WO2012121251A1 - Planar light emitting device - Google Patents

Planar light emitting device Download PDF

Info

Publication number
WO2012121251A1
WO2012121251A1 PCT/JP2012/055698 JP2012055698W WO2012121251A1 WO 2012121251 A1 WO2012121251 A1 WO 2012121251A1 JP 2012055698 W JP2012055698 W JP 2012055698W WO 2012121251 A1 WO2012121251 A1 WO 2012121251A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
layer
organic
substrate
Prior art date
Application number
PCT/JP2012/055698
Other languages
French (fr)
Japanese (ja)
Inventor
將有 鎌倉
佐々木 博之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013503555A priority Critical patent/JPWO2012121251A1/en
Publication of WO2012121251A1 publication Critical patent/WO2012121251A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes

Definitions

  • the present invention relates to a planar light emitting device.
  • This planar light emitting device includes a transparent substrate 101 having a first surface (front) and a second surface (back), an organic EL element 102 formed on one surface of the transparent substrate 101, that is, the second surface, and an organic
  • the light emitting portion 120 of the EL element 102 is covered with a sealing base 103 fixed to the second surface side of the transparent substrate 101 by a nonconductive adhesive.
  • the above-described planar light emitting device uses the other surface of the transparent substrate 101, that is, the first surface as a light emitting surface (light emitting surface).
  • the transparent substrate 101 is used as a glass substrate.
  • the transparent substrate 101 is formed in a rectangular shape in plan view.
  • the organic EL element 102 includes a planar anode 121 formed on the second surface side of the transparent substrate 101, and an organic layer 122 formed on the opposite side of the planar anode 121 to the transparent substrate 101 and including at least a light emitting layer;
  • the organic layer 122 is provided with a planar cathode 123 formed on the side opposite to the planar anode 121 side and facing the planar anode 21.
  • the planar anode 121 is made of a transparent conductive film (for example, an ITO film, an IZO film, etc.) having a square shape in plan view
  • the planar cathode 123 is a metal film having a square shape in plan view.
  • the metal film constituting the planar cathode 123 is made of an Al film, but it is not limited to the Al film, and may be made of a metal having a smaller resistivity and a smaller work function than a transparent conductive film, For example, it is described that it may be configured by a laminated film of an Mg film and an Ag film.
  • the organic layer 122 is formed in a square shape in plan view.
  • the organic EL element 102 is formed on the second surface side of the transparent substrate 101 at both ends in the longitudinal direction of the transparent substrate 101 and is electrically connected to the planar anode 121, and a transparent substrate A cathode feeding portion 125 formed on the second surface side of the transparent substrate 101 at both ends in the longitudinal direction of the 101 and electrically connected to the planar cathode 123 is provided.
  • each of the anode power supply unit 124 and the cathode power supply unit 125 is made of a transparent conductive film (for example, an ITO film, an IZO film, etc.).
  • the above-described organic EL element 102 is formed such that two positive electrode feeding parts 124 and 124 are separated in the short direction of the transparent substrate 101 at both ends in the longitudinal direction of the transparent substrate 101.
  • One cathode feeding portion 125 is disposed between two anode feeding portions 124 adjacent to each other in the hand direction.
  • planar cathode 123 extends from the central portion in the longitudinal direction of one side edge along the short direction of the transparent substrate 101 and extends in the direction orthogonal to the one side edge. It is electrically connected to the cathode power supply unit 125 via the same.
  • the planar cathode 123 and the lead wiring 123b are simultaneously formed with the same material and the same thickness.
  • the organic EL element 102 is formed on the second surface side of the transparent substrate 101 over the entire circumference of the surface of the planar anode 121 on the opposite side to the transparent substrate 101 side. And a frame-shaped auxiliary electrode 126 for anodes connected in the same manner.
  • the frame-shaped auxiliary electrode 126 for an anode is formed in a square frame shape in plan view.
  • the organic EL element 102 further includes a cathode feeding portion auxiliary electrode 128 stacked on the side opposite to the transparent substrate 101 in the cathode feeding portion 125 and electrically connected to the cathode feeding portion 125.
  • the frame-like auxiliary electrode 126 for the anode and the auxiliary electrode 128 for the cathode feeding portion are constituted by a laminated film of a Cr film and an Au film.
  • anode frame-shaped auxiliary electrode 126 described above is continuously and integrally formed with an anode power feeding portion auxiliary electrode 127 which is stacked on the anode power feeding portion 124 and electrically connected to the anode power feeding portion 124.
  • the planar anode 121, the anode feeding portion 124 and the cathode feeding portion 125 are simultaneously formed with the same transparent conductive material (for example, ITO, IZO, etc.) in the same thickness.
  • the anode feeding portion auxiliary electrode 127 and the cathode feeding portion auxiliary electrode 128 are formed of the same material and in the same thickness.
  • the planar light emitting device has a total dimension of the width of the anode-side external connection electrode E1 composed of the anode feeding portion 124 and the anode feeding portion auxiliary electrode 127, the cathode feeding portion 125, and the cathode feeding portion auxiliary electrode 128. And the total dimension of the width of the cathode-side external connection electrode E2 composed of and is set to the same value.
  • the organic EL element 102 is provided with an insulating film 129 having a square frame shape in plan view covering the side edges of the frame auxiliary electrode 126 for the anode and the planar anode 121 on the second surface side of the transparent substrate 101.
  • the organic EL element 102 is configured such that a short circuit between the frame auxiliary electrode 126 for anode and the planar anode 121 and the planar cathode 123 is prevented by the insulating film 129.
  • Document 1 describes that, for example, polyimide, novolac resin, epoxy resin or the like may be adopted as the material of the insulating film 129.
  • an epoxy resin containing a filler is used as a sealing material which constitutes the above-mentioned nonconductive adhesive.
  • the metal material is used for each of the auxiliary electrode 127 for the anode power supply portion in the anode side external connection electrode E1, the auxiliary electrode 128 for the cathode power supply portion in the cathode side external connection electrode E2, and the planar cathode 123.
  • the reliability may be reduced due to electromigration.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a planar light emitting device capable of improving the reliability while suppressing the increase of the drive voltage.
  • the planar light emitting device of the present invention comprises a translucent substrate (1) and an organic EL element (2) formed on one surface side of the translucent substrate (1).
  • the organic EL element (2) is provided with a first electrode (21) disposed on the one surface side of the translucent substrate (1) and formed of a transparent conductive film, and the translucent property of the first electrode (21)
  • a light emitting layer (220) made of an organic material and disposed on the side opposite to the substrate (1) side, and a metal film placed on the side opposite to the first electrode (21) side of the light emitting layer (220)
  • the first electrode (21) is disposed on the side of a light emitting portion in which two electrodes (23), the first electrode (21), the light emitting layer (220), and the second electrode (23) overlap.
  • the material of the first electrode (21) is made of a material having a specific resistance smaller than that of the first electrode (21).
  • the planar view shape of the said light emission part is right-angled quadrilateral shape.
  • the m second terminal portions (T2) and the (m + 1) first terminal portions (T1) are arranged along the predetermined parallel two sides of the light emitting portion having the right-angled quadrilateral shape, and the second terminals.
  • a 1st terminal part (T1) may be located in the both sides of the width direction of a part (T2), and m is an integer greater than or equal to 1 here.
  • Each of the first terminal portion (T1) and the second terminal portion (T2) has a laminated structure of a transparent conductive oxide layer and a metal layer. A value obtained by dividing the total dimension of the width of the first terminal portion (T1) by the total dimension of the width of the second terminal portion (T2) is 0.33 or more and 0.67 or less.
  • a value obtained by dividing the total dimension of the width of the first terminal portion (T1) by the total dimension of the width of the second terminal portion (T2) is 0.33 or more and less than 0.5.
  • the organic EL element (2) is an insulating film covering side edges of the auxiliary electrode (26) and the first electrode (21) on the one surface side of the translucent substrate (1). And 29).
  • m 2 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 +
  • planar light emitting device of the present invention it is possible to improve the reliability while suppressing the increase of the drive voltage.
  • FIG. 2A is a schematic cross-sectional view taken along the line BB ′ of FIG. 1
  • FIG. 2B is a schematic cross-sectional view taken along the line CC ′ of FIG.
  • FIG. 6 is a schematic cross-sectional view taken along the line DD ′ of FIG. 1 showing the planar light emitting device of the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a principal process top view for explaining the manufacturing method same as the above.
  • FIG. 11A shows a rear view
  • FIG. 11B shows a schematic cross-sectional view taken along the line BB 'in FIG. 11A
  • FIG. 11C shows a schematic cross-sectional view taken along the line CC' in FIG. 11A.
  • planar light emitting device of the present embodiment will be described based on FIGS. 1 to 3.
  • the planar light emitting device A includes the organic EL element module 3 and the cover substrate 5.
  • the organic EL element module 3 includes a translucent substrate 1 having a first surface (front) and a second surface (back), and an organic EL device formed on one surface of the translucent substrate 1, that is, the second surface. And two.
  • the translucent substrate 1 has a rectangular shape in which two have four straight sides longer than the other two, and two long sides are along the first direction, and the light emitting portion of the organic EL element 2 is
  • the numeral 20 is in the form of a quadrangle having four right angles (hereinafter referred to as a "right square"). In the example of FIG. 1, the light emission part 20 is square shape.
  • the cover substrate 5 has a first surface and a second surface, and the organic EL element module 3 is attached to the organic EL element module 3 via the bonding portion 4 so that the first surface is disposed opposite to the second surface side of the translucent substrate 1. It is fixed.
  • the planar light emitting device A is the heat spreader plate 6 (on the second surface of the cover substrate 5 in the example of FIGS. 2A and 2B) on the opposite side of the cover substrate 5 to the organic EL element 2 side. 2 and 3).
  • a recess 51 is formed on the surface (first surface) facing the organic EL element module 3 so as to cover the whole of the organic EL element 2.
  • the peripheral portion 51 (the outer peripheral portion of the first surface) is bonded to the organic EL element module 3 over the entire periphery.
  • the light emitting unit 20 of the organic EL element 2 is housed in an airtight space surrounded by the light transmitting substrate 1, the cover substrate 5, and the bonding unit 4.
  • a hygroscopic material (not shown) that adsorbs moisture is attached to the inner bottom surface of the recess 51 in the cover substrate 5.
  • the organic EL element 2 is disposed on the second surface side of the translucent substrate 1 and is made of a transparent conductive film, and the organic electrode is disposed on the opposite side to the translucent substrate 1 side of the first electrode 21. And a second electrode 23 disposed on the opposite side of the organic EL layer 22 from the side of the first electrode 21 and made of a metal film.
  • the first electrode 21 is a right quadrilateral shape having a first surface (lower surface) and a second surface (upper surface), and the first surface of the first electrode 21 is a translucent substrate 1. It is formed on the second surface of the translucent substrate 1 so as to be bonded to the second surface.
  • the organic EL layer 22 has a first surface (lower surface) and a second surface (upper surface), and the first electrode 21 is bonded such that the first surface of the organic EL layer 22 is bonded to the second surface of the first electrode 21.
  • the second electrode 23 has a first surface (lower surface) and a second surface (upper surface), and the organic EL layer 22 is formed such that the first surface of the second electrode 23 is bonded to the second surface of the organic EL layer 22. Is formed on the second surface of the
  • the organic EL element 2 also includes a plurality of first terminal portions T1 and a plurality of second terminal portions T2.
  • Each first terminal portion T1 is disposed on the side of the light emitting unit 20 where the first electrode 21, the organic EL layer 22, and the second electrode 23 overlap, and is electrically connected to the first electrode 21.
  • Each second terminal portion T2 is disposed to the side of the light emitting unit 20, and is electrically connected to the second electrode 23 via a lead wire 23b extended from the second electrode 23.
  • the plurality of first terminal portions T1 (24 and 27) are formed so as to be formed directly on the second surface of the translucent substrate 1 and directly coupled to the first electrode 21. It is disposed at each of both ends in the longitudinal direction of the flexible substrate 1.
  • the plurality of second terminal portions T2 are formed directly on the second surface of the translucent substrate 1 and electrically connected to the second electrode 23 through the lead wiring 23b. Are disposed at each of both ends in the longitudinal direction of the translucent substrate 1.
  • the organic EL element 2 is provided with an auxiliary electrode 26.
  • the auxiliary electrode 26 is made of a material having a smaller specific resistance than the first electrode 21 and is formed along the periphery of the surface of the (at least) first electrode 21 opposite to the light transmitting substrate 1 side.
  • the first electrode 21 is electrically connected.
  • the auxiliary electrode 26 has a rectangular quadrilateral frame shape, and is directly on the second surface of the first electrode 21 (and each portion of the plurality of first terminal portions T1 (24)). It is formed.
  • the organic EL element 2 includes the insulating film 29, which covers the entire auxiliary electrode 26 and also covers the side edge of the first electrode 21 in the vicinity of the auxiliary electrode 26. It is formed on the surface side.
  • the insulating film 29 prevents the short circuit between the auxiliary electrode 26 and the first electrode 21 and the second electrode 23 of the organic EL element 2.
  • the auxiliary electrode 26 is a rectangular quadrilateral frame along the entire periphery of the second surface of the first electrode 21.
  • the auxiliary electrode 26 does not necessarily have to be a rectangular quadrilateral frame. As long as they are electrically connected to 21, they may be divided into a partially opened shape (for example, a C-shape or a U-shape) or a plurality.
  • the above-described light emitting unit 20 of the organic EL element 2 is a region where the light transmitting substrate 1, the first electrode 21, the organic EL layer 22 (light emitting layer 220), and the second electrode 23 overlap in the thickness direction of the light transmitting substrate 1.
  • the region other than the light emitting unit 20 in the organic EL element 2 is a non-light emitting unit.
  • the organic EL element 2 has the respective shapes in plan view of the first electrode 21, the organic EL layer 22 and the second electrode 23 as a right quadrilateral shape (square in the illustrated example) smaller than the translucent substrate 1. is there. Therefore, the plan view shape of the light emitting unit 20 is a right quadrilateral shape (square in the illustrated example) smaller than the translucent substrate 1.
  • the auxiliary electrode 26 has a frame shape having a rectangular quadrangle as viewed in plan.
  • the insulating film 29 has a frame shape having a rectangular quadrilateral shape in plan view.
  • the organic EL element 2 includes m second terminal portions T2 and [m + 1] first terminal portions T1 along each of two parallel sides of the light emitting unit 20 in the second direction orthogonal to the first direction.
  • the first terminal portions T1 are disposed on both sides in the width direction of the second terminal portions T2 (both sides of the second terminal portions T2 in the second direction).
  • m is an integer of 1 or more.
  • m is "2". Therefore, in the example shown in FIG. 1, the plurality of first terminal portions T1 and the plurality of second terminal portions T2 are provided at each of both end portions in the longitudinal direction of the translucent substrate 1.
  • the three first terminal portions T1 of the organic EL element 2 are in the lateral direction of the translucent substrate 1 (in the second direction).
  • the second terminal portions T2 are disposed between the first terminal portions T1 adjacent to each other in the second direction.
  • the first terminal portion T1 includes a transparent conductive oxide layer 24 (hereinafter also referred to as “first layer 24" as a first transparent conductive oxide layer) and a metal layer 27 (hereinafter “first metal layer 27"). Also has a laminated structure of The second terminal portion T2 includes a transparent conductive oxide layer 25 (hereinafter also referred to as “second layer 25” as a second transparent conductive oxide layer) and a metal layer 28 (hereinafter also referred to as "second metal layer 28") And a laminated structure of In the example of FIG. 2A, the plurality of first layers 24 of the plurality of first terminal portions T1 are formed so as to be formed directly on the second surface of the translucent substrate 1 and directly coupled to the first electrode 21.
  • Each of the plurality of metal layers 27 is disposed at each of both ends in the longitudinal direction of the elastic substrate 1 and is formed directly on the end of the first layer 24 in its own first terminal portion T1. Further, in the example of FIG. 2B, the plurality of second layers 25 of the plurality of second terminal portions T2 are formed directly on the second surface of the translucent substrate 1 and are connected to the second electrode 23 through the lead wiring 23b. Each of the plurality of metal layers 28 is disposed at an end of the second layer 25 of its own second terminal portion T2 so as to be electrically connected to each of both ends in the longitudinal direction of the translucent substrate 1. It is formed right above the part.
  • planar shape of the heat spreader plate 6 is a right quadrilateral shape (square shape in the illustrated example) which is smaller than the cover substrate 5 and larger than the light emitting portion 20.
  • planar light emitting device A each component of the planar light emitting device A will be described in detail.
  • the planar light emitting device A uses the first surface of the translucent substrate 1 as a light emitting surface (light emitting surface). Therefore, in the planar light emitting device A, in the first surface of the light transmitting substrate 1, the area onto which the first electrode 21, the organic EL layer 22, and the second electrode 23 are projected overlapping is the light emitting surface. .
  • the translucent substrate 1 has a rectangular shape in a plan view, but the shape is not limited to this, and may be, for example, a square shape.
  • a glass substrate is used as the translucent substrate 1, the present invention is not limited to this, and for example, a plastic substrate may be used.
  • a soda lime glass substrate, an alkali-free glass substrate or the like can be used.
  • the plastic substrate for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyether sulfone (PES) substrate, a polycarbonate (PC) substrate or the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PC polycarbonate
  • a plastic substrate a SiON film, a SiN film or the like may be formed on the surface of the plastic substrate to suppress the permeation of moisture.
  • the unevenness of the second surface of the translucent substrate 1 may cause the generation of a leak current of the organic EL element 2 (a cause of deterioration of the organic EL element 2) Can be For this reason, when using a glass substrate as the translucent substrate 1, it is preferable to prepare a glass substrate for element formation polished with high accuracy so that the surface roughness of the second surface is reduced. As for the surface roughness of the second surface of the translucent substrate 1, it is preferable to set the arithmetic average roughness Ra defined by JIS B 0601-2001 (ISO 4287-1997) to several nm or less.
  • the light-transmissive substrate 1 when a plastic substrate is used as the light-transmissive substrate 1, one having an arithmetic average roughness Ra of several nm or less on the second surface can be obtained at low cost without particularly performing high-precision polishing. It is possible.
  • the first electrode 21 constitutes an anode
  • the second electrode 23 constitutes a cathode
  • the organic EL layer 22 interposed between the first electrode 21 and the second electrode 23 is, in order from the first electrode 21 side, a hole transport layer, the above-mentioned light emitting layer, an electron transport layer, It has an electron injection layer.
  • the laminated structure of the organic EL layer 22 described above is not limited to the above-mentioned example, and for example, a single layer structure of the light emitting layer 220, a laminated structure of a hole transporting layer, a light emitting layer 220 and an electron transporting layer, a hole transporting layer A stacked structure with the light emitting layer 220 or a stacked structure with the light emitting layer 220 and the electron transporting layer may be used.
  • a hole injection layer may be interposed between the first electrode 21 and the hole transport layer.
  • the light emitting layer 220 may have a single layer structure or a multilayer structure.
  • three dopant dyes of red, green and blue may be doped in the light emitting layer 220, and the blue hole transporting light emitting layer and the green electron transport may be doped. It is possible to adopt a laminated structure of a luminescent light emitting layer and a red electron transporting light emitting layer, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer. It is also good.
  • an organic EL layer 22 having a function of emitting light when a voltage is applied by being sandwiched between the first electrode 21 and the second electrode 23 is one light emitting unit, and a plurality of light emitting units are intermediates having light transparency and conductivity.
  • Multi-unit structure in which layers are stacked and electrically connected in series that is, a structure including a plurality of light emitting units overlapping in the thickness direction between one first electrode 21 and one second electrode 23
  • the first electrode 21 constituting the anode is an electrode for injecting holes into the light emitting layer 220, and has a large work function (for example, compared to the second electrode 23). It is preferable to use an electrode material made of a mixture, and it is preferable to use one having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (Highest Occupied Molecular Orbital) level is not too large.
  • the electrode material of the first electrode 21 include ITO (Indium Tin Oxide), tin oxide, zinc oxide, IZO (Indium Zinc Oxide), copper iodide and the like, conductive polymers such as PEDOT and polyaniline, and any acceptor and the like.
  • the first electrode 21 may be formed as a thin film on the second surface side of the translucent substrate 1 by, for example, a sputtering method, a vacuum evaporation method, a coating method, or the like.
  • the sheet resistance of the first electrode 21 is preferably several hundred ohms / square or less, and more preferably 100 ohms / square or less.
  • the film thickness of the first electrode 21 varies depending on the light transmittance of the first electrode 21, the sheet resistance, etc., but it is preferable to set it in a range of 500 nm or less, preferably 10 nm to 200 nm.
  • the second electrode 23 constituting the cathode is an electrode for injecting electrons into the light emitting layer 220, and has a small work function (for example, compared to the first electrode 21), a metal, an alloy, an electrically conductive compound, It is preferable to use an electrode material made of a mixture of these materials, and it is preferable to use one having a work function of 1.9 eV or more and 5 eV or less so that the difference with the lowest unoccupied molecular orbital (LUMO) level is not too large.
  • LUMO lowest unoccupied molecular orbital
  • an electrode material of the second electrode 23 for example, aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, etc., and alloys of these with other metals, such as magnesium-silver mixture, magnesium-indium Mixtures, aluminum-lithium alloys may be mentioned by way of example.
  • metal, metal oxide, etc., and a mixture of these with other metals for example, an extremely thin film of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum A laminated film with a thin film can also be used.
  • a metal having a high reflectance to light emitted from the light emitting layer 220 and a low resistivity is preferable, and aluminum or silver is preferable.
  • any material known as a material for an organic EL element can be used.
  • a light emitting material selected from among these compounds it is also preferable to appropriately mix and use a light emitting material selected from among these compounds.
  • a light emitting material selected from among these compounds not only compounds that produce fluorescence, as typified by the above compounds, but also material systems that emit light from spin multiplets, such as phosphorescent materials that produce phosphorescence, and a site made of them in a part of the molecule Compounds can also be suitably used.
  • the light emitting layer 220 made of these materials may be deposited by a dry process such as evaporation or transfer, or may be deposited by a wet process such as spin coating, spray coating, die coating or gravure printing. It may be a membrane.
  • the material used for the above-described hole injection layer can be formed using a hole injection organic material, a metal oxide, a so-called acceptor organic material or inorganic material, a p-doped layer or the like.
  • the hole-injecting organic material is a material having a hole-transporting property, a work function of about 5.0 to 6.0 eV, and a strong adhesion to the first electrode 21.
  • CuPc, starburst amine, etc. are examples thereof.
  • the hole-injectable metal oxide is, for example, a metal oxide containing any of molybdenum, rhenium, tungsten, vanadium, zinc, indium, tin, gallium, titanium, and aluminum.
  • oxides of a plurality of metals other than the oxides of only one metal such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc.
  • the hole injection layer made of these materials may be formed by a dry process such as evaporation or transfer, or formed by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a membrane.
  • the material used for the hole transport layer can be selected, for example, from the group of compounds having a hole transportability.
  • Examples of the compound of this type include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)-(1 1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′ ′-tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA)
  • CBP 4,4′-N, N′-dicarbazole biphenyl
  • the material used for the electron transport layer can be selected from the group of compounds having electron transportability.
  • this type of compound include metal complexes known as electron transporting materials such as Alq 3 and compounds having a heterocycle such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Rather, it is possible to use any of the commonly known electron transport materials.
  • the material of the electron injection layer is, for example, metal fluorides such as lithium fluoride and magnesium fluoride, metal halides such as metal chlorides represented by sodium chloride and magnesium chloride, aluminum, cobalt, zirconium, etc. Oxides, nitrides, carbides, oxynitrides, etc. of various metals such as titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc, silicon etc.
  • insulators such as magnesium oxide, iron oxide, aluminum nitride, silicon nitride, silicon carbide, silicon oxynitride, boron nitride, etc., silicon compounds such as SiO 2 and SiO, carbon compounds, etc. Can be used. These materials can be formed into thin films by vacuum evaporation, sputtering, or the like.
  • the material of the lead-out wiring 23b is the same as that of the second electrode 23.
  • the thickness of the lead wire 23 b is set to the same thickness as that of the second electrode 23.
  • the lead-out wiring 23 b is formed continuously with the second electrode 23. Therefore, the planar light emitting device A of this embodiment can simultaneously form the lead-out wiring 23 b and the second electrode 23 at the time of manufacture.
  • the lead-out wiring 23b is extended to a portion formed inside the bonding region 25a with the bonding portion 4 in the second layer 25 of the second terminal portion T2.
  • the width (wiring width) dimension of the lead wire 23b prevents the short circuit with the first terminal portion T1 and secures a predetermined insulation distance between the first terminal portion T1 and the second terminal portion T2.
  • the width dimension of the lead-out wiring 23b is preferably equal to or less than the width of the second terminal portion T2, but a value as large as possible is preferable in order to enhance the electromigration resistance.
  • the material of the first layer 24 and the second layer 25 is a transparent conductive oxide (TCO), and for example, ITO, AZO, GZO, IZO, etc. can be adopted.
  • TCO transparent conductive oxide
  • the materials of the first layer 24 and the second layer 25 are the same as those of the first electrode 21, and the first electrode 21, the first layer 24 and the second layer 25 have the same thickness.
  • the material of the first metal layer 27 and the second metal layer 28 is, for example, a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, or at least one of these metals. Alloys containing seeds are preferred.
  • the first metal layer 27 and the second metal layer 28 are not limited to a single layer structure, and may have a multilayer structure.
  • the first metal layer 27 and the second metal layer 28 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer.
  • the lower MoNb layer be provided as an adhesive layer with the base, and the upper MoNb layer be provided as a protective layer for the AlNd layer.
  • the material of the first metal layer 27 and the material of the second metal layer 28 are the same, and the first metal layer 27 and the second metal layer 28 are set to the same thickness.
  • the first metal layer 27 and the second metal layer 28 may employ the same material as the second electrode 23.
  • auxiliary electrode 26 for example, metals such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium and alloys containing at least one of these metals are preferable.
  • the auxiliary electrode 26 is not limited to a single layer structure, and may have a multilayer structure.
  • the auxiliary electrode 26 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer. In this three-layer structure, the lower MoNb layer is preferably provided as an adhesive layer with the base, and the upper MoNb layer is preferably provided as a protective layer for the AlNd layer.
  • the material of the auxiliary electrode 26 and the materials of the first metal layer 27 and the second metal layer 28 are the same. As a result, in the planar light emitting device A of the present embodiment, it is possible to simultaneously form the auxiliary electrode 26 and the first metal layer 27 and the second metal layer 28 at the time of manufacture, thereby achieving cost reduction.
  • polyimide is adopted, but not limited to this, for example, novolac resin, epoxy resin, etc. can be adopted.
  • the region where only the organic EL layer 22 intervenes between the first electrode 21 and the second electrode 23 constitutes the light emitting unit 20 described above, and the planar shape of the light emitting unit 20 is insulating It has a right quadrilateral shape (square shape in the illustrated example) which is the same as the shape of the inner peripheral edge of the film 29.
  • a portion other than the light emitting portion 20 of the organic EL element 2 is a non-light emitting portion in plan view.
  • a glass substrate is used as the cover substrate 5, the present invention is not limited to this, and for example, a plastic substrate may be used.
  • a soda lime glass substrate, an alkali-free glass substrate or the like can be used.
  • the plastic substrate for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyether sulfone (PES) substrate, a polycarbonate (PC) substrate or the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PC polycarbonate
  • a plastic substrate a SiON film, a SiN film or the like may be formed on the surface of the plastic substrate to suppress the permeation of moisture.
  • the cover substrate 5 is bonded to the organic EL element module 3 via the bonding portion 4 as described above.
  • the interface between the bonding portion 4 and the organic EL element module 3 is the first interface between the bonding portion 4 and the first terminal portion T1, the bonding portion 4 and the second
  • an epoxy resin is used as the material of the bonding portion 4, the material is not limited to this, and for example, an acrylic resin, frit glass, or the like may be adopted.
  • an epoxy resin and an acrylic resin an ultraviolet curing thing may be used and a thermosetting thing may be used.
  • a material of the bonding portion 4 a material in which a filler (for example, silica, alumina or the like) is contained in an epoxy resin may be used.
  • a calcium oxide desiccant (a getter into which calcium oxide is kneaded) or the like can be used.
  • the heat spreader plate 6 As a material of the heat spreader plate 6, a metal having a high thermal conductivity among various metals is preferable, and copper is adopted.
  • the material of the heat spreader plate 6 is not limited to copper, and may be, for example, aluminum, gold or the like.
  • metal foil for example, copper foil, aluminum foil, a gold foil etc.
  • the opening size of the recess 51 in the cover substrate 5 is set larger than the size of the outer peripheral shape of the insulating film 29, and the peripheral portion of the cover substrate 5 Is bonded to the organic EL element module 3 via the
  • the planar light emitting device A can improve the moisture resistance because the first electrode 21 and the second electrode 23 are not exposed.
  • it is a part of each of 1st terminal area T1 and 2nd terminal area T2 that is exposed among organic EL elements 2. As shown in FIG.
  • first terminal portion T1 has the laminated structure of the first layer 24 and the first metal layer 27 as described above, the bonding region 24a constituted only by the first layer 24 is The first terminal portion T1 is provided along the circumferential direction of the joint portion 4 over the entire length in the width direction of the first terminal portion T1.
  • second terminal portion T2 has the laminated structure of the second layer 25 and the second metal layer 28 as described above, the joining region 25a constituted only by the second layer 25 is joined.
  • the second terminal portion T2 is provided along the circumferential direction of the portion 4 over the entire length in the width direction of the second terminal portion T2.
  • the first interface between the bonding portion 4 and the first terminal portion T1 is constituted by the interface between the bonding portion 4 and the first layer 24, and the second interface between the bonding portion 4 and the second terminal portion T2 is bonding An interface between the portion 4 and the second layer 25 is formed.
  • the planar light emitting device A of the present embodiment can improve the bonding strength between the bonding portion 4 and the first terminal portion T1 and the second terminal portion T2, and further, the first metal layer 27 and the first metal layer 27 and the It becomes possible to prevent the occurrence of oxidation due to the time-dependent change of the two-metal layer 28 and change in the state of the first interface and the second interface, and it becomes possible to improve the reliability.
  • the heat equalizing plate 6 by including the heat equalizing plate 6, it is possible to achieve soaking of the temperature of the light emitting portion 20 of the organic EL element 2, so that It becomes possible to reduce the in-plane variation of temperature, and to improve the heat dissipation.
  • the temperature rise of the organic EL element 2 can be suppressed, and the life can be extended when the input power is increased to achieve high luminance.
  • planar light emitting device A of the present embodiment will be described with reference to FIGS. 4 to 9.
  • the first electrode 21, the first layer 24, and the same made of the same transparent conductive oxide for example, ITO, AZO, GZO, IZO, etc.
  • the second layer 25 is simultaneously formed by vapor deposition, sputtering or the like to obtain the structure shown in FIG. That is, each first layer 24 is continuous with the first electrode 21 without a gap, while each second layer 25 is separated from the first electrode 21 with a gap (FIGS. 2A, 2B and 4). reference).
  • the auxiliary electrode 26, the first metal layer 27 and the second metal layer 28 made of, for example, the same metal material or the like are formed on the second surface side of the translucent substrate 1 using a vapor deposition method, a sputtering method, or the like. By forming simultaneously, the structure shown in FIG. 5 is obtained.
  • an insulating film 29 made of a resin material (for example, polyimide, novolac resin, epoxy resin or the like) is formed on the second surface side of the translucent substrate 1 to obtain a structure shown in FIG.
  • the organic EL layer 22 is formed on the second surface side of the translucent substrate 1 by, for example, a vapor deposition method to obtain a structure shown in FIG.
  • the method of forming the organic EL layer 22 is not limited to the vapor deposition method, and may be a coating method, for example, and may be appropriately selected according to the material of the organic EL layer 22.
  • the second electrode 23 and the lead wire 23b made of the same metal material are formed on the second surface side of the translucent substrate 1 using a vapor deposition method, a sputtering method, or the like.
  • the organic EL element module 3 having the structure shown in FIG. 8 is obtained.
  • the material 4a of the bonding portion 4 is applied to the second surface side of the translucent substrate 1 by a dispenser or the like to obtain a structure shown in FIG.
  • the material 4 a of the bonding portion 4 is applied to the peripheral portion of the organic EL element module 3 in the form of a rectangular quadrilateral, but the cover is not the organic EL element module 3.
  • the material 4 a of the bonding portion 4 may be applied to the periphery of the recess 51 in the substrate 5 in a rectangular frame shape.
  • coats the material 4a of the junction part 4 may use not only a dispenser but a screen printing apparatus, a die coater, a slit coater etc., for example.
  • the cover substrate 5 to which the moisture absorbing material and the heat spreader plate 6 have been previously attached is overlapped, and the material 4a of the joint 4 is cured from an uncured state.
  • the planar light emitting device A having the structure shown in FIG. 1 is obtained.
  • the material 4a of the joint 4 is to be cured from the uncured state, if the material 4a is of the ultraviolet curing type, the material 4a is cured by irradiating it with ultraviolet light.
  • the material 4a of the joint 4 is a thermosetting type, the material 4a is cured by heating the material 4a.
  • the hygroscopic material it is possible to use, for example, a seal-type desiccant or a coating-type desiccant, and the curing step in the case of using the coating-type desiccant is a combination with the material 4 a of the joint 4 Depending on the situation, it may be performed either alone before overlaying the cover substrate 5 and the organic EL element module 3 or in the curing step of curing the material 4 a of the bonding portion 4.
  • a method of applying the coating-type desiccant for example, a method using a dispenser, a screen printing apparatus, a metal mask, a die coater, a slit coater or the like can be adopted.
  • the planar size of the light emitting unit 20 is set to 80 mm, but not limited to this, for example, it may be appropriately set in the range of about 30 to 300 mm.
  • the center-to-center distance between the two first terminal portions T1 and T1 disposed on both sides in the width direction of the second terminal portion T2 is set to 30 mm, this value is an example, and the value is particularly limited Absent.
  • the thickness of the first electrode 21 is in the range of about 110 nm to 300 nm
  • the thickness of the organic EL layer 22 is in the range of about 150 nm to 300 nm
  • the thickness of the second electrode 23 is in the range of about 70 nm to 300 nm
  • the thickness of each of the auxiliary electrode 26, the first metal film 27 and the second metal film 28 is appropriately set in the range of about 300 nm to 600 nm. There is no particular limitation.
  • the width of the auxiliary electrode 26 the wider the width, the lower the impedance of the auxiliary electrode 26, and the in-plane variation of the luminance of the light emitting unit 20 is reduced. Since it decreases, it is preferable to set in the range of about 0.3 mm to 3 mm. In a luminaire in which a plurality of planar light emitting devices A according to the present embodiment are arranged as a light source, as the width of the auxiliary electrode 26 is narrowed, the distance between the adjacent light emitting units 20 can be reduced and the appearance becomes better. In addition, although the distance between the first terminal portion T1 and the second terminal portion T2 and the peripheral edge of the translucent substrate 1 is set to 0.2 mm, this value is not particularly limited.
  • the creepage distance is longer than the creepage distance. It is preferable to set it to a value.
  • the width dimension (length in the second direction) of the lead wire 23b formed of metal such as aluminum or silver is set to a value slightly smaller than the width dimension of the second terminal portion T2.
  • a current of critical current density (1 ⁇ 10 5 A / cm 2 when metal is aluminum
  • electromigration occurs and disconnection easily occurs.
  • the first layer 24 formed of TCO such as ITO and continued to the first electrode 21 has a large critical current density and a large margin with respect to the critical current density as compared with the lead-out wiring 23b.
  • the inventors of the present invention improve the electromigration resistance (hereinafter abbreviated as EM resistance) by making the total dimension of the width of the second terminal portion T2 larger than the total dimension of the width of the first terminal portion T1.
  • EM resistance electromigration resistance
  • the total dimension of the widths of the second terminal portions T2 is the total dimension of the widths of the four second terminal portions T2 (the widths of all the second terminal portions T2 in the second direction).
  • the total dimension of the widths of the first terminal portions T1 is the total dimension of the widths of the six first terminal portions T1 (the widths of all the first terminal portions T1 in the second direction).
  • FIG. 10 shows the results of simulating the brightness uniformity and the drive voltage under the conditions of each terminal width ratio by variously changing the terminal width ratio which is the value divided by.
  • the horizontal axis represents the terminal width ratio
  • the vertical axis on the left is the luminance uniformity
  • the vertical axis on the right is the drive voltage.
  • A1 is a simulation result of the luminance uniformity
  • A2 is a simulation result of the drive voltage.
  • the terminal width ratio is 0.5.
  • the terminal width ratio becomes smaller than 0.5.
  • the terminal width ratio becomes larger than 0.5.
  • the first electrode 21, the first layer 24, and the second layer 25 are made of an ITO film having a thickness of 150 nm
  • the thickness of the organic EL layer 22 is made 150 nm
  • the second electrode 23 and the lead wire 23b are provided.
  • the planar size of the light emitting unit 20 is 80 mm square, and the distance between the centers of two first terminal portions T1 and T1 disposed on both sides in the width direction of the second terminal portion T2 is 30 mm.
  • the current supplied to the organic EL element 2 was 275 mA.
  • the luminance uniformity is a percentage of the lowest current density to the highest current density in the current density distribution.
  • the luminance uniformity is substantially constant even if the terminal width ratio is changed in the range of 0.25 to 0.83.
  • the drive voltage is lowest when the terminal width ratio is 0.5, and the terminal width ratio is more than 0.5. It can be seen that the drive voltage tends to become higher as it becomes larger, and the drive voltage tends to become higher as the terminal width ratio becomes smaller than 0.5.
  • the driving voltage is substantially the same as the case where the terminal width ratio is 0.5.
  • the case where the terminal width ratio is 0.5 is the lowest power consumption, but if the terminal width ratio is 0.33 or more, the terminal width ratio is 0. It is possible to achieve the same level of power consumption as in the case of 5. As in the case where the terminal width ratio is 0.5, it is possible to achieve energy saving by lowering the drive voltage.
  • a value obtained by dividing the total dimension of the width of the first terminal portion T1 by the total dimension of the width of the second terminal portion T2 (hereinafter referred to as "set value") is 0.33. It is made to set by more than 0.67.
  • the set value is preferably 0.33 or more and 0.6 or less, and more preferably 0.33 or more and less than 0.5.
  • the drive voltage increases because the set value is 0.33 or more and 0.67 or less (desirably 0.6 or less, more preferably less than 0.5). It is possible to improve the reliability by improving the EM resistance while suppressing the In the planar light emitting device A, the luminance is substantially proportional to the value of the current flowing through the organic EL element 2. Therefore, when driving with a constant current, the lower the drive voltage, the higher the power efficiency, and the lower the power consumption. It is possible to
  • the total number of the first terminal portions T1 and the second terminal portions T2 disposed along each of the two sides of the light emitting unit 20 with the terminal width ratio being 0.5 (terminals Table 1 shows the results of simulating the drive voltage and the brightness uniformity when the number is varied.
  • the first electrode 21, the first layer 24, and the second layer 25 are made of an ITO film having a thickness of 150 nm
  • the thickness of the organic EL layer 22 is 150 nm
  • the second electrode 23 and the lead wire 23b are thick.
  • An Al film of 80 nm was used
  • the planar size of the light emitting unit 20 was 80 mm
  • the current flow to the organic EL element 2 was 275 mA.
  • the number of terminals is five. Further, in the simulation, using the value of the sheet resistance of each component of the organic EL element 2 and the voltage-current characteristics of the organic EL layer 22, the voltage at the first electrode 21, the second electrode 23 and the auxiliary electrode 26 The distribution and the current density distribution of the current flowing in the thickness direction of the organic EL layer 22 are calculated. Also, the luminance uniformity is a percentage of the lowest current density to the highest current density in the current density distribution.
  • the m second terminal portions T2 and the [m + 1] first terminal portions T1 have a width of the second terminal portion T2 along each of two predetermined parallel sides of the light emitting unit 20 having a rectangular quadrilateral shape.
  • the drive voltage is substantially constant if the number of terminals is an odd number of 5 or more as in Table 1.
  • the brightness uniformity is high and substantially constant as compared to the case of three terminals.
  • the number of terminals increases, the number of connection points with metal wires (bonding wires) and the like increases, so from the viewpoint of the number of connection points, it is preferable to reduce the number of terminals. Therefore, in the planar light emitting device A of the present embodiment, the number of terminals is preferably five.
  • the plan view shape of the light-transmissive substrate 1 may be a right-angled quadrilateral shape, and is not limited to a rectangular shape, and may be a square shape in which two sides are along the first direction. If the shape is a rectangular shape extending in the second direction, two long sides in the light emitting unit 20 correspond to two parallel sides of the light emitting unit 20 in the second direction described above.
  • planar view shape of the translucent substrate 1 is a rectangular shape in which two long sides are in the first direction
  • planar view shape of the light emitting unit 20 is not similar to the translucent substrate 1 and the two long sides are In the rectangular shape along the second direction, two long sides in the light emitting unit 20 correspond to two parallel sides of the light emitting unit 20 in the second direction described above.
  • the first electrode 21 made of a transparent conductive film constitutes an anode
  • the second electrode 23 whose sheet resistance is smaller than that of the first electrode 21 constitutes a cathode. May constitute a cathode and the second electrode 23 may constitute an anode, in any case, as long as it is possible to extract light through the first electrode 21 made of a transparent conductive film.
  • planar light-emitting device A demonstrated by embodiment can be used suitably as a light source for illumination, for example, it is possible not only for illumination but to use for another use.

Abstract

This planar light emitting device includes an organic EL device comprising a light-transmitting substrate, first electrode, light emitting layer, and second electrode. A plurality of first terminal parts is arranged to the side of a right-angled rectangular shaped light emitting part in which the first electrode, light emitting layer and second electrode are stacked and are electrically connected to the first electrode. A plurality of second terminal parts is arranged to the side of the light emitting part and electrically connected to the second electrode. An auxiliary electrode is formed in the vicinity of the peripheral part of the surface on the opposite side from the substrate side for the first electrode and is electrically connected to the first electrode. The m second terminal parts and (m + 1) first terminal parts each along two parallel edges of the light emitting part are arranged such that first terminal parts are positioned on both sides in the direction of width of the second terminal parts, and here, m is an integer of 1 or more. The first terminal parts and second terminal parts are formed from a transparent conductive oxide layer and metal layer, respectively. The value for the total dimension of the width of the first terminal parts divided by the total dimension for the width of the second terminal parts is 0.33 - 0.67.

Description

面状発光装置Planar light emitting device
 本発明は、面状発光装置に関するものである。 The present invention relates to a planar light emitting device.
 従来から、図11~図14に示す構成の面状発光装置が提案されている(日本国特許出願公開番号2010-198980(以下「文献1」という)参照)。この面状発光装置は、第1表面(正面)および第2表面(背面)を持つ透明基板101と、透明基板101の一表面、すなわち第2表面側に形成された有機EL素子102と、有機EL素子102の発光部120を覆う形で透明基板101の第2表面側に非導電性接着剤により固着された封止基材103とを備えている。 Conventionally, a planar light emitting device having a configuration shown in FIGS. 11 to 14 has been proposed (see Japanese Patent Application Publication No. 2010-198980 (hereinafter referred to as “Document 1”)). This planar light emitting device includes a transparent substrate 101 having a first surface (front) and a second surface (back), an organic EL element 102 formed on one surface of the transparent substrate 101, that is, the second surface, and an organic The light emitting portion 120 of the EL element 102 is covered with a sealing base 103 fixed to the second surface side of the transparent substrate 101 by a nonconductive adhesive.
 上述の面状発光装置は、透明基板101の他表面、すなわち第1表面を光出射面(発光面)として用いるものであり、透明基板101として例えばガラス基板が用いられている。また、面状発光装置は、透明基板101が、平面視長方形状に形成されている。 The above-described planar light emitting device uses the other surface of the transparent substrate 101, that is, the first surface as a light emitting surface (light emitting surface). For example, a glass substrate is used as the transparent substrate 101. In the planar light emitting device, the transparent substrate 101 is formed in a rectangular shape in plan view.
 有機EL素子102は、透明基板101の第2表面側に形成された面状陽極121と、面状陽極121における透明基板101側とは反対側に形成され少なくとも発光層を含む有機層122と、有機層122における面状陽極121側とは反対側に形成され面状陽極21に対向した面状陰極123とを備えている。ここで、有機EL素子102は、面状陽極121が、平面視正方形状の透明導電膜(例えば、ITO膜、IZO膜など)からなり、面状陰極123が、平面視正方形状の金属膜からなる。面状陰極123を構成する金属膜は、Al膜により構成してあるが、Al膜に限らず、透明導電膜に比べて小さな抵抗率と小さな仕事関数を持つ金属により形成されていればよく、例えば、Mg膜とAg膜との積層膜により構成してもよいことが記載されている。有機層122は、平面視正方形状に形成されている。 The organic EL element 102 includes a planar anode 121 formed on the second surface side of the transparent substrate 101, and an organic layer 122 formed on the opposite side of the planar anode 121 to the transparent substrate 101 and including at least a light emitting layer; The organic layer 122 is provided with a planar cathode 123 formed on the side opposite to the planar anode 121 side and facing the planar anode 21. Here, in the organic EL element 102, the planar anode 121 is made of a transparent conductive film (for example, an ITO film, an IZO film, etc.) having a square shape in plan view, and the planar cathode 123 is a metal film having a square shape in plan view. Become. The metal film constituting the planar cathode 123 is made of an Al film, but it is not limited to the Al film, and may be made of a metal having a smaller resistivity and a smaller work function than a transparent conductive film, For example, it is described that it may be configured by a laminated film of an Mg film and an Ag film. The organic layer 122 is formed in a square shape in plan view.
 また、有機EL素子102は、透明基板101の長手方向の両端部それぞれにおいて当該透明基板101の第2表面側に形成され面状陽極121に電気的に接続された陽極給電部124と、透明基板101の長手方向の両端部において透明基板101の第2表面側に形成され面状陰極123に電気的に接続された陰極給電部125とを備えている。ここで、有機EL素子102は、陽極給電部124および陰極給電部125の各々が、透明導電膜(例えば、ITO膜、IZO膜など)からなる。 In addition, the organic EL element 102 is formed on the second surface side of the transparent substrate 101 at both ends in the longitudinal direction of the transparent substrate 101 and is electrically connected to the planar anode 121, and a transparent substrate A cathode feeding portion 125 formed on the second surface side of the transparent substrate 101 at both ends in the longitudinal direction of the 101 and electrically connected to the planar cathode 123 is provided. Here, in the organic EL element 102, each of the anode power supply unit 124 and the cathode power supply unit 125 is made of a transparent conductive film (for example, an ITO film, an IZO film, etc.).
 上述の有機EL素子102は、透明基板101の長手方向の両端部それぞれにおいて、2つの陽極給電部124,124が透明基板101の短手方向に離間して形成されており、透明基板101の短手方向において隣り合う2つの陽極給電部124,124の間に1つの陰極給電部125が配置されている。 The above-described organic EL element 102 is formed such that two positive electrode feeding parts 124 and 124 are separated in the short direction of the transparent substrate 101 at both ends in the longitudinal direction of the transparent substrate 101. One cathode feeding portion 125 is disposed between two anode feeding portions 124 adjacent to each other in the hand direction.
 また、面状陰極123は、面状陰極123において透明基板101の短手方向に沿った一側縁の長手方向の中央部から当該一側縁に直交する方向に延設された引出配線123bを介して、陰極給電部125と電気的に接続されている。ここで、面状陰極123と引出配線123bとは、同一の材料により同一厚さで同時に形成されている。 In the planar cathode 123, the planar cathode 123 extends from the central portion in the longitudinal direction of one side edge along the short direction of the transparent substrate 101 and extends in the direction orthogonal to the one side edge. It is electrically connected to the cathode power supply unit 125 via the same. Here, the planar cathode 123 and the lead wiring 123b are simultaneously formed with the same material and the same thickness.
 また、有機EL素子102は、透明基板101の第2表面側において、面状陽極121における透明基板101側とは反対側の表面の周部の全周に亘って形成され面状陽極121に電気的に接続された陽極用枠状補助電極126を備えている。ここで、陽極用枠状補助電極126は、平面視正方枠状に形成されている。また、有機EL素子102は、陰極給電部125における透明基板101側とは反対側に積層され陰極給電部125に電気的に接続された陰極給電部用補助電極128を備えている。ここで、陽極用枠状補助電極126および陰極給電部用補助電極128は、Cr膜とAu膜との積層膜により構成してある。 Further, the organic EL element 102 is formed on the second surface side of the transparent substrate 101 over the entire circumference of the surface of the planar anode 121 on the opposite side to the transparent substrate 101 side. And a frame-shaped auxiliary electrode 126 for anodes connected in the same manner. Here, the frame-shaped auxiliary electrode 126 for an anode is formed in a square frame shape in plan view. The organic EL element 102 further includes a cathode feeding portion auxiliary electrode 128 stacked on the side opposite to the transparent substrate 101 in the cathode feeding portion 125 and electrically connected to the cathode feeding portion 125. Here, the frame-like auxiliary electrode 126 for the anode and the auxiliary electrode 128 for the cathode feeding portion are constituted by a laminated film of a Cr film and an Au film.
 また、上述の陽極用枠状補助電極126は、陽極給電部124に積層され陽極給電部124に電気的に接続される陽極給電部用補助電極127が連続一体に形成されている。 In addition, the anode frame-shaped auxiliary electrode 126 described above is continuously and integrally formed with an anode power feeding portion auxiliary electrode 127 which is stacked on the anode power feeding portion 124 and electrically connected to the anode power feeding portion 124.
 上述の面状発光装置は、面状陽極121と陽極給電部124と陰極給電部125とが、同一の透明導電材料(例えば、ITO、IZOなど)により同一厚さで同時に形成されている。また、面状発光装置は、陽極給電部用補助電極127と陰極給電部用補助電極128とが同一材料により同一厚さで形成されている。そして、面状発光装置は、陽極給電部124と陽極給電部用補助電極127とで構成される陽極側外部接続電極E1の幅の合計寸法と、陰極給電部125と陰極給電部用補助電極128とで構成される陰極側外部接続電極E2の幅の合計寸法とが、同じ値に設定されている。 In the planar light emitting device described above, the planar anode 121, the anode feeding portion 124 and the cathode feeding portion 125 are simultaneously formed with the same transparent conductive material (for example, ITO, IZO, etc.) in the same thickness. In the planar light emitting device, the anode feeding portion auxiliary electrode 127 and the cathode feeding portion auxiliary electrode 128 are formed of the same material and in the same thickness. The planar light emitting device has a total dimension of the width of the anode-side external connection electrode E1 composed of the anode feeding portion 124 and the anode feeding portion auxiliary electrode 127, the cathode feeding portion 125, and the cathode feeding portion auxiliary electrode 128. And the total dimension of the width of the cathode-side external connection electrode E2 composed of and is set to the same value.
 また、有機EL素子102は、透明基板101の第2表面側において陽極用枠状補助電極126および面状陽極121の側縁を覆う平面視正方枠状の絶縁膜129が形成されている。有機EL素子102は、絶縁膜129により、陽極用枠状補助電極126および面状陽極121と面状陰極123との短絡が防止されるようになっている。文献1には、絶縁膜129の材料として、例えば、ポリイミド、ノボラック樹脂、エポキシ樹脂などを採用すればよいことが記載されている。 Further, the organic EL element 102 is provided with an insulating film 129 having a square frame shape in plan view covering the side edges of the frame auxiliary electrode 126 for the anode and the planar anode 121 on the second surface side of the transparent substrate 101. The organic EL element 102 is configured such that a short circuit between the frame auxiliary electrode 126 for anode and the planar anode 121 and the planar cathode 123 is prevented by the insulating film 129. Document 1 describes that, for example, polyimide, novolac resin, epoxy resin or the like may be adopted as the material of the insulating film 129.
 また、面状発光装置では、上述の非導電性接着剤を構成する封止材料として、フィラーを含有したエポキシ樹脂を用いている。 Moreover, in the planar light emitting device, an epoxy resin containing a filler is used as a sealing material which constitutes the above-mentioned nonconductive adhesive.
 ところで、上述の面状発光装置において有機EL素子102を高輝度で点灯させるためには、より大きな電流を流す必要がある。しかしながら、上述の面状発光装置では、陽極側外部接続電極E1における陽極給電部用補助電極127、陰極側外部接続電極E2における陰極給電部用補助電極128、および面状陰極123の各々で金属材料が採用されているので、エレクトロマイグレーションに起因して信頼性が低下してしまう懸念がある。 By the way, in order to light the organic EL element 102 with high luminance in the above-described planar light emitting device, it is necessary to flow a larger current. However, in the planar light emitting device described above, the metal material is used for each of the auxiliary electrode 127 for the anode power supply portion in the anode side external connection electrode E1, the auxiliary electrode 128 for the cathode power supply portion in the cathode side external connection electrode E2, and the planar cathode 123. There is a concern that the reliability may be reduced due to electromigration.
 本発明は上記事由に鑑みて為されたものであり、その目的は、駆動電圧の上昇を抑制しつつ信頼性の向上を図ることが可能な面状発光装置を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a planar light emitting device capable of improving the reliability while suppressing the increase of the drive voltage.
 本発明の面状発光装置は、透光性基板(1)と、前記透光性基板(1)の一表面側に形成された有機EL素子(2)とを備える。前記有機EL素子(2)は、前記透光性基板(1)の前記一表面側に配置され透明導電膜からなる第1電極(21)と、前記第1電極(21)における前記透光性基板(1)側とは反対側に配置され有機材料からなる発光層(220)と、前記発光層(220)における前記第1電極(21)側とは反対側に配置され金属膜からなる第2電極(23)と、前記第1電極(21)と前記発光層(220)と前記第2電極(23)とが重なる発光部の側方に配置され前記第1電極(21)に電気的に接続された複数の第1端子部(T1)と、前記発光部の側方に配置され前記第2電極(23)に電気的に接続された複数の第2端子部(T2)と、前記第1電極(21)よりも小さな比抵抗を持つ材料からなり前記第1電極(21)における前記透光性基板(1)側とは反対側の表面の周部近傍に形成され前記第1電極(21)に電気的に接続された補助電極(26)とを備える。前記発光部の平面視形状が直角四辺形状である。当該直角四辺形状の前記発光部の所定の平行な2辺の各々に沿ってm個の第2端子部(T2)と〔m+1〕個の第1端子部(T1)とが、前記第2端子部(T2)の幅方向の両側に第1端子部(T1)が位置するように配置されており、ここで、mは1以上の整数である。前記第1端子部(T1)および前記第2端子部(T2)の各々が、透明導電性酸化物層と金属層との積層構造を有する。前記第1端子部(T1)の幅の合計寸法を前記第2端子部(T2)の幅の合計寸法で除した値が0.33以上0.67以下である。 The planar light emitting device of the present invention comprises a translucent substrate (1) and an organic EL element (2) formed on one surface side of the translucent substrate (1). The organic EL element (2) is provided with a first electrode (21) disposed on the one surface side of the translucent substrate (1) and formed of a transparent conductive film, and the translucent property of the first electrode (21) A light emitting layer (220) made of an organic material and disposed on the side opposite to the substrate (1) side, and a metal film placed on the side opposite to the first electrode (21) side of the light emitting layer (220) The first electrode (21) is disposed on the side of a light emitting portion in which two electrodes (23), the first electrode (21), the light emitting layer (220), and the second electrode (23) overlap. A plurality of first terminal portions (T1) connected to each other, a plurality of second terminal portions (T2) disposed laterally of the light emitting portion and electrically connected to the second electrode (23); The material of the first electrode (21) is made of a material having a specific resistance smaller than that of the first electrode (21). The gender substrate (1) side and a side opposite the formed near the peripheral portion of the surface of the first electrode (21) electrically connected to an auxiliary electrode (26). The planar view shape of the said light emission part is right-angled quadrilateral shape. The m second terminal portions (T2) and the (m + 1) first terminal portions (T1) are arranged along the predetermined parallel two sides of the light emitting portion having the right-angled quadrilateral shape, and the second terminals. It arrange | positions so that a 1st terminal part (T1) may be located in the both sides of the width direction of a part (T2), and m is an integer greater than or equal to 1 here. Each of the first terminal portion (T1) and the second terminal portion (T2) has a laminated structure of a transparent conductive oxide layer and a metal layer. A value obtained by dividing the total dimension of the width of the first terminal portion (T1) by the total dimension of the width of the second terminal portion (T2) is 0.33 or more and 0.67 or less.
 一実施形態において、前記第1端子部(T1)の幅の合計寸法を前記第2端子部(T2)の幅の合計寸法で除した値が0.33以上0.5未満である。 In one embodiment, a value obtained by dividing the total dimension of the width of the first terminal portion (T1) by the total dimension of the width of the second terminal portion (T2) is 0.33 or more and less than 0.5.
 一実施形態において、前記有機EL素子(2)は、前記透光性基板(1)の前記一表面側において前記補助電極(26)および前記第1電極(21)の側縁を覆う絶縁膜(29)をさらに備える。 In one embodiment, the organic EL element (2) is an insulating film covering side edges of the auxiliary electrode (26) and the first electrode (21) on the one surface side of the translucent substrate (1). And 29).
 一実施形態において、m≧2である。 In one embodiment, m ≧ 2.
 本発明の面状発光装置においては、駆動電圧の上昇を抑制しつつ信頼性の向上を図ることが可能となる。 In the planar light emitting device of the present invention, it is possible to improve the reliability while suppressing the increase of the drive voltage.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
実施形態の面状発光装置の背面図である。 同上の面状発光装置を示し、図2Aは図1のB-B’概略断面図、図2Bは図1のC-C’概略断面図である。 同上の面状発光装置を示し、図1のD-D’概略断面図である。 同上の製造方法を説明するための主要工程平面図である。 同上の製造方法を説明するための主要工程平面図である。 同上の製造方法を説明するための主要工程平面図である。 同上の製造方法を説明するための主要工程平面図である。 同上の製造方法を説明するための主要工程平面図である。 同上の製造方法を説明するための主要工程平面図である。 同上の面状発光装置の特性のシミュレーション結果を示す図である。 従来例の面状発光装置を示し、図11Aは背面図、図11Bは図11AのB-B’概略断面図、図11Cは図11AのC-C’概略断面図である。 同上の面状発光装置の正面図である。 図11Bの要部拡大図である。 図11Cの要部拡大図である。
The preferred embodiments of the present invention will be described in more detail. Other features and advantages of the present invention will be better understood in conjunction with the following detailed description and the accompanying drawings.
It is a rear view of the planar light-emitting device of embodiment. FIG. 2A is a schematic cross-sectional view taken along the line BB ′ of FIG. 1, and FIG. 2B is a schematic cross-sectional view taken along the line CC ′ of FIG. FIG. 6 is a schematic cross-sectional view taken along the line DD ′ of FIG. 1 showing the planar light emitting device of the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a principal process top view for explaining the manufacturing method same as the above. It is a figure which shows the simulation result of the characteristic of a planar light-emitting device same as the above. 11A shows a rear view, FIG. 11B shows a schematic cross-sectional view taken along the line BB 'in FIG. 11A, and FIG. 11C shows a schematic cross-sectional view taken along the line CC' in FIG. 11A. It is a front view of a planar light-emitting device same as the above. It is a principal part enlarged view of FIG. 11B. It is a principal part enlarged view of FIG. 11C.
 以下、本実施形態の面状発光装置について図1~3に基づいて説明する。 Hereinafter, the planar light emitting device of the present embodiment will be described based on FIGS. 1 to 3.
 面状発光装置Aは、有機EL素子モジュール3およびカバー基板5を備えている。有機EL素子モジュール3は、第1表面(正面)および第2表面(背面)を持つ透光性基板1と、透光性基板1の一表面、すなわち第2表面側に形成された有機EL素子2とを有する。一例において、透光性基板1は、2つが他の2つよりも長い4つの直線の辺を持ち、2つの長辺が第1方向に沿った長方形状であり、有機EL素子2の発光部20は、4つの直角を持つ四角形(以下「直角四辺形」という)状である。図1の例では、発光部20は正方形状である。カバー基板5は、第1面および第2面を有し、第1面が透光性基板1の第2表面側に対向配置されるように、接合部4を介して有機EL素子モジュール3に固着されている。また、面状発光装置Aは、カバー基板5における有機EL素子2側とは反対側に(図2Aおよび2Bの例ではカバー基板5の第2面の直上に)配置された均熱板6(図2、図3参照)を備えている。ここにおいて、カバー基板5は、有機EL素子モジュール3との対向面(第1面)に、有機EL素子2全体を覆う形で凹所51が形成されており、接合部4を介して凹所51の周部(第1面の外周部)を全周に亘って有機EL素子モジュール3と接合してある。これにより、面状発光装置Aは、有機EL素子2の発光部20が、透光性基板1とカバー基板5と接合部4とで囲まれた気密空間内に収納される。また、面状発光装置Aは、カバー基板5における凹所51の内底面に、水分を吸着する吸湿材(図示せず)を貼り付けてある。 The planar light emitting device A includes the organic EL element module 3 and the cover substrate 5. The organic EL element module 3 includes a translucent substrate 1 having a first surface (front) and a second surface (back), and an organic EL device formed on one surface of the translucent substrate 1, that is, the second surface. And two. In one example, the translucent substrate 1 has a rectangular shape in which two have four straight sides longer than the other two, and two long sides are along the first direction, and the light emitting portion of the organic EL element 2 is The numeral 20 is in the form of a quadrangle having four right angles (hereinafter referred to as a "right square"). In the example of FIG. 1, the light emission part 20 is square shape. The cover substrate 5 has a first surface and a second surface, and the organic EL element module 3 is attached to the organic EL element module 3 via the bonding portion 4 so that the first surface is disposed opposite to the second surface side of the translucent substrate 1. It is fixed. In addition, the planar light emitting device A is the heat spreader plate 6 (on the second surface of the cover substrate 5 in the example of FIGS. 2A and 2B) on the opposite side of the cover substrate 5 to the organic EL element 2 side. 2 and 3). Here, in the cover substrate 5, a recess 51 is formed on the surface (first surface) facing the organic EL element module 3 so as to cover the whole of the organic EL element 2. The peripheral portion 51 (the outer peripheral portion of the first surface) is bonded to the organic EL element module 3 over the entire periphery. Thus, in the planar light emitting device A, the light emitting unit 20 of the organic EL element 2 is housed in an airtight space surrounded by the light transmitting substrate 1, the cover substrate 5, and the bonding unit 4. In the planar light emitting device A, a hygroscopic material (not shown) that adsorbs moisture is attached to the inner bottom surface of the recess 51 in the cover substrate 5.
 有機EL素子2は、透光性基板1の第2表面側に配置され透明導電膜からなる第1電極21と、第1電極21における透光性基板1側とは反対側に配置され有機材料からなる発光層220を含む有機EL層22と、有機EL層22における第1電極21側とは反対側に配置され金属膜からなる第2電極23とを備えている。図2Aおよび2Bの例では、第1電極21は、第1表面(下面)および第2表面(上面)を有する直角四辺形状であり、第1電極21の第1表面が透光性基板1の第2表面に接合されるように透光性基板1の第2表面上に形成されている。有機EL層22は、第1表面(下面)および第2表面(上面)を有し、有機EL層22の第1表面が第1電極21の第2表面に接合されるように第1電極21の第2表面上に形成されている。第2電極23は、第1表面(下面)および第2表面(上面)を有し、第2電極23の第1表面が有機EL層22の第2表面に接合されるように有機EL層22の第2表面上に形成されている。 The organic EL element 2 is disposed on the second surface side of the translucent substrate 1 and is made of a transparent conductive film, and the organic electrode is disposed on the opposite side to the translucent substrate 1 side of the first electrode 21. And a second electrode 23 disposed on the opposite side of the organic EL layer 22 from the side of the first electrode 21 and made of a metal film. In the example of FIGS. 2A and 2B, the first electrode 21 is a right quadrilateral shape having a first surface (lower surface) and a second surface (upper surface), and the first surface of the first electrode 21 is a translucent substrate 1. It is formed on the second surface of the translucent substrate 1 so as to be bonded to the second surface. The organic EL layer 22 has a first surface (lower surface) and a second surface (upper surface), and the first electrode 21 is bonded such that the first surface of the organic EL layer 22 is bonded to the second surface of the first electrode 21. Is formed on the second surface of the The second electrode 23 has a first surface (lower surface) and a second surface (upper surface), and the organic EL layer 22 is formed such that the first surface of the second electrode 23 is bonded to the second surface of the organic EL layer 22. Is formed on the second surface of the
 また、有機EL素子2は、複数の第1端子部T1および複数の第2端子部T2を備えている。各第1端子部T1は、第1電極21と有機EL層22と第2電極23とが重なる発光部20の側方に配置され、第1電極21に電気的に接続される。各第2端子部T2は、発光部20の側方に配置され、第2電極23から延設された引出配線23bを介して、第2電極23に電気的に接続される。図1および2Aの例では、複数の第1端子部T1(24および27)は、透光性基板1の第2表面の直上に形成されて第1電極21に直結されるように、透光性基板1の長手方向における両端部の各々に配置されている。図1および2Bの例では、複数の第2端子部T2(25および28)は、透光性基板1の第2表面の直上に形成されて引出配線23bを介して第2電極23に電気的に接続されるように、透光性基板1の長手方向における両端部の各々に配置されている。 The organic EL element 2 also includes a plurality of first terminal portions T1 and a plurality of second terminal portions T2. Each first terminal portion T1 is disposed on the side of the light emitting unit 20 where the first electrode 21, the organic EL layer 22, and the second electrode 23 overlap, and is electrically connected to the first electrode 21. Each second terminal portion T2 is disposed to the side of the light emitting unit 20, and is electrically connected to the second electrode 23 via a lead wire 23b extended from the second electrode 23. In the example of FIGS. 1 and 2A, the plurality of first terminal portions T1 (24 and 27) are formed so as to be formed directly on the second surface of the translucent substrate 1 and directly coupled to the first electrode 21. It is disposed at each of both ends in the longitudinal direction of the flexible substrate 1. In the example of FIGS. 1 and 2B, the plurality of second terminal portions T2 (25 and 28) are formed directly on the second surface of the translucent substrate 1 and electrically connected to the second electrode 23 through the lead wiring 23b. Are disposed at each of both ends in the longitudinal direction of the translucent substrate 1.
 また、有機EL素子2は、補助電極26を備えている。補助電極26は、第1電極21よりも小さな比抵抗を持つ材料からなり、(少なくとも)第1電極21における透光性基板1側とは反対側の表面の周部に沿って形成され、第1電極21に電気的に接続される。図1~3の例では、補助電極26は、直角四辺形状の枠形であり、第1電極21の第2表面(および複数の第1端子部T1(24)の各一部)の直上に形成されている。また、有機EL素子2は、絶縁膜29を備え、これは、補助電極26全体を覆いながら補助電極26近傍の第1電極21の側縁をも覆うように、透光性基板1の第2表面側に形成されている。有機EL素子2は、この絶縁膜29により、補助電極26および第1電極21と第2電極23との短絡が防止されるようになっている。なお、補助電極26は、第1電極21の第2表面の周部の全周に沿った直角四辺形状の枠形であるが、必ずしも直角四辺形状の枠形である必要はなく、第1電極21に電気的に接続されていれば、一部が開放された形状(例えば、C字状やU字状など)や、複数個に分断されていてもよい。 Further, the organic EL element 2 is provided with an auxiliary electrode 26. The auxiliary electrode 26 is made of a material having a smaller specific resistance than the first electrode 21 and is formed along the periphery of the surface of the (at least) first electrode 21 opposite to the light transmitting substrate 1 side. The first electrode 21 is electrically connected. In the example of FIGS. 1 to 3, the auxiliary electrode 26 has a rectangular quadrilateral frame shape, and is directly on the second surface of the first electrode 21 (and each portion of the plurality of first terminal portions T1 (24)). It is formed. In addition, the organic EL element 2 includes the insulating film 29, which covers the entire auxiliary electrode 26 and also covers the side edge of the first electrode 21 in the vicinity of the auxiliary electrode 26. It is formed on the surface side. The insulating film 29 prevents the short circuit between the auxiliary electrode 26 and the first electrode 21 and the second electrode 23 of the organic EL element 2. The auxiliary electrode 26 is a rectangular quadrilateral frame along the entire periphery of the second surface of the first electrode 21. However, the auxiliary electrode 26 does not necessarily have to be a rectangular quadrilateral frame. As long as they are electrically connected to 21, they may be divided into a partially opened shape (for example, a C-shape or a U-shape) or a plurality.
 有機EL素子2の上述の発光部20は、透光性基板1の厚み方向において透光性基板1と第1電極21と有機EL層22(発光層220)と第2電極23とが重なる領域から構成され、有機EL素子2における発光部20以外の領域が、非発光部となる。ここで、有機EL素子2は、第1電極21、有機EL層22および第2電極23それぞれの平面視形状を、透光性基板1よりも小さな直角四辺形状(図示例では、正方形状)としてある。したがって、発光部20の平面視形状は、透光性基板1よりも小さな直角四辺形状(図示例では、正方形状)となる。また、補助電極26は、平面視形状を直角四辺形状の枠形としてある。また、絶縁膜29は、平面視形状を直角四辺形状の枠形としてある。 The above-described light emitting unit 20 of the organic EL element 2 is a region where the light transmitting substrate 1, the first electrode 21, the organic EL layer 22 (light emitting layer 220), and the second electrode 23 overlap in the thickness direction of the light transmitting substrate 1. The region other than the light emitting unit 20 in the organic EL element 2 is a non-light emitting unit. Here, the organic EL element 2 has the respective shapes in plan view of the first electrode 21, the organic EL layer 22 and the second electrode 23 as a right quadrilateral shape (square in the illustrated example) smaller than the translucent substrate 1. is there. Therefore, the plan view shape of the light emitting unit 20 is a right quadrilateral shape (square in the illustrated example) smaller than the translucent substrate 1. In addition, the auxiliary electrode 26 has a frame shape having a rectangular quadrangle as viewed in plan. In addition, the insulating film 29 has a frame shape having a rectangular quadrilateral shape in plan view.
 有機EL素子2は、第1方向と直交する第2方向における発光部20の平行な2辺の各々に沿ってm個の第2端子部T2と〔m+1〕個の第1端子部T1とが、第2端子部T2の幅方向の両側(第2方向における各第2端子部T2の両側)に第1端子部T1が位置するように配置されている。ここで、mは1以上の整数である。図1の例では、mは“2”である。したがって、図1に示した例では、透光性基板1の長手方向の両端部の各々に、複数の第1端子部T1と複数の第2端子部T2とを備えている。具体的には、有機EL素子2は、第1方向における透光性基板1の両端部の各々において、3つの第1端子部T1が透光性基板1の短手方向(第2方向に)に離間して配置されており、第2方向において隣り合う第1端子部T1間に第2端子部T2が配置されている。 The organic EL element 2 includes m second terminal portions T2 and [m + 1] first terminal portions T1 along each of two parallel sides of the light emitting unit 20 in the second direction orthogonal to the first direction. The first terminal portions T1 are disposed on both sides in the width direction of the second terminal portions T2 (both sides of the second terminal portions T2 in the second direction). Here, m is an integer of 1 or more. In the example of FIG. 1, m is "2". Therefore, in the example shown in FIG. 1, the plurality of first terminal portions T1 and the plurality of second terminal portions T2 are provided at each of both end portions in the longitudinal direction of the translucent substrate 1. Specifically, in each of both ends of the translucent substrate 1 in the first direction, the three first terminal portions T1 of the organic EL element 2 are in the lateral direction of the translucent substrate 1 (in the second direction). The second terminal portions T2 are disposed between the first terminal portions T1 adjacent to each other in the second direction.
 ここで、第1端子部T1は、透明導電性酸化物層24(以下第1透明導電性酸化物層として「第1層24」とも称する)と金属層27(以下「第1金属層27」とも称する)との積層構造を有している。第2端子部T2は、透明導電性酸化物層25(以下第2透明導電性酸化物層として「第2層25」とも称する)と金属層28(以下「第2金属層28」とも称する)との積層構造を有している。図2Aの例では、複数の第1端子部T1の複数の第1層24は、透光性基板1の第2表面の直上に形成されて第1電極21に直結されるように、透光性基板1の長手方向における両端部の各々に配置され、複数の金属層27の各々は、それ自身の第1端子部T1における第1層24の端部の直上に形成されている。また、図2Bの例では、複数の第2端子部T2の複数の第2層25は、透光性基板1の第2表面の直上に形成されて引出配線23bを介して第2電極23に電気的に接続されるように、透光性基板1の長手方向における両端部の各々に配置され、複数の金属層28の各々は、それ自身の第2端子部T2の第2層25の端部の直上に形成されている。 Here, the first terminal portion T1 includes a transparent conductive oxide layer 24 (hereinafter also referred to as "first layer 24" as a first transparent conductive oxide layer) and a metal layer 27 (hereinafter "first metal layer 27"). Also has a laminated structure of The second terminal portion T2 includes a transparent conductive oxide layer 25 (hereinafter also referred to as "second layer 25" as a second transparent conductive oxide layer) and a metal layer 28 (hereinafter also referred to as "second metal layer 28") And a laminated structure of In the example of FIG. 2A, the plurality of first layers 24 of the plurality of first terminal portions T1 are formed so as to be formed directly on the second surface of the translucent substrate 1 and directly coupled to the first electrode 21. Each of the plurality of metal layers 27 is disposed at each of both ends in the longitudinal direction of the elastic substrate 1 and is formed directly on the end of the first layer 24 in its own first terminal portion T1. Further, in the example of FIG. 2B, the plurality of second layers 25 of the plurality of second terminal portions T2 are formed directly on the second surface of the translucent substrate 1 and are connected to the second electrode 23 through the lead wiring 23b. Each of the plurality of metal layers 28 is disposed at an end of the second layer 25 of its own second terminal portion T2 so as to be electrically connected to each of both ends in the longitudinal direction of the translucent substrate 1. It is formed right above the part.
 また、均熱板6の平面形状は、カバー基板5よりも小さく且つ発光部20よりも大きな直角四辺形状(図示例では、正方形状)としてある。 Further, the planar shape of the heat spreader plate 6 is a right quadrilateral shape (square shape in the illustrated example) which is smaller than the cover substrate 5 and larger than the light emitting portion 20.
 以下、面状発光装置Aの各構成要素について詳細に説明する。 Hereinafter, each component of the planar light emitting device A will be described in detail.
 面状発光装置Aは、透光性基板1の第1表面を光出射面(発光面)として用いるものである。したがって、面状発光装置Aでは、透光性基板1の第1表面のうち、第1電極21、有機EL層22および第2電極23の3つが重複して投影される領域が発光面となる。透光性基板1は、平面視形状を長方形状としてあるが、これに限らず、例えば、正方形状としてもよい。 The planar light emitting device A uses the first surface of the translucent substrate 1 as a light emitting surface (light emitting surface). Therefore, in the planar light emitting device A, in the first surface of the light transmitting substrate 1, the area onto which the first electrode 21, the organic EL layer 22, and the second electrode 23 are projected overlapping is the light emitting surface. . The translucent substrate 1 has a rectangular shape in a plan view, but the shape is not limited to this, and may be, for example, a square shape.
 透光性基板1としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック基板を用いてもよい。ガラス基板としては、例えば、ソーダライムガラス基板、無アルカリガラス基板などを用いることができる。また、プラスチック基板としては、例えば、ポリエチレンテレフタラート(PET)基板、ポリエチレンナフタレート(PEN)基板、ポリエーテルサルフォン(PES)基板、ポリカーボネート(PC)基板などを用いてもよい。プラスチック基板を用いる場合は、プラスチック基板の表面にSiON膜、SiN膜などを成膜して水分の透過を抑えるようにしてもよい。 Although a glass substrate is used as the translucent substrate 1, the present invention is not limited to this, and for example, a plastic substrate may be used. As the glass substrate, for example, a soda lime glass substrate, an alkali-free glass substrate or the like can be used. Further, as the plastic substrate, for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyether sulfone (PES) substrate, a polycarbonate (PC) substrate or the like may be used. When a plastic substrate is used, a SiON film, a SiN film or the like may be formed on the surface of the plastic substrate to suppress the permeation of moisture.
 透光性基板1としてガラス基板を用いる場合には、透光性基板1の第2表面の凹凸が有機EL素子2のリーク電流などの発生原因となることがある(有機EL素子2の劣化原因となることがある)。このため、透光性基板1としてガラス基板を用いる場合には、第2表面の表面粗さが小さくなるように高精度に研磨された素子形成用のガラス基板を用意することが好ましい。透光性基板1の第2表面の表面粗さについては、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaを、数nm以下にすることが好ましい。これに対して、透光性基板1としてプラスチック基板を用いる場合には、特に高精度な研磨を行わなくても、第2表面の算術平均粗さRaが数nm以下のものを低コストで得ることが可能である。 When a glass substrate is used as the translucent substrate 1, the unevenness of the second surface of the translucent substrate 1 may cause the generation of a leak current of the organic EL element 2 (a cause of deterioration of the organic EL element 2) Can be For this reason, when using a glass substrate as the translucent substrate 1, it is preferable to prepare a glass substrate for element formation polished with high accuracy so that the surface roughness of the second surface is reduced. As for the surface roughness of the second surface of the translucent substrate 1, it is preferable to set the arithmetic average roughness Ra defined by JIS B 0601-2001 (ISO 4287-1997) to several nm or less. On the other hand, when a plastic substrate is used as the light-transmissive substrate 1, one having an arithmetic average roughness Ra of several nm or less on the second surface can be obtained at low cost without particularly performing high-precision polishing. It is possible.
 有機EL素子2は、第1電極21が陽極、第2電極23が陰極を構成している。そして、有機EL素子2は、第1電極21と第2電極23との間に介在する有機EL層22が、第1電極21側から順に、ホール輸送層、上述の発光層、電子輸送層、電子注入層を備えている。 In the organic EL element 2, the first electrode 21 constitutes an anode, and the second electrode 23 constitutes a cathode. In the organic EL element 2, the organic EL layer 22 interposed between the first electrode 21 and the second electrode 23 is, in order from the first electrode 21 side, a hole transport layer, the above-mentioned light emitting layer, an electron transport layer, It has an electron injection layer.
 上述の有機EL層22の積層構造は、上述の例に限らず、例えば、発光層220の単層構造や、ホール輸送層と発光層220と電子輸送層との積層構造や、ホール輸送層と発光層220との積層構造や、発光層220と電子輸送層との積層構造などでもよい。また、第1電極21とホール輸送層との間にホール注入層を介在させてもよい。また、発光層220は、単層構造でも多層構造でもよい。例えば、所望の発光色が白色の場合には、発光層220中に赤色、緑色、青色の3種類のドーパント色素をドーピングするようにしてもよいし、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよいし、青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。また、第1電極21と第2電極23とで挟んで電圧を印加すれば発光する機能を有する有機EL層22を1つの発光ユニットとして、複数の発光ユニットを光透過性および導電性を有する中間層を介して積層して電気的に直列接続したマルチユニット構造(つまり、1つの第1電極21と1つの第2電極23との間に、厚み方向に重なる複数の発光ユニットを備えた構造)を採用してもよい。 The laminated structure of the organic EL layer 22 described above is not limited to the above-mentioned example, and for example, a single layer structure of the light emitting layer 220, a laminated structure of a hole transporting layer, a light emitting layer 220 and an electron transporting layer, a hole transporting layer A stacked structure with the light emitting layer 220 or a stacked structure with the light emitting layer 220 and the electron transporting layer may be used. In addition, a hole injection layer may be interposed between the first electrode 21 and the hole transport layer. The light emitting layer 220 may have a single layer structure or a multilayer structure. For example, when the desired emission color is white, three dopant dyes of red, green and blue may be doped in the light emitting layer 220, and the blue hole transporting light emitting layer and the green electron transport may be doped. It is possible to adopt a laminated structure of a luminescent light emitting layer and a red electron transporting light emitting layer, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer. It is also good. In addition, an organic EL layer 22 having a function of emitting light when a voltage is applied by being sandwiched between the first electrode 21 and the second electrode 23 is one light emitting unit, and a plurality of light emitting units are intermediates having light transparency and conductivity. Multi-unit structure in which layers are stacked and electrically connected in series (that is, a structure including a plurality of light emitting units overlapping in the thickness direction between one first electrode 21 and one second electrode 23) May be adopted.
 陽極を構成する第1電極21は、発光層220中にホールを注入するための電極であり、(例えば第2電極23より)大きな仕事関数を持つ、金属、合金、電気伝導性化合物あるいはこれらの混合物からなる電極材料を用いることが好ましく、HOMO(Highest Occupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。第1電極21の電極材料としては、例えば、ITO(Indium Tin Oxide)、酸化錫、酸化亜鉛、IZO(Indium ZincOxide)、ヨウ化銅など、PEDOT、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料を挙げることができる。ここにおいて、第1電極21は、透光性基板1の第2表面側に、例えば、スパッタ法、真空蒸着法、塗布法などによって薄膜として形成すればよい。 The first electrode 21 constituting the anode is an electrode for injecting holes into the light emitting layer 220, and has a large work function (for example, compared to the second electrode 23). It is preferable to use an electrode material made of a mixture, and it is preferable to use one having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (Highest Occupied Molecular Orbital) level is not too large. Examples of the electrode material of the first electrode 21 include ITO (Indium Tin Oxide), tin oxide, zinc oxide, IZO (Indium Zinc Oxide), copper iodide and the like, conductive polymers such as PEDOT and polyaniline, and any acceptor and the like. And conductive light transmitting materials such as conductive polymers and carbon nanotubes. Here, the first electrode 21 may be formed as a thin film on the second surface side of the translucent substrate 1 by, for example, a sputtering method, a vacuum evaporation method, a coating method, or the like.
 なお、第1電極21のシート抵抗は数百Ω/□以下とすることが好ましく、特に好ましくは100Ω/□以下がよい。ここで、第1電極21の膜厚は、第1電極21の光透過率、シート抵抗などにより異なるが、500nm以下、好ましくは10nm~200nmの範囲で設定するのがよい。 The sheet resistance of the first electrode 21 is preferably several hundred ohms / square or less, and more preferably 100 ohms / square or less. Here, the film thickness of the first electrode 21 varies depending on the light transmittance of the first electrode 21, the sheet resistance, etc., but it is preferable to set it in a range of 500 nm or less, preferably 10 nm to 200 nm.
 また、陰極を構成する第2電極23は、発光層220中に電子を注入するための電極であり、(例えば第1電極21より)小さな仕事関数を持つ、金属、合金、電気伝導性化合物およびこれらの混合物からなる電極材料を用いることが好ましく、LUMO(Lowest Unoccupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。第2電極23の電極材料としては、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫など、およびこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。また、金属、金属酸化物など、およびこれらと他の金属との混合物、例えば、酸化アルミニウムからなる極薄膜(ここでは、トンネル注入により電子を流すことが可能な1nm以下の薄膜)とアルミニウムからなる薄膜との積層膜なども使用可能である。第2電極23の電極材料としては、発光層220から放射された光に対する反射率が高く、且つ、抵抗率の低い金属が好ましく、アルミニウムや銀が好ましい。 Further, the second electrode 23 constituting the cathode is an electrode for injecting electrons into the light emitting layer 220, and has a small work function (for example, compared to the first electrode 21), a metal, an alloy, an electrically conductive compound, It is preferable to use an electrode material made of a mixture of these materials, and it is preferable to use one having a work function of 1.9 eV or more and 5 eV or less so that the difference with the lowest unoccupied molecular orbital (LUMO) level is not too large. As an electrode material of the second electrode 23, for example, aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, etc., and alloys of these with other metals, such as magnesium-silver mixture, magnesium-indium Mixtures, aluminum-lithium alloys may be mentioned by way of example. In addition, metal, metal oxide, etc., and a mixture of these with other metals, for example, an extremely thin film of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum A laminated film with a thin film can also be used. As an electrode material of the second electrode 23, a metal having a high reflectance to light emitted from the light emitting layer 220 and a low resistivity is preferable, and aluminum or silver is preferable.
 発光層220の材料としては、有機EL素子用の材料として知られる任意の材料が使用可能である。例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体および各種蛍光色素など、上述の材料系およびその誘導体を始めとするものが挙げられるが、これらに限定するものではない。また、これらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、上記化合物に代表される蛍光発光を生じる化合物のみならず、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができる。また、これらの材料からなる発光層220は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜するものであってもよい。 As a material of the light emitting layer 220, any material known as a material for an organic EL element can be used. For example, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenyl butadiene, tetraphenyl butadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyki Norinate) aluminum complex, tris (4-methyl-8-quinolinate) aluminum complex, tris (5-phenyl-8-quinolinate) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-) 4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinacridone, rubrene, distyrylbenzene derivative, distyrylarylene derivative, distyryl And amine derivatives, and various fluorescent pigments, but include those including a material system and its derivatives described above, not limited to these. In addition, it is also preferable to appropriately mix and use a light emitting material selected from among these compounds. Moreover, not only compounds that produce fluorescence, as typified by the above compounds, but also material systems that emit light from spin multiplets, such as phosphorescent materials that produce phosphorescence, and a site made of them in a part of the molecule Compounds can also be suitably used. The light emitting layer 220 made of these materials may be deposited by a dry process such as evaporation or transfer, or may be deposited by a wet process such as spin coating, spray coating, die coating or gravure printing. It may be a membrane.
 上述のホール注入層に用いられる材料は、ホール注入性の有機材料、金属酸化物、いわゆるアクセプタ系の有機材料あるいは無機材料、p-ドープ層などを用いて形成することができる。ホール注入性の有機材料とは、ホール輸送性を有し、また仕事関数が5.0~6.0eV程度であり、第1電極21との強固な密着性を示す材料などがその例であり、例えば、CuPc、スターバーストアミンなどがその例である。また、ホール注入性の金属酸化物とは、例えば、モリブデン、レニウム、タングステン、バナジウム、亜鉛、インジウム、スズ、ガリウム、チタン、アルミニウムのいずれかを含有する金属酸化物である。また、1種の金属のみの酸化物ではなく、例えばインジウムとスズ、インジウムと亜鉛、アルミニウムとガリウム、ガリウムと亜鉛、チタンとニオブなど、上記のいずれかの金属を含有する複数の金属の酸化物であっても良い。また、これらの材料からなるホール注入層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法などの湿式プロセスによって成膜するものであってもよい。 The material used for the above-described hole injection layer can be formed using a hole injection organic material, a metal oxide, a so-called acceptor organic material or inorganic material, a p-doped layer or the like. The hole-injecting organic material is a material having a hole-transporting property, a work function of about 5.0 to 6.0 eV, and a strong adhesion to the first electrode 21. For example, CuPc, starburst amine, etc. are examples thereof. The hole-injectable metal oxide is, for example, a metal oxide containing any of molybdenum, rhenium, tungsten, vanadium, zinc, indium, tin, gallium, titanium, and aluminum. In addition, oxides of a plurality of metals other than the oxides of only one metal, such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc. It may be In addition, the hole injection layer made of these materials may be formed by a dry process such as evaporation or transfer, or formed by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a membrane.
 また、ホール輸送層に用いる材料は、例えば、ホール輸送性を有する化合物の群から選定することができる。この種の化合物としては、例えば、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを代表例とする、アリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物などを挙げることができるが、一般に知られる任意のホール輸送材料を用いることが可能である。 The material used for the hole transport layer can be selected, for example, from the group of compounds having a hole transportability. Examples of the compound of this type include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD), N, N′-bis (3-methylphenyl)-(1 1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′ ′-tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA) Arylamine compounds, amine compounds containing a carbazole group, with 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB and the like as representative examples Although amine compounds containing a fluorene derivative can be mentioned, it is possible to use any generally known hole transport material.
 また、電子輸送層に用いる材料は、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体などのヘテロ環を有する化合物などが挙げられるが、この限りではなく、一般に知られる任意の電子輸送材料を用いることが可能である。 The material used for the electron transport layer can be selected from the group of compounds having electron transportability. Examples of this type of compound include metal complexes known as electron transporting materials such as Alq 3 and compounds having a heterocycle such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Rather, it is possible to use any of the commonly known electron transport materials.
 また、電子注入層の材料は、例えば、フッ化リチウムやフッ化マグネシウムなどの金属フッ化物、塩化ナトリウム、塩化マグネシウムなどに代表される金属塩化物などの金属ハロゲン化物や、アルミニウム、コバルト、ジルコニウム、チタン、バナジウム、ニオブ、クロム、タンタル、タングステン、マンガン、モリブデン、ルテニウム、鉄、ニッケル、銅、ガリウム、亜鉛、シリコンなどの各種金属の酸化物、窒化物、炭化物、酸化窒化物など、例えば酸化アルミニウム、酸化マグネシウム、酸化鉄、窒化アルミニウム、窒化シリコン、炭化シリコン、酸窒化シリコン、窒化ホウ素などの絶縁物となるものや、SiO2やSiOなどをはじめとする珪素化合物、炭素化合物などから任意に選択して用いることができる。これらの材料は、真空蒸着法やスパッタ法などにより形成することで薄膜状に形成することができる。 The material of the electron injection layer is, for example, metal fluorides such as lithium fluoride and magnesium fluoride, metal halides such as metal chlorides represented by sodium chloride and magnesium chloride, aluminum, cobalt, zirconium, etc. Oxides, nitrides, carbides, oxynitrides, etc. of various metals such as titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc, silicon etc. eg aluminum oxide It is arbitrarily selected from those to be insulators such as magnesium oxide, iron oxide, aluminum nitride, silicon nitride, silicon carbide, silicon oxynitride, boron nitride, etc., silicon compounds such as SiO 2 and SiO, carbon compounds, etc. Can be used. These materials can be formed into thin films by vacuum evaporation, sputtering, or the like.
 また、引出配線23bの材料は、第2電極23と同じ材料を採用している。ここで、引出配線23bの厚さは、第2電極23と同じ厚さに設定してある。そして、引出配線23bは、第2電極23と連続して形成されている。したがって、本実施形態の面状発光装置Aは、製造時に、引出配線23bと第2電極23とを同時に形成することができる。また、引出配線23bは、第2端子部T2の第2層25における接合部4との接合用領域25aよりも内側に形成されている部位上まで延設されている。引出配線23bの幅(配線幅)寸法は、第1端子部T1との短絡を防止し、且つ、第1端子部T1との間に所定の絶縁距離を確保できるように、第2端子部T2の幅寸法よりもやや小さい値に設定してある。引出配線23bの幅寸法は、第2端子部T2の幅以下であることが好ましいが、エレクトロマイグレーション耐性を高めるために、できるだけ大きな値が好ましい。 The material of the lead-out wiring 23b is the same as that of the second electrode 23. Here, the thickness of the lead wire 23 b is set to the same thickness as that of the second electrode 23. The lead-out wiring 23 b is formed continuously with the second electrode 23. Therefore, the planar light emitting device A of this embodiment can simultaneously form the lead-out wiring 23 b and the second electrode 23 at the time of manufacture. Further, the lead-out wiring 23b is extended to a portion formed inside the bonding region 25a with the bonding portion 4 in the second layer 25 of the second terminal portion T2. The width (wiring width) dimension of the lead wire 23b prevents the short circuit with the first terminal portion T1 and secures a predetermined insulation distance between the first terminal portion T1 and the second terminal portion T2. It is set to a value slightly smaller than the width dimension of. The width dimension of the lead-out wiring 23b is preferably equal to or less than the width of the second terminal portion T2, but a value as large as possible is preferable in order to enhance the electromigration resistance.
 また、第1層24および第2層25の材料は、透明導電性酸化物(Transparent Conducting Oxide:TCO)であり、例えば、ITO、AZO、GZO、IZOなどを採用することができる。また、第1層24および第2層25の材料を、第1電極21と同じ材料とし、第1電極21と第1層24と第2層25とを同じ厚さに設定してある。 The material of the first layer 24 and the second layer 25 is a transparent conductive oxide (TCO), and for example, ITO, AZO, GZO, IZO, etc. can be adopted. The materials of the first layer 24 and the second layer 25 are the same as those of the first electrode 21, and the first electrode 21, the first layer 24 and the second layer 25 have the same thickness.
 また、第1金属層27および第2金属層28の材料は、例えば、アルミニウム、銀、金、銅、クロム、モリブデン、アルミニウム、パラジウム、スズ、鉛、マグネシウムなどの金属や、これら金属の少なくとも1種を含む合金などが好ましい。また、第1金属層27および第2金属層28は、単層構造に限らず、多層構造を採用してもよい。例えば、第1金属層27および第2金属層28は、MoNb層/AlNd層/MoNb層の3層構造を採用することができる。なお、この3層構造において、下層のMoNb層は、下地との密着層として設け、上層のMoNb層は、AlNd層の保護層として設けることが好ましい。また、本実施形態では、第1金属層27の材料と第2金属層28の材料とを同じとし、第1金属層27と第2金属層28とを同じ厚さに設定してある。なお、第1金属層27および第2金属層28は、第2電極23と同じ材料を採用してもよい。 In addition, the material of the first metal layer 27 and the second metal layer 28 is, for example, a metal such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, or at least one of these metals. Alloys containing seeds are preferred. The first metal layer 27 and the second metal layer 28 are not limited to a single layer structure, and may have a multilayer structure. For example, the first metal layer 27 and the second metal layer 28 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer. In the three-layer structure, it is preferable that the lower MoNb layer be provided as an adhesive layer with the base, and the upper MoNb layer be provided as a protective layer for the AlNd layer. Further, in the present embodiment, the material of the first metal layer 27 and the material of the second metal layer 28 are the same, and the first metal layer 27 and the second metal layer 28 are set to the same thickness. The first metal layer 27 and the second metal layer 28 may employ the same material as the second electrode 23.
 また、補助電極26の材料としては、例えば、アルミニウム、銀、金、銅、クロム、モリブデン、アルミニウム、パラジウム、スズ、鉛、マグネシウムなどの金属や、これら金属の少なくとも1種を含む合金などが好ましい。また、補助電極26は、単層構造に限らず、多層構造を採用してもよい。例えば、補助電極26は、MoNb層/AlNd層/MoNb層の3層構造を採用することができる。この3層構造において、下層のMoNb層は、下地との密着層として設け、上層のMoNb層は、AlNd層の保護層として設けることが好ましい。本実施形態の面状発光装置Aでは、補助電極26の材料と第1金属層27および第2金属層28の材料とを同じにしてある。これにより、本実施形態の面状発光装置Aでは、製造時に、補助電極26と第1金属層27および第2金属層28とを同時に形成することが可能となり、低コスト化を図れる。 Moreover, as a material of the auxiliary electrode 26, for example, metals such as aluminum, silver, gold, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium and alloys containing at least one of these metals are preferable. . The auxiliary electrode 26 is not limited to a single layer structure, and may have a multilayer structure. For example, the auxiliary electrode 26 can adopt a three-layer structure of MoNb layer / AlNd layer / MoNb layer. In this three-layer structure, the lower MoNb layer is preferably provided as an adhesive layer with the base, and the upper MoNb layer is preferably provided as a protective layer for the AlNd layer. In the planar light emitting device A of the present embodiment, the material of the auxiliary electrode 26 and the materials of the first metal layer 27 and the second metal layer 28 are the same. As a result, in the planar light emitting device A of the present embodiment, it is possible to simultaneously form the auxiliary electrode 26 and the first metal layer 27 and the second metal layer 28 at the time of manufacture, thereby achieving cost reduction.
 また、絶縁膜29の材料としては、例えば、ポリイミドを採用しているが、これに限らず、例えば、ノボラック樹脂、エポキシ樹脂などを採用することができる。 In addition, as a material of the insulating film 29, for example, polyimide is adopted, but not limited to this, for example, novolac resin, epoxy resin, etc. can be adopted.
 上述の有機EL素子2では、第1電極21と第2電極23との間に有機EL層22のみが介在する領域が上述の発光部20を構成しており、発光部20の平面形状が絶縁膜29の内周縁の形状と同じ直角四辺形状(図示例では、正方形状)になっている。ここで、面状発光装置Aは、平面視において有機EL素子2の発光部20以外の部分が非発光部となる。 In the organic EL element 2 described above, the region where only the organic EL layer 22 intervenes between the first electrode 21 and the second electrode 23 constitutes the light emitting unit 20 described above, and the planar shape of the light emitting unit 20 is insulating It has a right quadrilateral shape (square shape in the illustrated example) which is the same as the shape of the inner peripheral edge of the film 29. Here, in the planar light emitting device A, a portion other than the light emitting portion 20 of the organic EL element 2 is a non-light emitting portion in plan view.
 また、カバー基板5としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック基板を用いてもよい。ガラス基板としては、例えば、ソーダライムガラス基板、無アルカリガラス基板などを用いることができる。また、プラスチック基板としては、例えば、ポリエチレンテレフタラート(PET)基板、ポリエチレンナフタレート(PEN)基板、ポリエーテルサルフォン(PES)基板、ポリカーボネート(PC)基板などを用いてもよい。プラスチック基板を用いる場合は、プラスチック基板の表面にSiON膜、SiN膜などを成膜して水分の透過を抑えるようにしてもよい。 Further, although a glass substrate is used as the cover substrate 5, the present invention is not limited to this, and for example, a plastic substrate may be used. As the glass substrate, for example, a soda lime glass substrate, an alkali-free glass substrate or the like can be used. Further, as the plastic substrate, for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyether sulfone (PES) substrate, a polycarbonate (PC) substrate or the like may be used. When a plastic substrate is used, a SiON film, a SiN film or the like may be formed on the surface of the plastic substrate to suppress the permeation of moisture.
 カバー基板5は、上述のように、接合部4を介して有機EL素子モジュール3と接合されている。ここで、図2A、2Bおよび3に示すように、接合部4と有機EL素子モジュール3との界面は、接合部4と第1端子部T1との第1界面と、接合部4と第2端子部T2との第2界面と、接合部4と透光性基板1との第3界面とがある。 The cover substrate 5 is bonded to the organic EL element module 3 via the bonding portion 4 as described above. Here, as shown in FIGS. 2A, 2B and 3, the interface between the bonding portion 4 and the organic EL element module 3 is the first interface between the bonding portion 4 and the first terminal portion T1, the bonding portion 4 and the second There is a second interface with the terminal portion T2 and a third interface with the bonding portion 4 and the translucent substrate 1.
 接合部4の材料としては、エポキシ樹脂を用いているが、これに限らず、例えば、アクリル樹脂、フリットガラスなどを採用してもよい。エポキシ樹脂やアクリル樹脂としては、紫外線硬化型のものでもよいし、熱硬化型のものでもよい。また、接合部4の材料として、エポキシ樹脂にフィラー(例えば、シリカ、アルミナなど)を含有させたものを用いてもよい。 Although an epoxy resin is used as the material of the bonding portion 4, the material is not limited to this, and for example, an acrylic resin, frit glass, or the like may be adopted. As an epoxy resin and an acrylic resin, an ultraviolet curing thing may be used and a thermosetting thing may be used. Further, as a material of the bonding portion 4, a material in which a filler (for example, silica, alumina or the like) is contained in an epoxy resin may be used.
 上述の吸湿材としては、例えば、酸化カルシウム系の乾燥剤(酸化カルシウムを練り込んだゲッタ)などを用いることができる。 As the above-mentioned hygroscopic material, for example, a calcium oxide desiccant (a getter into which calcium oxide is kneaded) or the like can be used.
 均熱板6の材料としては、各種の金属の中で熱伝導率が高い金属が好ましく、銅を採用している。均熱板6の材料は、銅に限らず、例えば、アルミニウム、金などでもよい。なお、均熱板6としては、金属箔(例えば、銅箔、アルミニウム箔、金箔など)を用いてもよい。 As a material of the heat spreader plate 6, a metal having a high thermal conductivity among various metals is preferable, and copper is adopted. The material of the heat spreader plate 6 is not limited to copper, and may be, for example, aluminum, gold or the like. In addition, as the heat spreader 6, you may use metal foil (for example, copper foil, aluminum foil, a gold foil etc.).
 また、本実施形態の面状発光装置Aでは、カバー基板5における凹所51の開口サイズを絶縁膜29の外周形状のサイズよりも大きく設定してあり、カバー基板5の周部が接合部4を介して有機EL素子モジュール3に接合されている。これにより、面状発光装置Aは、第1電極21および第2電極23が露出しないので、耐湿性を高めることが可能となる。ここで、有機EL素子2のうち露出するのは、第1端子部T1および第2端子部T2の各々の一部である。 Further, in the planar light emitting device A of the present embodiment, the opening size of the recess 51 in the cover substrate 5 is set larger than the size of the outer peripheral shape of the insulating film 29, and the peripheral portion of the cover substrate 5 Is bonded to the organic EL element module 3 via the Thus, the planar light emitting device A can improve the moisture resistance because the first electrode 21 and the second electrode 23 are not exposed. Here, it is a part of each of 1st terminal area T1 and 2nd terminal area T2 that is exposed among organic EL elements 2. As shown in FIG.
 ここにおいて、第1端子部T1は、上述のように第1層24と第1金属層27との積層構造を有しているが、第1層24のみにより構成される接合用領域24aを、接合部4の周方向に沿って第1端子部T1の幅方向の全長に亘って設けてある。また、第2端子部T2は、上述のように第2層25と第2金属層28との積層構造を有しているが、第2層25のみにより構成される接合用領域25aを、接合部4の周方向に沿って第2端子部T2の幅方向の全長に亘って設けてある。したがって、接合部4と第1端子部T1との第1界面は、接合部4と第1層24との界面により構成され、接合部4と第2端子部T2との第2界面は、接合部4と第2層25との界面により構成されている。これにより、本実施形態の面状発光装置Aは、接合部4と第1端子部T1および第2端子部T2との接合強度を向上させることが可能となり、しかも、第1金属層27および第2金属層28の経時変化で酸化が生じて第1界面および第2界面の状態が変化することを防止することが可能となり、信頼性を向上させることが可能となる。 Here, although the first terminal portion T1 has the laminated structure of the first layer 24 and the first metal layer 27 as described above, the bonding region 24a constituted only by the first layer 24 is The first terminal portion T1 is provided along the circumferential direction of the joint portion 4 over the entire length in the width direction of the first terminal portion T1. In addition, although the second terminal portion T2 has the laminated structure of the second layer 25 and the second metal layer 28 as described above, the joining region 25a constituted only by the second layer 25 is joined. The second terminal portion T2 is provided along the circumferential direction of the portion 4 over the entire length in the width direction of the second terminal portion T2. Therefore, the first interface between the bonding portion 4 and the first terminal portion T1 is constituted by the interface between the bonding portion 4 and the first layer 24, and the second interface between the bonding portion 4 and the second terminal portion T2 is bonding An interface between the portion 4 and the second layer 25 is formed. Thereby, the planar light emitting device A of the present embodiment can improve the bonding strength between the bonding portion 4 and the first terminal portion T1 and the second terminal portion T2, and further, the first metal layer 27 and the first metal layer 27 and the It becomes possible to prevent the occurrence of oxidation due to the time-dependent change of the two-metal layer 28 and change in the state of the first interface and the second interface, and it becomes possible to improve the reliability.
 また、本実施形態の面状発光装置Aでは、均熱板6を備えていることにより、有機EL素子2の発光部20の温度の均熱化を図ることが可能となって発光部20の温度の面内ばらつきを低減することが可能となり、しかも、放熱性を向上させることが可能となる。しかして、面状発光装置Aでは、有機EL素子2の温度上昇を抑制することができ、入力電力を大きくして高輝度化を図った場合の長寿命化を図れる。 Moreover, in the planar light emitting device A of the present embodiment, by including the heat equalizing plate 6, it is possible to achieve soaking of the temperature of the light emitting portion 20 of the organic EL element 2, so that It becomes possible to reduce the in-plane variation of temperature, and to improve the heat dissipation. Thus, in the planar light emitting device A, the temperature rise of the organic EL element 2 can be suppressed, and the life can be extended when the input power is increased to achieve high luminance.
 以下、本実施形態の面状発光装置Aの製造方法について図4~図9を参照しながら説明する。 Hereinafter, a method of manufacturing the planar light emitting device A of the present embodiment will be described with reference to FIGS. 4 to 9.
 まず、ガラス基板からなる透光性基板1の第2表面側に、同一の透明導電性酸化物(例えば、ITO、AZO、GZO、IZOなど)からなる、第1電極21、第1層24および第2層25を蒸着法やスパッタ法などを利用して同時に形成することによって、図4に示す構造を得る。すなわち、各第1層24は、隙間なく第1電極21に連続している一方、各第2層25は、隙間を介して第1電極21から離隔されている(図2A、2Bおよび図4参照)。 First, on the second surface side of the light-transmissive substrate 1 made of a glass substrate, the first electrode 21, the first layer 24, and the same made of the same transparent conductive oxide (for example, ITO, AZO, GZO, IZO, etc.) The second layer 25 is simultaneously formed by vapor deposition, sputtering or the like to obtain the structure shown in FIG. That is, each first layer 24 is continuous with the first electrode 21 without a gap, while each second layer 25 is separated from the first electrode 21 with a gap (FIGS. 2A, 2B and 4). reference).
 次に、透光性基板1の第2表面側に、例えば、同一の金属材料などからなる、補助電極26、第1金属層27および第2金属層28を蒸着法やスパッタ法などを利用して同時に形成することによって、図5に示す構造を得る。 Next, the auxiliary electrode 26, the first metal layer 27 and the second metal layer 28 made of, for example, the same metal material or the like are formed on the second surface side of the translucent substrate 1 using a vapor deposition method, a sputtering method, or the like. By forming simultaneously, the structure shown in FIG. 5 is obtained.
 続いて、透光性基板1の第2表面側に、樹脂材料(例えば、ポリイミド、ノボラック樹脂、エポキシ樹脂など)からなる絶縁膜29を形成することによって、図6に示す構造を得る。 Subsequently, an insulating film 29 made of a resin material (for example, polyimide, novolac resin, epoxy resin or the like) is formed on the second surface side of the translucent substrate 1 to obtain a structure shown in FIG.
 その後、透光性基板1の第2表面側に、有機EL層22を例えば蒸着法などにより形成することによって、図7に示す構造を得る。なお、有機EL層22の形成方法は蒸着法に限らず、例えば、塗布法などでもよく、有機EL層22の材料に応じて適宜選択すればよい。 Thereafter, the organic EL layer 22 is formed on the second surface side of the translucent substrate 1 by, for example, a vapor deposition method to obtain a structure shown in FIG. The method of forming the organic EL layer 22 is not limited to the vapor deposition method, and may be a coating method, for example, and may be appropriately selected according to the material of the organic EL layer 22.
 続いて、透光性基板1の第2表面側に、同一の金属材料(例えば、アルミニウム、銀など)からなる第2電極23および引出配線23bを蒸着法やスパッタ法などを利用して形成することによって、図8に示す構造の有機EL素子モジュール3を得る。 Subsequently, the second electrode 23 and the lead wire 23b made of the same metal material (for example, aluminum, silver, etc.) are formed on the second surface side of the translucent substrate 1 using a vapor deposition method, a sputtering method, or the like. Thus, the organic EL element module 3 having the structure shown in FIG. 8 is obtained.
 その後、透光性基板1の第2表面側に、接合部4の材料(例えば、エポキシ樹脂、アクリル樹脂、ガラスフリットなど)4aをディスペンサなどにより塗布することによって、図9に示す構造を得る。ここにおいて、接合部4の材料4aを塗布する塗布工程では、有機EL素子モジュール3の周部に材料4aを直角四辺形状の枠形に塗布しているが、有機EL素子モジュール3ではなく、カバー基板5における凹所51の周部に接合部4の材料4aを直角四辺形の枠形に塗布するようにしてもよい。なお、接合部4の材料4aを塗布する塗布装置は、ディスペンサに限らず、例えば、スクリーン印刷装置、ダイコーター、スリットコーターなどを用いてもよい。 Thereafter, the material (for example, epoxy resin, acrylic resin, glass frit, and the like) 4a of the bonding portion 4 is applied to the second surface side of the translucent substrate 1 by a dispenser or the like to obtain a structure shown in FIG. Here, in the application step of applying the material 4 a of the bonding portion 4, the material 4 a is applied to the peripheral portion of the organic EL element module 3 in the form of a rectangular quadrilateral, but the cover is not the organic EL element module 3. The material 4 a of the bonding portion 4 may be applied to the periphery of the recess 51 in the substrate 5 in a rectangular frame shape. In addition, the coating apparatus which apply | coats the material 4a of the junction part 4 may use not only a dispenser but a screen printing apparatus, a die coater, a slit coater etc., for example.
 いずれにしても接合部4の材料4aを塗布した後、予め吸湿材および均熱板6を貼り付けたカバー基板5を重ね合わせ、接合部4の材料4aを未硬化の状態から硬化させることで接合することによって、図1に示す構造の面状発光装置Aを得る。接合部4の材料4aを未硬化の状態から硬化させるにあたっては、材料4aが紫外線硬化型の場合には紫外線を照射して材料4aを硬化させる。また、接合部4の材料4aが熱硬化型の場合には材料4aを加熱することにより材料4aを硬化させる。なお、吸湿材としては、例えば、シール型の乾燥剤や塗布型の乾燥剤を用いることが可能であり、塗布型の乾燥剤を用いる場合の硬化工程は、接合部4の材料4aとの組み合わせに応じて、カバー基板5と有機EL素子モジュール3との重ね合わせ前に単独で行うか、接合部4の材料4aを硬化させる硬化工程で兼ねるかのいずれかであればよい。塗布型の乾燥剤を塗布する方法としては、例えば、ディスペンサ、スクリーン印刷装置、メタルマスク、ダイコーター、スリットコーターなどを用いる方法を採用することができる。 In any case, after the material 4a of the joint 4 is applied, the cover substrate 5 to which the moisture absorbing material and the heat spreader plate 6 have been previously attached is overlapped, and the material 4a of the joint 4 is cured from an uncured state. By bonding, the planar light emitting device A having the structure shown in FIG. 1 is obtained. When the material 4a of the joint 4 is to be cured from the uncured state, if the material 4a is of the ultraviolet curing type, the material 4a is cured by irradiating it with ultraviolet light. When the material 4a of the joint 4 is a thermosetting type, the material 4a is cured by heating the material 4a. As the hygroscopic material, it is possible to use, for example, a seal-type desiccant or a coating-type desiccant, and the curing step in the case of using the coating-type desiccant is a combination with the material 4 a of the joint 4 Depending on the situation, it may be performed either alone before overlaying the cover substrate 5 and the organic EL element module 3 or in the curing step of curing the material 4 a of the bonding portion 4. As a method of applying the coating-type desiccant, for example, a method using a dispenser, a screen printing apparatus, a metal mask, a die coater, a slit coater or the like can be adopted.
 本実施形態の面状発光装置Aでは、発光部20の平面サイズを80mm□に設定してあるが、これに限らず、例えば、30~300mm□程度の範囲で適宜設定すればよい。また、第2端子部T2の幅方向の両側に配置される2つの第1端子部T1、T1の中心間距離を30mmに設定してあるが、この値は一例であり、特に限定するものではない。また、第1電極21の厚さを110nm~300nm程度の範囲、有機EL層22の厚さを150nm~300nm程度の範囲、第2電極23の厚さを70nm~300nm程度の範囲、絶縁膜29の厚さを0.7μm~1μm程度の範囲、補助電極26、第1金属膜27および第2金属膜28の厚さを300nm~600nm程度の範囲で適宜設定してあるが、これらの値は特に限定するものではない。 In the planar light emitting device A of the present embodiment, the planar size of the light emitting unit 20 is set to 80 mm, but not limited to this, for example, it may be appropriately set in the range of about 30 to 300 mm. Moreover, although the center-to-center distance between the two first terminal portions T1 and T1 disposed on both sides in the width direction of the second terminal portion T2 is set to 30 mm, this value is an example, and the value is particularly limited Absent. The thickness of the first electrode 21 is in the range of about 110 nm to 300 nm, the thickness of the organic EL layer 22 is in the range of about 150 nm to 300 nm, the thickness of the second electrode 23 is in the range of about 70 nm to 300 nm The thickness of each of the auxiliary electrode 26, the first metal film 27 and the second metal film 28 is appropriately set in the range of about 300 nm to 600 nm. There is no particular limitation.
 また、補助電極26の幅については、幅が広くなるほど、補助電極26のインピーダンスが低下し、発光部20の輝度の面内ばらつきは低減されるが、非発光部の面積が増加して光束が低下するので、0.3mm~3mm程度の範囲で設定することが好ましい。本実施形態の面状発光装置Aを複数個並べて光源とする照明器具では、補助電極26の幅を狭くするほど、隣り合う発光部20間の距離を小さくでき、見栄えが良くなる。また、第1端子部T1および第2端子部T2と透光性基板1の周縁との距離は、0.2mmに設定してあるが、この値は特に限定するものではなく、例えば、0.1~2mm程度の範囲で適宜設定することが好ましい。面状発光装置Aの非発光部の面積を小さくするには、第1端子部T1および第2端子部T2と透光性基板1の周縁との距離を短くすることが好ましいが、第1端子部T1および第2端子部T2と他の金属部材(例えば、照明器具の金属製の器具本体など)との間に所定の沿面距離を確保する必要がある場合には、この沿面距離よりも長い値に設定することが好ましい。 Further, with regard to the width of the auxiliary electrode 26, the wider the width, the lower the impedance of the auxiliary electrode 26, and the in-plane variation of the luminance of the light emitting unit 20 is reduced. Since it decreases, it is preferable to set in the range of about 0.3 mm to 3 mm. In a luminaire in which a plurality of planar light emitting devices A according to the present embodiment are arranged as a light source, as the width of the auxiliary electrode 26 is narrowed, the distance between the adjacent light emitting units 20 can be reduced and the appearance becomes better. In addition, although the distance between the first terminal portion T1 and the second terminal portion T2 and the peripheral edge of the translucent substrate 1 is set to 0.2 mm, this value is not particularly limited. It is preferable to set appropriately in the range of about 1 to 2 mm. In order to reduce the area of the non-light emitting portion of the planar light emitting device A, it is preferable to shorten the distance between the first terminal portion T1 and the second terminal portion T2 and the peripheral edge of the translucent substrate 1. When it is necessary to secure a predetermined creepage distance between the portion T1 and the second terminal portion T2 and another metal member (for example, a metal fixture body of a lighting fixture), the creepage distance is longer than the creepage distance. It is preferable to set it to a value.
 ところで、図1の例では、アルミニウム、銀などの金属により形成される引出配線23bの幅寸法(第2方向の長さ)は第2端子部T2の幅寸法よりもやや小さい値に設定してあるが、引出配線23bの引出配線23bに臨界電流密度(金属がアルミニウムの場合には1×105A/cm2)以上の電流が長時間にわたって流れると、エレクトロマイグレーションが起こり、断線が起こりやすくなってしまう懸念がある。これに対して、ITOなどのTCOにより形成され第1電極21に連続した第1層24は、引出配線23bに比べて、臨界電流密度が大きく、臨界電流密度に対するマージンが大きい。 By the way, in the example of FIG. 1, the width dimension (length in the second direction) of the lead wire 23b formed of metal such as aluminum or silver is set to a value slightly smaller than the width dimension of the second terminal portion T2. However, if a current of critical current density (1 × 10 5 A / cm 2 when metal is aluminum) flows for a long time in the lead wire 23 b of the lead wire 23 b, electromigration occurs and disconnection easily occurs. There is a concern that On the other hand, the first layer 24 formed of TCO such as ITO and continued to the first electrode 21 has a large critical current density and a large margin with respect to the critical current density as compared with the lead-out wiring 23b.
 そこで、本願発明者らは、第2端子部T2の幅の合計寸法を第1端子部T1の幅の合計寸法よりも大きくすることでエレクトロマイグレーション耐性(以下、EM耐性と略称する)を向上させることを考えた。なお、図1について見れば、第2端子部T2の幅の合計寸法とは、4個の第2端子部T2の幅(第2方向における全ての第2端子部T2の幅)の合計寸法であり、第1端子部T1の幅の合計寸法とは、6個の第1端子部T1の幅(第2方向における全ての第1端子部T1の幅)の合計寸法である。 Therefore, the inventors of the present invention improve the electromigration resistance (hereinafter abbreviated as EM resistance) by making the total dimension of the width of the second terminal portion T2 larger than the total dimension of the width of the first terminal portion T1. I thought about that. Referring to FIG. 1, the total dimension of the widths of the second terminal portions T2 is the total dimension of the widths of the four second terminal portions T2 (the widths of all the second terminal portions T2 in the second direction). The total dimension of the widths of the first terminal portions T1 is the total dimension of the widths of the six first terminal portions T1 (the widths of all the first terminal portions T1 in the second direction).
 そして、第1端子部T1の幅の合計寸法と第2端子部T2の合計寸法との和を一定値とし、第1端子部T1の幅の合計寸法を第2端子部T2の幅の合計寸法で除した値である端子幅比を種々変化させて、各端子幅比それぞれの条件での輝度均整度および駆動電圧をシミュレーションした結果を図10に示す。図10は、横軸が端子幅比、左側の縦軸が輝度均整度、右側の縦軸が駆動電圧である。また、図10においては、A1が輝度均整度のシミュレーション結果、A2が駆動電圧のシミュレーション結果である。ここで、第1端子部T1の幅の合計寸法と第2端子部T2の幅の合計寸法とが同じ値の場合は、端子幅比が0.5となる。これに対して、第1端子部T1の幅の合計寸法よりも第2端子部T2の幅の合計寸法が大きくなると、端子幅比は0.5よりも小さくなる。逆に、第1端子部T1の幅の合計寸法よりも第2端子部T2の幅の合計寸法が小さくなると、端子幅比は0.5よりも大きくなる。 The sum of the total dimension of the width of the first terminal portion T1 and the total dimension of the second terminal portion T2 is a constant value, and the total dimension of the width of the first terminal portion T1 is the total dimension of the width of the second terminal portion T2. FIG. 10 shows the results of simulating the brightness uniformity and the drive voltage under the conditions of each terminal width ratio by variously changing the terminal width ratio which is the value divided by. In FIG. 10, the horizontal axis represents the terminal width ratio, the vertical axis on the left is the luminance uniformity, and the vertical axis on the right is the drive voltage. Further, in FIG. 10, A1 is a simulation result of the luminance uniformity, and A2 is a simulation result of the drive voltage. Here, when the total dimension of the width of the first terminal portion T1 and the total dimension of the width of the second terminal portion T2 have the same value, the terminal width ratio is 0.5. On the other hand, when the total dimension of the width of the second terminal portion T2 is larger than the total dimension of the width of the first terminal portion T1, the terminal width ratio becomes smaller than 0.5. Conversely, when the total dimension of the width of the second terminal portion T2 is smaller than the total dimension of the width of the first terminal portion T1, the terminal width ratio becomes larger than 0.5.
 上述のシミュレーションにあたっては、第1電極21、第1層24および第2層25を厚さが150nmのITO膜とし、有機EL層22の厚さを150nmとし、第2電極23および引出配線23bを厚さが80nmのAl膜とし、発光部20の平面サイズを80mm□とし、第2端子部T2の幅方向の両側に配置される2つの第1端子部T1、T1の中心間距離を30mmとし、有機EL素子2への通電電流を275mAとした。また、シミュレーションにあたっては、有機EL素子2の各構成部位のシート抵抗の値と、有機EL層22の電圧-電流特性を用いて、第1電極21、第2電極23および補助電極26での電圧分布と、有機EL層22を厚み方向に流れる電流の電流密度分布を算出している。また、輝度均整度は、電流密度分布での最高電流密度に対する最低電流密度の百分率である。 In the above simulation, the first electrode 21, the first layer 24, and the second layer 25 are made of an ITO film having a thickness of 150 nm, the thickness of the organic EL layer 22 is made 150 nm, and the second electrode 23 and the lead wire 23b are provided. The planar size of the light emitting unit 20 is 80 mm square, and the distance between the centers of two first terminal portions T1 and T1 disposed on both sides in the width direction of the second terminal portion T2 is 30 mm. The current supplied to the organic EL element 2 was 275 mA. Further, in the simulation, using the value of the sheet resistance of each component of the organic EL element 2 and the voltage-current characteristics of the organic EL layer 22, the voltage at the first electrode 21, the second electrode 23 and the auxiliary electrode 26 The distribution and the current density distribution of the current flowing in the thickness direction of the organic EL layer 22 are calculated. Also, the luminance uniformity is a percentage of the lowest current density to the highest current density in the current density distribution.
 図10から、端子幅比を0.25~0.83の範囲で変化させても輝度均整度は略一定であることが分かる。また、図10から、端子幅比を0.25~0.83の範囲で変化させると、端子幅比が0.5の場合が最も駆動電圧が低くなり、端子幅比が0.5よりも大きくなるにつれて駆動電圧が高くなる傾向にあり、端子幅比が0.5よりも小さくなるにつれて駆動電圧が高くなる傾向にあることが分かる。ただし、端子幅比を0.5よりも小さくした場合であっても、端子幅比が0.33以上であれば、端子幅比が0.5の場合の駆動電圧と略同じであるという知見を得た。要するに、上述の面状発光装置Aの基本構成では、端子幅比が0.5の場合が最も低消費電力となるが、端子幅比が0.33以上であれば、端子幅比が0.5の場合と同程度の消費電力とすることが可能となり、端子幅比が0.5の場合と同様に、駆動電圧の低電圧化による省エネルギ化を図ることが可能となる。 From FIG. 10, it can be seen that the luminance uniformity is substantially constant even if the terminal width ratio is changed in the range of 0.25 to 0.83. Further, from FIG. 10, when the terminal width ratio is changed in the range of 0.25 to 0.83, the drive voltage is lowest when the terminal width ratio is 0.5, and the terminal width ratio is more than 0.5. It can be seen that the drive voltage tends to become higher as it becomes larger, and the drive voltage tends to become higher as the terminal width ratio becomes smaller than 0.5. However, even if the terminal width ratio is smaller than 0.5, if the terminal width ratio is 0.33 or more, it is found that the driving voltage is substantially the same as the case where the terminal width ratio is 0.5. I got In short, in the basic configuration of the planar light emitting device A described above, the case where the terminal width ratio is 0.5 is the lowest power consumption, but if the terminal width ratio is 0.33 or more, the terminal width ratio is 0. It is possible to achieve the same level of power consumption as in the case of 5. As in the case where the terminal width ratio is 0.5, it is possible to achieve energy saving by lowering the drive voltage.
 そこで、本実施形態の面状発光装置Aでは、第1端子部T1の幅の合計寸法を第2端子部T2の幅の合計寸法で除した値(以下「設定値」という)が0.33以上0.67以下で設定するようにしている。なお、設定値は、0.33以上0.6以下であることが望ましく、0.33以上0.5未満であることがより望ましい。 Therefore, in the planar light emitting device A of the present embodiment, a value obtained by dividing the total dimension of the width of the first terminal portion T1 by the total dimension of the width of the second terminal portion T2 (hereinafter referred to as "set value") is 0.33. It is made to set by more than 0.67. The set value is preferably 0.33 or more and 0.6 or less, and more preferably 0.33 or more and less than 0.5.
 以上説明した本実施形態の面状発光装置Aでは、設定値が0.33以上0.67以下(望ましくは0.6以下、より望ましくは0.5未満)であることにより、駆動電圧の上昇を抑制しつつ、EM耐性の向上による信頼性の向上を図ることが可能となる。なお、面状発光装置Aでは、輝度が、有機EL素子2に流れる電流値に略比例するので、定電流で駆動する場合、駆動電圧が低いほど、電力効率が高くなり、低消費電力化を図ることが可能となる。 In the planar light emitting device A according to the present embodiment described above, the drive voltage increases because the set value is 0.33 or more and 0.67 or less (desirably 0.6 or less, more preferably less than 0.5). It is possible to improve the reliability by improving the EM resistance while suppressing the In the planar light emitting device A, the luminance is substantially proportional to the value of the current flowing through the organic EL element 2. Therefore, when driving with a constant current, the lower the drive voltage, the higher the power efficiency, and the lower the power consumption. It is possible to
 また、面状発光装置Aに関し、端子幅比を0.5として、発光部20の2つ辺の各々に沿って配置される第1端子部T1と第2端子部T2との合計数(端子数)を種々変化させた場合について、駆動電圧および輝度均整度をシミュレーションした結果を表1に示す。このシミュレーションにあたっては、第1電極21、第1層24および第2層25を厚さが150nmのITO膜とし、有機EL層22の厚さを150nmとし、第2電極23および引出配線23bを厚さが80nmのAl膜とし、発光部20の平面サイズを80mm□とし、有機EL素子2への通電電流を275mAとした。なお、図1に示した例では、端子数は、5である。また、シミュレーションにあたっては、有機EL素子2の各構成部位のシート抵抗の値と、有機EL層22の電圧-電流特性を用いて、第1電極21、第2電極23および補助電極26での電圧分布と、有機EL層22を厚み方向に流れる電流の電流密度分布を算出している。また、輝度均整度は、電流密度分布での最高電流密度に対する最低電流密度の百分率である。 Further, regarding the planar light emitting device A, the total number of the first terminal portions T1 and the second terminal portions T2 disposed along each of the two sides of the light emitting unit 20 with the terminal width ratio being 0.5 (terminals Table 1 shows the results of simulating the drive voltage and the brightness uniformity when the number is varied. In this simulation, the first electrode 21, the first layer 24, and the second layer 25 are made of an ITO film having a thickness of 150 nm, the thickness of the organic EL layer 22 is 150 nm, and the second electrode 23 and the lead wire 23b are thick. An Al film of 80 nm was used, the planar size of the light emitting unit 20 was 80 mm, and the current flow to the organic EL element 2 was 275 mA. In the example shown in FIG. 1, the number of terminals is five. Further, in the simulation, using the value of the sheet resistance of each component of the organic EL element 2 and the voltage-current characteristics of the organic EL layer 22, the voltage at the first electrode 21, the second electrode 23 and the auxiliary electrode 26 The distribution and the current density distribution of the current flowing in the thickness direction of the organic EL layer 22 are calculated. Also, the luminance uniformity is a percentage of the lowest current density to the highest current density in the current density distribution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、端子数が5以上の奇数であれば、駆動電圧が略一定であり、端子数3の場合に比べて輝度均整度が高く略一定であることが分かる。したがって、直角四辺形状の発光部20の所定の平行な2辺の各々に沿ってm個の第2端子部T2と〔m+1〕個の第1端子部T1とが、第2端子部T2の幅方向の両側に第1端子部T1が位置するように配置される本実施形態の面状発光装置Aでは、m≧1であればよいが、m≧2とすることにより、m=1の場合に比べて、輝度均整度の向上を図ることが可能となる。端子幅比を0.67以下(望ましくは0.6以下、より望ましくは0.5未満)とした場合も、表1と同様に端子数5以上の奇数であれば、駆動電圧が略一定であり、端子数3の場合に比べて輝度均整度が高く略一定である。ただし、端子数が増えるほど、金属ワイヤ(ボンディングワイヤ)などとの接続箇所が増えるので、接続箇所の数の観点からは端子数が少ない方が好ましい。したがって、本実施形態の面状発光装置Aでは、端子数が5であることが好ましい。 From Table 1, it can be seen that when the number of terminals is an odd number of 5 or more, the drive voltage is substantially constant, and the luminance uniformity is high and substantially constant as compared to the case of three terminals. Therefore, the m second terminal portions T2 and the [m + 1] first terminal portions T1 have a width of the second terminal portion T2 along each of two predetermined parallel sides of the light emitting unit 20 having a rectangular quadrilateral shape. In the planar light emitting device A of this embodiment disposed so that the first terminal portions T1 are positioned on both sides of the direction, it is sufficient that m よ い 1, but by m 、 2, the case of m = 1 In comparison with the above, it is possible to improve the brightness uniformity. Even when the terminal width ratio is 0.67 or less (desirably 0.6 or less, more preferably less than 0.5), the drive voltage is substantially constant if the number of terminals is an odd number of 5 or more as in Table 1. The brightness uniformity is high and substantially constant as compared to the case of three terminals. However, as the number of terminals increases, the number of connection points with metal wires (bonding wires) and the like increases, so from the viewpoint of the number of connection points, it is preferable to reduce the number of terminals. Therefore, in the planar light emitting device A of the present embodiment, the number of terminals is preferably five.
 ところで、透光性基板1の平面視形状は直角四辺形状であればよく、長方形状に限らず、二つの辺が第1方向に沿った正方形状でもよく、この場合は、発光部20の平面形状を第2方向に伸びる長方形状とすれば、当該発光部20における2つの長辺が上述した第2方向における発光部20の平行な2辺に対応する。また、透光性基板1の平面視形状を2つの長辺が第1方向に沿った長方形状として、発光部20の平面視形状を透光性基板1とは非相似で2つの長辺が第2方向に沿った長方形状とすれば、当該発光部20における2つの長辺が上述した第2方向における発光部20の平行な2辺に対応する。 By the way, the plan view shape of the light-transmissive substrate 1 may be a right-angled quadrilateral shape, and is not limited to a rectangular shape, and may be a square shape in which two sides are along the first direction. If the shape is a rectangular shape extending in the second direction, two long sides in the light emitting unit 20 correspond to two parallel sides of the light emitting unit 20 in the second direction described above. Further, the planar view shape of the translucent substrate 1 is a rectangular shape in which two long sides are in the first direction, and the planar view shape of the light emitting unit 20 is not similar to the translucent substrate 1 and the two long sides are In the rectangular shape along the second direction, two long sides in the light emitting unit 20 correspond to two parallel sides of the light emitting unit 20 in the second direction described above.
 上述の有機EL素子2では、透明導電膜からなる第1電極21が陽極を構成し、第1電極21よりもシート抵抗が小さな第2電極23が陰極を構成しているが、第1電極21が陰極を構成し、第2電極23が陽極を構成してもよく、いずれにしても、透明導電膜からなる第1電極21を通して光を取り出すことが可能であればよい。 In the organic EL element 2 described above, the first electrode 21 made of a transparent conductive film constitutes an anode, and the second electrode 23 whose sheet resistance is smaller than that of the first electrode 21 constitutes a cathode. May constitute a cathode and the second electrode 23 may constitute an anode, in any case, as long as it is possible to extract light through the first electrode 21 made of a transparent conductive film.
 また、実施形態で説明した面状発光装置Aは、例えば、照明用の光源として好適に用いることができるが、照明用に限らず、他の用途に用いることも可能である。 Moreover, although the planar light-emitting device A demonstrated by embodiment can be used suitably as a light source for illumination, for example, it is possible not only for illumination but to use for another use.
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。 Although the present invention has been described with reference to several preferred embodiments, various modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of the present invention, ie, the claims.

Claims (4)

  1.  透光性基板と、
     前記透光性基板の一表面側に形成された有機EL素子と
    を備える面状発光装置であって、
     前記有機EL素子は、
     前記透光性基板の前記一表面側に配置され透明導電膜からなる第1電極と、
     前記第1電極における前記透光性基板側とは反対側に配置され有機材料からなる発光層と、
     前記発光層における前記第1電極側とは反対側に配置され金属膜からなる第2電極と、
     前記第1電極と前記発光層と前記第2電極とが重なる発光部の側方に配置され前記第1電極に電気的に接続された複数の第1端子部と、
     前記発光部の側方に配置され前記第2電極に電気的に接続された複数の第2端子部と、
     前記第1電極よりも小さな比抵抗を持つ材料からなり前記第1電極における前記透光性基板側とは反対側の表面の周部近傍に形成され前記第1電極に電気的に接続された補助電極とを備え、
     前記発光部の平面視形状が直角四辺形状であり、
     当該直角四辺形状の前記発光部の所定の平行な2辺の各々に沿ってm個の第2端子部と〔m+1〕個の第1端子部とが、前記第2端子部の幅方向の両側に前記第1端子部が位置するように配置されており、ここで、mは1以上の整数であり、
     前記第1端子部および前記第2端子部の各々が、透明導電性酸化物層と金属層との積層構造を有し、
     前記第1端子部の幅の合計寸法を前記第2端子部の幅の合計寸法で除した値が0.33以上0.67以下である
     ことを特徴とする面状発光装置。
    A translucent substrate,
    A planar light emitting device comprising: an organic EL element formed on one surface side of the translucent substrate;
    The organic EL element is
    A first electrode disposed on the one surface side of the translucent substrate and made of a transparent conductive film;
    A light emitting layer which is disposed on the side opposite to the light transmitting substrate side of the first electrode and made of an organic material;
    A second electrode formed of a metal film and disposed on the side opposite to the first electrode side in the light emitting layer;
    A plurality of first terminal portions disposed on the side of the light emitting portion where the first electrode, the light emitting layer, and the second electrode overlap, and electrically connected to the first electrode;
    A plurality of second terminal portions disposed laterally of the light emitting portion and electrically connected to the second electrode;
    An auxiliary formed of a material having a smaller specific resistance than the first electrode and formed in the vicinity of a peripheral portion of the surface of the first electrode opposite to the light transmitting substrate side and electrically connected to the first electrode Equipped with electrodes,
    The plan view shape of the light emitting unit is a right quadrilateral shape,
    The m second terminals and [m + 1] first terminals along each of two predetermined parallel sides of the light emitting section having the right-angled quadrilateral shape are disposed on both sides in the width direction of the second terminals. Are arranged so that the first terminal portion is located, where m is an integer of 1 or more,
    Each of the first terminal portion and the second terminal portion has a laminated structure of a transparent conductive oxide layer and a metal layer,
    A value obtained by dividing the total dimension of the width of the first terminal portion by the total dimension of the width of the second terminal portion is 0.33 or more and 0.67 or less.
  2.  前記第1端子部の幅の合計寸法を前記第2端子部の幅の合計寸法で除した値が0.33以上0.5未満であることを特徴とする請求項1記載の面状発光装置。 The planar light emitting device according to claim 1, wherein a value obtained by dividing the total dimension of the width of the first terminal portion by the total dimension of the width of the second terminal portion is 0.33 or more and less than 0.5. .
  3.  前記有機EL素子は、前記透光性基板の前記一表面側において前記補助電極および前記第1電極の側縁を覆う絶縁膜をさらに備えることを特徴とする請求項1又は2記載の面状発光装置。 3. The planar light emission according to claim 1, wherein the organic EL element further comprises an insulating film covering side edges of the auxiliary electrode and the first electrode on the one surface side of the translucent substrate. apparatus.
  4.  m≧2であることを特徴とする請求項1~3の何れか1項に記載の面状発光装置。 The planar light emitting device according to any one of claims 1 to 3, wherein m m2.
PCT/JP2012/055698 2011-03-07 2012-03-06 Planar light emitting device WO2012121251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503555A JPWO2012121251A1 (en) 2011-03-07 2012-03-06 Planar light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011049359 2011-03-07
JP2011-049359 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012121251A1 true WO2012121251A1 (en) 2012-09-13

Family

ID=46798209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055698 WO2012121251A1 (en) 2011-03-07 2012-03-06 Planar light emitting device

Country Status (3)

Country Link
JP (1) JPWO2012121251A1 (en)
TW (1) TWI460852B (en)
WO (1) WO2012121251A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047742A1 (en) * 2011-09-30 2013-04-04 パナソニック出光Oled照明 株式会社 Planar light emitting device
JP6053221B1 (en) * 2015-10-20 2016-12-27 住友化学株式会社 Organic EL device and manufacturing method thereof
JP2018133346A (en) * 2013-05-01 2018-08-23 コニカミノルタ株式会社 Organic electroluminescent element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253302A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Organic electroluminescence element
JP2007026971A (en) * 2005-07-20 2007-02-01 Toyota Industries Corp Electroluminescent element and electroluminescent element unit
JP2010010130A (en) * 2008-06-10 2010-01-14 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Flat lighting device, and contact method of flat lighting device
WO2010098392A1 (en) * 2009-02-26 2010-09-02 パナソニック電工株式会社 Planar light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085158A (en) * 1999-09-10 2001-03-30 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2005100916A (en) * 2003-08-29 2005-04-14 Toyota Industries Corp Organic electroluminescent element
JP5125632B2 (en) * 2008-03-10 2013-01-23 セイコーエプソン株式会社 Mounting structure and electro-optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253302A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Organic electroluminescence element
JP2007026971A (en) * 2005-07-20 2007-02-01 Toyota Industries Corp Electroluminescent element and electroluminescent element unit
JP2010010130A (en) * 2008-06-10 2010-01-14 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Flat lighting device, and contact method of flat lighting device
WO2010098392A1 (en) * 2009-02-26 2010-09-02 パナソニック電工株式会社 Planar light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047742A1 (en) * 2011-09-30 2013-04-04 パナソニック出光Oled照明 株式会社 Planar light emitting device
US9313835B2 (en) 2011-09-30 2016-04-12 Idemitsu Kosan Co., Ltd. Planar light emitting device
JP2018133346A (en) * 2013-05-01 2018-08-23 コニカミノルタ株式会社 Organic electroluminescent element
JP6053221B1 (en) * 2015-10-20 2016-12-27 住友化学株式会社 Organic EL device and manufacturing method thereof
WO2017068808A1 (en) * 2015-10-20 2017-04-27 住友化学株式会社 Organic el element and method for manufacturing same
CN108353474A (en) * 2015-10-20 2018-07-31 住友化学株式会社 Organic EL element and its manufacturing method
US10991904B2 (en) 2015-10-20 2021-04-27 Sumitomo Chemical Company, Limited Organic EL element and method for manufacturing same

Also Published As

Publication number Publication date
TWI460852B (en) 2014-11-11
JPWO2012121251A1 (en) 2014-07-17
TW201246530A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
US8710735B2 (en) Organic electroluminescence element
US8907367B2 (en) Light emission device
WO2012114616A1 (en) Organic el device
JP5334888B2 (en) Light emitting device
TWI466286B (en) Planar light emitting device
JP5842089B2 (en) Organic EL device
WO2016013160A1 (en) Light emitting device
WO2012121249A1 (en) Planar light emitting device
WO2013042784A1 (en) Light emission device
JP5297400B2 (en) Light emitting device
WO2012121251A1 (en) Planar light emitting device
JP2016062858A (en) Organic electroluminescent element, illumination device, and illumination system
JP5613590B2 (en) Organic EL device
JP2012212555A (en) Light-emitting device
US9401495B2 (en) Luminescent element and lighting device using the same
WO2012160926A1 (en) Organic electroluminescence element
JP2013191276A (en) Organic electroluminescent element
JP2012174607A (en) Organic el device
WO2012132823A1 (en) Light-emitting device
WO2012120746A1 (en) Organic el device
WO2012114619A1 (en) Organic el device
WO2012161113A1 (en) Organic electroluminescence element
WO2012161057A1 (en) Organic electroluminescence element
JP2015122154A (en) Light emitting element, lighting device using the same and manufacturing method of the same
JP2013239456A (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755624

Country of ref document: EP

Kind code of ref document: A1