WO2012132448A1 - Hydrous cutting fluid for slicing silicon ingot - Google Patents

Hydrous cutting fluid for slicing silicon ingot Download PDF

Info

Publication number
WO2012132448A1
WO2012132448A1 PCT/JP2012/002176 JP2012002176W WO2012132448A1 WO 2012132448 A1 WO2012132448 A1 WO 2012132448A1 JP 2012002176 W JP2012002176 W JP 2012002176W WO 2012132448 A1 WO2012132448 A1 WO 2012132448A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting fluid
water
silicon
silicon ingot
adduct
Prior art date
Application number
PCT/JP2012/002176
Other languages
French (fr)
Japanese (ja)
Inventor
剛 福島
吉隆 勝川
聖二 山下
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201280014979.7A priority Critical patent/CN103502409B/en
Priority to KR1020137023071A priority patent/KR101577588B1/en
Publication of WO2012132448A1 publication Critical patent/WO2012132448A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants

Definitions

  • the present invention relates to a water-containing cutting fluid used when cutting a silicon ingot. More specifically, the present invention relates to a water-containing cutting fluid that has high cooling properties, excellent penetrability, suppression of reaction between silicon and water, foam suppression, and flatness of a silicon wafer.
  • the slicing method using a silicon ingot wire includes (1) a method using an abrasive slurry in which free abrasive grains are dispersed in a cutting fluid, and (2) a fixed abrasive wire in which the abrasive grains are fixed to the wire by electrodeposition or resin adhesion.
  • the method is roughly classified into methods using a water-containing cutting fluid.
  • the water-containing cutting fluid used in the slicing method with a fixed abrasive wire is intended to improve the workability by reducing the risk of flammability caused by organic solvents, and to increase the cooling performance of frictional heat generated during cutting.
  • a hydrous cutting fluid containing water having a high specific heat has been developed (for example, Patent Document 1).
  • silicon wafers are being made thinner for the purpose of increasing the production efficiency of silicon wafers.
  • the thinning of the wire and the narrowing of the pitch width between the wires reduce the thickness of the silicon wafer, but this increases the contact area between the wire and the silicon ingot and increases the processing heat during processing.
  • Development of cutting fluid with high cooling performance is desired.
  • the silicon wafer interval during processing becomes narrower than before in order to make the silicon wafer thinner, high penetrability of the cutting fluid into the cutting portion is required.
  • the water-containing cutting fluid of the present invention is for silicon ingot slices that have high cooling performance of processing heat, excellent permeability, excellent suppression of reaction between water and silicon, foam suppression, and extremely good flatness of silicon wafers. It aims at providing a water-containing cutting fluid.
  • the present invention contains a polyoxyalkylene adduct (A) of a compound (a) having 3 to 8 hydroxyl groups represented by the following general formula (1) and water as essential components.
  • Hydrous cutting fluid for silicon ingot slice characterized by HLB of adduct (A) being 6.0 to 20.0; wire saw for fixed abrasive with this hydrous cutting fluid and abrasive grains fixed to wire Slicing method of silicon ingot to be used; manufacturing method of slicing silicon ingot with this water-containing cutting fluid by fixed abrasive method; silicon wafer manufactured by slicing silicon ingot using this water-containing cutting fluid; and using this silicon wafer It is an electronic material manufactured by
  • R represents a residue obtained by removing a hydroxyl group from a compound having 3 to 8 hydroxyl groups
  • (A 1 O) represents an oxyalkylene group having 2 to 4 carbon atoms
  • m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms and represents a number of 1 to 350
  • f is an integer of 3 to 8.
  • the present invention has a high process heat cooling property in the cutting process of the silicon ingot, and is excellent in permeability, water reaction suppression property, and foam suppression property. Even under severe slicing conditions, the flatness of the work surface can be maintained high.
  • the hydrous cutting fluid for slicing silicon ingot of the present invention contains a polyoxyalkylene adduct (A) of a compound (a) having 3 to 8 hydroxyl groups and water as essential components. And m which is the average addition mole number of HLB (hydrophilic-hydrophobic balance) and alkylene oxide of the polyoxyalkylene adduct (A) is in a specific range.
  • the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups, which is the first essential component of the water-containing cutting fluid of the present invention, is represented by the following general formula (1).
  • R represents a residue obtained by removing a hydroxyl group from the compound (a) having 3 to 8 hydroxyl groups
  • (A 1 O) represents an oxyalkylene group having 2 to 4 carbon atoms
  • m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms and represents a number of 1 to 350
  • f is an integer of 3 to 8.
  • Specific examples of the compound (a) having 3 to 8 hydroxyl groups used in the present invention include Compounds having three hydroxyl groups such as glycerin, trimethylolpropane, trimethylolethane; Compounds having four hydroxyl groups such as pentaerythritol, glucose, fructose, diglycerin; Compounds having five hydroxyl groups such as xylitol and triglycerin; Compounds having 6 hydroxyl groups such as sorbitol and dipentaerythritol; Compounds having 8 hydroxyl groups such as sucrose; Polyvinyl alcohol, polyglycerin, etc. are mentioned.
  • compounds (a) having 3 to 8 hydroxyl groups preferred are compounds having 3 to 6 hydroxyl groups from the viewpoint of permeability. More preferred are glycerin having three hydroxyl groups, trimethylolpropane, and pentaerythritol.
  • the HLB of the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups is usually 6.0 to 20.0. It is preferably 10.0 to 18.5. If it is this range, the permeability of cutting fluid will be excellent and the cooling property of processing heat will improve more. On the other hand, if it is less than 6.0, solubility in water becomes difficult. When it exceeds 20.0, the reaction inhibition property between silicon and water deteriorates.
  • HLB is an index indicating a balance between hydrophilicity and lipophilicity, and is described in, for example, “Introduction to Surfactants” (published by Sanyo Chemical Industries, Ltd., 2007, Takehiko Fujimoto), page 212. It is known as the calculated value by the Oda method, not the calculated value by the Griffin method.
  • the organic value and the inorganic value for deriving HLB can be calculated using the values in the table described in the above “Introduction to Surfactant” page 213.
  • a 1 O represents an oxyalkylene group having 2 to 4 carbon atoms, and specific examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • an oxyethylene group ethylene oxide, in the case of an oxypropylene group, 1,2-propylene oxide, 1,3-propylene oxide, in the case of an oxybutylene group, tetrahydrofuran, 1,2-butylene oxide and the like can be used.
  • polyoxyalkylene adduct (A) in the present invention one kind of ethylene oxide, propylene oxide, tetrahydrofuran, and 1,2-butylene oxide is added alone to the compound (a) having 3 to 8 hydroxyl groups. They may be added, or two or more of these may be used in combination. From the viewpoint of permeability, two types of combined use of ethylene oxide and propylene oxide are preferable.
  • the addition form when two or more alkylene oxides or tetrahydrofuran is used in combination may be random or block, Further, the order of adding two or more alkylene oxides, for example, ethylene oxide and propylene oxide is not limited.
  • m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms, and when two or more kinds of alkylene oxide are used in combination, the total number of moles of two or more kinds of added moles.
  • m is usually a number from 1 to 350, preferably from 1 to 100.
  • m is less than 1, the reaction inhibition property between silicon and water deteriorates.
  • m exceeds 350, the viscosity of the cutting fluid is too high, so that the permeability, foam suppression, and flatness of the silicon wafer are lowered.
  • a 2 O is an oxyethylene group
  • a 3 O represents an oxypropylene group
  • n represents the average number of moles of ethylene oxide added and represents a number of 1 to 250
  • k represents the average number of moles of propylene oxide added and represents a number of 1 to 100
  • n / (n + k) is 0.1 to 0.9.
  • the addition form of ethylene oxide and propylene oxide may be random or block.
  • n represents the average number of moles of ethylene oxide added, and is a number from 1 to 250, preferably from 1 to 20, more preferably from 1 to 250 from the viewpoints of solubility in water, foam suppression and silicon wafer permeability. 15.
  • k represents the average number of added moles of propylene oxide, and is a number of 1 to 100, preferably 1 to 15, more preferably 1 to 12 from the viewpoint of the reaction suppression between silicon and water and the flatness of the silicon wafer. It is.
  • the addition state of ethylene oxide and propylene oxide in the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups may be random or block, and the compound having 3 to 8 hydroxyl groups The order of addition to (a) does not matter.
  • polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups in the present invention include: A polyoxyalkylene adduct of a compound having three hydroxyl groups such as glycerin, trimethylolpropane and trimethylolethane; A polyoxyalkylene adduct of a compound having four hydroxyl groups such as pentaerythritol, glucose, fructose, diglycerin; A polyoxyalkylene adduct of a compound having five hydroxyl groups such as xylitol and triglycerin; A polyoxyalkylene adduct of a compound having 6 hydroxyl groups such as sorbitol and dipentaerythritol; A polyoxyalkylene adduct of a compound having 8 hydroxyl groups such as sucrose; Examples thereof include polyoxyalkylene adducts such as polyvinyl alcohol and polyglycerin.
  • the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups in the present invention is preferably a polyoxyalkylene adduct of a compound having 3 to 6 hydroxyl groups from the viewpoint of permeability. More preferred are polyoxyalkylene adducts of glycerin, trimethylolpropane, pentaerythritol and sorbitol.
  • polyoxyalkylene adduct (A) of the present invention examples include 4.8 moles of glycerol ethylene oxide (hereinafter sometimes abbreviated as EO) and 1,2-propylene oxide (hereinafter abbreviated as PO).
  • EO glycerol ethylene oxide
  • PO 1,2-propylene oxide
  • the number average molecular weight of the polyoxyalkylene adduct (A) in the present invention is preferably 400 to 10,000, more preferably 400 to 6, from the viewpoints of permeability and productivity of the polyoxyalkylene adduct (A). 000.
  • the number average molecular weight is a molecular weight determined by gel permeation chromatography (GPC).
  • the content of the polyoxyalkylene adduct (A) in the present invention is 0.1 to 40% by weight with respect to the cutting fluid at the time of use.
  • the content is 0.4 to 30% by weight, and more preferably 0.4 to 25% by weight.
  • the water which is the second essential component of the water-containing cutting fluid for silicon ingot slicing of the present invention, may be any of pure water, ion exchange water, tap water, city water, industrial water, and the like.
  • the water-containing cutting fluid for silicon ingot slicing of the present invention it is preferable to further contain an aliphatic carboxylic acid (B) for the purpose of improving the flatness of the silicon wafer.
  • B an aliphatic carboxylic acid
  • the aliphatic carboxylic acid (B) used for this purpose is a monovalent or divalent linear or branched aliphatic carboxylic acid having 8 or 9 carbon atoms including the carbon atom of the carbonyl group.
  • the flatness of the silicon wafer can be further improved while maintaining the foam suppression property of the cutting fluid.
  • aliphatic carboxylic acid (B) examples include monovalent caprylic acid and pelargonic acid; divalent suberic acid and azelaic acid.
  • aliphatic carboxylic acids (B) caprylic acid and azelaic acid are preferable from the viewpoint of foam suppression and flatness of the silicon wafer.
  • the water-containing cutting fluid for slicing silicon ingot of the present invention further contains a specific nonionic surfactant for the purpose of improving permeability.
  • the specific nonionic surfactant used for this purpose is a nonionic surfactant (C) having an HLB of 6.0 to 8.5, but the polyoxyalkylene adduct (A), which is an essential component, is a nonionic surfactant. Excluded from surfactant (C).
  • HLB is within this range, the wettability of the cutting fluid with respect to silicon is improved, and the permeability can be further improved.
  • nonionic surfactant (C) having an HLB of 6.0 to 8.5 examples include butanol, PO 4.5 mol adduct, propylene glycol EO 4.5 mol PO, 28.0 mol block adduct, etc.
  • Examples thereof include alkylene oxide adducts (C3) of higher fatty acids such as EO 3.0 mol adduct of oleic acid and EO 3.0 mol adduct of stearic acid.
  • the water-containing cutting fluid for slicing a silicon ingot of the present invention can be suitably used when slicing a silicon ingot with a wire.
  • a method of slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot of the present invention a method using an abrasive slurry in which free abrasive grains are dispersed in a cutting fluid, a fixed abrasive wire saw in which the abrasive is fixed to a wire There is a method of using.
  • the water-containing cutting fluid of the present invention can be applied to any of them, it is particularly suitable for a silicon ingot slicing method using a fixed abrasive wire saw.
  • the water-containing cutting fluid for slicing silicon ingot of the present invention can be suitably used when a silicon wafer is produced by slicing a silicon ingot with a wire.
  • a method of manufacturing a silicon wafer by slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot of the present invention a method using an abrasive slurry in which free abrasive grains are dispersed in a cutting fluid, or an abrasive grain is fixed to a wire.
  • a method using a fixed abrasive wire saw There is a method using a fixed abrasive wire saw.
  • the water-containing cutting fluid of the present invention can be applied to any of them, it is particularly suitable for a silicon wafer manufacturing method for slicing a silicon ingot using a fixed abrasive wire saw.
  • a silicon wafer can be manufactured by slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot and the wire of the present invention.
  • the silicon wafer sliced by the above manufacturing method can be used as a silicon wafer for solar cells, a silicon wafer for semiconductor devices, or the like.
  • the above silicon wafer can be used for electronic materials such as solar cell, memory element, oscillation element, amplification element, transistor and diode.
  • Production Example 4 ⁇ Production of glycerin EO-PO random adduct (A-4)>
  • Production Example 5 Manufacture of EO-PO random adduct (A-5) of trimethylolpropane>
  • the same operation as in Production Example 1 was performed except that glycerol was changed to 23.9 parts of trimethylolpropane, ethylene oxide was changed to 238 parts, and propylene oxide was changed to 238 parts.
  • Production Example 7 ⁇ Production of sorbitol EO-PO random adduct (A-7)> The same operation as in Production Example 1 was performed except that glycerin was changed to 16.6 parts sorbitol, ethylene oxide was 242 parts, and propylene oxide was 242 parts in Production Example 1, and the sorbitol EO-PO of the present invention was used.
  • Examples 1 to 11 and Comparative Examples 1 to 7 Each component was blended in the blending ratio (parts by weight) shown in Table 1, and the cutting fluids of Examples 1 to 11 and Comparative Examples 1 to 7 were prepared to obtain permeability, reaction suppression, foam suppression, and silicon wafer. The flatness was evaluated for performance.
  • PEG-6000 (A′-2) used was PEG-6000 (polyoxyethylene glycol having a number average molecular weight of 6,000) manufactured by Sanyo Chemical Industries.
  • the specific heat of the cutting fluids of Examples 1 to 11 and Comparative Examples 1 to 7 was measured. Moreover, the following method evaluated the permeability, reaction suppression property, foam suppression property, and the flatness of the silicon wafer.
  • the permeability was evaluated by the following method.
  • (1) Grooves with a width of 0.2 mm, a length of 25 mm, and a depth of 5 mm are formed on a 25 mm square polycrystalline silicon ingot using a diamond fixed abrasive wire and a single wire saw cutting machine (manufactured by SOUTH BAY TECHNOLOGY).
  • a test piece was obtained.
  • the permeability was evaluated according to the following criteria. ⁇ : Less than 10 seconds ⁇ : More than 10 seconds to less than 15 seconds ⁇ : More than 15 seconds to less than 20 seconds ⁇ : More than 20 seconds
  • the evaluation of foam suppression was performed by the following method. (1) 40 mL of cutting fluid was put into a 100 mL measuring cylinder with a stopper having an inner diameter of 3 cm, and the distance (liquid level height) from the bottom of the measuring cylinder to the liquid level was recorded. (2) The graduated cylinder containing the cutting fluid was shaken 40 times in 10 seconds. (3) Immediately after shaking, the distance from the bottom of the graduated cylinder to the highest bubble surface (bubble surface height) was measured, and the difference between the bubble surface height and the liquid surface height was recorded.
  • Ra is less than 0.1 ⁇ m ⁇ : Ra is 0.1 ⁇ m or more to less than 0.2 ⁇ m ⁇ : Ra is 0.2 ⁇ m or more to less than 0.3 ⁇ m ⁇ : Ra is 0.3 ⁇ m or more
  • Comparative Example 4 having an HLB of less than 6.0 does not dissolve in water.
  • Comparative Example 5 using a polyoxyalkylene compound having an average added mole number of m exceeding 350, the permeability, the foam-suppressing property, and the flatness of the silicon wafer are insufficient.
  • Comparative Example 6 using propylene glycol, which is a divalent alcohol is inferior in permeability, reaction suppression and flatness of the silicon wafer.
  • Comparative Example 7 using a polyoxyalkylene compound obtained by adding alkylene oxide to triethanolamine instead of polyhydric alcohol has insufficient reaction suppression, foam suppression and flatness of the silicon wafer.
  • the water-containing cutting fluid for slicing silicon ingot of the present invention is excellent in cooling of processing heat, penetrability, water-silicon reaction suppression, foam suppression, and silicon wafer flatness. It is useful as a cutting fluid used when slicing an ingot.
  • Silicon wafers manufactured by cutting a silicon ingot using the water-containing cutting fluid for slicing silicon ingots of the present invention include, for example, solar cell, memory element, oscillation element, amplification element, transistor, diode, LSI electronic material These electronic materials can be used for solar power generation devices, personal computers, mobile phones, displays, audios, and the like.
  • the water-containing cutting fluid for silicon ingot slicing of the present invention is excellent in cooling and penetrability of processing heat, so that it is used when cutting hard materials such as quartz, silicon carbide, sapphire, etc. in addition to silicon ingot. It is also useful as a liquid.

Abstract

The present invention provides a cutting fluid which, in the step of cutting a silicon ingot, is superior to conventional products in the removal of processing heat, infiltrating property, inhibition of reaction between water and the silicon, and antifoaming property to thereby attain an improvement in cutting efficiency, and with which silicon wafers having satisfactory flatness are yielded. The accuracy of the processed surface can hence be kept high even under severe slicing conditions. The cutting fluid is a hydrous cutting fluid for silicon-ingot slicing, characterized by comprising a polyoxyalkylene adduct (A) of a compound (a) having 3-8 hydroxy groups, the adduct (A) being represented by general formula (1), and water as essential components, the polyoxyalkylene adduct (A) having an HLB of 6.0-20.0. R{O-(A1O)m-H}f (1) [In formula (1), R represents the residue formed by removing the hydroxyl groups from a compound having 3-8 hydroxy groups; (A1O) represents a C2-4 oxyalkylene; m, indicating the average number of moles of a C2-4 alkylene oxide which has added, is a number of 1-350; and f is an integer of 3-8.]

Description

シリコンインゴットスライス用含水切削液Hydrous cutting fluid for slicing silicon ingot
 本発明は、シリコンインゴットを切削するときに使用する含水切削液に関する。さらに詳しくは、冷却性が高く、優れた浸透性、シリコンと水との反応抑制性、抑泡性、シリコンウエハの平坦性を兼ね備えた含水切削液に関する。 The present invention relates to a water-containing cutting fluid used when cutting a silicon ingot. More specifically, the present invention relates to a water-containing cutting fluid that has high cooling properties, excellent penetrability, suppression of reaction between silicon and water, foam suppression, and flatness of a silicon wafer.
 シリコンインゴットのワイヤーによるスライス方法は、(1)遊離砥粒を切削液に分散した砥粒スラリーを用いる方法、(2)電着や樹脂による接着でワイヤーに砥粒を固着した固定砥粒ワイヤーと含水切削液を用いる方法に大別される。
 近年、固定砥粒ワイヤーによるスライス方法で用いられる含水切削液は、切削時に生じる摩擦熱の冷却性を高める目的や、有機溶剤による引火の危険性を低くして作業性を改善することを目的として、比熱の高い水を含有する含水切削液が開発されている(例えば特許文献1)。
The slicing method using a silicon ingot wire includes (1) a method using an abrasive slurry in which free abrasive grains are dispersed in a cutting fluid, and (2) a fixed abrasive wire in which the abrasive grains are fixed to the wire by electrodeposition or resin adhesion. The method is roughly classified into methods using a water-containing cutting fluid.
In recent years, the water-containing cutting fluid used in the slicing method with a fixed abrasive wire is intended to improve the workability by reducing the risk of flammability caused by organic solvents, and to increase the cooling performance of frictional heat generated during cutting. A hydrous cutting fluid containing water having a high specific heat has been developed (for example, Patent Document 1).
 従来の含水切削液は、含水率を上げることで切削液自身の比熱は高められるものの、切削加工部への切削液の浸透性が低くなるために加工熱の冷却除熱が十分にできない、シリコンの加工精度が低い、という問題があった。
 また、切削加工で生じるシリコンの切屑やシリコンウエハと水との反応抑制が不十分であり、水素ガスが発生して引火爆発の可能性がある。さらに、シリコンインゴットのスライス加工では切削液を循環して再使用することから、泡立つなどの問題があった。
Although conventional water-containing cutting fluid can increase the specific heat of the cutting fluid itself by increasing the moisture content, the penetration of the cutting fluid into the cutting part is low, so the cooling heat cannot be removed sufficiently. There was a problem that the processing accuracy of was low.
In addition, there is insufficient suppression of the reaction between silicon chips and silicon wafers generated by cutting and water, and hydrogen gas is generated, which may cause a flammable explosion. Furthermore, in the slicing process of the silicon ingot, there is a problem such as foaming because the cutting fluid is circulated and reused.
 近年、シリコンウエハの生産効率を高めることを目的とした、シリコンウエハの薄型化が進みつつある。
 通常、ワイヤーの細線化やワイヤー間のピッチ幅を狭くすることでシリコンウエハの薄型化をするが、そのためにワイヤーとシリコンインゴットの接触面積が増して加工時の加工熱が増大するために、より冷却性の高い切削液の開発が望まれている。
 また、シリコンウエハの薄型化は加工時のシリコンウエハ間隔が従来より狭くなるため、切削加工部への切削液の高い浸透性が求められる。
In recent years, silicon wafers are being made thinner for the purpose of increasing the production efficiency of silicon wafers.
Usually, the thinning of the wire and the narrowing of the pitch width between the wires reduce the thickness of the silicon wafer, but this increases the contact area between the wire and the silicon ingot and increases the processing heat during processing. Development of cutting fluid with high cooling performance is desired.
In addition, since the silicon wafer interval during processing becomes narrower than before in order to make the silicon wafer thinner, high penetrability of the cutting fluid into the cutting portion is required.
 しかし、通常、シリコンウエハの薄型化やスライス加工時間の短縮をした場合、シリコンウエハ表面の平坦性は一般に悪化するという問題がある。
 そこでその対策として、有機アミンのアルキレンオキサイド付加物を潤滑性成分として添加する方法が提案されている(例えば特許文献2)が、薄型化に対応できる平坦性のレベルに対する効果は未だ不十分である。
 すなわち、近年における、シリコンウエハの平坦化工程の簡素化や、テクスチャー形成の高精度化の観点から、スライス加工後のシリコンウエハにおいて、より一層高い平坦性が望まれている。
However, generally, when the silicon wafer is thinned or the slice processing time is shortened, there is a problem that the flatness of the silicon wafer surface generally deteriorates.
Therefore, as a countermeasure, a method of adding an alkylene oxide adduct of an organic amine as a lubricating component has been proposed (for example, Patent Document 2), but the effect on the level of flatness corresponding to the thinning is still insufficient. .
That is, in recent years, from the viewpoint of simplifying the silicon wafer flattening process and increasing the accuracy of texture formation, higher flatness is desired in the silicon wafer after slicing.
特開2003-82335号公報JP 2003-82335 A 特開2009-57423号公報JP 2009-57423 A
 そこで本発明の含水切削液は、加工熱の冷却性が高く、浸透性、水とシリコンとの反応抑制性、抑泡性に優れ、さらにシリコンウエハの平坦性が極めて良好であるシリコンインゴットスライス用含水切削液を提供することを目的とする。 Therefore, the water-containing cutting fluid of the present invention is for silicon ingot slices that have high cooling performance of processing heat, excellent permeability, excellent suppression of reaction between water and silicon, foam suppression, and extremely good flatness of silicon wafers. It aims at providing a water-containing cutting fluid.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
 すなわち、本発明は、下記一般式(1)で表される3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)と水を必須成分として含有し、このポリオキシアルキレン付加物(A)のHLBが6.0~20.0であることを特徴とするシリコンインゴットスライス用含水切削液;この含水切削液と砥粒がワイヤーに固着された固定砥粒用ワイヤーソーを用いるシリコンインゴットのスライス方法;この含水切削液で固定砥粒方式でシリコンインゴットをスライスする製造方法;この含水切削液を用いてシリコンインゴットをスライスして製造されたシリコンウエハ;並びにこのシリコンウエハを用いて製造された電子材料である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention contains a polyoxyalkylene adduct (A) of a compound (a) having 3 to 8 hydroxyl groups represented by the following general formula (1) and water as essential components. Hydrous cutting fluid for silicon ingot slice characterized by HLB of adduct (A) being 6.0 to 20.0; wire saw for fixed abrasive with this hydrous cutting fluid and abrasive grains fixed to wire Slicing method of silicon ingot to be used; manufacturing method of slicing silicon ingot with this water-containing cutting fluid by fixed abrasive method; silicon wafer manufactured by slicing silicon ingot using this water-containing cutting fluid; and using this silicon wafer It is an electronic material manufactured by
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式(1)中、Rは3~8個の水酸基を有する化合物から水酸基を除いた残基、(AO)は炭素数が2~4のオキシアルキレン基を表す。mは炭素数が2~4のアルキレンオキサイドの平均付加モル数を表し1~350の数、fは3~8の整数である。] [In the formula (1), R represents a residue obtained by removing a hydroxyl group from a compound having 3 to 8 hydroxyl groups, and (A 1 O) represents an oxyalkylene group having 2 to 4 carbon atoms. m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms and represents a number of 1 to 350, and f is an integer of 3 to 8. ]
 本発明は、シリコンインゴットの切削工程において、加工熱の冷却性が高く、浸透性、水との反応抑制性、抑泡性に優れる。過酷なスライス条件下でも被加工面の平坦性を高く維持できるという効果を奏する。 The present invention has a high process heat cooling property in the cutting process of the silicon ingot, and is excellent in permeability, water reaction suppression property, and foam suppression property. Even under severe slicing conditions, the flatness of the work surface can be maintained high.
 本発明のシリコンインゴットスライス用含水切削液は、3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)と水を必須成分として含有する。そして、そのポリオキシアルキレン付加物(A)のHLB(親水性-疎水性バランス)とアルキレンオキサイドの平均付加モル数であるmが特定の範囲にある。 The hydrous cutting fluid for slicing silicon ingot of the present invention contains a polyoxyalkylene adduct (A) of a compound (a) having 3 to 8 hydroxyl groups and water as essential components. And m which is the average addition mole number of HLB (hydrophilic-hydrophobic balance) and alkylene oxide of the polyoxyalkylene adduct (A) is in a specific range.
 本発明の含水切削液の第1の必須成分である3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)は、下記一般式(1)で表される。 The polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups, which is the first essential component of the water-containing cutting fluid of the present invention, is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(1)中、Rは3~8個の水酸基を有する化合物(a)から水酸基を除いた残基、(AO)は炭素数が2~4のオキシアルキレン基を表す。mは炭素数が2~4のアルキレンオキサイドの平均付加モル数を表し1~350の数、fは3~8の整数である。] [In the formula (1), R represents a residue obtained by removing a hydroxyl group from the compound (a) having 3 to 8 hydroxyl groups, and (A 1 O) represents an oxyalkylene group having 2 to 4 carbon atoms. m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms and represents a number of 1 to 350, and f is an integer of 3 to 8. ]
 本発明で用いる3~8個の水酸基を有する化合物(a)の具体例としては、
 グリセリン、トリメチロールプロパン、トリメチロールエタンなどの3個の水酸基を有する化合物;
 ペンタエリスリトール、グルコース、フルクトース、ジグリセリンなど4個の水酸基を有する化合物;
 キシリトール、トリグリセリンなどの5個の水酸基を有する化合物;
 ソルビトール、ジペンタエリスリトールなどの6個の水酸基を有する化合物;
 スクロースなどの8個の水酸基を有する化合物;
 ポリビニルアルコール、ポリグリセリンなどが挙げられる。
Specific examples of the compound (a) having 3 to 8 hydroxyl groups used in the present invention include
Compounds having three hydroxyl groups such as glycerin, trimethylolpropane, trimethylolethane;
Compounds having four hydroxyl groups such as pentaerythritol, glucose, fructose, diglycerin;
Compounds having five hydroxyl groups such as xylitol and triglycerin;
Compounds having 6 hydroxyl groups such as sorbitol and dipentaerythritol;
Compounds having 8 hydroxyl groups such as sucrose;
Polyvinyl alcohol, polyglycerin, etc. are mentioned.
 これらの3~8個の水酸基を有する化合物(a)のうち、好ましいのは、浸透性の観点から、3~6個の水酸基を有する化合物である。さらに好ましくは、3個の水酸基を有するグリセリン、トリメチロールプロパン、ペンタエリスリトールである。 Among these compounds (a) having 3 to 8 hydroxyl groups, preferred are compounds having 3 to 6 hydroxyl groups from the viewpoint of permeability. More preferred are glycerin having three hydroxyl groups, trimethylolpropane, and pentaerythritol.
 本発明における3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)のHLBは通常、6.0~20.0である。好ましくは10.0~18.5である。この範囲であれば、さらに切削液の浸透性が優れて加工熱の冷却性がより向上する。
 一方、6.0未満では、水への溶解性が困難になる。20.0を超えると、シリコンと水との反応抑制性が悪化する。
In the present invention, the HLB of the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups is usually 6.0 to 20.0. It is preferably 10.0 to 18.5. If it is this range, the permeability of cutting fluid will be excellent and the cooling property of processing heat will improve more.
On the other hand, if it is less than 6.0, solubility in water becomes difficult. When it exceeds 20.0, the reaction inhibition property between silicon and water deteriorates.
 ここでの「HLB」とは、親水性と親油性のバランスを示す指標であって、例えば「界面活性剤入門」〔2007年三洋化成工業株式会社発行、藤本武彦著〕212頁に記載されている小田法による計算値として知られているものであり、グリフィン法による計算値ではない。
 HLB値は有機化合物の有機性の値と無機性の値との比率から計算することができる。
  HLB=10×無機性/有機性
 HLBを導き出すための有機性の値及び無機性の値については前記「界面活性剤入門」213頁に記載の表の値を用いて算出できる。
Here, “HLB” is an index indicating a balance between hydrophilicity and lipophilicity, and is described in, for example, “Introduction to Surfactants” (published by Sanyo Chemical Industries, Ltd., 2007, Takehiko Fujimoto), page 212. It is known as the calculated value by the Oda method, not the calculated value by the Griffin method.
The HLB value can be calculated from the ratio between the organic value and the inorganic value of the organic compound.
HLB = 10 × inorganic / organic The organic value and the inorganic value for deriving HLB can be calculated using the values in the table described in the above “Introduction to Surfactant” page 213.
 AOは炭素数が2~4のオキシアルキレン基を表し、具体例としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基などが挙げられる。
 オキシエチレン基の場合はエチレンオキサイド、オキシプロピレン基の場合は1,2-プロピレンオキサイド、1,3-プロピレンオキサイド、オキシブチレン基の場合はテトラヒドロフラン、1,2-ブチレンオキサイドなどを用いることができる。
A 1 O represents an oxyalkylene group having 2 to 4 carbon atoms, and specific examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
In the case of an oxyethylene group, ethylene oxide, in the case of an oxypropylene group, 1,2-propylene oxide, 1,3-propylene oxide, in the case of an oxybutylene group, tetrahydrofuran, 1,2-butylene oxide and the like can be used.
 本発明におけるポリオキシアルキレン付加物(A)は、3~8個の水酸基を有する化合物(a)に、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン、1,2-ブチレンオキサイドのうちの1種を単独で付加させてもよいし、これらの2種以上を併用して付加させてもよい。
 浸透性の観点から、エチレンオキサイドとプロピレンオキサイドの2種の併用が好ましい。
In the polyoxyalkylene adduct (A) in the present invention, one kind of ethylene oxide, propylene oxide, tetrahydrofuran, and 1,2-butylene oxide is added alone to the compound (a) having 3 to 8 hydroxyl groups. They may be added, or two or more of these may be used in combination.
From the viewpoint of permeability, two types of combined use of ethylene oxide and propylene oxide are preferable.
 本発明における3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)において、2種以上のアルキレンオキサイドまたはテトラヒドロフランを併用する際の付加形式はランダム状でもブロック状でもよく、また2種以上のアルキレンオキサイド、例えばエチレンオキサイドとプロピレンオキサイドの付加する順番は問わない。 In the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups in the present invention, the addition form when two or more alkylene oxides or tetrahydrofuran is used in combination may be random or block, Further, the order of adding two or more alkylene oxides, for example, ethylene oxide and propylene oxide is not limited.
 mは炭素数が2~4のアルキレンオキサイドの平均付加モル数を表し、2種以上のアルキレンオキサイドを併用する場合は、2種以上の平均付加モル数の合計である。
 mは通常1~350の数であり、好ましくは1~100である。
 mが1未満では、シリコンと水との反応抑制性が悪化する。一方、mが350を超えると切削液の粘度が高すぎるため、浸透性、抑泡性、シリコンウエハの平坦性が低下する。
m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms, and when two or more kinds of alkylene oxide are used in combination, the total number of moles of two or more kinds of added moles.
m is usually a number from 1 to 350, preferably from 1 to 100.
When m is less than 1, the reaction inhibition property between silicon and water deteriorates. On the other hand, when m exceeds 350, the viscosity of the cutting fluid is too high, so that the permeability, foam suppression, and flatness of the silicon wafer are lowered.
 本発明におけるポリオキシアルキレン付加物(A)の式(2)中の-(AO)-は下記一般式(2)で表せる。 -(A 1 O) m-in the formula (2) of the polyoxyalkylene adduct (A) in the present invention can be represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(2)中、AOはオキシエチレン基、AOはオキシプロピレン基を表す。nはエチレンオキサイドの平均付加モル数を表し1~250の数、kはプロピレンオキサイドの平均付加モル数を表し1~100の数、n/(n+k)は0.1~0.9である。エチレンオキサイドとプロピレンオキサイドの付加形式はランダム状でもブロック状でもよい。] Wherein (2), A 2 O is an oxyethylene group, A 3 O represents an oxypropylene group. n represents the average number of moles of ethylene oxide added and represents a number of 1 to 250, k represents the average number of moles of propylene oxide added and represents a number of 1 to 100, and n / (n + k) is 0.1 to 0.9. The addition form of ethylene oxide and propylene oxide may be random or block. ]
 nはエチレンオキサイドの平均付加モル数を表し、1~250の数であり、水への溶解性、抑泡性およびシリコンウエハの浸透性の観点から、好ましくは1~20、さらに好ましくは1~15である。 n represents the average number of moles of ethylene oxide added, and is a number from 1 to 250, preferably from 1 to 20, more preferably from 1 to 250 from the viewpoints of solubility in water, foam suppression and silicon wafer permeability. 15.
 kはプロピレンオキサイドの平均付加モル数を表し、1~100の数であり、シリコンと水との反応抑制性とシリコンウエハの平坦性の観点から、好ましくは1~15、さらに好ましくは1~12である。 k represents the average number of added moles of propylene oxide, and is a number of 1 to 100, preferably 1 to 15, more preferably 1 to 12 from the viewpoint of the reaction suppression between silicon and water and the flatness of the silicon wafer. It is.
 n/(n+k)は0.1~0.9である。水への溶解性と切削加工部への切削液の浸透性の観点から、好ましくは、0.4~0.7である。なお、n+k=mである。 N / (n + k) is 0.1 to 0.9. From the viewpoint of solubility in water and penetration of the cutting fluid into the machined part, it is preferably 0.4 to 0.7. Note that n + k = m.
 本発明における3~8個水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)のエチレンオキサイドとプロピレンオキサイドの付加状態はランダム状でもブロック状でもよく、3~8個の水酸基を有する化合物(a)に付加する順番は問わない。 In the present invention, the addition state of ethylene oxide and propylene oxide in the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups may be random or block, and the compound having 3 to 8 hydroxyl groups The order of addition to (a) does not matter.
 本発明における3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)の具体例としては、
 グリセリン、トリメチロールプロパン、トリメチロールエタンなどの3個の水酸基を有する化合物のポリオキシアルキレン付加物;
 ペンタエリスリトール、グルコース、フルクトース、ジグリセリンなどの4個の水酸基を有する化合物のポリオキシアルキレン付加物;
 キシリトール、トリグリセリンなどの5個の水酸基を有する化合物のポリオキシアルキレン付加物;
 ソルビトール、ジペンタエリスリトールなどの6個の水酸基を有する化合物のポリオキシアルキレン付加物;
 スクロースなどの8個の水酸基を有する化合物のポリオキシアルキレン付加物;
 ポリビニルアルコール、ポリグリセリンなどのポリオキシアルキレン付加物が挙げられる。
Specific examples of the polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups in the present invention include:
A polyoxyalkylene adduct of a compound having three hydroxyl groups such as glycerin, trimethylolpropane and trimethylolethane;
A polyoxyalkylene adduct of a compound having four hydroxyl groups such as pentaerythritol, glucose, fructose, diglycerin;
A polyoxyalkylene adduct of a compound having five hydroxyl groups such as xylitol and triglycerin;
A polyoxyalkylene adduct of a compound having 6 hydroxyl groups such as sorbitol and dipentaerythritol;
A polyoxyalkylene adduct of a compound having 8 hydroxyl groups such as sucrose;
Examples thereof include polyoxyalkylene adducts such as polyvinyl alcohol and polyglycerin.
 本発明における3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)は、浸透性の観点から、3~6個の水酸基を有する化合物のポリオキシアルキレン付加物が好ましい。
 さらに好ましくは、グリセリン、トリメチロールプロパン、ペンタエリスリトールおよびソルビトールのポリオキシアルキレン付加物である。
The polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups in the present invention is preferably a polyoxyalkylene adduct of a compound having 3 to 6 hydroxyl groups from the viewpoint of permeability.
More preferred are polyoxyalkylene adducts of glycerin, trimethylolpropane, pentaerythritol and sorbitol.
 本発明のポリオキシアルキレン付加物(A)の具体例としては、グリセリンのエチレンオキサイド(以下、EOと略称することがある。)4.8モルと1,2-プロピレンオキサイド(以下、POと略称することがある。)3.6モルのランダム付加物、グリセリンのEO17.1モルとPO12.9モルのランダム付加物、グリセリンのEO30.9モルとPO23.4モルのランダム付加物、グリセリンのEO23.7モルとPO35.7モルのランダム付加物などのグリセリンのEO-POランダム付加物;
 グリセリンのEO12.0モルとPO9.0モルのブロック付加物、グリセリンのEO11.3モルとPO57.7モルのブロック付加物などのグリセリンのEO-POブロック付加物;
 グリセリンのPO15.6モル付加物などのグリセリンのPO付加物;
 グリセリンのEO70.0モル付加物などのグリセリンのEO付加物;
 トリメチロールプロパンのEO30.3モルとPO23.1モルのランダム付加物などのトリメチロールプロパンのEO-POランダム付加物;
 ペンタエリスリトールのEO40.4モルとPO30.8モルのランダム付加物などのペンタエリスリトールのEO-POランダム付加物;
 ペンタエリスリトールのEO19.6モルとPO12.0モルのブロック付加物などのペンタエリスリトールのEO-POブロック付加物;
 ソルビトールのEO60.6モルとPO45.6モルのランダム付加物などのソルビトールのEO-POランダム付加物などが挙げられる。
 これらのうち好ましいのは、浸透性と反応抑制性の観点から、グリセリンのEO-POランダム付加物とグリセリンのEO-POブロック付加物である。
Specific examples of the polyoxyalkylene adduct (A) of the present invention include 4.8 moles of glycerol ethylene oxide (hereinafter sometimes abbreviated as EO) and 1,2-propylene oxide (hereinafter abbreviated as PO). 3.6 mol random adduct, glycerin EO 17.1 mol and PO 12.9 mol random adduct, glycerin EO 30.9 mol and PO 23.4 mol random adduct, glycerin EO23 EO-PO random adducts of glycerin such as .7 mol and PO 35.7 mol random adducts;
EO-PO block adducts of glycerin, such as block adducts of glycerin EO 12.0 mol and PO 9.0 mol, glycerin EO 11.3 mol and PO 57.7 mol;
PO adducts of glycerin such as PO 15.6 mol adduct of glycerin;
An EO adduct of glycerin, such as an EO 70.0 molar adduct of glycerin;
EO-PO random adduct of trimethylolpropane such as 30.3 mol of trimethylolpropane EO and 23.1 mol of PO random adduct;
EO-PO random adducts of pentaerythritol, such as 40.4 mol of EO of pentaerythritol and a random adduct of 30.8 mol of PO;
EO-PO block adduct of pentaerythritol, such as a block adduct of 19.6 mol EO of pentaerythritol and 12.0 mol of PO;
Sorbitol EO-PO random adducts such as sorbitol EO 60.6 mol and PO 45.6 mol random adduct.
Of these, EO-PO random adduct of glycerin and EO-PO block adduct of glycerin are preferable from the viewpoints of permeability and reaction inhibition.
 本発明におけるポリオキシアルキレン付加物(A)の数平均分子量は、浸透性とポリオキシアルキレン付加物(A)の生産性の観点から、好ましくは400~10,000、さらに好ましくは400~6,000である。
 なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)による分子量である。
The number average molecular weight of the polyoxyalkylene adduct (A) in the present invention is preferably 400 to 10,000, more preferably 400 to 6, from the viewpoints of permeability and productivity of the polyoxyalkylene adduct (A). 000.
The number average molecular weight is a molecular weight determined by gel permeation chromatography (GPC).
 本発明におけるポリオキシアルキレン付加物(A)の含有量は、使用時の切削液に対して0.1~40重量%である。好ましくは、0.4~30重量%であり、さらに好ましくは、0.4~25重量%である。 The content of the polyoxyalkylene adduct (A) in the present invention is 0.1 to 40% by weight with respect to the cutting fluid at the time of use. Preferably, the content is 0.4 to 30% by weight, and more preferably 0.4 to 25% by weight.
 本発明のシリコンインゴットスライス用含水切削液の第2の必須成分である水は、純水、イオン交換水、水道水、市水、工業用水等のいずれを用いてもよい。 The water, which is the second essential component of the water-containing cutting fluid for silicon ingot slicing of the present invention, may be any of pure water, ion exchange water, tap water, city water, industrial water, and the like.
 本発明のシリコンインゴットスライス用含水切削液には、シリコンウエハの平坦性を向上させる目的で、さらに脂肪族カルボン酸(B)を含有させることが好ましい。 In the water-containing cutting fluid for silicon ingot slicing of the present invention, it is preferable to further contain an aliphatic carboxylic acid (B) for the purpose of improving the flatness of the silicon wafer.
 この目的で使用される脂肪族カルボン酸(B)としては、カルボニル基の炭素原子を含めた炭素数が8または9である1価または2価の直鎖または分岐の脂肪族カルボン酸である。この脂肪族カルボン酸であると、切削液の抑泡性を維持したまま、シリコンウエハの平坦性をさらに向上できる。 The aliphatic carboxylic acid (B) used for this purpose is a monovalent or divalent linear or branched aliphatic carboxylic acid having 8 or 9 carbon atoms including the carbon atom of the carbonyl group. When the aliphatic carboxylic acid is used, the flatness of the silicon wafer can be further improved while maintaining the foam suppression property of the cutting fluid.
 この脂肪族カルボン酸(B)の具体例としては、1価のカプリル酸、ペラルゴン酸など;2価のスベリン酸、アゼライン酸などが挙げられる。
 脂肪族カルボン酸(B)のうち好ましいのは、抑泡性とシリコンウエハの平坦性の観点からカプリル酸とアゼライン酸である。
Specific examples of the aliphatic carboxylic acid (B) include monovalent caprylic acid and pelargonic acid; divalent suberic acid and azelaic acid.
Among the aliphatic carboxylic acids (B), caprylic acid and azelaic acid are preferable from the viewpoint of foam suppression and flatness of the silicon wafer.
 本発明のシリコンインゴットスライス用含水切削液には、浸透性を向上させる目的で、さらに特定のノニオン界面活性剤を含有させることが好ましい。 It is preferable that the water-containing cutting fluid for slicing silicon ingot of the present invention further contains a specific nonionic surfactant for the purpose of improving permeability.
 この目的で使用される特定のノニオン界面活性剤は、HLBが6.0~8.5のノニオン界面活性剤(C)であるが、必須成分であるポリオキシアルキレン付加物(A)はこのノニオン界面活性剤(C)から除外する。HLBがこの範囲であると、切削液のシリコンに対する濡れ性が良好となり、さらに浸透性を向上させることができる。 The specific nonionic surfactant used for this purpose is a nonionic surfactant (C) having an HLB of 6.0 to 8.5, but the polyoxyalkylene adduct (A), which is an essential component, is a nonionic surfactant. Excluded from surfactant (C). When the HLB is within this range, the wettability of the cutting fluid with respect to silicon is improved, and the permeability can be further improved.
 HLBが6.0~8.5であるノニオン界面活性剤(C)の具体例としては、ブタノールのPO4.5モル付加物、プロピレングリコールのEO4.5モルPO28.0モルのブロック付加物などのHLBが6.0~8.5である1価または2価アルコールのアルキレンオキサイド付加物(C1);
 ステアリルアミンのEO3モルPO3モルのランダム付加物、ジブチルアミンのEO3.0モルとPO11.0のブロック付加物などのHLBが6.0~8.5であるアミンのアルキレンオキサイド付加物(C2);
 オレイン酸のEO3.0モル付加物、ステアリン酸のEO3.0モル付加物などの高級脂肪酸のアルキレンオキサイド付加物(C3)などが挙げられる。
Specific examples of the nonionic surfactant (C) having an HLB of 6.0 to 8.5 include butanol, PO 4.5 mol adduct, propylene glycol EO 4.5 mol PO, 28.0 mol block adduct, etc. An alkylene oxide adduct (C1) of a monohydric or dihydric alcohol having an HLB of 6.0 to 8.5;
An alkylene oxide adduct (C2) of an amine having an HLB of 6.0 to 8.5, such as a random adduct of stearylamine EO 3 mol PO3 mol, dibutylamine EO 3.0 mol and PO 11.0 block adduct;
Examples thereof include alkylene oxide adducts (C3) of higher fatty acids such as EO 3.0 mol adduct of oleic acid and EO 3.0 mol adduct of stearic acid.
 本発明のシリコンインゴットスライス用含水切削液は、ワイヤーによりシリコンインゴットをスライス加工する際、好適に使用できる。
 本発明のシリコンインゴットスライス用含水切削液を用いてシリコンインゴットをスライスする方法として、遊離砥粒を切削液に分散した砥粒スラリーを用いる方法、砥粒がワイヤーに固着された固定砥粒ワイヤーソーを用いる方法がある。本発明の含水切削液はいずれにも適用できるが、特に、固定砥粒ワイヤーソーを用いるシリコンインゴットのスライス方法に適している。
The water-containing cutting fluid for slicing a silicon ingot of the present invention can be suitably used when slicing a silicon ingot with a wire.
As a method of slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot of the present invention, a method using an abrasive slurry in which free abrasive grains are dispersed in a cutting fluid, a fixed abrasive wire saw in which the abrasive is fixed to a wire There is a method of using. Although the water-containing cutting fluid of the present invention can be applied to any of them, it is particularly suitable for a silicon ingot slicing method using a fixed abrasive wire saw.
 本発明のシリコンインゴットスライス用含水切削液は、ワイヤーによりシリコンインゴットをスライスしてシリコンウエハを製造する際、好適に使用できる。
 本発明のシリコンインゴットスライス用含水切削液を用いてシリコンインゴットをスライスしてシリコンウエハを製造する方法として、遊離砥粒を切削液に分散した砥粒スラリーを用いる方法、または砥粒がワイヤーに固着された固定砥粒ワイヤーソーを用いる方法がある。本発明の含水切削液はいずれにも適用できるが、特に、固定砥粒ワイヤーソーを用いて、シリコンインゴットをスライスするシリコンウエハの製造方法に適している。
The water-containing cutting fluid for slicing silicon ingot of the present invention can be suitably used when a silicon wafer is produced by slicing a silicon ingot with a wire.
As a method of manufacturing a silicon wafer by slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot of the present invention, a method using an abrasive slurry in which free abrasive grains are dispersed in a cutting fluid, or an abrasive grain is fixed to a wire There is a method using a fixed abrasive wire saw. Although the water-containing cutting fluid of the present invention can be applied to any of them, it is particularly suitable for a silicon wafer manufacturing method for slicing a silicon ingot using a fixed abrasive wire saw.
 本発明のシリコンインゴットスライス用含水切削液とワイヤーを用いて、シリコンインゴットをスライスすることにより、シリコンウエハを製造することができる。上記の製造方法でスライスされたシリコンウエハは、太陽電池用シリコンウエハや半導体デバイス用シリコンウエハなどに使用できる。 A silicon wafer can be manufactured by slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot and the wire of the present invention. The silicon wafer sliced by the above manufacturing method can be used as a silicon wafer for solar cells, a silicon wafer for semiconductor devices, or the like.
 上記のシリコンウエハは、太陽電池用セル、メモリー素子、発振素子、増幅素子、トランジスタ、ダイオードなどの電子材料に使用する事ができる。 The above silicon wafer can be used for electronic materials such as solar cell, memory element, oscillation element, amplification element, transistor and diode.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
 製造例1 <グリセリンのEO-POランダム付加物(A-1)の製造>
 ステンレス製加圧反応装置にグリセリン92部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でエチレンオキサイド204部とプロピレンオキサイド204部の混合液を約4時間で圧入した。
 同温度でさらに10時間反応させて、本発明のグリセリンのEO-POランダム付加物(A-1)(f=3;m=2.8;n=1.6;k=1.2;n/(n+k)=0.57;数平均分子量500;HLB=17.5)を得た。なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)による分子量である。
Production Example 1 <Production of glycerin EO-PO random adduct (A-1)>
A stainless steel pressure reactor was charged with 92 parts of glycerin and 0.05 part of sodium hydroxide, and after nitrogen substitution, a mixed liquid of 204 parts of ethylene oxide and 204 parts of propylene oxide was injected at 120 to 140 ° C. in about 4 hours.
The reaction is further performed at the same temperature for 10 hours to obtain an EO-PO random adduct (A-1) of glycerin of the present invention (f = 3; m = 2.8; n = 1.6; k = 1.2; n /(N+k)=0.57; number average molecular weight 500; HLB = 17.5). The number average molecular weight is a molecular weight determined by gel permeation chromatography (GPC).
 製造例2 <グリセリンのEO-POランダム付加物(A-2)の製造>
 製造例1において、グリセリンを29部、エチレンオキサイドを238部、プロピレンオキサイドを238部とした以外は、製造例1と同様な操作を行い、本発明のグリセリンのEO-POランダム付加物(A-2)(f=3;m=12.0;n=5.7;k=4.3;n/(n+k)=0.57;数平均分子量1,600;HLB=13.3)を得た。
Production Example 2 <Production of glycerin EO-PO random adduct (A-2)>
The same operation as in Production Example 1 was performed except that 29 parts of glycerin, 238 parts of ethylene oxide, and 238 parts of propylene oxide were produced in Production Example 1, and the EO-PO random adduct (A- 2) (f = 3; m = 12.0; n = 5.7; k = 4.3; n / (n + k) = 0.57; number average molecular weight 1,600; HLB = 13.3) It was.
 製造例3 <グリセリンのEO-POランダム付加物(A-3)の製造>
 製造例1において、グリセリンを16.4部、エチレンオキサイドを241部、プロピレンオキサイドを241部とした以外は、製造例1と同様な操作を行い、本発明のグリセリンのEO-POランダム付加物(A-3)(f=3;m=18.1;n=10.3;k=7.8;n/(n+k)=0.57;数平均分子量2,800;HLB=12.6)を得た。
Production Example 3 <Production of glycerin EO-PO random adduct (A-3)>
The same operation as in Production Example 1 was conducted except that 16.4 parts of glycerin, 241 parts of ethylene oxide, and 241 parts of propylene oxide were produced in Production Example 1, and the EO-PO random adduct of glycerin of the present invention ( A-3) (f = 3; m = 18.1; n = 10.3; k = 7.8; n / (n + k) = 0.57; number average molecular weight 2,800; HLB = 12.6) Got.
 製造例4 <グリセリンのEO-POランダム付加物(A-4)の製造>
 製造例1において、グリセリンを14.4部、エチレンオキサイドを163部、プロピレンオキサイドを323部とした以外は、製造例1と同様な操作を行い、本発明のグリセリンのEO-POランダム付加物(A-4)(f=3;m=19.8;n=7.9;k=11.9;n/(n+k)=0.40;数平均分子量3,200;HLB=10.0)を得た。
Production Example 4 <Production of glycerin EO-PO random adduct (A-4)>
In Production Example 1, the same procedure as in Production Example 1 was carried out except that 14.4 parts of glycerin, 163 parts of ethylene oxide, and 323 parts of propylene oxide were used, and the EO-PO random adduct of glycerin of the present invention ( A-4) (f = 3; m = 19.8; n = 7.9; k = 11.9; n / (n + k) = 0.40; number average molecular weight 3,200; HLB = 10.0) Got.
 製造例5 <トリメチロールプロパンのEO-POランダム付加物(A-5)の製造>
 製造例1において、グリセリンをトリメチロールプロパン23.9部に変更し、エチレンオキサイドを238部、プロピレンオキサイドを238部とした以外は、製造例1と同様な操作を行い、本発明のグリセリンのEO-POランダム付加物(A-5)(f=3;m=17.8;n=10.1;k=7.7;n/(n+k)=0.57;数平均分子量2,800;HLB=12.3)を得た。
Production Example 5 <Manufacture of EO-PO random adduct (A-5) of trimethylolpropane>
In Production Example 1, the same operation as in Production Example 1 was performed except that glycerol was changed to 23.9 parts of trimethylolpropane, ethylene oxide was changed to 238 parts, and propylene oxide was changed to 238 parts. -PO random adduct (A-5) (f = 3; m = 17.8; n = 10.1; k = 7.7; n / (n + k) = 0.57; number average molecular weight 2,800; HLB = 12.3) was obtained.
 製造例6 <ペンタエリスリトールのEO-POランダム付加物(A-6)の製造>
 製造例1において、グリセリンをペンタエリスリトール18.4部に変更し、エチレンオキサイドを241部、プロピレンオキサイドを241部とした以外は、製造例1と同様な操作を行い、本発明のペンタエリスリトールのEO-POランダム付加物(A-6)(f=4;m=17.8;n=10.1;k=7.7;n/(n+k)=0.57;数平均分子量3,700;HLB=12.5)を得た。
Production Example 6 <Production of Pentaerythritol EO-PO Random Additive (A-6)>
In Production Example 1, except that glycerin was changed to 18.4 parts of pentaerythritol, ethylene oxide was changed to 241 parts, and propylene oxide was changed to 241 parts, EO of pentaerythritol of the present invention was performed. -PO random adduct (A-6) (f = 4; m = 17.8; n = 10.1; k = 7.7; n / (n + k) = 0.57; number average molecular weight 3,700; HLB = 12.5) was obtained.
 製造例7 <ソルビトールのEO-POランダム付加物(A-7)の製造>
 製造例1において、グリセリンをソルビトール16.6部に変更し、エチレンオキサイドを242部、プロピレンオキサイドを242部とした以外は、製造例1と同様な操作を行い、本発明のソルビトールのEO-POランダム付加物(A-7)(f=6;m=17.7;n=10.1;k=7.6;n/(n+k)=0.57;数平均分子量5,500;HLB=12.7)を得た。
Production Example 7 <Production of sorbitol EO-PO random adduct (A-7)>
The same operation as in Production Example 1 was performed except that glycerin was changed to 16.6 parts sorbitol, ethylene oxide was 242 parts, and propylene oxide was 242 parts in Production Example 1, and the sorbitol EO-PO of the present invention was used. Random adduct (A-7) (f = 6; m = 17.7; n = 10.1; k = 7.6; n / (n + k) = 0.57; number average molecular weight 5,500; HLB = 12.7) was obtained.
 製造例8 <グリセリンのEO-POブロック付加物(A-8)の製造>
 ステンレス製加圧反応装置にグリセリンのエチレンオキサイド付加重合物(数平均分子量;620)267部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でプロピレンオキサイド228部を約4時間で圧入した。
 同温度でさらに10時間反応させて本発明のグリセリンのEO-POブロック付加物(A-8)(f=3;m=7.0;n=4.0;k=3.0;n/(n+k)=0.57;数平均分子量1,150;HLB=14.1)を得た。
Production Example 8 <Production of glycerin EO-PO block adduct (A-8)>
A stainless steel pressure reactor was charged with 267 parts of glycerin ethylene oxide addition polymer (number average molecular weight; 620) and 0.05 parts of sodium hydroxide, and after nitrogen substitution, about 228 parts of propylene oxide at 120 to 140 ° C. Press fit in time.
EO-PO block adduct of glycerin of the present invention (A-8) (f = 3; m = 7.0; n = 4.0; k = 3.0; n / (N + k) = 0.57; number average molecular weight 1,150; HLB = 14.1).
 製造例9 <グリセリンのEO-POブロック付加物(A-9)の製造>
 ステンレス製加圧反応装置にグリセリンのエチレンオキサイド付加重合物(数平均分子量;600)74.5部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でプロピレンオキサイド423部を約4時間で圧入した。
 同温度でさらに10時間反応させて本発明のグリセリンのEO-POブロック付加物(A-9)(f=3;m=21.6;n=3.8;k=17.8;n/(n+k)=0.18;数平均分子量3,700;HLB=7.0)を得た。
Production Example 9 <Production of EO-PO block adduct (A-9) of glycerin>
A pressure reactor made of stainless steel was charged with 74.5 parts of glycerin ethylene oxide addition polymer (number average molecular weight; 600) and 0.05 part of sodium hydroxide, and after substitution with nitrogen, 423 parts of propylene oxide was added at 120 to 140 ° C. Press-fitting was performed in about 4 hours.
EO-PO block adduct of glycerin of the present invention (A-9) (f = 3; m = 21.6; n = 3.8; k = 17.8; n / (N + k) = 0.18; number average molecular weight 3,700; HLB = 7.0).
 製造例10 <ペンタエリスリトールのEO-POブロック付加物(A-10)の製造>
 ステンレス製加圧反応装置にペンタエリスリトールのプロピレンオキサイド付加重合物(数平均分子量;830)244部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でエチレンオキサイド256部を約4時間で圧入した。
 同温度でさらに10時間反応させて本発明のペンタエリスリトールのEO-POブロック付加物(A-10)(f=4;m=7.9;n=4.9;k=3.0;n/(n+k)=0.62;数平均分子量1,700;HLB=14.4)を得た。
Production Example 10 <Production of Pentaerythritol EO-PO Block Adduct (A-10)>
A stainless steel pressure reactor was charged with 244 parts of a propylene oxide addition polymer of pentaerythritol (number average molecular weight; 830) and 0.05 part of sodium hydroxide, and after nitrogen substitution, about 256 parts of ethylene oxide was added at 120 to 140 ° C. Press fit in 4 hours.
An additional EO-PO block adduct of pentaerythritol of the present invention (A-10) (f = 4; m = 7.9; n = 4.9; k = 3.0; n /(N+k)=0.62; number average molecular weight 1,700; HLB = 14.4).
 製造例11 <グリセリンのPO付加物(A-11)の製造>
 ステンレス製加圧反応装置にグリセリン46.0部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でプロピレンオキサイド454部を約4時間で圧入した。
 同温度でさらに10時間反応させて本発明のグリセリンのPO付加物(A-10)(f=3;m=5.2;n=0;k=5.2;n/(n+k)=0;数平均分子量1,000;HLB=7.4)を得た。
Production Example 11 <Production of glycerin PO adduct (A-11)>
A stainless steel pressure reactor was charged with 46.0 parts of glycerin and 0.05 part of sodium hydroxide. After purging with nitrogen, 454 parts of propylene oxide were injected at 120 to 140 ° C. in about 4 hours.
By reacting for 10 hours at the same temperature, PO adduct of glycerin of the present invention (A-10) (f = 3; m = 5.2; n = 0; k = 5.2; n / (n + k) = 0 A number average molecular weight of 1,000; HLB = 7.4).
 製造例12  <プロピレングリコールのEO-PO付加物(C-1)の製造>
 ステンレス製加圧反応装置にプロピレングリコールのプロピレンオキサイド付加重合物(数平均分子量;1,700)448部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でエチレンオキサイド52部を約4時間で圧入した。
 同温度でさらに10時間反応させて、本発明のプロピレングリコールのEO-PO付加物(C-1)(HLB=6.7)を得た。
Production Example 12 <Production of EO-PO adduct (C-1) of propylene glycol>
A stainless steel pressure reactor is charged with 448 parts of a propylene oxide addition polymer of propylene glycol (number average molecular weight; 1,700) and 0.05 part of sodium hydroxide, and after nitrogen substitution, 52 parts of ethylene oxide at 120 to 140 ° C. Was pressed in about 4 hours.
The mixture was further reacted at the same temperature for 10 hours to obtain an EO-PO adduct (C-1) (HLB = 6.7) of propylene glycol of the present invention.
 製造例13 <ステアリルアミンのEO-POランダム付加物(C-2)の製造>
 ステンレス製加圧反応装置にステアリルアミン234部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、70~90℃でエチレンオキサイド115部とプロピレンオキサイド151部の混合液を約4時間で圧入した。
 同温度でさらに10時間反応させて、本発明のステアリルアミンのEO-POランダム付加物(C-2)(HLB=8.1)を得た。
Production Example 13 <Production of Stearylamine EO-PO Random Adduct (C-2)>
A stainless steel pressure reactor was charged with 234 parts of stearylamine and 0.05 parts of sodium hydroxide. After purging with nitrogen, a mixed solution of 115 parts of ethylene oxide and 151 parts of propylene oxide was injected at 70 to 90 ° C. in about 4 hours. .
The mixture was further reacted at the same temperature for 10 hours to obtain an EO-PO random adduct (C-2) (HLB = 8.1) of stearylamine of the present invention.
 製造例14 <ジエチレングリコールのEO-POランダム付加物(A’-1)の製造>
 グリセリンをジエチレングリコール53部に替え、エチレンオキサイドを218部、プロピレンオキサイドを230部とした以外は、製造例1と同様な操作を行い、比較のためのジエチレングリコールのEO-POランダム付加物(A’-1)(f=2;m=8.9;n=4.9;k=4.0;n/(n+k)=0.55;数平均分子量1,000;HLB=12.8)を得た。
Production Example 14 <Production of EO-PO random adduct (A'-1) of diethylene glycol>
Except that glycerin was replaced with 53 parts of diethylene glycol, 218 parts of ethylene oxide and 230 parts of propylene oxide were used, the same operation as in Production Example 1 was carried out, and an EO-PO random adduct of diethylene glycol for comparison (A′- 1) (f = 2; m = 8.9; n = 4.9; k = 4.0; n / (n + k) = 0.55; number average molecular weight 1,000; HLB = 12.8) It was.
 製造例15 <グリセリンのEO付加物(A’-3)の製造>
 ステンレス製加圧反応装置にグリセリン33部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でエチレンオキサイド469部を約4時間で圧入した。
 同温度でさらに10時間反応させて比較のためのグリセリンのEO付加物(A’-3)(f=3;m=9.9;n=9.9;k=0;n/(n+k)=1.00;数平均分子量1,400;HLB=20.4)を得た。
Production Example 15 <Production of glycerin EO adduct (A'-3)>
A stainless steel pressure reactor was charged with 33 parts of glycerin and 0.05 part of sodium hydroxide, and after nitrogen substitution, 469 parts of ethylene oxide was injected at 120 to 140 ° C. in about 4 hours.
EO adduct of glycerin (A′-3) for comparison at the same temperature for another 10 hours (f = 3; m = 9.9; n = 9.9; k = 0; n / (n + k) = 1.00; number average molecular weight 1,400; HLB = 20.4).
 製造例16 <グリセリンのPO付加物(A’-4)の製造>
 ステンレス製加圧反応装置にグリセリン25.5部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でプロピレンオキサイド474部を約4時間で圧入した。
 同温度でさらに10時間反応させて比較のためのグリセリンのPO付加物(A’-4)(f=3;m=9.8;n=0;k=9.8;n/(n+k)=0;数平均分子量1,800;HLB=5.8)を得た。
Production Example 16 <Production of glycerin PO adduct (A'-4)>
A stainless steel pressure reactor was charged with 25.5 parts of glycerin and 0.05 part of sodium hydroxide, and after nitrogen substitution, 474 parts of propylene oxide was injected at 120 to 140 ° C. in about 4 hours.
The reaction was carried out at the same temperature for another 10 hours, and the PO adduct of glycerin (A′-4) for comparison (f = 3; m = 9.8; n = 0; k = 9.8; n / (n + k) = 0; number average molecular weight 1,800; HLB = 5.8).
 製造例17 <グリセリンのEO-POランダム付加物(A’-5)の製造>
 グリセリンを0.87部、エチレンオキサイドを326部、プロピレンオキサイドを173部とした以外は、製造例1と同様な操作を行い、比較のためのグリセリンのEO-POランダム付加物(A’-5)(f=3;m=365;n=260;k=105;n/(n+k)=0.72;数平均分子量52,700;HLB=13.9)を得た。
Production Example 17 <Production of EO-PO random adduct (A'-5) of glycerin>
A EO-PO random adduct of glycerin for comparison (A′-5) was prepared in the same manner as in Production Example 1 except that 0.87 part of glycerin, 326 parts of ethylene oxide and 173 parts of propylene oxide were used. ) (F = 3; m = 365; n = 260; k = 105; n / (n + k) = 0.72; number average molecular weight 52,700; HLB = 13.9).
 製造例18 <トリエタノールアミンのEO-PO付加物(A’-7)の製造>
 ステンレス製加圧反応装置にトリエタノールアミン37.3部と水酸化ナトリウム0.05部を仕込み、窒素置換後に、120~140℃でエチレンオキサイド114部とプロピレンオキサイド349部の混合液を約4時間で圧入した。
 同温度でさらに10時間反応させて、比較のためのトリエタノールアミンのEO-PO付加物(A’-7)(数平均分子量2,000)を得た。
Production Example 18 <Production of Triethanolamine EO-PO Adduct (A'-7)>
A stainless steel pressure reactor was charged with 37.3 parts of triethanolamine and 0.05 parts of sodium hydroxide. After purging with nitrogen, a mixture of 114 parts of ethylene oxide and 349 parts of propylene oxide was added at 120 to 140 ° C. for about 4 hours. Press-fitted with.
The mixture was further reacted at the same temperature for 10 hours to obtain an EO-PO adduct (A′-7) (number average molecular weight 2,000) of triethanolamine for comparison.
 実施例1~11および比較例1~7
 表1記載の配合比(重量部)で各成分を配合し、実施例1~11および比較例1~7の切削液を調製して、浸透性、反応抑制性、抑泡性、およびシリコンウエハの平坦性の性能評価を行った。
Examples 1 to 11 and Comparative Examples 1 to 7
Each component was blended in the blending ratio (parts by weight) shown in Table 1, and the cutting fluids of Examples 1 to 11 and Comparative Examples 1 to 7 were prepared to obtain permeability, reaction suppression, foam suppression, and silicon wafer. The flatness was evaluated for performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の「PEG-6000(A’-2)」は三洋化成工業(株)製のPEG-6000(数平均分子量が6,000のポリオキシエチレングリコール)を用いた。 In Table 1, “PEG-6000 (A′-2)” used was PEG-6000 (polyoxyethylene glycol having a number average molecular weight of 6,000) manufactured by Sanyo Chemical Industries.
 実施例1~11および比較例1~7の切削液の比熱を測定した。また、浸透性、反応抑制性、抑泡性、シリコンウエハの平坦性を、下記の方法で評価した。 The specific heat of the cutting fluids of Examples 1 to 11 and Comparative Examples 1 to 7 was measured. Moreover, the following method evaluated the permeability, reaction suppression property, foam suppression property, and the flatness of the silicon wafer.
 <比熱の測定>
 切削液の25℃における比熱は、示差走査熱量計(パーキンエルマー社製)を用いて測定した。その結果を表1に示す。
<Measurement of specific heat>
The specific heat at 25 ° C. of the cutting fluid was measured using a differential scanning calorimeter (manufactured by Perkin Elmer). The results are shown in Table 1.
 <浸透性の評価>
 浸透性の評価は以下に示す方法で行った。
(1)25mm角の多結晶シリコンインゴットに、幅0.2mm、長さ25mm、深さ5mmの溝を、ダイヤモンド固定砥粒ワイヤー、シングルワイヤーソー切断機(SOUTH BAY TECHNOLOGY製)を用いて形成し、試験片とした。
(2)この試験片を溝の長さ方向が水平になるように固定した状態で、溝の端に切削液をスポイト一滴分(0.02g)を付着させた。
(3)溝に切削液を付着させてから、付着させた反対の溝の端に、切削液が毛細管現象で到達するのに要する時間を記録した。
<Evaluation of permeability>
The permeability was evaluated by the following method.
(1) Grooves with a width of 0.2 mm, a length of 25 mm, and a depth of 5 mm are formed on a 25 mm square polycrystalline silicon ingot using a diamond fixed abrasive wire and a single wire saw cutting machine (manufactured by SOUTH BAY TECHNOLOGY). A test piece was obtained.
(2) With this test piece fixed so that the length direction of the groove was horizontal, a drop of the dropper (0.02 g) was attached to the end of the groove.
(3) After the cutting fluid was attached to the groove, the time required for the cutting fluid to reach the end of the opposite groove attached by capillary action was recorded.
 浸透性の評価は以下の判断基準に従って行った。
◎:10秒未満
○:10秒以上~15秒未満
△:15秒以上~20秒未満
×:20秒以上
The permeability was evaluated according to the following criteria.
◎: Less than 10 seconds ○: More than 10 seconds to less than 15 seconds △: More than 15 seconds to less than 20 seconds ×: More than 20 seconds
 <水素発生量による反応抑制性の評価>
 水とシリコンの反応による水素発生の抑制性の評価は以下に示す方法で行った。
(1)切削液80gにシリコンインゴッドの切り屑を想定したケイ素粉末(高純度化学研究所社製;粒子径1μm以下)20gを配合し、ディスパーサーを用いて3000回転で1分間攪拌分散してケイ素粉末を含む切削液を得た。
(2)上記で調製したケイ素粉末を含む切削液が入ったガラスサンプル瓶の口に、ガラス管を通したゴム栓でそのサンプル瓶の封をし、水を満たして逆さに水槽に伏せたメスシリンダーにそのガラス管の他端を導入し、発生した水素ガスをメスシリンダー内部の水と置換させるようにセットした。
(3)これらの水槽、メスシリンダー、ガラス管およびスラリーの入ったサンプル瓶の一連のセットを、60℃の恒温高温槽に2時間静置し、その間に発生する水素を水上置換法にてメスシリンダーに回収して水素発生量を測定した。
<Evaluation of reaction inhibition by hydrogen generation amount>
The evaluation of the suppression of hydrogen generation by the reaction between water and silicon was carried out by the following method.
(1) 20 g of silicon powder (manufactured by High Purity Chemical Laboratories; particle size of 1 μm or less) assuming silicon ingot chips is mixed in 80 g of cutting fluid, and stirred and dispersed for 1 minute at 3000 rpm using a disperser. A cutting fluid containing silicon powder was obtained.
(2) The mouth of the glass sample bottle containing the cutting fluid containing silicon powder prepared above was sealed with a rubber stopper through a glass tube, filled with water, and turned upside down into a water tank. The other end of the glass tube was introduced into the cylinder, and the generated hydrogen gas was set to replace the water inside the graduated cylinder.
(3) A series of sample bottles containing these water tanks, graduated cylinders, glass tubes and slurries are allowed to stand in a constant temperature and high temperature tank at 60 ° C. for 2 hours, and the hydrogen generated during this period is measured with a water displacement method. The amount of hydrogen generation was measured by collecting in a cylinder.
 反応抑制性の評価は以下の判断基準に従って行った。
○:水素ガス発生量が4mL未満
△:水素ガス発生量が4mL以上~8mL未満
×:水素ガス発生量が8mL以上
The evaluation of reaction inhibition was performed according to the following criteria.
○: Hydrogen gas generation amount is less than 4 mL △: Hydrogen gas generation amount is 4 mL or more to less than 8 mL ×: Hydrogen gas generation amount is 8 mL or more
 <抑泡性の評価>
 抑泡性の評価は以下に示す方法で行った。
(1)内径3cmの100mLの共栓付きメスシリンダーに、切削液を40mL入れ、メスシリンダーの底部から液面までの距離(液面高さ)を記録した。
(2)切削液が入ったメスシリンダーを、10秒間で40回振とうした。
(3)振とう直後に、メスシリンダーの底部から最も高い気泡面までの距離(気泡面高さ)を測定して、気泡面高さと液面高さの差を記録した。
<Evaluation of foam suppression>
The evaluation of foam suppression was performed by the following method.
(1) 40 mL of cutting fluid was put into a 100 mL measuring cylinder with a stopper having an inner diameter of 3 cm, and the distance (liquid level height) from the bottom of the measuring cylinder to the liquid level was recorded.
(2) The graduated cylinder containing the cutting fluid was shaken 40 times in 10 seconds.
(3) Immediately after shaking, the distance from the bottom of the graduated cylinder to the highest bubble surface (bubble surface height) was measured, and the difference between the bubble surface height and the liquid surface height was recorded.
 抑泡性の評価は以下の判断基準に従って行った。
◎:7mm未満
○:7mm以上~20mm未満
△:20mm以上~35mm未満
×:35mm以上
The evaluation of foam suppression was performed according to the following criteria.
◎: Less than 7 mm ○: 7 mm or more to less than 20 mm Δ: 20 mm or more to less than 35 mm x: 35 mm or more
 <シリコンウエハの平坦性>
 シリコンウエハの平坦性の評価は以下に示す方法で行った。
(1)被切断材として直径25mmの多結晶シリコンの円筒状ペレットを用い、ダイヤモンド固定砥粒ワイヤー、シングルワイヤーソー切断機(SOUTH BAY TECHNOLOGY製)で切断試験を実施した。
 切断条件:クーラント流量2ml/分、平均ワイヤー走行速度20m/分、ワイヤー往復回数400回/分、ワイヤー使用量0.1m
(2) 切断後のウエハ表面粗さ(Ra)をレーザー走査顕微鏡(株式会社キーエンス製、VK-8710)を用いて測定した。
<Flatness of silicon wafer>
Evaluation of the flatness of the silicon wafer was performed by the following method.
(1) Using a polycrystalline silicon cylindrical pellet having a diameter of 25 mm as a material to be cut, a cutting test was carried out with a diamond fixed abrasive wire and a single wire saw cutting machine (manufactured by SOUTH BAY TECHNOLOGY).
Cutting conditions: coolant flow rate 2 ml / min, average wire travel speed 20 m / min, wire reciprocation 400 times / min, wire usage 0.1 m
(2) The wafer surface roughness (Ra) after cutting was measured using a laser scanning microscope (VK-8710, manufactured by Keyence Corporation).
 シリコンウエハの平坦性の評価は以下の判断基準に従って行った。
◎:Raが0.1μm未満
○:Raが0.1μm以上~0.2μm未満
△:Raが0.2μm以上~0.3μm未満
×:Raが0.3μm以上
The flatness of the silicon wafer was evaluated according to the following criteria.
◎: Ra is less than 0.1 μm ○: Ra is 0.1 μm or more to less than 0.2 μm Δ: Ra is 0.2 μm or more to less than 0.3 μm ×: Ra is 0.3 μm or more
 表1の結果から明らかなように、実施例1~11の本発明の切削液はいずれも、比熱が水の4.2に近く、浸透性、反応抑制性、抑泡性、シリコンウエハの平坦性ともに優れている。
 一方、2個の水酸基を有する化合物のポリオキシアルキレン付加物を用いた比較例1は、抑泡性が不十分である。
 2個の水酸基を有する化合物のポリオキシアルキレン付加物を用いた比較例2、およびHLBが20を超えるポリオキシアルキレン付加物を用いた比較例3は、浸透性、反応抑制性、抑泡性、シリコンウエハの平坦性のいずれも劣る。一方、HLBが6.0未満の比較例4は水に溶解しない。
 平均付加モル数のmが350を超えるポリオキシアルキレン化合物を用いた比較例5は、浸透性、抑泡性およびシリコンウエハの平坦性が不十分である。
 2価のアルコールであるプロピレングリコールを用いた比較例6は、浸透性、反応抑制性およびシリコンウエハの平坦性が劣る。
 多価アルコールの代わりにトリエタノールアミンにアルキレンオキサイドを付加したポリオキシアルキレン化合物を使用した比較例7は、反応抑制性、抑泡性およびシリコンウエハの平坦性がともに不十分である。
As is clear from the results in Table 1, all of the cutting fluids of the present invention of Examples 1 to 11 have specific heat close to 4.2 of water, permeability, reaction suppression, foam suppression, and flatness of silicon wafers. Excellent in both properties.
On the other hand, Comparative Example 1 using a polyoxyalkylene adduct of a compound having two hydroxyl groups has insufficient foam suppression.
Comparative Example 2 using a polyoxyalkylene adduct of a compound having two hydroxyl groups, and Comparative Example 3 using a polyoxyalkylene adduct having an HLB of more than 20 are penetrability, reaction inhibition, foam suppression, All of the flatness of the silicon wafer is inferior. On the other hand, Comparative Example 4 having an HLB of less than 6.0 does not dissolve in water.
In Comparative Example 5 using a polyoxyalkylene compound having an average added mole number of m exceeding 350, the permeability, the foam-suppressing property, and the flatness of the silicon wafer are insufficient.
Comparative Example 6 using propylene glycol, which is a divalent alcohol, is inferior in permeability, reaction suppression and flatness of the silicon wafer.
Comparative Example 7 using a polyoxyalkylene compound obtained by adding alkylene oxide to triethanolamine instead of polyhydric alcohol has insufficient reaction suppression, foam suppression and flatness of the silicon wafer.
 本発明のシリコンインゴットスライス用含水切削液は、加工熱の冷却性が優れ、浸透性、水とシリコンとの反応抑制性、抑泡性が良好で、かつシリコンウエハの平坦性が優れるため、シリコンインゴットをスライスするときに使用する切削液して有用である。
 本発明のシリコンインゴットスライス用含水切削液を用いてシリコンインゴットを切削加工して製造されたシリコンウエハは、例えば太陽電池用セル、メモリー素子、発振素子、増幅素子、トランジスタ、ダイオード、LSIの電子材料として利用でき、これらの電子材料は、太陽光発電装置、パソコン、携帯電話、ディスプレー、オーディオ等に使用することができる。
 また、本発明のシリコンインゴットスライス用含水切削液は、加工熱の冷却性および浸透性に優れるので、シリコンインゴッド以外に、水晶、炭化ケイ素、サファイヤ等の硬質な材料を切削するときに使用する切削液としても有用である。
The water-containing cutting fluid for slicing silicon ingot of the present invention is excellent in cooling of processing heat, penetrability, water-silicon reaction suppression, foam suppression, and silicon wafer flatness. It is useful as a cutting fluid used when slicing an ingot.
Silicon wafers manufactured by cutting a silicon ingot using the water-containing cutting fluid for slicing silicon ingots of the present invention include, for example, solar cell, memory element, oscillation element, amplification element, transistor, diode, LSI electronic material These electronic materials can be used for solar power generation devices, personal computers, mobile phones, displays, audios, and the like.
Further, the water-containing cutting fluid for silicon ingot slicing of the present invention is excellent in cooling and penetrability of processing heat, so that it is used when cutting hard materials such as quartz, silicon carbide, sapphire, etc. in addition to silicon ingot. It is also useful as a liquid.

Claims (14)

  1.  下記一般式(1)で表される3~8個の水酸基を有する化合物(a)のポリオキシアルキレン付加物(A)と水を必須成分として含有し、該ポリオキシアルキレン付加物(A)のHLBが6.0~20.0であることを特徴とするシリコンインゴットスライス用含水切削液。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、Rは3~8個の水酸基を有する化合物から水酸基を除いた残基、(AO)は炭素数が2~4のオキシアルキレン基を表す。mは炭素数が2~4のアルキレンオキサイドの平均付加モル数を表し1~350の数、fは3~8の整数である。]
    A polyoxyalkylene adduct (A) of the compound (a) having 3 to 8 hydroxyl groups represented by the following general formula (1) and water as essential components, the polyoxyalkylene adduct (A) A water-containing cutting fluid for slicing silicon ingot, characterized by having an HLB of 6.0 to 20.0.
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (1), R represents a residue obtained by removing a hydroxyl group from a compound having 3 to 8 hydroxyl groups, and (A 1 O) represents an oxyalkylene group having 2 to 4 carbon atoms. m represents the average number of moles of alkylene oxide having 2 to 4 carbon atoms and represents a number of 1 to 350, and f is an integer of 3 to 8. ]
  2.  前記ポリオキシアルキレン付加物(A)中の-(AO)-が下記一般式(2)で表される請求項1記載のシリコンインゴットスライス用含水切削液。
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、AOはオキシエチレン基、AOはオキシプロピレン基を表す。nはエチレンオキサイドの平均付加モル数を表し1~250の数、kはプロピレンオキサイドの平均付加モル数を表し1~100の数、n/(n+k)は0.1~0.9である。エチレンオキサイドとプロピレンオキサイドを併用する際のその付加形式はランダム状でもブロック状でもよい。]
    The hydrous cutting fluid for silicon ingot slice according to claim 1, wherein-(A 1 O) m -in the polyoxyalkylene adduct (A) is represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000005
    Wherein (2), A 2 O is an oxyethylene group, A 3 O represents an oxypropylene group. n represents the average number of moles of ethylene oxide added and represents a number of 1 to 250, k represents the average number of moles of propylene oxide added and represents a number of 1 to 100, and n / (n + k) is 0.1 to 0.9. When ethylene oxide and propylene oxide are used in combination, the addition form may be random or block. ]
  3.  前記ポリオキシアルキレン付加物(A)中のn/(n+k)が0.4~0.7である請求項1または2記載のシリコンインゴットスライス用含水切削液。 The water-containing cutting fluid for silicon ingot slice according to claim 1 or 2, wherein n / (n + k) in the polyoxyalkylene adduct (A) is 0.4 to 0.7.
  4.  前記ポリオキシアルキレン付加物(A)の数平均分子量が400~10,000である請求項1~3のいずれかに記載のシリコンインゴットスライス用含水切削液。 The water-containing cutting fluid for silicon ingot slice according to any one of claims 1 to 3, wherein the polyoxyalkylene adduct (A) has a number average molecular weight of 400 to 10,000.
  5.  前記ポリオキシアルキレン付加物(A)のHLBが、10.0~18.5である請求項1~4のいずれかに記載のシリコンインゴットスライス用含水切削液。 The hydrous cutting fluid for silicon ingot slice according to any one of claims 1 to 4, wherein the polyoxyalkylene adduct (A) has an HLB of 10.0 to 18.5.
  6.  前記ポリオキシアルキレン付加物(A)が、グリセリン、トリメチロールプロパン、ペンタエリスリトールおよびソルビトールからなる群より選ばれる1種以上の3~6個の水酸基を有する化合物のポリオキシアルキレン付加物である請求項1~5のいずれかに記載のシリコンインゴットスライス用含水切削液。 The polyoxyalkylene adduct (A) is a polyoxyalkylene adduct of a compound having one or more 3 to 6 hydroxyl groups selected from the group consisting of glycerin, trimethylolpropane, pentaerythritol and sorbitol. 6. A water-containing cutting fluid for slicing silicon ingots according to any one of 1 to 5.
  7.  切削液中の前記ポリオキシアルキレン付加物(A)の使用時の含有量が0.1~40重量%である請求項1~6のいずれかに記載のシリコンインゴットスライス用含水切削液。 The water-containing cutting fluid for silicon ingot slices according to any one of claims 1 to 6, wherein the content of the polyoxyalkylene adduct (A) in the cutting fluid when used is 0.1 to 40% by weight.
  8.  さらに、カルボニル基の炭素原子を含めた炭素数が8または9の1価または2価の直鎖または分岐の脂肪族カルボン酸(B)を含有する請求項1~7いずれか記載のシリコンインゴットスライス用含水切削液。 The silicon ingot slice according to any one of claims 1 to 7, further comprising a monovalent or divalent linear or branched aliphatic carboxylic acid (B) having 8 or 9 carbon atoms including a carbon atom of a carbonyl group. Water-containing cutting fluid.
  9.  さらにHLBが6.0~8.5であるノニオン界面活性剤(C)を含有する請求項1~8いずれか記載のシリコンインゴットスライス用含水切削液。 The water-containing cutting fluid for silicon ingot slices according to any one of claims 1 to 8, further comprising a nonionic surfactant (C) having an HLB of 6.0 to 8.5.
  10.  請求項1~9いずれか記載のシリコンインゴットスライス用含水切削液と砥粒がワイヤーに固着された固定砥粒用ワイヤーソーを用いるシリコンインゴットのスライス方法。 A method for slicing a silicon ingot using the wire saw for fixed abrasive grains in which the water-containing cutting fluid for slicing silicon ingots and abrasive grains according to any one of claims 1 to 9 are fixed to a wire.
  11.  請求項1~9いずれか記載のシリコンインゴットスライス用含水切削液と砥粒がワイヤーに固着された固定砥粒用ワイヤーソーを用いてシリコンインゴットをスライスするシリコンウエハの製造方法。 A method for producing a silicon wafer, comprising slicing a silicon ingot using the water-containing cutting fluid for slicing silicon ingot according to any one of claims 1 to 9 and a fixed abrasive wire saw in which abrasive particles are fixed to a wire.
  12.  請求項11記載の製造方法でシリコンインゴットをスライスして製造されたシリコンウエハ。 A silicon wafer produced by slicing a silicon ingot by the production method according to claim 11.
  13.  請求項12に記載のシリコンウエハを用いて製造された電子材料。 An electronic material manufactured using the silicon wafer according to claim 12.
  14.  請求項12に記載のシリコンウエハを用いて製造された太陽電池用セル。 A solar battery cell manufactured using the silicon wafer according to claim 12.
PCT/JP2012/002176 2011-03-31 2012-03-29 Hydrous cutting fluid for slicing silicon ingot WO2012132448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280014979.7A CN103502409B (en) 2011-03-31 2012-03-29 The moisture cutting fluid of slicing silicon ingots, slicing silicon ingots method, Silicon Wafer and manufacture method thereof, electronic material and solar cell unit
KR1020137023071A KR101577588B1 (en) 2011-03-31 2012-03-29 Hydrous cutting fluid for slicing silicon ingot, method for slicing silicon ingot, silicon wafer and manufacturing method of the same, electronic material, and cell for solar battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-081147 2011-03-31
JP2011081147 2011-03-31
JP2011165978 2011-07-28
JP2011-165978 2011-07-28

Publications (1)

Publication Number Publication Date
WO2012132448A1 true WO2012132448A1 (en) 2012-10-04

Family

ID=46930220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002176 WO2012132448A1 (en) 2011-03-31 2012-03-29 Hydrous cutting fluid for slicing silicon ingot

Country Status (5)

Country Link
JP (1) JP5634428B2 (en)
KR (1) KR101577588B1 (en)
CN (1) CN103502409B (en)
MY (1) MY162332A (en)
WO (1) WO2012132448A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003157A1 (en) * 2012-06-29 2014-01-03 出光興産株式会社 Aqueous processing liquid
CN104911007A (en) * 2014-03-10 2015-09-16 吉坤日矿日石能源株式会社 Water-soluble cutting oil raw liquid composition, cutting oil composition and cutting processing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913409B2 (en) * 2013-03-26 2016-04-27 三洋化成工業株式会社 Hydrous cutting fluid
JP2015071750A (en) * 2013-09-04 2015-04-16 三洋化成工業株式会社 Method for manufacturing metal workpiece
CN105062650A (en) * 2015-08-11 2015-11-18 苏州市宝玛数控设备有限公司 Water-based cutting fluid for hard and brittle materials
JP7104541B2 (en) * 2018-03-30 2022-07-21 出光興産株式会社 Brittle material processing liquid composition
JP6843910B2 (en) * 2018-04-06 2021-03-17 三洋化成工業株式会社 Base oil for metal processing
CN113337326B (en) * 2020-06-10 2023-05-23 沙索(中国)化学有限公司 Aqueous composition comprising a water-soluble glycerol-based polyalkylene glycol and use thereof
JP2022157907A (en) * 2021-03-31 2022-10-14 出光興産株式会社 Working fluid, working fluid composition and brittle material working fluid composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226879A (en) * 2000-11-30 2002-08-14 Sanyo Chem Ind Ltd Lubricant
JP2003082336A (en) * 2001-09-12 2003-03-19 Asahi Denka Kogyo Kk Aqueous lapping solution and aqueos lapping agent
JP2005179630A (en) * 2003-03-24 2005-07-07 Sanyo Chem Ind Ltd Aqueous lubricant for metal-processing oil
JP2008173730A (en) * 2007-01-19 2008-07-31 Nippon Oil Corp Very trace amount lubricant supply type cutting and grinding processing method
JP2010254813A (en) * 2009-04-24 2010-11-11 Kyodo Yushi Co Ltd Metal forming oil, metal forming method and metal formed product
WO2011024486A1 (en) * 2009-08-31 2011-03-03 三洋化成工業株式会社 Water-soluble cutting fluid for slicing silicon ingots

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516184C (en) * 2003-03-24 2009-07-22 三洋化成工业株式会社 Lubricant for water-miscible metal working oil
JP5208409B2 (en) * 2006-12-15 2013-06-12 花王株式会社 Cleaning composition
JP5506235B2 (en) * 2009-04-24 2014-05-28 日本写真印刷株式会社 Matte-like conductive nanofiber sheet and method for producing the same
JP2011005818A (en) * 2009-06-29 2011-01-13 Sumco Corp Method for cutting of silicon ingot for solar cell
JP2012230929A (en) * 2009-08-28 2012-11-22 Sumco Corp Solar cell silicon wafer and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226879A (en) * 2000-11-30 2002-08-14 Sanyo Chem Ind Ltd Lubricant
JP2003082336A (en) * 2001-09-12 2003-03-19 Asahi Denka Kogyo Kk Aqueous lapping solution and aqueos lapping agent
JP2005179630A (en) * 2003-03-24 2005-07-07 Sanyo Chem Ind Ltd Aqueous lubricant for metal-processing oil
JP2008173730A (en) * 2007-01-19 2008-07-31 Nippon Oil Corp Very trace amount lubricant supply type cutting and grinding processing method
JP2010254813A (en) * 2009-04-24 2010-11-11 Kyodo Yushi Co Ltd Metal forming oil, metal forming method and metal formed product
WO2011024486A1 (en) * 2009-08-31 2011-03-03 三洋化成工業株式会社 Water-soluble cutting fluid for slicing silicon ingots

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003157A1 (en) * 2012-06-29 2014-01-03 出光興産株式会社 Aqueous processing liquid
JP2014009313A (en) * 2012-06-29 2014-01-20 Idemitsu Kosan Co Ltd Aqueous working fluid
CN104911007A (en) * 2014-03-10 2015-09-16 吉坤日矿日石能源株式会社 Water-soluble cutting oil raw liquid composition, cutting oil composition and cutting processing method

Also Published As

Publication number Publication date
JP2013047319A (en) 2013-03-07
KR20140009333A (en) 2014-01-22
MY162332A (en) 2017-05-31
KR101577588B1 (en) 2015-12-15
JP5634428B2 (en) 2014-12-03
CN103502409A (en) 2014-01-08
CN103502409B (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5634428B2 (en) Hydrous cutting fluid for slicing silicon ingot
JP5464055B2 (en) Water-based cutting fluid and water-based cutting agent
TWI484029B (en) Fixed abrasive grain wire saw with water-soluble cutting fluid, cutting method using its ingot, its recovery method and cutting the resulting wafer
CN102257091B (en) Cutting fluid composition for wiresawing
KR20120061821A (en) Water-soluble cutting fluid for slicing silicon ingots
JP2012251025A (en) Water-containing cutting fluid composition and method for producing the same
US8591611B2 (en) Aqueous cutting fluid and slurry
JP5505987B2 (en) Polishing composition
JP5755479B2 (en) Hydrous cutting fluid composition and method for producing the same
JP2013203967A (en) Water-containing cutting fluid for silicon ingot slicing
JP2015071750A (en) Method for manufacturing metal workpiece
JP5913409B2 (en) Hydrous cutting fluid
KR101809778B1 (en) Silicon wafer processing solution and silicon wafer processing method
KR20120056196A (en) Environment-friendly water-soluble cutting fluid for wafer, and composition containing the same cutting fluid
JP2013203968A (en) Hydrous cutting fluid for slicing silicon ingot
JP5624904B2 (en) Water-soluble cutting fluid for silicon ingot
KR20160018470A (en) Water soluble cutting fluid for fixed abrasive grain wire saw, ingot cutting method using same, and substrate for electronic material obtained by means of same
JP2011246557A (en) Aqueous cutting fluid for cutting single crystal or multi-crystal ingot
CN116836750A (en) Diamond wire cutting fluid, and preparation method and application thereof
JP2012214767A (en) Cutting fluid for slicing silicon ingot
KR20230161441A (en) Processing fluid, composition for processing fluid, and brittle material processing fluid composition
US20120034146A1 (en) Carrier fluids for abrasives
CN117821154A (en) High-performance environment-friendly diamond wire cutting fluid and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023071

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765419

Country of ref document: EP

Kind code of ref document: A1