WO2012132353A1 - リスク管理装置 - Google Patents

リスク管理装置 Download PDF

Info

Publication number
WO2012132353A1
WO2012132353A1 PCT/JP2012/002004 JP2012002004W WO2012132353A1 WO 2012132353 A1 WO2012132353 A1 WO 2012132353A1 JP 2012002004 W JP2012002004 W JP 2012002004W WO 2012132353 A1 WO2012132353 A1 WO 2012132353A1
Authority
WO
WIPO (PCT)
Prior art keywords
loss
amount
data
risk
loss data
Prior art date
Application number
PCT/JP2012/002004
Other languages
English (en)
French (fr)
Inventor
森永 聡
今村 悟
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to SG2013070685A priority Critical patent/SG193549A1/en
Priority to KR1020137025321A priority patent/KR101566601B1/ko
Priority to EP12763797.3A priority patent/EP2693378A4/en
Priority to US14/008,053 priority patent/US20140012621A1/en
Publication of WO2012132353A1 publication Critical patent/WO2012132353A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities

Definitions

  • the present invention relates to a risk management apparatus, and more particularly to a risk management apparatus having a function of calculating a risk amount by a simple method from loss data including a loss amount and a loss occurrence frequency.
  • risks such as earthquakes, system failures, clerical errors, and fraud. For this reason, it is required to measure the amount of risk using a risk weighing device and take measures against the risk.
  • the risk weighing device inputs fragmentary information about an unknown risk profile in a company, and measures the characteristic value (for example, 99.9% value at risk (VaR)) of the risk profile of the company from this input data.
  • the input data of the risk weighing device generally includes internal loss data and scenario data.
  • Internal loss data is data related to loss events that actually occurred in the company.
  • the internal loss data indicates how much loss has occurred for what kind of event.
  • the internal loss data and scenario data are collectively referred to as loss data.
  • General risk weighing devices measure VaR using a technique called loss distribution technique (see, for example, Patent Document 1 and Non-Patent Document 1). Specifically, first, a loss frequency distribution is generated from the number of cases of internal loss data, and a loss scale distribution is generated from internal loss data and scenario data. Next, tens of thousands of processes to calculate the amount of loss per holding period by taking out the amount of loss for the number of losses generated using the above loss frequency distribution from the above loss size distribution by Monte Carlo simulation and adding them up. Generate a distribution of losses, repeated hundreds of thousands of times. Then, VaR of a predetermined confidence interval is calculated from the generated loss distribution.
  • a loss frequency distribution is generated from the number of cases of internal loss data
  • a loss scale distribution is generated from internal loss data and scenario data.
  • tens of thousands of processes to calculate the amount of loss per holding period by taking out the amount of loss for the number of losses generated using the above loss frequency distribution from the above loss size distribution by Monte Carlo simulation and adding them up. Generate a distribution of
  • a risk weighing device that uses the loss distribution method generates a frequency distribution and a size distribution, and generates a total amount of losses that occur per holding period by using the frequency distribution and the size distribution by Monte Carlo simulation. VaR is calculated. Therefore, although accuracy is good, there is a problem that a calculation load is high.
  • An object of the present invention is to provide a risk management apparatus that solves the above-described problem, that is, the problem that it is difficult to calculate an approximate value of VaR in a short time.
  • the risk management device is: The lower ⁇ % point ( ⁇ is a predetermined constant in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter corresponding to the loss occurrence frequency and the loss data including the loss amount and the loss occurrence frequency.
  • a processor connected to the memory, The processor Each loss data is programmed to calculate a multiplication value of the coefficient held in the coefficient table and the loss amount included in the loss data corresponding to the loss occurrence frequency included in the loss data. The structure is taken.
  • the risk management method includes: The lower ⁇ % point ( ⁇ is a predetermined constant in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter corresponding to the loss occurrence frequency and the loss data including the loss amount and the loss occurrence frequency.
  • a risk management method that is executed by a risk management device that includes a memory that stores a coefficient table that holds a coefficient equal to the value of the number of occurrences, and a processor connected to the memory, The processor is For each loss data, a configuration is adopted in which a multiplication value of a coefficient held in the coefficient table and a loss amount included in the loss data is calculated corresponding to the frequency of loss included in the loss data.
  • the risk management device 1 according to the first embodiment of the present invention has a function of approximating VaR based on loss data.
  • the risk management apparatus 1 includes a communication interface unit (hereinafter referred to as a communication I / F unit) 11, an operation input unit 12, a screen display unit 13, a storage unit 14, and a processor 15 as main functional units.
  • a communication interface unit hereinafter referred to as a communication I / F unit
  • an operation input unit 12 a screen display unit 13
  • a storage unit 14 a storage unit 14
  • a processor 15 main functional units.
  • the communication I / F unit 11 includes a dedicated data communication circuit and has a function of performing data communication with various devices (not shown) connected via a communication line (not shown).
  • the operation input unit 12 includes an operation input device such as a keyboard and a mouse, and has a function of detecting an operator operation and outputting it to the processor 15.
  • the screen display unit 13 includes a screen display device such as an LCD or a PDP, and has a function of displaying various information such as an operation menu and a calculation result on the screen in response to an instruction from the processor 15.
  • the storage unit 14 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and a program 14P necessary for various processes in the processor 15.
  • the program 14P is a program that realizes various processing units by being read and executed by the processor 15, and is read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 11. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 14.
  • Main processing information stored in the storage unit 14 includes loss data 14A, a coefficient table 14B, and intermediate information 14C.
  • the loss data 14A is data including a loss amount and a loss occurrence frequency.
  • FIG. 2 is a configuration example of the loss data 14A.
  • the loss data 14A in this example is composed of a total of n loss data 14A1 to 14An. Each loss data has an identifier (ID) for uniquely identifying the loss data, a loss amount b, and a loss occurrence frequency ⁇ .
  • ID identifier
  • These loss data 14A have a one-to-one correspondence with internal loss data and scenario data that are input to the risk weighing device to be approximated.
  • the coefficient table 14B is a table that holds a coefficient that corresponds to the loss occurrence frequency and is equal to the value of the occurrence number that is the lower ⁇ % point in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter.
  • is determined according to the VaR confidence interval measured by the risk weighing device to be approximated. For example, if the risk weighing device to be approximated measures 99.9% VaR, ⁇ is set to 99.9.
  • the probability distribution is the same as the probability distribution used for predicting the frequency distribution in a general risk weighing device. For example, if a Poisson distribution is used in a general risk weighing device, the probability distribution is a Poisson distribution.
  • the cumulative distribution function of the Poisson distribution is discontinuous, the cumulative distribution function of the Poisson distribution is smoothed, for example, by extending the factorial of integers to the factorial of real numbers using the gamma function. It is desirable to obtain a coefficient equal to the value of the number of occurrences that becomes the side ⁇ % point.
  • FIG. 3 is a configuration example of the coefficient table 14B.
  • the coefficient table 14B in this example shows the loss occurrence frequency in two formats, that is, the format of how many times it occurs once a year and the format of how many times it occurs per year. If the format of loss occurrence frequency is unified, only one of them can be omitted, and the other can be omitted.
  • the coefficient corresponding to the loss occurrence frequency is described in two forms, that is, both smoothing and not, only one of them may be used. For example, if smoothing-free coefficients are not used, only the coefficients corresponding to smoothing need be tabulated.
  • the intermediate information 14C is intermediate or final data generated in the calculation process of the processor 15.
  • FIG. 4 is a configuration example of the intermediate information 14C.
  • the intermediate information 14C in this example includes individual data VaR amounts 14C1 to 14Cn that correspond one-to-one with the loss data 14A1 to 14An, and a cumulative value 14Cm that is the sum of the individual data VaR amounts 14C1 to 14Cn.
  • the processor 15 has a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 14P from the storage unit 14, thereby causing the hardware and the program 14P to cooperate to implement various processing units. have.
  • main processing units realized by the processor 15 there are an input storage unit 15A, an individual data VaR amount calculation unit 15B, an accumulation unit 15C, and an output unit 15D.
  • the input storage unit 15A has a function of inputting the loss data 14A and the coefficient table 14 from the communication I / F unit 11 or the operation input unit 12 and storing them in the storage unit 14B.
  • the individual data VaR amount calculation unit 15B reads the loss data 14A and the coefficient table 14B from the storage unit 14, and holds each loss data 14Ai in the coefficient table 14B corresponding to the loss occurrence frequency ⁇ i included in the loss data. And a loss value bi included in the loss data is calculated and stored in the storage unit 14 as the individual data VaR amount 14Ci.
  • the accumulating unit 15C has a function of reading all the individual data VaR amount 14Ci from the storage unit 14, calculating the sum, and storing the calculation result in the storage unit 14 as an accumulated value 14Cm.
  • the output unit 15D has a function of reading the accumulated value 14Cm from the storage unit 14 and outputting the accumulated value 14Cm to the screen display unit 13 as an approximate value of the risk amount or outputting the same to the outside through the communication I / F unit 11.
  • the input storage unit 15A inputs the loss data 14A and the coefficient table 14B from the communication I / F unit 11 or the operation input unit 12 and stores them in the storage unit 14 (step S1).
  • step S2 the individual data VaR amount calculation unit 15B, for each loss data included in the loss data 14A, the coefficient held in the coefficient table 14B corresponding to the loss occurrence frequency included in the loss data and its loss The loss amount included in the data is multiplied, and the calculation result is stored in the storage unit 14 as the individual data VaR amount corresponding to the loss data (step S2).
  • the accumulation unit 15D stores a value obtained by adding all the individual data VaR amounts 14Ci in the storage unit 14 as an accumulation value 14Cm (step S3).
  • the output unit 15D outputs the accumulated value 14Cm to the screen display unit 13 as an approximate value of the risk amount, or outputs it to the outside through the communication I / F unit 11 (step S4).
  • VaR calculated by the present embodiment is an approximate value of VaR measured by the risk weighing device to be approximated based on loss data 14A.
  • the input data of the risk weighing device is basically a set of three sets of information including the contents of the risk loss event, the amount of loss, and the average value of the frequency of receiving the loss amount during the holding period. For example, (Tokai earthquake 1, 1 million yen, 0.03), (Tokai earthquake 2, 10 million yen, 0.06), (transfer fraud, 500,000 yen, 0.65), and so on. In some cases, information such as the average event interval (holding period ⁇ average value of frequency) may be included instead of the average value of the frequency. However, since the following discussion is valid as it is, the above triplet is assumed here. To do.
  • the event contents are distinguished from “Tokai earthquake 1” and “Tokai earthquake 2” by the difference in the amount of loss even in the same Tokai earthquake. Even if it is not, the following argument is valid.
  • “risk loss event” is hereinafter referred to as “loss event”.
  • the input data related to event content i is written as (i, Si, Fi).
  • Si is the loss amount and Fi is the average frequency.
  • the risk weighing device estimates the probability distribution of loss due to risk during the holding period so as to fit the input data as much as possible, especially from the probability distribution of the total loss amount during the holding period,
  • the types of loss events are 1, ..., n (n types in total).
  • the difference in risk weighing device is the difference in what assumptions are made or in what viewpoint the input data is fitted. It is possible to set various odd assumptions and fit perspectives, but when estimating the frequency distribution and scale distribution by the moment method, maximum likelihood method, and Bayes method widely used in the world, the contents of the loss event i
  • the average value E [Li] of the amount of loss during the holding period due to is close to the average value Si ⁇ Fi obtained directly from the amount of loss and the average frequency of the input data (especially in the method of moments they match).
  • Si ⁇ Fi obtained directly from the amount of loss and the average frequency of the input data (especially in the method of moments they match).
  • the average value E [L] of the total loss amount L is also a value close to the average value S1 ⁇ F1 +, ..., + Sn ⁇ Fn obtained directly from the loss amount and average frequency of the input data become.
  • the average ratio E [Li] / E [L] of the loss due to a specific event with respect to the average value of the total loss is also calculated directly from the input data Si ⁇ Fi / (S1 ⁇ F1 +, ..., + Sn ⁇ Fn).
  • the average ratio E [Li1 +,..., + Lim] / E [L] of the loss due to a specific event set I ⁇ i1,..., im ⁇ with respect to the average total loss This is close to that obtained directly from the input data (Si1 ⁇ Fi1 +,..., + Sim ⁇ Fim) / (S1 ⁇ F1 +,..., + Sn ⁇ Fn).
  • the ratio of the loss amount resulting from the specific event set to the total loss amount is close to that directly obtained from the input data.
  • the VaR calculation method according to the present embodiment will be described from the above viewpoint.
  • the VaR calculation method according to this embodiment is as follows: ⁇ It is assumed that the number of occurrences of each loss event during the holding period follows the frequency distribution of the type used in general risk weighing devices.
  • the average value E [L] of the total loss amount L in the VaR calculation method according to the present embodiment is the average value S1 ⁇ F1 +,... Directly calculated from the loss amount and average frequency of the input data. , + Sn ⁇ Fn.
  • the average ratio E [Li] / E [L] of the loss due to a specific event with respect to the average value of the total loss is also calculated directly from the input data Si ⁇ Fi / (S1 ⁇ F1 +, ..., + Sn ⁇ Fn).
  • the average ratio E [Li1 +,..., + Lim] / E [L] of the loss due to a specific event set I ⁇ i1,..., im ⁇ with respect to the average total loss It is equal to (Si1 ⁇ Fi1 +,..., + Sim ⁇ Fim) / (S1 ⁇ F1 +,..., + Sn ⁇ Fn) obtained directly from the input data.
  • the ratio of the loss amount resulting from the specific event set to the total loss amount is equal to that directly obtained from the input data.
  • the VaR calculation method according to the present embodiment is an approximation of the risk weighing device to be approximated.
  • the cumulative distribution function of the Poisson distribution is smoothed and a coefficient equal to the value of the number of occurrences that becomes the lower ⁇ % point is obtained. Since the distribution P (L1, ..., Ln) is only a smooth fitting that is a discrete step function, E [L], E [Li] / E [L], E [Li1 +, ..., Values such as + Lim] / E [L] do not change significantly. As a result, the individual data VaR amount in the embodiment is also an approximation of the risk weighing device to be approximated in the sense that the average ratio of the loss amount of the specific input data group is close to the average total loss amount. It is.
  • an approximate value of VaR can be calculated at high speed.
  • the risk management device 2 uses a function for approximating VaR based on loss data, and uses the VaR for each measurement unit to be measured by the risk measurement device. And has a function of calculating a risk amount for each basic element constituting the measurement unit.
  • the risk management device 2 includes a communication I / F unit 21, an operation input unit 22, a screen display unit 23, a storage unit 24, and a processor 25 as main functional units.
  • the communication I / F unit 21, operation input unit 22, and screen display unit 23 have the same functions as the communication I / F unit 11, operation input unit 12, and screen display unit 13 of FIG. 1 in the first embodiment. is doing.
  • the storage unit 24 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and programs 24P necessary for various processes in the processor 25.
  • the program 24P is a program that realizes various processing units by being read and executed by the processor 25, and can be read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 21. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 24.
  • main processing information stored in the storage unit 24 there are loss data 24A for each basic element, a coefficient table 24B, intermediate information 24C, and a risk amount 24D of a measurement unit.
  • the loss data 24A for each basic element is loss data for each element constituting a measurement unit that is a unit in which the risk weighing device measures the risk amount.
  • the risk distribution device of the loss distribution method predicts the frequency distribution and the size distribution from the input data related to each business cell for each unit called a business cell that combines multiple business departments, and the total loss amount for each business cell
  • the business cell serves as one unit of measurement
  • the individual business departments constituting the business cell serve as basic elements.
  • FIG. 7 is a configuration example of the loss data 24A for each basic element.
  • the loss data 24A for each basic element in this example is divided into a total of n basic elements from the first to the nth.
  • the loss data 24Ai for each basic element is composed of x, y,..., Z loss data.
  • the individual loss data 24A11, 24A12,..., 24A1x, 24A21, 24A22, ..., 24A2y, ..., 24An1, 24An2, ..., 24Anz are the same as the loss data 14A1 described in the first embodiment. It has an identifier (ID) for uniquely identifying, a loss amount b, and a loss occurrence frequency ⁇ .
  • ID identifier
  • the coefficient table 24B is the same as the coefficient table 14B in the first embodiment.
  • Measured unit risk amount 24D is a risk amount of the weighing unit measured by the risk weighing device. For example, if the risk weighing device calculates 99.9% VaR amount in the distribution of total loss for each unit called business cell, the risk amount 24D of the measurement unit is 99.9% VaR amount calculated for each business cell. Represents.
  • the intermediate information 24C is intermediate or final data generated in the calculation process of the processor 25.
  • FIG. 8 is a configuration example of the intermediate information 24C.
  • the intermediate information 24C in this example includes individual data VaR amounts 24C11, 24C12,..., 24C1x that correspond one-to-one with the individual loss data 24A11, 24A12,. Consists of individual data VaR amounts 24C21, 24C22,..., 24C2y corresponding to the individual data VaR amount 24C1 of basic element 1 and individual loss data 24A21, 24A22,.
  • the intermediate information 24C is an accumulated value 24Cm1, 24Cm2,..., 24Cmn that is a sum of individual data VaR amounts for each basic element, and an accumulated value of a measurement unit that is a sum of the accumulated values 24Cm1, 24Cm2,. It has 24 Cmm. Further, the intermediate information 24C includes risk amounts 24Cg1, 24Cg2, ..., 24Cgn for each basic element.
  • the processor 25 includes a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 24P from the storage unit 24, thereby realizing the various processing units in cooperation with the hardware and the program 24P. have.
  • main processing units realized by the processor 25 there are an input storage unit 25A, an individual data VaR amount calculation unit 25B, an accumulation unit 25C, an output unit 25D, and a basic element-specific risk amount calculation unit 25E.
  • the input storage unit 25A is a function for inputting the loss data 24A for each basic element, the coefficient table 24B, and the risk amount 24D for the measurement unit from the communication I / F unit 21 or the operation input unit 22, and storing them in the storage unit 24.
  • the individual data VaR amount calculation unit 25B reads the loss data 24A and coefficient table 24B for each basic element from the storage unit 24, and corresponds to the loss occurrence frequency ⁇ i included in the loss data for each basic element and loss data. It has a function of calculating a multiplication value of the coefficient held in the coefficient table 24B and the loss amount bi included in the loss data, and storing it in the storage unit 24 as the individual data VaR amount.
  • the accumulating unit 25C reads all the individual data VaR amounts for each basic element from the storage unit 24, calculates the sum, and stores the calculation results in the storage unit 24 as accumulated values 24Cm1, 24Cm2, ..., 24Cmn.
  • the accumulating unit 25C has a function of calculating the sum of accumulated values 24Cm1, 24Cm2,..., 24Cmn for each basic element, and storing the calculation result in the storage unit 24 as the accumulating value 24Cmm of the measurement unit.
  • the risk amount calculation unit 25E for each basic element stores the risk amount 24D for the measurement unit, the accumulated value 24Cm1, 24Cm2,. This corresponds to the ratio of the accumulated value 24Cmi of the individual data VaR amount of the basic element to the accumulated value 24Cmm of the individual data VaR amount of the measurement unit of the risk amount 24D of the measurement unit for each basic element.
  • the risk amount is calculated and stored in the storage unit 24 as basic component risk amounts 24Cg1, 24Cg2,..., 24Cgn.
  • the output unit 25D has a function of reading the risk amounts 24Cg1, 24Cg2,..., 24Cgn for each basic element from the storage unit 24 and outputting them to the screen display unit 23 or to the outside through the communication I / F unit 21.
  • the input storage unit 25A inputs the loss data 24A for each basic element, the coefficient table 24B, and the risk amount 24D of the measurement unit from the communication I / F unit 21 or the operation input unit 22, and stores them in the storage unit 24. (Step S11).
  • the individual data VaR amount calculation unit 25B includes, for each basic element and loss data, the coefficient held in the coefficient table 24B corresponding to the loss occurrence frequency ⁇ i included in the loss data and the loss data.
  • a multiplication value with the loss amount bi is calculated and stored in the storage unit 24 as the individual data VaR amount (step S12).
  • the accumulating unit 25C accumulates all the individual data VaR amounts for each basic element, further calculates the sum, and the calculation result is the accumulated value 24Cm1 of the basic element 1, the accumulated value 24Cm2 of the basic element 2,.
  • the accumulated value 24Cmn of the basic element n and the accumulated value 24Cmm of the measurement unit are stored in the storage unit 24 (step S13).
  • the risk amount calculation unit 25E for each basic element calculates the individual data VaR amount of the basic element with respect to the accumulated value 24Cmm of the individual data VaR amount of the measurement unit among the risk amount 24D of the measurement unit.
  • a risk amount corresponding to the ratio of the accumulated value 24Cmi is calculated and stored in the storage unit 24 as risk amounts 24Cg1, 24Cg2,..., 24Cgn for each basic element (step S14).
  • the output unit 25D outputs the risk amounts 24Cg1, 24Cg2,..., 24Cgn for each basic element to the screen display unit 23 or to the outside through the communication I / F unit 21 (step S15).
  • the risk amount for each basic element constituting the measurement unit can be calculated from the risk amount for each measurement unit measured by the risk measurement device.
  • the risk meter uses the risk weighing device by calculating the ratio of each basic element to the total necessary for calculating the risk quantity for each basic element from the risk quantity of the entire measurement unit. This is because the amount of calculation is much smaller than that obtained by the above.
  • the risk management device 3 uses scenario data having a high expectation of the effect of the risk reduction measures by using a function of approximately calculating VaR based on loss data. It has a function to determine.
  • the risk management device 3 includes a communication I / F unit 31, an operation input unit 32, a screen display unit 33, a storage unit 34, and a processor 35 as main functional units.
  • the communication I / F unit 31, operation input unit 32, and screen display unit 33 have the same functions as the communication I / F unit 11, operation input unit 12, and screen display unit 13 of FIG. 1 in the first embodiment. is doing.
  • the storage unit 34 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and programs 34P necessary for various processes in the processor 35.
  • the program 34P is a program that realizes various processing units by being read and executed by the processor 35.
  • the program 34P can be read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 31. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 34.
  • Main processing information stored in the storage unit 34 includes first scenario data 34E, second scenario data 34F, a coefficient table 34B, and intermediate information 34C.
  • the first scenario data 34E is composed of one or more scenario data for which the degree of expectation of the effect of the risk reduction measure is to be examined.
  • FIG. 11 is a configuration example of the first scenario data 34E.
  • the first scenario data 34E in this example is composed of n scenario data 34E1 to 34En.
  • Each scenario data 34Ei has an identifier (ID) for uniquely identifying the scenario data, a loss amount b, and a loss occurrence frequency ⁇ .
  • ID identifier
  • the amount of loss and the frequency of loss are predicted based on current risk reduction measures.
  • the loss amount and loss occurrence frequency in the scenario data are predicted based on the evaluation result by performing risk evaluation and internal control status evaluation for each scenario.
  • the loss amount and loss occurrence frequency of the first scenario data are values that are predicted in consideration of the current risk reduction measures.
  • the second scenario data 34F is composed of one or more scenario data corresponding one-to-one with the scenario data in the first scenario data 34E.
  • FIG. 12 is a configuration example of the second scenario data 34F.
  • the second scenario data 34F in this example is composed of n scenario data 34F1 to 34Fn corresponding to the first scenario data 34E1 to 34En on a one-to-one basis.
  • Each scenario data 34Fi has an identifier (ID) of the corresponding first scenario data, a loss amount b, and a loss occurrence frequency ⁇ .
  • ID identifier
  • the amount of loss and the frequency of loss occurrence in scenario data 34Fi are values predicted when the risk assessment and internal control status assessment in the scenario are almost perfect.
  • the scenario with a lower current evaluation result has a tendency that the loss amount and loss occurrence frequency of the second scenario data are smaller than the loss amount and loss occurrence frequency of the corresponding first scenario data. There is. The reason is that it is generally considered that the stronger the risk reduction measures, the less frequently the loss occurs and the smaller the amount of loss per time.
  • the coefficient table 34B is the same as the coefficient table 14B in the first embodiment.
  • the intermediate information 34C is intermediate or final data generated in the calculation process of the processor 35.
  • FIG. 13 is a configuration example of the intermediate information 34C.
  • the intermediate information 34C in this example includes the first scenario data individual data VaR amount 34C1, the first scenario data VaR amount 34C11 to 34C1n corresponding to the first scenario data 34E1 to 34En, one-to-one.
  • Second scenario data individual data VaR amount 34C2 first individual data VaR amount corresponding to the second individual data VaR amount 34C21 to 34C2n corresponding one-to-one to the second scenario data 34F1 to 34Fn
  • Difference values 34C31 to 34C3n from the second individual data VaR amount to be processed and a sort result 34C4 of the difference values 34C31 to 34C3n.
  • a corresponding first scenario data identifier (ID) is added to each of the first and second individual data VaR amounts and difference values.
  • the processor 35 has a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 34P from the storage unit 34, thereby causing the hardware and the program 34P to cooperate to implement various processing units. have.
  • main processing units realized by the processor 35 there are an input storage unit 35A, an individual data VaR amount calculation unit 35B, an output unit 35D, a difference calculation unit 35F, and a sort unit 35G.
  • the input storage unit 35A has a function of inputting the first scenario data 34E, the second scenario data 34F, and the coefficient table 34B from the communication I / F unit 31 or the operation input unit 32 and storing them in the storage unit 34. Have.
  • the individual data VaR amount calculation unit 35B reads the first scenario data 34E, the second scenario data 34F, and the coefficient table 34B from the storage unit 34, and generates a loss included in the scenario data for each first scenario data.
  • a multiplication value of the coefficient held in the coefficient table 34B corresponding to the frequency ⁇ i and the loss amount bi included in the scenario data is calculated and stored in the storage unit 34 as the first individual data VaR amounts 34C11 to 34C1n. It has a function.
  • the individual data VaR amount calculation unit 35B, for each second scenario data corresponds to the loss occurrence frequency ⁇ i included in the scenario data and the loss included in the scenario data. It has a function of calculating a multiplication value with the amount bi and storing it in the storage unit 34 as second individual data VaR amounts 34C21 to 34C2n.
  • the difference calculation unit 35F reads the first individual data VaR amount 34C11 to 34C1n and the second individual data VaR amount 34C21 to 34C2n from the storage unit 34, for each combination of the corresponding first and second individual data VaR amounts. In addition, an amount obtained by subtracting the second individual data VaR amount from the first individual data VaR amount is calculated and stored in the storage unit 34 as difference values 34C1 to 34Cn.
  • the sorting unit 35G has a function of reading the difference values 34C1 to 34Cn from the storage unit 34, sorting the values in descending order, and storing the sorting result 34C4 in the storage unit 34.
  • the output unit 35D reads the sorting result 34C4 from the storage unit 34 and adds it to the difference value of the top m items (m is a predetermined integer) having a large value or a difference value equal to or larger than a predetermined amount.
  • the scenario data identifier and the difference value thereof are output to the screen display unit 33 as a scenario data identifier and a possible reduction amount with a high expectation of the effect of the risk reduction measure, or output to the outside through the communication I / F unit 31. It has the function to do.
  • the input storage unit 35A inputs the first scenario data 34E, the second scenario data 34F, and the coefficient table 34B from the communication I / F unit 31 or the operation input unit 32, and stores them in the storage unit 34. (Step S21).
  • the individual data VaR amount calculation unit 35B corresponds to the loss occurrence frequency ⁇ i included in the scenario data. Is multiplied by the loss bi included in the scenario data and stored in the storage unit 34 as the first individual data VaR amount 34C1i and the second individual data VaR amount 34C2i (step S22).
  • the difference calculation unit 35F calculates an amount obtained by subtracting the second individual data VaR amount 34C2i from the first individual data VaR amount 34C1i for each corresponding combination of the first and second individual data VaR amounts.
  • the difference value 34Cmi is stored in the storage unit 34 (step S23).
  • the sorting unit 35G sorts the difference values 34Cm1 to 34Cmn in descending order, and stores the sorting result 34C4 in the storage unit 34 (step S24).
  • the output unit 35C displays the identifier of the first scenario data added to the difference value of the top m items (m is a predetermined integer) in the sorting result 34C4 or the difference value greater than or equal to the predetermined amount.
  • the difference value is output to the screen display unit 33 or output to the outside through the communication I / F unit 31 as an identifier and a reducible amount of scenario data with a high expectation of the effect of the risk reduction measure (step S25). .
  • the degree of reduction of the VaR amount is examined in the scenario data unit. Accordingly, it is possible to easily perform a kind of component analysis in which a scenario having a high expectation of the effect of the risk reduction measure is analyzed. The reason for this is that the VaR amount can be determined by approximate calculation when at least one of the loss amount and the loss occurrence frequency of the scenario data changes. This is because the amount of calculation is much smaller than that required.
  • the risk management device 4 uses the function of approximating VaR based on loss data, and the amount of change in VaR amount due to change in loss data. It has a function to calculate.
  • the risk management device 4 includes a communication I / F unit 41, an operation input unit 42, a screen display unit 43, a storage unit 44, and a processor 45 as main functional units.
  • the communication I / F unit 41, the operation input unit 42, and the screen display unit 43 have the same functions as the communication I / F unit 11, the operation input unit 12, and the screen display unit 13 of FIG. 1 in the first embodiment. is doing.
  • the storage unit 44 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and programs 44P necessary for various processes in the processor 45.
  • the program 44P is a program that realizes various processing units by being read and executed by the processor 45, and can be read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 41. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 44.
  • Main processing information stored in the storage unit 44 includes first loss data 44A, second loss data 44G, a first risk amount 44H, a coefficient table 44B, and intermediate information 44C.
  • the first loss data 44A is data including a loss amount and a loss occurrence frequency, like the loss data 14A of FIG. 1 in the first embodiment.
  • FIG. 16 is a configuration example of the loss data 44A.
  • the loss data 44A in this example is composed of a total of n loss data 44A1 to 44An. Each loss data has an identifier (ID) for uniquely identifying the loss data, a loss amount b, and a loss occurrence frequency ⁇ .
  • ID identifier
  • the second loss data 44G is data including a loss amount and a loss occurrence frequency, like the first loss data 44A.
  • FIG. 17 is a configuration example of the loss data 44G.
  • the loss data 44G in this example is composed of a total of n loss data 44G1 to 44Gn as with the first loss data 44A, but the number of loss data 44G is not necessarily the same.
  • Each loss data has an identifier (ID) for uniquely identifying the loss data, a loss amount b, and a loss occurrence frequency ⁇ .
  • the relationship between the first loss data 44A and the second loss data 44G may be arbitrary.
  • the second loss data 44G has loss data corresponding to the first loss data 44A on a one-to-one basis, and at least one of the loss amount and loss occurrence frequency of some loss data corresponds to the second loss data 44G. It may be different from the loss amount and loss occurrence frequency of the loss data.
  • the loss amount and loss occurrence frequency of some loss data may have become smaller than the previous period due to the strengthening of risk reduction measures.
  • the first risk amount 44H is a risk amount measured by the risk weighing device to be approximated based on the first loss data 44A, for example, 99.9% VaR amount.
  • the coefficient table 44B is the same as the coefficient table 14B in the first embodiment.
  • the intermediate information 44C is intermediate or final data generated in the calculation process of the processor 45.
  • FIG. 18 is a configuration example of the intermediate information 44C.
  • the intermediate information 44C in this example includes first loss data individual data VaR amount 44C1, first loss data 44R1 to 44An corresponding to the first loss data 44A1 to 44An, the first individual data VaR amount 44C11 to 44C1n.
  • the second individual data VaR amount 44C2 and the first individual data VaR amount 44C11 to 44C1n composed of the second individual data VaR amount 44C21 to 44C2n corresponding one-to-one to the second loss data 44G1 to 44Gn.
  • the second approximate risk amount 44C4 that is the sum of the second individual data VaR amounts 44C21 to 44C2n, and the first approximate risk amount 44C3.
  • Approximate ratio 44C5 and second approximate risk amount 44C multiplied by approximate ratio 44C5 Having a mass 44C6, and the first risk amount 44H and risk of Decrease 44C7 is the difference between the second risk amount 44C6.
  • the processor 45 includes a microprocessor such as a CPU and peripheral circuits thereof, and reads and executes the program 44P from the storage unit 44, thereby realizing various processing units by cooperating the hardware and the program 44P. have.
  • a microprocessor such as a CPU and peripheral circuits thereof, and reads and executes the program 44P from the storage unit 44, thereby realizing various processing units by cooperating the hardware and the program 44P. have.
  • main processing units realized by the processor 45 an input storage unit 45A, an individual data VaR amount calculation unit 45B, an accumulation unit 45C, a ratio calculation unit 45H, a second risk amount calculation unit 45I, a difference calculation unit 45J, and an output There is a part 45D.
  • the input storage unit 45A inputs and stores the first loss data 44A, the second loss data 44G, the first risk amount 44H, and the coefficient table 44B from the communication I / F unit 41 or the operation input unit 42.
  • the function of storing in the unit 44 is provided.
  • the individual data VaR amount calculation unit 45B reads the first loss data 44A, the second loss data 44G, and the coefficient table 44B from the storage unit 44, and for each loss data 44Ai included in the first loss data 44A, A multiplication value of the coefficient held in the coefficient table 44B and the loss amount bi included in the loss data corresponding to the loss occurrence frequency ⁇ i included in the loss data is calculated, and the first individual data VaR amounts 44C11 to 44C1n are calculated.
  • a storage unit 44 As a storage unit 44.
  • the individual data VaR amount calculation unit 45B for each loss data included in the second loss data, the coefficient held in the coefficient table 44B corresponding to the loss occurrence frequency ⁇ i included in the loss data and the loss thereof It has a function of calculating a multiplication value with the loss amount bi included in the data and storing it in the storage unit 44 as the second individual data VaR amounts 44C21 to 44C2n.
  • the accumulating unit 45C has a function of reading the first individual data VaR amounts 44C11 to 44C1n from the storage unit 44, and storing the first approximate risk amount 44C3 obtained by accumulating them in the storage unit 44.
  • the accumulating unit 45C has a function of reading the second individual data VaR amount 44C21 to 44C2n from the storage unit 44 and storing the second approximate risk amount 44C4 obtained by accumulating them in the storage unit 44.
  • the ratio calculation unit 45H reads the first risk amount 44H and the first approximate risk amount 44C3 from the storage unit 44, and the value obtained by dividing the first risk amount 44H by the first approximate risk amount 44C3 is an approximate ratio 44C5. As a storage unit 44.
  • the second risk amount calculation unit 45I reads the second approximate risk amount 44C4 and the approximate ratio 44C5 from the storage unit 44, and multiplies the second approximate risk amount 44C4 by the approximate ratio 44C5 as the second risk.
  • the amount 44C6 is stored in the storage unit 44.
  • the difference calculation unit 45J reads the first risk amount 44H and the second risk amount 44C6 from the storage unit 44, and subtracts the first risk amount 44H from the second risk amount 44C6 to obtain the first loss.
  • the storage unit 44 has a function of storing the increase / decrease amount 44C7 of the risk amount due to the difference between the data 44A and the second loss data 44G.
  • the output unit 45D reads the increase / decrease amount 44C7 of the risk amount from the storage unit 44, and displays the increase / decrease amount of the risk amount due to the difference between the first loss data 44A and the second loss data 44G as the screen display unit 43. Or output to the outside through the communication I / F unit 41.
  • the input storage unit 45A inputs the first loss data 44A, the second loss data 44G, the first risk amount 44H, and the coefficient table 44B from the communication I / F unit 41 or the operation input unit 42. And stored in the storage unit 44 (step S31).
  • the individual data VaR amount calculation unit 45B stores, in the coefficient table 44B, for each loss data included in the first loss data 44A and the second loss data 44G, corresponding to the loss occurrence frequency included in the loss data.
  • the first individual data VaR amount 44C11 to 44C1n and the second individual data VaR amount 44C21 to 44C2n are calculated by multiplying the retained coefficient by the loss amount included in the loss data (step S32).
  • the accumulating unit 45C generates a first approximate risk amount 44C3 that is the sum of the first individual data VaR amounts 44C11 to 44C1n and a second approximate risk that is the sum of the second individual data VaR amounts 44C21 to 44C2n.
  • the amount 44C4 is calculated (step S33).
  • the ratio calculating unit 45H calculates the approximate ratio 44C5 by dividing the first risk amount 44H by the first approximate risk amount 44C3 (step S34).
  • the second risk amount calculation unit 45I calculates the second risk amount 44C6 by multiplying the second approximate risk amount 44C4 by the approximate ratio 44C5 (step S35).
  • the difference calculation unit 45J subtracts the first risk amount 44H from the second risk amount 44C6 to calculate a risk amount increase / decrease amount 44C7 (step S36).
  • the output unit 45D outputs the risk amount increase / decrease amount 44C7 to the screen display unit 43 as the risk amount increase / decrease amount due to the difference between the first loss data 44A and the second loss data 44G. Alternatively, it is output to the outside through the communication I / F unit 41 (step S37).
  • the amount of change in the VaR amount due to the change can be calculated at high speed.
  • the reason is that the amount of risk based on the second loss data can be obtained by approximate calculation, so that the amount of calculation is far greater than when the risk amount based on the second loss data is obtained using a risk weighing device. This is because it decreases.
  • the risk management device 5 has a function of analyzing a factor of increase / decrease in the VaR amount by using a function of approximately calculating VaR based on loss data. ing.
  • the risk management device 5 includes a communication I / F unit 51, an operation input unit 52, a screen display unit 53, a storage unit 54, and a processor 55 as main functional units.
  • the communication I / F unit 51, operation input unit 52, and screen display unit 53 have the same functions as the communication I / F unit 11, operation input unit 12, and screen display unit 13 of FIG. 1 in the first embodiment. is doing.
  • the storage unit 54 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and a program 54P necessary for various processes in the processor 55.
  • the program 54P is a program that implements various processing units by being read and executed by the processor 55, and can be read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 51. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 54.
  • main processing information stored in the storage unit 54 first loss data 54A, second loss data 54G, difference factor information 54I, first risk amount 54H, second risk amount 54J, coefficient table 54B, And intermediate information 54C.
  • the first loss data 54A is data including a loss amount and a loss occurrence frequency, like the loss data 14A of FIG. 1 in the first embodiment.
  • FIG. 21 is a configuration example of the loss data 54A.
  • the loss data 54A in this example is composed of a total of n loss data 54A1 to 54An. Each loss data has an identifier (ID) for uniquely identifying the loss data, a loss amount b, and a loss occurrence frequency ⁇ .
  • ID identifier
  • the second loss data 54G is data including a loss amount and a loss occurrence frequency, like the first loss data 54A.
  • FIG. 22 is a configuration example of the loss data 54G.
  • the loss data 54G in this example is composed of a total of n loss data 54G1 to 54Gn corresponding to the first loss data 54A on a one-to-one basis. Each loss data has a corresponding first loss data identifier (ID), loss amount b, and loss occurrence frequency ⁇ .
  • the relationship between the first loss data 54A and the second loss data 54G may be arbitrary.
  • the first loss data 54A may be loss data used for measuring the risk amount of the previous period
  • the second loss data 54G may be loss data used for measuring the risk amount of the current period.
  • the loss data of distant periods may be used instead of the previous and subsequent periods.
  • the difference factor information 54I is information indicating a factor of a difference between the first loss data 54A and the second loss data 54G.
  • FIG. 23 is a configuration example of the difference factor information 54I.
  • the difference factor information 54I in this example describes the changed loss data ID and the change contents for each of two factors, that is, a change in the risk reduction measure and a change in the business environment.
  • the information on the first line indicates that the loss occurrence frequency of the loss data of ID2 has changed from ⁇ 12 to ⁇ 22 due to the change of the risk reduction measure.
  • the information on the second line indicates that the loss occurrence frequency of the loss data of ID3 has changed from ⁇ 13 to ⁇ 23 due to the change of the risk reduction measure.
  • the information on the third line indicates that the loss amount of the loss data of ID1 has changed from b11 to b21 due to a change in the business environment.
  • the information on the fourth line indicates that the loss amount of the loss data of ID2 has changed from b12 to b22 due to a change in the business environment.
  • the first risk amount 54H is a risk amount measured by the risk weighing device to be approximated based on the first loss data 54A, for example, 99.9% VaR amount.
  • the second risk amount 54J is a risk amount, for example, 99.9% VaR amount measured by the risk weighing device to be approximated based on the second loss data 54G.
  • the first and second risk amounts may not be the risk amounts directly weighed by the risk weighing device, but may be the risk amounts of certain basic elements (departments) calculated according to the second embodiment of the present invention.
  • the coefficient table 54B is the same as the coefficient table 14B in the first embodiment.
  • the intermediate information 54C is intermediate or final data generated in the arithmetic process of the processor 55.
  • FIG. 24 is a configuration example of the intermediate information 54C.
  • the intermediate information 54C of this example includes the first loss data individual data VaR amount 54C1, the first loss data 54R1 to 54C1n corresponding to the first loss data 54A1 to 54An, and the first loss data 54R1 to 54C1n.
  • the second loss data 54G1 to 54Gn the second loss data 54G21 to 54C2n corresponding to the second individual data VaR amount 54C21 to 54C2n, and the second loss data 54G1 to 54Gn.
  • Intermediate individual data VaR amounts 54C31 to 54C3n corresponding one-to-one to the first loss data after reflecting only changes in loss amount and loss occurrence frequency due to risk reduction measures in the first loss data 54A1 to 54An
  • Sum of intermediate individual data VaR amount 54C3 and first individual data VaR amounts 54C11 to 54C1n A certain first approximate risk amount 54C41, a second approximate risk amount 54C42 that is the sum of the second individual data VaR amounts 54C21 to 54C2n, and an intermediate approximate risk amount 54C43 that is the sum of the intermediate individual data VaR amounts 54C31 to 54C3n
  • the intermediate information 54C is an approximate ratio 54C5 that is a ratio of the first risk amount 54H to the first approximate risk amount 54C41, and a first intermediate value that is a value obtained by multiplying the intermediate approximate risk amount 54C43 by the approximate ratio 54C5.
  • the processor 55 includes a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 54P from the storage unit 54, thereby realizing various processing units by cooperating the hardware and the program 54P. have.
  • main processing units realized by the processor 55 an input storage unit 55A, an individual data VaR amount calculation unit 55B, an accumulation unit 55C, a ratio calculation unit 55H, an intermediate risk amount calculation unit 55I, a difference calculation unit 55J, and an output unit 55D. There is.
  • the input storage unit 55A receives the first loss data 54A, the second loss data 54G, the difference factor information 54I, the first risk amount 54H, the second risk amount from the communication I / F unit 51 or the operation input unit 52.
  • 54J and the coefficient table 54B are input and stored in the storage unit 54.
  • the individual data VaR amount calculation unit 55B reads the first loss data 54A, the second loss data 54G, the difference factor information 54I, and the coefficient table 54B from the storage unit 54, and includes the loss data included in the first loss data 54A. For each 54Ai, a multiplication value of the coefficient held in the coefficient table 54B corresponding to the loss occurrence frequency ⁇ i included in the loss data and the loss amount bi included in the loss data is calculated, and the first individual data It has a function of storing in the storage unit 54 as VaR amounts 54C11 to 54C1n.
  • the individual data VaR amount calculation unit 55B for each loss data included in the second loss data, the coefficient stored in the coefficient table 54B corresponding to the loss occurrence frequency ⁇ i included in the loss data and the loss thereof It has a function of calculating a multiplication value of the loss amount bi included in the data and storing it in the storage unit 54 as the second individual data VaR amounts 54C21 to 54C2n.
  • the individual data VaR amount calculation unit 55B reflects only changes in loss amount and loss occurrence frequency due to risk reduction measures in the second loss data 54G1 to 54Gn after reflecting them in the first loss data 54A1 to 54An.
  • a function of generating first loss data For example, when the difference factor information 54I is shown in FIG. 23, the individual data VaR amount calculation unit 55B changes the loss occurrence frequency of the first loss data 54A2 from ⁇ 12 to ⁇ 22, and generates loss of the first loss data 54A3. The frequency is changed from ⁇ 13 to ⁇ 23.
  • the individual data VaR amount calculation unit 55B is held in the coefficient table 54B corresponding to the loss occurrence frequency ⁇ i included in the loss data for each first loss data after such a change.
  • a multiplication value of the coefficient and the loss amount bi included in the loss data is calculated and stored in the storage unit 54 as intermediate individual data VaR amounts 54C31 to 54C3n.
  • the accumulating unit 55C has a function of reading the first individual data VaR amounts 54C11 to 54C1n from the storage unit 54, and storing the first approximate risk amount 54C41 obtained by accumulating them in the storage unit 54.
  • the accumulating unit 55C has a function of reading the second individual data VaR amounts 54C21 to 54C2n from the storage unit 54, and storing the second approximate risk amount 54C42 obtained by accumulating them in the storage unit 54.
  • the accumulating unit 55C has a function of reading the intermediate individual data VaR amounts 54C31 to 54C3n from the storage unit 54 and storing the intermediate approximate risk amount 54C43 obtained by accumulating them in the storage unit 54.
  • the ratio calculation unit 55H reads the first risk amount 54H and the first approximate risk amount 54C41 from the storage unit 54, and the value obtained by dividing the first risk amount 54H by the first approximate risk amount 54C41 is the approximate ratio 54C5. As a storage unit 54.
  • the intermediate risk amount calculation unit 55I reads the intermediate approximate risk amount 54C43, the second approximate risk amount 54C42, and the approximate ratio 54C5 from the storage unit 54, and multiplies the intermediate approximate risk amount 54C43 by the approximate ratio 54C5. 1 and a value obtained by multiplying the second approximate risk amount 54C42 by the approximate ratio 54C5 as a second intermediate risk amount 54C62, and storing the result in the storage unit 54. .
  • the difference calculation unit 55J reads the first risk amount 54H, the second risk amount 54J, the first intermediate risk amount 54C61, and the second intermediate risk amount 54C62 from the storage unit 54, and performs the first intermediate
  • the remaining amount obtained by subtracting the first risk amount 54H from the risk amount 54C61 is obtained by subtracting the increase / decrease amount 54C71 of the risk amount resulting from the risk reduction measure and the first intermediate risk amount 54C61 from the second intermediate risk amount 54C62.
  • the remaining risk amount is calculated and stored in the storage unit 54 as an increase / decrease amount 54C72 of the risk amount due to changes in the business environment.
  • the difference calculation unit 55J calculates the remaining risk amount obtained by subtracting the second intermediate risk amount 54C62 from the second risk amount 54J as an increase / decrease amount 54C73 of the risk amount caused by the measurement model, and stores the storage unit 54. You may have the function to memorize.
  • the output unit 55D reads the risk amount increase / decrease amount 54C71 due to the risk reduction measure and the risk amount increase / decrease amount 54C72 due to the business environment change from the storage unit 54 and outputs the read amount to the screen display unit 53, or the communication I / O It has a function of outputting to the outside through the F unit 51. Further, the output unit 55D has a function of reading the increase / decrease amount 54C73 of the risk amount due to the measurement model from the storage unit 54 and outputting it to the screen display unit 53 or outputting it to the outside through the communication I / F unit 51. May be.
  • the input storage unit 55A receives the first loss data 54A, the second loss data 54G, the difference factor information 54I, the first risk amount 54H, and the second from the communication I / F unit 51 or the operation input unit 52.
  • the risk amount 54J is input and stored in the storage unit 54 (step S41).
  • the individual data VaR amount calculation unit 55B includes the loss data 54Ai included in the first loss data 54A, the loss data 54Gi included in the second loss data 54G, and the second loss data 54G1 to 54Gn.
  • the loss occurrence frequency ⁇ i included in the loss data for each first loss data after reflecting only the amount of loss and the change in the loss occurrence frequency due to the risk reduction measures in the first loss data 54A1 to 54An.
  • the multiplication values of the coefficient held in the coefficient table 54B and the loss amount bi included in the loss data are respectively used as the first individual data VaR amount 54C11 to 54C1n and the second individual data VaR amount 54C21 to 54C2n.
  • And intermediate individual data VaR amounts 54C31 to 54C3n step S42).
  • the accumulating unit 55C calculates the accumulated value of the first individual data VaR amount 54C11 to 54C1n, the accumulated value of the second individual data VaR amount 54C21 to 54C2n, and the accumulated value of the intermediate individual data VaR amount 54C31 to 54C3n.
  • the ratio calculation unit 55H calculates a value obtained by dividing the first risk amount 54H by the first approximate risk amount 54C41 as the approximate ratio 54C5 (step S44).
  • the first risk amount 54H and the first approximate risk amount 54C41 are risk amounts based on the same first loss data 54A, but the risk in which the first risk amount 54H is measured by the risk weighing device to be approximated.
  • the first approximate risk quantity 54C41 is calculated by an approximation calculation using the coefficient table 54B. That is, since the metric models are different, they do not match completely.
  • the approximate ratio 54C5 plays a role as a correction factor for adapting the approximate calculated risk amount to the risk amount of the risk weighing device.
  • the intermediate risk amount calculation unit 55I uses a value obtained by multiplying the intermediate approximate risk amount 54C43 by the approximate ratio 54C5 and a value obtained by multiplying the second approximate risk amount 54C42 by the approximate ratio 54C5, respectively, as the first intermediate risk amount 54C43.
  • the risk amount 54C61 and the second intermediate risk amount 54C62 are calculated (step S45).
  • the first intermediate risk amount 54C61 is obtained by correcting the intermediate approximate risk amount 54C43 based on the loss data reflecting only the change caused by the risk reduction measure with respect to the first loss data 54A by the approximate ratio 54C5. Therefore, it becomes an approximate value of the risk amount measured by the risk weighing device based on the loss data reflecting only the change caused by the risk reduction measure with respect to the first loss data 54A.
  • the second intermediate risk amount 54C62 is obtained by correcting the second approximate risk amount 54C42 based on the second loss data 54G by the approximate ratio 54C5, and therefore the risk based on the second loss data 54G. This is an approximate value of the risk amount weighed by the weighing device.
  • the difference calculation unit 55J obtains the remaining risk amount obtained by subtracting the first risk amount 54H from the first intermediate risk amount 54C61, and the first intermediate risk amount 54C61 from the second intermediate risk amount 54C62.
  • the remaining risk amounts after subtracting are calculated as a risk amount increase / decrease amount 54C71 due to the risk reduction measure and a risk amount increase / decrease amount 54C72 due to the change in the business environment (step S46).
  • the difference calculation unit 55J may calculate the remaining risk amount obtained by subtracting the second intermediate risk amount 54C62 from the second risk amount 54J as the increase / decrease amount 54C73 of the risk amount caused by the measurement model. Good.
  • the output unit 55D outputs the increase / decrease amount 54C71 of the risk amount due to the risk reduction measure and the increase / decrease amount 54C72 of the risk amount due to the change in the business environment to the screen display unit 53 or the communication I / F unit 51. To the outside (step S47). At this time, the output unit 55D may output the increase / decrease amount 54C73 of the risk amount due to the measurement model to the screen display unit 53, or may output it to the outside through the communication I / F unit 51 (step S47).
  • the present embodiment it is possible to analyze the factor of increase or decrease of the VaR amount with a small amount of calculation by using the function of approximating VaR based on the loss data.
  • the reason is that the risk amount based on the intermediate loss data in which only the change in the loss amount and the loss occurrence frequency due to a specific factor is reflected in the first loss data can be obtained by approximate calculation. This is because the amount of calculation is much smaller than that when using.
  • the amount of increase / decrease of three factors that is, the amount of increase / decrease due to risk reduction measures, the amount of increase / decrease due to changes in the business environment, and the amount of increase / decrease due to the measurement model.
  • the present invention is not limited to this, and can also be applied to the case where only the amount of increase / decrease caused by a risk reduction measure or the amount of increase / decrease due to a change in the business environment is required. It is. It can also be applied to the case where the risk reduction measures are further subdivided into more detailed factors.
  • the present invention has been described with reference to some embodiments, the present invention is not limited to the above embodiments, and various other additions and modifications are possible.
  • the present invention can also be applied to risks other than operational risks, such as credit risks associated with credit transactions such as lending operations and market risks associated with foreign exchange and interest rate transactions.
  • the present invention can be used when calculating a risk amount from a loss data including a loss amount and a loss occurrence frequency by a simple method, performing capital allocation, component analysis, and the like.
  • a risk management apparatus comprising: [Appendix 2] The risk management apparatus according to appendix 1, further comprising an accumulation unit that calculates an accumulation value of the multiplication values calculated for each loss data.
  • the risk weighing device of the loss distribution method calls a unit for measuring a risk amount as a weighing unit and an element constituting the weighing unit as a basic element, the loss data for each basic element including a loss amount and a loss occurrence frequency, Corresponding to loss occurrence frequency, a coefficient that holds a coefficient equal to the occurrence number value that is the lower ⁇ % point ( ⁇ is a predetermined constant) in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter Storage means for storing a table and a risk amount weighed by the risk weighing device for the weighing unit; Individual data VaR amount calculation means for calculating a multiplication value of a coefficient held in the coefficient table and a loss amount included in the loss data corresponding to the loss occurrence frequency included in the loss data for each loss data When, Accumulating means for calculating a cumulative value of the multiplication values calculated for all the loss data relating to the measurement unit, and a cumulative value of the multiplication values calculated for all the loss data
  • a risk management apparatus comprising: a basic element-specific risk amount calculation unit that calculates a risk amount corresponding to a ratio of the cumulative value of the multiplied values as the risk amount of the specific basic element.
  • One or more first scenario data including a loss amount and a loss occurrence frequency
  • one or more second scenario data obtained by changing at least one of the loss amount and the loss occurrence frequency in the first scenario data
  • the loss A coefficient table that holds a coefficient equal to the value of the number of occurrences which becomes the lower ⁇ % point ( ⁇ is a predetermined constant) in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter corresponding to the occurrence frequency
  • Storage means for storing For each of the first and second scenario data, a multiplication value of a coefficient held in the coefficient table and a loss amount included in the scenario data is calculated corresponding to the loss occurrence frequency included in the scenario data.
  • Individual data VaR amount calculation means For each combination of the first scenario data and the second scenario data in which at least one of the loss amount and loss occurrence frequency in the first scenario data is changed, the multiplication value related to the first scenario data and the A risk management device comprising: difference calculation means for calculating a difference value between the second scenario data and the multiplication value.
  • One or more first loss data including a loss amount and a loss occurrence frequency, a first risk amount measured by a risk weighing device based on the first loss data, a loss amount and a loss occurrence frequency
  • One or more second loss data including the lower ⁇ % point ( ⁇ is a predetermined constant) in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter corresponding to the loss occurrence frequency
  • Storage means for storing a coefficient table holding coefficients equal to the value of the number of occurrences; For each of the first and second loss data, a multiplication value of a coefficient held in the coefficient table and a loss amount included in the loss data corresponding to the loss occurrence frequency included in the loss data is calculated.
  • Individual data VaR amount calculation means Accumulating means for calculating first and second approximate risk amounts obtained by accumulating the calculated multiplication values for each of the first and second loss data; A ratio calculating means for calculating a ratio of the first risk amount to the first approximate risk amount as an approximate ratio; A second risk amount calculating means for calculating a value obtained by multiplying the second approximate risk amount by the approximate ratio as a second risk amount; Difference calculating means for calculating a difference between the first risk amount and the second risk amount as an increase / decrease amount of the risk amount caused by the difference between the first and second loss data. Risk management device.
  • One or more first loss data including a loss amount and a loss occurrence frequency, a first risk amount measured by a risk weighing device based on the first loss data, a loss amount and a loss occurrence frequency A cumulative distribution function of a probability distribution using the loss occurrence frequency as a parameter corresponding to the loss occurrence frequency, and one or more second loss data including the difference factor information between the first and second loss data
  • Storage means for storing a coefficient table holding coefficients equal to the value of the number of occurrences which is the lower ⁇ % point ( ⁇ is a predetermined constant) at The loss data for each of the first loss data and for each intermediate loss data in which only changes in the loss amount and loss occurrence frequency due to specific factors in the second loss data are reflected in the first loss data.
  • Individual data VaR amount calculation means for calculating a multiplication value of a coefficient held in the coefficient table and a loss amount included in the loss data corresponding to the loss occurrence frequency included in Accumulation means for calculating a first approximate risk amount and an intermediate approximate risk amount obtained by accumulating the calculated multiplication values for each of the first loss data and the intermediate loss data;
  • a ratio calculating means for calculating a ratio of the first risk amount to the first approximate risk amount as an approximate ratio;
  • Intermediate risk amount calculation means for calculating a value obtained by multiplying the intermediate approximate risk amount by the approximate ratio as an intermediate risk amount;
  • Difference calculating means for calculating a difference between the first risk amount and the intermediate risk amount as an increase / decrease amount of the risk amount caused by the specific factor between the first and second loss data.
  • a risk management device characterized by that.
  • the lower ⁇ % point ( ⁇ is a predetermined constant in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter corresponding to the loss occurrence frequency and the loss data including the loss amount and the loss occurrence frequency.
  • the lower ⁇ % point ( ⁇ is a predetermined constant in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter corresponding to the loss occurrence frequency and the loss data including the loss amount and the loss occurrence frequency.
  • a computer having storage means for storing a coefficient table that holds coefficients equal to the value of the occurrence number of Individual data VaR amount calculation means for calculating a multiplication value of a coefficient held in the coefficient table and a loss amount included in the loss data corresponding to the loss occurrence frequency included in the loss data for each loss data Program to function as.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 記憶部は、損失額と損失発生頻度とを含む損失データと、損失発生頻度に対応して、損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する。プロセッサは、損失データ毎に、損失データに含まれる損失発生頻度に対応して係数テーブルに保持されている係数と損失データに含まれる損失額との乗算値を算出するようにプログラムされている。

Description

リスク管理装置
 本発明はリスク管理装置に関し、特に、損失額と損失発生頻度とを含む損失データから簡易な方法でリスク量を算出する機能を有するリスク管理装置に関する。
 一般に企業の業務は、地震やシステム障害、事務的なミス、詐欺など様々なオペレーショナルリスク(以下、単にリスクと称す)に遭遇する可能性がある。このため、リスク計量装置を使用してリスク量を計量し、リスクに対する対策を講じることが求められている。
 リスク計量装置は、企業における未知のリスクプロファイルに関する断片的な情報を入力し、この入力データから当該企業のリスクプロファイルの特徴値(例えば、99.9%バリュー・アット・リスク(VaR))を計量する。リスク計量装置の入力データには、一般に内部損失データとシナリオデータとがある。内部損失データは、当該企業において実際に発生した損失事象に関するデータである。内部損失データは、どのような事象の内容について、どの程度の損失額が発生したかを表している。しかし、全ての事象の内容について必要十分な数の内部損失データを得ることは困難である。そこで、稀にしか発生していない事象内容や未だ一度も発生したことのない事象内容について、その発生頻度と損失額の推定値をシナリオデータとして見積り、リスク量の計量に利用している。以下、内部損失データとシナリオデータをあわせて、損失データと記すことにする。
 一般的なリスク計量装置は、損失分布手法と呼ばれる手法を用いて、VaRを計量している(例えば特許文献1および非特許文献1参照)。具体的には、まず、内部損失データの件数などから損失頻度分布を生成し、内部損失データおよびシナリオデータなどから損失規模分布を生成する。次に、モンテカルロ・シミュレーションにより、上記の損失頻度分布を用いて発生させた損失件数分の損失額を上記の損失規模分布から取り出して合算し、保有期間当たりの損失額を算出する処理を何万、何十万回と繰り返して損失額の分布を生成する。そして、この生成された損失額の分布から所定の信頼区間のVaRを算出する。
特許第4241083号
小林、清水、西口、森永著、「オペレーショナル・リスク管理 高度化への挑戦」、平成21年4月24日、社団法人金融財政事情研究会発行、p107-144
 上述したように、損失分布手法を用いるリスク計量装置は、頻度分布と規模分布を生成し、その頻度分布と規模分布を用いて保有期間当たりに発生する損失の合計額をモンテカルロ・シミュレーションにより生成し、VaRを算出する。そのため、精度は良いものの、計算の負荷が高いという課題がある。
 リスク分析の分野においては、高精度なVaRを必要とする状況のみならず、後述する成分分析など精度は多少劣っても良いが、短時間でVaRを求めたいニーズがある。しかし、一般的なリスク計量装置では、そのような近似計算は行えない。
 本発明の目的は、上述したような課題、すなわち、短時間でVaRの近似値を算出することは困難であるという課題を解決するリスク管理装置を提供することにある。
 本発明の一形態にかかるリスク管理装置は、
 損失額と損失発生頻度とを含む損失データと、上記損失発生頻度に対応して、上記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶するメモリと、
 上記メモリに接続されたプロセッサとを備え、
 上記プロセッサは、
 上記損失データ毎に、上記損失データに含まれる損失発生頻度に対応して上記係数テーブルに保持されている係数と上記損失データに含まれる損失額との乗算値を算出する
ようにプログラムされている、といった構成を採る。
 本発明の他の形態にかかるリスク管理方法は、
 損失額と損失発生頻度とを含む損失データと、上記損失発生頻度に対応して、上記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶するメモリと、上記メモリに接続されたプロセッサとを備えるリスク管理装置が実行するリスク管理方法であって、
 上記プロセッサが、
 上記損失データ毎に、上記損失データに含まれる損失発生頻度に対応して上記係数テーブルに保持されている係数と上記損失データに含まれる損失額との乗算値を算出する、といった構成を採る。
 本発明は上述したような構成を有するため、VaRの近似値を高速に算出することができる。
本発明の第1の実施形態にかかるリスク管理装置のブロック図である。 本発明の第1の実施形態で使用する損失データの構成例である。 本発明の第1の実施形態で使用する係数テーブルの構成例である。 本発明の第1の実施形態で使用する中間情報の構成例である。 本発明の第1の実施形態の処理例を示すフローチャートである。 本発明の第2の実施形態にかかるリスク管理装置のブロック図である。 本発明の第2の実施形態で使用する基本要素別の損失データの構成例である。 本発明の第2の実施形態で使用する中間情報の構成例である。 本発明の第2の実施形態の処理例を示すフローチャートである。 本発明の第3の実施形態にかかるリスク管理装置のブロック図である。 本発明の第3の実施形態で使用する第1のシナリオデータの構成例である。 本発明の第3の実施形態で使用する第2のシナリオデータの構成例である。 本発明の第3の実施形態で使用する中間情報の構成例である。 本発明の第3の実施形態の処理例を示すフローチャートである。 本発明の第4の実施形態にかかるリスク管理装置のブロック図である。 本発明の第4の実施形態で使用する第1の損失データの構成例である。 本発明の第4の実施形態で使用する第2の損失データの構成例である。 本発明の第4の実施形態で使用する中間情報の構成例である。 本発明の第4の実施形態の処理例を示すフローチャートである。 本発明の第5の実施形態にかかるリスク管理装置のブロック図である。 本発明の第5の実施形態で使用する第1の損失データの構成例である。 本発明の第5の実施形態で使用する第2の損失データの構成例である。 本発明の第5の実施形態で使用する差分要因情報の構成例である。 本発明の第5の実施形態で使用する中間情報の構成例である。 本発明の第5の実施形態の処理例を示すフローチャートである。
 次に本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施形態]
 図1を参照すると、本発明の第1の実施形態にかかるリスク管理装置1は、損失データに基づいてVaRを近似計算する機能を有している。
 このリスク管理装置1は、主な機能部として、通信インターフェース部(以下、通信I/F部という)11、操作入力部12、画面表示部13、記憶部14、およびプロセッサ15を有する。
 通信I/F部11は、専用のデータ通信回路からなり、通信回線(図示せず)を介して接続された図示しない各種装置との間でデータ通信を行う機能を有している。
 操作入力部12は、キーボードやマウスなどの操作入力装置からなり、オペレータの操作を検出してプロセッサ15に出力する機能を有している。
 画面表示部13は、LCDやPDPなどの画面表示装置からなり、プロセッサ15からの指示に応じて、操作メニューや計算結果などの各種情報を画面表示する機能を有している。
 記憶部14は、ハードディスクや半導体メモリなどの記憶装置からなり、プロセッサ15での各種処理に必要な処理情報やプログラム14Pを記憶する機能を有している。プログラム14Pは、プロセッサ15に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部11などのデータ入出力機能を介して外部装置(図示せず)やコンピュータ読取可能な記憶媒体(図示せず)から予め読み込まれて記憶部14に保存される。記憶部14で記憶される主な処理情報として、損失データ14Aと、係数テーブル14Bと、中間情報14Cとがある。
 損失データ14Aは、損失額と損失発生頻度とを含むデータである。図2は、損失データ14Aの構成例である。この例の損失データ14Aは、合計n個の損失データ14A1~14Anから構成される。個々の損失データは、損失データを一意に識別するための識別子(ID)、損失額b、および損失発生頻度λを有する。これらの損失データ14Aは、近似対象となるリスク計量装置の入力となる内部損失データおよびシナリオデータに1対1に対応する。例えば、内部損失データ「損失額=200万円、観測期間=5年」に対応する損失データは、損失額=200万円、損失発生頻度=0.2という内容を有する。また、シナリオデータ「平均損失額=1000万円、損失発生頻度0.1」に対応する損失データは、損失額=1000万円、損失発生頻度=0.1という内容を有する。
 係数テーブル14Bは、損失発生頻度に対応して、その損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点となる発生数の値に等しい係数を保持するテーブルである。上記αは、近似対象となるリスク計量装置が計量するVaRの信頼区間に応じて定められる。例えば、近似対象となるリスク計量装置が99.9%VaRを計量するならば、αは99.9に設定される。また、上記確率分布は、一般的なリスク計量装置において頻度分布の予測に使用される確率分布と同じである。例えば一般的なリスク計量装置において、ポアソン分布が使用されるならば、上記確率分布はポアソン分布である。なお、ポアソン分布の累積分布関数は不連続であるため、例えばガンマ関数を使って整数の階乗を実数の階乗まで拡張することにより、ポアソン分布の累積分布関数をスムージング化した上で、下側α%点となる発生数の値に等しい係数を求めるようにするのが望ましい。
 図3は係数テーブル14Bの構成例である。この例の係数テーブル14Bは、損失発生頻度を2つの形式、すなわち、何年に1回発生するかという形式と、1年当たりに何回発生するかという形式で示しているが、損失データにおける損失発生頻度の形式が統一されていれば、何れか一方だけよく、他方は省略することができる。また、損失発生頻度に対応する係数を2つの形式、すなわちスムージング無と有の双方について記載しているが、何れか一方だけでもよい。例えば、スムージング無の係数を使用しないならば、スムージング有に対応する係数だけをテーブル化しておけばよい。
 中間情報14Cは、プロセッサ15の演算過程で生成される中間ないし最終的なデータである。図4は中間情報14Cの構成例である。この例の中間情報14Cは、損失データ14A1~14Anに1対1に対応する個別データVaR額14C1~14Cnと、この個別データVaR額14C1~14Cnの総和である累積値14Cmとを有する。
 プロセッサ15は、CPUなどのマイクロプロセッサとその周辺回路を有し、記憶部14からプログラム14Pを読み込んで実行することにより、上記ハードウェアとプログラム14Pとを協働させて各種処理部を実現する機能を有している。プロセッサ15で実現される主な処理部として、入力格納部15A、個別データVaR額算出部15B、累積部15C、および出力部15Dがある。
 入力格納部15Aは、通信I/F部11または操作入力部12から、損失データ14A、および係数テーブル14を入力して、記憶部14Bに格納する機能を有する。
 個別データVaR額算出部15Bは、損失データ14Aと係数テーブル14Bとを記憶部14から読み込み、損失データ14Ai毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル14Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、個別データVaR額14Ciとして記憶部14に記憶する機能を有する。
 累積部15Cは、全ての個別データVaR額14Ciを記憶部14から読み込み、その総和を計算し、その計算結果を累積値14Cmとして記憶部14に記憶する機能を有する。
 出力部15Dは、累積値14Cmを記憶部14から読み込み、リスク量の近似値として画面表示部13に出力し、あるいは通信I/F部11を通じて外部に出力する機能を有する。
 次に、図5を参照して、本実施形態にかかるリスク管理装置1の動作について説明する。
 まず、入力格納部15Aは、損失データ14A、および係数テーブル14Bを、通信I/F部11または操作入力部12から入力し、記憶部14に格納する(ステップS1)。
 次に、個別データVaR額算出部15Bは、損失データ14Aに含まれる個々の損失データ毎に、その損失データに含まれる損失発生頻度に対応して係数テーブル14Bに保持されている係数とその損失データに含まれる損失額とを乗算し、その算出結果をその損失データに対応する個別データVaR額として記憶部14に記憶する(ステップS2)。
 次に、累積部15Dは、全ての個別データVaR額14Ciを加算した値を累積値14Cmとして記憶部14に記憶する(ステップS3)。
 次に、出力部15Dは、累積値14Cmをリスク量の近似値として画面表示部13に出力し、あるいは通信I/F部11を通じて外部に出力する(ステップS4)。
 次に、本実施形態によって算出されるVaRが、損失データ14Aに基づいて近似対象となるリスク計量装置で計量されるVaRの近似値になる理由について、説明する。
 まず、リスク計量装置の入力データは基本的に、リスク損失事象の内容、損失金額、保有期間中にその内容でその損失金額を被る頻度の平均値の三つ組みの情報の集合である。例えば、(東海大地震1、100万円、0.03)、(東海大地震2、1000万円、0.06)、(振り込め詐欺、50万円、0.65)といった具合である。なお頻度の平均値の代わりに、平均事象間隔(保有期間÷頻度の平均値)などの情報を持たせる場合もあるが、以下の議論はそのまま成立するので、ここでは上記の三つ組みであるとする。また、上記では以下の説明の簡単のために、同じ東海大地震でも損失金額の違いで「東海大地震1」「東海大地震2」と事象内容を区別しているが、この便宜上の区別をしなくても以下の議論はそのまま成立する。表記の簡単のために「リスク損失事象」を以下「損失事象」と書く。事象内容iに関する入力データを(i,Si,Fi)と書くことにする。Siが損失金額、Fiが頻度の平均値である。
 リスク計量装置は、幾つかの仮定の下で、入力データにできるだけフィットするように、保有期間中のリスクによる損失発生の確率分布を推定し、特に保有期間中の合計損失金額の確率分布から、その特徴量であるVaR等を計算して出力する。すなわち、損失事象の内容iによる保有期間中の損失金額をLiと書き、総損失額をLと書くことにすると、計量モデルとはL1,…,Lnの同時分布P(L1,…,Ln)を推定し、それに基づいて総損失額L=L1+,,,+Lnの確率分布P(L)を計算し、その特徴量であるVaR[L]などを出力していることになる。ただし、損失事象の種類を1,…,nとした(全部でn種類)。なお、上記の説明はリスク計量装置の原理を述べているのであって、実際の実装においては、できるだけ明示的にP(L1,…,Ln)やP(L)を構成せずに、計算量や記憶量を節約して同じ結果を得るような工夫がなされている。
 リスク計量装置の違いは、どのような仮定に基づくか、あるいはどのような観点で入力データにフィットさせるかの違いである。幾らでも奇異な仮定やフィットの観点を設定することはできるが、世で広く用いられているモーメント法や最尤法、ベイズ法によって頻度分布や規模分布を推定する場合は、損失事象の内容iによる保有期間中の損失金額の平均値E[Li]が、入力データの損失金額と平均頻度から直接もとめた平均値Si×Fiに近くなる(特に、モーメント法においては、これらが一致する)。以降、近似対象のリスク計量装置は、このような性質を持つものとする。この場合、平均値の加法性から、総損失額Lの平均値E[L]も、入力データの損失金額と平均頻度から直接求めた平均値S1×F1+,…,+Sn×Fnに近い値になる。特に、総損失額の平均値に対して、特定の事象に起因する損失額の平均的な割合E[Li]/E[L]も、入力データから直接求めたそれSi×Fi/(S1×F1+,…,+Sn×Fn)に近い値になる。さらに、総損失額の平均値に対して、特定の事象集合I={i1,…,im}に起因する損失額の平均的な割合E[Li1+,…,+Lim]/E[L]も、入力データから直接求めたそれ(Si1×Fi1+,…,+Sim×Fim)/(S1×F1+,…,+Sn×Fn)に近くなる。平均的な意味で、近似対象のリスク計量装置においては、総損失額に対する特定の事象集合に起因する損失額の割合は、入力データから直接求めたそれに近くなるのである。
 ここで、本実施形態によるVaRの算出方法を上記の観点から記述してみる。本実施形態によるVaRの算出方法は、
・各損失事象の保有期間中の生起回数は、一般的なリスク計量装置において使用される種類の頻度分布に従うと仮定
・損失事象間では上記生起回数の相関は1である(正確には、当該同時分布のコピュラ関数が対角線上の一様分布)と仮定
・各損失事象において一回の損失額は入力データに記載のSiになると仮定
して
・損失事象の内容iによる保有期間中の損失金額の平均値E[Li]が、入力データの損失金額と平均頻度から直接もとめた平均値Si×Fiに等しくなる
ように、P(L1,…,Ln)をフィッティングし、それを利用してP(L)を計算しVaR[L]を出力したものと同じ値である。
 このとき平均値の加法性から、本実施形態によるVaRの算出方法における総損失額Lの平均値E[L]は、入力データの損失金額と平均頻度から直接求めた平均値S1×F1+,…,+Sn×Fnに等しくなる。特に、総損失額の平均値に対して、特定の事象に起因する損失額の平均的な割合E[Li]/E[L]も、入力データから直接求めたそれSi×Fi/(S1×F1+,…,+Sn×Fn)と等しくなる。さらに、総損失額の平均値に対して、特定の事象集合I={i1,…,im}に起因する損失額の平均的な割合E[Li1+,…,+Lim]/E[L]も、入力データから直接求めたそれ(Si1×Fi1+,…,+Sim×Fim)/(S1×F1+,…,+Sn×Fn)に等しい。平均的な意味で、本実施形態によるVaRの算出方法においては、総損失額に対する特定の事象集合に起因する損失額の割合は、入力データから直接求めたそれと等しくなるのである。
 上記の性質、すなわち入力データから直接求めた値を介して、E[L]の値が近い、総損失額の平均値に対して、特定の入力データに対応する損失額の平均的な割合E[Li]/E[L]の値が近い、同様に特定の入力データ群に対応する損失額の平均的な割合の値E[Li1+,,,+Lim]/E[L]が近いという意味で、本実施形態によるVaRの算出方法は近似対象のリスク計量装置の近似になっているのである。
 さらに本実施形態によるVaRの算出方法においては、ポアソン分布の累積分布関数をスムージング化した上で下側α%点となる発生数の値に等しい係数を求めるようにしているが、これは上記同時分布P(L1,…,Ln)が離散階段関数であるのを、滑らかにフィッティングしたにすぎないので、上記におけるE[L]、E[Li]/E[L]、E[Li1+,…,+Lim]/E[L]などの値は大きくは変化しない。これにより当該実施の形態における個別データVaR額も、平均総損失額に対する、特定の入力データ群の損失額の平均的な割合が近い等の意味で、近似対象のリスク計量装置の近似になっているのである。
 このように本実施形態によれば、VaRの近似値を高速に算出することができる。
[第2の実施形態]
 図6を参照すると、本発明の第2の実施形態にかかるリスク管理装置2は、損失データに基づいてVaRを近似計算する機能を利用して、リスク計量装置が計量する計量単位毎のVaRから、その計量単位を構成する基本要素別のリスク量を算出する機能を有している。
 リスク管理装置2は、主な機能部として、通信I/F部21、操作入力部22、画面表示部23、記憶部24、およびプロセッサ25を有する。
 通信I/F部21、操作入力部22、および画面表示部23は、第1の実施形態における図1の通信I/F部11、操作入力部12、および画面表示部13と同じ機能を有している。
 記憶部24は、ハードディスクや半導体メモリなどの記憶装置からなり、プロセッサ25での各種処理に必要な処理情報やプログラム24Pを記憶する機能を有している。プログラム24Pは、プロセッサ25に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部21などのデータ入出力機能を介して外部装置(図示せず)やコンピュータ読取可能な記憶媒体(図示せず)から予め読み込まれて記憶部24に保存される。記憶部24で記憶される主な処理情報として、基本要素別の損失データ24A、係数テーブル24B、中間情報24C、および計量単位のリスク量24Dがある。
 基本要素別の損失データ24Aは、リスク計量装置がリスク量を計量する単位である計量単位を構成する要素別の損失データである。例えば、損失分布手法のリスク計量装置が、複数の業務部門を纏めた業務セルと呼ばれる単位毎に、各業務セルに関する入力データから頻度分布と規模分布とを予測し、業務セル毎の総損失額の分布を予測している場合、業務セルが1つの計量単位となり、業務セルを構成する個々の業務部門が基本要素となる。図7は基本要素別の損失データ24Aの構成例である。この例の基本要素別の損失データ24Aは、第1から第nまでの合計n個の基本要素別に分けられている。個々の基本要素別の損失データ24Aiは、それぞれx個、y個、…、z個の損失データから構成される。個々の損失データ24A11、24A12、…、24A1x、24A21、24A22、…、24A2y、…、24An1、24An2、…、24Anzは、第1の実施形態で説明した損失データ14A1等と同様に、損失データを一意に識別するための識別子(ID)、損失額b、および損失発生頻度λを有する。
 係数テーブル24Bは、第1の実施形態における係数テーブル14Bと同じである。
 計量単位のリスク量24Dは、リスク計量装置が計量した計量単位のリスク量である。例えばリスク計量装置が業務セルと呼ばれる単位毎に、総損失額の分布における99.9%VaR額を計算しているならば、計量単位のリスク量24Dは、業務セル毎に計算された99.9%VaR額を表している。
 中間情報24Cは、プロセッサ25の演算過程で生成される中間ないし最終的なデータである。図8は中間情報24Cの構成例である。この例の中間情報24Cは、基本要素1の損失データ24A1中の個々の損失データ24A11、24A12、…、24A1xに1対1に対応する個別データVaR額24C11、24C12、…、24C1xから構成される基本要素1の個別データVaR額24C1、基本要素2の損失データ24A2中の個々の損失データ24A21、24A22、…、24A2yに1対1に対応する個別データVaR額24C21、24C22、…、24C2yから構成される基本要素2の個別データVaR額24C2、…、基本要素nの損失データ24An中の個々の損失データ24An1、24An2、…、24Anzに1対1に対応する個別データVaR額24Cn1、24Cn2、…、24Cnzから構成される基本要素nの個別データVaR額24Cnを有する。また、中間情報24Cは、各基本要素毎の個別データVaR額の総和である累積値24Cm1、24Cm2、…、24Cmnと、この累積値24Cm1、24Cm2、…、24Cmnの総和である計量単位の累積値24Cmmを有する。さらに、中間情報24Cは、各基本要素別のリスク量24Cg1、24Cg2、…、24Cgnを有する。
 プロセッサ25は、CPUなどのマイクロプロセッサとその周辺回路を有し、記憶部24からプログラム24Pを読み込んで実行することにより、上記ハードウェアとプログラム24Pとを協働させて各種処理部を実現する機能を有している。プロセッサ25で実現される主な処理部として、入力格納部25A、個別データVaR額算出部25B、累積部25C、出力部25D、および基本要素別リスク量算出部25Eがある。
 入力格納部25Aは、通信I/F部21または操作入力部22から、基本要素別の損失データ24A、係数テーブル24B、および計量単位のリスク量24Dを入力して、記憶部24に格納する機能を有する。
 個別データVaR額算出部25Bは、基本要素別の損失データ24Aと係数テーブル24Bとを記憶部24から読み込み、基本要素かつ損失データ毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル24Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、個別データVaR額として記憶部24に記憶する機能を有する。
 累積部25Cは、基本要素毎に、全ての個別データVaR額を記憶部24から読み込み、その総和を計算し、その計算結果を累積値24Cm1、24Cm2、…、24Cmnとして記憶部24に記憶する機能を有する。また、累積部25Cは、基本要素別の累積値24Cm1、24Cm2、…、24Cmnの総和を計算し、その計算結果を計量単位の累積値24Cmmとして記憶部24に記憶する機能を有する。
 基本要素別リスク量算出部25Eは、計量単位のリスク量24Dと基本要素別の個別データVaR額の累積値24Cm1、24Cm2、…、24Cmnと計量単位の個別データVaR額の累積値24Cmmとを記憶部24から読み込み、各基本要素毎に、計量単位のリスク量24Dのうち、計量単位の個別データVaR額の累積値24Cmmに対する、当該基本要素の個別データVaR額の累積値24Cmiの割合に相当するリスク量を算出し、基本要素別のリスク量24Cg1、24Cg2、…、24Cgnとして記憶部24に記憶する機能を有する。
 出力部25Dは、基本要素別のリスク量24Cg1、24Cg2、…、24Cgnを記憶部24から読み込み、画面表示部23に出力し、あるいは通信I/F部21を通じて外部に出力する機能を有する。
 次に、図9を参照して、本実施形態にかかるリスク管理装置2の動作について説明する。
 まず、入力格納部25Aは、基本要素別の損失データ24A、係数テーブル24B、および計量単位のリスク量24Dを、通信I/F部21または操作入力部22から入力し、記憶部24に格納する(ステップS11)。
 次に、個別データVaR額算出部25Bは、基本要素かつ損失データ毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル24Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、個別データVaR額として記憶部24に記憶する(ステップS12)。
 次に、累積部25Cは、基本要素毎に全ての個別データVaR額を累積し、さらにその総和を計算し、計算結果を基本要素1の累積値24Cm1、基本要素2の累積値24Cm2、…、基本要素nの累積値24Cmn、計量単位の累積値24Cmmとして記憶部24に記憶する(ステップS13)。
 次に、基本要素別リスク量算出部25Eは、各基本要素毎に、計量単位のリスク量24Dのうち、計量単位の個別データVaR額の累積値24Cmmに対する、当該基本要素の個別データVaR額の累積値24Cmiの割合に相当するリスク量を算出し、基本要素別のリスク量24Cg1、24Cg2、…、24Cgnとして記憶部24に記憶する(ステップS14)。
 最後に、出力部25Dは、基本要素別のリスク量24Cg1、24Cg2、…、24Cgnを画面表示部23に出力し、あるいは通信I/F部21を通じて外部に出力する(ステップS15)。
 このように本実施形態によれば、リスク計量装置が計量する計量単位毎のリスク量から、その計量単位を構成する基本要素別のリスク量を算出することができる。これにより、一つの業務セルを構成する業務部門毎のリスク量がどの程度になるかを分析するという成分分析を簡易に実施することが可能になる。その理由は、計量単位全体のリスク量から各基本要素別のリスク量を求めるのに必要な、全体に占める各基本要素の比率を近似計算で求めることにより、その比率をリスク計量装置を使用して求める場合に比べて計算量が遥かに少なくなるためである。
[第3の実施形態]
 図10を参照すると、本発明の第3の実施形態にかかるリスク管理装置3は、損失データに基づいてVaRを近似計算する機能を利用して、リスク削減策の効果の期待度が大きいシナリオデータを決定する機能を有している。
 リスク管理装置3は、主な機能部として、通信I/F部31、操作入力部32、画面表示部33、記憶部34、およびプロセッサ35を有する。
 通信I/F部31、操作入力部32、および画面表示部33は、第1の実施形態における図1の通信I/F部11、操作入力部12、および画面表示部13と同じ機能を有している。
 記憶部34は、ハードディスクや半導体メモリなどの記憶装置からなり、プロセッサ35での各種処理に必要な処理情報やプログラム34Pを記憶する機能を有している。プログラム34Pは、プロセッサ35に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部31などのデータ入出力機能を介して外部装置(図示せず)やコンピュータ読取可能な記憶媒体(図示せず)から予め読み込まれて記憶部34に保存される。記憶部34で記憶される主な処理情報として、第1のシナリオデータ34E、第2のシナリオデータ34F、係数テーブル34B、および中間情報34Cがある。
 第1のシナリオデータ34Eは、リスク削減策の効果の期待度の大きさを調べたい1以上のシナリオデータから構成される。図11は第1のシナリオデータ34Eの構成例である。この例の第1のシナリオデータ34Eは、n個のシナリオデータ34E1~34Enから構成される。個々のシナリオデータ34Eiは、そのシナリオデータを一意に識別するための識別子(ID)、損失額b、および損失発生頻度λを有する。これらの損失額および損失発生頻度は、現状のリスク削減策を前提として予測された値である。すなわち、シナリオデータにおける損失額および損失発生頻度は、シナリオ毎にリスク評価および内部統制状況評価を行い、その評価結果に基づいて予測される。第1のシナリオデータの損失額および損失発生頻度は、現状のリスク削減策を考慮して予測された値である。
 第2のシナリオデータ34Fは、第1のシナリオデータ34E中のシナリオデータと1対1に対応する1以上のシナリオデータから構成される。図12は第2のシナリオデータ34Fの構成例である。この例の第2のシナリオデータ34Fは、第1のシナリオデータ34E1~34Enに1対1に対応するn個のシナリオデータ34F1~34Fnから構成される。個々のシナリオデータ34Fiは、対応する第1のシナリオデータの識別子(ID)、損失額b、および損失発生頻度λを有する。シナリオデータ34Fiにおける損失額および損失発生頻度は、当該シナリオにおけるリスク評価および内部統制状況評価をほぼ満点と仮定した場合に予測される値としている。従って、現状の評価結果がより低いシナリオほど、一般的に、第2のシナリオデータの損失額および損失発生頻度は対応する第1のシナリオデータの損失額および損失発生頻度に比べてより小さくなる傾向がある。その理由は、リスク削減策を強化すればするほど、一般的に、損失が発生する頻度が小さくなり、また1回当たりの損失額が小さくなると考えられるからである。
 係数テーブル34Bは、第1の実施形態における係数テーブル14Bと同じである。
 中間情報34Cは、プロセッサ35の演算過程で生成される中間ないし最終的なデータである。図13は中間情報34Cの構成例である。この例の中間情報34Cは、第1のシナリオデータ34E1~34Enに1対1に対応する第1の個別データVaR額34C11~34C1nから構成される第1のシナリオデータの個別データVaR額34C1、第2のシナリオデータ34F1~34Fnに1対1に対応する第2の個別データVaR額34C21~34C2nから構成される第2のシナリオデータの個別データVaR額34C2、第1の個別データVaR額とそれに対応する第2の個別データVaR額との差分値34C31~34C3n、および差分値34C31~34C3nのソート結果34C4を有する。それぞれの第1、第2の個別データVaR額、差分値には、対応する第1のシナリオデータの識別子(ID)が付加されている。
 プロセッサ35は、CPUなどのマイクロプロセッサとその周辺回路を有し、記憶部34からプログラム34Pを読み込んで実行することにより、上記ハードウェアとプログラム34Pとを協働させて各種処理部を実現する機能を有している。プロセッサ35で実現される主な処理部として、入力格納部35A、個別データVaR額算出部35B、出力部35D、差分算出部35F、およびソート部35Gがある。
 入力格納部35Aは、通信I/F部31または操作入力部32から、第1のシナリオデータ34E、第2のシナリオデータ34F、および係数テーブル34Bを入力して、記憶部34に格納する機能を有する。
 個別データVaR額算出部35Bは、第1のシナリオデータ34Eと第2のシナリオデータ34Fと係数テーブル34Bとを記憶部34から読み込み、第1のシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度λiに対応して係数テーブル34Bに保持されている係数とそのシナリオデータに含まれる損失額biとの乗算値を算出し、第1の個別データVaR額34C11~34C1nとして記憶部34に記憶する機能を有する。 また、個別データVaR額算出部35Bは、第2のシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度λiに対応して係数テーブル34Bに保持されている係数とそのシナリオデータに含まれる損失額biとの乗算値を算出し、第2の個別データVaR額34C21~34C2nとして記憶部34に記憶する機能を有する。
 差分算出部35Fは、第1の個別データVaR額34C11~34C1nと第2の個別データVaR額34C21~34C2nとを記憶部34から読み込み、対応する第1および第2の個別データVaR額の組合せ毎に、第1の個別データVaR額から第2の個別データVaR額を差し引いた額を算出し、差分値34C1~34Cnとして記憶部34に記憶する機能を有する。
 ソート部35Gは、差分値34C1~34Cnを記憶部34から読み込み、値の大きい順にソートし、そのソート結果34C4を記憶部34に記憶する機能を有する。
 出力部35Dは、ソート結果34C4を記憶部34から読み込み、値の大きい上位m件(mは予め定められた整数)の差分値あるいは予め定められた額以上の差分値に付加されている第1のシナリオデータの識別子およびその差分値を、リスク削減策の効果の期待度が大きいシナリオデータの識別子および削減可能額として、画面表示部33に出力し、あるいは通信I/F部31を通じて外部に出力する機能を有する。
 次に、図14を参照して、本実施形態にかかるリスク管理装置3の動作について説明する。
 まず、入力格納部35Aは、通信I/F部31または操作入力部32から、第1のシナリオデータ34E、第2のシナリオデータ34F、および係数テーブル34Bを入力して、記憶部34に格納する(ステップS21)。
 次に、個別データVaR額算出部35Bは、第1のシナリオデータ34Eiおよび第2のシナリオデータ34Fiに含まれるシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度λiに対応して係数テーブル34Bに保持されている係数とそのシナリオデータに含まれる損失額biとの乗算値を算出し、第1の個別データVaR額34C1iおよび第2の個別データVaR額34C2iとして記憶部34に記憶する(ステップS22)。
 次に、差分算出部35Fは、対応する第1および第2の個別データVaR額の組合せ毎に、第1の個別データVaR額34C1iから第2の個別データVaR額34C2iを差し引いた額を算出し、差分値34Cmiとして記憶部34に記憶する(ステップS23)。
 次に、ソート部35Gは、差分値34Cm1~34Cmnを値の大きい順にソートし、そのソート結果34C4を記憶部34に記憶する(ステップS24)。
 最後に、出力部35Cは、ソート結果34C4中の上位m件(mは予め定められた整数)の差分値あるいは予め定められた額以上の差分値に付加されている第1のシナリオデータの識別子およびその差分値を、リスク削減策の効果の期待度が大きいシナリオデータの識別子および削減可能額として、画面表示部33に出力し、あるいは通信I/F部31を通じて外部に出力する(ステップS25)。
 このように本実施形態によれば、シナリオデータの損失額および損失発生頻度の少なくとも一方がリスク削減策の効果により改善した場合に、VaR額がどの程度削減されるかをシナリオデータ単位で調べることによって、リスク削減策の効果の期待度が大きいシナリオはどのシナリオであるかを分析するという一種の成分分析を簡易に実施することが可能になる。その理由は、シナリオデータの損失額および損失発生頻度の少なくとも一方が変化した場合にVaR額がどのように変化するかを近似計算によって求めることができるため、同じことをリスク計量装置を使用して求める場合に比べて計算量が遥かに少なくなるためである。
[第4の実施形態]
 図15を参照すると、本発明の第4の実施形態にかかるリスク管理装置4は、損失データに基づいてVaRを近似計算する機能を利用して、損失データの変化に起因するVaR額の変化量を算出する機能を有している。
 リスク管理装置4は、主な機能部として、通信I/F部41、操作入力部42、画面表示部43、記憶部44、およびプロセッサ45を有する。
 通信I/F部41、操作入力部42、および画面表示部43は、第1の実施形態における図1の通信I/F部11、操作入力部12、および画面表示部13と同じ機能を有している。
 記憶部44は、ハードディスクや半導体メモリなどの記憶装置からなり、プロセッサ45での各種処理に必要な処理情報やプログラム44Pを記憶する機能を有している。プログラム44Pは、プロセッサ45に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部41などのデータ入出力機能を介して外部装置(図示せず)やコンピュータ読取可能な記憶媒体(図示せず)から予め読み込まれて記憶部44に保存される。記憶部44で記憶される主な処理情報として、第1の損失データ44A、第2の損失データ44G、第1のリスク量44H、係数テーブル44B、および中間情報44Cがある。
 第1の損失データ44Aは、第1の実施形態における図1の損失データ14Aと同じく、損失額と損失発生頻度とを含むデータである。図16は、損失データ44Aの構成例である。この例の損失データ44Aは、合計n個の損失データ44A1~44Anから構成される。個々の損失データは、損失データを一意に識別するための識別子(ID)、損失額b、および損失発生頻度λを有する。
 第2の損失データ44Gは、第1の損失データ44Aと同じく、損失額と損失発生頻度とを含むデータである。図17は、損失データ44Gの構成例である。この例の損失データ44Gは、第1の損失データ44Aと同じく合計n個の損失データ44G1~44Gnから構成されているが、必ずしも個数が同じである必要はない。個々の損失データは、損失データを一意に識別するための識別子(ID)、損失額b、および損失発生頻度λを有する。
 第1の損失データ44Aと第2の損失データ44Gとの関係は、任意でよい。例えば、第2の損失データ44Gは、第1の損失データ44Aと1対1に対応する損失データを有し、一部の損失データの損失額および損失発生頻度の少なくとも一方が、対応する第2の損失データの損失額および損失発生頻度に比べて異なる値になっていてよい。このようなケースとして、リスク削減策の強化によって一部の損失データの損失額および損失発生頻度が前期に比べて小さくなったケースが考えられる。また、別のケースとして、株価のボラティリティの変化や業務量の変化等の業務環境の変化によって一部の損失データの損失額および損失発生頻度が前期に比べて変化したケースが考えられる。
 第1のリスク量44Hは、第1の損失データ44Aに基づいて、近似対象となるリスク計量装置が計量したリスク量、例えば99.9%VaR額である。
 係数テーブル44Bは、第1の実施形態における係数テーブル14Bと同じである。
 中間情報44Cは、プロセッサ45の演算過程で生成される中間ないし最終的なデータである。図18は中間情報44Cの構成例である。この例の中間情報44Cは、第1の損失データ44A1~44Anに1対1に対応する第1の個別データVaR額44C11~44C1nから構成される第1の損失データの個別データVaR額44C1、第2の損失データ44G1~44Gnに1対1に対応する第2の個別データVaR額44C21~44C2nから構成される第2の損失データの個別データVaR額44C2、第1の個別データVaR額44C11~44C1nの総和である第1の近似リスク量44C3、第2の個別データVaR額44C21~44C2nの総和である第2の近似リスク量44C4、第1の近似リスク量44C3に対する第1のリスク量44Hの割合である近似比率44C5、第2の近似リスク量44Cに近似比率44C5を乗じた値である第2のリスク量44C6、および第1のリスク量44Hと第2のリスク量44C6との差であるリスク量の増減額44C7を有する。
 プロセッサ45は、CPUなどのマイクロプロセッサとその周辺回路を有し、記憶部44からプログラム44Pを読み込んで実行することにより、上記ハードウェアとプログラム44Pとを協働させて各種処理部を実現する機能を有している。プロセッサ45で実現される主な処理部として、入力格納部45A、個別データVaR額算出部45B、累積部45C、比率算出部45H、第2のリスク量算出部45I、差分算出部45J、および出力部45Dがある。
 入力格納部45Aは、通信I/F部41または操作入力部42から、第1の損失データ44A、第2の損失データ44G、第1のリスク量44H、および係数テーブル44Bを入力して、記憶部44に格納する機能を有する。
 個別データVaR額算出部45Bは、第1の損失データ44Aと第2の損失データ44Gと係数テーブル44Bとを記憶部44から読み込み、第1の損失データ44Aに含まれる損失データ44Ai毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル44Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、第1の個別データVaR額44C11~44C1nとして記憶部44に記憶する機能を有する。また、個別データVaR額算出部45Bは、第2の損失データに含まれる損失データ毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル44Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、第2の個別データVaR額44C21~44C2nとして記憶部44に記憶する機能を有する。
 累積部45Cは、第1の個別データVaR額44C11~44C1nを記憶部44から読み込み、それらを累積した第1の近似リスク量44C3を記憶部44に記憶する機能を有する。また、累積部45Cは、第2の個別データVaR額44C21~44C2nを記憶部44から読み込み、それらを累積した第2の近似リスク量44C4を記憶部44に記憶する機能を有する。
 比率算出部45Hは、第1のリスク量44Hと第1の近似リスク量44C3とを記憶部44から読み込み、第1のリスク量44Hを第1の近似リスク量44C3で割った値を近似比率44C5として記憶部44に記憶する機能を有する。
 第2のリスク量算出部45Iは、第2の近似リスク量44C4と近似比率44C5とを記憶部44から読み込み、第2の近似リスク量44C4に近似比率44C5を乗じた値を、第2のリスク量44C6として記憶部44に記憶する機能を有する。
 差分算出部45Jは、第1のリスク量44Hと第2のリスク量44C6とを記憶部44から読み込み、第2のリスク量44C6から第1のリスク量44Hを減算した値を、第1の損失データ44Aと第2の損失データ44Gとの間の差に起因するリスク量の増減額44C7として記憶部44に記憶する機能を有する。
 出力部45Dは、リスク量の増減額44C7を記憶部44から読み込み、第1の損失データ44Aと第2の損失データ44Gとの間の差に起因するリスク量の増減額として、画面表示部43に出力し、あるいは通信I/F部41を通じて外部に出力する機能を有する。
 次に、図19を参照して、本実施形態にかかるリスク管理装置4の動作について説明する。
 まず、入力格納部45Aは、通信I/F部41または操作入力部42から、第1の損失データ44A、第2の損失データ44G、第1のリスク量44H、および係数テーブル44Bを入力して、記憶部44に格納する(ステップS31)。
 次に、個別データVaR額算出部45Bは、第1の損失データ44Aおよび第2の損失データ44Gに含まれる損失データ毎に、その損失データに含まれる損失発生頻度に対応して係数テーブル44Bに保持されている係数とその損失データに含まれる損失額とを乗算して、第1の個別データVaR額44C11~44C1nおよび第2の個別データVaR額44C21~44C2nを算出する(ステップS32)。
 次に、累積部45Cは、第1の個別データVaR額44C11~44C1nの総和である第1の近似リスク量44C3、および第2の個別データVaR額44C21~44C2nの総和である第2の近似リスク量44C4を算出する(ステップS33)。
 次に、比率算出部45Hは、第1のリスク量44Hを第1の近似リスク量44C3で割って近似比率44C5を算出する(ステップS34)。
 次に、第2のリスク量算出部45Iは、第2の近似リスク量44C4と近似比率44C5とを掛け合わせて、第2のリスク量44C6を算出する(ステップS35)。
 次に、差分算出部45Jは、第2のリスク量44C6から第1のリスク量44Hを減算して、リスク量の増減額44C7を算出する(ステップS36)。
 最後に、出力部45Dは、リスク量の増減額44C7を、第1の損失データ44Aと第2の損失データ44Gとの間の差に起因するリスク量の増減額として、画面表示部43に出力し、あるいは通信I/F部41を通じて外部に出力する(ステップS37)。
 このように本実施形態によれば、損失データが第1の損失データ44Aから第2の損失データ44Gに変化した場合に、その変化に起因するVaR額の変化量を高速に算出することができる。その理由は、第2の損失データに基づくリスク量を近似計算によって求めることができるため、第2の損失データに基づくリスク量をリスク計量装置を使用して求める場合に比べて計算量が遥かに少なくなるためである。
[第5の実施形態]
 図20を参照すると、本発明の第5の実施形態にかかるリスク管理装置5は、損失データに基づいてVaRを近似計算する機能を利用して、VaR額増減の要因を分析する機能を有している。
 リスク管理装置5は、主な機能部として、通信I/F部51、操作入力部52、画面表示部53、記憶部54、およびプロセッサ55を有する。
 通信I/F部51、操作入力部52、および画面表示部53は、第1の実施形態における図1の通信I/F部11、操作入力部12、および画面表示部13と同じ機能を有している。
 記憶部54は、ハードディスクや半導体メモリなどの記憶装置からなり、プロセッサ55での各種処理に必要な処理情報やプログラム54Pを記憶する機能を有している。プログラム54Pは、プロセッサ55に読み込まれて実行されることにより各種処理部を実現するプログラムであり、通信I/F部51などのデータ入出力機能を介して外部装置(図示せず)やコンピュータ読取可能な記憶媒体(図示せず)から予め読み込まれて記憶部54に保存される。記憶部54で記憶される主な処理情報として、第1の損失データ54A、第2の損失データ54G、差分要因情報54I、第1のリスク量54H、第2のリスク量54J、係数テーブル54B、および中間情報54Cがある。
 第1の損失データ54Aは、第1の実施形態における図1の損失データ14Aと同じく、損失額と損失発生頻度とを含むデータである。図21は、損失データ54Aの構成例である。この例の損失データ54Aは、合計n個の損失データ54A1~54Anから構成される。個々の損失データは、損失データを一意に識別するための識別子(ID)、損失額b、および損失発生頻度λを有する。
 第2の損失データ54Gは、第1の損失データ54Aと同じく、損失額と損失発生頻度とを含むデータである。図22は、損失データ54Gの構成例である。この例の損失データ54Gは、第1の損失データ54Aと1対1に対応する合計n個の損失データ54G1~54Gnから構成される。個々の損失データは、対応する第1の損失データの識別子(ID)、損失額b、および損失発生頻度λを有する。
 第1の損失データ54Aと第2の損失データ54Gとの関係は、任意でよい。例えば、第1の損失データ54Aが前期のリスク量の計量に使用された損失データであり、第2の損失データ54Gが今期のリスク量の計量に使用された損失データであってよい。前後の期どうしでなく、離れた期の損失データどうしであってもよい。
 差分要因情報54Iは、第1の損失データ54Aと第2の損失データ54Gとの間の差分の要因を表す情報である。図23は差分要因情報54Iの構成例である。この例の差分要因情報54Iは、リスク削減策の変更および業務環境の変化という2つの要因別に、変化した損失データのIDと変化内容とを記述している。例えば、1行目の情報は、リスク削減策の変更により、ID2の損失データの損失発生頻度がλ12からλ22に変化したことを表している。また、2行目の情報は、リスク削減策の変更により、ID3の損失データの損失発生頻度がλ13からλ23に変化したことを表している。また、3行目の情報は、業務環境の変化により、ID1の損失データの損失額がb11からb21に変化したことを表している。また、4行目の情報は、業務環境の変化により、ID2の損失データの損失額がb12からb22に変化したことを表している。
 第1のリスク量54Hは、第1の損失データ54Aに基づいて、近似対象となるリスク計量装置が計量したリスク量、例えば99.9%VaR額である。また、第2のリスク量54Jは、第2の損失データ54Gに基づいて、近似対象となるリスク計量装置が計量したリスク量、例えば99.9%VaR額である。第1および第2のリスク量は、リスク計量装置が直接計量したリスク量でなく、本発明の第2の実施形態により算出された或る基本要素(部門)のリスク量であってもよい。
 係数テーブル54Bは、第1の実施形態における係数テーブル14Bと同じである。
 中間情報54Cは、プロセッサ55の演算過程で生成される中間ないし最終的なデータである。図24は中間情報54Cの構成例である。この例の中間情報54Cは、第1の損失データ54A1~54Anに1対1に対応する第1の個別データVaR額54C11~54C1nから構成される第1の損失データの個別データVaR額54C1、第2の損失データ54G1~54Gnに1対1に対応する第2の個別データVaR額54C21~54C2nから構成される第2の損失データの個別データVaR額54C2、第2の損失データ54G1~54Gn中のリスク削減策に起因する損失額および損失発生頻度の変化だけを第1の損失データ54A1~54Anに反映した後の第1の損失データに1対1に対応する中間の個別データVaR額54C31~54C3nから構成される中間の個別データVaR額54C3、第1の個別データVaR額54C11~54C1nの総和である第1の近似リスク量54C41、第2の個別データVaR額54C21~54C2nの総和である第2の近似リスク量54C42、中間の個別データVaR額54C31~54C3nの総和である中間の近似リスク量54C43を有する。
 また、中間情報54Cは、第1の近似リスク量54C41に対する第1のリスク量54Hの割合である近似比率54C5、中間の近似リスク量54C43に近似比率54C5を乗じた値である第1の中間のリスク量54C61、第2の近似リスク量54C42に近似比率54C5を乗じた値である第2の中間のリスク量54C62、第1の中間のリスク量54C61から第1のリスク量54Hを差し引いた残りのリスク量である、リスク削減策に起因するリスク量の増減額54C71、第2の中間のリスク量54C62から第1の中間のリスク量54C61を差し引いた残りのリスク量である、業務環境変化に起因するリスク量の増減額54C72、および第2のリスク量54Jから第2の中間のリスク量54C62を差し引いた残りのリスク量である、計量モデルに起因するリスク量の増減額54C73を有する。
 プロセッサ55は、CPUなどのマイクロプロセッサとその周辺回路を有し、記憶部54からプログラム54Pを読み込んで実行することにより、上記ハードウェアとプログラム54Pとを協働させて各種処理部を実現する機能を有している。プロセッサ55で実現される主な処理部として、入力格納部55A、個別データVaR額算出部55B、累積部55C、比率算出部55H、中間リスク量算出部55I、差分算出部55J、および出力部55Dがある。
 入力格納部55Aは、通信I/F部51または操作入力部52から、第1の損失データ54A、第2の損失データ54G、差分要因情報54I、第1のリスク量54H、第2のリスク量54J、および係数テーブル54Bを入力して、記憶部54に格納する機能を有する。
 個別データVaR額算出部55Bは、第1の損失データ54A、第2の損失データ54G、差分要因情報54I、および係数テーブル54Bを記憶部54から読み込み、第1の損失データ54Aに含まれる損失データ54Ai毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル54Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、第1の個別データVaR額54C11~54C1nとして記憶部54に記憶する機能を有する。また、個別データVaR額算出部55Bは、第2の損失データに含まれる損失データ毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル54Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、第2の個別データVaR額54C21~54C2nとして記憶部54に記憶する機能を有する。
 さらに、個別データVaR額算出部55Bは、第2の損失データ54G1~54Gn中のリスク削減策に起因する損失額および損失発生頻度の変化だけを第1の損失データ54A1~54Anに反映した後の第1の損失データを生成する機能を有する。例えば、差分要因情報54Iが図23に示される場合、個別データVaR額算出部55Bは、第1の損失データ54A2の損失発生頻度をλ12からλ22に変更し、第1の損失データ54A3の損失発生頻度をλ13からλ23へ変更する。また、個別データVaR額算出部55Bは、このような変更を行った後の第1の損失データ毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル54Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を算出し、中間の個別データVaR額54C31~54C3nとして記憶部54に記憶する機能を有する。
 累積部55Cは、第1の個別データVaR額54C11~54C1nを記憶部54から読み込み、それらを累積した第1の近似リスク量54C41を記憶部54に記憶する機能を有する。また、累積部55Cは、第2の個別データVaR額54C21~54C2nを記憶部54から読み込み、それらを累積した第2の近似リスク量54C42を記憶部54に記憶する機能を有する。さらに、累積部55Cは、中間の個別データVaR額54C31~54C3nを記憶部54から読み込み、それらを累積した中間の近似リスク量54C43を記憶部54に記憶する機能を有する。
 比率算出部55Hは、第1のリスク量54Hと第1の近似リスク量54C41とを記憶部54から読み込み、第1のリスク量54Hを第1の近似リスク量54C41で割った値を近似比率54C5として記憶部54に記憶する機能を有する。
 中間リスク量算出部55Iは、中間の近似リスク量54C43と第2の近似リスク量54C42と近似比率54C5とを記憶部54から読み込み、中間の近似リスク量54C43に近似比率54C5を乗じた値を第1の中間のリスク量54C61として、また、第2の近似リスク量54C42に近似比率54C5を乗じた値を第2の中間のリスク量54C62として、それぞれ算出して記憶部54に記憶する機能を有する。
 差分算出部55Jは、第1のリスク量54H、第2のリスク量54J、第1の中間のリスク量54C61、および第2の中間のリスク量54C62を記憶部54から読み込み、第1の中間のリスク量54C61から第1のリスク量54Hを差し引いた残りの値をリスク削減策に起因するリスク量の増減額54C71、第2の中間のリスク量54C62から第1の中間のリスク量54C61を差し引いた残りのリスク量を業務環境変化に起因するリスク量の増減額54C72として、それぞれ算出して記憶部54に記憶する機能を有する。また、差分算出部55Jは、第2のリスク量54Jから第2の中間のリスク量54C62を差し引いた残りのリスク量を、計量モデルに起因するリスク量の増減額54C73として算出して記憶部54に記憶する機能を有していてもよい。
 出力部55Dは、リスク削減策に起因するリスク量の増減額54C71、および業務環境変化に起因するリスク量の増減額54C72を記憶部54から読み込み、画面表示部53に出力し、あるいは通信I/F部51を通じて外部に出力する機能を有する。また、出力部55Dは、計量モデルに起因するリスク量の増減額54C73を記憶部54から読み込み、画面表示部53に出力し、あるいは通信I/F部51を通じて外部に出力する機能を有していてもよい。
 次に、図25を参照して、本実施形態にかかるリスク管理装置5の動作について説明する。
 まず、入力格納部55Aは、通信I/F部51または操作入力部52から、第1の損失データ54A、第2の損失データ54G、差分要因情報54I、第1のリスク量54H、および第2のリスク量54Jを入力して、記憶部54に格納する(ステップS41)。
 次に、個別データVaR額算出部55Bは、第1の損失データ54Aに含まれる損失データ54Ai毎、第2の損失データ54Gに含まれる損失データ54Gi毎、および第2の損失データ54G1~54Gn中のリスク削減策に起因する損失額および損失発生頻度の変化だけを第1の損失データ54A1~54Anに反映した後の第1の損失データ毎に、その損失データに含まれる損失発生頻度λiに対応して係数テーブル54Bに保持されている係数とその損失データに含まれる損失額biとの乗算値を、それぞれ、第1の個別データVaR額54C11~54C1n、第2の個別データVaR額54C21~54C2n、および中間の個別データVaR額54C31~54C3nとして算出する(ステップS42)。
 次に、累積部55Cは、第1の個別データVaR額54C11~54C1nの累積値、第2の個別データVaR額54C21~54C2nの累積値、および中間の個別データVaR額54C31~54C3nの累積値を、それぞれ第1の近似リスク量54C41、第2の近似リスク量54C42、および中間の近似リスク量54C43として算出する(ステップS43)。
 次に、比率算出部55Hは、第1のリスク量54Hを第1の近似リスク量54C41で割った値を近似比率54C5として算出する(ステップS44)。第1のリスク量54Hと第1の近似リスク量54C41とは、同じ第1の損失データ54Aに基づくリスク量であるが、第1のリスク量54Hが近似対象のリスク計量装置で計量されたリスク量に基づいているのに対して、第1の近似リスク量54C41は係数テーブル54Bを用いた近似計算により算出されている。すなわち、計量モデルが相違するので、完全には一致しない。近似比率54C5は、近似計算したリスク量をリスク計量装置のリスク量に適合させるための補正率としての役割を担っている。
 次に、中間リスク量算出部55Iは、中間の近似リスク量54C43に近似比率54C5を乗じた値、および第2の近似リスク量54C42に近似比率54C5を乗じた値を、それぞれ第1の中間のリスク量54C61、および第2の中間のリスク量54C62として算出する(ステップS45)。第1の中間のリスク量54C61は、第1の損失データ54Aに対してリスク削減策に起因する変化分だけを反映した損失データに基づく中間の近似リスク量54C43を、近似比率54C5によって補正したものであるので、第1の損失データ54Aに対してリスク削減策に起因する変化分だけを反映した損失データに基づいてリスク計量装置で計量したリスク量の近似値になる。また、第2の中間のリスク量54C62は、第2の損失データ54Gに基づく第2の近似リスク量54C42を、近似比率54C5によって補正したものであるので、第2の損失データ54Gに基づいてリスク計量装置で計量したリスク量の近似値になる。
 次に、差分算出部55Jは、第1の中間のリスク量54C61から第1のリスク量54Hを差し引いた残りのリスク量、および第2の中間のリスク量54C62から第1の中間のリスク量54C61を差し引いた残りのリスク量を、それぞれ、リスク削減策に起因するリスク量の増減額54C71、および業務環境変化に起因するリスク量の増減額54C72として算出する(ステップS46)。このとき差分算出部55Jは、第2のリスク量
54Jから第2の中間のリスク量54C62を差し引いた残りのリスク量を、計量モデルに起因するリスク量の増減額54C73として算出しておいてもよい。
 最後に、出力部55Dは、リスク削減策に起因するリスク量の増減額54C71、および業務環境変化に起因するリスク量の増減額54C72を画面表示部53に出力し、あるいは通信I/F部51を通じて外部に出力する(ステップS47)。このとき出力部55Dは、計量モデルに起因するリスク量の増減額54C73を画面表示部53に出力し、あるいは通信I/F部51を通じて外部に出力してもよい(ステップS47)。
 このように本実施形態によれば、損失データに基づいてVaRを近似計算する機能を利用して、VaR額増減の要因を少ない計算量で分析することができる。その理由は、特定の要因による損失額および損失発生頻度の変化だけを第1の損失データに反映した中間の損失データに基づくリスク量を近似計算によって求めることができるため、同じ計算をリスク計量装置を使用して行う場合に比べて計算量が遥かに少なくなるためである。
 本実施形態では、リスク削減策に起因する増減額、業務環境変化に起因する増減額、計量モデルに起因する増減額という3つの要因の増減額を算出した。しかし、本発明はこれに限られず、リスク削減策に起因する増減額のみや、業務環境変化に起因する増減額のみなど、特定の1つの要因に起因する増減額だけを求める場合にも適用可能である。また、リスク削減策を更に細分化すること等によって、より詳細な要因に分解する場合にも適用可能である。
 以上本発明を幾つかの実施形態を挙げて説明したが、本発明は以上の実施形態にのみ限定されず、その他各種の付加変更が可能である。例えば、貸出業務などの信用取引にかかる信用リスクや、為替および金利取引にかかる市場リスクなど、オペレーショナルリスク以外のリスクに対しても本発明は適用可能である。
 なお、本発明は、日本国にて2011年03月29日に特許出願された特願2011-072744の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。
 本発明は、損失額と損失発生頻度とを含む損失データから簡易な方法でリスク量を算出したり、資本配賦や成分分析等を行う際に利用できる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
 損失額と損失発生頻度とを含む損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する記憶手段と、
 前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する個別データVaR額算出手段と
を備えることを特徴とするリスク管理装置。
[付記2]
 損失データ毎に算出された前記乗算値の累積値を算出する累積手段を
備えることを特徴とする付記1に記載のリスク管理装置。
[付記3]
 損失分布手法のリスク計量装置がリスク量を計量する単位を計量単位、該計量単位を構成する要素を基本要素と呼ぶとき、損失額と損失発生頻度とを含む基本要素別の損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルと、前記計量単位について前記リスク計量装置が計量したリスク量とを記憶する記憶手段と、
 前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する個別データVaR額算出手段と、
 前記計量単位に関する全ての損失データについて算出された前記乗算値の累積値と、各基本要素に関する全ての損失データについて算出された前記乗算値の累積値とを算出する累積手段と、
 前記リスク推定装置によって前記計量単位について算出された前記リスク量のうち、前記計量単位に関する全ての損失データについて算出された前記乗算値の累積値に対する、特定の前記基本要素に関する全ての損失データについて算出された前記乗算値の累積値の割合に相当するリスク量を、前記特定の基本要素のリスク量として算出する基本要素別リスク量算出手段と
を備えることを特徴とするリスク管理装置。
[付記4]
 損失額と損失発生頻度とを含む1以上の第1のシナリオデータと、該第1のシナリオデータにおける損失額および損失発生頻度の少なくとも一方を変更した1以上の第2のシナリオデータと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する記憶手段と、
 前記第1および第2のシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数とそのシナリオデータに含まれる損失額との乗算値を算出する個別データVaR額算出手段と、
 前記第1のシナリオデータと前記第1のシナリオデータにおける損失額および損失発生頻度の少なくとも一方を変更した前記第2のシナリオデータとの組合せ毎に、前記第1のシナリオデータに関する前記乗算値と前記第2のシナリオデータに関する前記乗算値との差分値を算出する差分算出手段と
を備えることを特徴とするリスク管理装置。
[付記5]
 損失額と損失発生頻度とを含む1以上の第1の損失データと、該第1の損失データに基づいてリスク計量装置で計量された第1のリスク量と、損失額と損失発生頻度とを含む1以上の第2の損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する記憶手段と、
 前記第1および第2の損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する個別データVaR額算出手段と、
 前記第1および第2の損失データ毎に、前記算出された前記乗算値を累積した第1および第2の近似リスク量を算出する累積手段と、
 前記第1の近似リスク量に対する前記第1のリスク量の割合を、近似比率として算出する比率算出手段と、
 前記第2の近似リスク量に前記近似比率を乗じた値を、第2のリスク量として算出する第2のリスク量算出手段と、
 前記第1のリスク量と前記第2のリスク量との差を、前記第1および第2の損失データ間の差に起因するリスク量の増減額として算出する差分算出手段と
を備えることを特徴とするリスク管理装置。
[付記6]
 損失額と損失発生頻度とを含む1以上の第1の損失データと、該第1の損失データに基づいてリスク計量装置で計量された第1のリスク量と、損失額と損失発生頻度とを含む1以上の第2の損失データと、前記第1および第2の損失データ間の差分要因情報と、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する記憶手段と、
 前記第1の損失データ毎、および前記第2の損失データ中の特定の要因による損失額および損失発生頻度の変化だけを前記第1の損失データに反映した中間の損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する個別データVaR額算出手段と、
 前記第1の損失データおよび前記中間の損失データ毎に、前記算出された前記乗算値を累積した第1の近似リスク量および中間の近似リスク量を算出する累積手段と、
 前記第1の近似リスク量に対する前記第1のリスク量の割合を、近似比率として算出する比率算出手段と、
 前記中間の近似リスク量に前記近似比率を乗じた値を中間のリスク量として算出する中間リスク量算出手段と、
 前記第1のリスク量と前記中間のリスク量との差を、前記第1および前記第2の損失データ間における前記特定の要因に起因するリスク量の増減額として算出する差分算出手段と
を備えることを特徴とするリスク管理装置。
[付記7]
 損失額と損失発生頻度とを含む損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する記憶手段と、個別データVaR額算出手段とを有するリスク管理装置が実行するリスク管理方法であって、
 前記個別データVaR額算出手段が、
 前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する
ことを特徴とするリスク管理方法。
[付記8]
 損失額と損失発生頻度とを含む損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶する記憶手段を有するコンピュータを、
 前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する個別データVaR額算出手段
として機能させるためのプログラム。
1、2、3、4、5…リスク管理装置
11、21、31、41、51…通信I/F部
12、22、32、42、52…操作入力部
13、23、33、43、53…画面表示部
14、24、34、44、54…記憶部
15、25、35、45、55…プロセッサ

Claims (13)

  1.  損失額と損失発生頻度とを含む損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶するメモリと、
     前記メモリに接続されたプロセッサとを備え、
     前記プロセッサは、
     前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する
    ようにプログラムされていることを特徴とするリスク管理装置。
  2.  前記プロセッサは、さらに、
     損失データ毎に算出された前記乗算値の累積値を算出する
    ようにプログラムされていることを特徴とする請求項1に記載のリスク管理装置。
  3.  損失分布手法のリスク計量装置がリスク量を計量する単位を計量単位、該計量単位を構成する要素を基本要素と呼ぶとき、前記メモリは、前記損失データを前記基本要素別に記憶すると共に、さらに、前記計量単位について前記リスク計量装置が計量したリスク量を記憶し、
     前記プロセッサは、さらに、
     前記計量単位に関する全ての損失データについて算出された前記乗算値の累積値と、各基本要素に関する全ての損失データについて算出された前記乗算値の累積値とを算出し、
     前記リスク推定装置によって前記計量単位について算出された前記リスク量のうち、前記計量単位に関する全ての損失データについて算出された前記乗算値の累積値に対する、特定の前記基本要素に関する全ての損失データについて算出された前記乗算値の累積値の割合に相当するリスク量を、前記特定の基本要素のリスク量として算出する
    ようにプログラムされていることを特徴とする請求項1に記載のリスク管理装置。
  4.  前記メモリは、前記損失データを第1のシナリオデータとして記憶すると共に、さらに、前記第1のシナリオデータにおける損失額および損失発生頻度の少なくとも一方を変更した第2のシナリオデータを記憶し、
     前記プロセッサは、
     前記乗算値の算出では、前記第1および第2のシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数とそのシナリオデータに含まれる損失額との乗算値を算出し、
     前記プロセッサは、さらに、
     前記第1のシナリオデータと前記第1のシナリオデータにおける損失額および損失発生頻度の少なくとも一方を変更した前記第2のシナリオデータとの組合せ毎に、前記第1のシナリオデータに関する前記乗算値と前記第2のシナリオデータに関する前記乗算値との差分値を算出する
    ようにプログラムされていることを特徴とする請求項1に記載のリスク管理装置。
  5.  前記メモリは、前記損失データを第1の損失データとして記憶すると共に、さらに、前記第1の損失データに基づいてリスク計量装置で計量された第1のリスク量と、損失額と損失発生頻度とを含む第2の損失データとを記憶し、
     前記プロセッサは、
     前記乗算値の算出では、前記第1および第2の損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出し、
     前記プロセッサは、さらに、
     前記第1および第2の損失データ毎に、前記算出された前記乗算値を累積した第1および第2の近似リスク量を算出し、
     前記第1の近似リスク量に対する前記第1のリスク量の割合を、近似比率として算出し、
     前記第2の近似リスク量に前記近似比率を乗じた値を、第2のリスク量として算出し、
     前記第1のリスク量と前記第2のリスク量との差を、前記第1および第2の損失データ間の差に起因するリスク量の増減額として算出する
    ようにプログラムされていることを特徴とする請求項1に記載のリスク管理装置。
  6.  前記メモリは、前記損失データを第1の損失データとして記憶すると共に、さらに、前記第1の損失データに基づいてリスク計量装置で計量された第1のリスク量と、損失額と損失発生頻度とを含む第2の損失データと、前記第1および第2の損失データ間の差分要因情報とを記憶し、
     前記プロセッサは、
     前記乗算値の算出では、前記第1の損失データ毎、および前記第2の損失データ中の特定の要因による損失額および損失発生頻度の変化だけを前記第1の損失データに反映した中間の損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出し、
     前記プロセッサは、さらに、
     前記第1の損失データおよび前記中間の損失データ毎に、前記算出された前記乗算値を累積した第1の近似リスク量および中間の近似リスク量を算出し、
     前記第1の近似リスク量に対する前記第1のリスク量の割合を、近似比率として算出し、
     前記中間の近似リスク量に前記近似比率を乗じた値を中間のリスク量として算出し、
     前記第1のリスク量と前記中間のリスク量との差を、前記第1および前記第2の損失データ間における前記特定の要因に起因するリスク量の増減額として算出する
    ようにプログラムされていることを特徴とする請求項1に記載のリスク管理装置。
  7.  損失額と損失発生頻度とを含む損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶するメモリと、前記メモリに接続されたプロセッサとを備えるリスク管理装置が実行するリスク管理方法であって、
     前記プロセッサが、
     前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出する
    ことを特徴とするリスク管理方法。
  8.  前記プロセッサは、さらに、
     損失データ毎に算出された前記乗算値の累積値を算出する
    ことを特徴とする請求項7に記載のリスク管理方法。
  9.  損失分布手法のリスク計量装置がリスク量を計量する単位を計量単位、該計量単位を構成する要素を基本要素と呼ぶとき、前記メモリは、前記損失データを前記基本要素別に記憶すると共に、さらに、前記計量単位について前記リスク計量装置が計量したリスク量を記憶し、
     前記プロセッサは、さらに、
     前記計量単位に関する全ての損失データについて算出された前記乗算値の累積値と、各基本要素に関する全ての損失データについて算出された前記乗算値の累積値とを算出し、
     前記リスク推定装置によって前記計量単位について算出された前記リスク量のうち、前記計量単位に関する全ての損失データについて算出された前記乗算値の累積値に対する、特定の前記基本要素に関する全ての損失データについて算出された前記乗算値の累積値の割合に相当するリスク量を、前記特定の基本要素のリスク量として算出する
    ことを特徴とする請求項7に記載のリスク管理方法。
  10.  前記メモリは、前記損失データを第1のシナリオデータとして記憶すると共に、さらに、前記第1のシナリオデータにおける損失額および損失発生頻度の少なくとも一方を変更した第2のシナリオデータを記憶し、
     前記プロセッサは、
     前記乗算値の算出では、前記第1および第2のシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数とそのシナリオデータに含まれる損失額との乗算値を算出し、
     さらに、
     前記第1のシナリオデータと前記第1のシナリオデータにおける損失額および損失発生頻度の少なくとも一方を変更した前記第2のシナリオデータとの組合せ毎に、前記第1のシナリオデータに関する前記乗算値と前記第2のシナリオデータに関する前記乗算値との差分値を算出する
    ことを特徴とする請求項7に記載のリスク管理方法。
  11.  前記メモリは、前記損失データを第1の損失データとして記憶すると共に、さらに、前記第1の損失データに基づいてリスク計量装置で計量された第1のリスク量と、損失額と損失発生頻度とを含む第2の損失データとを記憶し、
     前記プロセッサは、
     前記乗算値の算出では、前記第1および第2の損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出し、
     さらに、
     前記第1および第2の損失データ毎に、前記算出された前記乗算値を累積した第1および第2の近似リスク量を算出し、
     前記第1の近似リスク量に対する前記第1のリスク量の割合を、近似比率として算出し、
     前記第2の近似リスク量に前記近似比率を乗じた値を、第2のリスク量として算出し、
     前記第1のリスク量と前記第2のリスク量との差を、前記第1および第2の損失データ間の差に起因するリスク量の増減額として算出する
    ことを特徴とする請求項7に記載のリスク管理方法。
  12.  前記メモリは、前記損失データを第1の損失データとして記憶すると共に、さらに、前記第1の損失データに基づいてリスク計量装置で計量された第1のリスク量と、損失額と損失発生頻度とを含む第2の損失データと、前記第1および第2の損失データ間の差分要因情報とを記憶し、
     前記プロセッサは、
     前記乗算値の算出では、前記第1の損失データ毎、および前記第2の損失データ中の特定の要因による損失額および損失発生頻度の変化だけを前記第1の損失データに反映した中間の損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出し、
     さらに、
     前記第1の損失データおよび前記中間の損失データ毎に、前記算出された前記乗算値を累積した第1の近似リスク量および中間の近似リスク量を算出し、
     前記第1の近似リスク量に対する前記第1のリスク量の割合を、近似比率として算出し、
     前記中間の近似リスク量に前記近似比率を乗じた値を中間のリスク量として算出し、
     前記第1のリスク量と前記中間のリスク量との差を、前記第1および前記第2の損失データ間における前記特定の要因に起因するリスク量の増減額として算出する
    ことを特徴とする請求項7に記載のリスク管理方法。
  13.  損失額と損失発生頻度とを含む損失データと、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルとを記憶するメモリに接続されたプロセッサに、
     前記損失データ毎に、前記損失データに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数と前記損失データに含まれる損失額との乗算値を算出するステップ、
    を実行させるためのプログラム。
PCT/JP2012/002004 2011-03-29 2012-03-23 リスク管理装置 WO2012132353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2013070685A SG193549A1 (en) 2011-03-29 2012-03-23 Risk management device
KR1020137025321A KR101566601B1 (ko) 2011-03-29 2012-03-23 리스크 관리 장치
EP12763797.3A EP2693378A4 (en) 2011-03-29 2012-03-23 RISK MANAGEMENT DEVICE
US14/008,053 US20140012621A1 (en) 2011-03-29 2012-03-23 Risk management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-072744 2011-03-29
JP2011072744A JP5800353B2 (ja) 2011-03-29 2011-03-29 リスク管理装置

Publications (1)

Publication Number Publication Date
WO2012132353A1 true WO2012132353A1 (ja) 2012-10-04

Family

ID=46930134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002004 WO2012132353A1 (ja) 2011-03-29 2012-03-23 リスク管理装置

Country Status (6)

Country Link
US (1) US20140012621A1 (ja)
EP (1) EP2693378A4 (ja)
JP (1) JP5800353B2 (ja)
KR (1) KR101566601B1 (ja)
SG (1) SG193549A1 (ja)
WO (1) WO2012132353A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130060600A1 (en) * 2011-09-06 2013-03-07 Aon Benfield Global, Inc. Risk reporting log
US10408392B2 (en) * 2016-05-27 2019-09-10 Ningbo Well Electric Applance Co., Ltd. Outdoor lamp holder and outdoor lamp string using same
CN113379786B (zh) * 2021-06-30 2024-02-02 深圳万兴软件有限公司 图像抠图方法、装置、计算机设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252893A (ja) * 2003-02-21 2004-09-09 Fujitsu Ltd オペレーショナルリスク計量装置およびオペレーショナルリスク計量方法
JP2006155427A (ja) * 2004-11-30 2006-06-15 Toshiba Corp オペレーショナルリスクの計量化装置、方法、およびプログラム
JP2006178891A (ja) * 2004-12-24 2006-07-06 Hitachi Ltd 設備保守リスク評価システムおよび設備保守リスク評価方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002256018A1 (en) * 2001-03-29 2002-10-15 Accenture Llp Overall risk in a system
WO2012073074A1 (en) * 2010-12-03 2012-06-07 Swiss Reinsurance Company Ltd. Liability risk driven system for optimized triggering risk exposure if insurance objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252893A (ja) * 2003-02-21 2004-09-09 Fujitsu Ltd オペレーショナルリスク計量装置およびオペレーショナルリスク計量方法
JP4241083B2 (ja) 2003-02-21 2009-03-18 富士通株式会社 オペレーショナルリスク計量プログラム、オペレーショナルリスク計量方法およびオペレーショナルリスク計量装置
JP2006155427A (ja) * 2004-11-30 2006-06-15 Toshiba Corp オペレーショナルリスクの計量化装置、方法、およびプログラム
JP2006178891A (ja) * 2004-12-24 2006-07-06 Hitachi Ltd 設備保守リスク評価システムおよび設備保守リスク評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI; SHIMIZU; NISHIGUCHI; MORINAGA: "Operational Risk Management", 24 April 2009, KINZAI INSTITUTE FOR FINANCIAL AFFAIRS, INC., pages: 107 - 144
See also references of EP2693378A4 *

Also Published As

Publication number Publication date
JP5800353B2 (ja) 2015-10-28
EP2693378A4 (en) 2014-09-03
KR101566601B1 (ko) 2015-11-13
KR20130124985A (ko) 2013-11-15
EP2693378A1 (en) 2014-02-05
US20140012621A1 (en) 2014-01-09
JP2012208642A (ja) 2012-10-25
SG193549A1 (en) 2013-11-29

Similar Documents

Publication Publication Date Title
Labro et al. A simulation analysis of interactions among errors in costing systems
CN104756084B (zh) 操作管理装置和操作管理方法
EP3891670A1 (en) Indiagnostics framework for large scale hierarchical time-series forecasting models
JP5800353B2 (ja) リスク管理装置
JP5697146B2 (ja) リスク管理装置
CN111897706A (zh) 服务器性能预测方法、装置、计算机系统和介质
KR101471797B1 (ko) 리스크 관리 장치
JP4921572B2 (ja) 債券特性算出システムおよびスプレッド変化率算出システム
Curti et al. Benchmarking operational risk stress testing models
JP2017084229A (ja) 投資シミュレーション装置および方法
JPWO2012093469A1 (ja) 性能評価装置及び性能評価方法
Altuğ et al. Are technology shocks nonlinear?
JP5650290B1 (ja) オペレーショナルリスクの計量方法及び装置
Hillebrand et al. Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility
CN114282881A (zh) 折旧测算方法、装置、存储介质及计算机设备
John et al. Optimization of software development life cycle process to minimize the delivered defect density
Carvalho et al. Firm dynamics and the granular hypothesis
CN111164633B (zh) 一种评分卡模型的调整方法、装置、服务器及存储介质
JP5734218B2 (ja) 情報出力装置、情報出力方法、及びプログラム
Houseman Offshoring bias in US manufacturing: implications for productivity and value added
JP5804492B2 (ja) リスク管理装置
JP2012101910A (ja) 基準在庫量設定システム
Haque et al. An NHPP-based SRGM with time dependent growth process
CN117764638B (zh) 一种供电企业售电数据预测方法、系统、设备及存储介质
CN114066491A (zh) 基于多周期的预测总销量确定物品补货策略的方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025321

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012763797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012763797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14008053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE