WO2012131953A1 - In-wheel motor vehicle - Google Patents

In-wheel motor vehicle Download PDF

Info

Publication number
WO2012131953A1
WO2012131953A1 PCT/JP2011/058114 JP2011058114W WO2012131953A1 WO 2012131953 A1 WO2012131953 A1 WO 2012131953A1 JP 2011058114 W JP2011058114 W JP 2011058114W WO 2012131953 A1 WO2012131953 A1 WO 2012131953A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
wheel
electric motor
temperature
electric
Prior art date
Application number
PCT/JP2011/058114
Other languages
French (fr)
Japanese (ja)
Inventor
監介 吉末
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/058114 priority Critical patent/WO2012131953A1/en
Priority to JP2013506955A priority patent/JP5590221B2/en
Publication of WO2012131953A1 publication Critical patent/WO2012131953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/003Disposition of motor in, or adjacent to, traction wheel with two or more motors driving a single wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an in-wheel motor vehicle configured to obtain a driving force of a vehicle by providing a motor inside a wheel of a driving wheel.
  • An electric vehicle using an electric motor as a power source has been developed instead of a vehicle using an internal combustion engine as a power source.
  • a vehicle using a so-called in-wheel motor in which a motor is mounted in each wheel or in the front wheel or the rear wheel, has been developed.
  • the in-wheel motor is capable of outputting a high torque to obtain the driving force of the vehicle, that is, a large motor is required, while the space for mounting the motor is limited to the inside of the wheel. There is a limit to the torque that can be output.
  • the amount of heat generated due to electrical resistance or the like becomes high, and the motor characteristics or durability may be reduced.
  • Japanese Patent Application Laid-Open No. 2008-44434 describes an in-wheel motor in which a motor is mounted on a wheel provided with a ball joint and a brake caliper that are connected to a wheel side end of a tie rod.
  • This in-wheel motor is mounted with a motor offset in the radial direction from the rotation center of the wheel, and a counter gear is provided on the output shaft of the motor in order to match the rotation axis of the motor with the rotation axis of the wheel.
  • a shaft is connected to a gear that meshes with the counter gear and the other end is connected to a sun gear constituting a planetary gear mechanism.
  • Japanese Patent Application Laid-Open No. 2007-269209 describes an in-wheel motor in which a motor is provided coaxially with the rotating shaft of a wheel and another motor is provided at a position offset from the motor in the axial direction and the radial direction. Yes.
  • This in-wheel motor is configured so that the vertical movement of the vehicle body can be damped by rotating the motor and the other motor in the opposite direction. Therefore, there is no need to provide a shock absorber and the degree of freedom in design is increased. It can be improved.
  • Japanese Patent Laid-Open No. 2010-280295 discloses a tire so that a power transmission path between the motor and the tire can be connected and disconnected in order to drive the motor in an operation region where the motor efficiency is good.
  • a first centrifugal clutch that transmits power when the motor rotates below a predetermined rotational speed
  • a second centrifugal clutch that transmits power when the motor rotates at a predetermined rotational speed or more
  • a one-way that transmits tire torque to the motor An in-wheel motor with a clutch is described.
  • Japanese Patent Application Laid-Open Nos. 2009-154723 and 2008-125329 disclose the output of the motor according to the storage capacity (SOC) of the power storage device connected to the motor, the temperature of the power storage device, or the temperature of the motor.
  • SOC storage capacity
  • An apparatus for limiting the amount of regeneration is described.
  • Japanese Patent Application Laid-Open Nos. 2010-243327 and 2004-324613 describe a device that reads a planned travel route by a navigation device and predicts a heat generation amount of a battery or a motor from the planned travel route,
  • the device described in Japanese Patent Application Laid-Open No. 2004-324613 is configured to limit the motor output in advance or increase the cooling amount based on the predicted heat generation amount of the motor.
  • the in-wheel motor described in Japanese Patent Application Laid-Open No. 2008-44434 increases the output torque by increasing the motor diameter by shifting the wheel rotation shaft and the motor rotation shaft by providing a counter gear.
  • the in-wheel motor described in Japanese Patent Application Laid-Open No. 2007-269209 is provided with a motor on the same axis as the rotation axis of the wheel, and other than the position offset from the motor in the axial direction and the radial direction. By providing this motor, the two motors are configured to obtain the output torque required for the vehicle.
  • the present invention has been made paying attention to the above technical problem, and provides an in-wheel motor vehicle capable of improving the mountability of the motor without reducing the output torque required for the vehicle. It is the purpose.
  • the present invention provides an in-wheel motor vehicle having a plurality of drive motors inside a wheel, wherein the plurality of drive motors are provided coaxially with a rotation shaft of the wheel.
  • a first gear and at least a second motor disposed at the same position as the first motor in the axial direction of the wheel, and a sun gear connected to the output shaft of the first motor;
  • a planetary gear mechanism having a ring gear to which the power of the electric motor is transmitted is provided inside the wheel.
  • the present invention provides the in-wheel motor vehicle according to the above-described invention, wherein a one-way clutch that transmits power when the second electric motor is driven in a direction in which the vehicle travels forward is provided on the ring gear. It is.
  • the present invention is the in-wheel motor vehicle according to the above invention, wherein a plurality of teeth meshing with a gear connected to an output shaft of the second electric motor are formed on the outer peripheral surface of the ring gear. is there.
  • the present invention further includes an electronic control device that controls electric power supplied to each of the first electric motor and the second electric motor, and the electronic control device is based on the required torque output from the wheel.
  • Torque calculation means for calculating output torques of the first motor and the second motor, and rotation speed calculation means for calculating the rotation speed of each motor based on the torque of each motor calculated by the torque calculation means. It is an in-wheel motor vehicle characterized by having.
  • the rotational speed calculation means further includes means for changing the rotational speed of each electric motor based on the state of each electric motor. It is a wheel motor car.
  • the present invention is the in-wheel motor vehicle according to the above invention, wherein the state of each electric motor includes a temperature state of each electric motor.
  • the temperature state of each electric motor is determined by comparing a predetermined temperature based on a temperature that restricts driving of each electric motor with the temperature of each electric motor, and When the temperature of any one of the first electric motor and the second electric motor is higher than the predetermined temperature, the calculating means sets the rotational speed of the motor having a temperature higher than the predetermined temperature as the rotational speed with a small power loss.
  • the in-wheel motor vehicle further comprises means for rotating the rotation speed of the other motor so as to compensate for a decrease in the rotation speed of the motor whose temperature is higher than the predetermined temperature.
  • the present invention further includes a control device that controls electric power supplied to each electric motor in each of the electric motors according to the above-described invention, wherein the rotation speed calculation means is based on the temperature of the control device.
  • the in-wheel motor vehicle further includes means for changing the rotational speed of each electric motor.
  • the present invention further includes a power storage device that supplies electric power to each electric motor or charges electric power generated by each electric motor in the above-described invention, wherein the rotation speed calculation means is in a charged state of the electric power storage device.
  • the in-wheel motor vehicle further comprises means for calculating the rotational speed of each electric motor.
  • the present invention further includes a navigation device that presents a travel route on which the vehicle travels in the above-described invention, and the electronic control device is configured to provide each motor when traveling on the travel route presented by the navigation device.
  • An in-wheel motor vehicle comprising: means for predicting a heat generation amount; and means for calculating the rotation speed of each electric motor based on the predicted heat generation amount of each electric motor.
  • each electric motor can be arranged in the axial direction of the wheel without providing a gear or the like for aligning the electric motor and the rotating shaft of the wheel.
  • a plurality of electric motors can be provided and can be driven by inputting the power of each electric motor to the planetary gear mechanism, so that the overall heat capacity of the plurality of electric motors can be increased.
  • the ring gear is provided with the one-way clutch that transmits power when the second electric motor is driven in the direction in which the vehicle travels. Therefore, it can be used when assisting the torque of the first motor with the second motor. Moreover, since it can drive
  • a plurality of teeth that mesh with the gear connected to the output shaft of the second electric motor are formed on the outer peripheral surface of the ring gear. Therefore, the gear for transmitting power from the second electric motor to the ring gear can be arranged at the same position in the axial direction as the planetary gear mechanism. Therefore, since the location which arrange
  • an electronic control device for controlling the first electric motor and the second electric motor.
  • the electronic control unit includes a torque calculating unit that calculates an output torque of each electric motor based on a request torque output from the wheel, and a rotation speed of each electric motor based on the torque of each electric motor calculated by the torque calculating unit. And a rotation speed calculation means for calculating. Therefore, the torque and rotation speed of each electric motor can be calculated based on the required torque output from the wheel.
  • the rotation speed calculation means further includes means for changing the rotation speed of each electric motor based on the state of each electric motor. Therefore, it is possible to change the rotation speed of the motor whose state of the motor is deteriorated so that the load is reduced.
  • the state of each motor includes the temperature state of each motor
  • the temperature of the motor can be changed by changing the number of revolutions of the motor when the temperature of any of the motors is high. The rise can be suppressed or prevented.
  • the temperature state of each electric motor is determined by comparing a predetermined temperature based on the temperature that restricts the driving of each electric motor with the temperature of each electric motor, and the rotation speed calculating means includes the first electric motor.
  • the rotational speed of the motor having a temperature higher than the predetermined temperature is set to a rotational speed with a small power loss, and the rotational speed of the other motor is set to a temperature higher than the predetermined temperature.
  • a means for rotating the motor so as to compensate for a decrease in the rotational speed of the motor having a high value is further provided. Therefore, it is possible to suppress or prevent an increase in the temperature of the electric motor having a temperature higher than the predetermined temperature while maintaining the output rotational speed of the vehicle.
  • each electric motor is further provided with a control device that controls the electric power supplied to each electric motor, and the rotation speed calculation means changes the rotation speed of each electric motor based on the temperature of the control device. Since it is further provided with means, the temperature rise of the control device is suppressed or prevented by changing the number of revolutions of the motor to which power is supplied from the control device when the temperature of any of the control devices is high. be able to.
  • the electric power storage device is further provided for supplying electric power to each electric motor or charging electric power generated by each electric motor, and the rotation speed calculating means rotates the electric motor according to the charging state of the electric power storage device. Since the means for calculating the number is further provided, it is possible to suppress or prevent the power storage device from being overcharged.
  • the electronic control device further includes a navigation system that presents a travel route on which the vehicle travels, and the electronic control device predicts a heat generation amount of each electric motor when traveling on the travel route presented by the navigation system. And means for calculating the number of revolutions of each motor based on the predicted amount of heat generated by each motor. Within the range, the rotation speed of each electric motor can be set to a rotation speed with low power loss.
  • FIG. 1 It is a schematic diagram for demonstrating the structural example of the in-wheel motor which concerns on this invention. It is II-II sectional drawing in FIG. It is a collinear diagram which shows the relationship of the rotation speed of each motor and a carrier. It is a flowchart for demonstrating the example of control of the in-wheel motor of the structure of FIG. It is an efficiency map of the 1st motor. It is an efficiency map of the 2nd motor. It is a graph which shows the relationship between the output torque of a 1st motor and a 2nd motor, and efficiency. It is a flowchart for demonstrating the example of control which determines the rotation speed of each motor. It is a schematic diagram for demonstrating the other structural example of the in-wheel motor which concerns on this invention.
  • FIG. 1 and FIG. 2 are schematic views for explaining a configuration example of an in-wheel motor according to the present invention.
  • the in-wheel motor 1 shown in the figure is provided on a steered wheel, and is provided with a ball joint 3 and a brake caliper 4 connected to an end of a tie rod arranged from the vehicle side toward the wheel 2 side. ing. Therefore, a plurality of motors 5, 6, 7, and 8 and a planetary gear mechanism 9 are provided so as to avoid a place where these members 3 and 4 are disposed.
  • a first motor / generator (hereinafter simply referred to as a first motor 5) is provided on the same axis as the rotation axis of the wheel 2.
  • the first motor 5 is a conventionally known AC motor such as a synchronous motor or an induction motor, and has a function as an electric motor and a function as a generator.
  • a planetary gear mechanism 9 is connected to the output shaft 10 of the first motor 5.
  • a planetary gear mechanism 9 is configured by the ring gear 9R having an internal gear meshing with the gear 9P and 9P.
  • a plurality of motor generators (hereinafter simply referred to as a plurality of motors 6, 7, etc.) having the same configuration as the first motor 5 on the outer peripheral side of the first motor 5 at the same position as the first motor 5 in the axial direction of the wheel 2. 8) is arranged.
  • a gear 11 provided on each output shaft of the plurality of motors 6, 7, and 8 is connected to a ring gear 9 ⁇ / b> R in the planetary gear mechanism 9. That is, a plurality of teeth that mesh with the gears 11 provided on the output shafts of the plurality of motors 6, 7, and 8 are formed on the outer peripheral side of the ring gear 9 ⁇ / b> R.
  • the in-wheel motor 1 having the above-described configuration can place the planetary gear mechanism 9 and the gear 11 in the same position in the axial direction of the wheel 2, and as a result, the first motor 5 and the plurality of motors 6, 7, 8. And the size of each motor 5, 6, 7, 8 in the axial direction can be increased. As a result, the overall volume of the motors 5, 6, 7, and 8 for obtaining the driving force of the vehicle can be increased, so that the overall heat capacity of the motors 5, 6, 7, and 8 can be increased. it can.
  • the motors 5, 6, 7, and 8 described above are driven in accordance with the energized power, and the motors 5, 6, 7, and 8 have inverters 12, 13, 14, 15 respectively. Are connected, and the power storage device 16 is connected to the inverters 12, 13, 14, and 15. Further, an electronic control unit 17 is connected to the inverters 12, 13, 14, 15.
  • the electronic control unit 17 stores various maps and arithmetic expressions determined in advance through experiments and the like, and supplies them to the inverters 12, 13, 14, and 15 based on signals input to the electronic control unit 17. It is comprised so that the electric power to perform may be controlled.
  • an accelerator opening sensor that detects the amount of depression of the accelerator that changes according to the driver's operation, and each of the motors 5, 6, 7, 8 Temperature sensors 18, 19, 20, 21 for detecting the temperature of the motor, speed sensors 22, 23, 24, 25 for detecting the rotational speed of the motors 12, 13, 14, 15, and vehicle speed for detecting the rotational speed of the carrier 9C.
  • Sensor 26, temperature sensors 27, 28, 29, and 30 that detect the temperature of each inverter, sensor 31 that detects the temperature of power storage device 16, sensor 32 that detects the amount of charge (SOC: State ⁇ of Charge16) of power storage device 16, and the like There is. Therefore, the torque or rotational speed output from each of the motors 5, 6, 7, and 8 is determined from the signals input from the sensors, and the inverters 12, 13, 14, and 15 are controlled so as to obtain the torque and rotational speed. can do.
  • the in-wheel motor 1 configured as described above outputs vehicle output torque from the planetary gear mechanism 9 connected to the first motor 5 and the plurality of motors 6, 7, 8. That is, the rotation speed output according to the rotation speed of the first motor 5 and the plurality of motors 6, 7, 8 can be determined.
  • FIG. 3 is a collinear diagram showing the rotational speed relationship between the carrier 9C and the second motor 6 in the first motor 5 and the planetary gear mechanism 9, and the first motor 5 and the carrier 9C from the left side of the vertical axis in the figure. The rotational speed of the second motor 6 is shown.
  • the horizontal axis in the figure indicates that the rotational speed is 0 (zero), the upper side from the horizontal axis indicates the rotational direction when the vehicle travels forward, and the lower side indicates the rotational direction when travels backward. It shows that the number of rotations increases as the distance from the horizontal axis increases.
  • the intervals between the vertical axes indicate the speed ratio a between the first motor 5 and the carrier 9C and the speed ratio b between the carrier 9C and the second motor 6.
  • the rotational speed of the carrier 9 ⁇ / b> C is determined by the relationship between the rotational speeds of the first motor 5 and the second motor 6. Therefore, the rotation speed of the first motor 5 and the rotation speed of the second motor 6 are in the state I shown in the figure, that is, the first motor 5 is at a low rotation speed and the second motor 6 is at a high rotation speed. Even in the state II shown in the drawing, that is, when the first motor 5 has a high rotation speed and the second motor 6 has a low rotation speed, the rotation speed of the carrier 9C can be made the same. That is, the rotation speeds of the first motor 5 and the second motor 6 can be changed while the rotation speed of the carrier 9C is constant.
  • an output torque required for the vehicle (hereinafter simply referred to as a required torque) is calculated, and each of the motors 5 and 6 is calculated according to the required torque.
  • An output torque is calculated (step S1). Specifically, as shown in Equation 1, the required torque is the sum of the output torque of the first motor 5 and the output torque of the second motor 6, and as shown in Equation 2, each motor 5 , 6 and the output torque of each of the motors 5, 6 and the carrier 9C are the same value, so that the output torques of the motors 5, 6 can be calculated from the equations 1 and 2. it can.
  • a graph indicating the relationship between the rotational speed of each motor 5 and 6 and the efficiency is calculated from the output torque of each motor 5 and 6 calculated in step S1 and the vehicle speed detected by the vehicle speed sensor 26 (step S2). ).
  • a graph indicating the relationship between the motor rotation speed and the efficiency is calculated from the motor efficiency map prepared in advance by experiments or simulations and the motor output torque calculated in step S1.
  • FIGS. 5 and 6 show examples of the efficiency maps of the motors 5 and 6. In the torque indicated by the thick line in the figure, the right side of the figure is highly efficient, and the efficiency decreases as it becomes the left side. It is shown that.
  • FIG. 7 is a graph showing the relationship between the output torque and the efficiency when the torque indicated by the bold line is output.
  • the rotational speed relationship between the first motor 5 and the second motor 6 can be calculated from the rotational speed Nc of the carrier 9C from the vehicle speed and the rotational speed Nc of the carrier 9C and each gear ratio.
  • Expression 5 is an expression for calculating the relationship between the rotational speeds of the first motor 5 and the second motor 6.
  • NmgB (a + b) / a * (Nc ⁇ NmgA) + NmgA (5)
  • Each motor 5 is obtained by matching the horizontal axes of the first motor 5 and the second motor 6 shown in FIG. 7 so that the rotational speed relationship between the first motor 5 and the second motor 6 obtained from Equation 5 is satisfied. , 6 can be calculated in the figure.
  • step S3 the rotational speeds of the motors 5 and 6 are determined from the graph showing the relationship between the output torque calculated in step S2 and the efficiency (step S3).
  • the number of rotations of the motor the number of rotations where the loss of each of the first motor 5 and the second motor 6 is small, that is, an efficient number of rotations is determined. It is preferable to determine the number of rotations. Therefore, here, a control example in which the temperatures of the motors 5 and 6 are detected and the rotation speeds of the motors 5 and 6 are determined according to the temperature state will be described.
  • FIG. 8 is a flowchart for explaining the control example. First, it is calculated whether or not the temperature of the first motor 5 is equal to or lower than a predetermined temperature (step S31).
  • the predetermined temperature is a temperature obtained by adding a margin, for example, 0.9 to the limit temperature of the first motor 5.
  • a predetermined temperature is set so that the temperature of the first motor 5 does not become the limit temperature when driven by outputting the calculated torque. Yes.
  • step S32 it is determined whether or not the temperature of the second motor 6 is equal to or lower than the predetermined temperature.
  • the predetermined temperature here is a temperature obtained by adding a margin, for example, 0.9 to the limit temperature of the second motor 6 in the same manner as the predetermined temperature in step S31. If the determination in step S32 is affirmative, that is, if the temperature of each of the motors 5 and 6 is not more than a predetermined temperature, the total loss of the first motor 5 and the second motor 6 is minimized.
  • the motors 5 and 6 are driven at the rotational speed (step S33). That is, as shown in FIG. 8, the motors 5 and 6 are rotated at the number of rotations (hereinafter simply referred to as the operating point X) where the curves indicating the losses of the motors 5 and 6 intersect.
  • step S32 if a negative determination is made in step S32, the temperature of the second motor 6 is high, so that the efficiency of the second motor 6 is prioritized, that is, the speed at which the efficiency of the second motor 6 is good. Then, the motors 5 and 6 are driven (step S34). Specifically, the efficiency of the second motor 6 is good and the loss of the first motor 5 increases, that is, in the Y region on the left side of the operating point X shown in FIG. 7 and according to the temperature of the second motor 6. The motors 5 and 6 are driven at the determined rotational speed.
  • step S35 when a negative determination is made in step S31, that is, when the temperature of the first motor 5 is higher than the predetermined temperature, it is determined whether or not the temperature of the second motor 6 is equal to or lower than the predetermined temperature (step S35).
  • the determination in step S35 is the same as that in step S32. If the determination in step S35 is affirmative, that is, if the temperature of the second motor 6 is equal to or lower than the predetermined temperature, the temperature of the first motor 5 is high, so that the efficiency of the first motor 5 is given priority.
  • the motors 5 and 6 are driven at a rotational speed at which the efficiency of the first motor 5 is good (step S36).
  • the efficiency of the first motor 5 is good and the loss of the second motor 6 increases, that is, in the Z region on the right side of the operating point X shown in FIG. 7 and according to the temperature of the first motor 5.
  • the motors 5 and 6 are driven at the determined rotational speed.
  • step S35 if a negative determination is made in step S35, the required torque cannot be output because the motors 5 and 6 are at a predetermined temperature or higher. Therefore, the output torque of the motors 5 and 6 is reduced, that is, the output torque of the vehicle is limited, and torque within a range that can be output by the motors 5 and 6 is output. In this case, since the motors 5 and 6 are at a high temperature, the motors 5 and 6 are driven at a rotational speed at which the total loss of the first motor 5 and the second motor 6 is minimized.
  • the motors 5 and 6 are driven.
  • the above-described control example is that, when each of the motors 5 and 6 is at a predetermined temperature or less, the motors 5 and 5 are rotated at a rotational speed that minimizes the total loss of the first motor 5 and the second motor 6. 6 is driven, and when the temperature of any of the motors 5 (6) is higher than a predetermined temperature, the temperature rise is suppressed by driving the motor 5 (6) on the higher temperature side at a high speed.
  • the motor 6 (5) which has a low temperature and has a margin to the limit temperature, is configured to be driven to compensate for the shortage.
  • both the motors 5 and 6 can be set to a high-efficiency rotation speed, and the temperature is The temperature rise can be suppressed or prevented by setting the higher rotational speed to an efficient rotational speed.
  • FIG. 9 is a diagram for explaining the configuration, and a navigation system 33 is connected to the electronic control device 16. That is, signals such as the planned travel route, the road surface condition or traffic jam information presented by the navigation system 33 are input to the electronic control device 16. Then, the electronic control unit 16 can determine the rotation speed of each of the motors 5 and 6 based on information such as a planned travel route and a road surface condition, that is, whether the route to be traveled in the future is an uphill road or a downhill road. .
  • the load applied to the motors 5 and 6 or the torque output from the motors 5 and 6 is low and there is no excessive temperature rise.
  • the motor can be driven at the operating point X, or even when one of the motors 5 (6) is driven in a region with a large loss, the motor can be driven at a rotational speed with a smaller loss. Therefore, since the motors 5 and 6 can be rotated without excessively increasing the losses of the motors 5 and 6, power loss for driving the motors 5 and 6 can be reduced.
  • in-wheel motor 1 when the in-wheel motor 1 having the above-described configuration performs regenerative braking, it is usually preferable that the motors 5 and 6 regenerate at a low rotational speed, but the electric power charged in the power storage devices 12 and 13 If the amount is high, it will be overcharged. Therefore, in-wheel motor 1 according to the present invention, when the amount of electric power charged in power storage devices 12 and 13 is low, the charged electric power with the rotational speed of each motor 5 and 6 being the rotational speed with a low total loss. When the amount is high, the motors 5 and 6 are configured so that the total loss is regenerated at a large rotational speed. With such a configuration, the regenerative energy is changed to thermal energy by the motors 5 and 6, so that overcharging can be suppressed or prevented.
  • FIG. 10 is another configuration example in which the one-way clutch 34 is provided in the in-wheel motor 1 in the configuration example described above.
  • the one-way clutch 34 is provided on the ring gear 9 ⁇ / b> R in the planetary gear mechanism 9.
  • the one-way clutch 34 is configured to allow the second motor 6 to rotate in the direction in which the wheel 2 is driven, and to suppress rotation in the opposite direction, that is, rotation in the direction in which the second motor 6 is regenerated. It has been done. Therefore, when the second motor 6 is not driven as shown in the alignment chart shown in FIG. 11, the rotation speed of the carrier 9 ⁇ / b> R, that is, the rotation speed of the wheel 2 is determined according to the rotation speed of the first motor 5.
  • the rotation speed of the first motor 5 when the rotation speed of the first motor 5 is high or when the temperature of the first motor 5 is high and the rotation speed is limited, as shown in FIG.
  • the rotational speed of the first motor 5 By rotating the first motor 5 at a constant speed, the rotational speed of the first motor 5 can be reduced while keeping the rotational speed of the carrier 9C constant. That is, the second motor 6 can function as torque assist for the first motor 5.
  • a third motor is provided in addition to the second motor 6 on the outer peripheral side of the ring gear 9R, the third motor is driven to assist the torque when the temperature of the second motor 6 rises. As a result, temperature rises of the first motor 5 and the second motor 6 can be suppressed.
  • the present invention is not limited to the above-described configuration.
  • a so-called double pinion gear provided may be used. In that case, what is necessary is just to make the rotation direction of the 2nd motor for driving a wheel the contrary to the structural example mentioned above.
  • the control example which considered the temperature of the motor was shown in the control example mentioned above, you may detect and control the temperature of an inverter, for example.
  • the first motor 5 is mainly driven.
  • the one-way clutch 34 is provided in the sun gear 9S, and the first motor 5 is connected to the second motor 6. You may comprise so that a torque may be assisted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Provided is an in-wheel motor vehicle which improves on the installability of a motor without reducing the output torque demanded by the vehicle. In an in-wheel motor vehicle which has a plurality of drive-use electric motors inside a wheel, the plurality of drive-use electric motors at least comprises a first electric motor (5) disposed coaxially with the rotational shaft of the wheel, and second electric motors (6,7,8) which are disposed at the same position in the axial direction of the wheel as the first electric motor (5). A planetary gear mechanism (9) comprising a sun gear (9S) connected to the output shaft of the first electric motor (5), and a ring gear (9R) to which power from the second electric motors (6,7,8) is transmitted is disposed inside the wheel.

Description

インホイールモータ車In-wheel motor car
 この発明は、駆動輪のホイールの内部にモータを設けることによって車両の駆動力を得るように構成されたインホイールモータ車に関するものである。 The present invention relates to an in-wheel motor vehicle configured to obtain a driving force of a vehicle by providing a motor inside a wheel of a driving wheel.
 内燃機関を動力源とした車両に代えて電動機を動力源とした電気自動車などが開発されている。その電気自動車のうち、車輪毎あるいは前輪と後輪とのいずれかのホイールの内部にモータを搭載した、いわゆるインホイールモータを利用した車両が開発されている。インホイールモータは、車両の駆動力を得るために高トルクを出力することができるもの、すなわち大型のモータが要求される一方、モータを搭載するスペースがホイールの内部に限られていることから、出力することのできるトルクに限度がある。また、高トルクを出力することによって電気抵抗などを要因とする発熱量が高くなってしまい、モータの特性あるいは耐久性が低下してしまう可能性がある。 An electric vehicle using an electric motor as a power source has been developed instead of a vehicle using an internal combustion engine as a power source. Among the electric vehicles, a vehicle using a so-called in-wheel motor, in which a motor is mounted in each wheel or in the front wheel or the rear wheel, has been developed. The in-wheel motor is capable of outputting a high torque to obtain the driving force of the vehicle, that is, a large motor is required, while the space for mounting the motor is limited to the inside of the wheel. There is a limit to the torque that can be output. In addition, by outputting a high torque, the amount of heat generated due to electrical resistance or the like becomes high, and the motor characteristics or durability may be reduced.
 特開2008-44434号公報には、タイロッドの車輪側の端部に連結されるボールジョイントおよびブレーキキャリパーが設けられている車輪にモータを搭載したインホイールモータが記載されている。このインホイールモータは、車輪の回転中心から径方向にオフセットしてモータを搭載し、そのモータの回転軸と車輪の回転軸とを一致させるために、モータの出力軸にカウンタギヤを設け、一端にそのカウンタギヤと噛み合うギヤが連結され他端に遊星歯車機構を構成するサンギヤが連結されたシャフトが設けられている。 Japanese Patent Application Laid-Open No. 2008-44434 describes an in-wheel motor in which a motor is mounted on a wheel provided with a ball joint and a brake caliper that are connected to a wheel side end of a tie rod. This in-wheel motor is mounted with a motor offset in the radial direction from the rotation center of the wheel, and a counter gear is provided on the output shaft of the motor in order to match the rotation axis of the motor with the rotation axis of the wheel. A shaft is connected to a gear that meshes with the counter gear and the other end is connected to a sun gear constituting a planetary gear mechanism.
 また、特開2007-269209号公報には、車輪の回転軸と同軸上にモータを設け、そのモータから軸線方向および径方向にオフセットした位置に他のモータを設けたインホイールモータが記載されている。このインホイールモータは、モータと他のモータとを反対に回転させることによって、車体の上下動を減衰させることができるように構成されており、そのため、ショックアブソーバを設ける必要が無く設計自由度を向上させることができるものである。 Japanese Patent Application Laid-Open No. 2007-269209 describes an in-wheel motor in which a motor is provided coaxially with the rotating shaft of a wheel and another motor is provided at a position offset from the motor in the axial direction and the radial direction. Yes. This in-wheel motor is configured so that the vertical movement of the vehicle body can be damped by rotating the motor and the other motor in the opposite direction. Therefore, there is no need to provide a shock absorber and the degree of freedom in design is increased. It can be improved.
 さらに、特開2010-280295号公報には、モータの効率が良好な運転領域でモータを駆動させるために、モータとタイヤとの間の動力伝達経路を接続および遮断することができるように、タイヤが所定回転数未満で回転するときに動力を伝達する第1遠心クラッチと、モータが所定回転数以上で回転するときに動力を伝達する第2遠心クラッチと、タイヤのトルクをモータに伝達するワンウェイクラッチとを備えたインホイールモータが記載されている。 Further, Japanese Patent Laid-Open No. 2010-280295 discloses a tire so that a power transmission path between the motor and the tire can be connected and disconnected in order to drive the motor in an operation region where the motor efficiency is good. A first centrifugal clutch that transmits power when the motor rotates below a predetermined rotational speed, a second centrifugal clutch that transmits power when the motor rotates at a predetermined rotational speed or more, and a one-way that transmits tire torque to the motor An in-wheel motor with a clutch is described.
 さらにまた、特開2009-154723号公報および特開2008-125329号公報には、モータに接続された蓄電装置の蓄電容量(SOC)や蓄電装置の温度あるいはモータの温度に応じてモータの出力や回生量を制限する装置が記載されている。そして、特開2010-243327号公報および特開2004-324613号公報には、ナビゲーション装置により走行予定経路を読み取り、その走行予定経路からバッテリやモータの発熱量を予測する装置が記載されており、特に特開2004-324613号公報に記載された装置は、予測されたモータの発熱量に基づいて事前にモータの出力を制限し、もしくは冷却量を増加させるように構成されている。 Furthermore, Japanese Patent Application Laid-Open Nos. 2009-154723 and 2008-125329 disclose the output of the motor according to the storage capacity (SOC) of the power storage device connected to the motor, the temperature of the power storage device, or the temperature of the motor. An apparatus for limiting the amount of regeneration is described. Japanese Patent Application Laid-Open Nos. 2010-243327 and 2004-324613 describe a device that reads a planned travel route by a navigation device and predicts a heat generation amount of a battery or a motor from the planned travel route, In particular, the device described in Japanese Patent Application Laid-Open No. 2004-324613 is configured to limit the motor output in advance or increase the cooling amount based on the predicted heat generation amount of the motor.
 上述したようにインホイールモータは、モータやギヤトレーンをホイールの内部に搭載するので、高トルクを出力することのできる大型のモータを搭載することが困難である。そのため、特開2008-44434号公報に記載されたインホイールモータは、カウンタギヤを設けることにより車輪の回転軸とモータの回転軸とをずらすことによって、モータの径を大きくして出力トルクを増大させるように構成され、また特開2007-269209号公報に記載されたインホイールモータは、車輪の回転軸と同一軸上にモータを設け、そのモータから軸線方向および径方向にオフセットした位置に他のモータを設けることによって、二つのモータで車両に要求される出力トルクを得るように構成されている。しかしながら、特開2008-44434号公報および特開2007-269209号公報に記載されたようにモータを径方向にオフセットすると、回転軸をオフセットさせるためのギヤトレーンを有することとなり、その結果、そのギヤトレーンを搭載する軸線方向のスペースが必要となる。 As described above, since an in-wheel motor has a motor and a gear train mounted inside the wheel, it is difficult to mount a large motor capable of outputting high torque. For this reason, the in-wheel motor described in Japanese Patent Application Laid-Open No. 2008-44434 increases the output torque by increasing the motor diameter by shifting the wheel rotation shaft and the motor rotation shaft by providing a counter gear. The in-wheel motor described in Japanese Patent Application Laid-Open No. 2007-269209 is provided with a motor on the same axis as the rotation axis of the wheel, and other than the position offset from the motor in the axial direction and the radial direction. By providing this motor, the two motors are configured to obtain the output torque required for the vehicle. However, when the motor is offset in the radial direction as described in Japanese Patent Application Laid-Open Nos. 2008-44434 and 2007-269209, a gear train for offsetting the rotation shaft is provided. A space in the axial direction to be mounted is required.
 この発明は上記の技術的課題に着目してなされたものであり、車両に要求される出力トルクを低下させることなく、モータの搭載性を向上させることができるインホイールモータ車を提供することを目的とするものである。 The present invention has been made paying attention to the above technical problem, and provides an in-wheel motor vehicle capable of improving the mountability of the motor without reducing the output torque required for the vehicle. It is the purpose.
 上記の目的を達成するために、この発明は、ホイールの内部に複数の駆動用電動機を有したインホイールモータ車において、前記複数の駆動用電動機は、前記ホイールの回転軸と同軸上に設けられた第1電動機と、前記ホイールの軸線方向における前記第1電動機と同一の位置に配置された第2電動機とを少なくとも有し、前記第1電動機の出力軸と連結されたサンギヤと、前記第2電動機の動力が伝達されるリングギヤとを有する遊星歯車機構が前記ホイールの内部に設けられていることを特徴とするものである。 In order to achieve the above object, the present invention provides an in-wheel motor vehicle having a plurality of drive motors inside a wheel, wherein the plurality of drive motors are provided coaxially with a rotation shaft of the wheel. A first gear and at least a second motor disposed at the same position as the first motor in the axial direction of the wheel, and a sun gear connected to the output shaft of the first motor; A planetary gear mechanism having a ring gear to which the power of the electric motor is transmitted is provided inside the wheel.
 また、この発明は、上記の発明において、前記リングギヤに車両が前進走行する方向に前記第2電動機が駆動した場合に動力を伝達するワンウェイクラッチが設けられていることを特徴とするインホイールモータ車である。 Further, the present invention provides the in-wheel motor vehicle according to the above-described invention, wherein a one-way clutch that transmits power when the second electric motor is driven in a direction in which the vehicle travels forward is provided on the ring gear. It is.
 さらに、この発明は、上記の発明において、前記リングギヤの外周面に、前記第2電動機の出力軸に連結されたギヤと噛み合う複数の歯が形成されていることを特徴とするインホイールモータ車である。 Furthermore, the present invention is the in-wheel motor vehicle according to the above invention, wherein a plurality of teeth meshing with a gear connected to an output shaft of the second electric motor are formed on the outer peripheral surface of the ring gear. is there.
 さらにまた、この発明は、前記第1電動機と前記第2電動機とのそれぞれに通電する電力を制御する電子制御装置を更に備え、該電子制御装置は、前記ホイールから出力する要求トルクに基づいて前記第1電動機と前記第2電動機との出力トルクを算出するトルク算出手段と、該トルク算出手段によって算出された各電動機のトルクに基づいて前記各電動機の回転数を算出する回転数算出手段とを備えていることを特徴とするインホイールモータ車である。 Furthermore, the present invention further includes an electronic control device that controls electric power supplied to each of the first electric motor and the second electric motor, and the electronic control device is based on the required torque output from the wheel. Torque calculation means for calculating output torques of the first motor and the second motor, and rotation speed calculation means for calculating the rotation speed of each motor based on the torque of each motor calculated by the torque calculation means. It is an in-wheel motor vehicle characterized by having.
 さらにまた、この発明は、上記の発明において、前記回転数算出手段は、前記各電動機の状態に基づいて該各電動機のそれぞれの回転数を変更する手段を更に備えていることを特徴とするインホイールモータ車である。 Furthermore, in the present invention according to the present invention, the rotational speed calculation means further includes means for changing the rotational speed of each electric motor based on the state of each electric motor. It is a wheel motor car.
 さらにまた、この発明は、上記の発明において、前記各電動機の状態は、該各電動機の温度状態を含むことを特徴とするインホイールモータ車である。 Furthermore, the present invention is the in-wheel motor vehicle according to the above invention, wherein the state of each electric motor includes a temperature state of each electric motor.
 さらにまた、この発明は、上記の発明において、前記各電動機の温度状態は、該各電動機の駆動を制限する温度に基づく所定温度と該各電動機の温度とを比較して判断され、前記回転数算出手段は、前記第1電動機と前記第2電動機とのいずれか一方の温度が、前記所定温度より高い場合に、該所定温度より温度が高い電動機の回転数を動力損失が小さい回転数として、他方の電動機の回転数を前記所定温度より温度が高い電動機の回転数の低下を補うように回転させる手段を更に備えていることを特徴とするインホイールモータ車である。 Furthermore, according to the present invention, in the above invention, the temperature state of each electric motor is determined by comparing a predetermined temperature based on a temperature that restricts driving of each electric motor with the temperature of each electric motor, and When the temperature of any one of the first electric motor and the second electric motor is higher than the predetermined temperature, the calculating means sets the rotational speed of the motor having a temperature higher than the predetermined temperature as the rotational speed with a small power loss. The in-wheel motor vehicle further comprises means for rotating the rotation speed of the other motor so as to compensate for a decrease in the rotation speed of the motor whose temperature is higher than the predetermined temperature.
 さらにまた、この発明は、上記の発明において、前記各電動機のそれぞれに該各電動機に供給する電力を制御する制御装置を更に備え、前記回転数算出手段は、前記制御装置の温度に基づいて前記各電動機の回転数を変更する手段を更に備えていることを特徴とするインホイールモータ車である。 Furthermore, the present invention further includes a control device that controls electric power supplied to each electric motor in each of the electric motors according to the above-described invention, wherein the rotation speed calculation means is based on the temperature of the control device. The in-wheel motor vehicle further includes means for changing the rotational speed of each electric motor.
 さらにまた、この発明は、上記の発明において、前記各電動機に電力を供給もしくは各電動機により発電された電力を充電する蓄電装置を更に備え、前記回転数算出手段は、前記蓄電装置の充電状態に応じて各電動機の回転数を算出する手段を更に備えていることを特徴とするインホイールモータ車である。 Furthermore, the present invention further includes a power storage device that supplies electric power to each electric motor or charges electric power generated by each electric motor in the above-described invention, wherein the rotation speed calculation means is in a charged state of the electric power storage device. Accordingly, the in-wheel motor vehicle further comprises means for calculating the rotational speed of each electric motor.
 さらにまた、この発明は、上記の発明において、車両が走行する走行経路を提示するナビゲーション装置を更に備え、前記電子制御装置は、該ナビゲーション装置によって提示された走行経路を走行した場合の各電動機の発熱量を予測する手段と、該各電動機の予測された発熱量に基づいて前記各電動機の回転数を算出する手段とを備えていることを特徴とするインホイールモータ車である。 Furthermore, the present invention further includes a navigation device that presents a travel route on which the vehicle travels in the above-described invention, and the electronic control device is configured to provide each motor when traveling on the travel route presented by the navigation device. An in-wheel motor vehicle comprising: means for predicting a heat generation amount; and means for calculating the rotation speed of each electric motor based on the predicted heat generation amount of each electric motor.
 この発明によれば、ホイールの内部に、ホイールの回転軸と同軸上に設けられた第1電動機と、ホイールの軸線方向における第1電動機と同一の位置に配置された第2電動機との少なくとも双方の電動機が設けられ、第1電動機と連結されたサンギヤと第2電動機と連結されたリングギヤとを有する遊星歯車機構がホイールの内部に設けられている。そのため、ホイールの軸線方向において、電動機とホイールの回転軸とを合わせるためのギヤなどを設けることなく、各電動機を配置することができる。その結果、電動機を複数設けることができ、かつそれぞれの電動機の動力を遊星歯車機構に入力することによって駆動することができるので、複数の電動機の全体としての熱容量を増大させることができる。 According to this invention, at least both of the first electric motor provided coaxially with the rotating shaft of the wheel inside the wheel and the second electric motor arranged at the same position as the first electric motor in the axial direction of the wheel. A planetary gear mechanism having a sun gear connected to the first motor and a ring gear connected to the second motor is provided inside the wheel. Therefore, each electric motor can be arranged in the axial direction of the wheel without providing a gear or the like for aligning the electric motor and the rotating shaft of the wheel. As a result, a plurality of electric motors can be provided and can be driven by inputting the power of each electric motor to the planetary gear mechanism, so that the overall heat capacity of the plurality of electric motors can be increased.
 また、この発明によれば、車両が走行する方向に第2電動機が駆動した場合に動力を伝達するワンウェイクラッチがリングギヤに設けられている。したがって、第1電動機のトルクを第2電動機でアシストする際に利用することができる。また、第2電動機を過剰に駆動させずに走行できるので、第2電動機を駆動させることによる電気的なもしくは機械的なエネルギ損失を低下させることができる。 Further, according to the present invention, the ring gear is provided with the one-way clutch that transmits power when the second electric motor is driven in the direction in which the vehicle travels. Therefore, it can be used when assisting the torque of the first motor with the second motor. Moreover, since it can drive | work without driving a 2nd motor excessively, the electrical or mechanical energy loss by driving a 2nd motor can be reduced.
 さらに、この発明によれば、リングギヤの外周面に、第2電動機の出力軸に連結されたギヤと噛み合う複数の歯が形成されている。したがって、第2電動機からリングギヤに動力を伝達するためのギヤを遊星歯車機構と軸線方向において同一位置に配置することができる。そのため、軸線方向において電動機を配置する箇所を確保することができるので、複数の電動機を設けることができ、かつそれぞれの電動機を軸線方向に大きくすることができる。その結果、電動機全体としての体積を大きくすることができるとともに、熱容量を増大させることができる。 Furthermore, according to the present invention, a plurality of teeth that mesh with the gear connected to the output shaft of the second electric motor are formed on the outer peripheral surface of the ring gear. Therefore, the gear for transmitting power from the second electric motor to the ring gear can be arranged at the same position in the axial direction as the planetary gear mechanism. Therefore, since the location which arrange | positions an electric motor in an axial direction can be ensured, a some electric motor can be provided and each electric motor can be enlarged in an axial direction. As a result, the volume of the entire electric motor can be increased and the heat capacity can be increased.
 さらにまた、この発明によれば、上記の構成に加え、第1電動機と第2電動機とを制御する電子制御装置が備えられている。また、その電子制御装置は、ホイールから出力する要求トルクに基づいて各電動機の出力トルクを算出するトルク算出手段と、そのトルク算出手段によって算出された各電動機のトルクに基づいて各電動機の回転数を算出する回転数算出手段とを備えている。したがって、ホイールから出力する要求トルクに基づいて各電動機のトルクおよび回転数を算出することができる。 Furthermore, according to the present invention, in addition to the above configuration, an electronic control device for controlling the first electric motor and the second electric motor is provided. In addition, the electronic control unit includes a torque calculating unit that calculates an output torque of each electric motor based on a request torque output from the wheel, and a rotation speed of each electric motor based on the torque of each electric motor calculated by the torque calculating unit. And a rotation speed calculation means for calculating. Therefore, the torque and rotation speed of each electric motor can be calculated based on the required torque output from the wheel.
 さらにまた、この発明によれば、回転数算出手段は、各電動機の状態に基づいて各電動機のそれぞれの回転数を変更する手段を更に備えている。したがって、電動機の状態が悪化している電動機の回転数を負荷が小さくするように変更することができる。 Furthermore, according to the present invention, the rotation speed calculation means further includes means for changing the rotation speed of each electric motor based on the state of each electric motor. Therefore, it is possible to change the rotation speed of the motor whose state of the motor is deteriorated so that the load is reduced.
 さらにまた、この発明によれば、各電動機の状態は、各電動機の温度状態を含むので、各電動機のいずれかの温度が高い場合などにその電動機の回転数を変更することで、電動機の温度上昇を抑制もしくは防止することができる。 Furthermore, according to the present invention, since the state of each motor includes the temperature state of each motor, the temperature of the motor can be changed by changing the number of revolutions of the motor when the temperature of any of the motors is high. The rise can be suppressed or prevented.
 さらにまた、この発明によれば、各電動機の温度状態は、各電動機の駆動を制限する温度に基づく所定温度とその各電動機の温度を比較して判断され、回転数算出手段は、第1電動機と第2電動機とのいずれか一方の温度が、所定温度より高い場合に、所定温度より温度が高い電動機の回転数を動力損失が小さい回転数として、他方の電動機の回転数を所定温度より温度が高い電動機の回転数の低下を補うように回転させる手段を更に備えている。そのため、車両の出力回転数を維持しつつ、所定温度より温度の高い電動機の温度上昇を抑制もしくは防止することができる。 Furthermore, according to the present invention, the temperature state of each electric motor is determined by comparing a predetermined temperature based on the temperature that restricts the driving of each electric motor with the temperature of each electric motor, and the rotation speed calculating means includes the first electric motor. When the temperature of either one of the second motor and the second motor is higher than a predetermined temperature, the rotational speed of the motor having a temperature higher than the predetermined temperature is set to a rotational speed with a small power loss, and the rotational speed of the other motor is set to a temperature higher than the predetermined temperature. Further, a means for rotating the motor so as to compensate for a decrease in the rotational speed of the motor having a high value is further provided. Therefore, it is possible to suppress or prevent an increase in the temperature of the electric motor having a temperature higher than the predetermined temperature while maintaining the output rotational speed of the vehicle.
 さらにまた、この発明によれば、各電動機のそれぞれに各電動機に供給する電力を制御する制御装置を更に備え、回転数算出手段は、制御装置の温度に基づいて各電動機の回転数を変更する手段を更に備えているので、各制御装置のいずれかの温度が高い場合などにその制御装置から電力が供給される電動機の回転数を変更することで、制御装置の温度上昇を抑制もしくは防止することができる。 Furthermore, according to the present invention, each electric motor is further provided with a control device that controls the electric power supplied to each electric motor, and the rotation speed calculation means changes the rotation speed of each electric motor based on the temperature of the control device. Since it is further provided with means, the temperature rise of the control device is suppressed or prevented by changing the number of revolutions of the motor to which power is supplied from the control device when the temperature of any of the control devices is high. be able to.
 さらにまた、この発明によれば、各電動機に電力を供給もしくは各電動機により発電された電力を充電する蓄電装置を更に備え、回転数算出手段は、蓄電装置の充電状態に応じて各電動機の回転数を算出する手段を更に備えているので、蓄電装置が過充電となることを抑制もしくは防止することができる。 Furthermore, according to the present invention, the electric power storage device is further provided for supplying electric power to each electric motor or charging electric power generated by each electric motor, and the rotation speed calculating means rotates the electric motor according to the charging state of the electric power storage device. Since the means for calculating the number is further provided, it is possible to suppress or prevent the power storage device from being overcharged.
 さらにまた、この発明によれば、車両が走行する走行経路を提示するナビゲーションシステムを更に備え、電子制御装置は、そのナビゲーションシステムによって提示された走行経路を走行した場合の各電動機の発熱量を予測する手段と、その各電動機の予測された発熱量に基づいて各電動機の回転数を算出する手段とを備えているので、提示された走行経路を走行する場合に、予測された発熱量の許容される範囲内で、各電動機の回転数を動力損失が低い回転数とすることができる。 Furthermore, according to the present invention, the electronic control device further includes a navigation system that presents a travel route on which the vehicle travels, and the electronic control device predicts a heat generation amount of each electric motor when traveling on the travel route presented by the navigation system. And means for calculating the number of revolutions of each motor based on the predicted amount of heat generated by each motor. Within the range, the rotation speed of each electric motor can be set to a rotation speed with low power loss.
この発明に係るインホイールモータの構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of the in-wheel motor which concerns on this invention. 図1におけるII-II断面図である。It is II-II sectional drawing in FIG. 各モータとキャリアとの回転数の関係を示す共線図である。It is a collinear diagram which shows the relationship of the rotation speed of each motor and a carrier. 図1の構成のインホイールモータの制御例を説明するためのフローチャートである。It is a flowchart for demonstrating the example of control of the in-wheel motor of the structure of FIG. 第1モータの効率マップである。It is an efficiency map of the 1st motor. 第2モータの効率マップである。It is an efficiency map of the 2nd motor. 第1モータおよび第2モータの出力トルクと効率との関係を示すグラフである。It is a graph which shows the relationship between the output torque of a 1st motor and a 2nd motor, and efficiency. 各モータの回転数を決定する制御例を説明するためのフローチャートである。It is a flowchart for demonstrating the example of control which determines the rotation speed of each motor. この発明に係るインホイールモータの他の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the other structural example of the in-wheel motor which concerns on this invention. この発明に係るインホイールモータの更に他の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the further another structural example of the in-wheel motor which concerns on this invention. そのインホイールモータにおける各モータとキャリアとの回転数の関係を示す共線図である。It is a collinear diagram which shows the relationship of the rotation speed of each motor and carrier in the in-wheel motor. 第2モータがトルクアシストとして機能することを説明するための共線図である。It is an alignment chart for demonstrating that a 2nd motor functions as torque assist.
 つぎにこの発明について具体的に説明する。図1および図2はこの発明に係るインホイールモータの構成例を説明するための模式図である。図に示すインホイールモータ1は、操舵輪に設けられたものであり、車両側からホイール2側に向けて配置されたタイロッドの端部と連結されるボールジョイント3とブレーキキャリパ4とが設けられている。そのため、これらの部材3,4が配置されている箇所を避けるように複数のモータ5,6,7,8と遊星歯車機構9が設けられている。具体的にその構成について説明すると、まず、ホイール2の回転軸と同一軸上に第1モータ・ジェネレータ(以下、単に第1モータ5と記す。)が設けられている。この第1モータ5は、従来知られた同期モータや誘導モータなどの交流モータであって、電動機としての機能と発電機としての機能とを有するものである。そして、第1モータ5の出力軸10には遊星歯車機構9が連結されている。 Next, the present invention will be specifically described. FIG. 1 and FIG. 2 are schematic views for explaining a configuration example of an in-wheel motor according to the present invention. The in-wheel motor 1 shown in the figure is provided on a steered wheel, and is provided with a ball joint 3 and a brake caliper 4 connected to an end of a tie rod arranged from the vehicle side toward the wheel 2 side. ing. Therefore, a plurality of motors 5, 6, 7, and 8 and a planetary gear mechanism 9 are provided so as to avoid a place where these members 3 and 4 are disposed. Specifically, the configuration will be described. First, a first motor / generator (hereinafter simply referred to as a first motor 5) is provided on the same axis as the rotation axis of the wheel 2. The first motor 5 is a conventionally known AC motor such as a synchronous motor or an induction motor, and has a function as an electric motor and a function as a generator. A planetary gear mechanism 9 is connected to the output shaft 10 of the first motor 5.
 ここで遊星歯車機構9の構成について簡単に説明すると、遊星歯車機構9の入力軸、すなわち第1モータ5の出力軸10と一体に連結されたサンギヤ9Sと、そのサンギヤ9Sに噛み合って自転しつつ入力軸を回転中心として公転する複数のピニオンギヤ9Pと、それらのピニオンギヤ9P,9Pを回転自在に保持して、ピニオンギヤ9Pが公転することによって遊星歯車機構9から動力を出力するキャリア9Cと、各ピニオンギヤ9P,9Pと噛み合う内歯車を備えたリングギヤ9Rとによって遊星歯車機構9が構成されている。 Here, the configuration of the planetary gear mechanism 9 will be briefly described. A sun gear 9S integrally connected to the input shaft of the planetary gear mechanism 9, that is, the output shaft 10 of the first motor 5, and the sun gear 9S meshing with the sun gear 9S and rotating. A plurality of pinion gears 9P that revolve around the input shaft, a carrier 9C that holds the pinion gears 9P and 9P rotatably, and outputs power from the planetary gear mechanism 9 when the pinion gear 9P revolves, and each pinion gear A planetary gear mechanism 9 is configured by the ring gear 9R having an internal gear meshing with the gear 9P and 9P.
 また、ホイール2の軸線方向における第1モータ5と同一の位置で第1モータ5の外周側に第1モータ5と同様の構成の複数のモータ・ジェネレータ(以下、単に複数のモータ6,7,8と記す。)が配置されている。そして、それら複数のモータ6,7,8のそれぞれの出力軸に設けられたギヤ11と遊星歯車機構9におけるリングギヤ9Rとが連結されている。つまり、リングギヤ9Rの外周側には、複数のモータ6,7,8のそれぞれの出力軸に設けられたギヤ11と噛み合う複数の歯が形成されている。 A plurality of motor generators (hereinafter simply referred to as a plurality of motors 6, 7, etc.) having the same configuration as the first motor 5 on the outer peripheral side of the first motor 5 at the same position as the first motor 5 in the axial direction of the wheel 2. 8) is arranged. A gear 11 provided on each output shaft of the plurality of motors 6, 7, and 8 is connected to a ring gear 9 </ b> R in the planetary gear mechanism 9. That is, a plurality of teeth that mesh with the gears 11 provided on the output shafts of the plurality of motors 6, 7, and 8 are formed on the outer peripheral side of the ring gear 9 </ b> R.
 したがって、上述した構成のインホイールモータ1は、遊星歯車機構9やギヤ11をホイール2の軸線方向で同一位置とすることができ、その結果、第1モータ5と複数のモータ6,7,8とを設け、かつ各モータ5,6,7,8の軸線方向の大きさを大きくすることができる。そのため、車両の駆動力を得るためのモータ5,6,7,8の全体としての体積を大きくすることができるので、各モータ5,6,7,8の全体としての熱容量を増大させることができる。 Therefore, the in-wheel motor 1 having the above-described configuration can place the planetary gear mechanism 9 and the gear 11 in the same position in the axial direction of the wheel 2, and as a result, the first motor 5 and the plurality of motors 6, 7, 8. And the size of each motor 5, 6, 7, 8 in the axial direction can be increased. As a result, the overall volume of the motors 5, 6, 7, and 8 for obtaining the driving force of the vehicle can be increased, so that the overall heat capacity of the motors 5, 6, 7, and 8 can be increased. it can.
 また、上述した各モータ5,6,7,8は、通電される電力に応じて駆動するものであって、各モータ5,6,7,8のそれぞれにはインバータ12,13,14,15が連結され、それらのインバータ12,13,14,15に蓄電装置16が連結されている。さらに、インバータ12,13,14,15には、電子制御装置17が連結されている。電子制御装置17は、予め実験などで定められた種々のマップや演算式などが記憶されており、その電子制御装置17に入力された信号に基づいて各インバータ12,13,14,15に供給する電力を制御するように構成されている。ここで、電子制御装置17に接続されて信号を入力するセンサの例を挙げると、運転者の操作により変化するアクセルの踏み込み量を検知するアクセル開度センサ、各モータ5,6,7,8の温度を検出する温度センサ18,19,20,21、各モータ12,13,14,15の回転数を検出する回転数センサ22,23,24,25、キャリア9Cの回転数を検出する車速センサ26、各インバータの温度を検出する温度センサ27,28,29,30、蓄電装置16の温度を検出するセンサ31、蓄電装置16の充電量(SOC:State of Charge )を検出するセンサ32などがある。そのため、各センサから入力された信号から各モータ5,6,7,8から出力するトルクあるいは回転数などを定めて、そのトルクや回転数となるようにインバータ12,13,14,15を制御することができる。 The motors 5, 6, 7, and 8 described above are driven in accordance with the energized power, and the motors 5, 6, 7, and 8 have inverters 12, 13, 14, 15 respectively. Are connected, and the power storage device 16 is connected to the inverters 12, 13, 14, and 15. Further, an electronic control unit 17 is connected to the inverters 12, 13, 14, 15. The electronic control unit 17 stores various maps and arithmetic expressions determined in advance through experiments and the like, and supplies them to the inverters 12, 13, 14, and 15 based on signals input to the electronic control unit 17. It is comprised so that the electric power to perform may be controlled. Here, as an example of a sensor connected to the electronic control unit 17 and inputting a signal, an accelerator opening sensor that detects the amount of depression of the accelerator that changes according to the driver's operation, and each of the motors 5, 6, 7, 8 Temperature sensors 18, 19, 20, 21 for detecting the temperature of the motor, speed sensors 22, 23, 24, 25 for detecting the rotational speed of the motors 12, 13, 14, 15, and vehicle speed for detecting the rotational speed of the carrier 9C. Sensor 26, temperature sensors 27, 28, 29, and 30 that detect the temperature of each inverter, sensor 31 that detects the temperature of power storage device 16, sensor 32 that detects the amount of charge (SOC: State 充電 of Charge16) of power storage device 16, and the like There is. Therefore, the torque or rotational speed output from each of the motors 5, 6, 7, and 8 is determined from the signals input from the sensors, and the inverters 12, 13, 14, and 15 are controlled so as to obtain the torque and rotational speed. can do.
 上述したように構成されたインホイールモータ1は、第1モータ5と複数のモータ6,7,8とに連結された遊星歯車機構9から車両の出力トルクが出力される。つまり、第1モータ5および複数のモータ6,7,8の回転数に応じて出力される回転数を定めることができる。以下の説明において、便宜上、第1モータ5の外周側に第2モータ6のみが設けられた構成を例に挙げて説明する。図3は、第1モータ5と遊星歯車機構9におけるキャリア9Cと第2モータ6との回転数の関係を示す共線図であって、図における縦軸の左側から第1モータ5、キャリア9C、第2モータ6の回転数を示している。図における横軸は、回転数が0(ゼロ)であることを示し、この横軸より上側が車両を前進走行させるときの回転方向を示し、下側が後進走行するときの回転方向を示しおり、横軸から離れるにつれて回転数が増加していることを示す。なお、縦軸同士の間隔は、第1モータ5とキャリア9Cとの変速比a、キャリア9Cと第2モータ6との変速比bを示している。 The in-wheel motor 1 configured as described above outputs vehicle output torque from the planetary gear mechanism 9 connected to the first motor 5 and the plurality of motors 6, 7, 8. That is, the rotation speed output according to the rotation speed of the first motor 5 and the plurality of motors 6, 7, 8 can be determined. In the following description, for the sake of convenience, a configuration in which only the second motor 6 is provided on the outer peripheral side of the first motor 5 will be described as an example. FIG. 3 is a collinear diagram showing the rotational speed relationship between the carrier 9C and the second motor 6 in the first motor 5 and the planetary gear mechanism 9, and the first motor 5 and the carrier 9C from the left side of the vertical axis in the figure. The rotational speed of the second motor 6 is shown. The horizontal axis in the figure indicates that the rotational speed is 0 (zero), the upper side from the horizontal axis indicates the rotational direction when the vehicle travels forward, and the lower side indicates the rotational direction when travels backward. It shows that the number of rotations increases as the distance from the horizontal axis increases. The intervals between the vertical axes indicate the speed ratio a between the first motor 5 and the carrier 9C and the speed ratio b between the carrier 9C and the second motor 6.
 図3に示す共線図のようにキャリア9Cの回転数は、第1モータ5と第2モータ6との回転数の関係により定まる。したがって、第1モータ5の回転数と第2モータ6との回転数とが図に示すIの状態、すなわち第1モータ5が低回転数で第2モータ6が高回転数である場合であっても、図に示すIIの状態、すなわち第1モータ5が高回転数で第2モータ6が低回転数である場合であってもキャリア9Cの回転数を同一とすることができる。つまり、キャリア9Cの回転数を一定として、第1モータ5と第2モータ6との回転数を変更することができる。 3, the rotational speed of the carrier 9 </ b> C is determined by the relationship between the rotational speeds of the first motor 5 and the second motor 6. Therefore, the rotation speed of the first motor 5 and the rotation speed of the second motor 6 are in the state I shown in the figure, that is, the first motor 5 is at a low rotation speed and the second motor 6 is at a high rotation speed. Even in the state II shown in the drawing, that is, when the first motor 5 has a high rotation speed and the second motor 6 has a low rotation speed, the rotation speed of the carrier 9C can be made the same. That is, the rotation speeds of the first motor 5 and the second motor 6 can be changed while the rotation speed of the carrier 9C is constant.
 つぎに上述した構成のインホイールモータ1の制御について図4に示すフローチャートを参照しつつ説明する。まず、アクセル開度センサによって検出されたアクセル開度に基づいて車両に要求されている出力トルク(以下、単に要求トルクと記す。)を算出し、その要求トルクに応じて各モータ5,6の出力トルクを算出する(ステップS1)。具体的には、式1に表されているように要求トルクは、第1モータ5の出力トルクと第2モータ6の出力トルクとを合算したものであり、式2に示すように各モータ5,6の出力トルクに各モータ5,6とキャリア9Cとの変速比を積算した値が同一の値となるので、式1と式2とから各モータ5,6の出力トルクを算出することができる。つまり、第1モータ5のトルクが式3により算出され、第2モータ6のトルクが式4により算出される。
 Tall=TmgA+TmgB   …(1)
 TmgA*a=TmgB*b    …(2)
 TmgA=Tall*b/(a+b)…(3)
 TmgB=Tall*a/(a+b)…(4)
Next, control of the in-wheel motor 1 having the above-described configuration will be described with reference to a flowchart shown in FIG. First, based on the accelerator opening detected by the accelerator opening sensor, an output torque required for the vehicle (hereinafter simply referred to as a required torque) is calculated, and each of the motors 5 and 6 is calculated according to the required torque. An output torque is calculated (step S1). Specifically, as shown in Equation 1, the required torque is the sum of the output torque of the first motor 5 and the output torque of the second motor 6, and as shown in Equation 2, each motor 5 , 6 and the output torque of each of the motors 5, 6 and the carrier 9C are the same value, so that the output torques of the motors 5, 6 can be calculated from the equations 1 and 2. it can. That is, the torque of the first motor 5 is calculated by Expression 3, and the torque of the second motor 6 is calculated by Expression 4.
Tall = TmgA + TmgB (1)
TmgA * a = TmgB * b (2)
TmgA = Tall * b / (a + b) (3)
TmgB = Tall * a / (a + b) (4)
 ついで、ステップS1で算出された各モータ5,6の出力トルクと車速センサ26で検出された車速とから、各モータ5,6の回転数と効率との関係を示すグラフを算出する(ステップS2)。具体的には、予め実験やシミュレーションなどによって用意されたモータの効率マップとステップS1で算出されたモータの出力トルクとから、モータの回転数と効率との関係を示すグラフを算出する。図5および図6は、各モータ5,6の効率マップの例を示したものであり、図に太線で示すトルクにおいて、図の右側が高効率であって、左側になるにつれて効率が低下することを示している。また、図7は、図に太線で示したトルクを出力する場合での出力トルクと効率との関係を示すグラフである。なお、第1モータ5と第2モータ6との回転数の関係は、車速からキャリア9Cの回転数Ncが算出され、そのキャリア9Cの回転数Ncと各変速比とから算出することができる。式5は、第1モータ5と第2モータ6との回転数の関係を算出するための式である。
 NmgB=(a+b)/a*(Nc-NmgA)+NmgA…(5)
Next, a graph indicating the relationship between the rotational speed of each motor 5 and 6 and the efficiency is calculated from the output torque of each motor 5 and 6 calculated in step S1 and the vehicle speed detected by the vehicle speed sensor 26 (step S2). ). Specifically, a graph indicating the relationship between the motor rotation speed and the efficiency is calculated from the motor efficiency map prepared in advance by experiments or simulations and the motor output torque calculated in step S1. FIGS. 5 and 6 show examples of the efficiency maps of the motors 5 and 6. In the torque indicated by the thick line in the figure, the right side of the figure is highly efficient, and the efficiency decreases as it becomes the left side. It is shown that. FIG. 7 is a graph showing the relationship between the output torque and the efficiency when the torque indicated by the bold line is output. The rotational speed relationship between the first motor 5 and the second motor 6 can be calculated from the rotational speed Nc of the carrier 9C from the vehicle speed and the rotational speed Nc of the carrier 9C and each gear ratio. Expression 5 is an expression for calculating the relationship between the rotational speeds of the first motor 5 and the second motor 6.
NmgB = (a + b) / a * (Nc−NmgA) + NmgA (5)
 式5から求められた第1モータ5と第2モータ6との回転数の関係となるように図7に示す第1モータ5と第2モータ6との横軸を合わせることによって、各モータ5,6の合計損失を図中で算出することができる。 Each motor 5 is obtained by matching the horizontal axes of the first motor 5 and the second motor 6 shown in FIG. 7 so that the rotational speed relationship between the first motor 5 and the second motor 6 obtained from Equation 5 is satisfied. , 6 can be calculated in the figure.
 そして、ステップS2で算出された出力トルクと効率との関係を示すグラフから、各モータ5,6の回転数を決定する(ステップS3)。通常、モータの回転数を決定する上では、第1モータ5と第2モータ6とのそれぞれの損失が小さい回転数、すなわち効率の良い回転数を定めるが、各モータ5,6の状態を考慮しての回転数を定めることが好ましい。そのため、ここでは、各モータ5,6の温度を検出してその温度状態に応じて各モータ5,6の回転数を決定する制御例について説明する。図8は、その制御例を説明するためのフローチャートであって、まず、第1モータ5の温度が所定温度以下か否かを算出する(ステップS31)。ここでの所定温度とは、第1モータ5の制限温度に余裕代、例えば0.9を積算した温度である。つまり、モータは、トルクを出力することによる銅損などによって発熱するので、算出されたトルクを出力して駆動した場合に、第1モータ5の温度が制限温度とならないように所定温度を定めている。 Then, the rotational speeds of the motors 5 and 6 are determined from the graph showing the relationship between the output torque calculated in step S2 and the efficiency (step S3). Usually, in determining the number of rotations of the motor, the number of rotations where the loss of each of the first motor 5 and the second motor 6 is small, that is, an efficient number of rotations is determined. It is preferable to determine the number of rotations. Therefore, here, a control example in which the temperatures of the motors 5 and 6 are detected and the rotation speeds of the motors 5 and 6 are determined according to the temperature state will be described. FIG. 8 is a flowchart for explaining the control example. First, it is calculated whether or not the temperature of the first motor 5 is equal to or lower than a predetermined temperature (step S31). Here, the predetermined temperature is a temperature obtained by adding a margin, for example, 0.9 to the limit temperature of the first motor 5. In other words, since the motor generates heat due to copper loss or the like by outputting torque, a predetermined temperature is set so that the temperature of the first motor 5 does not become the limit temperature when driven by outputting the calculated torque. Yes.
 第1モータ5の温度が所定温度より低くステップS31で肯定的に判断された場合は、第2モータ6の温度が所定温度以下か否かを判断する(ステップS32)。ここでの所定温度とは、ステップS31での所定温度と同様に第2モータ6の制限温度に余裕代、例えば0.9を積算した温度である。そして、ステップS32で肯定的に判断された場合、すなわち各モータ5,6の温度がそれぞれ所定温度以下である場合には、第1モータ5と第2モータ6との合計の損失が最小となる回転数で各モータ5,6を駆動させる(ステップS33)。つまり、図8に示すように各モータ5,6の損失を示す曲線同士が交わる回転数(以下、単に動作点Xと記す。)で各モータ5,6を回転させる。 If the temperature of the first motor 5 is lower than the predetermined temperature and an affirmative determination is made in step S31, it is determined whether or not the temperature of the second motor 6 is equal to or lower than the predetermined temperature (step S32). The predetermined temperature here is a temperature obtained by adding a margin, for example, 0.9 to the limit temperature of the second motor 6 in the same manner as the predetermined temperature in step S31. If the determination in step S32 is affirmative, that is, if the temperature of each of the motors 5 and 6 is not more than a predetermined temperature, the total loss of the first motor 5 and the second motor 6 is minimized. The motors 5 and 6 are driven at the rotational speed (step S33). That is, as shown in FIG. 8, the motors 5 and 6 are rotated at the number of rotations (hereinafter simply referred to as the operating point X) where the curves indicating the losses of the motors 5 and 6 intersect.
 それとは反対にステップS32で否定的に判断された場合は、第2モータ6の温度が高いので、第2モータ6の効率を優先して、すなわち第2モータ6の効率が良好となる回転数で各モータ5,6を駆動させる(ステップS34)。具体的には、第2モータ6の効率が良好でかつ第1モータ5の損失が増加する部分、すなわち図7に示す動作点Xより左側のY領域で、かつ第2モータ6の温度に応じた回転数で各モータ5,6を駆動させる。 On the other hand, if a negative determination is made in step S32, the temperature of the second motor 6 is high, so that the efficiency of the second motor 6 is prioritized, that is, the speed at which the efficiency of the second motor 6 is good. Then, the motors 5 and 6 are driven (step S34). Specifically, the efficiency of the second motor 6 is good and the loss of the first motor 5 increases, that is, in the Y region on the left side of the operating point X shown in FIG. 7 and according to the temperature of the second motor 6. The motors 5 and 6 are driven at the determined rotational speed.
 一方、ステップS31で否定的に判断された場合、すなわち第1モータ5の温度が所定温度より高い場合には、第2モータ6の温度が所定温度以下か否かを判断する(ステップS35)。このステップS35の判断は上記のステップS32と同様である。そして、ステップS35で肯定的に判断された場合、すなわち第2モータ6の温度が所定温度以下の場合は、第1モータ5の温度が高いので、第1モータ5の効率を優先して、すなわち第1モータ5の効率が良好となる回転数で各モータ5,6を駆動させる(ステップS36)。具体的には、第1モータ5の効率が良好でかつ第2モータ6の損失が増加する部分、すなわち図7に示す動作点Xより右側のZ領域で、かつ第1モータ5の温度に応じた回転数で各モータ5,6を駆動させる。 On the other hand, when a negative determination is made in step S31, that is, when the temperature of the first motor 5 is higher than the predetermined temperature, it is determined whether or not the temperature of the second motor 6 is equal to or lower than the predetermined temperature (step S35). The determination in step S35 is the same as that in step S32. If the determination in step S35 is affirmative, that is, if the temperature of the second motor 6 is equal to or lower than the predetermined temperature, the temperature of the first motor 5 is high, so that the efficiency of the first motor 5 is given priority. The motors 5 and 6 are driven at a rotational speed at which the efficiency of the first motor 5 is good (step S36). Specifically, the efficiency of the first motor 5 is good and the loss of the second motor 6 increases, that is, in the Z region on the right side of the operating point X shown in FIG. 7 and according to the temperature of the first motor 5. The motors 5 and 6 are driven at the determined rotational speed.
 それとは反対に、ステップS35で否定的に判断された場合は、各モータ5,6が所定温度以上であるので、要求トルクを出力することができない。そのため、各モータ5,6の出力トルクを低下させて、つまり車両の出力トルクに制限を設けて、各モータ5,6が出力することができる範囲内のトルクを出力する。その場合には、各モータ5,6の温度が高温であるので、第1モータ5と第2モータ6との合計損失が最小となる回転数で各モータ5,6を駆動させる。つまり、各モータ5,6が出力することができるトルクに基づいて算出された第1モータおよび第2モータの出力トルクと効率との関係を示すグラフ上での動作点X相当の回転数で各モータ5,6を駆動させる。 On the other hand, if a negative determination is made in step S35, the required torque cannot be output because the motors 5 and 6 are at a predetermined temperature or higher. Therefore, the output torque of the motors 5 and 6 is reduced, that is, the output torque of the vehicle is limited, and torque within a range that can be output by the motors 5 and 6 is output. In this case, since the motors 5 and 6 are at a high temperature, the motors 5 and 6 are driven at a rotational speed at which the total loss of the first motor 5 and the second motor 6 is minimized. That is, each of the rotational speeds corresponding to the operating point X on the graph showing the relationship between the output torque of the first motor and the second motor calculated based on the torque that can be output by the motors 5 and 6 and the efficiency. The motors 5 and 6 are driven.
 上述した制御例は、要は、各モータ5,6のそれぞれが所定温度以下である場合には、第1モータ5と第2モータ6との合計損失が最小となる回転数で各モータ5,6を駆動させ、いずれかのモータ5(6)の温度が所定温度より高い場合には、温度が高い側のモータ5(6)を効率の良好な回転数で駆動させることによって温度上昇を抑制しつつ、温度が低く制限温度まで余裕がある方のモータ6(5)でその不足分を補うように駆動させるように構成されている。したがって、上述した構成のインホイールモータ1は、各モータ5,6の回転数を変更することができるので、双方のモータ5,6を高効率の回転数とすることができ、また、温度が高い側の回転数を効率が良い回転数とすることによって温度上昇を抑制もしくは防止することができる。 In short, the above-described control example is that, when each of the motors 5 and 6 is at a predetermined temperature or less, the motors 5 and 5 are rotated at a rotational speed that minimizes the total loss of the first motor 5 and the second motor 6. 6 is driven, and when the temperature of any of the motors 5 (6) is higher than a predetermined temperature, the temperature rise is suppressed by driving the motor 5 (6) on the higher temperature side at a high speed. However, the motor 6 (5), which has a low temperature and has a margin to the limit temperature, is configured to be driven to compensate for the shortage. Therefore, since the in-wheel motor 1 having the above-described configuration can change the rotation speeds of the motors 5 and 6, both the motors 5 and 6 can be set to a high-efficiency rotation speed, and the temperature is The temperature rise can be suppressed or prevented by setting the higher rotational speed to an efficient rotational speed.
 さらに、上述した構成のインホイールモータ1にナビゲーションシステム33を備えた構成について説明する。図9はその構成を説明するための図であり、電子制御装置16には、ナビゲーションシステム33が連結されている。つまり、ナビゲーションシステム33により提示された走行予定経路やその路面状況あるいは渋滞情報などの信号が電子制御装置16に入力される。そして、電子制御装置16は、走行予定経路や路面状況、すなわち今後走行する経路が登坂路であるか下り坂であるかなどの情報に基づいて各モータ5,6の回転数を定めることができる。 Further, a configuration in which the navigation system 33 is provided in the in-wheel motor 1 having the above-described configuration will be described. FIG. 9 is a diagram for explaining the configuration, and a navigation system 33 is connected to the electronic control device 16. That is, signals such as the planned travel route, the road surface condition or traffic jam information presented by the navigation system 33 are input to the electronic control device 16. Then, the electronic control unit 16 can determine the rotation speed of each of the motors 5 and 6 based on information such as a planned travel route and a road surface condition, that is, whether the route to be traveled in the future is an uphill road or a downhill road. .
 したがって、ナビゲーションシステム33から入力された情報から、走行予定経路が登坂路でなくモータ5,6に掛かる負荷あるいはモータ5,6から出力するトルクが低く過剰な温度上昇がないと判断される場合には、上記の制御例で示す余裕代を小さくしてモータ5,6の効率が良い回転数で回転させることができる。つまり、一方のモータ5(6)の温度が高く、上記の制御例におけるステップS31やステップS32で否定的に判断された場合であっても、余裕代を小さくすることによって所定温度以下となって動作点Xで駆動させることができたり、一方のモータ5(6)が損失の大きい領域で駆動している中でも、損失の小さい側の回転数で駆動させることができたりする場合がある。したがって、過剰にモータ5,6の損失を大きくすることなく各モータ5,6を回転させることができるので、モータ5,6を駆動させるための動力損失を低下させることができる。 Therefore, when it is determined from the information input from the navigation system 33 that the planned travel route is not an uphill road, the load applied to the motors 5 and 6 or the torque output from the motors 5 and 6 is low and there is no excessive temperature rise. Can reduce the margin shown in the above control example and rotate the motors 5 and 6 at an efficient rotational speed. That is, even if the temperature of one motor 5 (6) is high and negative determination is made in step S31 or step S32 in the above control example, the margin is reduced to a predetermined temperature or less by reducing the margin. In some cases, the motor can be driven at the operating point X, or even when one of the motors 5 (6) is driven in a region with a large loss, the motor can be driven at a rotational speed with a smaller loss. Therefore, since the motors 5 and 6 can be rotated without excessively increasing the losses of the motors 5 and 6, power loss for driving the motors 5 and 6 can be reduced.
 また、上述した構成のインホイールモータ1が回生制動する場合には、通常、各モータ5,6の合計損失が低い回転数で回生することが好ましいが、蓄電装置12,13に充電された電力量が高い場合には、過充電となってしまう。そのため、この発明に係るインホイールモータ1は、蓄電装置12,13に充電された電力量が低い場合には、各モータ5,6の回転数を合計損失が低い回転数として、充電された電力量が高い場合には、各モータ5,6の合計損失が大きい回転数で回生するように構成されている。そのように構成することによって、回生エネルギは各モータ5,6によって熱エネルギに変更されるので、過充電を抑制もしくは防止することができる。 In addition, when the in-wheel motor 1 having the above-described configuration performs regenerative braking, it is usually preferable that the motors 5 and 6 regenerate at a low rotational speed, but the electric power charged in the power storage devices 12 and 13 If the amount is high, it will be overcharged. Therefore, in-wheel motor 1 according to the present invention, when the amount of electric power charged in power storage devices 12 and 13 is low, the charged electric power with the rotational speed of each motor 5 and 6 being the rotational speed with a low total loss. When the amount is high, the motors 5 and 6 are configured so that the total loss is regenerated at a large rotational speed. With such a configuration, the regenerative energy is changed to thermal energy by the motors 5 and 6, so that overcharging can be suppressed or prevented.
 さらに、上述した構成例にインホイールモータ1にワンウェイクラッチ34を設けた構成例について説明する。図10は、上述した構成例におけるインホイールモータ1にワンウェイクラッチ34を設けた他の構成例である。図に示すようにワンウェイクラッチ34は遊星歯車機構9におけるリングギヤ9Rに設けられている。このワンウェイクラッチ34は、第2モータ6がホイール2を駆動させる方向へ回転することを許容し、その反対方向の回転、すなわち第2モータ6が回生する方向へ回転することを抑制するように構成されたものである。そのため、図11に示す共線図で示すように第2モータ6を駆動させない場合には、第1モータ5の回転数に応じてキャリア9Rの回転数、すなわちホイール2の回転数が定まる。 Further, a configuration example in which the one-way clutch 34 is provided in the in-wheel motor 1 in the above-described configuration example will be described. FIG. 10 is another configuration example in which the one-way clutch 34 is provided in the in-wheel motor 1 in the configuration example described above. As shown in the figure, the one-way clutch 34 is provided on the ring gear 9 </ b> R in the planetary gear mechanism 9. The one-way clutch 34 is configured to allow the second motor 6 to rotate in the direction in which the wheel 2 is driven, and to suppress rotation in the opposite direction, that is, rotation in the direction in which the second motor 6 is regenerated. It has been done. Therefore, when the second motor 6 is not driven as shown in the alignment chart shown in FIG. 11, the rotation speed of the carrier 9 </ b> R, that is, the rotation speed of the wheel 2 is determined according to the rotation speed of the first motor 5.
 一方、第1モータ5の回転数が高回転となる場合や、第1モータ5の温度が高く回転数を制限されるような場合には、図12に示すように第2モータ6を駆動側に回転させることによって、キャリア9Cの回転数を一定に保ちつつ第1モータ5の回転数を低下させることができる。つまり、第2モータ6が第1モータ5のトルクアシストとして機能することができる。さらに、リングギヤ9Rの外周側に第2モータ6の他に第3モータを設けると、第2モータ6の温度が上昇した場合に第3モータを駆動させてトルクをアシストするように構成することができ、その結果、第1モータ5および第2モータ6の温度上昇を抑制することができる。 On the other hand, when the rotation speed of the first motor 5 is high or when the temperature of the first motor 5 is high and the rotation speed is limited, as shown in FIG. By rotating the first motor 5 at a constant speed, the rotational speed of the first motor 5 can be reduced while keeping the rotational speed of the carrier 9C constant. That is, the second motor 6 can function as torque assist for the first motor 5. Further, if a third motor is provided in addition to the second motor 6 on the outer peripheral side of the ring gear 9R, the third motor is driven to assist the torque when the temperature of the second motor 6 rises. As a result, temperature rises of the first motor 5 and the second motor 6 can be suppressed.
 この発明は、上述した構成に限定されず、例えば、遊星歯車機構がサンギヤと噛み合う第1ピニオンギヤとその第1ピニオンギヤと噛み合って自転しつつサンギヤを回転中心として公転し、リングギヤと噛み合う第2ピニオンギヤを備えた、いわゆるダブルピニオンギヤであっても良い。その場合には、ホイールを駆動させるための第2モータの回転方向を上述した構成例とは反対にすればよい。さらに、上述した制御例では、モータの温度を考慮した制御例を示したが、例えば、インバータの温度を検出して制御してもよい。 The present invention is not limited to the above-described configuration. For example, a first pinion gear that meshes with the sun gear and a second pinion gear that revolves around the sun gear while rotating in rotation with the first pinion gear and meshes with the ring gear. A so-called double pinion gear provided may be used. In that case, what is necessary is just to make the rotation direction of the 2nd motor for driving a wheel the contrary to the structural example mentioned above. Furthermore, although the control example which considered the temperature of the motor was shown in the control example mentioned above, you may detect and control the temperature of an inverter, for example.
 さらにワンウェイクラッチ34を設けた構成例では、第1モータ5を主に駆動させるように構成しているが、例えば、ワンウェイクラッチ34をサンギヤ9Sに設けて、第1モータ5が第2モータ6のトルクをアシストするように構成しても良い。 Further, in the configuration example in which the one-way clutch 34 is provided, the first motor 5 is mainly driven. However, for example, the one-way clutch 34 is provided in the sun gear 9S, and the first motor 5 is connected to the second motor 6. You may comprise so that a torque may be assisted.

Claims (10)

  1.  ホイールの内部に複数の駆動用電動機を有したインホイールモータ車において、
     前記複数の駆動用電動機は、前記ホイールの回転軸と同軸上に設けられた第1電動機と、前記ホイールの軸線方向における前記第1電動機と同一の位置に配置された第2電動機とを少なくとも有し、
     前記第1電動機の出力軸と連結されたサンギヤと、前記第2電動機の動力が伝達されるリングギヤとを有する遊星歯車機構が前記ホイールの内部に設けられていることを特徴とするインホイールモータ車。
    In an in-wheel motor vehicle having a plurality of drive motors inside the wheel,
    The plurality of drive motors include at least a first motor provided coaxially with a rotation shaft of the wheel, and a second motor disposed at the same position as the first motor in the axial direction of the wheel. And
    An in-wheel motor vehicle characterized in that a planetary gear mechanism having a sun gear connected to an output shaft of the first motor and a ring gear to which power of the second motor is transmitted is provided inside the wheel. .
  2.  前記リングギヤに車両が前進走行する方向に前記第2電動機が駆動した場合に動力を伝達するワンウェイクラッチが設けられていることを特徴とする請求項1に記載のインホイールモータ車。 The in-wheel motor vehicle according to claim 1, wherein a one-way clutch that transmits power when the second electric motor is driven in a direction in which the vehicle travels forward on the ring gear is provided.
  3.  前記リングギヤの外周面に、前記第2電動機の出力軸に連結されたギヤと噛み合う複数の歯が形成されていることを特徴とする請求項1または2に記載のインホイールモータ車。 The in-wheel motor vehicle according to claim 1 or 2, wherein a plurality of teeth that mesh with a gear connected to an output shaft of the second electric motor are formed on an outer peripheral surface of the ring gear.
  4.  前記第1電動機と前記第2電動機とのそれぞれに通電する電力を制御する電子制御装置を更に備え、
     該電子制御装置は、前記ホイールから出力する要求トルクに基づいて前記第1電動機と前記第2電動機との出力トルクを算出するトルク算出手段と、
     該トルク算出手段によって算出された各電動機のトルクに基づいて前記各電動機の回転数を算出する回転数算出手段と
    を備えていることを特徴とする請求項1ないし3のいずれかに記載のインホイールモータ車。
    An electronic control unit for controlling electric power supplied to each of the first electric motor and the second electric motor;
    The electronic control device includes: torque calculating means for calculating output torques of the first electric motor and the second electric motor based on a required torque output from the wheel;
    4. The engine according to claim 1, further comprising a rotation speed calculation unit that calculates a rotation speed of each electric motor based on the torque of each electric motor calculated by the torque calculation unit. Wheel motor car.
  5.  前記回転数算出手段は、前記各電動機の状態に基づいて該各電動機のそれぞれの回転数を変更する手段を更に備えていることを特徴とする請求項4に記載のインホイールモータ車。 The in-wheel motor vehicle according to claim 4, wherein the rotation speed calculation means further includes means for changing the rotation speed of each electric motor based on the state of each electric motor.
  6.  前記各電動機の状態は、該各電動機の温度状態を含むことを特徴とする請求項5に記載のインホイールモータ車。 6. The in-wheel motor vehicle according to claim 5, wherein the state of each electric motor includes a temperature state of each electric motor.
  7.  前記各電動機の温度状態は、該各電動機の駆動を制限する温度に基づく所定温度と該各電動機の温度とを比較して判断され、
     前記回転数算出手段は、前記第1電動機と前記第2電動機とのいずれか一方の温度が、前記所定温度より高い場合に、該所定温度より温度が高い電動機の回転数を動力損失が小さい回転数として、他方の電動機の回転数を前記所定温度より温度が高い電動機の回転数の低下を補うように回転させる手段を更に備えていることを特徴とする請求項6に記載のインホイールモータ車。
    The temperature state of each electric motor is determined by comparing a predetermined temperature based on a temperature that restricts driving of each electric motor with the temperature of each electric motor,
    When the temperature of either one of the first motor and the second motor is higher than the predetermined temperature, the rotation speed calculation means calculates the rotation speed of the motor whose temperature is higher than the predetermined temperature as a rotation with a small power loss. The in-wheel motor vehicle according to claim 6, further comprising means for rotating the rotational speed of the other electric motor so as to compensate for a decrease in the rotational speed of the electric motor whose temperature is higher than the predetermined temperature. .
  8.  前記各電動機のそれぞれに該各電動機に供給する電力を制御する制御装置を更に備え、
     前記回転数算出手段は、前記制御装置の温度に基づいて前記各電動機の回転数を変更する手段を更に備えていることを特徴とする請求項4ないし7のいずれかに記載のインホイールモータ車。
    Each of the electric motors further comprises a control device that controls electric power supplied to the electric motors,
    The in-wheel motor vehicle according to any one of claims 4 to 7, wherein the rotation speed calculation means further includes means for changing the rotation speed of each electric motor based on the temperature of the control device. .
  9.  前記各電動機に電力を供給もしくは各電動機により発電された電力を充電する蓄電装置を更に備え、
     前記回転数算出手段は、前記蓄電装置の充電状態に応じて各電動機の回転数を算出する手段を更に備えていることを特徴とする請求項4ないし8のいずれかにに記載のインホイールモータ車。
    A power storage device for supplying electric power to each electric motor or charging electric power generated by each electric motor;
    The in-wheel motor according to any one of claims 4 to 8, wherein the rotation speed calculation means further includes means for calculating the rotation speed of each electric motor in accordance with a state of charge of the power storage device. car.
  10.  車両が走行する走行経路を提示するナビゲーション装置を更に備え、
     前記電子制御装置は、該ナビゲーション装置によって提示された走行経路を走行した場合の各電動機の発熱量を予測する手段と、
     該各電動機の予測された発熱量に基づいて前記各電動機の回転数を算出する手段と
    を備えていることを特徴とする請求項4ないし9のいずれかに記載のインホイールモータ車。
    A navigation device for presenting a travel route on which the vehicle travels;
    The electronic control unit predicts the amount of heat generated by each electric motor when traveling along the travel route presented by the navigation device;
    The in-wheel motor vehicle according to any one of claims 4 to 9, further comprising means for calculating the number of revolutions of each electric motor based on a predicted heat generation amount of each electric motor.
PCT/JP2011/058114 2011-03-30 2011-03-30 In-wheel motor vehicle WO2012131953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/058114 WO2012131953A1 (en) 2011-03-30 2011-03-30 In-wheel motor vehicle
JP2013506955A JP5590221B2 (en) 2011-03-30 2011-03-30 In-wheel motor car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058114 WO2012131953A1 (en) 2011-03-30 2011-03-30 In-wheel motor vehicle

Publications (1)

Publication Number Publication Date
WO2012131953A1 true WO2012131953A1 (en) 2012-10-04

Family

ID=46929776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058114 WO2012131953A1 (en) 2011-03-30 2011-03-30 In-wheel motor vehicle

Country Status (2)

Country Link
JP (1) JP5590221B2 (en)
WO (1) WO2012131953A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064419A1 (en) * 2012-10-23 2014-05-01 Nexxtdrivelimited Hubs incorporating a variable ratio transmission system
US10179786B2 (en) 2014-06-27 2019-01-15 Rhizen Pharmaceuticals Sa Selective dual inhibitors of PI3 delta and gamma protein kinases
WO2019031042A1 (en) * 2017-08-09 2019-02-14 日本精工株式会社 Electric vehicle drive device
GB2566962A (en) * 2017-09-28 2019-04-03 Jaguar Land Rover Ltd Method and apparatus for controlling electric machines
CN110293951A (en) * 2018-03-23 2019-10-01 本田技研工业株式会社 The driving device of hybrid vehicle
CN110497799A (en) * 2019-06-14 2019-11-26 南京航空航天大学 A kind of automobile multi-motors drive system and method
JP2020090979A (en) * 2018-12-04 2020-06-11 トヨタ自動車株式会社 In-wheel motor
US10940751B2 (en) 2017-08-09 2021-03-09 Nsk Ltd. Electric vehicle driving device
EP3812196A1 (en) * 2019-10-24 2021-04-28 Volvo Car Corporation Propulsion system for electric vehcile and method for controlling the propulsion system
US11124176B2 (en) 2017-09-28 2021-09-21 Jaguar Land Rover Limited Method and apparatus for controlling electric machines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324613A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Temperature controller for prime mover
JP2007145071A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Drive wheel structure for vehicle
JP2008221921A (en) * 2007-03-09 2008-09-25 Komatsu Ltd Hybrid vehicle
JP2009154723A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Controller for vehicle transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324613A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Temperature controller for prime mover
JP2007145071A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Drive wheel structure for vehicle
JP2008221921A (en) * 2007-03-09 2008-09-25 Komatsu Ltd Hybrid vehicle
JP2009154723A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Controller for vehicle transmission system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688352B2 (en) 2012-10-23 2017-06-27 Nexxtdrive Limited Hubs incorporating a variable ratio transmission system
WO2014064419A1 (en) * 2012-10-23 2014-05-01 Nexxtdrivelimited Hubs incorporating a variable ratio transmission system
US10179786B2 (en) 2014-06-27 2019-01-15 Rhizen Pharmaceuticals Sa Selective dual inhibitors of PI3 delta and gamma protein kinases
US10940751B2 (en) 2017-08-09 2021-03-09 Nsk Ltd. Electric vehicle driving device
WO2019031042A1 (en) * 2017-08-09 2019-02-14 日本精工株式会社 Electric vehicle drive device
JP6521204B1 (en) * 2017-08-09 2019-05-29 日本精工株式会社 Electric vehicle drive system
US11007880B2 (en) 2017-09-28 2021-05-18 Jaguar Land Rover Limited Method and apparatus for controlling electric machines
GB2566962B (en) * 2017-09-28 2020-08-12 Jaguar Land Rover Ltd Method and apparatus for controlling electric machines
GB2566962A (en) * 2017-09-28 2019-04-03 Jaguar Land Rover Ltd Method and apparatus for controlling electric machines
US11124176B2 (en) 2017-09-28 2021-09-21 Jaguar Land Rover Limited Method and apparatus for controlling electric machines
US11794721B2 (en) 2017-09-28 2023-10-24 Jaguar Land Rover Limited Method and apparatus for controlling electric machines
CN110293951A (en) * 2018-03-23 2019-10-01 本田技研工业株式会社 The driving device of hybrid vehicle
JP2020090979A (en) * 2018-12-04 2020-06-11 トヨタ自動車株式会社 In-wheel motor
JP7110955B2 (en) 2018-12-04 2022-08-02 トヨタ自動車株式会社 in-wheel motor
CN110497799A (en) * 2019-06-14 2019-11-26 南京航空航天大学 A kind of automobile multi-motors drive system and method
EP3812196A1 (en) * 2019-10-24 2021-04-28 Volvo Car Corporation Propulsion system for electric vehcile and method for controlling the propulsion system

Also Published As

Publication number Publication date
JPWO2012131953A1 (en) 2014-07-24
JP5590221B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5590221B2 (en) In-wheel motor car
JP6083438B2 (en) Hybrid vehicle travel control device
JP4038183B2 (en) Power output device, automobile equipped with the same, and power transmission device
JP4965363B2 (en) VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE
JP6042566B2 (en) vehicle
JP4229105B2 (en) Hybrid vehicle and control method thereof
JP2016533960A (en) Retrofit system for converting a vehicle into one of a hybrid electric vehicle and an electric vehicle (EV)
CN103380047B (en) The driving control device of motor vehicle driven by mixed power
JP2005016559A (en) Mode transition controller of hybrid car
JP2009286179A (en) Vehicle, vehicle control method, and drive unit
JP2019515827A (en) Single electric motor drive axle with multiple gear ratios
JP2008030708A (en) Drive system
JP2009126257A (en) Vehicle and its control method
JP5886640B2 (en) Hybrid vehicle drive device and control method thereof
JP4400296B2 (en) Electric car and car
JP4949918B2 (en) Vehicle and control method thereof
JP2012232671A (en) Vehicle
JP4458100B2 (en) Hybrid vehicle and control method thereof
JP4433042B2 (en) Hybrid vehicle and control method thereof
JP4248553B2 (en) Vehicle and control method thereof
JP4107191B2 (en) Vehicle control device
JP6334182B2 (en) vehicle
JP2009001097A (en) Vehicle and its control method
JP6200312B2 (en) Control device for electric motor for vehicle
JP5387460B2 (en) Vehicle and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862293

Country of ref document: EP

Kind code of ref document: A1