WO2012132198A1 - Power generation system and method for operating power generation system - Google Patents

Power generation system and method for operating power generation system Download PDF

Info

Publication number
WO2012132198A1
WO2012132198A1 PCT/JP2012/001030 JP2012001030W WO2012132198A1 WO 2012132198 A1 WO2012132198 A1 WO 2012132198A1 JP 2012001030 W JP2012001030 W JP 2012001030W WO 2012132198 A1 WO2012132198 A1 WO 2012132198A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
heat
amount
detector
Prior art date
Application number
PCT/JP2012/001030
Other languages
French (fr)
Japanese (ja)
Inventor
島田 孝徳
正史 藤井
加藤 玄道
鋭 張
田中 良和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012132198A1 publication Critical patent/WO2012132198A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation system including a power generation device that supplies electric power and a method for operating the power generation system.
  • the present invention solves the above-described conventional problems, and even if the user's power usage pattern changes, the energy efficiency of the power generation system and the power generation system can be improved as compared with the conventional technique.
  • the purpose is to provide a driving method.
  • a power generation system includes a power generation device that supplies power to an external power load, a power detector that detects power supplied from the power generation device to the external power load, and A heat accumulator that stores heat generated from the power generation device and supplies the heat to an external heat load, a heat amount detector that detects the amount of heat stored in the heat accumulator, a storage device, a predictor, and an operation planner A control device, wherein the memory stores the power detected by the power detector or the amount of heat detected by the heat quantity detector, and the predictor is based on the power or the amount of heat stored in the memory.
  • Predicting the amount of power consumed by the external power load or the amount of heat consumed by the external heat load, and the operation planner is based on the power predicted by the predictor (hereinafter, predicted power) or the predicted amount of heat.
  • Power plant operation plan The integrated value of the power detected by the power detector during the first operation of executing the operation plan of the power generation device planned by the operation planner is the integrated value of the predicted power. If the power amount deviates by more than the first power amount, the next power generation operation of the power generation device is detected from the first operation, and the power detection is performed for power equal to or higher than the second power, which is higher than the power necessary for starting the power generation device.
  • the generator detects, and when the amount of heat of the regenerator becomes equal to or less than the first threshold value, it is configured to switch to the second operation, which is an operation to start the power generation device in at least one of the cases. ing.
  • an operation method of the power generation system includes a power generation device that supplies power to an external power load, a power detector that detects power supplied from the power generation device to the external power load, and the power generation device.
  • a power storage system operation method comprising: a heat accumulator that stores generated heat and supplies the heat to an external heat load; and a heat amount detector that detects an amount of heat stored in the heat accumulator.
  • the power detector Storing the power detected by the device or the heat detected by the heat detector, predicting the power consumed by the external power load or the heat consumed by the external heat load based on the stored power, Planning the operation plan of the power generation device based on the predicted power (hereinafter, predicted power) or heat quantity, executing the planned operation plan of the power generation device, When the power detected by the power detector deviates more than the first power amount from the predicted power during the execution of the plan, the power detector detects the next power generation operation of the power generation device from the first operation.
  • predicted power predicted power
  • At least one of a case where the power to be detected is a power greater than or equal to the second power, which is greater than the power required for starting the power generation device, and a case where the amount of heat of the heat accumulator is less than or equal to the first threshold. it is an operation in which the starting the power generation device in the case of, comprising a step of switching to the second operation, the.
  • the life pattern of the user fluctuates and the power pattern used by the user deviates from the operation plan planned by the operation planner, the next time By switching the power generation operation to the second operation, the energy efficiency can be improved as compared with the conventional technique.
  • FIG. 1 is a block diagram schematically showing a schematic configuration of the power generation system according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart schematically showing the switching determination operation between the first operation and the second operation by the control device of the power generation system shown in FIG. 1.
  • FIG. 3 is a graph schematically showing an example of the predicted power amount predicted by the predictor of the power generation system shown in FIG. 1, the power amount actually used by the user, and the power amount generated by the fuel cell.
  • Figure 4 is a flowchart schematically showing a second operation by the control device of the power generation system shown in FIG. FIG.
  • FIG. 5 is a graph schematically showing an example of the amount of power actually used by the user and the amount of power generated by the fuel cell when the control device of the power generation system shown in FIG. 1 executes the second operation.
  • FIG. 6 is a graph schematically illustrating an example of the predicted power amount predicted by the predictor of the power generation system illustrated in FIG. 1 and the power amount actually used by the user.
  • FIG. 7 is a flowchart schematically showing the switching determination operation between the first operation and the second operation by the control device in the power generation system of the first modification.
  • Figure 8 is a flowchart schematically showing a second operation by the control device of the power generation system of the second modification.
  • Figure 9 is a flowchart schematically showing a second operation by the control device of the power generation system of Modification Example 3.
  • Figure 10 is a graph schematically illustrating an example of a heat storage amount of hot water storage tank when executing a second operation by the control device of the power generation system of Modification Example 3.
  • FIG. 11 is a graph schematically illustrating an example of fluctuations in power stored in the storage device.
  • FIG. 12 is a flowchart schematically showing a second operation by the control device for the power generation system according to Embodiment 2 of the present invention.
  • a power generation system is generated from a power generation device that supplies power to an external power load, a power detector that detects power supplied from the power generation device to the external power load, and the power generation device.
  • a heat accumulator for storing heat and supplying the heat to an external heat load; a heat amount detector for detecting the amount of heat stored in the heat accumulator; and a controller having a storage device, a predictor, and an operation planner.
  • the memory stores the power detected by the power detector or the heat detected by the heat detector, and the predictor stores the power consumed by the external power load based on the power or heat stored in the memory or the external
  • the amount of heat consumed by the heat load is predicted, and the operation planner plans an operation plan of the power generation apparatus based on the power predicted by the predictor (hereinafter, predicted power) or the predicted amount of heat.
  • predicted power the power predicted by the predictor
  • the generator set planned by the generator If the integrated value of the power detected by the power detector deviates by more than the first power amount from the integrated value of the predicted power during the first operation in which the power generation device is executed, the next power generation operation of the power generator is changed from the first operation to the power generation.
  • the power detector detects a power greater than or equal to the second power, which is greater than the power required for starting the device, and the amount of heat of the heat accumulator is less than or equal to the first threshold value It is comprised so that it may switch to the 2nd driving
  • the second operation may be an operation performed when the power generation device is activated less than a predetermined number of times in a preset unit period.
  • the second operation may be an operation in which the power generation device is stopped when a preset second time has elapsed since the power generation device was activated.
  • the first power amount may be 60 to 90% of the integrated value of the predicted power.
  • the control device includes a first period, a second period that is longer than the first period, and a third period that is longer than the second period.
  • the predictor has a timer for measuring the amount of power consumed by the external power load or the amount of heat consumed by the external heat load in the first period unit based on the power or heat amount in the third period stored in the storage device.
  • the prediction and the operation planner may plan an operation plan of the power generation apparatus within the second period based on the electric power or heat quantity predicted by the predictor.
  • FIG. 1 is a block diagram schematically showing a schematic configuration of the power generation system according to Embodiment 1 of the present invention.
  • a power generation system 100 includes a fuel cell (power generation device) 10, a power detector 20, a hot water storage tank (heat storage) 50, a temperature detector (heat quantity detector) 61 to 64 and a control device 30.
  • the control device 30 includes the operation planner 4 and the predictor 5, and the power detected by the power detector 20 during the first operation of executing the operation plan of the fuel cell 10 planned by the operation planner 4.
  • the integrated value of is deviated more than the first power amount from the integrated value of the predicted power, the next power generation operation of the fuel cell 10 is switched from the first operation to the second operation.
  • the fuel cell 10 is an apparatus that generates electricity and heat by electrochemically reacting a reducing agent gas containing hydrogen and an oxidizing gas containing oxygen.
  • various fuel cells such as a polymer electrolyte fuel cell, a direct internal reforming solid oxide fuel cell, and an indirect internal reforming solid oxide fuel cell can be used.
  • the fuel cell 10 is used as the power generator, but the present invention is not limited to this.
  • the power generation device may be in any form as long as it can generate DC power.
  • the power generator may be used, for example, prime mover such as a gas turbine or a diesel engine.
  • the external power load 101 is connected to the fuel cell 10 via a wiring 11.
  • the external power load 101 is, for example, a device that consumes AC power, such as an electrical device in each home where the power generation system 100 is installed.
  • a power detector 20 is connected in the middle of the wiring 11.
  • the power detector 20 may be in any form as long as the power flowing through the wiring 11 can be detected.
  • an ammeter may be configured, or an ammeter and a voltmeter may be configured.
  • a current transformer can be used as the ammeter.
  • the power value detected by the power meter the power value of the wiring 11 detected by the inverter can be used. Then, the power detector 20 outputs the detected power (power load) to the control device 30.
  • the fuel cell 10 is provided with a cooling water flow path 10A through which cooling water for recovering heat generated in the fuel cell 10 flows.
  • a cooling water circulation path 41 is connected to the cooling water flow path 10A.
  • a heat exchanger 40 is provided in the middle of the cooling water circulation path 41, and the cooling water circulation path 41 is connected to the primary flow path of the heat exchanger 40.
  • the secondary flow path of the heat exchanger 40, the hot water circulation path 51 is connected.
  • a hot water storage tank 50 is provided in the middle of the hot water circulation path 51.
  • An external heat load 102 is connected to the upper part of the hot water storage tank 50 via a hot water supply path 52, and hot hot water in the hot water storage tank 50 is supplied to the external heat load 102.
  • a water supply path 53 is connected to the lower part of the hot water storage tank 50 so that city water is supplied into the hot water storage tank 50.
  • the cooling water collects the heat generated in the fuel cell 10, and the hot water is heated by exchanging heat between the hot water and the cooling water in the heat exchanger 40.
  • the heated hot water is supplied to the upper portion of the hot water storage tank 50 through the hot water circulation path 51. In this manner, hot hot water is stored in the upper part of the hot water storage tank 50, and low temperature hot water is stored in the lower part of the hot water storage tank 50.
  • the hot water storage tank 50 is provided with temperature detectors 61A to 61D arranged in the vertical direction.
  • the temperature detectors 61A to 61D are configured to output the detected temperature to the control device 30.
  • the control device 30 calculates the amount of heat (heat load) of the hot water storage tank 50 from the temperature detected by the temperature detectors 61A to 61D and the capacity of the hot water storage tank 50.
  • the control device 30 has an arithmetic processor 1, a timer 2, and a storage device 3.
  • the arithmetic processor 1 includes a microprocessor, a CPU, and the like.
  • the storage device 3 may be in any form as long as it is configured to store various data.
  • memory such as a non-volatile memory and a volatile memory, is mentioned, for example.
  • the timer 2 has a clock and a calendar function, and has a first period, a second period that is longer than the first period, and a third period that is longer than the second period. It is configured to keep time. Needless to say, the timer 2 can also measure a period shorter than the first period.
  • a combination of “the first period, the second period that is longer than the first period, and the third period that is longer than the second period” ie, “the first period, the second period, and the second period
  • Examples of the “combination of three engines” include “1 hour, 1 day, and 3 days”. Other examples include “1 hour, 1 day, and 1 week” and “1 hour, 1 day, and 1 month”. That is, the first period and the second period can be arbitrarily set as long as the second period is an integer multiple other than 1 of the first period.
  • the third period can be arbitrarily set as long as it is an integer multiple other than 1 of the second period.
  • control apparatus 30 reads the predetermined control program stored in the memory
  • control device 30 is not only configured as a single control device, but may be configured as a control device group in which a plurality of control devices cooperate to execute control of the power generation system 100. Absent. Moreover, the control apparatus 30 may be comprised by micro control, and may be comprised by MPU, PLC (Programmable Logic Controller), a logic circuit, etc.
  • the predictor 5 of the control device 30 includes a history group of power load or heat load accumulated in the storage device 3 (for example, a history group from the day before the operation plan execution date to n days before or the operation plan execution date).
  • the power load or the heat load in the operation plan period (for example, from 00:00:00 to 24:00:00) is predicted from the history group of the day of the week. That is, the storage device 3 stores only the power load, only the heat load, or both the power load and the heat load.
  • the predictor 5 predicts only the power load, only the heat load, or both the power load and the heat load from the load stored in the storage device 3.
  • the predictor 5 the predicted electric power load (hereinafter, predicted power loads that) or predicted thermal load (hereinafter, referred to as predictive heat load) to the operation plan unit 4.
  • the operation planner 4 creates an operation plan for the fuel cell 10 from the predicted power load or the predicted heat load input from the predictor 5.
  • the operation plan created by the operation planner 4 is output to the control device 30.
  • the control device 30 controls the operation of the power generation system 100 based on the operation plan (the control device 30 executes the first operation).
  • the integrated value of the power detected by the power detector 20 is the integrated value of the predicted power load (predicted power) during execution of the first operation. If the first power amount is deviated by more than the second amount, the second operation is executed.
  • An operation plan may be created by the method disclosed in the above. Further, the operation planner 4 sets the operation start time of the power generation system 100 on the operation plan execution date based on the predicted power load or the predicted heat load input from the predictor 5, and determines a predetermined value from the set operation start time. An operation plan in which the power generation system 100 is operated continuously for a time (for example, 8 hours), and the power generation amount of the fuel cell 10 is changed so as to follow the power detected by the power detector 20 during the operation time. May be created.
  • the operation planner 4 starts the operation of the power generation system 100 on the operation plan execution date based on the predicted heat load input from the predictor 5.
  • the time is set, the rated operation of the fuel cell 10 is performed continuously for a predetermined time (for example, 8 hours) from the set operation start time, and the power not used by the external power load 101 is sold.
  • An operation plan may be created.
  • FIG. 2 is a flowchart schematically showing a switching determination operation between the first operation and the second operation by the control device of the power generation system shown in FIG.
  • the first operation refers to an operation for executing the power generation operation of the power generation system 100 (fuel cell 10) based on the operation plan of the fuel cell 10 created by the operation planner 4.
  • the second operation refers to the next operation of the power generation system 100 (fuel cell 10) when the power detected by the power detector 20 deviates more than the first power amount from the predicted power during the first operation. (More accurately, the operation is performed from the next operation plan period), and the electric power is equal to or higher than the second electric power that is larger than the electric power necessary for starting the fuel cell 10 from the start of the next operation plan period.
  • the power detector 20 detects it, it means an operation for starting the fuel cell 10.
  • the second operation from activates the fuel cell 10 for a predetermined time (for example, 8 hours) after the lapse may stop the power generation system 100 (fuel cell 10).
  • the second operation may be an operation performed when the fuel cell 10 is activated less than a predetermined number of times in a preset unit period.
  • the second operation is performed when the fuel cell 10 is not activated and the power detector 20 is set to the second power.
  • the fuel cell 10 is activated.
  • the second operation is performed when the fuel cell 10 has already been activated 5 times, and then the second power Even if the power detector 20 detects the above power, the fuel cell 10 is not started.
  • the control device 30 acquires the power E detected by the power detector 20 from the power detector 20 during the first operation (step S101). Next, the control device 30 calculates an integrated value (power amount) E1 of power from the start of the operation plan period to the time when the power E is acquired from the power E acquired in step S101 (step S102).
  • the integrated value E1 calculated in step S102 is equal to or more than the first electric energy than the integrated value of the predicted power predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired. It is determined whether or not there is a deviation (step S103).
  • the “first power amount” can be arbitrarily set.
  • the integrated value E1 of the electric power E deviates by more than the first electric energy means that the integrated value E1 is less than or equal to the first electric energy with respect to the integrated value of the predicted electric power. Including both cases.
  • the control device 30 causes the integrated value E1 calculated in step S102 to deviate by more than the first power amount from the integrated value of the predicted power predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired. If it is determined (Yes in step S103), the next operation is switched to the second operation and stored in the storage device 3 (step S104). On the other hand, when the integrated value E1 calculated in step S102 is not deviated by more than the first power amount from the integrated value of predicted power predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired (step) In No in S103, the next operation is stored in the storage device 3 so as to execute the first operation (step S105).
  • the operation planner 4 starts the operation of the power generation system 100 at the operation plan execution date (for example, at 12:00, based on the predicted power load or the predicted heat load input from the predictor 5). Then, at 14:00, power supply from the fuel cell 10 to the external power load 101 is set), and the power generation system 100 is operated continuously for a predetermined time (here, 8 hours) from the set operation start time. during operation time, so as to follow the power detected by the power detector 20, that varies the amount of power generation of the fuel cell 10, it is assumed that the operating schedule a.
  • FIG. 3 shows the predicted power amount at this time, the power amount actually used by the user, and the power amount generated by the fuel cell 10.
  • FIG. 3 is a graph schematically showing an example of the predicted power amount predicted by the predictor of the power generation system shown in FIG. 1, the power amount actually used by the user, and the power amount generated by the fuel cell.
  • the broken line indicates the predicted power amount predicted by the predictor 5
  • the solid line indicates the actually used power (used power amount)
  • the hatched portion indicates the power amount generated by the fuel cell 10. Indicates.
  • the broken lines are shifted so that the broken lines and the solid lines do not overlap.
  • the operation planner 4 plans the next operation of the power generation system 100 based on the predicted power load or the predicted heat load input from the predictor 5. Since the prediction of the predictor 5 is predicted from the history group of the power load accumulated in the storage device 3, the previous power use pattern data is not sufficiently accumulated until the previous (execution date of the operation plan A). The proportion of the power actually used contributes to the next prediction is small. For this reason, the operation plan planned by the operation planner 4 is not so different from the operation plan A planned last time.
  • the control device 30 has an integrated power value (power amount) E1 from the start of the operation plan period to the time when the power E is acquired.
  • the next power generation operation of the fuel cell 10 is changed to the second operation when the predicted power 5 deviates more than the first power amount predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired. It is configured to switch.
  • the second operation will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 5 is a graph schematically showing an example of the amount of power actually used by the user and the amount of power generated by the fuel cell when the control device of the power generation system shown in FIG. 1 executes the second operation.
  • the actually used electric energy is shown by the same value as the actually used electric energy shown in FIG. 3.
  • the control device 30 acquires the power E1 detected by the power detector 20 from the power detector 20 (step S301). Next, the control device 30 determines whether or not the power E1 acquired in step S301 is equal to or higher than the second power (step S302).
  • the “second electric power” can be arbitrarily set as long as it is higher than the electric power required for starting the fuel cell 10.
  • the second power may be 300 to 500 W.
  • step S301 When the electric power E1 acquired in step S301 is less than the second electric power (No in step S302), the control device 30 returns to step S301, and until the electric power E1 becomes equal to or higher than the second electric power, Step S302 is repeated. On the other hand, if the power E1 is equal to or higher than the second power (Yes in step S302), the control device 30 proceeds to step S303.
  • step S303 the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10). Then, the control device 30 acquires the current time from the timer 2 (step S304), and calculates an elapsed time T1 after starting the power generation operation of the fuel cell 10 (step S305).
  • control device 30 determines whether or not the time T1 calculated in step S305 is equal to or longer than the second time (step S306).
  • the second time can be arbitrarily set, and may be, for example, 6 hours or 8 hours.
  • Step S306 the control device 30 returns to step S304 and continues to steps S304 to S304 until the time T1 becomes equal to or greater than the second time. Step S306 is repeated. On the other hand, when the time T1 is equal to or longer than the second time (Yes in Step S306), the control device 30 proceeds to Step S307.
  • step S307 the control device 30 stops the power generation operation of the fuel cell 10 and ends the program (second operation).
  • the control device 30 determines the power generation amount of the fuel cell 10 so as to follow the power detected by the power detector 20. Fluctuate.
  • the operation planner 4 plans an operation plan based on the predicted power predicted by the predictor 5 as shown in FIG. 3, and executes the operation plan (first operation). Compared with, energy efficiency can be improved.
  • the control device 30 when the control device 30 performs the first operation, the integrated value of power detected by the power detector 20 deviates by more than the first power amount from the integrated value of predicted power.
  • operation was employ
  • another embodiment will be described with reference to FIG.
  • Figure 6 is a graph schematically illustrating an example of a predictor predicted power amount was predicted and the amount of power the user actually uses the power generation system shown in FIG.
  • the broken line indicates the predicted power amount predicted by the predictor 5
  • the solid line indicates the actually used power (used power amount)
  • the hatched portion overlaps the predicted power amount and the used power amount. Shows the part. Further, in FIG. 6, after 18:00, the broken lines are shifted so that the broken lines and the solid lines do not overlap.
  • the control device 30 while executing the first operation, the predicted power amount for each first period and the power amount detected by the power detector 20 for each first period (hereinafter, used power amount). ) To calculate the amount of power where the predicted power amount and the used power amount overlap (hereinafter referred to as matched power amount), and the amount of power where the predicted power amount and used power amount do not overlap (hereinafter referred to as mismatched energy amount) , Is calculated.
  • the control device 30 executes the second operation when the integrated value / matching power amount of the mismatch power amount is 1.5 or more (that is, when a threshold value of 1.5 or more is detected). You may employ
  • the power generation apparatus when the power detected by the power detector deviates more than the first power amount from the predicted power continuously for a plurality of first periods, the power generation apparatus This is an example in which the next power generation operation is switched from the first operation to the second operation.
  • the power generation system 100 according to the first modification of the first embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, and thus the description of the configuration is omitted. Further, the power generation operation of the fuel cell 10 in the power generation system 100 of the first modification is performed in the same manner as the power generation operation of a general fuel cell, and thus detailed description thereof is omitted.
  • FIG. 7 is a flowchart schematically showing the switching judgment operation between the first operation and the second operation by the control device in the power generation system of the first modification. Note that in the first modification, the switching determination operation between the first operation and the second operation by the control device 30 is not limited to being performed at the final time of the operation plan period, and the first operation is performed within a predetermined period. It may be performed at any time when there is a deviation from the amount of power.
  • control device 30 acquires the history of the power E detected by the power detector 20 during the operation plan period from the storage device 3 at the final time of the operation plan period (step S201). Next, the control device 30 calculates an integrated value E1 of power in the first period from the power E acquired in step S201 (step S202).
  • the integrated value E1 calculated in step S202 is equal to or greater than the first electric energy than the integrated value (predicted electric energy) of the predicted electric power predicted by the predictor 5 continuously for a plurality of first periods. It is determined whether or not there is a deviation (step S203). For example, in the graph shown in FIG. 3, when the first period is set to 1 hour, the predicted power amount predicted by the predictor 5 from 14:00 to 16:00 is a plurality of first periods continuously. Therefore, the first power amount is deviated more than the first power amount.
  • step S202 when the integrated value E1 of the power calculated in step S202 is shifted by a first power amount or more than the predicted power amount predicted by the predictor 5 for a plurality of first periods (step (step S202)).
  • step S203 Yes
  • the next operation is stored in the storage device 3 so as to switch to the second operation (step S204).
  • the integrated value E1 of the power calculated in step S202 is not shifted more than the first power amount from the predicted power amount predicted by the predictor 5 continuously for a plurality of first periods (No in step S203). Is stored in the storage device 3 so as to execute the first operation also in the next operation (step S205).
  • the power generation system 100 according to the first modification configured as described above has the same effects as the power generation system 100 according to the first embodiment.
  • the control device stores the third power, which is higher than the lowest power among the power detected by the power detector, in the memory, and the second operation is performed.
  • the power detector is operated to stop the power generation device when it detects power not lower than the preset first time and not higher than the third power.
  • the power generation system 100 according to the second modification of the first embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, and thus the description of the configuration is omitted.
  • the power generation operation of the fuel cell 10 in the power generation system 100 of the second modification is performed in the same manner as the power generation operation of a general fuel cell, and thus detailed description thereof is omitted.
  • Figure 8 is a flowchart schematically showing a second operation by the control device of the power generation system of the second modification.
  • the control device 30 acquires the power E1 detected by the power detector 20 from the power detector 20 (step S401). Next, the control device 30 determines whether or not the power E1 acquired in step S401 is equal to or higher than the second power (step S402).
  • step S401 When the electric power E1 acquired in step S401 is less than the second electric power (No in step S402), the control device 30 returns to step S401, and step S401 and step until the electric power E1 becomes equal to or higher than the second electric power. S402 is repeated. On the other hand, when the power E1 is equal to or higher than the second power (Yes in Step S402), the control device 30 proceeds to Step S403.
  • step S403 the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10).
  • the control device 30 acquires the power E2 detected by the power detector 20 from the power detector 20 (step S404), and determines whether or not the power E2 acquired in step S404 is equal to or lower than the third power.
  • the third power is higher than the lowest power among the power detected by the power detector 20. More specifically, the third power is higher than the lowest power detected by the power detector 20 after the power generation system 100 is installed, and is detected by the power detector 20 from the viewpoint of energy saving.
  • the power is preferably 50 to 100 W higher than the lowest power.
  • the third power is, for example, 100 W or more from the viewpoint of energy saving (if the power consumption is too small, the proportion of energy used to maintain the power generation of the fuel cell 10 increases and the energy saving performance decreases). It is preferable that the generation of surplus power is suppressed and a predetermined power generation time (the amount of energy consumed when starting the power generation system 100 can be saved (the amount of power consumed when starting the power generation system 100 is reduced). From the viewpoint of securing a sufficient power generation time (for example, 4 to 5 hours), it is preferably 200 W or less.
  • step S404 When the power E2 acquired in step S404 is larger than the third power (No in step S405), the control device 30 repeats steps S404 and S405 until the power E2 becomes equal to or lower than the third power. On the other hand, when power E2 is equal to or lower than the third power (Yes in step S405), control device 30 proceeds to step S406.
  • step S406 the control device 30 detects a time T that has elapsed since the time when the power E2 was acquired from the power detector 20 in step S404.
  • the control device 30 determines whether or not the time T is equal to or longer than a preset first time (step S407).
  • the first time can be arbitrarily set, and for example, 40 minutes to 50 minutes may be set.
  • the control device 30 acquires the power E2 detected by the power detector 20 from the power detector 20 (step S408). .
  • the control device 30 passes the time elapsed from the time when the power E2 is acquired from the power detector 20 in step S404. The count of T is continued and steps S407 to S409 are repeated until the time T becomes equal to or longer than the first time. Note that if the power E2 acquired in step S408 is greater than the third power (No in step S409), the control device 30 stops counting the time T and returns to step S404.
  • control device 30 stops the power generation operation of the fuel cell 10 and ends the program (second operation).
  • the power generation system 100 of the second modification configured as described above has the same operational effects as the power generation system 100 according to the first embodiment.
  • the second operation is an operation in which the power generation device is stopped when the heat storage amount of the heat accumulator is equal to or more than a second threshold value set in advance. This is just an example.
  • the power generation system 100 according to the third modification of the first embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, and thus the description of the configuration is omitted. Moreover, since the power generation operation of the fuel cell 10 in the power generation system 100 of the third modification is performed in the same manner as the power generation operation of a general fuel cell, detailed description thereof is omitted.
  • the control device 30 acquires the temperatures t1A to t1D detected by the temperature detectors 61A to 61D (step S501).
  • the controller 30 stores the amount of heat stored in the hot water storage tank 50 (the amount of heat) from the temperatures t1A to t1D acquired in step S501, the volume of the hot water storage tank 50, and the temperature t0 of city water supplied to the hot water storage tank 50.
  • Q1 is calculated (step S502). Specifically, the following formula is obtained.
  • the city water temperature t ⁇ b> 0 is the temperature of the city water detected when a temperature detector (not shown) provided in the water supply path 53 supplies the city water to the hot water storage tank 50.
  • Heat storage amount Q1 ⁇ (t1A ⁇ t0) ⁇ volume of hot water storage tank 50/4 ⁇ + ⁇ (t1B ⁇ t0) ⁇ volume of hot water storage tank 50 ⁇ 4 ⁇ + ⁇ (t1C ⁇ t0) ⁇ volume of hot water storage tank 50 ⁇ 4 ⁇ + ⁇ (T1D-t0) ⁇ volume of hot water storage tank 50 ⁇ 4 ⁇
  • the control apparatus 30 judges whether the thermal storage amount Q1 calculated by step S502 is below a 1st threshold value.
  • the first threshold value can be arbitrarily set.
  • the hot water storage tank 50 is preferably 30% or more of the heat storage amount in the fully stored state, and the predetermined operating time (power generation) From the viewpoint of securing a time during which the amount of electric power consumed when starting the system 100 can be generated by the fuel cell 10; for example, 4 to 5 hours), 50% of the amount of heat stored when the hot water storage tank 50 is fully stored. It may be the following.
  • the first threshold value may be 40% of the heat storage amount when the hot water storage tank 50 is in the fully stored state from the above viewpoint.
  • the hot water storage tank 50 is fully stored” refers to a state in which the hot water stored in the fuel cell 10 cannot absorb the heat generated. Specifically, the hot water flowing through the hot water circulation path 51 cannot receive heat from the cooling water that has recovered the heat generated in the fuel cell 10 in the heat exchanger 40.
  • the hot water storage tank 50 is said to be fully charged when the temperature of the hot water detected by the temperature detector 61D provided in the lower part of the hot water storage tank 50 becomes a predetermined temperature or higher.
  • the predetermined temperature can be arbitrarily set.
  • the temperature of the lowermost layer of the hot water storage tank 50 (the temperature detected by the temperature detector 61D) or the hot water discharged from the lowermost layer of the hot water storage tank 50 is used.
  • the temperature may be 40 ° C. to 50 ° C.
  • the average temperature of the hot water stored in the hot water storage tank 50 is 60 ° C. to 70 ° C.
  • Step S503 When the heat storage amount Q1 calculated in step S502 is larger than the first threshold value (No in step S503), the control device 30 returns to step S501 and steps until the heat storage amount Q1 becomes equal to or greater than the first threshold value. Repeat steps S501 to S503. On the other hand, if the heat storage amount Q1 is equal to or greater than the first threshold (Yes in Step S503; 5 o'clock in FIG. 10), the control device 30 proceeds to Step S504.
  • step S504 the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10).
  • the control device 30 acquires the temperatures t2A to t2D detected by the temperature detectors 61A to 61D from the temperature detectors 61A to 61D, and after a predetermined time has elapsed, the temperatures t3A to t3D detected by the temperature detectors 61A to 61D. to get (step S505).
  • the predetermined time can be arbitrarily set. For example, the predetermined time may be several seconds (2 to 3 seconds), several minutes (2 to 3 minutes), or 10 minutes. .
  • the control device 30 calculates the heat storage amount (heat amount) Q2 of the hot water storage tank 50 from the temperatures t2A to t2D, the temperatures t3A to t3D, and the volume of the hot water storage tank 50 acquired in step S505 (step S506). ).
  • the control device 30 determines whether or not the heat storage amount Q2 calculated in step S506 is greater than or equal to the second threshold value.
  • the second threshold value can be arbitrarily set.
  • the hot water storage tank 50 is preferably 70% or more of the heat storage amount in the fully stored state.
  • the hot water storage tank 50 may be 90% or less of the heat storage amount in the fully stored state. Further, the second threshold value may be 80% of the heat storage amount when the hot water storage tank 50 is in the fully stored state from the above viewpoint.
  • Step S506 When the heat storage amount Q2 calculated in step S506 is less than the second threshold value (No in step S507), the control device 30 returns to step S505 and continues until the heat storage amount Q2 becomes equal to or less than the second threshold value. Steps S505 to S507 are repeated. On the other hand, if the heat storage amount Q2 is equal to or less than the second threshold (Yes in Step S507; 19:00 in FIG. 10), the control device 30 proceeds to Step S508.
  • step S508 the control device 30 stops the power generation operation of the fuel cell 10 and ends this program (second operation).
  • the control device calculates the first minimum value, which is the largest minimum value in the fluctuation of the power stored in the storage device, and stores the first minimum value.
  • the power generator is stored when the power detector detects power lower than the first minimum value during the second operation, and the power generator is stopped.
  • control device calculates, as the first minimum value, the largest minimum value in the power fluctuation stored in the storage device during the first operation immediately before switching to the second operation. It may be configured to.
  • the control device calculates the first maximum value that is the smallest maximum value in the fluctuation of the power stored in the storage device, and uses the first maximum value as the first maximum value. You may memorize
  • storage device as 2 electric power.
  • control device calculates the smallest maximum value in the fluctuation of the power stored in the storage device during the first operation immediately before switching to the second operation as the first maximum value. It may be configured to.
  • the switching determination operation between the first operation and the second operation by the control device 30 is performed by the power generation system 100 according to the first embodiment or the power generation system 100 according to the first modification thereof. Although it is performed in the same manner as any one, the following points are different.
  • the control device 30 performs the control to stop the power generation system 100 after a predetermined time has elapsed after the power generation system 100 (fuel cell 10) is started as the second operation.
  • the control device 30 calculates the first minimum value which is the largest minimum value in the fluctuation of the power stored in the storage device 3, and the power detector during the second operation. The difference is that the fuel cell 10 is stopped when the first minimum value 20 is detected.
  • control device 30 may be configured to calculate, as the first minimum value, the largest minimum value in the power fluctuation stored in the storage device 3 during the first operation immediately before switching to the second operation. good.
  • the control device 30 calculates the first maximum value that is the smallest maximum value in the fluctuation of the power stored in the storage device 3, and the first maximum value is calculated. It differs from the power generation system 100 according to Embodiment 1 (including the power generation system 100 of Modification 1) in that the value is stored in the storage device 3 as the second power.
  • FIG. 11 is a graph schematically showing an example of fluctuations in the power stored in the storage device.
  • the control device 30 acquires a history group for a predetermined period (here, three days) of power detected by the power detector 20 stored in the storage device 3.
  • the control device 30 calculates a minimum value (see FIG. 11), and stores the minimum value indicating the largest value in the storage unit 3 as the first minimum value from the calculated minimum value group.
  • the control device 30 operates the power generation system 100 when the power detected by the power detector 20 is less than or equal to the first minimum value stored in the storage device 3 during execution of the second operation. the stops.
  • control device 30 calculates the second power as follows.
  • the control device 30 acquires a history group for a predetermined period (here, three days) of power detected by the power detector 20 stored in the storage device 3.
  • the control device 30 calculates a maximum value (see FIG. 11), sets the maximum value indicating the smallest value from the calculated maximum value group as the first maximum value, and sets the first maximum value to the second value. in the storage unit 3 as a power.
  • operation execution is electric power more than the 2nd electric power (1st maximum value) memorize
  • the operation of the power generation system 100 (fuel cell 10) is started.
  • the predetermined period can be arbitrarily set, and may be, for example, one week, ten days, or one month. Further, the predetermined period may be the day when the user's power usage pattern changes (that is, the operation day immediately before switching to the second operation).
  • control device 30 may calculate a local minimum value and / or a local maximum value after performing rounding processing on power fluctuation data every predetermined period (for example, 5 hours).
  • the rounding process may be performed using a general method such as root mean square.
  • FIG. 12 is a flowchart schematically showing the second operation by the control device of the power generation system according to Embodiment 2 of the present invention.
  • the control device 30 acquires the power E1 detected by the power detector 20 from the power detector 20 (step S601). Next, the control device 30 determines whether or not the power E1 acquired in step S601 is equal to or greater than the second power (first maximum value) (step S602).
  • step S601 When the electric power E1 acquired in step S601 is less than the second electric power (No in step S602), the control device 30 returns to step S601 and continues to step S601 and step until the electric power E1 becomes equal to or higher than the second electric power. S602 repeated. On the other hand, if the power E1 is equal to or higher than the second power (Yes in step S602), the control device 30 proceeds to step S603.
  • step S603 the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10).
  • the control device 30 acquires the power E2 detected by the power detector 20 from the power detector 20 (step S604), and determines whether or not the power E2 acquired in step S604 is less than the first minimum value. it is determined (step S605).
  • step S604 When the power E2 acquired in step S604 is equal to or greater than the first minimum value (No in step S605), the control device 30 repeats steps S604 and S605 until the power E2 becomes less than the first minimum value. . On the other hand, when the electric power E2 is less than the first minimum value (Yes in step S605), the control device 30 proceeds to step S606.
  • step S606 the control device 30 stops the power generation operation of the fuel cell 10 and ends this program (second operation).
  • the power generation system 100 according to the second embodiment configured as described above has the same effects as the power generation system 100 according to the first embodiment.
  • the control device 30 generates the power of the fuel cell 10 based on either the power detected by the power detector 20 or the temperature (heat quantity) detected by the temperature detectors 61A to 61D.
  • operation was employ
  • the control device 30 determines the start and stop of the power generation operation of the fuel cell 10 based on both parameters of the power detected by the power detector 20 and the temperature (heat quantity) detected by the temperature detectors 61A to 61D. the may be adopted.
  • the control device 30 is configured such that any one parameter of the power detected by the power detector 20 or the temperature (heat quantity) detected by the temperature detectors 61A to 61D is equal to or higher than a predetermined threshold value or lower than the threshold value.
  • the power generation operation of the fuel cell 10 may be started or stopped.
  • the control device 30 allows the fuel cell when the parameters of both the power detected by the power detector 20 and the temperature (heat quantity) detected by the temperature detectors 61A to 61D are equal to or higher than a predetermined threshold. Ten power generation operations may be started or stopped.
  • the power generation system and the operation method of the power generation system of the present invention are useful in the field of fuel cells because the energy efficiency can be improved even if the user's power usage pattern changes.

Abstract

The power generation system of the present invention comprises: a power generation device (10); a power detector (20); a heat accumulator (50); heat amount detectors (61A to 61D); and a control device (30) that has a memory (3), a predictor (5) and an operation planner (4). In a first operation, an operation plan for the power generation device (10) which has been planned by the operation planner (4) is executed. In a second operation, the power generation device (10) is activated in at least one of the following cases: the case where power equal to or greater than a second power which is larger than the power required to activate the power generation device (10) is detected by the power detector (20); and the case where the amount of heat of the heat accumulator (50) is equal to or below a first threshold value. The control device (30) is configured so as to switch the next power generation operation of the power generation device (10) from the first operation to the second operation if, during the first operation, the integrated value of the power detected by the power detector (20) is offset from the integrated value of predicted power by a first power amount or more.

Description

発電システム及び発電システムの運転方法Power generation system and method for operating power generation system
 本発明は、電力を供給する発電装置を備える発電システム及び発電システムの運転方法に関する。 The present invention relates to a power generation system including a power generation device that supplies electric power and a method for operating the power generation system.
 燃料電池又はガスエンジン等の発電装置を備える発電システムの省エネルギー性を最大限に発揮するためには、使用者の電力使用パターンに適した運転を行う必要がある。このため、従来の発電システムでは、過去の電力使用データから使用者の電力使用パターンを予測して、その予測を基に発電システムの運転を実行するのが一般的である(例えば、特許文献1参照)。 In order to maximize the energy saving performance of a power generation system including a power generation device such as a fuel cell or a gas engine, it is necessary to perform an operation suitable for the user's power usage pattern. For this reason, in a conventional power generation system, it is common to predict a user's power usage pattern from past power usage data and execute the operation of the power generation system based on the prediction (for example, Patent Document 1). reference).
 特許文献1に開示されているコージェネレーションシステムでは、予め使用者の外出時における電力需要のデータを記憶する。そして、電力需要が所定値以下であり、かつ、過去のデータから所定値以下になる時間を予測し、当該予測した時間が閾値以上である場合には、燃料電池の運転を停止する。 In the cogeneration system disclosed in Patent Document 1, power demand data when the user goes out is stored in advance. Then, a time when the power demand is equal to or less than a predetermined value and from the past data is predicted to be equal to or less than the predetermined value, and when the predicted time is equal to or greater than the threshold value, the operation of the fuel cell is stopped.
 また、特許文献1に開示されているコージェネレーションシステムでは、上記燃料電池の運転を停止した後に、電力需要が所定値以上に復帰すると、運転計画の再検討(再計算)を行う。 Further, in the cogeneration system disclosed in Patent Document 1, when the power demand returns to a predetermined value or more after the operation of the fuel cell is stopped, the operation plan is reexamined (recalculation).
特開2005-9846号公報JP 2005-9846 A
 しかしながら、季節の変わり目のように、気温が急激に変化したような場合等、使用者の電力使用パターンが変化した場合には、上記特許文献1に開示されているコージェネレーションシステムであっても、充分に対応できない場合があった。 However, when the user's power usage pattern changes, such as when the temperature changes suddenly, such as at the turn of the season, even with the cogeneration system disclosed in Patent Document 1, There was a case where it was not possible to respond sufficiently.
 具体的には、特許文献1に開示されているコージェネレーションシステムでは、電力需要が減少した場合のデータを蓄積することにより、電力需要が所定値以下になる時間を予測し、運転計画の再検討(再計算)を行っている。このため、過去のデータの蓄積が充分でない間は、これらの予測精度は低いものとなる。また、これらの予測精度を上げるためには、充分な期間が必要となる。 Specifically, in the cogeneration system disclosed in Patent Document 1, by accumulating data when the power demand decreases, the time when the power demand falls below a predetermined value is predicted, and the operation plan is reviewed. (Recalculation). For this reason, while the past data is not sufficiently accumulated, the prediction accuracy is low. In addition, a sufficient period is required to increase the prediction accuracy.
 このように、上記特許文献1に開示されているコージェネレーションシステムであっても、使用者の電力使用パターンが変化した場合に、エネルギー効率を改善する点において、未だ改善の余地があった。 Thus, even with the cogeneration system disclosed in Patent Document 1, there is still room for improvement in terms of improving energy efficiency when the user's power usage pattern changes.
 本発明は、上記従来の課題を解決するものであり、使用者の電力使用パターンが変化しても、上記従来技術に比して、エネルギー効率を改善することができる、発電システム及び発電システムの運転方法を提供することを目的とする。 The present invention solves the above-described conventional problems, and even if the user's power usage pattern changes, the energy efficiency of the power generation system and the power generation system can be improved as compared with the conventional technique. The purpose is to provide a driving method.
 上記課題を解決するために、本発明に係る発電システムは、外部電力負荷に電力を供給する発電装置と、該発電装置から前記外部電力負荷に供給される電力を検出する電力検出器と、前記発電装置から発生する熱を貯め、外部熱負荷に前記熱を供給する蓄熱器と、前記蓄熱器に貯められた熱量を検出する熱量検出器と、記憶器、予測器、及び運転計画器を有する制御装置と、を備え、前記記憶器は、前記電力検出器が検出する電力又は前記熱量検出器が検出する熱量を記憶し、前記予測器は、前記記憶器に記憶された電力又は熱量を基に前記外部電力負荷が消費する電力又は前記外部熱負荷が消費する熱量を予測し、前記運転計画器は、前記予測器が予測した電力(以下、予測電力)又は予測した熱量を基にして前記発電装置の運転計画を計画し、前記制御装置は、前記運転計画器により計画された前記発電装置の運転計画を実行する第1運転中に、前記電力検出器が検出する電力の積算値が、前記予測電力の積算値よりも第1電力量以上ずれると、前記発電装置の次回の発電運転を前記第1運転から、前記発電装置の起動に必要な電力よりも大きい電力である第2電力以上の電力を前記電力検出器が検出した場合、及び前記蓄熱器の熱量が第1閾値以下になった場合、の少なくともいずれか一方の場合に前記発電装置の起動を行う運転である、第2運転に切り替えるように構成されている。 In order to solve the above problems, a power generation system according to the present invention includes a power generation device that supplies power to an external power load, a power detector that detects power supplied from the power generation device to the external power load, and A heat accumulator that stores heat generated from the power generation device and supplies the heat to an external heat load, a heat amount detector that detects the amount of heat stored in the heat accumulator, a storage device, a predictor, and an operation planner A control device, wherein the memory stores the power detected by the power detector or the amount of heat detected by the heat quantity detector, and the predictor is based on the power or the amount of heat stored in the memory. Predicting the amount of power consumed by the external power load or the amount of heat consumed by the external heat load, and the operation planner is based on the power predicted by the predictor (hereinafter, predicted power) or the predicted amount of heat. Power plant operation plan The integrated value of the power detected by the power detector during the first operation of executing the operation plan of the power generation device planned by the operation planner is the integrated value of the predicted power. If the power amount deviates by more than the first power amount, the next power generation operation of the power generation device is detected from the first operation, and the power detection is performed for power equal to or higher than the second power, which is higher than the power necessary for starting the power generation device. When the generator detects, and when the amount of heat of the regenerator becomes equal to or less than the first threshold value, it is configured to switch to the second operation, which is an operation to start the power generation device in at least one of the cases. ing.
 これにより、使用者の生活パターンが変動して、使用者の使用する電力パターンが、運転計画器が計画した運転計画から外れた場合に、次回の発電運転を第2運転に切り替えることにより、上記従来技術に比して、エネルギー効率を改善することができる。 Thereby, when the user's life pattern fluctuates and the power pattern used by the user deviates from the operation plan planned by the operation planner, the next power generation operation is switched to the second operation. Compared with the prior art, energy efficiency can be improved.
 また、本発明に係る発電システムの運転方法は、外部電力負荷に電力を供給する発電装置と、該発電装置から前記外部電力負荷に供給される電力を検出する電力検出器と、前記発電装置から発生する熱を貯め、外部熱負荷に前記熱を供給する蓄熱器と、前記蓄熱器に貯められた熱量を検出する熱量検出器と、を備える、発電システムの運転方法であって、前記電力検出器が検出する電力又は前記熱量検出器が検出する熱量を記憶するステップと、前記記憶した電力を基に前記外部電力負荷が消費する電力又は前記外部熱負荷が消費する熱量を予測するステップと、前記予測した電力(以下、予測電力)又は熱量を基にして前記発電装置の運転計画を計画するステップと、前記計画した前記発電装置の運転計画を実行するステップと、前記運転計画を実行中に、前記電力検出器が検出する電力が、前記予測電力よりも第1電力量以上ずれると、前記発電装置の次回の発電運転を前記第1運転から、前記電力検出器が検出する電力が前記発電装置の起動に必要な電力よりも大きい電力である第2電力以上の電力を検出した場合、及び前記蓄熱器の熱量が第1閾値以下になった場合、の少なくともいずれか一方の場合に前記発電装置を起動させる運転である、第2運転に切り替えるステップと、を備える。 In addition, an operation method of the power generation system according to the present invention includes a power generation device that supplies power to an external power load, a power detector that detects power supplied from the power generation device to the external power load, and the power generation device. A power storage system operation method comprising: a heat accumulator that stores generated heat and supplies the heat to an external heat load; and a heat amount detector that detects an amount of heat stored in the heat accumulator. Storing the power detected by the device or the heat detected by the heat detector, predicting the power consumed by the external power load or the heat consumed by the external heat load based on the stored power, Planning the operation plan of the power generation device based on the predicted power (hereinafter, predicted power) or heat quantity, executing the planned operation plan of the power generation device, When the power detected by the power detector deviates more than the first power amount from the predicted power during the execution of the plan, the power detector detects the next power generation operation of the power generation device from the first operation. At least one of a case where the power to be detected is a power greater than or equal to the second power, which is greater than the power required for starting the power generation device, and a case where the amount of heat of the heat accumulator is less than or equal to the first threshold. it is an operation in which the starting the power generation device in the case of, comprising a step of switching to the second operation, the.
 これにより、使用者の生活パターンが変動して、使用者の使用する電力パターンが、運転計画器が計画した運転計画から外れた場合に、次回の発電運転を第2運転に切り替えることにより、上記従来技術に比して、エネルギー効率を改善することができる。 Thereby, when the user's life pattern fluctuates and the power pattern used by the user deviates from the operation plan planned by the operation planner, the next power generation operation is switched to the second operation. Compared with the prior art, energy efficiency can be improved.
 本発明の発電システム及び発電システムの運転方法によれば、使用者の生活パターンが変動して、使用者の使用する電力パターンが、運転計画器が計画した運転計画から外れた場合に、次回の発電運転を第2運転に切り替えることにより、上記従来技術に比して、エネルギー効率を改善することができる。 According to the power generation system and the operation method of the power generation system of the present invention, when the life pattern of the user fluctuates and the power pattern used by the user deviates from the operation plan planned by the operation planner, the next time By switching the power generation operation to the second operation, the energy efficiency can be improved as compared with the conventional technique.
図1は、本発明の実施の形態1に係る発電システムの概略構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a schematic configuration of the power generation system according to Embodiment 1 of the present invention. 図2は、図1に示す発電システムの制御装置による第1運転と第2運転の切り替え判断動作を模式的に示すフローチャートである。FIG. 2 is a flowchart schematically showing the switching determination operation between the first operation and the second operation by the control device of the power generation system shown in FIG. 1. 図3は、図1に示す発電システムの予測器が予測した予測電力量、使用者が実際に使用した電力量、及び燃料電池で発電した電力量の一例を模式的に示すグラフである。FIG. 3 is a graph schematically showing an example of the predicted power amount predicted by the predictor of the power generation system shown in FIG. 1, the power amount actually used by the user, and the power amount generated by the fuel cell. 図4は、図1に示す発電システムの制御装置による第2運転を模式的に示すフローチャートである。Figure 4 is a flowchart schematically showing a second operation by the control device of the power generation system shown in FIG. 図5は、使用者が実際に使用した電力量及び図1に示す発電システムの制御装置が、第2運転を実行したときにおける燃料電池の発電電力量の一例を模式的に示すグラフである。FIG. 5 is a graph schematically showing an example of the amount of power actually used by the user and the amount of power generated by the fuel cell when the control device of the power generation system shown in FIG. 1 executes the second operation. 図6は、図1に示す発電システムの予測器が予測した予測電力量及び使用者が実際に使用した電力量の一例を模式的に示すグラフである。FIG. 6 is a graph schematically illustrating an example of the predicted power amount predicted by the predictor of the power generation system illustrated in FIG. 1 and the power amount actually used by the user. 図7は、本変形例1の発電システムにおける制御装置による第1運転と第2運転の切り替え判断動作を模式的に示すフローチャートである。FIG. 7 is a flowchart schematically showing the switching determination operation between the first operation and the second operation by the control device in the power generation system of the first modification. 図8は、本変形例2の発電システムの制御装置による第2運転を模式的に示すフローチャートである。Figure 8 is a flowchart schematically showing a second operation by the control device of the power generation system of the second modification. 図9は、本変形例3の発電システムの制御装置による第2運転を模式的に示すフローチャートである。Figure 9 is a flowchart schematically showing a second operation by the control device of the power generation system of Modification Example 3. 図10は、本変形例3の発電システムの制御装置による第2運転を実行したときの貯湯タンクの蓄熱量の一例を模式的に示すグラフである。Figure 10 is a graph schematically illustrating an example of a heat storage amount of hot water storage tank when executing a second operation by the control device of the power generation system of Modification Example 3. 図11は、記憶器に記憶されている電力の変動の一例を模式的に示すグラフである。FIG. 11 is a graph schematically illustrating an example of fluctuations in power stored in the storage device. 図12は、本発明の実施の形態2に係る発電システムの制御装置による第2運転を模式的に示すフローチャートである。FIG. 12 is a flowchart schematically showing a second operation by the control device for the power generation system according to Embodiment 2 of the present invention.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素のみを抜粋して図示しており、その他の構成要素については図示を省略している。さらに、本発明は以下の実施の形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, in the drawings, has shown an excerpt only components necessary for describing the present invention, the other components are not shown. Furthermore, the present invention is not limited to the following embodiment.
 (実施の形態1)
 本発明の実施の形態1に係る発電システムは、外部電力負荷に電力を供給する発電装置と、該発電装置から外部電力負荷に供給される電力を検出する電力検出器と、発電装置から発生する熱を貯め、外部熱負荷に前記熱を供給する蓄熱器と、蓄熱器に貯められた熱量を検出する熱量検出器と、記憶器、予測器、及び運転計画器を有する制御装置と、を備え、記憶器は、電力検出器が検出する電力又は熱量検出器が検出する熱量を記憶し、予測器は、記憶器に記憶された電力又は熱量を基に外部電力負荷が消費する電力又は前記外部熱負荷が消費する熱量を予測し、運転計画器は、予測器が予測した電力(以下、予測電力)又は予測した熱量を基にして発電装置の運転計画を計画し、制御装置は、運転計画器により計画された発電装置の運転計画を実行する第1運転中に、電力検出器が検出する電力の積算値が、予測電力の積算値よりも第1電力量以上ずれると、発電装置の次回の発電運転を第1運転から、発電装置の起動に必要な電力よりも大きい電力である第2電力以上の電力を電力検出器が検出した場合、及び蓄熱器の熱量が第1閾値以下になった場合、の少なくともいずれか一方の場合に発電装置の起動を行う運転である、第2運転に切り替えるように構成されている。
(Embodiment 1)
A power generation system according to Embodiment 1 of the present invention is generated from a power generation device that supplies power to an external power load, a power detector that detects power supplied from the power generation device to the external power load, and the power generation device. A heat accumulator for storing heat and supplying the heat to an external heat load; a heat amount detector for detecting the amount of heat stored in the heat accumulator; and a controller having a storage device, a predictor, and an operation planner. The memory stores the power detected by the power detector or the heat detected by the heat detector, and the predictor stores the power consumed by the external power load based on the power or heat stored in the memory or the external The amount of heat consumed by the heat load is predicted, and the operation planner plans an operation plan of the power generation apparatus based on the power predicted by the predictor (hereinafter, predicted power) or the predicted amount of heat. Of the generator set planned by the generator If the integrated value of the power detected by the power detector deviates by more than the first power amount from the integrated value of the predicted power during the first operation in which the power generation device is executed, the next power generation operation of the power generator is changed from the first operation to the power generation. In the case of at least one of the case where the power detector detects a power greater than or equal to the second power, which is greater than the power required for starting the device, and the amount of heat of the heat accumulator is less than or equal to the first threshold value It is comprised so that it may switch to the 2nd driving | operation which is the driving | operation which starts an electric power generating apparatus.
 また、本実施の形態1に係る発電システムでは、第2運転は、予め設定されている単位期間において、発電装置の起動が所定回数未満である場合に行われる運転であってもよい。 In the power generation system according to the first embodiment, the second operation may be an operation performed when the power generation device is activated less than a predetermined number of times in a preset unit period.
 また、本実施の形態1に係る発電システムでは、第2運転は、発電装置が起動してから予め設定されている第2時間が経過すると、発電装置を停止させる運転であってもよい。 In the power generation system according to the first embodiment, the second operation may be an operation in which the power generation device is stopped when a preset second time has elapsed since the power generation device was activated.
 また、本実施の形態1に係る発電システムでは、第1電力量は、予測電力の積算値の60~90%の電力量であってもよい。 Further, in the power generation system according to Embodiment 1, the first power amount may be 60 to 90% of the integrated value of the predicted power.
 さらに、本実施の形態1に係る発電システムでは、制御装置が、第1期間、該第1期間よりも長い期間である第2期間、及び該第2期間よりも長い期間である第3期間を計時する計時器を有し、予測器は、記憶器に記憶された第3期間内の電力又は熱量を基に外部電力負荷が消費する電力又は外部熱負荷が消費する熱量を第1期間単位で予測し、運転計画器は、予測器が予測した電力又は熱量を基にして、第2期間内における発電装置の運転計画を計画してもよい。 Furthermore, in the power generation system according to Embodiment 1, the control device includes a first period, a second period that is longer than the first period, and a third period that is longer than the second period. The predictor has a timer for measuring the amount of power consumed by the external power load or the amount of heat consumed by the external heat load in the first period unit based on the power or heat amount in the third period stored in the storage device. The prediction and the operation planner may plan an operation plan of the power generation apparatus within the second period based on the electric power or heat quantity predicted by the predictor.
 以下、本実施の形態1に係る発電システムの一例について、具体的に説明する。 Hereinafter, an example of the power generation system according to the first embodiment will be specifically described.
 [発電システムの構成]
 図1は、本発明の実施の形態1に係る発電システムの概略構成を模式的に示すブロック図である。
Configuration of Power Generation System]
FIG. 1 is a block diagram schematically showing a schematic configuration of the power generation system according to Embodiment 1 of the present invention.
 図1に示すように、本実施の形態1に係る発電システム100は、燃料電池(発電装置)10、電力検出器20、貯湯タンク(蓄熱器)50、温度検出器(熱量検出器)61~64、及び制御装置30を備えている。制御装置30は、運転計画器4及び予測器5を有していて、運転計画器4により計画された燃料電池10の運転計画を実行する第1運転中に、電力検出器20が検出する電力の積算値が、予測電力の積算値よりも第1電力量以上ずれると、燃料電池10の次回の発電運転を第1運転から第2運転に切り替えるように構成されている。 As shown in FIG. 1, a power generation system 100 according to the first embodiment includes a fuel cell (power generation device) 10, a power detector 20, a hot water storage tank (heat storage) 50, a temperature detector (heat quantity detector) 61 to 64 and a control device 30. The control device 30 includes the operation planner 4 and the predictor 5, and the power detected by the power detector 20 during the first operation of executing the operation plan of the fuel cell 10 planned by the operation planner 4. When the integrated value of is deviated more than the first power amount from the integrated value of the predicted power, the next power generation operation of the fuel cell 10 is switched from the first operation to the second operation.
 燃料電池10は、水素を含む還元剤ガスと酸素を含む酸化剤ガスとを電気化学的に反応させて、電気と熱を発生する機器である。燃料電池10としては、高分子電解質形燃料電池、直接内部改質型固体酸化物形燃料電池、及び間接内部改質型固体酸化物形燃料電池等の各種の燃料電池を用いることができる。 The fuel cell 10 is an apparatus that generates electricity and heat by electrochemically reacting a reducing agent gas containing hydrogen and an oxidizing gas containing oxygen. As the fuel cell 10, various fuel cells such as a polymer electrolyte fuel cell, a direct internal reforming solid oxide fuel cell, and an indirect internal reforming solid oxide fuel cell can be used.
 なお、燃料電池10の構成は、一般的な燃料電池と同様に構成されているため、その詳細な説明は省略する。また、本実施の形態1においては、発電装置として、燃料電池10を用いたが、これに限定されない。発電装置は、直流電力を発生することができればどのような態様であってもよい。発電装置としては、例えば、ガスタービンやディーゼルエンジン等の原動機を用いてもよい。 In addition, since the structure of the fuel cell 10 is comprised similarly to a general fuel cell, the detailed description is abbreviate | omitted. In the first embodiment, the fuel cell 10 is used as the power generator, but the present invention is not limited to this. The power generation device may be in any form as long as it can generate DC power. The power generator may be used, for example, prime mover such as a gas turbine or a diesel engine.
 燃料電池10には、配線11を介して、外部電力負荷101が接続されている。外部電力負荷101としては、例えば、発電システム100が設置された各家庭の電気機器等の交流電力を消費する機器である。燃料電池10で発生した直流電力は、図示されないインバータ及びコンバータ等を有する出力制御器により、交流電力に変換されて、外部電力負荷101に供給される。 An external power load 101 is connected to the fuel cell 10 via a wiring 11. The external power load 101 is, for example, a device that consumes AC power, such as an electrical device in each home where the power generation system 100 is installed. DC power generated by the fuel cell 10, the output controller having an inverter and a converter (not shown) or the like, is converted into AC power, is supplied to the external electrical load 101.
 配線11の途中には、電力検出器20が接続されている。電力検出器20は、配線11に流れる電力を検出することができれば、どのような態様であってもよい。電力検出器20としては、例えば、電流計で構成されていてもよく、電流計と電圧計で構成されていてもよい。電流計としては、例えば、カレントトランス等を使用することができる。また、電力計が検出する電力値としては、インバータで検出している配線11の電力値を利用することができる。そして、電力検出器20は、検出した電力(電力負荷)を制御装置30に出力する。 A power detector 20 is connected in the middle of the wiring 11. The power detector 20 may be in any form as long as the power flowing through the wiring 11 can be detected. As the electric power detector 20, for example, an ammeter may be configured, or an ammeter and a voltmeter may be configured. For example, a current transformer can be used as the ammeter. Further, as the power value detected by the power meter, the power value of the wiring 11 detected by the inverter can be used. Then, the power detector 20 outputs the detected power (power load) to the control device 30.
 また、燃料電池10には、該燃料電池10で発生した熱を回収する冷却水が通流する冷却水流路10Aが設けられている。冷却水流路10Aには、冷却水循環経路41が接続されている。冷却水循環経路41の途中には、熱交換器40が設けられていて、熱交換器40の一次流路に冷却水循環経路41が接続されている。また、熱交換器40の二次流路には、貯湯水循環経路51が接続されている。貯湯水循環経路51の途中には、貯湯タンク50が設けられている。 Further, the fuel cell 10 is provided with a cooling water flow path 10A through which cooling water for recovering heat generated in the fuel cell 10 flows. A cooling water circulation path 41 is connected to the cooling water flow path 10A. A heat exchanger 40 is provided in the middle of the cooling water circulation path 41, and the cooling water circulation path 41 is connected to the primary flow path of the heat exchanger 40. Also, the secondary flow path of the heat exchanger 40, the hot water circulation path 51 is connected. A hot water storage tank 50 is provided in the middle of the hot water circulation path 51.
 貯湯タンク50の上部には、貯湯水供給経路52を介して、外部熱負荷102が接続されていて、貯湯タンク50内の高温の貯湯水が、外部熱負荷102に供給される。また、貯湯タンク50の下部には、水供給経路53が接続されていて、市水が貯湯タンク50内に供給される。 An external heat load 102 is connected to the upper part of the hot water storage tank 50 via a hot water supply path 52, and hot hot water in the hot water storage tank 50 is supplied to the external heat load 102. A water supply path 53 is connected to the lower part of the hot water storage tank 50 so that city water is supplied into the hot water storage tank 50.
 これにより、燃料電池10で発生した熱を冷却水が回収し、熱交換器40で貯湯水と冷却水とが熱交換することで、貯湯水が加熱される。加熱された貯湯水は、貯湯水循環経路51を通流して、貯湯タンク50の上部に供給される。このようにして、貯湯タンク50の上部には、高温の貯湯水が貯えられ、貯湯タンク50の下部には、低温の貯湯水が貯えられる。 Thereby, the cooling water collects the heat generated in the fuel cell 10, and the hot water is heated by exchanging heat between the hot water and the cooling water in the heat exchanger 40. The heated hot water is supplied to the upper portion of the hot water storage tank 50 through the hot water circulation path 51. In this manner, hot hot water is stored in the upper part of the hot water storage tank 50, and low temperature hot water is stored in the lower part of the hot water storage tank 50.
 また、貯湯タンク50には、温度検出器61A~61Dが鉛直方向に並ぶようにして、設けられている。温度検出器61A~61Dは、検出した温度を制御装置30に出力するように構成されている。制御装置30では、温度検出器61A~61Dで検出した温度と、貯湯タンク50の容量と、から、貯湯タンク50の熱量(熱負荷)を算出する。 The hot water storage tank 50 is provided with temperature detectors 61A to 61D arranged in the vertical direction. The temperature detectors 61A to 61D are configured to output the detected temperature to the control device 30. The control device 30 calculates the amount of heat (heat load) of the hot water storage tank 50 from the temperature detected by the temperature detectors 61A to 61D and the capacity of the hot water storage tank 50.
 制御装置30は、演算処理器1、計時器2、及び記憶器3を有している。演算処理器1は、マイクロプロセッサ、CPU等で構成されている。記憶器3は、各種のデータを記憶するように構成されていれば、どのような形態であってもよい。記憶器3としては、例えば、不揮発性メモリや揮発性メモリ等のメモリが挙げられる。 The control device 30 has an arithmetic processor 1, a timer 2, and a storage device 3. The arithmetic processor 1 includes a microprocessor, a CPU, and the like. The storage device 3 may be in any form as long as it is configured to store various data. As the memory | storage device 3, memory, such as a non-volatile memory and a volatile memory, is mentioned, for example.
 また、計時器2は、時計とカレンダー機能を有していて、第1期間、該第1期間よりも長い期間である第2期間、及び該第2期間よりも長い期間である第3期間を計時するように構成されている。なお、計時器2は、第1期間よりも短い期間についても、計時することができることは言うまでもない。 The timer 2 has a clock and a calendar function, and has a first period, a second period that is longer than the first period, and a third period that is longer than the second period. It is configured to keep time. Needless to say, the timer 2 can also measure a period shorter than the first period.
 「第1期間と該第1期間よりも長い期間である第2期間、及び該第2期間よりも長い期間である第3期間」の組み合わせ(すなわち、「第1期間、第2期間、及び第3機関」の組み合わせ)としては、例えば、「1時間、1日、及び3日」が挙げられる。また、他の例としては、「1時間、1日、及び1週間」や「1時間、1日、及び1ヶ月」が挙げられる。すなわち、第1期間と第2期間は、第2期間が、第1期間の1以外の整数倍であれば、任意に設定することができる。また、第3期間は、第2期間の1以外の整数倍であれば、任意に設定することができる。 A combination of “the first period, the second period that is longer than the first period, and the third period that is longer than the second period” (ie, “the first period, the second period, and the second period Examples of the “combination of three engines” include “1 hour, 1 day, and 3 days”. Other examples include “1 hour, 1 day, and 1 week” and “1 hour, 1 day, and 1 month”. That is, the first period and the second period can be arbitrarily set as long as the second period is an integer multiple other than 1 of the first period. The third period can be arbitrarily set as long as it is an integer multiple other than 1 of the second period.
 そして、制御装置30は、演算処理器1が、記憶器3に格納された所定の制御プログラムを読み出し、これを実行することにより、これらの情報を処理し、かつ、これらの制御を含む発電システム100に関する各種の制御を行う。また、記憶器3に格納された所定のソフトウェアによって、運転計画器4及び予測器5が実現されている。 And the control apparatus 30 reads the predetermined control program stored in the memory | storage device 3, the processor 30 processes these information by executing this, and the electric power generation system containing these controls Various controls relating to 100 are performed. Further, the operation planner 4 and the predictor 5 are realized by predetermined software stored in the storage unit 3.
 なお、制御装置30は、単独の制御装置で構成される形態だけでなく、複数の制御装置が協働して発電システム100の制御を実行する制御装置群で構成される形態であっても構わない。また、制御装置30は、マイクロコントロールで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。 Note that the control device 30 is not only configured as a single control device, but may be configured as a control device group in which a plurality of control devices cooperate to execute control of the power generation system 100. Absent. Moreover, the control apparatus 30 may be comprised by micro control, and may be comprised by MPU, PLC (Programmable Logic Controller), a logic circuit, etc.
 [発電システムの動作]
 次に、本実施の形態1に係る発電システム100の動作について、図1及び図2を参照しながら説明する。なお、以下では、燃料電池10の発電運転については、一般的な燃料電池の発電運転と同様に行われるので、その詳細な説明は省略する。
[Operation of the power generation system]
Next, operation | movement of the electric power generation system 100 which concerns on this Embodiment 1 is demonstrated, referring FIG.1 and FIG.2. In the following description, the power generation operation of the fuel cell 10 is performed in the same manner as the power generation operation of a general fuel cell, and thus detailed description thereof is omitted.
 まず、制御装置30の予測器5は、記憶器3に蓄積されている電力負荷又は熱負荷の履歴群(例えば、運転計画実行日の前日からn日前までの履歴群や、運転計画実行日における曜日の履歴群)から、運転計画実行日の運転計画期間(例えば、00時00分00秒~24時00分00秒まで)における電力負荷又は熱負荷を予測する。すなわち、記憶器3は電力負荷のみ、熱負荷のみ、又は電力負荷及び熱負荷の両方の負荷を記憶している。そして、予測器5は、記憶器3が記憶している負荷から、電力負荷のみ、熱負荷のみ、又は電力負荷及び熱負荷の両方の負荷を予測する。 First, the predictor 5 of the control device 30 includes a history group of power load or heat load accumulated in the storage device 3 (for example, a history group from the day before the operation plan execution date to n days before or the operation plan execution date). The power load or the heat load in the operation plan period (for example, from 00:00:00 to 24:00:00) is predicted from the history group of the day of the week. That is, the storage device 3 stores only the power load, only the heat load, or both the power load and the heat load. The predictor 5 predicts only the power load, only the heat load, or both the power load and the heat load from the load stored in the storage device 3.
 また、予測器5は、その予測した電力負荷(以下、予測電力負荷という)又は予測した熱負荷(以下、予測熱負荷という)を運転計画器4に出力する。 Moreover, the predictor 5, the predicted electric power load (hereinafter, predicted power loads that) or predicted thermal load (hereinafter, referred to as predictive heat load) to the operation plan unit 4.
 運転計画器4は、予測器5から入力された予測電力負荷又は予測熱負荷から、燃料電池10の運転計画を作成する。運転計画器4が作成した運転計画は、制御装置30に出力される。制御装置30は、当該運転計画に基づき、発電システム100の運転を制御する(制御装置30は、第1運転を実行する)。そして、制御装置30は、本実施の形態においては、後述するように、第1運転を実行中に、電力検出器20が検出する電力の積算値が、予測電力負荷(予測電力)の積算値よりも第1電力量以上ずれると、第2運転を実行する。 The operation planner 4 creates an operation plan for the fuel cell 10 from the predicted power load or the predicted heat load input from the predictor 5. The operation plan created by the operation planner 4 is output to the control device 30. The control device 30 controls the operation of the power generation system 100 based on the operation plan (the control device 30 executes the first operation). Then, in the present embodiment, as will be described later, in this embodiment, the integrated value of the power detected by the power detector 20 is the integrated value of the predicted power load (predicted power) during execution of the first operation. If the first power amount is deviated by more than the second amount, the second operation is executed.
 なお、運転計画器4による運転計画期間開始時における運転計画の具体的な作成方法は、本明細書においては、説明しないが、例えば、特開2007-248000号公報、特開2009-300061号公報等に開示されている方法により、運転計画を作成してもよい。また、運転計画器4は、予測器5から入力された予測電力負荷又は予測熱負荷に基づいて、運転計画実行日における発電システム100の運転開始時間を設定し、設定した運転開始時間から所定の時間(例えば、8時間)連続して発電システム100を運転し、当該運転時間中は、電力検出器20が検出する電力に追随するように、燃料電池10の発電量を変動させるという、運転計画を作成してもよい。さらに、例えば、系統電源への逆潮流が認められているような場合、運転計画器4は、予測器5から入力された予測熱負荷に基づいて、運転計画実行日における発電システム100の運転開始時間を設定し、設定した運転開始時間から所定の時間(例えば、8時間)連続して、燃料電池10の定格運転を行い、外部電力負荷101で使用されなかった電力は、売電するという、運転計画を作成してもよい。 Note that a specific method of creating an operation plan at the start of the operation plan period by the operation planner 4 is not described in this specification, but for example, Japanese Patent Application Laid-Open Nos. 2007-248000 and 2009-300061 are disclosed. An operation plan may be created by the method disclosed in the above. Further, the operation planner 4 sets the operation start time of the power generation system 100 on the operation plan execution date based on the predicted power load or the predicted heat load input from the predictor 5, and determines a predetermined value from the set operation start time. An operation plan in which the power generation system 100 is operated continuously for a time (for example, 8 hours), and the power generation amount of the fuel cell 10 is changed so as to follow the power detected by the power detector 20 during the operation time. May be created. Furthermore, for example, when a reverse power flow to the system power supply is recognized, the operation planner 4 starts the operation of the power generation system 100 on the operation plan execution date based on the predicted heat load input from the predictor 5. The time is set, the rated operation of the fuel cell 10 is performed continuously for a predetermined time (for example, 8 hours) from the set operation start time, and the power not used by the external power load 101 is sold. An operation plan may be created.
 次に、制御装置30による第1運転と第2運転の切り替え判断動作について、図2を参照しながら説明する。 Next, the switching determination operation between the first operation and the second operation by the control device 30 will be described with reference to FIG.
 図2は、図1に示す発電システムの制御装置による第1運転と第2運転の切り替え判断動作を模式的に示すフローチャートである。 FIG. 2 is a flowchart schematically showing a switching determination operation between the first operation and the second operation by the control device of the power generation system shown in FIG.
 ここで、第1運転とは、上述したように、運転計画器4が作成した燃料電池10の運転計画に基づいて、発電システム100(燃料電池10)の発電運転を実行する運転をいう。また、第2運転とは、第1運転中に、電力検出器20が検出する電力が、予測電力よりも第1電力量以上ずれた場合に、発電システム100(燃料電池10)の次回の運転(より正確には、次回の運転計画期間)から行われる運転であって、次回の運転計画期間開始時から燃料電池10の起動に必要な電力よりも大きい電力である第2電力以上の電力を電力検出器20が検出すると、燃料電池10を起動させる運転をいう。なお、第2運転は、燃料電池10を起動させてから所定時間(例えば、8時間)経過後に、発電システム100(燃料電池10)を停止させてもよい。 Here, as described above, the first operation refers to an operation for executing the power generation operation of the power generation system 100 (fuel cell 10) based on the operation plan of the fuel cell 10 created by the operation planner 4. The second operation refers to the next operation of the power generation system 100 (fuel cell 10) when the power detected by the power detector 20 deviates more than the first power amount from the predicted power during the first operation. (More accurately, the operation is performed from the next operation plan period), and the electric power is equal to or higher than the second electric power that is larger than the electric power necessary for starting the fuel cell 10 from the start of the next operation plan period. When the power detector 20 detects it, it means an operation for starting the fuel cell 10. Note that the second operation, from activates the fuel cell 10 for a predetermined time (for example, 8 hours) after the lapse may stop the power generation system 100 (fuel cell 10).
 また、第2運転は、予め設定されている単位期間において、燃料電池10の起動が所定回数未満である場合に行われる運転であってもよい。この場合、例えば、単位期間が1日であり、所定回数が1回であるような場合、第2運転は、燃料電池10の起動が行われていないときに、電力検出器20が第2電力以上の電力を検出すると、燃料電池10を起動させる運転となる。また、例えば、単位期間が7日であり、所定回数が5回であるような場合、第2運転は、燃料電池10の起動が既に5回行われている場合には、その後、第2電力以上の電力を電力検出器20が検出しても、燃料電池10の起動を行わない運転となる。 Further, the second operation may be an operation performed when the fuel cell 10 is activated less than a predetermined number of times in a preset unit period. In this case, for example, when the unit period is one day and the predetermined number of times is one, the second operation is performed when the fuel cell 10 is not activated and the power detector 20 is set to the second power. When the above power is detected, the fuel cell 10 is activated. In addition, for example, when the unit period is 7 days and the predetermined number is 5 times, the second operation is performed when the fuel cell 10 has already been activated 5 times, and then the second power Even if the power detector 20 detects the above power, the fuel cell 10 is not started.
 図2に示すように、制御装置30は、第1運転を実行中に、電力検出器20から該電力検出器20が検出した電力Eを取得する(ステップS101)。ついで、制御装置30は、ステップS101で取得した電力Eから、運転計画期間開始時から電力Eを取得した時刻までの電力の積算値(電力量)E1を算出する(ステップS102)。 As shown in FIG. 2, the control device 30 acquires the power E detected by the power detector 20 from the power detector 20 during the first operation (step S101). Next, the control device 30 calculates an integrated value (power amount) E1 of power from the start of the operation plan period to the time when the power E is acquired from the power E acquired in step S101 (step S102).
 次に、制御装置30は、ステップS102で算出した積算値E1が、運転計画期間開始時から電力Eを取得した時刻までの予測器5が予測した予測電力の積算値よりも第1電力量以上ずれているか否かを判断する(ステップS103)。 Next, in the control device 30, the integrated value E1 calculated in step S102 is equal to or more than the first electric energy than the integrated value of the predicted power predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired. It is determined whether or not there is a deviation (step S103).
 ここで、「第1電力量」は、任意に設定することができ、例えば、制御装置30が運転計画期間開始時から電力Eを取得した時刻までの予測器5が予測した予測電力の積算値の60~90%であってもよい。また、「電力Eの積算値E1が第1電力量以上ずれる」とは、積算値E1が、予測電力の積算値に対して、第1電力量以下である場合と第1電力量以上である場合の両方を含む。 Here, the “first power amount” can be arbitrarily set. For example, the integrated value of the predicted power predicted by the predictor 5 from the time when the control device 30 acquires the power E to the time when the operation plan period starts. It may be 60 to 90%. Further, “the integrated value E1 of the electric power E deviates by more than the first electric energy” means that the integrated value E1 is less than or equal to the first electric energy with respect to the integrated value of the predicted electric power. Including both cases.
 そして、制御装置30は、ステップS102で算出した積算値E1が、運転計画期間開始時から電力Eを取得した時刻までの予測器5が予測した予測電力の積算値よりも第1電力量以上ずれている場合(ステップS103でYes)には、次回運転を第2運転に切り替えるように記憶器3に記憶させる(ステップS104)。一方、ステップS102で算出した積算値E1が、運転計画期間開始時から電力Eを取得した時刻までの予測器5が予測した予測電力の積算値よりも第1電力量以上ずれていない場合(ステップS103でNo)には、次回運転も第1運転を実行するように記憶器3に記憶させる(ステップS105)。 Then, the control device 30 causes the integrated value E1 calculated in step S102 to deviate by more than the first power amount from the integrated value of the predicted power predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired. If it is determined (Yes in step S103), the next operation is switched to the second operation and stored in the storage device 3 (step S104). On the other hand, when the integrated value E1 calculated in step S102 is not deviated by more than the first power amount from the integrated value of predicted power predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired (step) In No in S103, the next operation is stored in the storage device 3 so as to execute the first operation (step S105).
 [発電システムの作用効果]
 次に、本実施の形態1に係る発電システム100の作用効果について、図1乃至図4を参照しながら説明する。
[Effects of power generation system]
Next, the effects of the power generation system 100 according to Embodiment 1 will be described with reference to FIGS. 1 to 4.
 まず、運転計画器4が、予測器5から入力された予測電力負荷又は予測熱負荷に基づいて、運転計画実行日における発電システム100の運転開始時間(例えば、12時に発電システム100の運転を開始し、14時に燃料電池10から外部電力負荷101に電力供給を開始)を設定し、設定した運転開始時間から所定の時間(ここでは、8時間)連続して、発電システム100を運転し、当該運転時間中は、電力検出器20が検出する電力に追随するように、燃料電池10の発電量を変動させるという、運転計画Aを作成したとする。 First, the operation planner 4 starts the operation of the power generation system 100 at the operation plan execution date (for example, at 12:00, based on the predicted power load or the predicted heat load input from the predictor 5). Then, at 14:00, power supply from the fuel cell 10 to the external power load 101 is set), and the power generation system 100 is operated continuously for a predetermined time (here, 8 hours) from the set operation start time. during operation time, so as to follow the power detected by the power detector 20, that varies the amount of power generation of the fuel cell 10, it is assumed that the operating schedule a.
 そして、制御装置30は、運転計画Aに基づいて、発電システム100の運転を制御したとする(第1運転を実行したとする)。このときの予測電力量、使用者が実際に使用した電力量、及び燃料電池10で発電した電力量を図3に示す。 Then, it is assumed that the control device 30 controls the operation of the power generation system 100 based on the operation plan A (assuming that the first operation is executed). FIG. 3 shows the predicted power amount at this time, the power amount actually used by the user, and the power amount generated by the fuel cell 10.
 図3は、図1に示す発電システムの予測器が予測した予測電力量、使用者が実際に使用した電力量、及び燃料電池で発電した電力量の一例を模式的に示すグラフである。なお、図3において、破線は予測器5が予測した予測電力量を示し、実線は実際に使用した電力(使用電力量)を示し、ハッチングを記した部分は燃料電池10で発電された電力量を示す。また、図3において、18時以降は、破線と実線とが重なり合わないように、破線をずらして示している。 FIG. 3 is a graph schematically showing an example of the predicted power amount predicted by the predictor of the power generation system shown in FIG. 1, the power amount actually used by the user, and the power amount generated by the fuel cell. In FIG. 3, the broken line indicates the predicted power amount predicted by the predictor 5, the solid line indicates the actually used power (used power amount), and the hatched portion indicates the power amount generated by the fuel cell 10. Indicates. In FIG. 3, after 18:00, the broken lines are shifted so that the broken lines and the solid lines do not overlap.
 図3に示すように、例えば、気温が急激に変化したような場合等、使用者の電力使用パターンが変化して、運転計画Aの実行日は、予測器5で予測した予測電力量に対して、使用者が実際に使用した電力量がずれたとする。このような場合に、運転計画器4が、予測器5から入力された予測電力負荷又は予測熱負荷に基づいて、次回の発電システム100の運転を計画するとする。予測器5の予測は、記憶器3に蓄積されている電力負荷の履歴群から予測するため、前回(運転計画Aの実行日)の電力使用パターンのデータが充分に蓄積されない間は、前回の実際に使用した電力が、次回の予測に寄与する割合は小さいものとなる。このため、運転計画器4で計画する運転計画は、前回に計画した運転計画Aとさほど変わらないものとなる。 As shown in FIG. 3, for example, when the temperature suddenly changes, the user's power usage pattern changes, and the execution date of the operation plan A corresponds to the predicted power amount predicted by the predictor 5. Thus, it is assumed that the amount of power actually used by the user has shifted. In such a case, it is assumed that the operation planner 4 plans the next operation of the power generation system 100 based on the predicted power load or the predicted heat load input from the predictor 5. Since the prediction of the predictor 5 is predicted from the history group of the power load accumulated in the storage device 3, the previous power use pattern data is not sufficiently accumulated until the previous (execution date of the operation plan A). The proportion of the power actually used contributes to the next prediction is small. For this reason, the operation plan planned by the operation planner 4 is not so different from the operation plan A planned last time.
 そして、例えば、季節の変わり目では、使用者の電力使用パターンが変化した日以降についても、変更された電力使用パターンを採ることが予想される。したがって、上記特許文献1に開示されているコージェネレーションシステムでは、変化した電力使用パターンのデータが充分に蓄積されない間は、予測電力と使用者が実際に使用する電力がずれることになり、エネルギー効率が悪くなる。 And, for example, at the turn of the season, it is expected that the changed power usage pattern will be taken even after the date when the user's power usage pattern changes. Therefore, in the cogeneration system disclosed in Patent Document 1 described above, while the data of the changed power usage pattern is not sufficiently accumulated, the predicted power and the power actually used by the user are shifted, and the energy efficiency Becomes worse.
 しかしながら、本実施の形態1に係る発電システム100では、制御装置30は、第1運転中に、運転計画期間開始時から電力Eを取得した時刻までの電力の積算値(電力量)E1が、運転計画期間開始時から電力Eを取得した時刻までの予測器5が予測した予測電力の積算値よりも第1電力量以上ずれた場合に、次回の燃料電池10の発電運転を第2運転に切り替えるように構成されている。ここで、第2運転について、図4及び図5を参照しながら詳細に説明する。 However, in the power generation system 100 according to the first embodiment, during the first operation, the control device 30 has an integrated power value (power amount) E1 from the start of the operation plan period to the time when the power E is acquired. The next power generation operation of the fuel cell 10 is changed to the second operation when the predicted power 5 deviates more than the first power amount predicted by the predictor 5 from the start of the operation plan period to the time when the power E is acquired. It is configured to switch. Here, the second operation will be described in detail with reference to FIGS. 4 and 5.
 図4は、図1に示す発電システムの制御装置による第2運転を模式的に示すフローチャートである。図5は、使用者が実際に使用した電力量及び図1に示す発電システムの制御装置が、第2運転を実行したときにおける燃料電池の発電電力量の一例を模式的に示すグラフである。なお、図5においては、図3と比較するために、実際に使用された電力量は、図3に示す実際に使用された電力量と同じ値で示している。 Figure 4 is a flowchart schematically showing a second operation by the control device of the power generation system shown in FIG. FIG. 5 is a graph schematically showing an example of the amount of power actually used by the user and the amount of power generated by the fuel cell when the control device of the power generation system shown in FIG. 1 executes the second operation. In FIG. 5, for comparison with FIG. 3, the actually used electric energy is shown by the same value as the actually used electric energy shown in FIG. 3.
 まず、図4を参照しながら、第2運転の各処理(工程)について、説明する。 First, each process (step) of the second operation will be described with reference to FIG.
 図4に示すように、制御装置30は、電力検出器20から該電力検出器20が検出した電力E1を取得する(ステップS301)。ついで、制御装置30は、ステップS301で取得した電力E1が、第2電力以上であるか否かを判断する(ステップS302)。 As shown in FIG. 4, the control device 30 acquires the power E1 detected by the power detector 20 from the power detector 20 (step S301). Next, the control device 30 determines whether or not the power E1 acquired in step S301 is equal to or higher than the second power (step S302).
 ここで、「第2電力」は、燃料電池10の起動に必要な電力よりも大きい電力であれば、任意に設定することができる。第2電力としては、例えば、750Wの燃料電池10である場合、300~500Wであってもよい。 Here, the “second electric power” can be arbitrarily set as long as it is higher than the electric power required for starting the fuel cell 10. For example, in the case of the 750 W fuel cell 10, the second power may be 300 to 500 W.
 制御装置30は、ステップS301で取得した電力E1が、第2電力未満である場合(ステップS302でNo)には、ステップS301に戻り、電力E1が、第2電力以上になるまで、ステップS301とステップS302を繰り返す。一方、制御装置30は、電力E1が、第2電力以上である場合(ステップS302でYes)には、ステップS303に進む。 When the electric power E1 acquired in step S301 is less than the second electric power (No in step S302), the control device 30 returns to step S301, and until the electric power E1 becomes equal to or higher than the second electric power, Step S302 is repeated. On the other hand, if the power E1 is equal to or higher than the second power (Yes in step S302), the control device 30 proceeds to step S303.
 ステップS303では、制御装置30は、燃料電池10の発電運転を開始する(燃料電池10を起動させる)。そして、制御装置30は、計時器2から現在時刻を取得し(ステップS304)、燃料電池10の発電運転を開始してからの経過時間T1を算出する(ステップS305)。 In step S303, the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10). Then, the control device 30 acquires the current time from the timer 2 (step S304), and calculates an elapsed time T1 after starting the power generation operation of the fuel cell 10 (step S305).
 次に、制御装置30は、ステップS305で算出した時間T1が、第2時間以上であるか否かを判断する(ステップS306)。ここで、第2時間は、任意に設定することができ、例えば、6時間であってもよく、8時間であってもよい。 Next, the control device 30 determines whether or not the time T1 calculated in step S305 is equal to or longer than the second time (step S306). Here, the second time can be arbitrarily set, and may be, for example, 6 hours or 8 hours.
 制御装置30は、ステップS305で算出した時間T1が、第2時間未満である場合(ステップS306でNo)には、ステップS304に戻り、時間T1が、第2時間以上になるまで、ステップS304~ステップS306を繰り返す。一方、制御装置30は、時間T1が第2時間以上である場合(ステップS306でYes)には、ステップS307に進む。 If the time T1 calculated in step S305 is less than the second time (No in step S306), the control device 30 returns to step S304 and continues to steps S304 to S304 until the time T1 becomes equal to or greater than the second time. Step S306 is repeated. On the other hand, when the time T1 is equal to or longer than the second time (Yes in Step S306), the control device 30 proceeds to Step S307.
 ステップS307では、制御装置30は、燃料電池10の発電運転を停止させ、本プログラム(第2運転)を終了する。 In step S307, the control device 30 stops the power generation operation of the fuel cell 10 and ends the program (second operation).
 なお、図5に示すように、本実施の形態1においては、制御装置30は、発電システム100の起動後、電力検出器20が検出する電力に追随するように、燃料電池10の発電量を変動させる。 As shown in FIG. 5, in the first embodiment, after the power generation system 100 is started, the control device 30 determines the power generation amount of the fuel cell 10 so as to follow the power detected by the power detector 20. Fluctuate.
 このように、使用者の電力使用パターンが変化した場合に、図4及び図5に示す第2運転を行うことにより、変更された電力使用パターンデータが充分に蓄積される間(例えば、3~10日間)、図3に示すような、予測器5が予測した予測電力に基づいて、運転計画器4が運転計画を計画して、当該運転計画を実行する従来の運転方法(第1運転)に比して、エネルギー効率を改善することができる。 As described above, when the user's power usage pattern changes, the second operation shown in FIGS. 4 and 5 is performed, so that the changed power usage pattern data is sufficiently accumulated (for example, 3 to 3). 10), the operation planner 4 plans an operation plan based on the predicted power predicted by the predictor 5 as shown in FIG. 3, and executes the operation plan (first operation). Compared with, energy efficiency can be improved.
 なお、本実施の形態1においては、制御装置30は、第1運転を実行中に、電力検出器20が検出する電力の積算値が、予測電力の積算値よりも第1電力量以上ずれると、第2運転を実行する形態を採用したが、これに限定されない。以下、他の形態について、図6を参照しながら説明する。 In the first embodiment, when the control device 30 performs the first operation, the integrated value of power detected by the power detector 20 deviates by more than the first power amount from the integrated value of predicted power. Although the form which performs 2nd driving | operation was employ | adopted, it is not limited to this. Hereinafter, another embodiment will be described with reference to FIG.
 図6は、図1に示す発電システムの予測器が予測した予測電力量及び使用者が実際に使用した電力量の一例を模式的に示すグラフである。なお、図6において、破線は予測器5が予測した予測電力量を示し、実線は実際に使用した電力(使用電力量)を示し、ハッチングを記した部分は予測電力量と使用電力量が重なる部分を示している。また、図6において、18時以降は、破線と実線とが重なり合わないように、破線をずらして示している。 Figure 6 is a graph schematically illustrating an example of a predictor predicted power amount was predicted and the amount of power the user actually uses the power generation system shown in FIG. In FIG. 6, the broken line indicates the predicted power amount predicted by the predictor 5, the solid line indicates the actually used power (used power amount), and the hatched portion overlaps the predicted power amount and the used power amount. Shows the part. Further, in FIG. 6, after 18:00, the broken lines are shifted so that the broken lines and the solid lines do not overlap.
 図6に示すように、制御装置30は、第1運転を実行中に、第1期間毎の予測電力量と、第1期間毎の電力検出器20が検出した電力量(以下、使用電力量)を算出して、予測電力量と使用電力量の重なる部分の電力量(以下、一致電力量)と、予測電力量と使用電力量の重ならない部分の電力量(以下、不一致電力量)と、を算出する。そして、制御装置30は、不一致電力量の積算値/一致電力量が1.5以上である場合には(つまり、閾値である1.5以上を検出した場合には)、第2運転を実行する形態を採用してもよい。 As shown in FIG. 6, the control device 30, while executing the first operation, the predicted power amount for each first period and the power amount detected by the power detector 20 for each first period (hereinafter, used power amount). ) To calculate the amount of power where the predicted power amount and the used power amount overlap (hereinafter referred to as matched power amount), and the amount of power where the predicted power amount and used power amount do not overlap (hereinafter referred to as mismatched energy amount) , Is calculated. The control device 30 executes the second operation when the integrated value / matching power amount of the mismatch power amount is 1.5 or more (that is, when a threshold value of 1.5 or more is detected). You may employ | adopt the form to do.
 [変形例1]
 次に、本実施の形態1に係る発電システム100の変形例について説明する。
[Modification 1]
Next, a modified example of the power generation system 100 according to Embodiment 1 will be described.
 本実施の形態1における変形例1の発電システムは、制御装置が、複数の第1期間連続して、電力検出器が検出する電力が、予測電力よりも第1電力量以上ずれると、発電装置の次回の発電運転を第1運転から第2運転に切り替えるように構成されている態様を例示するものである。 In the power generation system according to the first modification of the first embodiment, when the power detected by the power detector deviates more than the first power amount from the predicted power continuously for a plurality of first periods, the power generation apparatus This is an example in which the next power generation operation is switched from the first operation to the second operation.
 [発電システムの動作]
 本実施の形態1における変形例1の発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるため、その構成の説明は省略する。また、本変形例1の発電システム100における燃料電池10の発電運転は、一般的な燃料電池の発電運転と同様に行われるので、その詳細な説明は省略する。
[Operation of the power generation system]
The power generation system 100 according to the first modification of the first embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, and thus the description of the configuration is omitted. Further, the power generation operation of the fuel cell 10 in the power generation system 100 of the first modification is performed in the same manner as the power generation operation of a general fuel cell, and thus detailed description thereof is omitted.
 図7は、本変形例1の発電システムにおける制御装置による第1運転と第2運転の切り替え判断動作を模式的に示すフローチャートである。なお、本変形例1では、制御装置30による第1運転と第2運転の切り替え判断動作は、運転計画期間の最終時刻に行われる場合に限らず、予め定められている所定期間内で第1電力量以上ずれた場合に随時行われてもよい。 FIG. 7 is a flowchart schematically showing the switching judgment operation between the first operation and the second operation by the control device in the power generation system of the first modification. Note that in the first modification, the switching determination operation between the first operation and the second operation by the control device 30 is not limited to being performed at the final time of the operation plan period, and the first operation is performed within a predetermined period. It may be performed at any time when there is a deviation from the amount of power.
 図7に示すように、制御装置30は、運転計画期間の最終時刻に、記憶器3から当該運転計画期間中の電力検出器20が検出した電力Eの履歴を取得する(ステップS201)。ついで、制御装置30は、ステップS201で取得した電力Eから、第1期間における電力の積算値E1を算出する(ステップS202)。 As shown in FIG. 7, the control device 30 acquires the history of the power E detected by the power detector 20 during the operation plan period from the storage device 3 at the final time of the operation plan period (step S201). Next, the control device 30 calculates an integrated value E1 of power in the first period from the power E acquired in step S201 (step S202).
 次に、制御装置30は、ステップS202で算出した積算値E1が、複数の第1期間連続して、予測器5が予測した予測電力の積算値(予測電力量)よりも第1電力量以上ずれているか否かを判断する(ステップS203)。例えば、図3に示すグラフにおいて、第1期間が1時間と設定されている場合に、14時~16時までの間が複数の第1期間連続して、予測器5が予測した予測電力量よりも第1電力量以上ずれていることになる。 Next, in the control device 30, the integrated value E1 calculated in step S202 is equal to or greater than the first electric energy than the integrated value (predicted electric energy) of the predicted electric power predicted by the predictor 5 continuously for a plurality of first periods. It is determined whether or not there is a deviation (step S203). For example, in the graph shown in FIG. 3, when the first period is set to 1 hour, the predicted power amount predicted by the predictor 5 from 14:00 to 16:00 is a plurality of first periods continuously. Therefore, the first power amount is deviated more than the first power amount.
 そして、制御装置30は、ステップS202で算出した電力の積算値E1が、複数の第1期間連続して、予測器5が予測した予測電力量よりも第1電力量以上ずれている場合(ステップS203でYes)には、次回運転を第2運転に切り替えるように記憶器3に記憶させる(ステップS204)。一方、ステップS202で算出した電力の積算値E1が、複数の第1期間連続して、予測器5が予測した予測電力量よりも第1電力量以上ずれていない場合(ステップS203でNo)には、次回運転も第1運転を実行するように記憶器3に記憶させる(ステップS205)。 Then, when the integrated value E1 of the power calculated in step S202 is shifted by a first power amount or more than the predicted power amount predicted by the predictor 5 for a plurality of first periods (step (step S202)). In S203 (Yes), the next operation is stored in the storage device 3 so as to switch to the second operation (step S204). On the other hand, when the integrated value E1 of the power calculated in step S202 is not shifted more than the first power amount from the predicted power amount predicted by the predictor 5 continuously for a plurality of first periods (No in step S203). Is stored in the storage device 3 so as to execute the first operation also in the next operation (step S205).
 このように構成された本変形例1の発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。 Even the power generation system 100 according to the first modification configured as described above has the same effects as the power generation system 100 according to the first embodiment.
 [変形例2]
 本実施の形態1における変形例2の発電システムは、制御装置が、電力検出器が検出した電力のうち最も低い電力よりも高い電力である第3電力を記憶器に記憶させ、第2運転は、電力検出器が予め設定されている第1時間以上、第3電力以下の電力を検出した場合に、発電装置を停止させる運転である態様を例示するものである。
[Modification 2]
In the power generation system of Modification 2 in Embodiment 1, the control device stores the third power, which is higher than the lowest power among the power detected by the power detector, in the memory, and the second operation is performed. An example is an embodiment in which the power detector is operated to stop the power generation device when it detects power not lower than the preset first time and not higher than the third power.
 [発電システムの動作]
 本実施の形態1における変形例2の発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるため、その構成の説明は省略する。また、本変形例2の発電システム100における燃料電池10の発電運転は、一般的な燃料電池の発電運転と同様に行われるので、その詳細な説明は省略する。
[Operation of the power generation system]
The power generation system 100 according to the second modification of the first embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, and thus the description of the configuration is omitted. In addition, the power generation operation of the fuel cell 10 in the power generation system 100 of the second modification is performed in the same manner as the power generation operation of a general fuel cell, and thus detailed description thereof is omitted.
 図8は、本変形例2の発電システムの制御装置による第2運転を模式的に示すフローチャートである。 Figure 8 is a flowchart schematically showing a second operation by the control device of the power generation system of the second modification.
 図8に示すように、制御装置30は、電力検出器20から該電力検出器20が検出した電力E1を取得する(ステップS401)。ついで、制御装置30は、ステップS401で取得した電力E1が、第2電力以上であるか否かを判断する(ステップS402)。 As shown in FIG. 8, the control device 30 acquires the power E1 detected by the power detector 20 from the power detector 20 (step S401). Next, the control device 30 determines whether or not the power E1 acquired in step S401 is equal to or higher than the second power (step S402).
 制御装置30は、ステップS401で取得した電力E1が、第2電力未満である場合(ステップS402でNo)には、ステップS401に戻り、電力E1が第2電力以上になるまで、ステップS401とステップS402を繰り返す。一方、制御装置30は、電力E1が第2電力以上である場合(ステップS402でYes)には、ステップS403に進む。 When the electric power E1 acquired in step S401 is less than the second electric power (No in step S402), the control device 30 returns to step S401, and step S401 and step until the electric power E1 becomes equal to or higher than the second electric power. S402 is repeated. On the other hand, when the power E1 is equal to or higher than the second power (Yes in Step S402), the control device 30 proceeds to Step S403.
 ステップS403では、制御装置30は、燃料電池10の発電運転を開始する(燃料電池10を起動させる)。ついで、制御装置30は、電力検出器20から該電力検出器20が検出した電力E2を取得し(ステップS404)、ステップS404で取得した電力E2が、第3電力以下であるか否かを判断する(ステップS405)。ここで、第3電力は、電力検出器20が検出した電力のうち最も低い電力よりも高い電力である。より詳細には、第3電力は、発電システム100が設置されてから、電力検出器20が検出した電力のうち最も低い電力よりも高い電力であり、省エネの観点から、電力検出器20が検出した電力のうち最も低い電力よりも50~100W高い電力であることが好ましい。 In step S403, the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10). Next, the control device 30 acquires the power E2 detected by the power detector 20 from the power detector 20 (step S404), and determines whether or not the power E2 acquired in step S404 is equal to or lower than the third power. (Step S405). Here, the third power is higher than the lowest power among the power detected by the power detector 20. More specifically, the third power is higher than the lowest power detected by the power detector 20 after the power generation system 100 is installed, and is detected by the power detector 20 from the viewpoint of energy saving. The power is preferably 50 to 100 W higher than the lowest power.
 第3電力は、例えば、省エネの観点(消費電力が小さすぎると、燃料電池10の発電を維持するために使うエネルギーの割合が大きくなり、省エネ性が低下すること)から、100W以上であることが好ましく、余剰電力の発生を抑制する観点及び所定の発電時間(発電システム100を起動するときに消費したエネルギー分は省エネできる(発電システム100を起動するときに消費された電力量を燃料電池10により発電することができる)程度の発電時間;例えば、4~5時間)を確保する観点から200W以下であることが好ましい。 The third power is, for example, 100 W or more from the viewpoint of energy saving (if the power consumption is too small, the proportion of energy used to maintain the power generation of the fuel cell 10 increases and the energy saving performance decreases). It is preferable that the generation of surplus power is suppressed and a predetermined power generation time (the amount of energy consumed when starting the power generation system 100 can be saved (the amount of power consumed when starting the power generation system 100 is reduced). From the viewpoint of securing a sufficient power generation time (for example, 4 to 5 hours), it is preferably 200 W or less.
 制御装置30は、ステップS404で取得した電力E2が、第3電力より大きい場合(ステップS405でNo)には、電力E2が第3電力以下になるまで、ステップS404とステップS405を繰り返す。一方、制御装置30は、電力E2が第3電力以下である場合(ステップS405でYes)には、ステップS406に進む。 When the power E2 acquired in step S404 is larger than the third power (No in step S405), the control device 30 repeats steps S404 and S405 until the power E2 becomes equal to or lower than the third power. On the other hand, when power E2 is equal to or lower than the third power (Yes in step S405), control device 30 proceeds to step S406.
 ステップS406では、制御装置30は、ステップS404で電力検出器20から電力E2を取得した時刻から経過した時間Tを検知する。ついで、制御装置30は、時間Tが予め設定された第1時間以上であるか否かを判断する(ステップS407)。ここで、第1時間は、任意に設定することができ、例えば、40分~50分を設定してもよい。 In step S406, the control device 30 detects a time T that has elapsed since the time when the power E2 was acquired from the power detector 20 in step S404. Next, the control device 30 determines whether or not the time T is equal to or longer than a preset first time (step S407). Here, the first time can be arbitrarily set, and for example, 40 minutes to 50 minutes may be set.
 制御装置30は、時間Tが予め設定された第1時間未満である場合(ステップS407でNo)には、電力検出器20から該電力検出器20が検出した電力E2を取得する(ステップS408)。ついで、制御装置30は、ステップS408で取得した電力E2が、第3電力以下である場合(ステップS409でYes)には、ステップS404で電力検出器20から電力E2を取得した時刻から経過した時間Tのカウントを継続して、時間Tが第1時間以上になるまで、ステップS407~ステップS409を繰り返す。なお、制御装置30は、ステップS408で取得した電力E2が、第3電力よりも大きい場合(ステップS409でNo)には、時間Tのカウントを停止して、ステップS404に戻る。 When the time T is less than the preset first time (No in step S407), the control device 30 acquires the power E2 detected by the power detector 20 from the power detector 20 (step S408). . Next, when the power E2 acquired in step S408 is equal to or lower than the third power (Yes in step S409), the control device 30 passes the time elapsed from the time when the power E2 is acquired from the power detector 20 in step S404. The count of T is continued and steps S407 to S409 are repeated until the time T becomes equal to or longer than the first time. Note that if the power E2 acquired in step S408 is greater than the third power (No in step S409), the control device 30 stops counting the time T and returns to step S404.
 そして、制御装置30は、時間Tが第1時間以上である場合(ステップS407でYes)には、燃料電池10の発電運転を停止させ、本プログラム(第2運転)を終了する。 When the time T is equal to or longer than the first time (Yes in step S407), the control device 30 stops the power generation operation of the fuel cell 10 and ends the program (second operation).
 このように構成された本変形例2の発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。 Even the power generation system 100 of the second modification configured as described above has the same operational effects as the power generation system 100 according to the first embodiment.
 [変形例3]
 本実施の形態1における変形例3の発電システムは、第2運転が、蓄熱器の蓄熱量が予め設定されている第2閾値以上になった場合に、発電装置を停止させる運転である態様を例示するものである。
[Modification 3]
In the power generation system of Modification 3 in Embodiment 1, the second operation is an operation in which the power generation device is stopped when the heat storage amount of the heat accumulator is equal to or more than a second threshold value set in advance. This is just an example.
 [発電システムの動作]
 本実施の形態1における変形例3の発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるため、その構成の説明は省略する。また、本変形例3の発電システム100における燃料電池10の発電運転は、一般的な燃料電池の発電運転と同様に行われるので、その詳細な説明は省略する。
[Operation of the power generation system]
The power generation system 100 according to the third modification of the first embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, and thus the description of the configuration is omitted. Moreover, since the power generation operation of the fuel cell 10 in the power generation system 100 of the third modification is performed in the same manner as the power generation operation of a general fuel cell, detailed description thereof is omitted.
 図9に示すように、制御装置30は、温度検出器61A~61Dが検出した温度t1A~t1Dを取得する(ステップS501)。 As shown in FIG. 9, the control device 30 acquires the temperatures t1A to t1D detected by the temperature detectors 61A to 61D (step S501).
 次に、制御装置30は、ステップS501で取得した、温度t1A~t1Dと、貯湯タンク50の容積と、貯湯タンク50に供給された市水の温度t0と、から貯湯タンク50の蓄熱量(熱量)Q1を算出する(ステップS502)。具体的には、以下の数式となる。なお、市水の温度t0は、水供給経路53に設けられている温度検知器(図示せず)が、貯湯タンク50に市水を供給するときに検知した市水の温度を取得する。 Next, the controller 30 stores the amount of heat stored in the hot water storage tank 50 (the amount of heat) from the temperatures t1A to t1D acquired in step S501, the volume of the hot water storage tank 50, and the temperature t0 of city water supplied to the hot water storage tank 50. Q1 is calculated (step S502). Specifically, the following formula is obtained. The city water temperature t <b> 0 is the temperature of the city water detected when a temperature detector (not shown) provided in the water supply path 53 supplies the city water to the hot water storage tank 50.
 蓄熱量Q1={(t1A-t0)×貯湯タンク50の容積÷4}+{(t1B-t0)×貯湯タンク50の容積÷4}+{(t1C-t0)×貯湯タンク50の容積÷4}+{(t1D-t0)×貯湯タンク50の容積÷4}
 そして、制御装置30は、ステップS502で算出した蓄熱量Q1が、第1閾値以下であるか否かを判断する。ここで、第1閾値は、任意に設定することができ、例えば、凍結予防の観点から、貯湯タンク50が満蓄状態における蓄熱量の30%以上であることが好ましく、所定の運転時間(発電システム100を起動するときに消費された電力量を燃料電池10により発電することができる時間;例えば、4~5時間)を確保する観点から、貯湯タンク50が満蓄状態における蓄熱量の50%以下であってもよい。また、第1閾値は、上記観点から、貯湯タンク50が満蓄状態における蓄熱量の40%であってもよい。
Heat storage amount Q1 = {(t1A−t0) × volume of hot water storage tank 50/4} + {(t1B−t0) × volume of hot water storage tank 50 ÷ 4} + {(t1C−t0) × volume of hot water storage tank 50 ÷ 4 } + {(T1D-t0) × volume of hot water storage tank 50 ÷ 4}
And the control apparatus 30 judges whether the thermal storage amount Q1 calculated by step S502 is below a 1st threshold value. Here, the first threshold value can be arbitrarily set. For example, from the viewpoint of freezing prevention, the hot water storage tank 50 is preferably 30% or more of the heat storage amount in the fully stored state, and the predetermined operating time (power generation) From the viewpoint of securing a time during which the amount of electric power consumed when starting the system 100 can be generated by the fuel cell 10; for example, 4 to 5 hours), 50% of the amount of heat stored when the hot water storage tank 50 is fully stored. It may be the following. In addition, the first threshold value may be 40% of the heat storage amount when the hot water storage tank 50 is in the fully stored state from the above viewpoint.
 ここで、「貯湯タンク50が満蓄状態である」とは、燃料電池10で発生した熱を貯湯水が吸収することができない状態をいう。具体的には、貯湯水循環経路51を通流する貯湯水が、熱交換器40において、燃料電池10で発生した熱を回収した冷却水から熱を受けることができない状態をいう。例えば、貯湯タンク50の下部に設けた温度検出器61Dで検出される貯湯水の温度が所定温度以上になった場合に、貯湯タンク50が満蓄状態であるという。また、所定温度は、任意に設定することができるが、例えば、貯湯タンク50の最下層の温度(温度検出器61Dで検出された温度)、又は貯湯タンク50の最下層から排出される貯湯水の温度が、40℃~50℃であってもよい。なお、このときの、貯湯タンク50の貯湯水の平均温度は、60℃~70℃になっている。 Here, “the hot water storage tank 50 is fully stored” refers to a state in which the hot water stored in the fuel cell 10 cannot absorb the heat generated. Specifically, the hot water flowing through the hot water circulation path 51 cannot receive heat from the cooling water that has recovered the heat generated in the fuel cell 10 in the heat exchanger 40. For example, the hot water storage tank 50 is said to be fully charged when the temperature of the hot water detected by the temperature detector 61D provided in the lower part of the hot water storage tank 50 becomes a predetermined temperature or higher. The predetermined temperature can be arbitrarily set. For example, the temperature of the lowermost layer of the hot water storage tank 50 (the temperature detected by the temperature detector 61D) or the hot water discharged from the lowermost layer of the hot water storage tank 50 is used. The temperature may be 40 ° C. to 50 ° C. At this time, the average temperature of the hot water stored in the hot water storage tank 50 is 60 ° C. to 70 ° C.
 制御装置30は、ステップS502で算出した蓄熱量Q1が、第1閾値よりも大きい場合(ステップS503でNo)には、ステップS501に戻り、蓄熱量Q1が、第1閾値以上になるまで、ステップS501~ステップS503を繰り返す。一方、制御装置30は、蓄熱量Q1が、第1閾値以上である場合(ステップS503でYes;図10においては、5時)には、ステップS504に進む。 When the heat storage amount Q1 calculated in step S502 is larger than the first threshold value (No in step S503), the control device 30 returns to step S501 and steps until the heat storage amount Q1 becomes equal to or greater than the first threshold value. Repeat steps S501 to S503. On the other hand, if the heat storage amount Q1 is equal to or greater than the first threshold (Yes in Step S503; 5 o'clock in FIG. 10), the control device 30 proceeds to Step S504.
 ステップS504では、制御装置30は、燃料電池10の発電運転を開始する(燃料電池10を起動させる)。ついで、制御装置30は、温度検出器61A~61Dから該温度検出器61A~61Dが検出した温度t2A~t2Dを取得し、所定時間経過後、温度検出器61A~61Dが検出した温度t3A~t3Dを取得する(ステップS505)。なお、所定時間は、任意に設定することができ、例えば、数秒(2~3秒)であってもよく、数分(2~3分)であってもよく、10分であってもよい。 In step S504, the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10). Next, the control device 30 acquires the temperatures t2A to t2D detected by the temperature detectors 61A to 61D from the temperature detectors 61A to 61D, and after a predetermined time has elapsed, the temperatures t3A to t3D detected by the temperature detectors 61A to 61D. to get (step S505). The predetermined time can be arbitrarily set. For example, the predetermined time may be several seconds (2 to 3 seconds), several minutes (2 to 3 minutes), or 10 minutes. .
 次に、制御装置30は、ステップS505で取得した、温度t2A~t2Dと、温度t3A~t3Dと、貯湯タンク50の容積と、から貯湯タンク50の蓄熱量(熱量)Q2を算出する(ステップS506)。ついで、制御装置30は、ステップS506で算出した蓄熱量Q2が、第2閾値以上であるか否かを判断する。ここで、第2閾値は、任意に設定することができ、例えば、十分な蓄熱量と発電量を発生させる観点から、貯湯タンク50が満蓄状態における蓄熱量の70%以上であることが好ましく、タンクの耐久性を確保する観点から、貯湯タンク50が満蓄状態における蓄熱量の90%以下であってもよい。また、第2閾値は、上記観点から、貯湯タンク50が満蓄状態における蓄熱量の80%であってもよい。 Next, the control device 30 calculates the heat storage amount (heat amount) Q2 of the hot water storage tank 50 from the temperatures t2A to t2D, the temperatures t3A to t3D, and the volume of the hot water storage tank 50 acquired in step S505 (step S506). ). Next, the control device 30 determines whether or not the heat storage amount Q2 calculated in step S506 is greater than or equal to the second threshold value. Here, the second threshold value can be arbitrarily set. For example, from the viewpoint of generating a sufficient heat storage amount and power generation amount, the hot water storage tank 50 is preferably 70% or more of the heat storage amount in the fully stored state. From the viewpoint of ensuring the durability of the tank, the hot water storage tank 50 may be 90% or less of the heat storage amount in the fully stored state. Further, the second threshold value may be 80% of the heat storage amount when the hot water storage tank 50 is in the fully stored state from the above viewpoint.
 制御装置30は、ステップS506で算出した蓄熱量Q2が、第2閾値未満である場合(ステップS507でNo)には、ステップS505に戻り、蓄熱量Q2が、第2閾値以下になるまで、ステップS505~ステップS507を繰り返す。一方、制御装置30は、蓄熱量Q2が、第2閾値以下である場合(ステップS507でYes;図10においては、19時)には、ステップS508に進む。 When the heat storage amount Q2 calculated in step S506 is less than the second threshold value (No in step S507), the control device 30 returns to step S505 and continues until the heat storage amount Q2 becomes equal to or less than the second threshold value. Steps S505 to S507 are repeated. On the other hand, if the heat storage amount Q2 is equal to or less than the second threshold (Yes in Step S507; 19:00 in FIG. 10), the control device 30 proceeds to Step S508.
 ステップS508では、制御装置30は、燃料電池10の発電運転を停止させ、本プログラム(第2運転)を終了する。 In step S508, the control device 30 stops the power generation operation of the fuel cell 10 and ends this program (second operation).
 このように構成された本変形例3の発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。 Even the power generation system 100 of Modification 3 configured as described above has the same operational effects as the power generation system 100 according to Embodiment 1.
 (実施の形態2)
 本発明の実施の形態2に係る発電システムは、制御装置が、記憶器に記憶されている電力の変動における、最も大きい極小値である第1極小値を算出し、該第1極小値を記憶器に記憶させ、第2運転中に、電力検出器が第1極小値より低い電力を検出すると、発電装置を停止させるように構成されている態様を例示するものである。
(Embodiment 2)
In the power generation system according to Embodiment 2 of the present invention, the control device calculates the first minimum value, which is the largest minimum value in the fluctuation of the power stored in the storage device, and stores the first minimum value. The power generator is stored when the power detector detects power lower than the first minimum value during the second operation, and the power generator is stopped.
 また、本実施の形態2に係る発電システムでは、制御装置が、第2運転に切り替える直前の第1運転中に記憶器に記憶された電力の変動における最も大きい極小値を第1極小値として算出するように構成されていてもよい。 In the power generation system according to the second embodiment, the control device calculates, as the first minimum value, the largest minimum value in the power fluctuation stored in the storage device during the first operation immediately before switching to the second operation. It may be configured to.
 また、本実施の形態2に係る発電システムでは、制御装置が、記憶器に記憶されている電力の変動における、最も小さい極大値である第1極大値を算出し、該第1極大値を第2電力として記憶器に記憶させてもよい。 Further, in the power generation system according to the second embodiment, the control device calculates the first maximum value that is the smallest maximum value in the fluctuation of the power stored in the storage device, and uses the first maximum value as the first maximum value. You may memorize | store in a memory | storage device as 2 electric power.
 さらに、本実施の形態2に係る発電システムでは、制御装置が、第2運転に切り替える直前の第1運転中に記憶器に記憶された電力の変動における最も小さい極大値を第1極大値として算出するように構成されていてもよい。 Furthermore, in the power generation system according to the second embodiment, the control device calculates the smallest maximum value in the fluctuation of the power stored in the storage device during the first operation immediately before switching to the second operation as the first maximum value. It may be configured to.
 [発電システムの動作]
 本実施の形態2に係る発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるため、その構成の説明は省略する。また、本実施の形態2に係る発電システム100における燃料電池10の発電運転は、一般的な燃料電池の発電運転と同様に行われるので、その詳細な説明は省略する。
[Operation of the power generation system]
Since the power generation system 100 according to the second embodiment has the same basic configuration as the power generation system 100 according to the first embodiment, description of the configuration is omitted. Further, since the power generation operation of the fuel cell 10 in the power generation system 100 according to the second embodiment is performed in the same manner as the power generation operation of a general fuel cell, detailed description thereof is omitted.
 さらに、本実施の形態2に係る発電システム100における、制御装置30による第1運転と第2運転の切り替え判断動作は、実施の形態1に係る発電システム100又はその変形例1の発電システム100のいずれかと同様に行われるが、以下の点が異なる。 Furthermore, in the power generation system 100 according to the second embodiment, the switching determination operation between the first operation and the second operation by the control device 30 is performed by the power generation system 100 according to the first embodiment or the power generation system 100 according to the first modification thereof. Although it is performed in the same manner as any one, the following points are different.
 すなわち、上記実施の形態1(変形例1を含む)では、制御装置30は、第2運転として、発電システム100(燃料電池10)起動後、所定時間経過後に発電システム100を停止する制御を行うが、本実施の形態2では、制御装置30は、記憶器3に記憶されている電力の変動における、最も大きい極小値である第1極小値を算出し、第2運転中に、電力検出器20が第1極小値を検出すると、燃料電池10を停止させるように構成されている点が異なる。 That is, in the first embodiment (including the first modification), the control device 30 performs the control to stop the power generation system 100 after a predetermined time has elapsed after the power generation system 100 (fuel cell 10) is started as the second operation. However, in the second embodiment, the control device 30 calculates the first minimum value which is the largest minimum value in the fluctuation of the power stored in the storage device 3, and the power detector during the second operation. The difference is that the fuel cell 10 is stopped when the first minimum value 20 is detected.
 この場合、制御装置30は、第2運転に切り替える直前の第1運転中に記憶器3に記憶された電力の変動における最も大きい極小値を第1極小値として算出するように構成されていてもよい。 In this case, the control device 30 may be configured to calculate, as the first minimum value, the largest minimum value in the power fluctuation stored in the storage device 3 during the first operation immediately before switching to the second operation. good.
 また、本実施の形態2に係る発電システム100では、制御装置30は、記憶器3に記憶されている電力の変動における、最も小さい極大値である第1極大値を算出し、該第1極大値を第2電力として、記憶器3に記憶させるように構成されている点が、実施の形態1に係る発電システム100(変形例1の発電システム100を含む)と異なる。 In the power generation system 100 according to the second embodiment, the control device 30 calculates the first maximum value that is the smallest maximum value in the fluctuation of the power stored in the storage device 3, and the first maximum value is calculated. It differs from the power generation system 100 according to Embodiment 1 (including the power generation system 100 of Modification 1) in that the value is stored in the storage device 3 as the second power.
 ここで、図11を参照しながら、制御装置30における第1極小値の算出方法及び第2電力の算出方法について、説明する。 Here, the calculation method of the first minimum value and the calculation method of the second power in the control device 30 will be described with reference to FIG.
 図11は、記憶器に記憶されている電力の変動の一例を模式的に示すグラフである。 FIG. 11 is a graph schematically showing an example of fluctuations in the power stored in the storage device.
 まず、制御装置30は、記憶器3に記憶されている電力検出器20が検出した電力の所定期間(ここでは、3日間分)の履歴群を取得する。次に、制御装置30は、極小値を算出し(図11参照)、算出した極小値群の中から、最も大きい値を示す極小値を第1極小値として、記憶器3に記憶させる。そして、制御装置30は、第2運転実行中に、電力検出器20が検出する電力が、記憶器3に記憶されている第1極小値以下の電力である場合には、発電システム100の運転を停止させる。 First, the control device 30 acquires a history group for a predetermined period (here, three days) of power detected by the power detector 20 stored in the storage device 3. Next, the control device 30 calculates a minimum value (see FIG. 11), and stores the minimum value indicating the largest value in the storage unit 3 as the first minimum value from the calculated minimum value group. The control device 30 operates the power generation system 100 when the power detected by the power detector 20 is less than or equal to the first minimum value stored in the storage device 3 during execution of the second operation. the stops.
 また、本実施の形態2に係る発電システム100においては、制御装置30は、第2電力を以下のようにして算出する。 Moreover, in the power generation system 100 according to the second embodiment, the control device 30 calculates the second power as follows.
 まず、制御装置30は、記憶器3に記憶されている電力検出器20が検出した電力の所定期間(ここでは、3日間分)の履歴群を取得する。次に、制御装置30は、極大値を算出し(図11参照)、算出した極大値群の中から、最も小さい値を示す極大値を第1極大値とし、該第1極大値を第2電力として記憶器3に記憶させる。そして、制御装置30は、第2運転実行中に、電力検出器20が検出する電力が、記憶器3に記憶されている第2電力(第1極大値)以上の電力である場合には、発電システム100(燃料電池10)の運転を開始させる。 First, the control device 30 acquires a history group for a predetermined period (here, three days) of power detected by the power detector 20 stored in the storage device 3. Next, the control device 30 calculates a maximum value (see FIG. 11), sets the maximum value indicating the smallest value from the calculated maximum value group as the first maximum value, and sets the first maximum value to the second value. in the storage unit 3 as a power. And when the electric power which the electric power detector 20 detects during the 2nd driving | operation execution is electric power more than the 2nd electric power (1st maximum value) memorize | stored in the memory | storage device 3, The operation of the power generation system 100 (fuel cell 10) is started.
 なお、所定期間は、任意に設定することができ、例えば、1週間でもよく、10日間でもよく、また、1ヶ月であってもよい。また、所定期間は、使用者の電力使用パターンが変化した日(すなわち、第2運転に切り替える直前の運転日)であってもよい。 Note that the predetermined period can be arbitrarily set, and may be, for example, one week, ten days, or one month. Further, the predetermined period may be the day when the user's power usage pattern changes (that is, the operation day immediately before switching to the second operation).
 また、制御装置30は、電力の変動データについて、所定期間(例えば、5時間)ごとに端数処理を行ってから、極小値及び/又は極大値を算出してもよい。この場合、端数処理は、二乗平均等の一般的な手法をとればよい。 Further, the control device 30 may calculate a local minimum value and / or a local maximum value after performing rounding processing on power fluctuation data every predetermined period (for example, 5 hours). In this case, the rounding process may be performed using a general method such as root mean square.
 次に、本実施の形態2に係る発電システム100の制御装置30による第2運転について、図12を参照しながら説明する。 Next, the second operation by the control device 30 of the power generation system 100 according to the second embodiment will be described with reference to FIG.
 図12は、本発明の実施の形態2に係る発電システムの制御装置による第2運転を模式的に示すフローチャートである。 FIG. 12 is a flowchart schematically showing the second operation by the control device of the power generation system according to Embodiment 2 of the present invention.
 図12に示すように、制御装置30は、電力検出器20から該電力検出器20が検出した電力E1を取得する(ステップS601)。ついで、制御装置30は、ステップS601で取得した電力E1が、第2電力(第1極大値)以上であるか否かを判断する(ステップS602)。 As shown in FIG. 12, the control device 30 acquires the power E1 detected by the power detector 20 from the power detector 20 (step S601). Next, the control device 30 determines whether or not the power E1 acquired in step S601 is equal to or greater than the second power (first maximum value) (step S602).
 制御装置30は、ステップS601で取得した電力E1が、第2電力未満である場合(ステップS602でNo)には、ステップS601に戻り、電力E1が第2電力以上になるまで、ステップS601とステップS602を繰り返す。一方、制御装置30は、電力E1が第2電力以上である場合(ステップS602でYes)には、ステップS603に進む。 When the electric power E1 acquired in step S601 is less than the second electric power (No in step S602), the control device 30 returns to step S601 and continues to step S601 and step until the electric power E1 becomes equal to or higher than the second electric power. S602 repeated. On the other hand, if the power E1 is equal to or higher than the second power (Yes in step S602), the control device 30 proceeds to step S603.
 ステップS603では、制御装置30は、燃料電池10の発電運転を開始する(燃料電池10を起動させる)。ついで、制御装置30は、電力検出器20から該電力検出器20が検出した電力E2を取得し(ステップS604)、ステップS604で取得した電力E2が、第1極小値未満であるか否かを判断する(ステップS605)。 In step S603, the control device 30 starts the power generation operation of the fuel cell 10 (activates the fuel cell 10). Next, the control device 30 acquires the power E2 detected by the power detector 20 from the power detector 20 (step S604), and determines whether or not the power E2 acquired in step S604 is less than the first minimum value. it is determined (step S605).
 制御装置30は、ステップS604で取得した電力E2が、第1極小値以上である場合(ステップS605でNo)には、電力E2が第1極小値未満になるまで、ステップS604とステップS605を繰り返す。一方、制御装置30は、電力E2が第1極小値未満である場合(ステップS605でYes)には、ステップS606に進む。 When the power E2 acquired in step S604 is equal to or greater than the first minimum value (No in step S605), the control device 30 repeats steps S604 and S605 until the power E2 becomes less than the first minimum value. . On the other hand, when the electric power E2 is less than the first minimum value (Yes in step S605), the control device 30 proceeds to step S606.
 ステップS606では、制御装置30は、燃料電池10の発電運転を停止させ、本プログラム(第2運転)を終了する。 In step S606, the control device 30 stops the power generation operation of the fuel cell 10 and ends this program (second operation).
 このように構成された本実施の形態2に係る発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。 Even the power generation system 100 according to the second embodiment configured as described above has the same effects as the power generation system 100 according to the first embodiment.
 なお、上記説明においては、制御装置30は、電力検出器20が検出した電力、又は温度検出器61A~61Dが検出した温度(熱量)のいずれか一方のパラメータを基に、燃料電池10の発電運転の開始及び停止を判断する形態を採用したが、これに限定されない。制御装置30は、電力検出器20が検出した電力、及び温度検出器61A~61Dが検出した温度(熱量)の両方のパラメータを基に、燃料電池10の発電運転の開始及び停止を判断する形態を採用してもよい。この場合、制御装置30は、電力検出器20が検出した電力、又は温度検出器61A~61Dが検出した温度(熱量)のいずれか一方のパラメータが、所定の閾値以上又は閾値以下になった場合に、燃料電池10の発電運転の開始又は停止させてもよい。また、制御装置30は、電力検出器20が検出した電力及び温度検出器61A~61Dが検出した温度(熱量)の両方のパラメータが、所定の閾値以上又は閾値以下になった場合に、燃料電池10の発電運転の開始又は停止させてもよい。 In the above description, the control device 30 generates the power of the fuel cell 10 based on either the power detected by the power detector 20 or the temperature (heat quantity) detected by the temperature detectors 61A to 61D. Although the form which judges the start and stop of a driving | operation was employ | adopted, it is not limited to this. The control device 30 determines the start and stop of the power generation operation of the fuel cell 10 based on both parameters of the power detected by the power detector 20 and the temperature (heat quantity) detected by the temperature detectors 61A to 61D. the may be adopted. In this case, the control device 30 is configured such that any one parameter of the power detected by the power detector 20 or the temperature (heat quantity) detected by the temperature detectors 61A to 61D is equal to or higher than a predetermined threshold value or lower than the threshold value. In addition, the power generation operation of the fuel cell 10 may be started or stopped. In addition, the control device 30 allows the fuel cell when the parameters of both the power detected by the power detector 20 and the temperature (heat quantity) detected by the temperature detectors 61A to 61D are equal to or higher than a predetermined threshold. Ten power generation operations may be started or stopped.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the scope of the invention. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
 本発明の発電システム及び発電システムの運転方法は、使用者の電力使用パターンが変化しても、エネルギー効率を改善することができるため、燃料電池の分野において有用である。 The power generation system and the operation method of the power generation system of the present invention are useful in the field of fuel cells because the energy efficiency can be improved even if the user's power usage pattern changes.
 1 演算処理器
 2 計時器
 3 記憶器
 4 運転計画器
 5 予測器
 10 燃料電池(発電装置)
 10A 冷却水流路
 11 配線
 20 電力検出器
 30 制御装置
 40 熱交換器
 41 冷却水循環経路
 50 貯湯タンク
 51 貯湯水循環経路
 52 貯湯水供給経路
 53 水供給経路
 61A 温度検出器
 61B 温度検出器
 61C 温度検出器
 61D 温度検出器
 100 発電システム
 101 外部電力負荷
 102 外部熱負荷
DESCRIPTION OF SYMBOLS 1 Arithmetic processor 2 Timekeeping device 3 Memory | storage device 4 Operation planner 5 Predictor 10 Fuel cell (power generation device)
10A Cooling water flow path 11 Wiring 20 Power detector 30 Control device 40 Heat exchanger 41 Cooling water circulation path 50 Hot water storage tank 51 Hot water circulation path 52 Hot water supply path 53 Water supply path 61A Temperature detector 61B Temperature detector 61C Temperature detector 61D Temperature detector 100 Power generation system 101 External power load 102 External heat load

Claims (12)

  1.  外部電力負荷に電力を供給する発電装置と、
     該発電装置から前記外部電力負荷に供給される電力を検出する電力検出器と、
     前記発電装置から発生する熱を貯め、外部熱負荷に前記熱を供給する蓄熱器と、
     前記蓄熱器に貯められた熱量を検出する熱量検出器と、
     記憶器、予測器、及び運転計画器を有する制御装置と、を備え、
     前記記憶器は、前記電力検出器が検出する電力又は前記熱量検出器が検出する熱量を記憶し、
     前記予測器は、前記記憶器に記憶された電力又は熱量を基に前記外部電力負荷が消費する電力又は前記外部熱負荷が消費する熱量を予測し、
     前記運転計画器は、前記予測器が予測した電力(以下、予測電力)又は予測した熱量を基にして前記発電装置の運転計画を計画し、
     前記制御装置は、
     前記運転計画器により計画された前記発電装置の運転計画を実行する第1運転中に、前記電力検出器が検出する電力の積算値が、前記予測電力の積算値よりも第1電力量以上ずれると、
     前記発電装置の次回の発電運転を前記第1運転から、前記発電装置の起動に必要な電力よりも大きい電力である第2電力以上の電力を前記電力検出器が検出した場合、及び前記蓄熱器の熱量が第1閾値以下になった場合、の少なくともいずれか一方の場合に前記発電装置の起動を行う運転である、第2運転に切り替えるように構成されている、発電システム。
    A power generator for supplying power to an external power load;
    A power detector for detecting power supplied from the power generator to the external power load;
    A heat accumulator for storing heat generated from the power generation device and supplying the heat to an external heat load;
    A calorie detector for detecting the amount of heat stored in the heat accumulator;
    A control device having a storage device, a predictor, and an operation planner,
    The storage device stores the power detected by the power detector or the heat detected by the heat detector,
    The predictor predicts the power consumed by the external power load or the heat consumed by the external heat load based on the power or heat stored in the storage;
    The operation planner plans an operation plan of the power generation device based on the power predicted by the predictor (hereinafter, predicted power) or the predicted heat quantity,
    The controller is
    During the first operation of executing the operation plan of the power generation device planned by the operation planner, the integrated value of the power detected by the power detector deviates from the integrated value of the predicted power by a first power amount or more. When,
    When the power detector detects a power that is equal to or greater than a second power that is greater than a power required for starting the power generation device from the first operation for the next power generation operation of the power generation device, and the heat accumulator A power generation system configured to switch to a second operation, which is an operation for starting the power generation device in at least one of the cases when the amount of heat of the current becomes equal to or less than the first threshold.
  2.  前記制御装置は、前記記憶器に記憶されている前記電力の変動における、最も小さい極大値である第1極大値を算出し、該第1極大値を前記第2電力として前記記憶器に記憶させる、請求項1に記載の発電システム。 The control device calculates a first maximum value that is the smallest maximum value in the fluctuation of the power stored in the storage device, and stores the first maximum value in the storage device as the second power. The power generation system according to claim 1.
  3.  前記制御装置は、前記第2運転に切り替える直前の前記第1運転中に前記記憶器に記憶された電力の変動における最も小さい極大値を前記第1極大値として算出するように構成されている、請求項2に記載の発電システム。 The control device is configured to calculate, as the first maximum value, the smallest maximum value in the power fluctuation stored in the storage device during the first operation immediately before switching to the second operation. The power generation system according to claim 2.
  4.  前記第2運転は、予め設定されている単位期間において、前記発電装置の起動が所定回数未満である場合に行われる運転である、請求項1~3のいずれか1項に記載の発電システム。 The power generation system according to any one of claims 1 to 3, wherein the second operation is an operation performed when the power generation device is activated less than a predetermined number of times in a preset unit period.
  5.  前記制御装置は、前記電力検出器が検出した電力のうち最も低い電力よりも高い電力である第3電力を前記記憶器に記憶させ、
     前記第2運転は、前記電力検出器が予め設定されている第1時間以上、前記第3電力以下の電力を検出した場合に、前記発電装置を停止させる運転である、請求項1~4のいずれか1項に記載の発電システム。
    The control device causes the storage device to store third power that is higher than the lowest power among the power detected by the power detector,
    5. The second operation according to claim 1, wherein the second operation is an operation in which the power generation device is stopped when the power detector detects a power not lower than the third power and not less than a preset first time. The power generation system according to any one of the above.
  6.  前記第2運転は、前記蓄熱器の蓄熱量が予め設定されている第2閾値以上になった場合に、前記発電装置を停止させる運転である、請求項1~5のいずれか1項に記載の発電システム。 The second operation is an operation according to any one of claims 1 to 5, wherein the power generation device is stopped when a heat storage amount of the heat accumulator is equal to or higher than a second threshold value set in advance. Power generation system.
  7.  前記制御装置は、前記記憶器に記憶されている前記電力の変動における、最も大きい極小値である第1極小値を算出し、該第1極小値を前記記憶器に記憶させ、
     前記第2運転中に、前記電力検出器が前記第1極小値より低い電力を検出すると、前記発電装置を停止させるように構成されている、請求項1~6のいずれか1項に記載の発電システム。
    The control device calculates a first minimum value which is the largest minimum value in the fluctuation of the power stored in the storage device, and stores the first minimum value in the storage device,
    The power generation device according to any one of claims 1 to 6, wherein the power generation device is configured to stop when the power detector detects power lower than the first minimum value during the second operation. Power generation system.
  8.  前記制御装置は、前記第2運転に切り替える直前の前記第1運転中に前記記憶器に記憶された電力の変動における最も大きい極小値を前記第1極小値として算出するように構成されている、請求項7に記載の発電システム。 The control device is configured to calculate, as the first minimum value, the largest minimum value in the power fluctuation stored in the storage device during the first operation immediately before switching to the second operation. The power generation system according to claim 7.
  9.  前記第2運転は、前記発電装置が起動してから予め設定されている第2時間が経過すると、前記発電装置を停止させる運転である、請求項1~8のいずれか1項に記載の発電システム。 The power generation according to any one of claims 1 to 8, wherein the second operation is an operation in which the power generation device is stopped when a preset second time has elapsed since the power generation device was started. system.
  10.  前記制御装置は、第1期間、該第1期間よりも長い期間である第2期間、及び該第2期間よりも長い期間である第3期間を計時する計時器を有し、
     前記予測器は、前記記憶器に記憶された前記第3期間内の電力又は熱量を基に前記外部電力負荷が消費する電力又は前記外部熱負荷が消費する熱量を前記第1期間単位で予測し、
     前記運転計画器は、前記予測器が予測した電力又は熱量を基にして、前記第2期間内における前記発電装置の運転計画を計画する、請求項1~9のいずれか1項に記載の発電システム。
    The control device includes a timer that measures a first period, a second period that is longer than the first period, and a third period that is longer than the second period,
    The predictor predicts, in units of the first period, the power consumed by the external power load or the heat consumed by the external heat load based on the power or heat amount in the third period stored in the storage unit. ,
    The power generation device according to any one of claims 1 to 9, wherein the operation planner plans an operation plan of the power generation device within the second period based on the power or heat amount predicted by the predictor. system.
  11.  前記制御装置は、複数の前記第1期間連続して、前記電力検出器が検出する電力が、前記予測電力よりも第1電力量以上ずれると、前記発電装置の次回の発電運転を前記第1運転から前記第2運転に切り替えるように構成されている、請求項10に記載の発電システム。 When the power detected by the power detector deviates by more than a first power amount from the predicted power continuously for a plurality of the first periods, the control device starts the next power generation operation of the power generation device. The power generation system according to claim 10, configured to switch from operation to the second operation.
  12.  外部電力負荷に電力を供給する発電装置と、該発電装置から前記外部電力負荷に供給される電力を検出する電力検出器と、前記発電装置から発生する熱を貯め、外部熱負荷に前記熱を供給する蓄熱器と、前記蓄熱器に貯められた熱量を検出する熱量検出器と、を備える、発電システムの運転方法であって、
     前記電力検出器が検出する電力又は前記熱量検出器が検出する熱量を記憶するステップと、
     前記記憶した電力を基に前記外部電力負荷が消費する電力又は前記熱負荷が消費する熱量を予測するステップと、
     前記予測した電力(以下、予測電力)又は熱量を基にして前記発電装置の運転計画を計画するステップと、
     前記計画した前記発電装置の運転計画を実行するステップと、
     前記運転計画を実行中に、前記電力検出器が検出する電力が、前記予測電力よりも第1電力量以上ずれると、前記発電装置の次回の発電運転を前記第1運転から、前記電力検出器が検出する電力が前記発電装置の起動に必要な電力よりも大きい電力である第2電力以上の電力を検出した場合、及び前記蓄熱器の熱量が第1閾値以下になった場合、の少なくともいずれか一方の場合に前記発電装置を起動させる運転である、第2運転に切り替えるステップと、を備える、発電システムの運転方法。
     
     
    A power generator that supplies power to the external power load, a power detector that detects power supplied from the power generator to the external power load, heat generated from the power generator, and the heat to the external heat load An operation method of a power generation system, comprising: a heat storage device to be supplied; and a heat amount detector that detects a heat amount stored in the heat storage device,
    Storing the power detected by the power detector or the heat detected by the heat detector;
    Predicting the power consumed by the external power load or the amount of heat consumed by the heat load based on the stored power;
    Planning an operation plan of the power generator based on the predicted power (hereinafter, predicted power) or heat quantity;
    Executing the planned operation plan of the power generation device;
    When the power detected by the power detector deviates from the predicted power by a first power amount or more during execution of the operation plan, the next power generation operation of the power generator is changed from the first operation to the power detector. At least one of the case where the power detected by the power generator is higher than the second power, which is higher than the power required for starting the power generation device, and the case where the amount of heat of the heat accumulator is lower than the first threshold. And a step of switching to the second operation, which is an operation for starting the power generation device in either case.

PCT/JP2012/001030 2011-03-29 2012-02-16 Power generation system and method for operating power generation system WO2012132198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011071789 2011-03-29
JP2011-071789 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012132198A1 true WO2012132198A1 (en) 2012-10-04

Family

ID=46929994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001030 WO2012132198A1 (en) 2011-03-29 2012-02-16 Power generation system and method for operating power generation system

Country Status (1)

Country Link
WO (1) WO2012132198A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347096A (en) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd Fuel cell device system and load prediction device
JP2006250471A (en) * 2005-03-11 2006-09-21 Osaka Gas Co Ltd Energy supply system
JP2007280650A (en) * 2006-04-03 2007-10-25 Ebara Ballard Corp Operation method of fuel cell system, and fuel cell system
JP2010169328A (en) * 2009-01-23 2010-08-05 Fuji Electric Holdings Co Ltd Method, device and program for supporting operation control of cogeneration system
JP2011027408A (en) * 2004-06-15 2011-02-10 Osaka Gas Co Ltd Cogeneration system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347096A (en) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd Fuel cell device system and load prediction device
JP2011027408A (en) * 2004-06-15 2011-02-10 Osaka Gas Co Ltd Cogeneration system
JP2006250471A (en) * 2005-03-11 2006-09-21 Osaka Gas Co Ltd Energy supply system
JP2007280650A (en) * 2006-04-03 2007-10-25 Ebara Ballard Corp Operation method of fuel cell system, and fuel cell system
JP2010169328A (en) * 2009-01-23 2010-08-05 Fuji Electric Holdings Co Ltd Method, device and program for supporting operation control of cogeneration system

Similar Documents

Publication Publication Date Title
JP5314698B2 (en) Energy supply system
US8577512B2 (en) Energy supply system
JP5895157B2 (en) Charge / discharge control device
JP5254500B1 (en) Distributed power generation system and control method of distributed power generation system
JP5444020B2 (en) Cogeneration system
JP5191636B2 (en) Cogeneration system
JP2018068076A (en) Storage battery control system and power supply system
JP5216432B2 (en) Cogeneration system operation plan creation device, operation plan creation method, and program thereof
WO2012132198A1 (en) Power generation system and method for operating power generation system
JP5671694B2 (en) Fuel cell system
JP2006183947A (en) Cogeneration system and control method
JP5295694B2 (en) Fuel cell system and operation method thereof
JP2002048004A (en) Heat/electric power cogenerating device and environment control room using the same
WO2005011034A1 (en) Fuel cell system
Molderink et al. Algorithms for balancing demand-side load and micro-generation in islanded operation
JPWO2012029321A1 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2009245656A (en) Cogeneration system, its operation method, and fuel cell power generation system
JP4994108B2 (en) Thermal storage control device
JP2006250380A (en) Heating load predicting device for cogeneration system
JP2009174747A (en) Cogeneration system and its operating method
JP2012207829A (en) Cogeneration system
JP2016167380A (en) Fuel battery system
JP2011165594A (en) Method of controlling fuel cell power generation system
JP2012207812A (en) Power generation system and operation method thereof
JP2012010470A (en) Operation planning apparatus for firepower generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP