JP4433042B2 - Hybrid vehicle and control method thereof - Google Patents

Hybrid vehicle and control method thereof Download PDF

Info

Publication number
JP4433042B2
JP4433042B2 JP2007307888A JP2007307888A JP4433042B2 JP 4433042 B2 JP4433042 B2 JP 4433042B2 JP 2007307888 A JP2007307888 A JP 2007307888A JP 2007307888 A JP2007307888 A JP 2007307888A JP 4433042 B2 JP4433042 B2 JP 4433042B2
Authority
JP
Japan
Prior art keywords
torque
output
motor
power
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307888A
Other languages
Japanese (ja)
Other versions
JP2009132184A (en
Inventor
英司 福代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007307888A priority Critical patent/JP4433042B2/en
Priority to PCT/JP2008/066203 priority patent/WO2009069361A1/en
Publication of JP2009132184A publication Critical patent/JP2009132184A/en
Application granted granted Critical
Publication of JP4433042B2 publication Critical patent/JP4433042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D25/00Controlling two or more co-operating engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

When start of an engine is requested under a state where a vehicle is stopping, a torque increased by rate processing using a relatively small value (Trt1) is set as a torque command (Tm2*) of the second motor until the angular rotational speed (?m2) of a second motor becoming under a threshold (?ref) is confirmed (S160, S180). After confirming the angular rotation speed (?m2) becoming under the threshold (?ref), a torque increased by rate processing using a relatively large value (Trt2) is set as the torque command (Tm2*) of the second motor (S170, S180). After the torque command (Tm2*) of the second motor reached a target push torque (Tp), a first motor performs motoring of the engine thus starting the engine (S200-S260).

Description

本発明は、ハイブリッド車およびその制御方法に関する。   The present invention relates to a hybrid vehicle and a control method thereof.

従来、この種のハイブリッド車としては、車軸にギヤ機構を介して接続された駆動軸に動力を出力するエンジンと、エンジンをモータリング可能な第1モータと、エンジンの出力軸と第1モータの回転軸と駆動軸に接続された動力分配統合機構と、駆動軸に動力を出力する第2モータとを備え、車両が停止している状態でエンジンをモータリングするときには、エンジンのトルク脈動によりギヤ機構で歯打ち音やガタ打ちが発生するのを抑制するために第2モータから押し当てトルクを出力するものが提案されている(例えば、特許文献1参照)。このハイブリッド車では、押し当てトルクを冷却水温に基づいて設定することにより、第2モータから必要最小限の押し当てトルクを出力してギヤ機構における歯打ち音やガタ打ちを抑制することができるようにしている。
特開2007−055460号公報
Conventionally, this type of hybrid vehicle includes an engine that outputs power to a drive shaft connected to an axle via a gear mechanism, a first motor that can motor the engine, an output shaft of the engine, and a first motor. A power distribution and integration mechanism connected to the rotary shaft and the drive shaft, and a second motor that outputs power to the drive shaft, and when the engine is motored while the vehicle is stopped, the gear is caused by torque pulsation of the engine. In order to suppress the occurrence of rattling noise and rattling in the mechanism, there has been proposed one that outputs a pressing torque from a second motor (see, for example, Patent Document 1). In this hybrid vehicle, by setting the pressing torque based on the cooling water temperature, it is possible to output the minimum necessary pressing torque from the second motor to suppress rattling noise and rattling in the gear mechanism. I have to.
JP 2007-055460 A

上述のハイブリッド車のように、車両が停止している状態でエンジンをモータリングするときには、第2モータから出力すべきトルクに押し当てトルクを加えて出力することにより、ギヤ機構で生じる歯打ち音を抑制することができるが、第2のモータから直ちに押し当てトルクを出力すると、押し当てトルクにより歯打ち音が生じるおそれがある。こうした問題を回避するために、第2モータから出力する押し当てトルクを緩やかに増加させることも考えられるが、この場合、エンジンを始動するまでに時間を要してしまう。   When the engine is motored while the vehicle is stopped as in the hybrid vehicle described above, the rattling noise generated by the gear mechanism is generated by applying a pressing torque to the torque to be output from the second motor. However, if a pressing torque is immediately output from the second motor, a rattling noise may occur due to the pressing torque. In order to avoid such a problem, it is conceivable to gradually increase the pressing torque output from the second motor. However, in this case, it takes time to start the engine.

本発明のハイブリッド車およびその制御方法は、内燃機関を始動するときに生じ得るガタ打ちのショックや歯打ち音の発生を抑制すると共に迅速に内燃機関を始動することを主目的とする。   The main object of the hybrid vehicle and the control method thereof according to the present invention is to suppress the occurrence of rattling shock and rattling noise that can occur when starting the internal combustion engine and to start the internal combustion engine quickly.

本発明のハイブリッド車およびその制御方法は、上述の主目的を達成するために以下の手段を採った。   The hybrid vehicle of the present invention and its control method employ the following means in order to achieve the main object described above.

本発明のハイブリッド車は、
内燃機関と、
車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸および前記出力軸に動力を入出力する電力動力入出力手段と、
前記駆動軸に動力を入出力する電動機と、
前記電力動力入出力手段および前記電動機と電力のやり取りを行なう蓄電手段と、
前記電動機の回転角速度を検出する回転角速度検出手段と、
車両が停止している状態で前記内燃機関の始動が要請されたとき、前記検出された回転角速度が所定値未満に至るのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記検出された回転角速度が前記所定値未満に至るのを確認した以降から前記電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって前記第1の変化量より大きい第2の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記電動機から出力するトルクが前記所定トルクに至った以降は前記電力動力入出力手段から前記内燃機関をモータリングするトルクが出力されると共に該モータリングに伴って前記電力動力入出力手段から前記駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと前記所定トルクとの和のトルクが前記電動機から出力されて前記内燃機関が始動されるよう前記電動機と前記電力動力入出力手段と前記内燃機関とを制御する始動時制御手段と、
を備えることを要旨とする。
The hybrid vehicle of the present invention
An internal combustion engine;
Connected to the drive shaft connected to the axle and connected to the output shaft of the internal combustion engine so as to be able to rotate independently of the drive shaft, and to the drive shaft and the output shaft with input and output of electric power and power. Power input / output means for inputting and outputting
An electric motor for inputting and outputting power to the drive shaft;
A power storage means for exchanging power with the power drive input / output means and the motor;
Rotational angular velocity detection means for detecting the rotational angular velocity of the electric motor;
When the start of the internal combustion engine is requested in a state where the vehicle is stopped, it is a torque that causes the vehicle to travel in the traveling direction until it is confirmed that the detected rotational angular velocity is less than a predetermined value. The motor is controlled so that torque that increases with the amount of change is output from the motor, and after confirming that the detected rotational angular velocity is less than the predetermined value, the torque output from the motor becomes the predetermined torque. The motor is controlled so that a torque that causes the vehicle to travel in the traveling direction and increases with a second change amount that is larger than the first change amount is output from the motor, and is output from the motor. After the torque reaches the predetermined torque, a torque for motoring the internal combustion engine is output from the electric power input / output means and accompanying the motoring The electric motor and the motor so that the sum of the cancel side torque in the direction to cancel the torque output from the electric power input / output means to the drive shaft and the predetermined torque is output from the electric motor and the internal combustion engine is started. Starting power control means for controlling the power input / output means and the internal combustion engine;
It is a summary to provide.

この本発明のハイブリッド車では、車両が停止している状態で内燃機関の始動が要請されたときには、電動機の回転角速度が所定値未満に至るのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加するトルクが電動機から出力されるよう電動機を制御し、電動機の回転角速度が所定値未満に至るのを確認した以降から電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって第1の変化量より大きい第2の変化量をもって増加するトルクが電動機から出力されるよう電動機を制御する。即ち、ガタ打ちのショックや歯打ち音の原因となるギヤ機構などに隙間があるときには、電動機から直ちに大きな駆動力を出力すると、その駆動力によりガタ打ちのショックや歯打ち音が生じるおそれがあるため、電動機の回転角速度が所定値未満に至るのを確認するまでは比較的小さな第1の変化量をもって増加するトルクを電動機から出力してその隙間を詰め、電動機の回転角速度が所定値未満に至るのを確認した後は比較的大きな第2の変化量をもって増加するトルクを電動機から出力するのである。これにより、ガタ打ちのショックや歯打ち音の発生を抑制することができると共に電動機から出力するトルクを迅速に所定トルクまで増加させることができる。電動機から出力するトルクが所定トルクに至った以降は電力動力入出力手段から内燃機関をモータリングするトルクが出力されると共にモータリングに伴って電力動力入出力手段から駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと所定トルクとの和のトルクが電動機から出力されて内燃機関が始動されるよう電動機と電力動力入出力手段と内燃機関とを制御する。これらにより、内燃機関を始動するときに生じ得るガタ打ちのショックや歯打ち音の発生を抑制すると共に迅速に内燃機関を始動することができる。   In the hybrid vehicle of the present invention, when the start of the internal combustion engine is requested in a state where the vehicle is stopped, the torque that causes the vehicle to travel in the traveling direction until it is confirmed that the rotational angular velocity of the electric motor is less than a predetermined value. Then, the motor is controlled so that the torque that increases with the first change amount is output from the motor, and the torque output from the motor reaches the predetermined torque after confirming that the rotational angular velocity of the motor is less than the predetermined value. The motor is controlled so that a torque that causes the vehicle to travel in the traveling direction and increases with a second change amount larger than the first change amount is output from the motor. That is, when there is a gap in a gear mechanism that causes rattling shock or rattling noise, if a large driving force is immediately output from the electric motor, rattling shock or rattling noise may occur due to the driving force. Therefore, until it is confirmed that the rotational angular velocity of the electric motor is less than the predetermined value, a torque that increases with a relatively small first change amount is output from the electric motor to close the gap, and the rotational angular velocity of the electric motor becomes less than the predetermined value. After confirming that the torque is reached, a torque that increases with a relatively large second variation is output from the motor. As a result, the occurrence of rattling shocks and rattling noise can be suppressed, and the torque output from the electric motor can be quickly increased to a predetermined torque. After the torque output from the electric motor reaches a predetermined torque, torque for motoring the internal combustion engine is output from the power power input / output means, and torque output from the power power input / output means to the drive shaft accompanying motoring is output. The electric motor, the power drive input / output means, and the internal combustion engine are controlled such that the sum of the cancel side torque in the canceling direction and a predetermined torque is output from the electric motor and the internal combustion engine is started. As a result, it is possible to suppress the occurrence of rattling shock and rattling noise that may occur when starting the internal combustion engine and to start the internal combustion engine quickly.

こうした本発明のハイブリッド車において、前記始動時制御手段は、前記検出された回転角速度が第1の所定時間に亘って継続して所定値未満のときに車両を進行方向に走行させるトルクであって前記第1の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御する手段であるものとすることもできる。   In such a hybrid vehicle of the present invention, the start time control means is a torque that causes the vehicle to travel in the traveling direction when the detected rotational angular velocity is continuously less than a predetermined value for a first predetermined time. It may be a means for controlling the electric motor so that a torque increasing with the first change amount is output from the electric motor.

また、本発明のハイブリッド車において、前記第1の変化量をもって増加するトルクが前記電動機から出力されてから第2の所定時間が経過し且つ前記検出された回転角速度が前記所定値未満に至るのを確認した以降に前記第2の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御する手段であるものとすることもできる。こうすれば、電動機の回転角速度が所定値未満に至ったか否かの確認の誤判断を防止することができる。   In the hybrid vehicle of the present invention, a second predetermined time elapses after the torque increasing with the first change amount is output from the electric motor, and the detected rotational angular velocity reaches less than the predetermined value. It is also possible to control the electric motor so that torque that increases with the second change amount is output from the electric motor after confirming the above. By doing so, it is possible to prevent erroneous determination of whether or not the rotational angular velocity of the electric motor has reached a predetermined value.

さらに、本発明のハイブリッド車において、前記始動時制御手段は、シフトポジションが後進走行用ポジションにないときは車両を前進させる方向を進行方向とし、シフトポジションが後進走行用ポジションにあるときは車両を後進させる方向を進行方向とする手段であるものとすることもできる。   Further, in the hybrid vehicle of the present invention, the start time control means sets the traveling direction as the traveling direction when the shift position is not in the reverse travel position, and moves the vehicle when the shift position is in the reverse travel position. It can also be a means for setting the direction of backward movement as the traveling direction.

あるいは、本発明のハイブリッド車において、前記電力動力入出力手段は、前記内燃機関の出力軸と前記駆動軸と回転軸との3軸に接続され該3軸のうちいずれか2軸に入出力した動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、前記回転軸に動力を入出力可能な発電機と、を備える手段であるものとすることができる。   Alternatively, in the hybrid vehicle of the present invention, the power driving input / output means is connected to three axes of the output shaft, the drive shaft, and the rotating shaft of the internal combustion engine, and inputs / outputs to / from any two of the three shafts. It may be a means provided with a triaxial power input / output means for inputting / outputting power to / from the remaining shaft based on the power and a generator capable of inputting / outputting power to / from the rotating shaft.

本発明のハイブリッド車の制御方法は、
内燃機関と、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記駆動軸および前記出力軸に動力を入出力する電力動力入出力手段と、前記駆動軸に動力を入出力する電動機と、前記電力動力入出力手段および前記電動機と電力のやり取りを行なう蓄電手段とを備えるハイブリッド車における車両が停止している状態で前記内燃機関の始動が要請されたときの制御方法であって、
前記電動機の回転角速度が所定値未満に至るのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記回転角速度が前記所定値未満に至るのを確認した以降から前記電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって前記第1の変化量より大きい第2の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記電動機から出力するトルクが前記所定トルクに至った以降は前記電力動力入出力手段から前記内燃機関をモータリングするトルクが出力されると共に該モータリングに伴って前記電力動力入出力手段から前記駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと前記所定トルクとの和のトルクが前記電動機から出力されて前記内燃機関が始動されるよう前記電動機と前記電力動力入出力手段と前記内燃機関とを制御する、
ことを特徴とする。
The hybrid vehicle control method of the present invention includes:
An internal combustion engine and a drive shaft connected to an axle and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. Vehicle in hybrid vehicle comprising: electric power input / output means for inputting / outputting power to / from shaft; electric motor for inputting / outputting power to / from said drive shaft; and electric power input / output means and power storage means for exchanging electric power with said motor. Is a control method when the start of the internal combustion engine is requested while the engine is stopped,
Until the rotational angular velocity of the motor is confirmed to be less than a predetermined value, the motor is controlled so that a torque that causes the vehicle to travel in the traveling direction and increases with a first change amount is output from the motor. From the time when it is confirmed that the rotational angular velocity is less than the predetermined value until the torque output from the electric motor reaches the predetermined torque, the torque that causes the vehicle to travel in the traveling direction is greater than the first change amount. The motor is controlled so that a torque increasing with a change amount of 2 is output from the motor, and after the torque output from the motor reaches the predetermined torque, the internal combustion engine is motored from the power power input / output means. In the direction of canceling the torque output from the power input / output means to the drive shaft along with the motoring. Wherein said electric power-mechanical power input output mechanism and the motor so that the torque of the sum of the Yanseru side torque and said predetermined torque is the internal combustion engine is output from the motor is started for controlling an internal combustion engine,
It is characterized by that.

この本発明のハイブリッド車の制御方法では、車両が停止している状態で内燃機関の始動が要請されたときには、電動機の回転角速度が所定値未満に至るのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加するトルクが電動機から出力されるよう電動機を制御し、電動機の回転角速度が所定値未満に至るのを確認した以降から電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって第1の変化量より大きい第2の変化量をもって増加するトルクが電動機から出力されるよう電動機を制御する。即ち、ガタ打ちのショックや歯打ち音の原因となるギヤ機構などに隙間があるときには、電動機から直ちに大きな駆動力を出力すると、その駆動力によりガタ打ちのショックや歯打ち音が生じるおそれがあるため、電動機の回転角速度が所定値未満に至るのを確認するまでは比較的小さな第1の変化量をもって増加するトルクを電動機から出力してその隙間を詰め、電動機の回転角速度が所定値未満に至るのを確認した後は比較的大きな第2の変化量をもって増加するトルクを電動機から出力するのである。これにより、ガタ打ちのショックや歯打ち音の発生を抑制することができると共に電動機から出力するトルクを迅速に所定トルクまで増加させることができる。電動機から出力するトルクが所定トルクに至った以降は電力動力入出力手段から内燃機関をモータリングするトルクが出力されると共にモータリングに伴って電力動力入出力手段から駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと所定トルクとの和のトルクが電動機から出力されて内燃機関が始動されるよう電動機と電力動力入出力手段と内燃機関とを制御する。これらにより、内燃機関を始動するときに生じ得るガタ打ちのショックや歯打ち音の発生を抑制すると共に迅速に内燃機関を始動することができる。   In this hybrid vehicle control method of the present invention, when the start of the internal combustion engine is requested while the vehicle is stopped, the vehicle is moved in the traveling direction until it is confirmed that the rotational angular velocity of the electric motor is less than a predetermined value. The motor is controlled so that the torque to be traveled and increased with the first change amount is output from the motor, and after confirming that the rotational angular velocity of the motor is less than a predetermined value, the torque output from the motor is predetermined. Until the torque is reached, the motor is controlled so that a torque that causes the vehicle to travel in the traveling direction and increases with a second change amount that is greater than the first change amount is output from the motor. That is, when there is a gap in a gear mechanism that causes rattling shock or rattling noise, if a large driving force is immediately output from the electric motor, rattling shock or rattling noise may occur due to the driving force. Therefore, until it is confirmed that the rotational angular velocity of the electric motor is less than the predetermined value, a torque that increases with a relatively small first change amount is output from the electric motor to close the gap, and the rotational angular velocity of the electric motor becomes less than the predetermined value. After confirming that the torque is reached, a torque that increases with a relatively large second variation is output from the motor. As a result, the occurrence of rattling shocks and rattling noise can be suppressed, and the torque output from the electric motor can be quickly increased to a predetermined torque. After the torque output from the electric motor reaches a predetermined torque, torque for motoring the internal combustion engine is output from the power power input / output means, and torque output from the power power input / output means to the drive shaft accompanying motoring is output. The electric motor, the power drive input / output means, and the internal combustion engine are controlled such that the sum of the cancel side torque in the canceling direction and a predetermined torque is output from the electric motor and the internal combustion engine is started. As a result, it is possible to suppress the occurrence of rattling shock and rattling noise that may occur when starting the internal combustion engine and to start the internal combustion engine quickly.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、車両全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 as an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire vehicle.

エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24には、エンジン22の運転状態を検出する各種センサからの信号、例えば、エンジン22のクランクシャフト26のクランク角を検出する図示しないクランクポジションセンサからのクランクポジションなどが入力されている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、エンジンECU24は、図示しないクランクポジションセンサからのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil. The engine electronic control unit (hereinafter referred to as engine ECU) 24 performs fuel injection control, ignition control, and intake air amount adjustment. Under control of operation such as control. The engine ECU 24 receives signals from various sensors that detect the operating state of the engine 22, for example, a crank position from a crank position sensor (not shown) that detects the crank angle of the crankshaft 26 of the engine 22. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and, if necessary, transmits data related to the operating state of the engine 22 to the hybrid electronic control. Output to unit 70. The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22, based on a crank position from a crank position sensor (not shown).

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 arranged concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

ギヤ機構60には、ファイナルギヤ60aに取り付けられたパーキングギヤ57と、パーキングギヤ57と噛合してその回転駆動を停止した状態でロックするパーキングロックポール58とからなるパーキングロック機構56が取り付けられている。パーキングロックポール58は、シフトレバー81の他のポジションから駐車ポジションへの操作信号または駐車ポジションから他のポジションへの操作信号が入力されたハイブリッド用電子制御ユニット70により図示しないアクチュエータが駆動制御されることによって作動し、パーキングギヤ57との噛合およびその解除によりパーキングロックおよびその解除を行なう。ファイナルギヤ60aは、機械的に駆動輪63a,63bに接続されているから、パーキングロック機構56は間接的に駆動輪63a,63bをロックできることになる。   The gear mechanism 60 is provided with a parking lock mechanism 56 including a parking gear 57 attached to the final gear 60a and a parking lock pawl 58 that engages with the parking gear 57 and locks in a state in which the rotational drive is stopped. Yes. In the parking lock pole 58, an actuator (not shown) is driven and controlled by the hybrid electronic control unit 70 to which an operation signal from another position to the parking position of the shift lever 81 or an operation signal from the parking position to another position is input. Thus, the parking lock is released and the parking lock 57 is released. Since the final gear 60a is mechanically connected to the drive wheels 63a and 63b, the parking lock mechanism 56 can indirectly lock the drive wheels 63a and 63b.

モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えば例えばモータMG1,MG2の回転子45,46の回転位置を検出する回転位置検出センサ43,44からのモータMG1,MG2の回転子45,46の回転位置θm1,θm2や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、モータMG1,MG2の回転子45,46の回転位置θm1,θm2に基づいてモータMG1,MG2の回転数Nm1,Nm2やモータMG1,MG2の回転子45,46の回転角速度ωm1,ωm2も演算している。   The motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that can be driven as generators and can be driven as motors, and exchange power with the battery 50 via inverters 41 and 42. The power line 54 connecting the inverters 41 and 42 and the battery 50 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42, and the electric power generated by one of the motors MG1 and MG2 It can be consumed by a motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 receives signals necessary for driving and controlling the motors MG1 and MG2, for example, motors MG1 and MG2 from rotational position detection sensors 43 and 44 that detect rotational positions of the rotors 45 and 46 of the motors MG1 and MG2. The rotational positions θm1 and θm2 of the rotors 45 and 46, the phase current applied to the motors MG1 and MG2 detected by a current sensor (not shown), and the like are input, and the motor ECU 40 switches to the inverters 41 and 42. A control signal is output. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 determines the rotational speeds Nm1, Nm2 of the motors MG1, MG2 and the rotational angular velocities ωm1 of the rotors 45, 46 of the motors MG1, MG2 based on the rotational positions θm1, θm2 of the rotors 45, 46 of the motors MG1, MG2. , Ωm2 are also calculated.

バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧,バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量(SOC)を演算したり、演算した残容量(SOC)と電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。   The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50, and a power line 54 connected to the output terminal of the battery 50. The charging / discharging current from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor 51 attached to the battery 50, and the like are input. Output to the control unit 70. Further, the battery ECU 52 calculates the remaining capacity (SOC) based on the integrated value of the charging / discharging current detected by the current sensor in order to manage the battery 50, and calculates the remaining capacity (SOC) and the battery temperature Tb. The input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, are calculated based on the above. The input / output limits Win and Wout of the battery 50 are set to the basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limiting correction coefficient and the input are set based on the remaining capacity (SOC) of the battery 50. It can be set by setting a correction coefficient for restriction and multiplying the basic value of the set input / output restrictions Win and Wout by the correction coefficient.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72, and in addition to the CPU 72, a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port and communication not shown. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. The accelerator pedal opening Acc from the vehicle, the brake pedal position BP from the brake pedal position sensor 86 for detecting the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the like are input via the input port. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution and integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled so as to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on.

次に、こうして構成されたハイブリッド自動車20の動作、特にシフトレバー81が前進走行用ポジションに操作されてブレーキペダル85が踏み込まれている状態やシフトレバー81が駐車ポジションに操作されている状態など車両が停止している状態でエンジン22を始動するときの動作について説明する。図2は、ハイブリッド用電子制御ユニット70により行なわれる停車時始動制御ルーチンの一例を示すフローチャートである。このルーチンは、車両が停止している状態でエンジン22の始動指示がなされたときに実行される。   Next, the operation of the hybrid vehicle 20 configured as described above, particularly the vehicle in which the shift lever 81 is operated to the forward travel position and the brake pedal 85 is depressed, or the shift lever 81 is operated to the parking position. The operation when the engine 22 is started with the engine stopped is described. FIG. 2 is a flowchart showing an example of a stop-time start control routine performed by the hybrid electronic control unit 70. This routine is executed when an instruction to start the engine 22 is given while the vehicle is stopped.

停車時始動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、モータMG2の回転角速度ωm2や計時値tなど制御に必要なデータを入力する(ステップS100)。ここで、回転角速度ωm2は、回転位置検出センサ44により検出されたモータMG2の回転子46の回転位置θm2に基づいて演算されたものをモータECU40から通信により入力するものとした。また、計時値tは、エンジン22の始動指示がなされてからの時間としてタイマ78により計時された値を入力するものとした。   When the stop-time start control routine is executed, the CPU 72 of the hybrid electronic control unit 70 first inputs data necessary for control such as the rotational angular velocity ωm2 of the motor MG2 and the time measurement value t (step S100). Here, the rotational angular velocity ωm2 calculated based on the rotational position θm2 of the rotor 46 of the motor MG2 detected by the rotational position detection sensor 44 is input from the motor ECU 40 by communication. In addition, as the time value t, a value measured by the timer 78 is input as a time after the start instruction of the engine 22 is given.

こうしてデータを入力すると、入力した計時値tを閾値trefと比較する(ステップS110)。ここで、閾値trefは、動力分配統合機構30やギヤ機構60,減速ギヤ35などのギヤの隙間を詰めるガタ詰めを行なうときにこれらのギヤが回転し始めるまでに要する時間が経過したか否かを判定するために用いられるものであり、例えば、50msecや100msecなどの値を用いることができる。モータMG2から出力されるトルクを徐々に増加させてギヤのガタ詰めを行なう場合、トルクがある程度大きくなるまでは各部品の摩擦力によってギヤは回転しないため、ギヤのガタ詰めが完了しているか否かの判定は困難である。ステップS110の計時値tと閾値trefとの比較は、この判定を行なうことができるか否かを判定するものである。   When the data is thus input, the input time value t is compared with the threshold value tref (step S110). Here, the threshold value tref is whether or not the time required for the gears such as the power distribution and integration mechanism 30, the gear mechanism 60, and the reduction gear 35 to start rotating when the gaps between the gears are reduced has elapsed. For example, a value such as 50 msec or 100 msec can be used. When the gear output is gradually increased by gradually increasing the torque output from the motor MG2, the gear does not rotate due to the frictional force of each component until the torque increases to some extent. Such a determination is difficult. The comparison between the time measurement value t and the threshold value tref in step S110 determines whether or not this determination can be made.

計時値tが閾値tref未満のときには、レート値Trtに比較的小さな値Trt1を設定し(ステップS160)、前回のモータMG2のトルク指令(前回Tm2*)にレート値Trtを加えたものと目標押し当てトルクTpとのうちの小さい方をモータMG2のトルク指令Tm2*に設定すると共に設定したトルク指令Tm2*をモータECU40に送信し(ステップS180)、トルク指令Tm2*を目標押し当てトルクTpと比較する(ステップS190)。いま、計時値tが閾値tref未満のときを考えておりトルク指令Tm2*は値が小さいから、トルク指令Tm2*は押し当てトルクTpに等しくないと判定されて処理はステップS100に戻る。トルク指令Tm2*を受信したモータECU40は、トルク指令Tm2*でモータMG2が駆動されるよう第2インバータ42のスイッチング素子のスイッチング制御を行なう。ここで、値Trt1は、モータMG2から出力されるトルクによってギヤのガタ詰めを緩やかに行なうことができる値を用いることができ、動力分配統合機構30やギヤ機構60,減速ギヤ35の特性などに基づいて予め実験などにより定めた値を用いることができる。ところで、ギヤのガタ詰めが完了していないときに直ちにモータMG2から大きなトルクが出力されると、そのトルクによってギヤのガタ打ちのショックや歯打ち音が発生するおそれがある。このため、実施例では、計時値tが閾値tref未満のとき、即ちギヤのガタ詰めが完了しているか否かを判定するのが困難なときには、比較的小さな値Trt1を設定したレート値Trtを用いてレート処理によりモータMG2のトルク指令Tm2*を増加させるものとした。これにより、モータMG2から出力するトルクによるギヤのガタ打ちのショックや歯打ち音の発生を抑制することができる。   When the measured time t is less than the threshold value tref, a relatively small value Trt1 is set to the rate value Trt (step S160), and the target value is set to the value obtained by adding the rate value Trt to the previous motor MG2 torque command (previous Tm2 *). The smaller of the applied torque Tp is set as the torque command Tm2 * of the motor MG2, and the set torque command Tm2 * is transmitted to the motor ECU 40 (step S180), and the torque command Tm2 * is compared with the target applied torque Tp. (Step S190). Now, considering that the measured value t is less than the threshold value tref, the torque command Tm2 * has a small value. Therefore, it is determined that the torque command Tm2 * is not equal to the pressing torque Tp, and the process returns to step S100. The motor ECU 40 that has received the torque command Tm2 * performs switching control of the switching element of the second inverter 42 so that the motor MG2 is driven by the torque command Tm2 *. Here, the value Trt1 can be a value that can gently loosen the gear by torque output from the motor MG2, and can be used for the characteristics of the power distribution and integration mechanism 30, the gear mechanism 60, the reduction gear 35, and the like. Based on this, a value determined in advance through experiments or the like can be used. By the way, if a large torque is immediately output from the motor MG2 when gear backlashing is not completed, there is a possibility that a gear rattling shock or rattling noise may be generated by the torque. For this reason, in the embodiment, when the time measurement value t is less than the threshold value tref, that is, when it is difficult to determine whether or not the gear backlash is completed, the rate value Trt with a relatively small value Trt1 is set. The torque command Tm2 * of the motor MG2 is increased by rate processing. As a result, it is possible to suppress the occurrence of gear rattle shock and rattling noise due to the torque output from the motor MG2.

ステップS110で計時値tが閾値tref以上のときには、モータMG2の回転角速度ωm2を閾値ωrefと比較し(ステップS120)、回転角速度ωm2が閾値ωref以上のときには、カウンタCを値0にリセットし(ステップS130)、レート値Trtに比較的小さな値Trt1を設定すると共に(ステップS160)、設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2のトルク指令Tm2*に設定してモータECU40に送信し(ステップS180)、トルク指令Tm2*を目標押し当てトルクTpと比較し(ステップS190)、トルク指令Tm2*が押し当てトルクTpに等しくないときにはステップS100に戻る。ここで、閾値ωrefは、モータMG2の回転子46が回転しているか否かを判定するために用いられるものであり、モータMG2の回転子46が回転していないと判断できる角速度の上限近傍の値などを用いることができる。また、カウンタCについては後述する。モータMG2の回転角速度ωm2が閾値ωref以上のときは、ギヤの隙間が埋められている最中であるため、このようにモータMG2のトルク指令Tm2*を増加させることにより、モータMG2から出力するトルクによるギヤのガタ打ちのショックや歯打ち音の発生を抑制することができる。   When the measured value t is greater than or equal to the threshold value tref in step S110, the rotational angular velocity ωm2 of the motor MG2 is compared with the threshold value ωref (step S120), and when the rotational angular velocity ωm2 is greater than or equal to the threshold value ωref, the counter C is reset to 0 (step S120). In step S130, a relatively small value Trt1 is set as the rate value Trt (step S160), and the torque increased by the rate processing using the set rate value Trt is set in the torque command Tm2 * of the motor MG2 to set the motor ECU 40. (Step S180), the torque command Tm2 * is compared with the target pressing torque Tp (step S190), and when the torque command Tm2 * is not equal to the pressing torque Tp, the process returns to step S100. Here, the threshold ωref is used to determine whether or not the rotor 46 of the motor MG2 is rotating, and is near the upper limit of the angular velocity at which it can be determined that the rotor 46 of the motor MG2 is not rotating. A value or the like can be used. The counter C will be described later. When the rotational angular velocity ωm2 of the motor MG2 is equal to or greater than the threshold value ωref, the gear gap is being filled, and thus the torque output from the motor MG2 is increased by increasing the torque command Tm2 * of the motor MG2. It is possible to suppress the occurrence of gear rattle shocks and rattling noises.

ステップS120で回転角速度ωm2が閾値ωref以上のときには、カウンタCを値1だけインクリメントすると共に(ステップS140)、このカウンタCを閾値Crefと比較する(ステップS150)。ここで、閾値Crefは、回転角速度ωm2が閾値ωref未満に至ったのを確認するのに要する時間に対応するカウント値であり、ステップS100〜S190の繰り返し時間やギヤの特性,回転位置検出センサ44の精度などに基づいて予め実験などにより定めた値を用いることができる。カウンタCが閾値Cref未満のときには、レート値Trtに比較的小さな値Trt1を設定すると共に(ステップS160)、設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2のトルク指令Tm2*に設定してモータECU40に送信し(ステップS180)、カウンタCが閾値Cref以上のときには、前述の値Trt1より大きな値Trt2をレート値Trtに設定する共に(ステップS170)、設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2のトルク指令Tm2*に設定してモータECU40に送信し(ステップS180)、トルク指令Tm2*が目標押し当てトルクTpに至るまで(ステップS190)、ステップS100〜S190の処理を繰り返し実行する。また、値Trt2は、トルク指令Tm2*を迅速に目標押し当てトルクTpまで増加させるために用いられるものであり、予め実験などにより定めた値を用いることができる。このように、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認するまでは、比較的小さな値Trt1を設定したレート値Trtを用いてレート処理によりモータMG2のトルク指令Tm2*を増加させることにより、モータMG2から出力されるトルクによりギヤのガタ打ちのショックや歯打ち音が発生することを抑制しながらガタ詰めをすることができる。また、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認した後は、比較的大きな値Trt2を設定したレート値Trtを用いてレート処理によりモータMG2のトルク指令Tm2*を増加させることにより、モータMG2から出力されるトルクを迅速に目標押し当てトルクTpまで増加させることができる。また、カウンタCを用いることによりノイズなどによって一時的に回転角速度ωm2が閾値ωref未満になったときにギヤのガタ詰めが完了したと判定されるのを回避することができる。   When the rotational angular velocity ωm2 is greater than or equal to the threshold value ωref in step S120, the counter C is incremented by 1 (step S140), and the counter C is compared with the threshold value Cref (step S150). Here, the threshold value Cref is a count value corresponding to the time required to confirm that the rotational angular velocity ωm2 has become less than the threshold value ωref. The repetition time of steps S100 to S190, the characteristics of the gear, the rotational position detection sensor 44, and the like. A value determined in advance by an experiment or the like based on the accuracy of the above can be used. When the counter C is less than the threshold value Cref, the rate value Trt is set to a relatively small value Trt1 (step S160), and the torque increased by the rate processing using the set rate value Trt is set to the torque command Tm2 * of the motor MG2. Is transmitted to the motor ECU 40 (step S180). When the counter C is equal to or larger than the threshold value Cref, the value Trt2 larger than the aforementioned value Trt1 is set as the rate value Trt (step S170), and the set rate value Trt is set. The torque used and increased by the rate processing is set in the torque command Tm2 * of the motor MG2 and transmitted to the motor ECU 40 (step S180), until the torque command Tm2 * reaches the target pressing torque Tp (step S190). Repeat steps S100 to S190 To. The value Trt2 is used to quickly increase the torque command Tm2 * to the target pressing torque Tp, and a value determined in advance through experiments or the like can be used. Thus, until it is confirmed that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref, the torque command Tm2 * of the motor MG2 is increased by rate processing using the rate value Trt in which the relatively small value Trt1 is set. As a result, the backlash can be reduced while suppressing the occurrence of a rattling shock or rattling noise due to the torque output from the motor MG2. Further, after confirming that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref, the torque command Tm2 * of the motor MG2 is increased by rate processing using the rate value Trt in which the relatively large value Trt2 is set. The torque output from the motor MG2 can be quickly increased to the target pressing torque Tp. Further, by using the counter C, it is possible to avoid the determination that the gear rattling has been completed when the rotational angular velocity ωm2 temporarily becomes less than the threshold ωref due to noise or the like.

こうしてステップS190でモータMG2のトルク指令Tm2*が目標押し当てトルクTpに等しくなると、図示しないクランクポジションセンサからの信号に基づいて演算されてエンジンECU24から通信により入力されたエンジン22の回転数Neのデータを入力し(ステップS200)、モータMG1のトルク指令Tm1*にエンジン22のモータリング用のトルクTcrを設定し(ステップS210)、モータMG1によるエンジン22のモータリングに伴って駆動軸としてのリングギヤ軸32aに出力される反力トルクをキャンセルするためのトルクと目標押しあてトルクTpとに基づいて次式(1)によりモータMG2のトルク指令Tm2*を設定すると共に(ステップS220)、設定したトルク指令Tm1*,Tm2*をモータECU40に送信する(ステップS230)。トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。ここで、式(1)は、動力分配統合機構30の回転要素に対する力学的な関係式である。エンジン22を始動する際の動力分配統合機構30の各回転要素の回転数とトルクとの力学的な関係を示す共線図を図3に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。式(1)は、この共線図を用いれば容易に導くことができる。このようにモータMG2のトルク指令Tm2*を設定することにより、ギヤ機構60や減速ギヤ35のガタ詰めを行なった状態でエンジン22をモータリングして始動することができる。   Thus, when the torque command Tm2 * of the motor MG2 becomes equal to the target pressing torque Tp in step S190, the rotational speed Ne of the engine 22 which is calculated based on a signal from a crank position sensor (not shown) and is input from the engine ECU 24 by communication. Data is input (step S200), the torque Tcr for motoring of the engine 22 is set in the torque command Tm1 * of the motor MG1 (step S210), and the ring gear as a drive shaft is accompanied by motoring of the engine 22 by the motor MG1. Based on the torque for canceling the reaction torque output to the shaft 32a and the target pushing torque Tp, the torque command Tm2 * of the motor MG2 is set by the following equation (1) (step S220), and the set torque Command Tm1 *, Tm2 * To send to the over data ECU40 (step S230). Receiving the torque commands Tm1 * and Tm2 *, the motor ECU 40 controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tm1 * and the motor MG2 is driven by the torque command Tm2 *. . Here, Expression (1) is a dynamic relational expression for the rotating element of the power distribution and integration mechanism 30. FIG. 3 is a collinear diagram showing a dynamic relationship between the rotational speed and torque of each rotary element of the power distribution and integration mechanism 30 when the engine 22 is started. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. Expression (1) can be easily derived by using this alignment chart. By setting the torque command Tm2 * of the motor MG2 in this way, the engine 22 can be motored and started in a state where the gear mechanism 60 and the reduction gear 35 have been loosened.

Tm2*=Tm1*/ρ+Tp (1)   Tm2 * = Tm1 * / ρ + Tp (1)

こうしてトルク指令Tm1*,Tm2*をモータECU40に送信すると、エンジン22の回転数Neが点火開始回転数Nfire以上に至るのを待って(ステップS240)、エンジン22に対する燃料噴射制御や点火制御などを開始するためにその制御信号をエンジンECU24に送信し(ステップS250)、エンジン22が完爆するのを待って(ステップS260)、停車時始動制御ルーチンを終了する。制御信号を受信したエンジンECU24は、エンジン22が完爆するよう吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。   When the torque commands Tm1 * and Tm2 * are transmitted to the motor ECU 40 in this way, the engine 22 waits for the rotational speed Ne to reach the ignition start rotational speed Nfire or more (step S240), and performs fuel injection control, ignition control, etc. for the engine 22. In order to start, the control signal is transmitted to the engine ECU 24 (step S250), the engine 22 is waited for the complete explosion (step S260), and the start-up control routine at the time of stopping is ended. The engine ECU 24 that has received the control signal performs control such as intake air amount control, fuel injection control, and ignition control so that the engine 22 is completely exploded.

図4は、車両が停止している状態でエンジン22を始動するときに設定されるモータMG2のトルク指令Tm2*と回転角速度ωm2と回転子46の回転位置θm2の時間変化の様子の一例を示す説明図である。なお、図4には、参考のために、一定のレート値(値Trt1)を用いてトルク指令Tm2*を緩やかに増加させるものについて比較例として点線で併せて示した。比較例では、エンジン22の始動指示がなされた時刻t0から比較的小さな値Trt1を用いてレート処理によりモータMG2のトルク指令Tm2*を増加させ、トルク指令Tm2*が目標押し当てトルクTpに至った時刻t5以降にモータMG1によるエンジン22のモータリングを伴ってエンジン22を始動する。この場合、ギヤのガタ打ちや歯打ち音を抑制することはできるが、モータMG2のトルク指令Tm2*を目標押し当てトルクTpまで増加させるのに時間を要してしまう。一方、実施例では、実線に示すように、エンジン22の始動指示がなされた時刻t0から比較的小さな値Trt1を用いてレート処理によりモータMG2のトルク指令Tm2*を緩やかに増加させ、動力分配統合機構30やギヤ機構60,減速ギヤ35などのギヤが回転し始める程度にモータMG2のトルク指令Tm2*が大きくなった時刻t1以降に、回転角速度ωm2が閾値ωref未満となったときにそのことを確認する(時刻t2〜t3)。そして、その確認をした後は比較的大きな値Trt2を用いてレート処理によりモータMG2のトルク指令Tm2*を急増させ、トルク指令Tm2*が目標押し当てトルクTpに至った時刻t4以降にモータMG1によるエンジン22のモータリングを伴ってエンジン22を始動する。したがって、実施例では、ギヤのガタ打ちや歯打ち音を抑制することができると共にモータMG2のトルク指令Tm2*をより迅速に目標押し当てトルクTpまで増加させることができる。   FIG. 4 shows an example of how the torque command Tm2 *, the rotational angular velocity ωm2 of the motor MG2 and the rotational position θm2 of the rotor 46 are changed over time when the engine 22 is started with the vehicle stopped. It is explanatory drawing. For reference, FIG. 4 shows a comparative example in which the torque command Tm2 * is gradually increased using a constant rate value (value Trt1) as a comparative example. In the comparative example, the torque command Tm2 * of the motor MG2 is increased by rate processing using a relatively small value Trt1 from the time t0 when the engine 22 is instructed to start, and the torque command Tm2 * reaches the target pressing torque Tp. After time t5, the engine 22 is started with motoring of the engine 22 by the motor MG1. In this case, rattling and rattling noise of the gear can be suppressed, but it takes time to increase the torque command Tm2 * of the motor MG2 to the target pressing torque Tp. On the other hand, in the embodiment, as shown by the solid line, the torque command Tm2 * of the motor MG2 is gradually increased by rate processing using the relatively small value Trt1 from the time t0 when the engine 22 is instructed to start power distribution integration. When the rotational angular velocity ωm2 becomes less than the threshold value ωref after the time t1 when the torque command Tm2 * of the motor MG2 increases to such an extent that gears such as the mechanism 30, the gear mechanism 60, and the reduction gear 35 start to rotate. Confirm (time t2 to t3). After the confirmation, the torque command Tm2 * of the motor MG2 is rapidly increased by rate processing using the relatively large value Trt2, and the motor MG1 starts the time after the time t4 when the torque command Tm2 * reaches the target pressing torque Tp. The engine 22 is started with motoring of the engine 22. Therefore, in the embodiment, gear rattling and rattling noise can be suppressed, and the torque command Tm2 * of the motor MG2 can be increased to the target pressing torque Tp more quickly.

以上説明した実施例のハイブリッド自動車20によれば、車両が停止している状態でエンジン22の始動が要請されたときには、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認するまでは比較的小さな値Trt1を設定したレート値Trtを用いてレート処理によりモータMG2のトルク指令Tm2*を増加させることにより、モータMG2から出力するトルクによりギヤのガタ打ちのショックや歯打ち音が発生することを抑制しながらギヤのガタ詰めを行なうことができる。また、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認した後は比較的大きな値Trt2を設定したレート値Trtを用いてレート処理によりモータMG2のトルク指令Tm2*を増加させることにより、トルク指令Tm2*を迅速に目標押し当てトルクTpまで増加させることができる。さらに、モータMG2から出力するトルクが目標押し当てトルクTpに至った後にモータMG1によりエンジン22を始動するから、これらにより、エンジン22を始動するときに生じ得るガタ打ちのショックや歯打ち音の発生を抑制すると共に迅速にエンジン22を始動することができる。   According to the hybrid vehicle 20 of the embodiment described above, when it is requested to start the engine 22 while the vehicle is stopped, the comparison is made until it is confirmed that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref. When the torque command Tm2 * of the motor MG2 is increased by rate processing using the rate value Trt in which a small value Trt1 is set, a gear rattling shock or rattling noise is generated by the torque output from the motor MG2. The backlash of the gear can be performed while suppressing the rotation. After confirming that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref, the torque command Tm2 * of the motor MG2 is increased by rate processing using the rate value Trt in which a relatively large value Trt2 is set. The torque command Tm2 * can be quickly increased to the target pressing torque Tp. Further, since the motor MG1 starts the engine 22 after the torque output from the motor MG2 reaches the target pressing torque Tp, the occurrence of rattling shock and rattling noise that can occur when the engine 22 is started. And the engine 22 can be started quickly.

実施例のハイブリッド自動車20では、シフトレバー81が前進走行用ポジションに操作されてブレーキペダル85が踏み込まれている状態やシフトレバー81が駐車ポジションに操作されている状態でエンジン22を始動するときについて説明したが、シフトレバー81がリバースポジションに操作されていてブレーキペダル85が踏み込まれている状態でエンジン22を始動するときにも同様に行なうことができる。この場合、値Trt1,Trt2や目標押し当てトルクTpを負の値とすればよい。   In the hybrid vehicle 20 of the embodiment, when the engine 22 is started in a state where the shift lever 81 is operated to the forward travel position and the brake pedal 85 is depressed or the shift lever 81 is operated to the parking position. As described above, the same operation can be performed when the engine 22 is started in a state where the shift lever 81 is operated to the reverse position and the brake pedal 85 is depressed. In this case, the values Trt1, Trt2 and the target pressing torque Tp may be negative values.

実施例のハイブリッド自動車20では、回転角速度ωm2が閾値ωref未満に至ったことの確認は、モータMG2の回転角速度ωm2が閾値ωref未満でカウンタCが閾値Cref以上のときに行なうものとしたが、モータMG2の回転角速度ωm2が閾値ωref未満の状態で所定時間tref2が経過したときに行なうものとしてもよいし、モータMG2の回転角速度ωm2が閾値ωref未満に至ったときに行なうものとしてもよい。なお、所定時間tref2は、閾値Crefに相当する時間を用いるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the confirmation that the rotational angular velocity ωm2 is less than the threshold value ωref is performed when the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref and the counter C is equal to or greater than the threshold value Cref. It may be performed when the predetermined time tref2 has elapsed while the rotational angular velocity ωm2 of the MG2 is less than the threshold value ωref, or may be performed when the rotational angular velocity ωm2 of the motor MG2 has become less than the threshold value ωref. The predetermined time tref2 may be a time corresponding to the threshold value Cref.

実施例のハイブリッド自動車20では、回転角速度ωm2が閾値ωref未満に至ったことの確認は、計時値tが閾値tref以上のとき(エンジン22の始動指示がなされてから閾値trefが経過した以降)に行なうものとしたが、モータMG2のトルク指令Tm2*が閾値Tref以上に至った以降に行なうものとしてもよい。ここで、閾値Trefは、ギヤのガタ詰めが行なわれていないときに、動力分配統合機構30やギヤ機構60,減速ギヤ35などのギヤが回転し始めるトルクを用いるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, it is confirmed that the rotational angular velocity ωm2 is less than the threshold value ωref when the time measurement value t is equal to or greater than the threshold value tref (after the threshold value tref has elapsed after the engine 22 is instructed to start). However, it may be performed after the torque command Tm2 * of the motor MG2 reaches the threshold value Tref or more. Here, the threshold value Tref may be a value using a torque at which gears such as the power distribution and integration mechanism 30, the gear mechanism 60, and the reduction gear 35 start to rotate when the gears are not loosely packed.

実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the motor MG2 is attached to the ring gear shaft 32a as the drive shaft via the reduction gear 35. However, the motor MG2 may be directly attached to the ring gear shaft 32a, or Instead, the motor MG2 may be attached to the ring gear shaft 32a via a transmission such as a 2-speed, 3-speed, or 4-speed.

実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図5の変形例のハイブリッド自動車120に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ132と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ134とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機130を備えるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, but the modified example of FIG. The hybrid vehicle 120 includes an inner rotor 132 connected to the crankshaft 26 of the engine 22 and an outer rotor 134 connected to a drive shaft that outputs power to the drive wheels 63a and 63b. A counter-rotor motor 130 that transmits a part of the power to the drive shaft and converts the remaining power into electric power may be provided.

ここで、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、動力分配統合機構30とモータMG1が「電力動力入出力手段」に相当し、モータMG2が「電動機」に相当し、バッテリ50が「蓄電手段」に相当し、回転位置検出センサ44と回転位置検出センサ44により検出される回転位置θm2に基づいてモータMG2の回転角速度ωm2を演算するモータECU40とが「回転角速度検出手段」に相当し、車両が停止している状態でエンジン22の始動が要請されたときには、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認するまでは比較的小さな値Trt1を設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2のトルク指令Tm2*に設定してモータECU40に送信し、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認した後は比較的大きな値Trt2を設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2のトルク指令Tm2*に設定してモータECU40に送信し、トルク指令Tm2*が目標押し当てトルクTpに至った後はモータMG1によりエンジン22をモータリングすると共にこのモータリングに伴って駆動軸としてのリングギヤ軸32aに出力されるトルクを打ち消す方向のトルクと目標押し当てトルクTpとの和のトルクがモータMG2から出力されてエンジン22が始動されるようモータMG1,MG2のトルク指令Tm1*,Tm2*を設定してモータECU40に送信し、エンジン22の回転数Neが閾値Neref以上になったときエンジン22に対する燃料噴射制御や点火制御などを開始するための制御信号をエンジンECU24に送信する図2の停車時始動制御ルーチンを実行するハイブリッド用電子制御ユニット70と、制御信号を受信してエンジン22を完爆するように燃料噴射制御や点火制御などの制御を行なうエンジンECU24と、トルク指令Tm1*,Tm2*に基づいてモータMG1,MG2を制御するモータECU40とが「始動時制御手段」に相当する。また、動力分配統合機構30が「3軸式動力入出力手段」に相当し、モータMG1が「発電機」に相当し、さらに、対ロータ電動機130も「電力動力入出力手段」に相当する。   Here, the correspondence between the main elements of the embodiments and the modified examples and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22 corresponds to an “internal combustion engine”, the power distribution and integration mechanism 30 and the motor MG1 correspond to “power power input / output means”, the motor MG2 corresponds to “electric motor”, and the battery 50 corresponds to “power storage”. The motor ECU 40 that calculates the rotational angular velocity ωm2 of the motor MG2 based on the rotational position θm2 detected by the rotational position detection sensor 44 and the rotational position detection sensor 44 corresponds to the “rotational angular velocity detection means”. When the start of the engine 22 is requested in a state where the vehicle is stopped, the rate value Trt in which a relatively small value Trt1 is set is used until it is confirmed that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref. The torque increased by the rate processing is set in the torque command Tm2 * of the motor MG2 and transmitted to the motor ECU 40, and the motor MG2 After confirming that the rotational angular velocity ωm2 is less than the threshold value ωref, the torque increased by the rate processing using the rate value Trt in which the relatively large value Trt2 is set is set in the torque command Tm2 * of the motor MG2, and the motor ECU 40 After the torque command Tm2 * reaches the target pressing torque Tp, the motor 22 is motored by the motor MG1 and the torque output to the ring gear shaft 32a as the drive shaft is canceled with this motoring. Torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 are set and transmitted to the motor ECU 40 so that the torque of the sum of the torque of the motor and the target pressing torque Tp is output from the motor MG2 and the engine 22 is started. When the rotational speed Ne of 22 becomes the threshold value Neref or more, the engine 22 2 for transmitting the control signal for starting fuel injection control, ignition control, etc. to the engine ECU 24 and executing the stop start control routine of FIG. 2, and receiving the control signal to complete the engine 22. The engine ECU 24 that performs control such as fuel injection control and ignition control so as to explode, and the motor ECU 40 that controls the motors MG1 and MG2 based on the torque commands Tm1 * and Tm2 * correspond to “starting time control means”. Further, the power distribution and integration mechanism 30 corresponds to “three-shaft power input / output means”, the motor MG1 corresponds to “generator”, and the rotor motor 130 also corresponds to “power power input / output means”.

ここで、「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンなど如何なるタイプの内燃機関であっても構わない。「電力動力入出力手段」としては、動力分配統合機構30とモータMG1との組み合わせによるものや対ロータ電動機130に限定されるものではなく、回転軸に接続されると共に回転軸とは独立に回転可能に内燃機関の出力軸に接続され、電力と動力の入出力を伴って回転軸と出力軸とに動力を入出力するものであれば如何なるものとしても構わない。「電動機」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、誘導電動機など、回転軸に回転子が接続され固定子の回転磁界により回転子を回転駆動させて回転軸に動力を入出力可能なものであれば如何なるものとしても構わない。「蓄電手段」としては、二次電池としてのバッテリ50に限定されるものではなく、キャパシタなど、電力動力入出力手段および電動機と電力をやりとり可能なものであれば如何なるものとしても構わない。「回転角速度検出手段」としては、回転位置検出センサ44と回転位置検出センサ44により検出される回転位置θm2に基づいてモータMG2の回転角速度ωm2を演算するモータECU40に限定されるものではなく、電動機の回転角速度を検出するものであれば如何なるものとしても構わない。「始動時制御手段」としては、ハイブリッド用電子制御ユニット70とエンジンECU24とモータECU40とからなる組み合わせに限定されるものではなく単一の電子制御ユニットにより構成されるなどとしてもよい。また、「始動時制御手段」としては、車両が停止している状態でエンジン22の始動が要請されたときには、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認するまでは比較的小さな値Trt1を設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2から出力し、モータMG2の回転角速度ωm2が閾値ωref未満に至るのを確認した後は比較的大きな値Trt2を設定したレート値Trtを用いてレート処理により増加させたトルクをモータMG2から出力し、モータMG2から出力するトルクが目標押し当てトルクTpに至った後はモータMG1によりエンジン22がモータリングされると共にこのモータリングに伴って駆動軸としてのリングギヤ軸32aに出力されるトルクを打ち消す方向のトルクと目標押し当てトルクTpとの和のトルクがモータMG2から出力されてエンジン22が始動されるようエンジン22とモータMG1,MG2とを制御するものに限定されるものではなく、車両が停止している状態で前記内燃機関の始動が要請されたとき、前記検出された回転角速度が所定値未満に至るのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加させたトルクが前記電動機から出力されるよう該電動機を制御し、前記検出された回転角速度が前記所定値未満に至るのを確認した以降から前記電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって前記第1の変化量より大きい第2の変化量をもって増加させたトルクが前記電動機から出力されるよう該電動機を制御し、前記電動機から出力するトルクが前記所定トルクに至った以降は前記電力動力入出力手段から前記内燃機関をモータリングするトルクが出力されると共に該モータリングに伴って前記電力動力入出力手段から前記駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと前記所定トルクとの和のトルクが前記電動機から出力されて前記内燃機関が始動されるよう前記電動機と前記電力動力入出力手段と前記内燃機関とを制御するものであれば如何なるものとしても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる作動作用を有するものなど、駆動軸と出力軸と発電機の回転軸との3軸に接続され3軸のうちのいずれかに軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、誘導電動機など、動力を入出力可能なものであれば如何なるタイプの発電機としても構わない。なお、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Here, the “internal combustion engine” is not limited to an internal combustion engine that outputs power using a hydrocarbon fuel such as gasoline or light oil, and may be any type of internal combustion engine such as a hydrogen engine. The “power power input / output means” is not limited to a combination of the power distribution and integration mechanism 30 and the motor MG1 or to the rotor motor 130, and is connected to the rotating shaft and rotates independently of the rotating shaft. Any device may be used as long as it is connected to the output shaft of the internal combustion engine and can input / output power to / from the rotary shaft and the output shaft together with input / output of electric power and power. The “motor” is not limited to the motor MG2 configured as a synchronous generator motor, but an induction motor or the like is connected to the rotor and the rotor is driven to rotate by the rotating magnetic field of the stator. Any device can be used as long as it can input and output power. The “power storage means” is not limited to the battery 50 as a secondary battery, and may be anything as long as it can exchange power with a power power input / output means and an electric motor such as a capacitor. The “rotational angular velocity detection means” is not limited to the motor ECU 40 that calculates the rotational angular velocity ωm2 of the motor MG2 based on the rotational position detection sensor 44 and the rotational position θm2 detected by the rotational position detection sensor 44. As long as it can detect the rotation angular velocity, it does not matter. The “starting time control means” is not limited to the combination of the hybrid electronic control unit 70, the engine ECU 24, and the motor ECU 40, and may be configured by a single electronic control unit. The “starting time control means” is relatively small until it is confirmed that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref when the engine 22 is requested to start while the vehicle is stopped. Torque increased by rate processing using the rate value Trt with the value Trt1 set is output from the motor MG2, and after confirming that the rotational angular velocity ωm2 of the motor MG2 is less than the threshold value ωref, a relatively large value Trt2 is set. The torque increased by the rate processing using the rate value Trt is output from the motor MG2, and after the torque output from the motor MG2 reaches the target pressing torque Tp, the engine 22 is motored by the motor MG1 and Cancels the torque output to the ring gear shaft 32a as the drive shaft along with motoring The motor 22 is not limited to controlling the engine 22 and the motors MG1 and MG2 so that the sum of the direction torque and the target pressing torque Tp is output from the motor MG2 and the engine 22 is started. When it is requested to start the internal combustion engine in a stopped state, the first change is a torque that causes the vehicle to travel in the traveling direction until it is confirmed that the detected rotational angular velocity is less than a predetermined value. The motor is controlled so that the torque increased with the amount is output from the motor, and the torque output from the motor reaches the predetermined torque after confirming that the detected rotational angular velocity is less than the predetermined value. Is output from the electric motor until the vehicle travels in the traveling direction and is increased with a second change amount larger than the first change amount. After the torque output from the motor reaches the predetermined torque, torque for motoring the internal combustion engine is output from the power power input / output means and the motoring is performed. The sum of the cancel side torque in the direction to cancel the torque output from the power drive input / output means to the drive shaft and the predetermined torque is output from the motor to start the internal combustion engine. As long as it controls the power input / output means and the internal combustion engine, it may be anything. The “three-axis power input / output means” is not limited to the power distribution / integration mechanism 30 described above, but includes four or more shafts using a double pinion type planetary gear mechanism or a combination of a plurality of planetary gear mechanisms. Connected to the three shafts such as the one connected to the shaft or the differential gear, or the like having a different operation from the planetary gear, such as the drive shaft, the output shaft, and the rotating shaft of the generator. As long as the power is input / output to / from the remaining shafts based on the power input / output to / from the power source, any method may be used. The “generator” is not limited to the motor MG1 configured as a synchronous generator motor, and may be any type of generator such as an induction motor that can input and output power. Note that the correspondence between the main elements of the embodiment and the modified example and the main elements of the invention described in the column of means for solving the problem is described in the column of means for the embodiment to solve the problem. Since this is an example for specifically describing the best mode for carrying out the invention, the elements of the invention described in the column of means for solving the problems are not limited. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、車両の製造産業などに利用可能である。   The present invention can be used in the vehicle manufacturing industry.

本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 as an embodiment of the present invention. ハイブリッド用電子制御ユニット70により行なわれる停車時始動制御ルーチンの一例を示すフローチャートである。5 is a flowchart showing an example of a start control routine at the time of stopping performed by an electronic control unit for hybrid 70. エンジン22を始動する際の動力分配統合機構30の各回転要素を力学的に説明するための共線図の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a collinear diagram for dynamically explaining each rotating element of the power distribution and integration mechanism 30 when starting the engine 22. 車両が停止している状態でエンジン22を始動するときに設定されるモータMG2のトルク指令Tm2*と回転角速度ωm2と回転子の回転位置θm2の時間変化の様子の一例を示す説明図である。It is explanatory drawing which shows an example of the mode of the time change of torque instruction Tm2 * of motor MG2 set when starting the engine 22 in the state which the vehicle has stopped, rotation angular velocity (omega) m2, and rotation position (theta) m2 of a rotor. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification.

符号の説明Explanation of symbols

20,120 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45,46 回転子、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、56 パーキングロック機構、57 パーキングギヤ、58 パーキングロックポール、60 ギヤ機構、60a ファイナルギヤ、62 デファレンシャルギヤ、63a,63b 駆動輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、78 タイマ、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、130 対ロータ電動機、132 インナーロータ 134 アウターロータ、MG1,MG2 モータ。   20, 120 Hybrid vehicle, 22 engine, 24 electronic control unit (engine ECU) for engine, 26 crankshaft, 28 damper, 30 power distribution integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear, 34 carrier, 35 Reduction gear, 40 Motor electronic control unit (motor ECU), 41, 42 Inverter, 43, 44 Rotation position detection sensor, 45, 46 Rotor, 50 Battery, 51 Temperature sensor, 52 Battery electronic control unit (battery ECU) , 54 Electric power line, 56 Parking lock mechanism, 57 Parking gear, 58 Parking lock pole, 60 gear mechanism, 60a final gear, 62 differential gear, 63a, 63b Drive wheel, 70 hive Electronic control unit, 72 CPU, 74 ROM, 76 RAM, 78 timer, 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position Sensor, 88 Vehicle speed sensor, 130 Counter rotor motor, 132 Inner rotor 134 Outer rotor, MG1, MG2 motor.

Claims (6)

内燃機関と、
車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸および前記出力軸に動力を入出力する電力動力入出力手段と、
前記駆動軸に動力を入出力する電動機と、
前記電力動力入出力手段および前記電動機と電力のやり取りを行なう蓄電手段と、
前記電動機の回転角速度を検出する回転角速度検出手段と、
車両が停止している状態で前記内燃機関の始動が要請されたとき、前記内燃機関の始動指示がなされてから前記電動機に接続された回転系が回転し始めるまでに要する時間として予め設定された所定時間が経過した後に前記検出された回転角速度が所定値未満であるのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記所定時間を経過した後に前記検出された回転角速度が前記所定値未満であるのを確認した以降から前記電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって前記第1の変化量より大きい第2の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記電動機から出力するトルクが前記所定トルクに至った以降は前記電力動力入出力手段から前記内燃機関をモータリングするトルクが出力されると共に該モータリングに伴って前記電力動力入出力手段から前記駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと前記所定トルクとの和のトルクが前記電動機から出力されて前記内燃機関が始動されるよう前記電動機と前記電力動力入出力手段と前記内燃機関とを制御する始動時制御手段と、
を備えるハイブリッド車。
An internal combustion engine;
Connected to the drive shaft connected to the axle and connected to the output shaft of the internal combustion engine so as to be able to rotate independently of the drive shaft, and to the drive shaft and the output shaft with input and output of electric power and power. Power input / output means for inputting and outputting
An electric motor for inputting and outputting power to the drive shaft;
A power storage means for exchanging power with the power drive input / output means and the motor;
Rotational angular velocity detection means for detecting the rotational angular velocity of the electric motor;
When the start of the internal combustion engine is requested in a state where the vehicle is stopped, a time required until the rotation system connected to the electric motor starts rotating after the start instruction of the internal combustion engine is set in advance is set. A torque that causes the vehicle to travel in the traveling direction and increases with a first change amount is output from the motor until it is confirmed that the detected rotational angular velocity is less than a predetermined value after a predetermined time has elapsed. The motor is controlled so that after the predetermined time elapses, it is confirmed that the detected rotational angular velocity is less than the predetermined value, and then the vehicle proceeds until the torque output from the electric motor reaches the predetermined torque. The motor is controlled so that a torque that travels in a direction and increases with a second change amount that is greater than the first change amount is output from the motor. After the torque output from the electric motor reaches the predetermined torque, torque for motoring the internal combustion engine is output from the power power input / output means, and the power power input / output means is accompanied by the motoring from the power power input / output means. The electric motor, the electric power power input / output means, and the electric power input / output means so that the sum of the cancel side torque in the direction to cancel the torque output to the drive shaft and the predetermined torque is output from the electric motor and the internal combustion engine is started. A start-up control means for controlling the internal combustion engine;
A hybrid car with
前記始動時制御手段は、前記検出された回転角速度が第1の所定時間に亘って継続して所定値未満のときに車両を進行方向に走行させるトルクであって前記第1の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御する手段である請求項1記載のハイブリッド車。   The starting-time control means is a torque that causes the vehicle to travel in the traveling direction when the detected rotational angular velocity is continuously less than a predetermined value for a first predetermined time, and increases with the first change amount. The hybrid vehicle according to claim 1, wherein the hybrid vehicle is means for controlling the motor so that torque to be output is output from the motor. 前記始動時制御手段は、前記第1の変化量をもって増加するトルクが前記電動機から出力されてから第2の所定時間が経過し且つ前記検出された回転角速度が前記所定値未満に至るのを確認した以降に前記第2の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御する手段である請求項1または2記載のハイブリッド車。   The starting-time control means confirms that a second predetermined time has elapsed after the torque increasing with the first change amount is output from the electric motor, and that the detected rotational angular velocity is less than the predetermined value. The hybrid vehicle according to claim 1, wherein the motor is a means for controlling the motor so that a torque that increases with the second change amount is output from the motor. 前記始動時制御手段は、シフトポジションが後進走行用ポジションにないときは車両を前進させる方向を進行方向とし、シフトポジションが後進走行用ポジションにあるときは車両を後進させる方向を進行方向とする手段である請求項1ないし3のいずれか1つの請求項に記載のハイブリッド車。   The start time control means is a means in which the direction in which the vehicle moves forward is the traveling direction when the shift position is not in the reverse traveling position, and the direction in which the vehicle is moved backward is the traveling direction when the shift position is in the reverse traveling position. The hybrid vehicle according to any one of claims 1 to 3. 前記電力動力入出力手段は、前記内燃機関の出力軸と前記駆動軸と回転軸との3軸に接続され該3軸のうちいずれか2軸に入出力した動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、前記回転軸に動力を入出力可能な発電機と、を備える手段である請求項1ないし4のいずれか1つの請求項に記載のハイブリッド車。   The power power input / output means is connected to the three shafts of the output shaft of the internal combustion engine, the drive shaft, and the rotating shaft, and power is supplied to the remaining shaft based on the power input / output to any two of the three shafts. The hybrid vehicle according to any one of claims 1 to 4, wherein the hybrid vehicle includes a three-axis power input / output means for inputting / outputting power and a generator capable of inputting / outputting power to / from the rotating shaft. 内燃機関と、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記駆動軸および前記出力軸に動力を入出力する電力動力入出力手段と、前記駆動軸に動力を入出力する電動機と、前記電力動力入出力手段および前記電動機と電力のやり取りを行なう蓄電手段とを備えるハイブリッド車における車両が停止している状態で前記内燃機関の始動が要請されたときの制御方法であって、
前記内燃機関の始動指示がなされてから前記電動機に接続された回転系が回転し始めるまでに要する時間として予め設定された所定時間が経過した後に前記電動機の回転角速度が所定値未満であるのを確認するまでは車両を進行方向に走行させるトルクであって第1の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記所定時間を経過した後に前記回転角速度が前記所定値未満であるのを確認した以降から前記電動機から出力するトルクが所定トルクに至るまでは車両を進行方向に走行させるトルクであって前記第1の変化量より大きい第2の変化量をもって増加するトルクが前記電動機から出力されるよう該電動機を制御し、前記電動機から出力するトルクが前記所定トルクに至った以降は前記電力動力入出力手段から前記内燃機関をモータリングするトルクが出力されると共に該モータリングに伴って前記電力動力入出力手段から前記駆動軸に出力されるトルクを打ち消す方向のキャンセル側トルクと前記所定トルクとの和のトルクが前記電動機から出力されて前記内燃機関が始動されるよう前記電動機と前記電力動力入出力手段と前記内燃機関とを制御する、
ことを特徴とするハイブリッド車の制御方法。
An internal combustion engine and a drive shaft connected to an axle and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. Vehicle in hybrid vehicle comprising: electric power input / output means for inputting / outputting power to / from shaft; electric motor for inputting / outputting power to / from said drive shaft; and electric power input / output means and power storage means for exchanging electric power with said motor. Is a control method when the start of the internal combustion engine is requested in a state where the engine is stopped,
The rotational angular velocity of the electric motor is less than a predetermined value after a predetermined time has elapsed as a time required for the rotation system connected to the electric motor to start rotating after the start instruction of the internal combustion engine is issued. Until confirmation, the motor is controlled so that a torque that causes the vehicle to travel in the traveling direction and increases with a first change amount is output from the motor, and after the predetermined time has elapsed, the rotational angular velocity is After confirming that the torque is less than a predetermined value, the torque output from the electric motor reaches a predetermined torque, which is a torque that causes the vehicle to travel in the traveling direction and increases with a second change amount that is greater than the first change amount. The motor is controlled so that the torque to be output from the electric motor, and after the torque output from the electric motor reaches the predetermined torque, the electric power A torque for motoring the internal combustion engine is output from the input / output means, and a cancel side torque in a direction to cancel the torque output from the power power input / output means to the drive shaft along with the motoring and the predetermined torque Controlling the electric motor, the electric power input / output means, and the internal combustion engine so that the sum torque is output from the electric motor and the internal combustion engine is started.
A control method for a hybrid vehicle.
JP2007307888A 2007-11-28 2007-11-28 Hybrid vehicle and control method thereof Expired - Fee Related JP4433042B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007307888A JP4433042B2 (en) 2007-11-28 2007-11-28 Hybrid vehicle and control method thereof
PCT/JP2008/066203 WO2009069361A1 (en) 2007-11-28 2008-09-09 Hybrid vehicle and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307888A JP4433042B2 (en) 2007-11-28 2007-11-28 Hybrid vehicle and control method thereof

Publications (2)

Publication Number Publication Date
JP2009132184A JP2009132184A (en) 2009-06-18
JP4433042B2 true JP4433042B2 (en) 2010-03-17

Family

ID=40678268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307888A Expired - Fee Related JP4433042B2 (en) 2007-11-28 2007-11-28 Hybrid vehicle and control method thereof

Country Status (2)

Country Link
JP (1) JP4433042B2 (en)
WO (1) WO2009069361A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614104B2 (en) * 2010-05-27 2014-10-29 トヨタ自動車株式会社 Control device for hybrid vehicle
US8909401B2 (en) * 2010-06-08 2014-12-09 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
DE102015000466B4 (en) 2015-01-15 2016-11-17 Audi Ag Drive device for a motor vehicle and motor vehicle
CN110131057B (en) * 2018-02-08 2022-04-05 宇通客车股份有限公司 Torque control method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044638A (en) * 2004-07-06 2006-02-16 Toyota Motor Corp Controller of hybrid driving device, automobile equipped with hybrid driving device, and control method of hybrid driving device
JP2006315510A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Power output device and its control method, and automobile
JP4222349B2 (en) * 2005-08-25 2009-02-12 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP4175361B2 (en) * 2005-11-07 2008-11-05 トヨタ自動車株式会社 Hybrid vehicle and control method thereof

Also Published As

Publication number Publication date
JP2009132184A (en) 2009-06-18
WO2009069361A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5418269B2 (en) Vehicle and control method thereof
JP5187005B2 (en) Hybrid vehicle and control method thereof
JP4229105B2 (en) Hybrid vehicle and control method thereof
JP2009018743A (en) Vehicle and its control method
JP2008201351A (en) Vehicle and its control method
JP4013939B2 (en) Mobile body and control method thereof
JP2009248732A (en) Hybrid vehicle and method of controlling the same
JP2009126257A (en) Vehicle and its control method
JP4949918B2 (en) Vehicle and control method thereof
JP2009184559A (en) Vehicle, drive unit, and control method for vehicle
JP4433042B2 (en) Hybrid vehicle and control method thereof
JP5104010B2 (en) Vehicle and control method thereof
JP5120187B2 (en) Vehicle and control method thereof
JP5119987B2 (en) Hybrid vehicle and control method thereof
JP2010195255A (en) Hybrid vehicle and control method thereof
JP2009248681A (en) Hybrid vehicle and method for determining vehicle stationary in starting
JP2007137266A (en) Hybrid vehicle and its control method
JP2007112291A (en) Power output device, vehicle loading it and control method for power output device
JP2008114817A (en) Vehicle and control method therefor
JP2009220790A (en) Vehicle and method of controlling the same
JP2009149154A (en) Vehicle and control method therefor
JP5177093B2 (en) Hybrid vehicle and control method thereof
JP4438815B2 (en) Vehicle and control method thereof
JP2010023588A (en) Power output device, vehicle mounted thereon, and control method of motive power output device
JP5387460B2 (en) Vehicle and control method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4433042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees