adsorbing moisture.
  • the light emitting device A of the present embodiment includes four drying members 7.
  • the four drying members 7 are respectively arranged at the four corners of the bottom surface of the recess 51. That is, the drying member 7 is disposed at each corner of the bottom surface of the recess 51.
  • Each drying member 7 is arranged so that the two sides 71 and 72 defining the angle ⁇ 2 are opposed to and parallel to the two sides 511 and 512 defining the predetermined inner angle ⁇ 1.
  • the organic EL element 2 includes a first electrode 21 formed on the one surface of a translucent substrate (first substrate) 1 and an organic formed on the first electrode 21.
  • An EL layer 22 and a second electrode 23 formed on the organic EL layer 22 are provided.
  • the organic EL layer 22 includes a light emitting layer formed using an organic material.
  • the organic EL element 2 includes a first electrode 21 that is disposed on the one surface side of the translucent substrate 1 and made of a transparent conductive film, and a side opposite to the translucent substrate 1 side of the first electrode 21. And an organic EL layer 22 including a light emitting layer made of an organic material, and a second electrode 23 made of a metal film and disposed on the opposite side of the organic EL layer 22 from the first electrode 21 side.
  • the organic EL element 2 is formed on the one surface of the translucent substrate 1 and the first terminal portion T1 formed on the one surface of the translucent substrate 1 and electrically connected to the first electrode 21. And a second terminal portion T2 electrically connected to the second electrode 23.
  • the organic EL element 2 is disposed on the side of the light emitting unit 20 where the first electrode 21, the organic EL layer 22, and the second electrode 23 overlap, and is electrically connected to the first electrode 21.
  • a terminal portion T1 and a second terminal portion T2 disposed on the side of the light emitting portion 20 and electrically connected to the second electrode 23 are provided.
  • the second electrode 23 is electrically connected to the second terminal portion T ⁇ b> 2 via a lead wire 23 b extending from the second electrode 23.
  • the organic EL element 2 is made of a material having a specific resistance smaller than that of the first electrode 21 and is formed along the periphery of the surface of the first electrode 21 opposite to the light-transmitting substrate 1 side.
  • Auxiliary electrode 26 electrically connected to is provided. That is, the organic EL element 2 includes the auxiliary electrode 26 made of a material having a specific resistance smaller than that of the first electrode 21.
  • the auxiliary electrode 26 is formed on the first electrode 21 so as to surround the light emitting layer (organic EL layer 22).
  • the organic EL element 2 includes an insulating film 29 that covers the side edges of the auxiliary electrode 26 and the first electrode 21 on the one surface side of the translucent substrate 1. In the organic EL element 2, short circuit between the auxiliary electrode 26 and the first electrode 21 and the second electrode 23 is prevented by the insulating film 29. That is, the organic EL element 2 includes an insulating film 29 that electrically insulates the first electrode 21 and the auxiliary electrode 26 from the second electrode 23.
  • auxiliary electrode 26 is formed in the rectangular frame shape along the perimeter of the peripheral part of the surface on the opposite side to the translucent board
  • the region where the translucent substrate 1, the first electrode 21, the light emitting layer, and the second electrode 23 overlap in the thickness direction of the translucent substrate 1 constitutes the above-described light emitting unit 20.
  • a region other than the light emitting unit 20 is a non-light emitting unit.
  • the light emitting unit 22 is configured by a portion overlapping the first electrode 21.
  • each of the first electrode 21, the organic EL layer 22, and the second electrode 23 has a planar view shape that is smaller than the translucent substrate 1 (in the illustrated example, a square shape).
  • the planar view shape of the light emitting unit 20 is a rectangular shape (square shape in the illustrated example) smaller than the translucent substrate 1.
  • the auxiliary electrode 26 has a rectangular frame shape (in the illustrated example, a square frame shape) in plan view.
  • the insulating film 29 has a rectangular frame shape (in the illustrated example, a square frame shape) in plan view.
  • the organic EL element 2 includes m (m + 1 in the example of FIG. 1) second terminal portions T2 and [m + 1] (see FIG. 1) along each of two predetermined parallel sides of the rectangular light emitting unit 20.
  • the three first terminal portions T1 are arranged so that the first terminal portions T1 are positioned on both sides of the second terminal portion T2 in the width direction.
  • the first terminal portion T ⁇ b> 1 and the second terminal portion T ⁇ b> 2 are provided at each of both ends in the longitudinal direction of the translucent substrate 1.
  • the organic EL element 2 includes three first terminal portions T1 that are spaced apart in the lateral direction of the translucent substrate 1 at both ends in the longitudinal direction of the translucent substrate 1.
  • the second terminal portion T2 is disposed between the first terminal portions T1 adjacent to each other in the short direction of the translucent substrate 1.
  • the longitudinal direction of the one surface of the translucent substrate 1 is defined as a prescribed direction
  • the element substrate 3 is provided with first terminal portions at both ends in the prescribed direction on the one surface of the translucent substrate 1.
  • T1 and second terminal portion T2 are arranged.
  • the first terminal portion T1 is a laminate of a transparent conductive oxide layer 24 (hereinafter also referred to as a first transparent conductive oxide layer 24) and a metal layer 27 (hereinafter also referred to as a first metal layer 27). It has a structure.
  • the second terminal portion T2 has a laminated structure of a transparent conductive oxide layer 25 (hereinafter also referred to as a second transparent conductive oxide layer 25) and a metal layer 28 (hereinafter also referred to as a second metal layer 28). have.
  • the planar shape of the soaking plate 6 is a rectangular shape (square shape in the illustrated example) that is smaller than the cover substrate 5 and larger than the light emitting unit 20.
  • the light emitting device A uses the other surface (the lower surface in FIG. 1B) of the translucent substrate 1 as a light emitting surface (light emitting surface). Therefore, in the light emitting device A, a region where three of the first electrode 21, the organic EL layer 22, and the second electrode 23 are projected on the other surface of the translucent substrate 1 is a light emitting surface.
  • the translucent substrate 1 has a rectangular shape in plan view, but is not limited thereto, and may be, for example, a square shape.
  • the translucent substrate 1 is formed of a material that transmits light emitted from the organic EL element 2.
  • a glass substrate is used as the translucent substrate 1, but the present invention is not limited thereto, and a plastic substrate may be used, for example.
  • a soda lime glass substrate or an alkali-free glass substrate can be used.
  • the plastic substrate for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyethersulfone (PES) substrate, a polycarbonate (PC) substrate, or the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PC polycarbonate
  • an SiON film, an SiN film, or the like may be formed on the surface of the plastic substrate to suppress moisture permeation.
  • the translucent substrate 1 preferably has a transmittance of 70% or more with respect to the light emitted from the organic EL element 2.
  • the unevenness on the one surface of the translucent substrate 1 may cause a leak current of the organic EL element 2 (cause of deterioration of the organic EL element 2).
  • the arithmetic average roughness Ra defined in JIS B 0601-2001 is preferably set to several nm or less.
  • a substrate having an arithmetic average roughness Ra of several nanometers or less can be obtained at low cost without performing particularly high-precision polishing. It is possible.
  • the first electrode 21 constitutes an anode
  • the second electrode 23 constitutes a cathode
  • the organic EL element 2 includes an organic EL layer 22 interposed between the first electrode 21 and the second electrode 23 in order from the first electrode 21 side, the hole transport layer, the light emitting layer, the electron transport layer, An electron injection layer is provided.
  • the laminated structure of the organic EL layer 22 is not limited to the above-described example.
  • a hole injection layer may be interposed between the first electrode 21 and the hole transport layer.
  • the light emitting layer may have a single layer structure or a multilayer structure.
  • the emission layer may be doped with three types of dopant dyes of red, green, and blue, or the blue hole-transporting emission layer and the green electron-transporting property.
  • a laminated structure of a light emitting layer and a red electron transporting light emitting layer may be adopted, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer may be adopted. Good.
  • the organic EL layer 22 having a function of emitting light when a voltage is applied between the first electrode 21 and the second electrode 23 is used as one light-emitting unit, and a plurality of light-emitting units are intermediates having optical transparency and conductivity.
  • a multi-unit structure in which layers are stacked and electrically connected in series that is, a structure including a plurality of light emitting units overlapping in the thickness direction between one first electrode 21 and one second electrode 23
  • the first electrode 21 constituting the anode is an electrode for injecting holes into the light emitting layer, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference between the energy level of the first electrode 21 and the HOMO (Highest Occupied Molecular Orbital) level does not become too large.
  • HOMO Highest Occupied Molecular Orbital
  • Examples of the electrode material of the first electrode 21 include ITO, tin oxide, zinc oxide, IZO (Indium Zinc Oxide), copper iodide, and the like doped with a conductive polymer such as PEDOT and polyaniline and an arbitrary acceptor. Examples thereof include conductive light transmissive materials such as conductive polymers and carbon nanotubes.
  • the first electrode 21 may be formed as a thin film on the one surface side of the translucent substrate 1 by, for example, sputtering, vacuum deposition, coating, or the like.
  • the sheet resistance of the first electrode 21 is preferably several hundred ⁇ / sq or less, particularly preferably 100 ⁇ / sq or less.
  • the film thickness of the first electrode 21 varies depending on the light transmittance of the first electrode 21, the sheet resistance, etc., but is preferably set to 500 nm or less, preferably in the range of 10 nm to 200 nm.
  • the second electrode 23 constituting the cathode is an electrode for injecting electrons into the light emitting layer, and an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a low work function is used. It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference between the energy level of the second electrode 23 and the LUMO (Lowest Unoccupied Molecular Orbital) level does not become too large.
  • LUMO Local Unoccupied Molecular Orbital
  • Examples of the electrode material of the second electrode 23 include aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys of these with other metals, such as a magnesium-silver mixture, magnesium-indium. Examples thereof include a mixture and an aluminum-lithium alloy.
  • a metal, a metal oxide, etc., and a mixture of these and other metals for example, an ultrathin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum.
  • a laminated film with a thin film can also be used.
  • the electrode material of the second electrode 23 is preferably a metal having a high reflectance with respect to light emitted from the light emitting layer and a low resistivity, and preferably aluminum or silver.
  • any material known as a material for an organic EL element can be used.
  • a light emitting material selected from these compounds in an appropriate mixture.
  • a compound that emits fluorescence typified by the above compound, but also a material system that emits light from a spin multiplet, for example, a phosphorescent material that emits phosphorescence, and a part thereof are included in a part of the molecule.
  • a compound can also be used suitably.
  • the light emitting layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. You may do.
  • the material used for the hole injection layer can be formed using a hole injection organic material, a metal oxide, a so-called acceptor organic material or inorganic material, a p-doped layer, or the like.
  • An example of the hole-injecting organic material is a material that has a hole-transporting property, a work function of about 5.0 to 6.0 eV, and exhibits strong adhesion to the first electrode 21.
  • Examples thereof include CuPc and starburst amine.
  • the hole-injecting metal oxide is a metal oxide containing any of molybdenum, rhenium, tungsten, vanadium, zinc, indium, tin, gallium, titanium, and aluminum, for example.
  • an oxide of a plurality of metals containing any one of the above metals such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc. It may be.
  • the hole injection layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a film.
  • the material used for the hole transport layer can be selected from a group of compounds having hole transport properties, for example.
  • this type of compound include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)-(1 , 1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA) 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB and the like, arylamine compounds, amine compounds containing carbazole groups, An amine compound containing a fluorene derivative can be exemplified, and any generally known hole transporting material can be used.
  • the material used for the electron transport layer can be selected from a group of compounds having electron transport properties.
  • this type of compound include metal complexes known as electron transporting materials such as Alq3, and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Instead, any generally known electron transport material can be used.
  • the material of the electron injection layer is, for example, a metal fluoride such as lithium fluoride or magnesium fluoride, a metal halide such as sodium chloride or magnesium chloride, aluminum, cobalt, zirconium, Titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc, silicon, and other metal oxides, nitrides, carbides, oxynitrides, etc., for example, aluminum oxide , Magnesium oxide, iron oxide, aluminum nitride, silicon nitride, silicon carbide, silicon oxynitride, boron nitride and other insulating materials, silicon compounds such as SiO2 and SiO, carbon compounds, etc. Can be used. These materials can be formed into a thin film by being formed by a vacuum deposition method or a sputtering method.
  • the same material as that of the second electrode 23 is adopted as the material of the lead-out wiring 23b.
  • the thickness of the lead wiring 23 b is set to the same thickness as the second electrode 23.
  • the lead wire 23 b is formed continuously with the second electrode 23. Therefore, the light emitting device A of the present embodiment can simultaneously form the lead wiring 23b and the second electrode 23 at the time of manufacture.
  • lead-out wiring 23b extends to a portion formed on the inner side of the bonding region 25a with the bonding portion 4 in the second transparent conductive oxide layer 25 of the second terminal portion T2.
  • the width (wiring width) of the lead-out wiring 23b is such that the second terminal portion T2 can prevent a short circuit with the first terminal portion T1 and ensure a predetermined insulation distance from the first terminal portion T1. It is set to a value slightly smaller than the width dimension.
  • the width dimension of the lead-out wiring 23b is preferably equal to or smaller than the width of the second terminal portion T2, but is preferably as large as possible in order to increase electromigration resistance.
  • the material of the first transparent conductive oxide layer 24 and the second transparent conductive oxide layer 25 is transparent conductive oxide (TCO), such as ITO, AZO, GZO, and IZO. Can be adopted.
  • TCO transparent conductive oxide
  • the first transparent conductive oxide layer 24 and the second transparent conductive oxide layer 25 are made of the same material as that of the first electrode 21, and the first electrode 21, the first transparent conductive oxide layer 24, The two transparent conductive oxide layers 25 are set to the same thickness.
  • the material of the first metal layer 27 and the second metal layer 28 is, for example, a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, or at least one of these metals.
  • a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, or at least one of these metals.
  • An alloy containing a seed is preferred.
  • first metal layer 27 and the second metal layer 28 are not limited to a single layer structure, and may have a multilayer structure.
  • the first metal layer 27 and the second metal layer 28 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer.
  • the lower MoNb layer is preferably provided as an adhesion layer with the base
  • the upper MoNb layer is preferably provided as a protective layer for the AlNd layer.
  • the material of the first metal layer 27 and the material of the second metal layer 28 are the same, and the first metal layer 27 and the second metal layer 28 are set to the same thickness.
  • the first metal layer 27 and the second metal layer 28 may employ the same material as the second electrode 23.
  • a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, and magnesium, or an alloy including at least one of these metals is preferable.
  • the auxiliary electrode 26 is not limited to a single layer structure, and may have a multilayer structure.
  • the auxiliary electrode 26 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer.
  • the lower MoNb layer is preferably provided as an adhesion layer with the base
  • the upper MoNb layer is preferably provided as a protective layer for the AlNd layer.
  • the material of the auxiliary electrode 26 and the material of the first metal layer 27 and the second metal layer 28 are the same. Thereby, in the light-emitting device A of this embodiment, it becomes possible to form the auxiliary electrode 26, the 1st metal layer 27, and the 2nd metal layer 28 simultaneously at the time of manufacture, and can achieve cost reduction.
  • the material of the insulating film 29 for example, polyimide is adopted, but not limited thereto, for example, novolak resin, epoxy resin, or the like can be adopted.
  • the region where only the organic EL layer 22 is interposed between the first electrode 21 and the second electrode 23 constitutes the light emitting unit 20 described above, and the planar shape of the light emitting unit 20 is insulated.
  • the film 29 has the same rectangular shape (in the illustrated example, a square shape) as the shape of the inner peripheral edge.
  • a portion other than the light emitting portion 20 of the organic EL element 2 is a non-light emitting portion in plan view.
  • the glass substrate is used as the cover substrate 5, the present invention is not limited thereto, and for example, a plastic substrate may be used.
  • a soda lime glass substrate or an alkali-free glass substrate can be used.
  • the plastic substrate for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyethersulfone (PES) substrate, a polycarbonate (PC) substrate, or the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PC polycarbonate
  • an SiON film, an SiN film, or the like may be formed on the surface of the plastic substrate to suppress moisture permeation.
  • a material having a small difference in linear expansion coefficient from the material of the translucent substrate 1 is preferable, and stress generated due to the difference in linear expansion coefficient between the cover substrate 5 and the translucent substrate 1 is applied. From the viewpoint of reduction, materials having the same linear expansion coefficient difference are more preferable.
  • the cover substrate 5 is bonded to the element substrate 3 via the bonding portion 4 as described above.
  • the interface between the bonding portion 4 and the element substrate 3 includes the first interface between the bonding portion 4 and the first terminal portion T1, the second interface between the bonding portion 4 and the second terminal portion T2, and the bonding portion 4. And a third interface between the transparent substrate 1 and the transparent substrate 1.
  • an epoxy resin is used, but is not limited thereto, and for example, an acrylic resin, a frit glass, or the like may be employed.
  • the epoxy resin or acrylic resin may be an ultraviolet curable type or a thermosetting type.
  • an epoxy resin containing a filler for example, silica, alumina, etc.
  • the drying member 7 is formed using a desiccant such as calcium oxide, barium oxide, or silica gel, for example.
  • a desiccant such as calcium oxide, barium oxide, or silica gel, for example.
  • the desiccant a material having an infrared absorption rate higher than that of the cover substrate 5 is preferable.
  • the material of the soaking plate 6 a metal having high thermal conductivity among various metals is preferable, and copper is adopted.
  • the material of the soaking plate 6 is not limited to copper, and may be aluminum, gold, bronze, brass, or the like, for example.
  • the soaking plate 6 may be a metal foil (for example, a copper foil, an aluminum foil, a gold foil, etc.).
  • the opening size of the recess 51 in the cover substrate 5 is set larger than the size of the outer peripheral shape of the insulating film 29, and the peripheral portion of the cover substrate 5 (the periphery of the recess 51 is ) Is bonded to the element substrate 3 through the bonding portion 4.
  • the moisture resistance can be improved.
  • a part of each of the first terminal portion T1 and the second terminal portion T2 is exposed to the outside of the organic EL element 2.
  • the first terminal portion T1 has a laminated structure of the first transparent conductive oxide layer 24 and the first metal layer 27 as described above, but only the first transparent conductive oxide layer 24 is present.
  • the joining region 24a configured by the following is provided over the entire length in the width direction of the first terminal portion T1 along the circumferential direction of the joining portion 4.
  • the second terminal portion T2 has a laminated structure of the second transparent conductive oxide layer 25 and the second metal layer 28 as described above, but only by the second transparent conductive oxide layer 25.
  • the joining region 25a to be configured is provided over the entire length in the width direction of the second terminal portion T2 along the circumferential direction of the joining portion 4.
  • the first interface between the junction 4 and the first terminal portion T1 is constituted by the interface between the junction 4 and the first transparent conductive oxide layer 24, and the first interface between the junction 4 and the second terminal portion T2.
  • the two interface is constituted by an interface between the joint portion 4 and the second transparent conductive oxide layer 25.
  • the light emitting device A of the present embodiment can improve the bonding strength between the bonding portion 4 and the first terminal portion T1 and the second terminal portion T2, and the first metal layer 27 and the second metal. It is possible to prevent the oxidation of the layer 28 with the passage of time and change the state of the first interface and the second interface, thereby improving the reliability.
  • the soaking plate 6 since the soaking plate 6 is provided, the temperature of the light emitting unit 20 of the organic EL element 2 can be soaked, and the temperature of the light emitting unit 20 can be reduced. In-plane variation can be reduced, and heat dissipation can be improved.
  • the temperature rise of the organic EL element 2 can be suppressed, and the lifetime can be extended when the input power is increased to increase the luminance.
  • the planar size of the light emitting unit 20 is set to 80 ⁇ 80 mm, but is not limited thereto, and may be set as appropriate within a range of about 30 ⁇ 30 to 300 ⁇ 300 mm, for example.
  • center-to-center distance between the two first terminal portions T1 and T1 disposed on both sides in the width direction of the second terminal portion T2 is set to 30 mm, this value is an example and is not particularly limited. Absent.
  • the thickness of the first electrode 21 is in the range of about 110 nm to 300 nm
  • the thickness of the organic EL layer 22 is in the range of about 150 nm to 300 nm
  • the thickness of the second electrode 23 is in the range of about 70 nm to 300 nm
  • the insulating film 29 The thickness of the auxiliary electrode 26, the first metal film 27, and the second metal film 28 is appropriately set in the range of about 300 nm to 600 nm. These values are There is no particular limitation.
  • the impedance of the auxiliary electrode 26 decreases as the width increases, and the in-plane variation of the luminance of the light emitting unit 20 is reduced. Since it decreases, it is preferable to set in the range of about 0.3 mm to 3 mm. In a lighting fixture in which a plurality of light-emitting devices A according to this embodiment are used as a light source, the distance between adjacent light-emitting portions 20 can be reduced and the appearance can be improved as the width of the auxiliary electrode 26 is reduced.
  • substrate 1 is set to 0.2 mm, this value is not specifically limited, For example, 0. It is preferable to set appropriately within a range of about 1 to 2 mm. In order to reduce the area of the non-light emitting portion of the light emitting device A, it is preferable to shorten the distance between the first terminal portion T1 and the second terminal portion T2 and the peripheral edge of the translucent substrate 1, but the first terminal portion T1. And when it is necessary to ensure a predetermined creepage distance between the second terminal portion T2 and another metal member (for example, a metal fixture body of a lighting fixture), the value is longer than this creepage distance. It is preferable to set.
  • the first electrode 21 and the first transparent conductive material made of the same transparent conductive oxide for example, ITO, AZO, GZO, IZO, etc.
  • the oxide layer 24 and the second transparent conductive oxide layer 25 are formed by using a vapor deposition method, a sputtering method, or the like.
  • the auxiliary electrode 26, the first metal layer 27, and the second metal layer 28 made of, for example, the same metal material are applied to the one surface side of the translucent substrate 1 by using a vapor deposition method, a sputtering method, or the like. 10 to obtain the structure shown in FIG.
  • an insulating film 29 made of a resin material (for example, polyimide, novolac resin, epoxy resin, etc.) is formed on the one surface side of the translucent substrate 1 to obtain the structure shown in FIG.
  • the structure shown in FIG. 12 is obtained by forming the organic EL layer 22 on the one surface side of the translucent substrate 1 by, for example, vapor deposition.
  • the formation method of the organic EL layer 22 is not limited to the vapor deposition method, and may be a coating method, for example, and may be appropriately selected according to the material of the organic EL layer 22.
  • the second electrode 23 and the lead wiring 23b made of the same metal material are formed on the one surface side of the translucent substrate 1 by using a vapor deposition method, a sputtering method, or the like.
  • the element substrate 3 having the structure shown in FIG. 13 is obtained. This is the element substrate forming step for forming the organic EL element 2 on the one surface side of the translucent substrate 1.
  • an adhesive for example, epoxy resin, acrylic resin, glass frit, etc.
  • the adhesive 4a emits light across the first terminal portion T1 and the second terminal portion T2 so that a part of each of the first terminal portion T1 and the second terminal portion T2 is located outside the space (storage space) 8. It is formed so as to surround the portion 20.
  • the adhesive 4a is applied to the peripheral portion of the element substrate 3 in a rectangular frame shape, but the peripheral portion of the recess 51 in the cover substrate 5 instead of the element substrate 3.
  • the adhesive 4a may be applied to the (periphery) in a rectangular frame shape.
  • coats the adhesive agent 4a used as the junction part 4 is not restricted to a dispenser, For example, you may use a screen printing apparatus, a die coater, a slit coater, etc.
  • the light emitting device A is obtained by performing the steps.
  • the element substrate 3 and the cover substrate 5 are overlapped and pressed to crush and spread the adhesive 4a.
  • the adhesive 4a when the adhesive 4a is an ultraviolet curing type, the adhesive 4a is cured by irradiating with ultraviolet rays.
  • the adhesive 4a is a thermosetting type, the adhesive 4a is cured by heating the adhesive 4a.
  • the curing step for curing is performed in a nitrogen atmosphere with a dew point of ⁇ 65 ° C., for example.
  • the soaking plate 6 may be attached to the cover substrate 5 after the adhesive 4a of the joint 4 is cured.
  • a desiccant of the drying member 7 for example, a seal-type desiccant or a coating-type desiccant can be used. Depending on the combination with the agent 4 a, it may be performed either before the cover substrate 5 and the element substrate 3 are overlapped with each other, or may be combined with a curing step of curing the adhesive 4 a of the joint portion 4.
  • a method for applying the coating type desiccant for example, a method using a dispenser, a screen printing apparatus, a metal mask, a die coater, a slit coater, or the like can be employed.
  • the element substrate 3 is a rectangular plate that can be arranged in a 2 ⁇ 2 array and is divided into individual element substrates 3 later.
  • an application step of applying the adhesive 4a is performed.
  • the third substrate may be a rectangular plate that can arrange the element substrates 3 in an array of 2 ⁇ i (i is an integer of 1 or more).
  • an overlapping process for overlapping the fourth substrate and the third substrate is performed, and subsequently, a curing process for forming the joint portion 4 by curing the adhesive 4a is performed. Thereafter, a dividing step of dividing the third substrate into individual element substrates 3 and dividing the fourth substrate into individual cover substrates 5 is performed.
  • the first scribe line is drawn on the surface of the third substrate opposite to the fourth substrate side by, for example, a scriber, and then, for example, by a break machine from the fourth substrate side.
  • the third substrate may be cut by applying pressure.
  • a second scribe line is drawn on the surface of the fourth substrate opposite to the third substrate side, for example, by a scriber, and then, for example, by a break machine from the third substrate side.
  • the fourth substrate may be cut by applying pressure.
  • the third substrate is not limited to a rectangular plate shape in which the element substrates 3 can be arranged in an array of 2 ⁇ i (i is an integer equal to or greater than 1), and the element substrate 3 having a first unit dimension defined in advance. As a larger rectangular plate, the element substrate 3 may be divided into a first unit dimension or a desired outer dimension smaller than the third substrate.
  • the cover substrate 5 may be divided into the second unit size or a desired outer size smaller than the fourth substrate.
  • the light-emitting device A of the present embodiment includes the light-transmitting substrate 1 and the element substrate 3 including the organic EL element 2 formed on the one surface side of the light-transmitting substrate 1, and the light-transmitting property.
  • the cover substrate 5 disposed opposite to the one surface side of the substrate 1, and the element substrate 3 and the cover substrate 5 formed in a frame shape surrounding the light emitting portion 20 of the organic EL element 2 on the one surface side of the translucent substrate 1.
  • the light emitting device A includes a drying member 7 disposed on the light emitting unit 20 through a space on the side of the cover substrate 5 facing the translucent substrate 1.
  • the drying member 7 is disposed on the peripheral portion of the cover substrate 5 inside the region of the cover substrate 5 that overlaps the bonding portion 4.
  • the shape of the drying member 7 in a plan view is a quadrangular shape, and the four drying members 7 are spaced apart at substantially equal intervals in the circumferential direction of the cover substrate 5.
  • the light-emitting device A of the present embodiment includes a first substrate (translucent substrate) 1, an organic EL element 2, a second substrate (cover substrate) 5, a bonding portion 4, and a drying member 7. .
  • the organic EL element 2 includes a light emitting unit 20 that emits light.
  • the organic EL element 2 is formed on the one surface of the first substrate 1.
  • the second substrate 5 is disposed so as to face the one surface of the first substrate 1.
  • the second substrate 5 is configured to form a space 8 for accommodating the light emitting unit 20 between the second substrate 5 and the first substrate 1.
  • the joint portion 4 is formed in a frame shape surrounding the light emitting portion 20.
  • the bonding portion 4 is configured to bond the surface of the second substrate 5 facing the first substrate 1 to the one surface of the first substrate 1.
  • the drying member 7 is disposed on the outer edge of the region surrounded by the joint portion 4 on the facing surface of the second substrate 5 so as not to contact the light emitting portion 20. Further, in the light emitting device A of the present embodiment, the light emitting unit 20 is located at the center of the joint 4.
  • the drying member 7 is disposed on the periphery of the cover substrate 5 inside the region of the cover substrate 5 that overlaps the bonding portion 4. Even when the heat equalizing plate 6 and the cover substrate 5 are pressed during the handling of A, and the cover substrate 5 may be bent in the form of a convex toward the light emitting portion 20 side of the organic EL element 2, the drying member 7 is It is possible to suppress the occurrence of a defect in which the light emitting unit 20 cannot contact the light emitting unit 20 to emit light. Thereby, the light emitting device A can improve the reliability.
  • the provision of the soaking plate 6 enables the temperature of the light emitting unit 20 of the organic EL element 2 to be soaked, thereby emitting light. It is possible to reduce in-plane variations in the temperature of the portion 20.
  • the drying member 7 having a lower thermal conductivity than the soaking plate 6 is disposed on the periphery of the cover substrate 5 inside the region of the cover substrate 5 that overlaps the joint 4. As a result, it is possible to prevent the soaking effect of the soaking plate 6 from being impaired.
  • the drying member 7 is formed using a desiccant having an infrared absorption rate higher than that of the cover substrate 5.
  • the drying member 7 has an infrared absorption rate higher than that of the second substrate (cover substrate) 5.
  • the light emitting device A of the present embodiment it becomes possible to lower the temperature of the peripheral portion of the light emitting portion 20 compared to the temperature of the central portion of the light emitting portion 20, and to reduce the current density of the peripheral portion of the light emitting portion 20.
  • the light emission amount it is possible to reduce in-plane variation in luminance of the light emitting unit 20.
  • substrate 5 is formed in the opening shape of a 1st polygon shape (this embodiment square shape).
  • the two sides 71 and 72 having the vertex of the specific inner angle ⁇ 2 as the end points and the two sides 511 and 512 having the vertex of the first polygonal inner angle ⁇ 1 as the end points are parallel to each other. are arranged as follows.
  • the second substrate 5 includes a polygonal recess 51 on the facing surface (the lower surface in FIG. 1B).
  • the recess 51 has an outer periphery surrounding the light emitting unit 20 in a plane parallel to the one surface of the first substrate 1.
  • the second substrate 5 is bonded to the first substrate 1 via the bonding portion 4 around the recess 51 on the facing surface.
  • the drying member 7 is disposed at a corner portion on the bottom surface of the recess 51.
  • the corner portion has a predetermined inner angle ⁇ 1.
  • the drying member 7 is formed in a shape having an angle (inner angle) ⁇ 2 equal to a predetermined inner angle ⁇ 1.
  • the drying member 7 includes two sides 71 and 72 that define an angle (inner angle) ⁇ 2 that are opposite to and parallel to two sides 511 and 512 that define a predetermined inner angle ⁇ 1. To be arranged.
  • the drying member 7 is disposed at each corner of the bottom surface of the recess 51.
  • the drying member 7 can absorb efficiently, and the reliability can be further improved.
  • planar view shape of the drying member 7 is a square shape, what is necessary is just to arrange
  • the organic EL element 2 includes the first electrode 21, the organic EL layer 22, the second electrode 23, the first terminal portion T1, the second terminal portion T2, and the auxiliary.
  • An electrode 26 is provided, and a first terminal portion T1 and a second terminal portion T2 are disposed on each of both end portions in the specified direction on the one surface of the translucent substrate 1.
  • the light emitting device A of the present embodiment it is possible to increase the luminance and improve the in-plane uniformity of the luminance, and it is possible to reduce the area of the non-light emitting portion. Moreover, in the lighting fixture which uses the light-emitting device A of this embodiment as a light source by arranging two or more in the direction orthogonal to the said prescription
  • the first terminal portion T1 and the second terminal portion T2 are each a laminated structure of the transparent conductive oxide layers 24 and 25 and the metal layers 27 and 28. It is preferable that only the transparent conductive oxide layers 24 and 25 are in contact with the joint portion 4.
  • the light-emitting device A of this embodiment it is possible to increase the luminance and improve the in-plane uniformity of the luminance, and further improve the bonding strength between the bonding portion 4 and the first terminal portion T1 and the second terminal portion T2. It becomes possible to make it.
  • the light emitting portion 20 does not emit light (dark area). ) It was confirmed that the time required for the light emitting device A of the present embodiment to take a longer time was compared with the time taken to travel a specified distance from the edge of the light emitting unit 20. Therefore, in the light emitting device A of the present embodiment, it is possible to improve the gas barrier property, which is the performance of blocking moisture and oxygen, and to extend the life.
  • the current flowing through the organic EL element 2 is set by setting the total dimension of the width of the first terminal portion T1 and the total dimension of the width of the second terminal portion T2 to the same value. It is possible to increase the size, and the luminous efficiency can be improved.
  • electromigration occurs when a current of a critical current density (1 ⁇ 10 5 A / cm 2 when the metal is aluminum) flows over a long period of time in the lead wiring 23b. There is a concern that disconnection is likely to occur.
  • the first transparent conductive oxide layer 24 formed of TCO such as ITO and continuing to the first electrode 21 has a larger critical current density and a larger margin for the critical current density than the lead wiring 23b. .
  • electromigration resistance (hereinafter abbreviated as EM resistance) is made by making the total width of the second terminal portion T2 larger than the total width of the first terminal portion T1. Can be improved.
  • the total dimension of the width of the second terminal portion T2 is the total dimension of the widths of the four second terminal portions T2 (the dimension in the left-right direction in FIG. 2).
  • the total dimension of the width of T1 is the total dimension of the widths (dimensions in the horizontal direction in FIG. 2) of the six first terminal portions T1.
  • the light emitting device A of the present embodiment includes m (m ⁇ 1) second terminal portions T2 and [m + 1] along each of two predetermined parallel sides of the light emitting portion 20 having a rectangular shape in plan view.
  • the first terminal portions T1 are arranged so that the first terminal portions T1 are positioned on both sides in the width direction of the second terminal portions T2, and the first transparent conductive oxide layer 24 and the second transparent conductive layers are disposed.
  • the thickness of the conductive oxide layer 25 is set to the same thickness.
  • the planar view shape of the translucent substrate 1 is not limited to the rectangular shape, but may be a square shape in the case of the rectangular shape.
  • the planar shape of the light emitting unit 20 may be a rectangular shape, and the two short sides of the rectangular light emitting unit 20 may be the predetermined two sides.
  • the plan view shape of the translucent substrate 1 is a rectangular shape, and the plan view shape of the light emitting unit 20 is a non-similar rectangular shape to the translucent substrate 1, and the two long sides of the light emitting unit 20 having the rectangular shape are used. May be the two predetermined sides.
  • the basic configuration of the light emitting device A of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 15, a plan view of a light transmitting substrate 1 as a first substrate, a cover substrate 5 as a second substrate, and the like. The shape is different.
  • symbol is attached
  • the translucent substrate 1 in the present embodiment has a regular hexagonal shape in plan view
  • the cover substrate 5 has a regular hexagonal shape in plan view similar to that of the translucent substrate 1.
  • the planar view shape of the light emission part 20 (refer FIG.1 (b)) demonstrated in Embodiment 1 is also a regular hexagon shape.
  • the recess 51 formed in the cover substrate 5 on the surface facing the translucent substrate 1 is formed in an opening shape of a first polygonal shape (regular hexagonal shape in the present embodiment).
  • the two sides 71 and 72 having the vertex of the specific inner angle ⁇ 2 as the end points and the two sides 511 and 512 having the vertex of the first polygonal inner angle ⁇ 1 as the end points are parallel to each other. Are arranged as follows.
  • the first polygonal shape (that is, the shape of the recess 51) is not limited to a regular hexagonal shape, and may be, for example, a regular pentagonal shape or a regular octagonal shape.
  • the first polygonal shape is not limited to the regular polygonal shape, but may be any polygonal shape.
  • a single second polygonal shape is prepared as the drying member 7. It is possible to reduce the cost well.
  • the first electrode 21 made of a transparent conductive film constitutes an anode
  • the second electrode 23 having a sheet resistance smaller than that of the first electrode 21 constitutes a cathode
  • the first electrode 21 may constitute a cathode and the second electrode 23 may constitute an anode. In any case, it is sufficient that light can be extracted through the first electrode 21 made of a transparent conductive film.
  • the light-emitting device A described in each embodiment can be suitably used as a light source for illumination, for example, but is not limited to illumination, and can be used for other purposes.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A light-emitting device of this embodiment comprises a first substrate, an organic EL element, a second substrate, a joint part, and a drying member. The organic EL element has a light-emitting section for emitting light. The organic EL element is formed on one surface of the first substrate. The second substrate is so arranged as to face the one surface of the first substrate. The second substrate is so adapted that a void space for housing the light-emitting section is formed between the second substrate and the first substrate. The joint part is formed in a frame shape so as to surround the light-emitting section. The joint part is so adapted as to joint a first-substrate-facing surface of the second substrate to the above-mentioned one surface of the first substrate. The drying member is arranged on the outside edge of a region surrounded by the joint part on the above-mentioned facing surface of the second substrate, so that the drying member cannot be in contact with the light-emitting section.

Description

発光装置Light emitting device
 本発明は、発光装置に関するものである。 The present invention relates to a light emitting device.
 従来から、図16に示すように、基板201と、基板201上に形成されている有機EL構造体202と、この有機EL構造体202を覆うように所定間隔をおいて配置されている封止板203とを有する有機EL素子が提案されている(文献1[日本国公開特許公報第2000-277254号])。この有機EL素子は、封止板203が接着剤204により基板201に接着・固定されている。また、この有機EL素子は、ダークスポットの発生、拡大といった経時劣化を抑制する目的で、封止板203の内面側に形成した凹部に、シリコーン樹脂と乾燥剤との混合物205が配置されている。 Conventionally, as shown in FIG. 16, a substrate 201, an organic EL structure 202 formed on the substrate 201, and a sealing disposed at a predetermined interval so as to cover the organic EL structure 202 An organic EL element having a plate 203 has been proposed (Document 1 [Japanese Patent Publication No. 2000-277254]). In this organic EL element, a sealing plate 203 is bonded and fixed to a substrate 201 with an adhesive 204. Further, in this organic EL element, a mixture 205 of a silicone resin and a desiccant is disposed in a recess formed on the inner surface side of the sealing plate 203 for the purpose of suppressing deterioration with time such as generation and expansion of dark spots. .
 しかしながら、図16に示した構成の有機EL素子では、この有機EL素子の取り扱い時に封止板203に押圧力がかかって封止板203が内側に凹む(有機EL構造体202側に凸となる形で撓む)ことがあり、混合物205が有機EL構造体202に接触して有機EL構造体202が発光できなくなる不良となる懸念がある。 However, in the organic EL element having the configuration shown in FIG. 16, a pressing force is applied to the sealing plate 203 when the organic EL element is handled, so that the sealing plate 203 is recessed inside (projects toward the organic EL structure 202 side). There is a concern that the mixture 205 may come into contact with the organic EL structure 202 and the organic EL structure 202 cannot emit light.
 本発明は上記事由に鑑みて為されたものであり、その目的は、信頼性の向上を図ることが可能な発光装置を提供することにある。 The present invention has been made in view of the above reasons, and an object thereof is to provide a light emitting device capable of improving reliability.
 本発明に係る第1の形態の発光装置は、第1基板と、有機EL素子と、第2基板と、接合部と、乾燥部材と、を備える。前記有機EL素子は、光を放射する発光部を有する。前記有機EL素子は、前記第1基板の一表面に形成される。前記第2基板は、前記第1基板の前記一表面に対向するように配置される。前記第2基板は、前記第1基板との間に前記発光部を収納する空間を形成するように構成される。前記接合部は、前記発光部を囲う枠状に形成される。前記接合部は、前記第2基板における前記第1基板との対向面を前記第1基板の前記一表面に接合するように構成される。前記乾燥部材は、前記発光部に接触しないように前記第2基板の前記対向面における前記接合部で囲まれた領域の外縁に配置される。 A light emitting device according to a first aspect of the present invention includes a first substrate, an organic EL element, a second substrate, a bonding portion, and a drying member. The organic EL element has a light emitting unit that emits light. The organic EL element is formed on one surface of the first substrate. The second substrate is disposed to face the one surface of the first substrate. The second substrate is configured to form a space for accommodating the light emitting unit between the second substrate and the first substrate. The joining part is formed in a frame shape surrounding the light emitting part. The bonding portion is configured to bond a surface of the second substrate facing the first substrate to the one surface of the first substrate. The drying member is disposed at an outer edge of a region surrounded by the bonding portion on the facing surface of the second substrate so as not to contact the light emitting portion.
 本発明に係る第2の形態の発光装置では、第1の形態において、前記発光部は、前記接合部の中心に位置する。 In the light emitting device of the second form according to the present invention, in the first form, the light emitting part is located at the center of the joint part.
 本発明に係る第3の形態の発光装置では、第1または第2の形態において、前記第2基板は、多角形状の凹所を前記対向面に備える。前記凹所は、前記第1基板の前記一表面に平行する面内において前記発光部を囲む外周を有する。前記第2基板は、前記対向面における前記凹所の周辺で前記接合部を介して前記第1基板に接合される。前記乾燥部材は、前記凹所の底面における角部に配置される。 In the light emitting device of the third aspect according to the present invention, in the first or second aspect, the second substrate includes a polygonal recess in the facing surface. The recess has an outer periphery that surrounds the light emitting part in a plane parallel to the one surface of the first substrate. The second substrate is bonded to the first substrate through the bonding portion around the recess on the facing surface. The said drying member is arrange | positioned at the corner | angular part in the bottom face of the said recess.
 本発明に係る第4の形態の発光装置では、第3の形態において、前記角部は、所定の内角を有する。前記乾燥部材は、前記所定の内角に等しい角を有する形に形成される。 In the light emitting device of the fourth aspect according to the present invention, in the third aspect, the corner portion has a predetermined inner angle. The drying member is formed in a shape having an angle equal to the predetermined inner angle.
 本発明に係る第5の形態の発光装置では、第4の形態において、前記乾燥部材は、前記角を定義する二辺が前記所定の内角を定義する二辺にそれぞれ対向し、かつ、平行するように、配置される。 In the light emitting device of the fifth aspect according to the present invention, in the fourth aspect, the drying member has two sides defining the corner respectively facing and parallel to the two sides defining the predetermined inner angle. Arranged.
 本発明に係る第6の形態の発光装置では、第1~第5のうちいずれか1つの形態において、前記乾燥部材は、前記凹所の前記底面の前記角部それぞれに配置される。 In the light emitting device of the sixth aspect according to the present invention, in any one of the first to fifth aspects, the drying member is disposed at each corner of the bottom surface of the recess.
 本発明に係る第7の形態の発光装置では、第1~第6のうちいずれか1つの形態において、前記乾燥部材は、前記第2基板よりも赤外線吸収率が高い。 In the light emitting device according to the seventh aspect of the present invention, in any one of the first to sixth aspects, the drying member has an infrared absorption rate higher than that of the second substrate.
実施形態1の発光装置を示し、(a)は概略背面図、(b)は(a)のH-H’線における概略断面図である。1 shows a light-emitting device of Embodiment 1, wherein (a) is a schematic rear view, and (b) is a schematic cross-sectional view taken along line H-H ′ of (a). 上記実施形態1の発光装置の背面図である。It is a rear view of the light-emitting device of the said Embodiment 1. 図2のB-B’線における概略断面図である。FIG. 3 is a schematic sectional view taken along line B-B ′ of FIG. 2. 図2のC-C’線における概略断面図である。FIG. 3 is a schematic sectional view taken along line C-C ′ of FIG. 2. 図2のG-G’線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along line G-G ′ of FIG. 2. 図2のD-D’線における概略断面図である。FIG. 3 is a schematic sectional view taken along line D-D ′ of FIG. 2. 図2のE-E’線における概略断面図である。FIG. 3 is a schematic sectional view taken along line E-E ′ of FIG. 2. 図2のF-F’線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line F-F ′ of FIG. 2. 同上の発光装置の製造方法を説明するための主要工程平面図である。It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. 同上の発光装置の製造方法を説明するための主要工程平面図である。It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. 同上の発光装置の製造方法を説明するための主要工程平面図である。It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. 同上の発光装置の製造方法を説明するための主要工程平面図である。It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. 同上の発光装置の製造方法を説明するための主要工程平面図である。It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. 同上の発光装置の製造方法を説明するための主要工程平面図である。It is a main process top view for demonstrating the manufacturing method of a light-emitting device same as the above. 実施形態2の発光装置の概略背面図である。It is a schematic rear view of the light-emitting device of Embodiment 2. 従来例の有機EL素子の概略断面図である。It is a schematic sectional drawing of the organic EL element of a prior art example.
 (実施形態1)
 以下、本実施形態の発光装置(面状発光装置)Aについて図1~図8に基づいて説明する。
(Embodiment 1)
Hereinafter, a light emitting device (planar light emitting device) A according to the present embodiment will be described with reference to FIGS.
 発光装置Aは、透光性基板1および透光性基板1の一表面側(図1(b)における上面側)に形成された有機EL素子2を有する素子基板(有機EL素子モジュール)3と、透光性基板1の上記一表面側に対向配置され接合部4を介して素子基板3に接合されたカバー基板5とを備えている。 The light emitting device A includes a translucent substrate 1 and an element substrate (organic EL element module) 3 having an organic EL element 2 formed on one surface side (the upper surface side in FIG. 1B) of the translucent substrate 1. And a cover substrate 5 which is disposed opposite to the one surface side of the translucent substrate 1 and is bonded to the element substrate 3 via the bonding portion 4.
 また、発光装置Aは、カバー基板5における有機EL素子2側とは反対側に配置された均熱板6(図3~図8参照)を備えている。 Further, the light emitting device A includes a heat equalizing plate 6 (see FIGS. 3 to 8) disposed on the side of the cover substrate 5 opposite to the organic EL element 2 side.
 ここにおいて、カバー基板5は、素子基板3との対向面(図1(b)における下面)に凹所51が形成されており、上記対向面における凹所51の周部を全周に亘って素子基板3と接合してある。凹所51は、第1基板1の上記一表面に平行する面内において発光部20を囲む外周を有する。本実施形態において、凹所51は、矩形状に形成されている。 Here, the cover substrate 5 has a recess 51 formed on the surface facing the element substrate 3 (the lower surface in FIG. 1B), and the circumferential portion of the recess 51 on the facing surface extends over the entire circumference. Bonded to the element substrate 3. The recess 51 has an outer periphery surrounding the light emitting unit 20 in a plane parallel to the one surface of the first substrate 1. In the present embodiment, the recess 51 is formed in a rectangular shape.
 これにより、発光装置Aは、有機EL素子2の発光部20が、透光性基板1とカバー基板5と接合部4とで囲まれた気密空間(収納空間)8内に収納されている。 Thus, in the light emitting device A, the light emitting portion 20 of the organic EL element 2 is accommodated in an airtight space (accommodating space) 8 surrounded by the translucent substrate 1, the cover substrate 5, and the joint portion 4.
 なお、本実施形態では、透光性基板1が、第1基板を構成し、カバー基板5が、第2基板を構成している。 In the present embodiment, the translucent substrate 1 constitutes the first substrate, and the cover substrate 5 constitutes the second substrate.
 このように、本実施形態の発光装置Aは、第1基板(透光性基板)1と、有機EL素子2と、第2基板5と、接合部4と、を備える。有機EL素子2は、光を放射する発光部20を有する。有機EL素子2は、第1基板1の上記一表面に形成される。第2基板5は、第1基板1の上記一表面に対向するように配置される。第2基板5は、第1基板1との間に発光部20を収納する空間8を形成するように構成される。接合部4は、発光部20を囲う枠状に形成される。接合部4は、第2基板5における第1基板1との上記対向面を第1基板1の上記一表面に接合するように構成される。 As described above, the light-emitting device A of the present embodiment includes the first substrate (translucent substrate) 1, the organic EL element 2, the second substrate 5, and the bonding portion 4. The organic EL element 2 includes a light emitting unit 20 that emits light. The organic EL element 2 is formed on the one surface of the first substrate 1. The second substrate 5 is disposed so as to face the one surface of the first substrate 1. The second substrate 5 is configured to form a space 8 for accommodating the light emitting unit 20 between the second substrate 5 and the first substrate 1. The joint portion 4 is formed in a frame shape surrounding the light emitting portion 20. The bonding portion 4 is configured to bond the surface of the second substrate 5 facing the first substrate 1 to the one surface of the first substrate 1.
 また、発光装置Aは、カバー基板5における透光性基板1との上記対向面側で発光部20に空間を介して配置された乾燥部材(吸湿部材)7を備えている。 Further, the light emitting device A includes a drying member (moisture absorbing member) 7 disposed on the light emitting unit 20 via a space on the side of the cover substrate 5 facing the light transmissive substrate 1 on the side facing the light transmitting device A.
 本実施形態では、凹所51と乾燥部材7とはともに矩形状である。すなわち、乾燥部材7は、凹所51の所定の内角α1に等しい角α2を有する形に形成されている(図1(a)参照)。 In this embodiment, the recess 51 and the drying member 7 are both rectangular. That is, the drying member 7 is formed in a shape having an angle α2 equal to a predetermined inner angle α1 of the recess 51 (see FIG. 1A).
 乾燥部材7は、図1に示すように、第2基板5の上記対向面(図1(b)における下面)における接合部4で囲まれた領域の外縁に配置される。特に本実施形態では、乾燥部材7は、カバー基板5における凹所51の内底面に配置されている。この乾燥部材7は、水分を吸着する機能を有している。 As shown in FIG. 1, the drying member 7 is disposed on the outer edge of the region surrounded by the joint 4 on the facing surface (the lower surface in FIG. 1B) of the second substrate 5. In particular, in the present embodiment, the drying member 7 is disposed on the inner bottom surface of the recess 51 in the cover substrate 5. The drying member 7 has a function of adsorbing moisture.
 本実施形態の発光装置Aは、4つの乾燥部材7を備えている。4つの乾燥部材7は、凹所51の底面の四隅に、それぞれ、配置されている。すなわち、乾燥部材7は、凹所51の底面の角部それぞれに配置されている。各乾燥部材7は、角α2を定義する二辺71,72が所定の内角α1を定義する二辺511,512にそれぞれ対向し、かつ、平行するように、配置される。 The light emitting device A of the present embodiment includes four drying members 7. The four drying members 7 are respectively arranged at the four corners of the bottom surface of the recess 51. That is, the drying member 7 is disposed at each corner of the bottom surface of the recess 51. Each drying member 7 is arranged so that the two sides 71 and 72 defining the angle α2 are opposed to and parallel to the two sides 511 and 512 defining the predetermined inner angle α1.
 有機EL素子2は、図3~図8に示すように、透光性基板(第1基板)1の上記一表面に形成される第1電極21と、第1電極21上に形成される有機EL層22と、有機EL層22上に形成される第2電極23と、を備える。有機EL層22は、有機材料を用いて形成される発光層を含む。 As shown in FIGS. 3 to 8, the organic EL element 2 includes a first electrode 21 formed on the one surface of a translucent substrate (first substrate) 1 and an organic formed on the first electrode 21. An EL layer 22 and a second electrode 23 formed on the organic EL layer 22 are provided. The organic EL layer 22 includes a light emitting layer formed using an organic material.
 本実施形態では、有機EL素子2は、透光性基板1の上記一表面側に配置され透明導電膜からなる第1電極21と、第1電極21における透光性基板1側とは反対側に配置され有機材料からなる発光層を含む有機EL層22と、有機EL層22における第1電極21側とは反対側に配置され金属膜からなる第2電極23とを備えている。 In the present embodiment, the organic EL element 2 includes a first electrode 21 that is disposed on the one surface side of the translucent substrate 1 and made of a transparent conductive film, and a side opposite to the translucent substrate 1 side of the first electrode 21. And an organic EL layer 22 including a light emitting layer made of an organic material, and a second electrode 23 made of a metal film and disposed on the opposite side of the organic EL layer 22 from the first electrode 21 side.
 また、有機EL素子2は、透光性基板1の上記一表面に形成され第1電極21に電気的に接続される第1端子部T1と、透光性基板1の上記一表面に形成され第2電極23に電気的に接続される第2端子部T2と、を有する。 Further, the organic EL element 2 is formed on the one surface of the translucent substrate 1 and the first terminal portion T1 formed on the one surface of the translucent substrate 1 and electrically connected to the first electrode 21. And a second terminal portion T2 electrically connected to the second electrode 23.
 本実施形態では、有機EL素子2は、第1電極21と有機EL層22と第2電極23とが重なる発光部20の側方に配置され第1電極21に電気的に接続された第1端子部T1と、発光部20の側方に配置され第2電極23に電気的に接続された第2端子部T2とを備えている。 In the present embodiment, the organic EL element 2 is disposed on the side of the light emitting unit 20 where the first electrode 21, the organic EL layer 22, and the second electrode 23 overlap, and is electrically connected to the first electrode 21. A terminal portion T1 and a second terminal portion T2 disposed on the side of the light emitting portion 20 and electrically connected to the second electrode 23 are provided.
 ここで、第2電極23は、第2電極23から延設された引出配線23bを介して、第2端子部T2と電気的に接続されている。 Here, the second electrode 23 is electrically connected to the second terminal portion T <b> 2 via a lead wire 23 b extending from the second electrode 23.
 また、有機EL素子2は、第1電極21よりも比抵抗の小さな材料からなり第1電極21における透光性基板1側とは反対側の表面の周部に沿って形成され第1電極21に電気的に接続された補助電極26を備えている。すなわち、有機EL素子2は、第1電極21よりも比抵抗が小さい材料からなる補助電極26を備える。補助電極26は、発光層(有機EL層22)を囲うように第1電極21上に形成される。 The organic EL element 2 is made of a material having a specific resistance smaller than that of the first electrode 21 and is formed along the periphery of the surface of the first electrode 21 opposite to the light-transmitting substrate 1 side. Auxiliary electrode 26 electrically connected to is provided. That is, the organic EL element 2 includes the auxiliary electrode 26 made of a material having a specific resistance smaller than that of the first electrode 21. The auxiliary electrode 26 is formed on the first electrode 21 so as to surround the light emitting layer (organic EL layer 22).
 また、有機EL素子2は、透光性基板1の上記一表面側において補助電極26および第1電極21の側縁を覆う絶縁膜29を備えている。有機EL素子2は、この絶縁膜29により、補助電極26および第1電極21と第2電極23との短絡が防止されるようになっている。すなわち、有機EL素子2は、第1電極21および補助電極26を第2電極23から電気的に絶縁する絶縁膜29を備える。 The organic EL element 2 includes an insulating film 29 that covers the side edges of the auxiliary electrode 26 and the first electrode 21 on the one surface side of the translucent substrate 1. In the organic EL element 2, short circuit between the auxiliary electrode 26 and the first electrode 21 and the second electrode 23 is prevented by the insulating film 29. That is, the organic EL element 2 includes an insulating film 29 that electrically insulates the first electrode 21 and the auxiliary electrode 26 from the second electrode 23.
 なお、補助電極26は、第1電極21における透光性基板1側とは反対側の表面の周部の全周に沿った矩形枠状に形成されているが、必ずしも矩形枠状である必要はなく、第1電極21に電気的に接続されていれば、一部が開放された形状(例えば、C字状やU字状など)や、複数個に分断されていてもよい。 In addition, although the auxiliary electrode 26 is formed in the rectangular frame shape along the perimeter of the peripheral part of the surface on the opposite side to the translucent board | substrate 1 side in the 1st electrode 21, it does not necessarily need to be a rectangular frame shape. However, as long as it is electrically connected to the first electrode 21, it may be partially open (for example, C-shaped or U-shaped) or divided into a plurality of parts.
 有機EL素子2は、透光性基板1の厚み方向において透光性基板1と第1電極21と発光層と第2電極23とが重なる領域が、上述の発光部20を構成しており、発光部20以外の領域が、非発光部となる。 In the organic EL element 2, the region where the translucent substrate 1, the first electrode 21, the light emitting layer, and the second electrode 23 overlap in the thickness direction of the translucent substrate 1 constitutes the above-described light emitting unit 20. A region other than the light emitting unit 20 is a non-light emitting unit.
 すなわち、第1電極21において発光層(有機EL層22)および第2電極23と重なる部位と、発光層において第1電極21および第2電極23と重なる部位と、第2電極23において発光層および第1電極21と重なる部位とで発光部22が構成される。 That is, a portion of the first electrode 21 that overlaps the light emitting layer (organic EL layer 22) and the second electrode 23, a portion of the light emitting layer that overlaps the first electrode 21 and the second electrode 23, and a portion of the second electrode 23 that overlaps the light emitting layer and The light emitting unit 22 is configured by a portion overlapping the first electrode 21.
 ここで、有機EL素子2は、第1電極21、有機EL層22および第2電極23それぞれの平面視形状を、透光性基板1よりも小さな矩形状(図示例では、正方形状)としてある。したがって、発光部20の平面視形状は、透光性基板1よりも小さな矩形状(図示例では、正方形状)となる。また、補助電極26は、平面視形状を矩形枠状(図示例では、正方枠状)としてある。また、絶縁膜29は、平面視形状を矩形枠状(図示例では、正方枠状)としてある。 Here, in the organic EL element 2, each of the first electrode 21, the organic EL layer 22, and the second electrode 23 has a planar view shape that is smaller than the translucent substrate 1 (in the illustrated example, a square shape). . Therefore, the planar view shape of the light emitting unit 20 is a rectangular shape (square shape in the illustrated example) smaller than the translucent substrate 1. The auxiliary electrode 26 has a rectangular frame shape (in the illustrated example, a square frame shape) in plan view. The insulating film 29 has a rectangular frame shape (in the illustrated example, a square frame shape) in plan view.
 有機EL素子2は、矩形状の発光部20の所定の平行な2辺の各々に沿ってm個(図1の例では、m=2)の第2端子部T2と〔m+1〕個(図1の例では、3個)の第1端子部T1とが、第2端子部T2の幅方向の両側に第1端子部T1が位置するように配置されている。 The organic EL element 2 includes m (m + 1 in the example of FIG. 1) second terminal portions T2 and [m + 1] (see FIG. 1) along each of two predetermined parallel sides of the rectangular light emitting unit 20. In one example, the three first terminal portions T1 are arranged so that the first terminal portions T1 are positioned on both sides of the second terminal portion T2 in the width direction.
 したがって、図1に示した例では、透光性基板1の長手方向の両端部の各々に、第1端子部T1と第2端子部T2とを備えている。具体的には、有機EL素子2は、透光性基板1の長手方向の両端部の各々において、3つの第1端子部T1が透光性基板1の短手方向に離間して配置されており、透光性基板1の短手方向において隣り合う第1端子部T1間に第2端子部T2が配置されている。 Therefore, in the example shown in FIG. 1, the first terminal portion T <b> 1 and the second terminal portion T <b> 2 are provided at each of both ends in the longitudinal direction of the translucent substrate 1. Specifically, the organic EL element 2 includes three first terminal portions T1 that are spaced apart in the lateral direction of the translucent substrate 1 at both ends in the longitudinal direction of the translucent substrate 1. In addition, the second terminal portion T2 is disposed between the first terminal portions T1 adjacent to each other in the short direction of the translucent substrate 1.
 本実施形態では、透光性基板1の上記一表面において長手方向を規定方向としており、素子基板3は、透光性基板1の上記一表面において規定方向の両端部の各々に第1端子部T1および第2端子部T2が配置されている。 In the present embodiment, the longitudinal direction of the one surface of the translucent substrate 1 is defined as a prescribed direction, and the element substrate 3 is provided with first terminal portions at both ends in the prescribed direction on the one surface of the translucent substrate 1. T1 and second terminal portion T2 are arranged.
 ここで、第1端子部T1は、透明導電性酸化物層24(以下、第1透明導電性酸化物層24とも称する)と金属層27(以下、第1金属層27とも称する)との積層構造を有している。 Here, the first terminal portion T1 is a laminate of a transparent conductive oxide layer 24 (hereinafter also referred to as a first transparent conductive oxide layer 24) and a metal layer 27 (hereinafter also referred to as a first metal layer 27). It has a structure.
 また、第2端子部T2は、透明導電性酸化物層25(以下、第2透明導電性酸化物層25とも称する)と金属層28(以下、第2金属層28とも称する)との積層構造を有している。 The second terminal portion T2 has a laminated structure of a transparent conductive oxide layer 25 (hereinafter also referred to as a second transparent conductive oxide layer 25) and a metal layer 28 (hereinafter also referred to as a second metal layer 28). have.
 また、均熱板6の平面形状は、カバー基板5よりも小さく且つ発光部20よりも大きな矩形状(図示例では、正方形状)としてある。 The planar shape of the soaking plate 6 is a rectangular shape (square shape in the illustrated example) that is smaller than the cover substrate 5 and larger than the light emitting unit 20.
 以下、発光装置Aの各構成要素について詳細に説明する。 Hereinafter, each component of the light emitting device A will be described in detail.
 発光装置Aは、透光性基板1の他表面(図1(b)における下面)を光出射面(発光面)として用いるものである。したがって、発光装置Aでは、透光性基板1の上記他表面のうち、第1電極21、有機EL層22、第2電極23の3つが重複して投影される領域が発光面となる。透光性基板1は、平面視形状を長方形状としてあるが、これに限らず、例えば、正方形状としてもよい。 The light emitting device A uses the other surface (the lower surface in FIG. 1B) of the translucent substrate 1 as a light emitting surface (light emitting surface). Therefore, in the light emitting device A, a region where three of the first electrode 21, the organic EL layer 22, and the second electrode 23 are projected on the other surface of the translucent substrate 1 is a light emitting surface. The translucent substrate 1 has a rectangular shape in plan view, but is not limited thereto, and may be, for example, a square shape.
 透光性基板1は、有機EL素子2より放射される光を透過する材料により形成される。本実施形態では、透光性基板1としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック基板を用いてもよい。ガラス基板としては、例えば、ソーダライムガラス基板、無アルカリガラス基板などを用いることができる。また、プラスチック基板としては、例えば、ポリエチレンテレフタラート(PET)基板、ポリエチレンナフタレート(PEN)基板、ポリエーテルサルフォン(PES)基板、ポリカーボネート(PC)基板などを用いてもよい。プラスチック基板を用いる場合は、プラスチック基板の表面にSiON膜、SiN膜などを成膜して水分の透過を抑えるようにしてもよい。 The translucent substrate 1 is formed of a material that transmits light emitted from the organic EL element 2. In the present embodiment, a glass substrate is used as the translucent substrate 1, but the present invention is not limited thereto, and a plastic substrate may be used, for example. As the glass substrate, for example, a soda lime glass substrate or an alkali-free glass substrate can be used. Further, as the plastic substrate, for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyethersulfone (PES) substrate, a polycarbonate (PC) substrate, or the like may be used. When a plastic substrate is used, an SiON film, an SiN film, or the like may be formed on the surface of the plastic substrate to suppress moisture permeation.
 透光性基板1は、有機EL素子2より放射される光に対して70%以上の透過率を有していることが好ましい。 The translucent substrate 1 preferably has a transmittance of 70% or more with respect to the light emitted from the organic EL element 2.
 透光性基板1としてガラス基板を用いる場合には、透光性基板1の上記一表面の凹凸が有機EL素子2のリーク電流などの発生原因となることがある(有機EL素子2の劣化原因となることがある)。このため、透光性基板1としてガラス基板を用いる場合には、上記一表面の表面粗さが小さくなるように高精度に研磨された素子形成用のガラス基板を用意することが好ましい。 When a glass substrate is used as the translucent substrate 1, the unevenness on the one surface of the translucent substrate 1 may cause a leak current of the organic EL element 2 (cause of deterioration of the organic EL element 2). Sometimes). For this reason, when using a glass substrate as the translucent substrate 1, it is preferable to prepare a glass substrate for forming an element that is polished with high accuracy so that the surface roughness of the one surface is reduced.
 透光性基板1の上記一表面の表面粗さについては、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaを、数nm以下にすることが好ましい。これに対して、透光性基板1としてプラスチック基板を用いる場合には、特に高精度な研磨を行わなくても、上記一表面の算術平均粗さRaが数nm以下のものを低コストで得ることが可能である。 Regarding the surface roughness of the one surface of the translucent substrate 1, the arithmetic average roughness Ra defined in JIS B 0601-2001 (ISO 4287-1997) is preferably set to several nm or less. On the other hand, when a plastic substrate is used as the light-transmitting substrate 1, a substrate having an arithmetic average roughness Ra of several nanometers or less can be obtained at low cost without performing particularly high-precision polishing. It is possible.
 有機EL素子2は、第1電極21が陽極、第2電極23が陰極を構成している。そして、有機EL素子2は、第1電極21と第2電極23との間に介在する有機EL層22が、第1電極21側から順に、ホール輸送層、上述の発光層、電子輸送層、電子注入層を備えている。 In the organic EL element 2, the first electrode 21 constitutes an anode, and the second electrode 23 constitutes a cathode. The organic EL element 2 includes an organic EL layer 22 interposed between the first electrode 21 and the second electrode 23 in order from the first electrode 21 side, the hole transport layer, the light emitting layer, the electron transport layer, An electron injection layer is provided.
 上述の有機EL層22の積層構造は、上述の例に限らず、例えば、発光層の単層構造や、ホール輸送層と発光層と電子輸送層との積層構造や、ホール輸送層と発光層との積層構造や、発光層と電子輸送層との積層構造などでもよい。また、第1電極21とホール輸送層との間にホール注入層を介在させてもよい。 The laminated structure of the organic EL layer 22 is not limited to the above-described example. For example, a single-layer structure of a light emitting layer, a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer, or a hole transport layer and a light emitting layer. Or a stacked structure of a light emitting layer and an electron transport layer. In addition, a hole injection layer may be interposed between the first electrode 21 and the hole transport layer.
 また、発光層は、単層構造でも多層構造でもよい。例えば、所望の発光色が白色の場合には、発光層中に赤色、緑色、青色の3種類のドーパント色素をドーピングするようにしてもよいし、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよいし、青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。 The light emitting layer may have a single layer structure or a multilayer structure. For example, when the desired emission color is white, the emission layer may be doped with three types of dopant dyes of red, green, and blue, or the blue hole-transporting emission layer and the green electron-transporting property. A laminated structure of a light emitting layer and a red electron transporting light emitting layer may be adopted, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer may be adopted. Good.
 また、第1電極21と第2電極23とで挟んで電圧を印加すれば発光する機能を有する有機EL層22を1つの発光ユニットとして、複数の発光ユニットを光透過性および導電性を有する中間層を介して積層して電気的に直列接続したマルチユニット構造(つまり、1つの第1電極21と1つの第2電極23との間に、厚み方向に重なる複数の発光ユニットを備えた構造)を採用してもよい。 In addition, the organic EL layer 22 having a function of emitting light when a voltage is applied between the first electrode 21 and the second electrode 23 is used as one light-emitting unit, and a plurality of light-emitting units are intermediates having optical transparency and conductivity. A multi-unit structure in which layers are stacked and electrically connected in series (that is, a structure including a plurality of light emitting units overlapping in the thickness direction between one first electrode 21 and one second electrode 23) May be adopted.
 陽極を構成する第1電極21は、発光層中にホールを注入するための電極であり、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料を用いることが好ましく、第1電極21のエネルギー準位とHOMO(Highest Occupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。 The first electrode 21 constituting the anode is an electrode for injecting holes into the light emitting layer, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference between the energy level of the first electrode 21 and the HOMO (Highest Occupied Molecular Orbital) level does not become too large.
 第1電極21の電極材料としては、例えば、ITO、酸化錫、酸化亜鉛、IZO(Indium Zinc Oxide)、ヨウ化銅など、PEDOT、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料を挙げることができる。 Examples of the electrode material of the first electrode 21 include ITO, tin oxide, zinc oxide, IZO (Indium Zinc Oxide), copper iodide, and the like doped with a conductive polymer such as PEDOT and polyaniline and an arbitrary acceptor. Examples thereof include conductive light transmissive materials such as conductive polymers and carbon nanotubes.
 ここにおいて、第1電極21は、透光性基板1の上記一表面側に、例えば、スパッタ法、真空蒸着法、塗布法などによって薄膜として形成すればよい。 Here, the first electrode 21 may be formed as a thin film on the one surface side of the translucent substrate 1 by, for example, sputtering, vacuum deposition, coating, or the like.
 なお、第1電極21のシート抵抗は数百Ω/sq以下とすることが好ましく、特に好ましくは100Ω/sq以下がよい。 The sheet resistance of the first electrode 21 is preferably several hundred Ω / sq or less, particularly preferably 100 Ω / sq or less.
 ここで、第1電極21の膜厚は、第1電極21の光透過率、シート抵抗などにより異なるが、500nm以下、好ましくは10nm~200nmの範囲で設定するのがよい。 Here, the film thickness of the first electrode 21 varies depending on the light transmittance of the first electrode 21, the sheet resistance, etc., but is preferably set to 500 nm or less, preferably in the range of 10 nm to 200 nm.
 また、陰極を構成する第2電極23は、発光層中に電子を注入するための電極であり、仕事関数の小さい金属、合金、電気伝導性化合物およびこれらの混合物からなる電極材料を用いることが好ましく、第2電極23のエネルギー準位とLUMO(Lowest Unoccupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。 The second electrode 23 constituting the cathode is an electrode for injecting electrons into the light emitting layer, and an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a low work function is used. It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference between the energy level of the second electrode 23 and the LUMO (Lowest Unoccupied Molecular Orbital) level does not become too large.
 第2電極23の電極材料としては、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫など、およびこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。 Examples of the electrode material of the second electrode 23 include aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys of these with other metals, such as a magnesium-silver mixture, magnesium-indium. Examples thereof include a mixture and an aluminum-lithium alloy.
 また、金属、金属酸化物など、およびこれらと他の金属との混合物、例えば、酸化アルミニウムからなる極薄膜(ここでは、トンネル注入により電子を流すことが可能な1nm以下の薄膜)とアルミニウムからなる薄膜との積層膜なども使用可能である。 Also, a metal, a metal oxide, etc., and a mixture of these and other metals, for example, an ultrathin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum. A laminated film with a thin film can also be used.
 第2電極23の電極材料としては、発光層から放射された光に対する反射率が高く、且つ、抵抗率の低い金属が好ましく、アルミニウムや銀が好ましい。 The electrode material of the second electrode 23 is preferably a metal having a high reflectance with respect to light emitted from the light emitting layer and a low resistivity, and preferably aluminum or silver.
 発光層の材料としては、有機EL素子用の材料として知られる任意の材料が使用可能である。例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体および各種蛍光色素など、上述の材料系およびその誘導体を始めとするものが挙げられるが、これらに限定するものではない。 As the material of the light emitting layer, any material known as a material for an organic EL element can be used. For example, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyxyl) Norinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl- 4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinacridone, rubrene, distyrylbenzene derivative, distyrylarylene derivative, distili And amine derivatives, and various fluorescent pigments, but include those including a material system and its derivatives described above, not limited to these.
 また、これらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、上記化合物に代表される蛍光発光を生じる化合物のみならず、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができる。 It is also preferable to use a light emitting material selected from these compounds in an appropriate mixture. Further, not only a compound that emits fluorescence, typified by the above compound, but also a material system that emits light from a spin multiplet, for example, a phosphorescent material that emits phosphorescence, and a part thereof are included in a part of the molecule. A compound can also be used suitably.
 また、これらの材料からなる発光層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜するものであってもよい。 The light emitting layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. You may do.
 上述のホール注入層に用いられる材料は、ホール注入性の有機材料、金属酸化物、いわゆるアクセプタ系の有機材料あるいは無機材料、p-ドープ層などを用いて形成することができる。 The material used for the hole injection layer can be formed using a hole injection organic material, a metal oxide, a so-called acceptor organic material or inorganic material, a p-doped layer, or the like.
 ホール注入性の有機材料とは、ホール輸送性を有し、また仕事関数が5.0~6.0eV程度であり、第1電極21との強固な密着性を示す材料などがその例であり、例えば、CuPc、スターバーストアミンなどがその例である。 An example of the hole-injecting organic material is a material that has a hole-transporting property, a work function of about 5.0 to 6.0 eV, and exhibits strong adhesion to the first electrode 21. Examples thereof include CuPc and starburst amine.
 また、ホール注入性の金属酸化物とは、例えば、モリブデン、レニウム、タングステン、バナジウム、亜鉛、インジウム、スズ、ガリウム、チタン、アルミニウムのいずれかを含有する金属酸化物である。また、1種の金属のみの酸化物ではなく、例えばインジウムとスズ、インジウムと亜鉛、アルミニウムとガリウム、ガリウムと亜鉛、チタンとニオブなど、上記のいずれかの金属を含有する複数の金属の酸化物であっても良い。 The hole-injecting metal oxide is a metal oxide containing any of molybdenum, rhenium, tungsten, vanadium, zinc, indium, tin, gallium, titanium, and aluminum, for example. In addition, an oxide of a plurality of metals containing any one of the above metals, such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc. It may be.
 また、これらの材料からなるホール注入層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法などの湿式プロセスによって成膜するものであってもよい。 The hole injection layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a film.
 また、ホール輸送層に用いる材料は、例えば、ホール輸送性を有する化合物の群から選定することができる。この種の化合物としては、例えば、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを代表例とする、アリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物などを挙げることができるが、一般に知られる任意のホール輸送材料を用いることが可能である。 The material used for the hole transport layer can be selected from a group of compounds having hole transport properties, for example. Examples of this type of compound include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD), N, N′-bis (3-methylphenyl)-(1 , 1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA) 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB and the like, arylamine compounds, amine compounds containing carbazole groups, An amine compound containing a fluorene derivative can be exemplified, and any generally known hole transporting material can be used.
 また、電子輸送層に用いる材料は、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体などのヘテロ環を有する化合物などが挙げられるが、この限りではなく、一般に知られる任意の電子輸送材料を用いることが可能である。 The material used for the electron transport layer can be selected from a group of compounds having electron transport properties. Examples of this type of compound include metal complexes known as electron transporting materials such as Alq3, and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Instead, any generally known electron transport material can be used.
 また、電子注入層の材料は、例えば、フッ化リチウムやフッ化マグネシウムなどの金属フッ化物、塩化ナトリウム、塩化マグネシウムなどに代表される金属塩化物などの金属ハロゲン化物や、アルミニウム、コバルト、ジルコニウム、チタン、バナジウム、ニオブ、クロム、タンタル、タングステン、マンガン、モリブデン、ルテニウム、鉄、ニッケル、銅、ガリウム、亜鉛、シリコンなどの各種金属の酸化物、窒化物、炭化物、酸化窒化物など、例えば酸化アルミニウム、酸化マグネシウム、酸化鉄、窒化アルミニウム、窒化シリコン、炭化シリコン、酸窒化シリコン、窒化ホウ素などの絶縁物となるものや、SiO2やSiOなどをはじめとする珪素化合物、炭素化合物などから任意に選択して用いることができる。これらの材料は、真空蒸着法やスパッタ法などにより形成することで薄膜状に形成することができる。 The material of the electron injection layer is, for example, a metal fluoride such as lithium fluoride or magnesium fluoride, a metal halide such as sodium chloride or magnesium chloride, aluminum, cobalt, zirconium, Titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc, silicon, and other metal oxides, nitrides, carbides, oxynitrides, etc., for example, aluminum oxide , Magnesium oxide, iron oxide, aluminum nitride, silicon nitride, silicon carbide, silicon oxynitride, boron nitride and other insulating materials, silicon compounds such as SiO2 and SiO, carbon compounds, etc. Can be used. These materials can be formed into a thin film by being formed by a vacuum deposition method or a sputtering method.
 また、引出配線23bの材料は、第2電極23と同じ材料を採用している。ここで、引出配線23bの厚さは、第2電極23と同じ厚さに設定してある。そして、引出配線23bは、第2電極23と連続して形成されている。したがって、本実施形態の発光装置Aは、製造時に、引出配線23bと第2電極23とを同時に形成することができる。 Further, the same material as that of the second electrode 23 is adopted as the material of the lead-out wiring 23b. Here, the thickness of the lead wiring 23 b is set to the same thickness as the second electrode 23. The lead wire 23 b is formed continuously with the second electrode 23. Therefore, the light emitting device A of the present embodiment can simultaneously form the lead wiring 23b and the second electrode 23 at the time of manufacture.
 また、引出配線23bは、第2端子部T2の第2透明導電性酸化物層25における接合部4との接合用領域25aよりも内側に形成されている部位上まで延設されている。 Further, the lead-out wiring 23b extends to a portion formed on the inner side of the bonding region 25a with the bonding portion 4 in the second transparent conductive oxide layer 25 of the second terminal portion T2.
 引出配線23bの幅(配線幅)寸法は、第1端子部T1との短絡を防止し、且つ、第1端子部T1との間に所定の絶縁距離を確保できるように、第2端子部T2の幅寸法よりもやや小さい値に設定してある。 The width (wiring width) of the lead-out wiring 23b is such that the second terminal portion T2 can prevent a short circuit with the first terminal portion T1 and ensure a predetermined insulation distance from the first terminal portion T1. It is set to a value slightly smaller than the width dimension.
 引出配線23bの幅寸法は、第2端子部T2の幅以下であることが好ましいが、エレクトロマイグレーション耐性を高めるために、できるだけ大きな値が好ましい。 The width dimension of the lead-out wiring 23b is preferably equal to or smaller than the width of the second terminal portion T2, but is preferably as large as possible in order to increase electromigration resistance.
 また、第1透明導電性酸化物層24および第2透明導電性酸化物層25の材料は、透明導電性酸化物(Transparent Conducting Oxide:TCO)であり、例えば、ITO、AZO、GZO、IZOなどを採用することができる。 The material of the first transparent conductive oxide layer 24 and the second transparent conductive oxide layer 25 is transparent conductive oxide (TCO), such as ITO, AZO, GZO, and IZO. Can be adopted.
 また、第1透明導電性酸化物層24および第2透明導電性酸化物層25の材料を、第1電極21と同じ材料とし、第1電極21と第1透明導電性酸化物層24と第2透明導電性酸化物層25とを同じ厚さに設定してある。 The first transparent conductive oxide layer 24 and the second transparent conductive oxide layer 25 are made of the same material as that of the first electrode 21, and the first electrode 21, the first transparent conductive oxide layer 24, The two transparent conductive oxide layers 25 are set to the same thickness.
 また、第1金属層27および第2金属層28の材料は、例えば、アルミニウム、銀、金、銅、クロム、モリブデン、アルミニウム、パラジウム、スズ、鉛、マグネシウムなどの金属や、これら金属の少なくとも1種を含む合金などが好ましい。 The material of the first metal layer 27 and the second metal layer 28 is, for example, a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, or at least one of these metals. An alloy containing a seed is preferred.
 また、第1金属層27および第2金属層28は、単層構造に限らず、多層構造を採用してもよい。例えば、第1金属層27および第2金属層28は、MoNb層/AlNd層/MoNb層の3層構造を採用することができる。この3層構造において、下層のMoNb層は、下地との密着層として設け、上層のMoNb層は、AlNd層の保護層として設けることが好ましい。 Further, the first metal layer 27 and the second metal layer 28 are not limited to a single layer structure, and may have a multilayer structure. For example, the first metal layer 27 and the second metal layer 28 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer. In this three-layer structure, the lower MoNb layer is preferably provided as an adhesion layer with the base, and the upper MoNb layer is preferably provided as a protective layer for the AlNd layer.
 また、本実施形態では、第1金属層27の材料と第2金属層28の材料とを同じとし、第1金属層27と第2金属層28とを同じ厚さに設定してある。なお、第1金属層27および第2金属層28は、第2電極23と同じ材料を採用してもよい。 In this embodiment, the material of the first metal layer 27 and the material of the second metal layer 28 are the same, and the first metal layer 27 and the second metal layer 28 are set to the same thickness. The first metal layer 27 and the second metal layer 28 may employ the same material as the second electrode 23.
 また、補助電極26の材料としては、例えば、アルミニウム、銀、金、銅、クロム、モリブデン、アルミニウム、パラジウム、スズ、鉛、マグネシウムなどの金属や、これら金属の少なくとも1種を含む合金などが好ましい。 Moreover, as a material of the auxiliary electrode 26, for example, a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, and magnesium, or an alloy including at least one of these metals is preferable. .
 また、補助電極26は、単層構造に限らず、多層構造を採用してもよい。例えば、補助電極26は、MoNb層/AlNd層/MoNb層の3層構造を採用することができる。この3層構造において、下層のMoNb層は、下地との密着層として設け、上層のMoNb層は、AlNd層の保護層として設けることが好ましい。 Further, the auxiliary electrode 26 is not limited to a single layer structure, and may have a multilayer structure. For example, the auxiliary electrode 26 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer. In this three-layer structure, the lower MoNb layer is preferably provided as an adhesion layer with the base, and the upper MoNb layer is preferably provided as a protective layer for the AlNd layer.
 本実施形態の発光装置Aでは、補助電極26の材料と第1金属層27および第2金属層28の材料とを同じにしてある。これにより、本実施形態の発光装置Aでは、製造時に、補助電極26と第1金属層27および第2金属層28とを同時に形成することが可能となり、低コスト化を図れる。 In the light emitting device A of the present embodiment, the material of the auxiliary electrode 26 and the material of the first metal layer 27 and the second metal layer 28 are the same. Thereby, in the light-emitting device A of this embodiment, it becomes possible to form the auxiliary electrode 26, the 1st metal layer 27, and the 2nd metal layer 28 simultaneously at the time of manufacture, and can achieve cost reduction.
 また、絶縁膜29の材料としては、例えば、ポリイミドを採用しているが、これに限らず、例えば、ノボラック樹脂、エポキシ樹脂などを採用することができる。 Further, as the material of the insulating film 29, for example, polyimide is adopted, but not limited thereto, for example, novolak resin, epoxy resin, or the like can be adopted.
 上述の有機EL素子2では、第1電極21と第2電極23との間に有機EL層22のみが介在する領域が上述の発光部20を構成しており、発光部20の平面形状が絶縁膜29の内周縁の形状と同じ矩形状(図示例では、正方形状)になっている。ここで、発光装置Aは、平面視において有機EL素子2の発光部20以外の部分が非発光部となる。 In the organic EL element 2 described above, the region where only the organic EL layer 22 is interposed between the first electrode 21 and the second electrode 23 constitutes the light emitting unit 20 described above, and the planar shape of the light emitting unit 20 is insulated. The film 29 has the same rectangular shape (in the illustrated example, a square shape) as the shape of the inner peripheral edge. Here, in the light emitting device A, a portion other than the light emitting portion 20 of the organic EL element 2 is a non-light emitting portion in plan view.
 また、カバー基板5としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック基板を用いてもよい。ガラス基板としては、例えば、ソーダライムガラス基板、無アルカリガラス基板などを用いることができる。また、プラスチック基板としては、例えば、ポリエチレンテレフタラート(PET)基板、ポリエチレンナフタレート(PEN)基板、ポリエーテルサルフォン(PES)基板、ポリカーボネート(PC)基板などを用いてもよい。プラスチック基板を用いる場合は、プラスチック基板の表面にSiON膜、SiN膜などを成膜して水分の透過を抑えるようにしてもよい。 Further, although the glass substrate is used as the cover substrate 5, the present invention is not limited thereto, and for example, a plastic substrate may be used. As the glass substrate, for example, a soda lime glass substrate or an alkali-free glass substrate can be used. Further, as the plastic substrate, for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyethersulfone (PES) substrate, a polycarbonate (PC) substrate, or the like may be used. When a plastic substrate is used, an SiON film, an SiN film, or the like may be formed on the surface of the plastic substrate to suppress moisture permeation.
 カバー基板5の材料としては、透光性基板1の材料との線膨張率差の小さな材料が好ましく、カバー基板5と透光性基板1との線膨張率差に起因して発生する応力を低減する観点からは線膨張率差が等しい材料がより好ましい。 As the material of the cover substrate 5, a material having a small difference in linear expansion coefficient from the material of the translucent substrate 1 is preferable, and stress generated due to the difference in linear expansion coefficient between the cover substrate 5 and the translucent substrate 1 is applied. From the viewpoint of reduction, materials having the same linear expansion coefficient difference are more preferable.
 カバー基板5は、上述のように、接合部4を介して素子基板3と接合されている。ここで、接合部4と素子基板3との界面は、接合部4と第1端子部T1との第1界面と、接合部4と第2端子部T2との第2界面と、接合部4と透光性基板1との第3界面とがある。 The cover substrate 5 is bonded to the element substrate 3 via the bonding portion 4 as described above. Here, the interface between the bonding portion 4 and the element substrate 3 includes the first interface between the bonding portion 4 and the first terminal portion T1, the second interface between the bonding portion 4 and the second terminal portion T2, and the bonding portion 4. And a third interface between the transparent substrate 1 and the transparent substrate 1.
 接合部4の材料(接着剤)としては、エポキシ樹脂を用いているが、これに限らず、例えば、アクリル樹脂、フリットガラスなどを採用してもよい。エポキシ樹脂やアクリル樹脂としては、紫外線硬化型のものでもよいし、熱硬化型のものでもよい。また、接合部4の材料として、エポキシ樹脂にフィラー(例えば、シリカ、アルミナなど)を含有させたものを用いてもよい。 As a material (adhesive) of the joint portion 4, an epoxy resin is used, but is not limited thereto, and for example, an acrylic resin, a frit glass, or the like may be employed. The epoxy resin or acrylic resin may be an ultraviolet curable type or a thermosetting type. In addition, as a material for the joint portion 4, an epoxy resin containing a filler (for example, silica, alumina, etc.) may be used.
 乾燥部材7は、例えば、酸化カルシウム、酸化バリウム、シリカゲルなどの乾燥剤などを用いて形成されている。ここにおいて、乾燥剤としては、カバー基板5よりも赤外線吸収率の高い材料が好ましい。 The drying member 7 is formed using a desiccant such as calcium oxide, barium oxide, or silica gel, for example. Here, as the desiccant, a material having an infrared absorption rate higher than that of the cover substrate 5 is preferable.
 均熱板6の材料としては、各種の金属の中で熱伝導率が高い金属が好ましく、銅を採用している。均熱板6の材料は、銅に限らず、例えば、アルミニウム、金、青銅、真鍮などでもよい。なお、均熱板6としては、金属箔(例えば、銅箔、アルミニウム箔、金箔など)を用いてもよい。 As the material of the soaking plate 6, a metal having high thermal conductivity among various metals is preferable, and copper is adopted. The material of the soaking plate 6 is not limited to copper, and may be aluminum, gold, bronze, brass, or the like, for example. The soaking plate 6 may be a metal foil (for example, a copper foil, an aluminum foil, a gold foil, etc.).
 また、本実施形態の発光装置Aでは、カバー基板5における凹所51の開口サイズを絶縁膜29の外周形状のサイズよりも大きく設定してあり、カバー基板5の周部(凹所51の周辺)が接合部4を介して素子基板3に接合されている。 In the light emitting device A of the present embodiment, the opening size of the recess 51 in the cover substrate 5 is set larger than the size of the outer peripheral shape of the insulating film 29, and the peripheral portion of the cover substrate 5 (the periphery of the recess 51 is ) Is bonded to the element substrate 3 through the bonding portion 4.
 これにより、発光装置Aは、第1電極21および第2電極23が外部に露出しないので、耐湿性を高めることが可能となる。ここで、有機EL素子2のうち外部に露出するのは、第1端子部T1および第2端子部T2の各々の一部である。 Thereby, in the light emitting device A, since the first electrode 21 and the second electrode 23 are not exposed to the outside, the moisture resistance can be improved. Here, a part of each of the first terminal portion T1 and the second terminal portion T2 is exposed to the outside of the organic EL element 2.
 ここにおいて、第1端子部T1は、上述のように第1透明導電性酸化物層24と第1金属層27との積層構造を有しているが、第1透明導電性酸化物層24のみにより構成される接合用領域24aを、接合部4の周方向に沿って第1端子部T1の幅方向の全長に亘って設けてある。 Here, the first terminal portion T1 has a laminated structure of the first transparent conductive oxide layer 24 and the first metal layer 27 as described above, but only the first transparent conductive oxide layer 24 is present. The joining region 24a configured by the following is provided over the entire length in the width direction of the first terminal portion T1 along the circumferential direction of the joining portion 4.
 また、第2端子部T2は、上述のように第2透明導電性酸化物層25と第2金属層28との積層構造を有しているが、第2透明導電性酸化物層25のみにより構成される接合用領域25aを、接合部4の周方向に沿って第2端子部T2の幅方向の全長に亘って設けてある。 The second terminal portion T2 has a laminated structure of the second transparent conductive oxide layer 25 and the second metal layer 28 as described above, but only by the second transparent conductive oxide layer 25. The joining region 25a to be configured is provided over the entire length in the width direction of the second terminal portion T2 along the circumferential direction of the joining portion 4.
 したがって、接合部4と第1端子部T1との第1界面は、接合部4と第1透明導電性酸化物層24との界面により構成され、接合部4と第2端子部T2との第2界面は、接合部4と第2透明導電性酸化物層25との界面により構成されている。 Accordingly, the first interface between the junction 4 and the first terminal portion T1 is constituted by the interface between the junction 4 and the first transparent conductive oxide layer 24, and the first interface between the junction 4 and the second terminal portion T2. The two interface is constituted by an interface between the joint portion 4 and the second transparent conductive oxide layer 25.
 これにより、本実施形態の発光装置Aは、接合部4と第1端子部T1および第2端子部T2との接合強度を向上させることが可能となり、しかも、第1金属層27および第2金属層28の経時変化で酸化が生じて第1界面および第2界面の状態が変化することを防止することが可能となり、信頼性を向上させることが可能となる。 Thereby, the light emitting device A of the present embodiment can improve the bonding strength between the bonding portion 4 and the first terminal portion T1 and the second terminal portion T2, and the first metal layer 27 and the second metal. It is possible to prevent the oxidation of the layer 28 with the passage of time and change the state of the first interface and the second interface, thereby improving the reliability.
 また、本実施形態の発光装置Aでは、均熱板6を備えていることにより、有機EL素子2の発光部20の温度の均熱化を図ることが可能となって発光部20の温度の面内ばらつきを低減することが可能となり、しかも、放熱性を向上させることが可能となる。 Moreover, in the light-emitting device A of this embodiment, since the soaking plate 6 is provided, the temperature of the light emitting unit 20 of the organic EL element 2 can be soaked, and the temperature of the light emitting unit 20 can be reduced. In-plane variation can be reduced, and heat dissipation can be improved.
 しかして、発光装置Aでは、有機EL素子2の温度上昇を抑制することができ、入力電力を大きくして高輝度化を図った場合の長寿命化を図れる。 However, in the light emitting device A, the temperature rise of the organic EL element 2 can be suppressed, and the lifetime can be extended when the input power is increased to increase the luminance.
 本実施形態の発光装置Aでは、発光部20の平面サイズを80×80mmに設定してあるが、これに限らず、例えば、30×30~300×300mm程度の範囲で適宜設定すればよい。 In the light emitting device A of the present embodiment, the planar size of the light emitting unit 20 is set to 80 × 80 mm, but is not limited thereto, and may be set as appropriate within a range of about 30 × 30 to 300 × 300 mm, for example.
 また、第2端子部T2の幅方向の両側に配置される2つの第1端子部T1、T1の中心間距離を30mmに設定してあるが、この値は一例であり、特に限定するものではない。 Moreover, although the center-to-center distance between the two first terminal portions T1 and T1 disposed on both sides in the width direction of the second terminal portion T2 is set to 30 mm, this value is an example and is not particularly limited. Absent.
 また、第1電極21の厚さを110nm~300nm程度の範囲、有機EL層22の厚さを150nm~300nm程度の範囲、第2電極23の厚さを70nm~300nm程度の範囲、絶縁膜29の厚さを0.7μm~1μm程度の範囲、補助電極26、第1金属膜27および第2金属膜28の厚さを300nm~600nm程度の範囲で適宜設定してあるが、これらの値は特に限定するものではない。 The thickness of the first electrode 21 is in the range of about 110 nm to 300 nm, the thickness of the organic EL layer 22 is in the range of about 150 nm to 300 nm, the thickness of the second electrode 23 is in the range of about 70 nm to 300 nm, and the insulating film 29 The thickness of the auxiliary electrode 26, the first metal film 27, and the second metal film 28 is appropriately set in the range of about 300 nm to 600 nm. These values are There is no particular limitation.
 また、補助電極26の幅については、幅が広くなるほど、補助電極26のインピーダンスが低下し、発光部20の輝度の面内ばらつきは低減されるが、非発光部の面積が増加して光束が低下するので、0.3mm~3mm程度の範囲で設定することが好ましい。本実施形態の発光装置Aを複数個並べて光源とする照明器具では、補助電極26の幅を狭くするほど、隣り合う発光部20間の距離を小さくでき、見栄えが良くなる。 As the width of the auxiliary electrode 26 increases, the impedance of the auxiliary electrode 26 decreases as the width increases, and the in-plane variation of the luminance of the light emitting unit 20 is reduced. Since it decreases, it is preferable to set in the range of about 0.3 mm to 3 mm. In a lighting fixture in which a plurality of light-emitting devices A according to this embodiment are used as a light source, the distance between adjacent light-emitting portions 20 can be reduced and the appearance can be improved as the width of the auxiliary electrode 26 is reduced.
 また、第1端子部T1および第2端子部T2と透光性基板1の周縁との距離は、0.2mmに設定してあるが、この値は特に限定するものではなく、例えば、0.1~2mm程度の範囲で適宜設定することが好ましい。発光装置Aの非発光部の面積を小さくするには、第1端子部T1および第2端子部T2と透光性基板1の周縁との距離を短くすることが好ましいが、第1端子部T1および第2端子部T2と他の金属部材(例えば、照明器具の金属製の器具本体など)との間に所定の沿面距離を確保する必要がある場合には、この沿面距離よりも長い値に設定することが好ましい。 Moreover, although the distance of the 1st terminal part T1 and 2nd terminal part T2 and the periphery of the translucent board | substrate 1 is set to 0.2 mm, this value is not specifically limited, For example, 0. It is preferable to set appropriately within a range of about 1 to 2 mm. In order to reduce the area of the non-light emitting portion of the light emitting device A, it is preferable to shorten the distance between the first terminal portion T1 and the second terminal portion T2 and the peripheral edge of the translucent substrate 1, but the first terminal portion T1. And when it is necessary to ensure a predetermined creepage distance between the second terminal portion T2 and another metal member (for example, a metal fixture body of a lighting fixture), the value is longer than this creepage distance. It is preferable to set.
 以下、本実施形態の発光装置Aの製造方法について図9~図14を参照しながら説明する。 Hereinafter, a method for manufacturing the light emitting device A of the present embodiment will be described with reference to FIGS.
 まず、ガラス基板からなる透光性基板1の上記一表面側に、同一の透明導電性酸化物(例えば、ITO、AZO、GZO、IZOなど)からなる、第1電極21、第1透明導電性酸化物層24および第2透明導電性酸化物層25を蒸着法やスパッタ法などを利用して同時に形成することによって、図9に示す構造を得る。 First, the first electrode 21 and the first transparent conductive material made of the same transparent conductive oxide (for example, ITO, AZO, GZO, IZO, etc.) on the one surface side of the transparent substrate 1 made of a glass substrate. By simultaneously forming the oxide layer 24 and the second transparent conductive oxide layer 25 by using a vapor deposition method, a sputtering method, or the like, the structure shown in FIG. 9 is obtained.
 次に、透光性基板1の上記一表面側に、例えば、同一の金属材料などからなる、補助電極26、第1金属層27および第2金属層28を蒸着法やスパッタ法などを利用して同時に形成することによって、図10に示す構造を得る。 Next, the auxiliary electrode 26, the first metal layer 27, and the second metal layer 28 made of, for example, the same metal material are applied to the one surface side of the translucent substrate 1 by using a vapor deposition method, a sputtering method, or the like. 10 to obtain the structure shown in FIG.
 続いて、透光性基板1の上記一表面側に、樹脂材料(例えば、ポリイミド、ノボラック樹脂、エポキシ樹脂など)からなる絶縁膜29を形成することによって、図11に示す構造を得る。 Subsequently, an insulating film 29 made of a resin material (for example, polyimide, novolac resin, epoxy resin, etc.) is formed on the one surface side of the translucent substrate 1 to obtain the structure shown in FIG.
 その後、透光性基板1の上記一表面側に、有機EL層22を例えば蒸着法などにより形成することによって、図12に示す構造を得る。なお、有機EL層22の形成方法は蒸着法に限らず、例えば、塗布法などでもよく、有機EL層22の材料に応じて適宜選択すればよい。 Then, the structure shown in FIG. 12 is obtained by forming the organic EL layer 22 on the one surface side of the translucent substrate 1 by, for example, vapor deposition. In addition, the formation method of the organic EL layer 22 is not limited to the vapor deposition method, and may be a coating method, for example, and may be appropriately selected according to the material of the organic EL layer 22.
 続いて、透光性基板1の上記一表面側に、同一の金属材料(例えば、アルミニウム、銀など)からなる第2電極23および引出配線23bを蒸着法やスパッタ法などを利用して形成することによって、図13に示す構造の素子基板3を得る。ここまでが、透光性基板1の上記一表面側に有機EL素子2を形成する素子基板形成工程である。 Subsequently, the second electrode 23 and the lead wiring 23b made of the same metal material (for example, aluminum, silver, etc.) are formed on the one surface side of the translucent substrate 1 by using a vapor deposition method, a sputtering method, or the like. Thus, the element substrate 3 having the structure shown in FIG. 13 is obtained. This is the element substrate forming step for forming the organic EL element 2 on the one surface side of the translucent substrate 1.
 その後、例えば、素子基板3に、接合部4の材料である接着剤(例えば、エポキシ樹脂、アクリル樹脂、ガラスフリットなど)4aをディスペンサなどにより塗布することによって、図14に示す構造を得る。接着剤4aは、第1端子部T1と第2端子部T2のそれぞれの一部が空間(収納空間)8外に位置するように、第1端子部T1および第2端子部T2を横切って発光部20を囲うように形成される。 Thereafter, for example, an adhesive (for example, epoxy resin, acrylic resin, glass frit, etc.) 4a, which is a material of the joint portion 4, is applied to the element substrate 3 with a dispenser or the like, thereby obtaining the structure shown in FIG. The adhesive 4a emits light across the first terminal portion T1 and the second terminal portion T2 so that a part of each of the first terminal portion T1 and the second terminal portion T2 is located outside the space (storage space) 8. It is formed so as to surround the portion 20.
 ここにおいて、接着剤4aを塗布する塗布工程では、素子基板3の周部に接着剤4aを矩形枠状に塗布しているが、素子基板3ではなく、カバー基板5における凹所51の周部(周辺)に接着剤4aを矩形枠状に塗布するようにしてもよい。 Here, in the application step of applying the adhesive 4a, the adhesive 4a is applied to the peripheral portion of the element substrate 3 in a rectangular frame shape, but the peripheral portion of the recess 51 in the cover substrate 5 instead of the element substrate 3. The adhesive 4a may be applied to the (periphery) in a rectangular frame shape.
 なお、接合部4となる接着剤4aを塗布する塗布装置は、ディスペンサに限らず、例えば、スクリーン印刷装置、ダイコーター、スリットコーターなどを用いてもよい。 In addition, the coating apparatus which apply | coats the adhesive agent 4a used as the junction part 4 is not restricted to a dispenser, For example, you may use a screen printing apparatus, a die coater, a slit coater, etc.
 その後、予め乾燥部材7および均熱板6を貼り付けたカバー基板5と素子基板3とを重ね合わせる重ね合わせ工程を行い、続いて、接着剤4aを硬化させることで接合部4を形成する硬化工程を行うことによって、発光装置Aを得る。 Thereafter, an overlaying process is performed in which the cover substrate 5 and the element substrate 3 to which the drying member 7 and the soaking plate 6 are previously attached are superposed, followed by curing to form the joint portion 4 by curing the adhesive 4a. The light emitting device A is obtained by performing the steps.
 重ね合わせ工程では、素子基板3とカバー基板5とを重ね合わせて、プレスすることにより接着剤4aを押し潰して広げる。 In the overlapping process, the element substrate 3 and the cover substrate 5 are overlapped and pressed to crush and spread the adhesive 4a.
 硬化工程では、接着剤4aが紫外線硬化型の場合には紫外線を照射して接着剤4aを硬化させる。また、接着剤4aが熱硬化型の場合には接着剤4aを加熱することにより接着剤4aを硬化させる。 In the curing step, when the adhesive 4a is an ultraviolet curing type, the adhesive 4a is cured by irradiating with ultraviolet rays. When the adhesive 4a is a thermosetting type, the adhesive 4a is cured by heating the adhesive 4a.
 ここで、カバー基板5への乾燥部材7の貼付工程、素子基板3もしくはカバー基板5に接着剤4aを塗布する塗布工程、素子基板3とカバー基板5とを重ね合わせる重ね合わせ工程、接着剤4aを硬化させる硬化工程は、例えば、露点-65℃の窒素雰囲気中で行うようにしている。 Here, the step of attaching the drying member 7 to the cover substrate 5, the application step of applying the adhesive 4a to the element substrate 3 or the cover substrate 5, the overlapping step of overlapping the element substrate 3 and the cover substrate 5, the adhesive 4a The curing step for curing is performed in a nitrogen atmosphere with a dew point of −65 ° C., for example.
 なお、均熱板6は、接合部4の接着剤4aを硬化させた後で、カバー基板5に貼り付けるようにしてもよい。 The soaking plate 6 may be attached to the cover substrate 5 after the adhesive 4a of the joint 4 is cured.
 また、乾燥部材7の乾燥剤としては、例えば、シール型の乾燥剤や塗布型の乾燥剤を用いることが可能であり、塗布型の乾燥剤を用いる場合の硬化工程は、接合部4の接着剤4aとの組み合わせに応じて、カバー基板5と素子基板3との重ね合わせ前に単独で行うか、接合部4の接着剤4aを硬化させる硬化工程で兼ねるかのいずれかであればよい。塗布型の乾燥剤を塗布する方法としては、例えば、ディスペンサ、スクリーン印刷装置、メタルマスク、ダイコーター、スリットコーターなどを用いる方法を採用することができる。 Moreover, as a desiccant of the drying member 7, for example, a seal-type desiccant or a coating-type desiccant can be used. Depending on the combination with the agent 4 a, it may be performed either before the cover substrate 5 and the element substrate 3 are overlapped with each other, or may be combined with a curing step of curing the adhesive 4 a of the joint portion 4. As a method for applying the coating type desiccant, for example, a method using a dispenser, a screen printing apparatus, a metal mask, a die coater, a slit coater, or the like can be employed.
 ところで、発光装置Aの製造方法について更に説明すれば、例えば、素子基板3を2×2のアレイ状に並べることが可能な矩形板状であり後で個々の素子基板3に分断される第3基板(図示せず)、もしくは、カバー基板5を2×2のアレイ状に並べることが可能な矩形板状であり後で個々のカバー基板5に分断される第4基板(図示せず)に対して接着剤4aを塗布する塗布工程を行う。 By the way, the manufacturing method of the light emitting device A will be further described. For example, the element substrate 3 is a rectangular plate that can be arranged in a 2 × 2 array and is divided into individual element substrates 3 later. A substrate (not shown) or a fourth substrate (not shown) that is a rectangular plate that can arrange the cover substrates 5 in a 2 × 2 array and is divided into individual cover substrates 5 later. On the other hand, an application step of applying the adhesive 4a is performed.
 ここにおいて、第3基板は、素子基板3を2×i(iは1以上の整数)のアレイ状に並べることが可能な矩形板状であればよい。また、第4基板は、カバー基板5を2×j(j=i)のアレイ状に並べることが可能な矩形板状であればよい。 Here, the third substrate may be a rectangular plate that can arrange the element substrates 3 in an array of 2 × i (i is an integer of 1 or more). The fourth substrate may be a rectangular plate that can arrange the cover substrates 5 in a 2 × j (j = i) array.
 塗布工程の後、第4基板と第3基板とを重ね合わせる重ね合わせ工程を行い、続いて、接着剤4aを硬化させることで接合部4を形成する硬化工程を行う。その後、第3基板を個々の素子基板3に分断するとともに第4基板を個々のカバー基板5に分断する分断工程を行う。 After the coating process, an overlapping process for overlapping the fourth substrate and the third substrate is performed, and subsequently, a curing process for forming the joint portion 4 by curing the adhesive 4a is performed. Thereafter, a dividing step of dividing the third substrate into individual element substrates 3 and dividing the fourth substrate into individual cover substrates 5 is performed.
 また、分断工程において第3基板を分断するにあたっては、第3基板における第4基板側とは反対側の表面に、例えばスクライバによって第1スクライブラインを引いて、第4基板側から例えばブレークマシンによって圧力を加えることで第3基板を切断すればよい。 Further, when the third substrate is divided in the dividing step, the first scribe line is drawn on the surface of the third substrate opposite to the fourth substrate side by, for example, a scriber, and then, for example, by a break machine from the fourth substrate side. The third substrate may be cut by applying pressure.
 また、分断工程において第4基板を分断するにあたっては、第4基板における第3基板側とは反対側の表面に、例えばスクライバによって第2スクライブラインを引いて、第3基板側から例えばブレークマシンによって圧力を加えることで第4基板を切断すればよい。 Further, when the fourth substrate is divided in the dividing step, a second scribe line is drawn on the surface of the fourth substrate opposite to the third substrate side, for example, by a scriber, and then, for example, by a break machine from the third substrate side. The fourth substrate may be cut by applying pressure.
 なお、第3基板としては、素子基板3を2×i(iは1以上の整数)のアレイ状に並べることが可能な矩形板状に限らず、予め規定した第1単位寸法の素子基板3よりも大きな矩形板状のものとして、第1単位寸法あるいは第3基板よりも小さな所望の外形寸法の素子基板3に分断するようにしてもよい。 The third substrate is not limited to a rectangular plate shape in which the element substrates 3 can be arranged in an array of 2 × i (i is an integer equal to or greater than 1), and the element substrate 3 having a first unit dimension defined in advance. As a larger rectangular plate, the element substrate 3 may be divided into a first unit dimension or a desired outer dimension smaller than the third substrate.
 この場合は、第4基板も、カバー基板5を2×j(j=i)のアレイ状に並べることが可能な矩形板状に限らず、予め規定した第2単位寸法のカバー基板5よりも大きな矩形板状のものとして、第2単位寸法あるいは第4基板よりも小さな所望の外形寸法のカバー基板5に分断するようにしてもよい。 In this case, the fourth substrate is not limited to the rectangular plate shape in which the cover substrates 5 can be arranged in an array of 2 × j (j = i), but more than the cover substrate 5 having the second unit dimension defined in advance. As a large rectangular plate, the cover substrate 5 may be divided into the second unit size or a desired outer size smaller than the fourth substrate.
 ところで、本実施形態の発光装置Aは、上述のように、透光性基板1および透光性基板1の上記一表面側に形成された有機EL素子2を有する素子基板3と、透光性基板1の上記一表面側に対向配置されたカバー基板5と、透光性基板1の上記一表面側において有機EL素子2の発光部20を囲む枠状に形成され素子基板3とカバー基板5とを接合した接着剤4aからなる接合部4とを備えている。さらに、発光装置Aは、カバー基板5における透光性基板1との対向面側で発光部20に空間を介して配置された乾燥部材7を備えている。乾燥部材7は、カバー基板5において接合部4に重なる領域よりも内側でカバー基板5の周部に配置されている。 By the way, as described above, the light-emitting device A of the present embodiment includes the light-transmitting substrate 1 and the element substrate 3 including the organic EL element 2 formed on the one surface side of the light-transmitting substrate 1, and the light-transmitting property. The cover substrate 5 disposed opposite to the one surface side of the substrate 1, and the element substrate 3 and the cover substrate 5 formed in a frame shape surrounding the light emitting portion 20 of the organic EL element 2 on the one surface side of the translucent substrate 1. And a bonding portion 4 made of an adhesive 4a. Further, the light emitting device A includes a drying member 7 disposed on the light emitting unit 20 through a space on the side of the cover substrate 5 facing the translucent substrate 1. The drying member 7 is disposed on the peripheral portion of the cover substrate 5 inside the region of the cover substrate 5 that overlaps the bonding portion 4.
 なお、本実施形態の発光装置Aでは、乾燥部材7の平面視形状が四角形状であり、4つの乾燥部材7をカバー基板5の周方向において略等間隔で離間して配置してある。 In the light emitting device A of the present embodiment, the shape of the drying member 7 in a plan view is a quadrangular shape, and the four drying members 7 are spaced apart at substantially equal intervals in the circumferential direction of the cover substrate 5.
 換言すれば、本実施形態の発光装置Aは、第1基板(透光性基板)1と、有機EL素子2と、第2基板(カバー基板)5と、接合部4と、乾燥部材7と、を備える。有機EL素子2は、光を放射する発光部20を有する。有機EL素子2は、第1基板1の上記一表面に形成される。第2基板5は、第1基板1の上記一表面に対向するように配置される。第2基板5は、第1基板1との間に発光部20を収納する空間8を形成するように構成される。接合部4は、発光部20を囲う枠状に形成される。接合部4は、第2基板5における第1基板1との上記対向面を第1基板1の上記一表面に接合するように構成される。乾燥部材7は、発光部20に接触しないように第2基板5の上記対向面における接合部4で囲まれた領域の外縁に配置される。また、本実施形態の発光装置Aでは、発光部20は、接合部4の中心に位置する。 In other words, the light-emitting device A of the present embodiment includes a first substrate (translucent substrate) 1, an organic EL element 2, a second substrate (cover substrate) 5, a bonding portion 4, and a drying member 7. . The organic EL element 2 includes a light emitting unit 20 that emits light. The organic EL element 2 is formed on the one surface of the first substrate 1. The second substrate 5 is disposed so as to face the one surface of the first substrate 1. The second substrate 5 is configured to form a space 8 for accommodating the light emitting unit 20 between the second substrate 5 and the first substrate 1. The joint portion 4 is formed in a frame shape surrounding the light emitting portion 20. The bonding portion 4 is configured to bond the surface of the second substrate 5 facing the first substrate 1 to the one surface of the first substrate 1. The drying member 7 is disposed on the outer edge of the region surrounded by the joint portion 4 on the facing surface of the second substrate 5 so as not to contact the light emitting portion 20. Further, in the light emitting device A of the present embodiment, the light emitting unit 20 is located at the center of the joint 4.
 以上述べたように、本実施形態の発光装置Aでは、乾燥部材7が、カバー基板5において接合部4に重なる領域よりも内側でカバー基板5の周部に配置されているので、この発光装置Aの取り扱い時に均熱板6およびカバー基板5に押圧力がかかってカバー基板5が有機EL素子2の発光部20側に凸となる形で撓むことがあったとしても、乾燥部材7が発光部20に接触して発光部20が発光できなくなる不良の発生を抑制することが可能となる。これにより、発光装置Aは、信頼性の向上を図ることが可能となる。 As described above, in the light emitting device A according to the present embodiment, the drying member 7 is disposed on the periphery of the cover substrate 5 inside the region of the cover substrate 5 that overlaps the bonding portion 4. Even when the heat equalizing plate 6 and the cover substrate 5 are pressed during the handling of A, and the cover substrate 5 may be bent in the form of a convex toward the light emitting portion 20 side of the organic EL element 2, the drying member 7 is It is possible to suppress the occurrence of a defect in which the light emitting unit 20 cannot contact the light emitting unit 20 to emit light. Thereby, the light emitting device A can improve the reliability.
 また、本実施形態の発光装置Aでは、上述のように、均熱板6を備えていることにより、有機EL素子2の発光部20の温度の均熱化を図ることが可能となって発光部20の温度の面内ばらつきを低減することが可能となる。 Further, in the light emitting device A according to the present embodiment, as described above, the provision of the soaking plate 6 enables the temperature of the light emitting unit 20 of the organic EL element 2 to be soaked, thereby emitting light. It is possible to reduce in-plane variations in the temperature of the portion 20.
 そして、本実施形態の発光装置Aでは、均熱板6に比べて熱伝導率の低い乾燥部材7が、カバー基板5において接合部4に重なる領域よりも内側でカバー基板5の周部に配置されていることにより、均熱板6の均熱効果が損なわれるのを抑制することが可能となる。 In the light emitting device A of the present embodiment, the drying member 7 having a lower thermal conductivity than the soaking plate 6 is disposed on the periphery of the cover substrate 5 inside the region of the cover substrate 5 that overlaps the joint 4. As a result, it is possible to prevent the soaking effect of the soaking plate 6 from being impaired.
 また、本実施形態の発光装置Aでは、乾燥部材7は、カバー基板5よりも赤外線吸収率の高い乾燥剤を用いて形成される。換言すれば、乾燥部材7は、第2基板(カバー基板)5よりも赤外線吸収率が高い。 Further, in the light emitting device A of the present embodiment, the drying member 7 is formed using a desiccant having an infrared absorption rate higher than that of the cover substrate 5. In other words, the drying member 7 has an infrared absorption rate higher than that of the second substrate (cover substrate) 5.
 したがって、本実施形態の発光装置Aによれば、発光部20の周部の温度を発光部20の中央部の温度に比べて下げることが可能となり、発光部20の周部の電流密度を小さくして発光量を下げることで、発光部20の輝度の面内ばらつきを低減することが可能となる。 Therefore, according to the light emitting device A of the present embodiment, it becomes possible to lower the temperature of the peripheral portion of the light emitting portion 20 compared to the temperature of the central portion of the light emitting portion 20, and to reduce the current density of the peripheral portion of the light emitting portion 20. Thus, by reducing the light emission amount, it is possible to reduce in-plane variation in luminance of the light emitting unit 20.
 ところで、図1に示すように、カバー基板5において透光性基板1との上記対向面に形成された凹所51は、第1多角形状(本実施形態では、四角形状)の開口形状に形成されている。これに対して、乾燥部材7は、特定の内角α2(=90°)を第1多角形状の内角α1(=90°)と合わせた第2多角形状(本実施形態では、四角形状)に形成されている。そして、乾燥部材7は、特定の内角α2の頂点を端点にもつ二つの辺71,72と、第1多角形状の内角α1の頂点を端点にもつ二つの辺511,512とが各々平行となるように配置されている。 By the way, as shown in FIG. 1, the recess 51 formed in the said opposing surface with the translucent board | substrate 1 in the cover board | substrate 5 is formed in the opening shape of a 1st polygon shape (this embodiment square shape). Has been. On the other hand, the drying member 7 is formed in a second polygonal shape (in the present embodiment, a quadrangular shape) in which a specific inner angle α2 (= 90 °) is combined with the inner angle α1 (= 90 °) of the first polygonal shape. Has been. In the drying member 7, the two sides 71 and 72 having the vertex of the specific inner angle α2 as the end points and the two sides 511 and 512 having the vertex of the first polygonal inner angle α1 as the end points are parallel to each other. Are arranged as follows.
 換言すれば、第2基板5は、多角形状の凹所51を上記対向面(図1(b)における下面)に備える。凹所51は、第1基板1の上記一表面に平行する面内において発光部20を囲む外周を有する。第2基板5は、上記対向面における凹所51の周辺で接合部4を介して第1基板1に接合される。乾燥部材7は、凹所51の底面における角部に配置される。 In other words, the second substrate 5 includes a polygonal recess 51 on the facing surface (the lower surface in FIG. 1B). The recess 51 has an outer periphery surrounding the light emitting unit 20 in a plane parallel to the one surface of the first substrate 1. The second substrate 5 is bonded to the first substrate 1 via the bonding portion 4 around the recess 51 on the facing surface. The drying member 7 is disposed at a corner portion on the bottom surface of the recess 51.
 また、本実施形態の発光装置Aでは、角部は、所定の内角α1を有する。乾燥部材7は、所定の内角α1に等しい角(内角)α2を有する形に形成される。 Further, in the light emitting device A of the present embodiment, the corner portion has a predetermined inner angle α1. The drying member 7 is formed in a shape having an angle (inner angle) α2 equal to a predetermined inner angle α1.
 また、本実施形態の発光装置Aでは、乾燥部材7は、角(内角)α2を定義する二辺71,72が所定の内角α1を定義する二辺511,512にそれぞれ対向し、かつ、平行するように、配置される。 In the light emitting device A of the present embodiment, the drying member 7 includes two sides 71 and 72 that define an angle (inner angle) α2 that are opposite to and parallel to two sides 511 and 512 that define a predetermined inner angle α1. To be arranged.
 また、本実施形態の発光装置Aでは、乾燥部材7は、凹所51の底面の角部それぞれに配置される。 Further, in the light emitting device A of the present embodiment, the drying member 7 is disposed at each corner of the bottom surface of the recess 51.
 しかして、本実施形態の発光装置Aでは、乾燥部材7において特定の内角α2の頂点を端点にもつ二つの辺71,72を接合部4と平行にすることが可能となり、外部からの水分を乾燥部材7において効率良く吸収することが可能となり、信頼性のより一層の向上を図ることが可能となる。 Therefore, in the light emitting device A of the present embodiment, it becomes possible to make the two sides 71 and 72 having the vertex of the specific inner angle α2 in the drying member 7 parallel to the joint portion 4, and to remove moisture from the outside. The drying member 7 can absorb efficiently, and the reliability can be further improved.
 なお、本実施形態では、乾燥部材7の平面視形状が四角形状なので、4つの内角のいずれか1つを特定の内角α2として乾燥部材7を配置すればよい。 In addition, in this embodiment, since the planar view shape of the drying member 7 is a square shape, what is necessary is just to arrange | position the drying member 7 by making any one of four interior angles into the specific interior angle (alpha) 2.
 また、本実施形態の発光装置Aでは、上述のように、有機EL素子2が、第1電極21、有機EL層22、第2電極23、第1端子部T1、第2端子部T2および補助電極26を備え、透光性基板1の上記一表面において上記規定方向の両端部の各々に第1端子部T1および第2端子部T2が配置されている。 Further, in the light emitting device A of the present embodiment, as described above, the organic EL element 2 includes the first electrode 21, the organic EL layer 22, the second electrode 23, the first terminal portion T1, the second terminal portion T2, and the auxiliary. An electrode 26 is provided, and a first terminal portion T1 and a second terminal portion T2 are disposed on each of both end portions in the specified direction on the one surface of the translucent substrate 1.
 これにより、本実施形態の発光装置Aでは、高輝度化および輝度の面内均一性の向上を図ることが可能となり、しかも、非発光部の面積を低減することが可能となる。また、本実施形態の発光装置Aを上記規定方向に直交する方向に複数個並べて光源とする照明器具では、隣り合う発光部20間の距離を小さくでき、見栄えが良くなる。 Thereby, in the light emitting device A of the present embodiment, it is possible to increase the luminance and improve the in-plane uniformity of the luminance, and it is possible to reduce the area of the non-light emitting portion. Moreover, in the lighting fixture which uses the light-emitting device A of this embodiment as a light source by arranging two or more in the direction orthogonal to the said prescription | regulation direction, the distance between the adjacent light emission parts 20 can be made small, and an appearance improves.
 また、本実施形態の発光装置Aでは、上述のように、第1端子部T1および第2端子部T2が、各々、透明導電性酸化物層24,25と金属層27,28との積層構造を有し、透明導電性酸化物層24,25のみが接合部4と接していることが好ましい。 Further, in the light emitting device A of the present embodiment, as described above, the first terminal portion T1 and the second terminal portion T2 are each a laminated structure of the transparent conductive oxide layers 24 and 25 and the metal layers 27 and 28. It is preferable that only the transparent conductive oxide layers 24 and 25 are in contact with the joint portion 4.
 これにより、本実施形態の発光装置Aでは、高輝度化および輝度の面内均一性の向上を図れ、そのうえ、接合部4と第1端子部T1および第2端子部T2との接合強度を向上させることが可能となる。しかも、第1金属層27および第2金属層28の経時変化で酸化が生じて第1界面および第2界面の状態が変化することを防止することが可能となり、信頼性を向上させることが可能となる。 Thereby, in the light-emitting device A of this embodiment, it is possible to increase the luminance and improve the in-plane uniformity of the luminance, and further improve the bonding strength between the bonding portion 4 and the first terminal portion T1 and the second terminal portion T2. It becomes possible to make it. In addition, it is possible to prevent the first metal layer 27 and the second metal layer 28 from being oxidized with the passage of time and change the state of the first interface and the second interface, thereby improving the reliability. It becomes.
 本実施形態の発光装置Aと、第1端子部T1および第2端子部T2で金属層27,28を接合部4と接するようにした比較例とで、発光部20において発光しないエリア(ダークエリア)が、発光部20のエッジから規定距離だけ進行するのにかかる時間を比較したところ、本実施形態の発光装置Aの方が、より長い時間を要することが確認された。したがって、本実施形態の発光装置Aでは、水分や酸素を遮断する性能であるガスバリア性の向上を図れ、長寿命化を図ることが可能となる。 In the light emitting device A of the present embodiment and the comparative example in which the metal layers 27 and 28 are in contact with the joint 4 at the first terminal portion T1 and the second terminal portion T2, the light emitting portion 20 does not emit light (dark area). ), It was confirmed that the time required for the light emitting device A of the present embodiment to take a longer time was compared with the time taken to travel a specified distance from the edge of the light emitting unit 20. Therefore, in the light emitting device A of the present embodiment, it is possible to improve the gas barrier property, which is the performance of blocking moisture and oxygen, and to extend the life.
 また、本実施形態の発光装置Aでは、第1端子部T1の幅の合計寸法と第2端子部T2の幅の合計寸法とを同じ値に設定することにより、有機EL素子2へ流す電流を大きくすることが可能となり、また、発光効率の向上を図れる。 In the light emitting device A of the present embodiment, the current flowing through the organic EL element 2 is set by setting the total dimension of the width of the first terminal portion T1 and the total dimension of the width of the second terminal portion T2 to the same value. It is possible to increase the size, and the luminous efficiency can be improved.
 また、本実施形態の発光装置Aでは、引出配線23bに臨界電流密度(金属がアルミニウムの場合には1×105A/cm2)以上の電流が長時間にわたって流れると、エレクトロマイグレーションが起こり、断線が起こりやすくなってしまう懸念がある。 Further, in the light emitting device A of the present embodiment, electromigration occurs when a current of a critical current density (1 × 10 5 A / cm 2 when the metal is aluminum) flows over a long period of time in the lead wiring 23b. There is a concern that disconnection is likely to occur.
 これに対して、ITOなどのTCOにより形成され第1電極21に連続した第1透明導電性酸化物層24は、引出配線23bに比べて、臨界電流密度が大きく、臨界電流密度に対するマージンが大きい。 On the other hand, the first transparent conductive oxide layer 24 formed of TCO such as ITO and continuing to the first electrode 21 has a larger critical current density and a larger margin for the critical current density than the lead wiring 23b. .
 したがって、本実施形態の発光装置Aでは、第2端子部T2の幅の合計寸法を第1端子部T1の幅の合計寸法よりも大きくすることでエレクトロマイグレーション耐性(以下、EM耐性と略称する)を向上させることが可能となる。 Therefore, in the light emitting device A of the present embodiment, electromigration resistance (hereinafter abbreviated as EM resistance) is made by making the total width of the second terminal portion T2 larger than the total width of the first terminal portion T1. Can be improved.
 なお、図1について見れば、第2端子部T2の幅の合計寸法とは、4個の第2端子部T2の幅(図2における左右方向の寸法)の合計寸法であり、第1端子部T1の幅の合計寸法とは、6個の第1端子部T1の幅(図2における左右方向の寸法)の合計寸法である。 1, the total dimension of the width of the second terminal portion T2 is the total dimension of the widths of the four second terminal portions T2 (the dimension in the left-right direction in FIG. 2). The total dimension of the width of T1 is the total dimension of the widths (dimensions in the horizontal direction in FIG. 2) of the six first terminal portions T1.
 また、本実施形態の発光装置Aは、平面視形状が矩形状の発光部20の所定の平行な2辺の各々に沿ってm個(m≧1)の第2端子部T2と〔m+1〕個の第1端子部T1とが、第2端子部T2の幅方向の両側に第1端子部T1が位置するように配置されており、第1透明導電性酸化物層24と第2透明導電性酸化物層25とが同じ厚さに設定されている。 Further, the light emitting device A of the present embodiment includes m (m ≧ 1) second terminal portions T2 and [m + 1] along each of two predetermined parallel sides of the light emitting portion 20 having a rectangular shape in plan view. The first terminal portions T1 are arranged so that the first terminal portions T1 are positioned on both sides in the width direction of the second terminal portions T2, and the first transparent conductive oxide layer 24 and the second transparent conductive layers are disposed. The thickness of the conductive oxide layer 25 is set to the same thickness.
 これにより、本実施形態の発光装置Aでは、接合部4の第1端子部T1および第2端子部T2に対する接合強度や密着性を揃えることが可能となり、信頼性をより向上させることが可能となる。 Thereby, in the light-emitting device A of this embodiment, it becomes possible to arrange | equalize the joint strength and adhesiveness with respect to 1st terminal part T1 and 2nd terminal part T2 of the junction part 4, and it can improve reliability more. Become.
 ところで、透光性基板1の平面視形状は、矩形状の場合、長方形状に限らず、正方形状でもよい。透光性基板1の平面視形状が正方形状の場合は、発光部20の平面形状を長方形状とし、当該長方形状の発光部20における2つの短辺を上記所定の2辺とすればよい。また、透光性基板1の平面視形状を長方形状として、発光部20の平面視形状を透光性基板1とは非相似の長方形状として、当該長方形状の発光部20における2つの長辺を上記所定の2辺としてもよい。 By the way, the planar view shape of the translucent substrate 1 is not limited to the rectangular shape, but may be a square shape in the case of the rectangular shape. When the planar view shape of the translucent substrate 1 is a square shape, the planar shape of the light emitting unit 20 may be a rectangular shape, and the two short sides of the rectangular light emitting unit 20 may be the predetermined two sides. Further, the plan view shape of the translucent substrate 1 is a rectangular shape, and the plan view shape of the light emitting unit 20 is a non-similar rectangular shape to the translucent substrate 1, and the two long sides of the light emitting unit 20 having the rectangular shape are used. May be the two predetermined sides.
 (実施形態2)
 本実施形態の発光装置Aの基本構成は実施形態1と略同じであり、図15に示すように、第1基板である透光性基板1、第2基板であるカバー基板5などの平面視形状が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device A of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 15, a plan view of a light transmitting substrate 1 as a first substrate, a cover substrate 5 as a second substrate, and the like. The shape is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.
 本実施形態における透光性基板1は、平面視形状が正六角形状であり、カバー基板5は、平面視形状が透光性基板1と相似形の正六角形状である。また、実施形態1で説明した発光部20(図1(b)参照)の平面視形状も正六角形状としてある。 The translucent substrate 1 in the present embodiment has a regular hexagonal shape in plan view, and the cover substrate 5 has a regular hexagonal shape in plan view similar to that of the translucent substrate 1. Moreover, the planar view shape of the light emission part 20 (refer FIG.1 (b)) demonstrated in Embodiment 1 is also a regular hexagon shape.
 カバー基板5において透光性基板1との上記対向面に形成された凹所51は、第1多角形状(本実施形態では、正六角形状)の開口形状に形成されている。これに対して、乾燥部材7は、特定の内角α2(=120°)を第1多角形状の内角α1(=120°)と合わせた第2多角形状(本実施形態では、二等辺三角形状)に形成されている。そして、乾燥部材7は、特定の内角α2の頂点を端点にもつ二つの辺71,72と、第1多角形状の内角α1の頂点を端点にもつ二つの辺511,512とが各々平行となるように配置されている。 The recess 51 formed in the cover substrate 5 on the surface facing the translucent substrate 1 is formed in an opening shape of a first polygonal shape (regular hexagonal shape in the present embodiment). On the other hand, the drying member 7 has a second polygonal shape (isosceles triangular shape in the present embodiment) obtained by combining a specific interior angle α2 (= 120 °) with the interior angle α1 (= 120 °) of the first polygonal shape. Is formed. In the drying member 7, the two sides 71 and 72 having the vertex of the specific inner angle α2 as the end points and the two sides 511 and 512 having the vertex of the first polygonal inner angle α1 as the end points are parallel to each other. Are arranged as follows.
 しかして、本実施形態の発光装置Aにおいても、乾燥部材7において特定の内角α2の頂点を端点にもつ二つの辺71,72を接合部4と平行にすることが可能となり、外部からの水分を乾燥部材7において効率良く吸収することが可能となり、信頼性のより一層の向上を図ることが可能となる。 Therefore, also in the light emitting device A of the present embodiment, it becomes possible to make the two sides 71 and 72 having the vertex of the specific inner angle α2 as the end point in the drying member 7 parallel to the joint portion 4, and moisture from the outside. Can be efficiently absorbed by the drying member 7, and the reliability can be further improved.
 第1多角形状(すなわち、凹所51の形状)は、正六角形状に限らず、例えば正五角形状、正八角形状などでもよい。また、第1多角形状は、正多角形状に限らず、多角形状であればよいが、正多角形状である場合の方が、乾燥部材7として単一の第2多角形状のものを用意すればよく、低コスト化を図ることが可能となる。 The first polygonal shape (that is, the shape of the recess 51) is not limited to a regular hexagonal shape, and may be, for example, a regular pentagonal shape or a regular octagonal shape. In addition, the first polygonal shape is not limited to the regular polygonal shape, but may be any polygonal shape. However, when the regular polygonal shape is used, a single second polygonal shape is prepared as the drying member 7. It is possible to reduce the cost well.
 上述の各実施形態における有機EL素子2では、透明導電膜からなる第1電極21が陽極を構成し、第1電極21よりもシート抵抗が小さな第2電極23が陰極を構成しているが、第1電極21が陰極を構成し、第2電極23が陽極を構成してもよく、いずれにしても、透明導電膜からなる第1電極21を通して光を取り出すことが可能であればよい。 In the organic EL element 2 in each embodiment described above, the first electrode 21 made of a transparent conductive film constitutes an anode, and the second electrode 23 having a sheet resistance smaller than that of the first electrode 21 constitutes a cathode. The first electrode 21 may constitute a cathode and the second electrode 23 may constitute an anode. In any case, it is sufficient that light can be extracted through the first electrode 21 made of a transparent conductive film.
 また、各実施形態で説明した発光装置Aは、例えば、照明用の光源として好適に用いることができるが、照明用に限らず、他の用途に用いることも可能である。 The light-emitting device A described in each embodiment can be suitably used as a light source for illumination, for example, but is not limited to illumination, and can be used for other purposes.

Claims (7)

  1.  第1基板と
     光を放射する発光部を有し、前記第1基板の一表面に形成される有機EL素子と、
     前記第1基板の前記一表面に対向するように配置され、前記第1基板との間に前記発光部を収納する空間を形成する第2基板と、
     前記発光部を囲う枠状に形成され、前記第2基板における前記第1基板との対向面を前記第1基板の前記一表面に接合する接合部と、
     前記発光部に接触しないように前記第2基板の前記対向面において前記接合部で囲まれた領域の外縁に配置される乾燥部材と、
     を備える
     ことを特徴とする発光装置。
    An organic EL device having a first substrate and a light emitting unit that emits light, and formed on one surface of the first substrate;
    A second substrate disposed so as to oppose the one surface of the first substrate, and forming a space for housing the light emitting unit between the first substrate,
    A joining portion formed in a frame shape surrounding the light emitting portion, and joining a surface of the second substrate facing the first substrate to the one surface of the first substrate;
    A drying member disposed on an outer edge of a region surrounded by the bonding portion on the facing surface of the second substrate so as not to contact the light emitting portion;
    A light emitting device comprising:
  2.  前記発光部は、前記接合部の中心に位置する
     ことを特徴とする請求項1記載の発光装置。
    The light emitting device according to claim 1, wherein the light emitting unit is positioned at a center of the joint.
  3.  前記第2基板は、多角形状の凹所を前記対向面に備え、
     前記凹所は、前記第1基板の前記一表面に平行する面内において前記発光部を囲む外周を有し、
     前記第2基板は、前記対向面における前記凹所の周辺で前記接合部を介して前記第1基板に接合され、
     前記乾燥部材は、前記凹所の底面における角部に配置される
     ことを特徴とする請求項1記載の発光装置。
    The second substrate includes a polygonal recess on the facing surface,
    The recess has an outer periphery that surrounds the light emitting unit in a plane parallel to the one surface of the first substrate,
    The second substrate is bonded to the first substrate through the bonding portion around the recess in the facing surface,
    The light-emitting device according to claim 1, wherein the drying member is disposed at a corner of the bottom surface of the recess.
  4.  前記角部は、所定の内角を有し、
     前記乾燥部材は、前記所定の内角に等しい角を有する形に形成される
     ことを特徴とする請求項3記載の発光装置。
    The corner portion has a predetermined inner angle;
    The light-emitting device according to claim 3, wherein the drying member is formed in a shape having an angle equal to the predetermined inner angle.
  5.  前記乾燥部材は、前記角を定義する二辺が前記所定の内角を定義する二辺にそれぞれ対向し、かつ、平行するように、配置される
     ことを特徴とする請求項4記載の発光装置。
    The light-emitting device according to claim 4, wherein the drying member is arranged such that two sides defining the corner are opposed to and parallel to the two sides defining the predetermined inner angle.
  6.  前記乾燥部材は、前記凹所の前記底面の前記角部それぞれに配置される
     ことを特徴とする請求項1~5のうちいずれか1項記載の発光装置。
    The light emitting device according to any one of claims 1 to 5, wherein the drying member is disposed at each of the corners of the bottom surface of the recess.
  7.  前記乾燥部材は、前記第2基板よりも赤外線吸収率が高い
     ことを特徴とする請求項1~5のうちいずれか1項記載の発光装置。
    6. The light emitting device according to claim 1, wherein the drying member has an infrared absorption rate higher than that of the second substrate.
PCT/JP2012/056018 2011-03-29 2012-03-08 Light-emitting device WO2012132823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011072775A JP2012209073A (en) 2011-03-29 2011-03-29 Light-emitting device
JP2011-072775 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012132823A1 true WO2012132823A1 (en) 2012-10-04

Family

ID=46930563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056018 WO2012132823A1 (en) 2011-03-29 2012-03-08 Light-emitting device

Country Status (3)

Country Link
JP (1) JP2012209073A (en)
TW (1) TWI485900B (en)
WO (1) WO2012132823A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006286A (en) * 2002-03-28 2004-01-08 Sanyo Electric Co Ltd Organic electroluminescent panel
JP2004296202A (en) * 2003-03-26 2004-10-21 Tohoku Pioneer Corp Organic el panel and its manufacturing method
JP2006140079A (en) * 2004-11-15 2006-06-01 Seiko Epson Corp Electro-optical device and electronic apparatus equipped with this
JP2006185840A (en) * 2004-12-28 2006-07-13 Tohoku Pioneer Corp Sheet like drying member, organic el panel, manufacturing method of organic el panel
JP2007103314A (en) * 2005-10-07 2007-04-19 Toshiba Matsushita Display Technology Co Ltd Organic el display panel
JP2008052235A (en) * 2006-08-23 2008-03-06 Samsung Sdi Co Ltd Organic light emitting display device and mother substrate of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335365A (en) * 2006-06-19 2007-12-27 Hitachi Displays Ltd Organic el display device
JP5390778B2 (en) * 2008-03-11 2014-01-15 出光興産株式会社 Organic electroluminescence panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006286A (en) * 2002-03-28 2004-01-08 Sanyo Electric Co Ltd Organic electroluminescent panel
JP2004296202A (en) * 2003-03-26 2004-10-21 Tohoku Pioneer Corp Organic el panel and its manufacturing method
JP2006140079A (en) * 2004-11-15 2006-06-01 Seiko Epson Corp Electro-optical device and electronic apparatus equipped with this
JP2006185840A (en) * 2004-12-28 2006-07-13 Tohoku Pioneer Corp Sheet like drying member, organic el panel, manufacturing method of organic el panel
JP2007103314A (en) * 2005-10-07 2007-04-19 Toshiba Matsushita Display Technology Co Ltd Organic el display panel
JP2008052235A (en) * 2006-08-23 2008-03-06 Samsung Sdi Co Ltd Organic light emitting display device and mother substrate of the same

Also Published As

Publication number Publication date
TWI485900B (en) 2015-05-21
TW201244208A (en) 2012-11-01
JP2012209073A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5706916B2 (en) Planar light emitting device
JP5334888B2 (en) Light emitting device
TWI462362B (en) Organic electroluminescence device
US20140197403A1 (en) Light emission device
WO2012121254A1 (en) Planar light emitting device and manufacturing method thereof
JP5297399B2 (en) Light emitting device
JP5842089B2 (en) Organic EL device
JP5297400B2 (en) Light emitting device
JP5421843B2 (en) Light emitting device
WO2013042784A1 (en) Light emission device
WO2012121249A1 (en) Planar light emitting device
WO2016013160A1 (en) Light emitting device
JP5613590B2 (en) Organic EL device
JP2012212555A (en) Light-emitting device
WO2012121251A1 (en) Planar light emitting device
JP2011216353A (en) Light-emitting device
JP2015115234A (en) Frame body and light-emitting device
JP5452266B2 (en) Light emitting device
WO2012132823A1 (en) Light-emitting device
JP5543796B2 (en) Light emitting device
JP2011222448A (en) Method for manufacturing light-emitting device
JP2013191276A (en) Organic electroluminescent element
JP2012174607A (en) Organic el device
WO2012120746A1 (en) Organic el device
WO2012114619A1 (en) Organic el device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765666

Country of ref document: EP

Kind code of ref document: A1