WO2012130803A1 - Procédé pour séparer des halogènes de mélanges de substances - Google Patents

Procédé pour séparer des halogènes de mélanges de substances Download PDF

Info

Publication number
WO2012130803A1
WO2012130803A1 PCT/EP2012/055332 EP2012055332W WO2012130803A1 WO 2012130803 A1 WO2012130803 A1 WO 2012130803A1 EP 2012055332 W EP2012055332 W EP 2012055332W WO 2012130803 A1 WO2012130803 A1 WO 2012130803A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
butyl
halogen
methylimidazolium
dimethylimidazolium
Prior art date
Application number
PCT/EP2012/055332
Other languages
German (de)
English (en)
Inventor
Mitja Medved
Oliver Pfohl
Gerhard Ruffert
Sven REßLER
Original Assignee
Bayer Technology Services Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services Gmbh filed Critical Bayer Technology Services Gmbh
Publication of WO2012130803A1 publication Critical patent/WO2012130803A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20473Cyclic amines containing an imidazole-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2022Bromine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2025Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2027Fluorine

Definitions

  • the chlorine gas obtained in the Deacon process contains, among other things, oxygen and other gases, including inert gases.
  • oxygen and other gases including inert gases.
  • the usually practiced condensation of the chlorine gas at low temperatures and high pressures is associated with a high energy consumption.
  • the prior art proposes some approaches to storage of gases using ionic liquids.
  • WO 02/074718 A2 describes a process for the separation of close-boiling, homo- and hetero-azeotropic mixtures using ionic liquids. Due to the selectivity and the unusual property profile of the ionic liquids, the process is superior from the cost aspect and energy aspects of conventional extractive rectification.
  • the process for the separation of liquids or condensable gases in the condensed state is characterized in that an entrainer is used which is an ionic liquid and causes a change in the separation factor of the components to be separated differently from one and that the ionic liquid in a total concentration of 5 to 90 mol%, preferably 10 to 70 mol%, in the liquid phase.
  • the separation can be carried out by extracting in a column, whereby the components or components boiling under the conditions provided are obtained at the top of the column, while all other components as bottom product together with the entrainer at the bottom of the column, the liquid mixture at the bottom of the column (bottom product and Entrainer) is worked up so that the Entrainer can be recovered and the components of the bottom product incurred as a further fraction, the column in the is operated countercurrent, fed above the feed of the components to be separated of Entrainer in the column.
  • DE 101 54 052 AI relates to thermal separation processes, such as extractive rectification and extraction, which are characterized in that ionic liquids or mixtures thereof with or without further additive as a selective solvent (entrainer in the extractive rectification, extraction agent in the extraction) for the separation of aromatic be used by non-aromatic hydrocarbons.
  • WO 2005/016483 describes a process for the separation of azeotropic or narrow-boiling mixtures by an extractive rectification, in which ionic liquid is used as entrainer, wherein the high-boiling bottom product is removed from the column in gaseous form by a side stream.
  • WO 2006/029788 A1 relates to a process for the separation of hydrogen chloride and phosgene, which is characterized in that in a step a) a mixture of hydrogen chloride and phosgene is brought into contact with an ionic liquid in which at least a portion of the hydrogen chloride is dissolved , and thereafter, in a step b), the hydrogen chloride dissolved in the ionic liquid is separated.
  • US 2006/0226072 A1 discloses a process for the storage and release of fluids through a container, which is adapted for the selective release of the fluid.
  • the container contains an ionic liquid.
  • the fluid is contacted with the ionic liquid for uptake therein and substantially no chemical change occurs in the ionic liquid and fluid.
  • the fluid is then released from the ionic liquid and removed from the container. Similar methods are the subject of the patent applications US 2006/0226073 A I and US 2006/0226074 AI the same applicant.
  • WO 2007/10961 1 ⁇ 1 describes a system and a method for storing, transporting or releasing chlorine gas.
  • the chlorine gas is dissolved in organic salts, which do not react with chlorine and which reduce the vapor pressure of the chlorine gas to atmospheric pressure or less.
  • Chlorine gas can be released by heating or applying a vacuum.
  • EP 1640654 A1 discloses a composition and a method for the storage and release of gases.
  • the composition comprises an ionic liquid having an anion and a cation; at least a portion of the gas herein can be reversibly chemically linked to the ionic
  • Liquid may be connected and optionally be an unreacted gas.
  • a method of release A gas comprising a mixture comprising an ionic liquid and one or more gases comprises reacting at least a portion of the gas with the ionic liquid to obtain the mixture comprising a chemically reacted gas and an ionic liquid and separating the chemically reacted gas from the gas Mixture, wherein the chemically reacted gas after the separation step has substantially the same chemical identity as the chemically reacted gas before the separation step.
  • Al n * represents an organic cation
  • X represents an anion
  • n 1, 2 or 3
  • X has the same chemical meaning as in the halogen of formula X -
  • the organic cation Al n + has a molar mass of> 100 g / mol to ⁇ 800 g / mol and> 7 to ⁇ 85 non-hydrogen atoms and wherein at least step a) is carried out in a rectification column.
  • higher polyhalide ions such as pentahalogenide ions, etc. can also be formed.
  • the nature of the cation of the ionic liquid affects the extent of formation of the polyhalide ions. This allows a simple and, by suitable selection of the ionic liquid also selective separation of the halogen from other constituents of the mixture.
  • the chemical fixation also allows a wider choice of process parameters.
  • the operating pressure can be kept lower and the operating temperature in the contacting step higher than in other separation processes. In the chlorine gas separation from the so-called cryogenic range can then be left. This essentially saves the electrical energy necessary to produce low temperatures in corresponding units at the appropriate level of performance.
  • ionic liquids are those salts and salt mixtures of organic mono- or polyvalent cations which are liquid under the conditions (in particular pressure and temperature) at which the process is carried out.
  • the mixture used comprises at least one elemental halogen X 2 and at least one further, different thereof component, which is to be separated from the halogen.
  • component which is to be separated from the halogen.
  • process gases such as CO, CO 2 and inert gases such as N 2.
  • components from which halogens should be removed are volatile organic products such as methyl isocyanate or methyl bromide.
  • the anion X of the ionic liquid corresponds to the element from which the halogen X 2 is composed.
  • the anion would be fluoride
  • the anion in the case of the separation of Cl 2 from the substance mixture chloride
  • the anion in the case of the separation of Br 2 from the substance mixture, the anion would be bromide and in the case of the separation of I 2 from the substance mixture iodide.
  • the formation of polyhalide ions is not expected or only to a very limited extent.
  • polyhalide ions would be formed from different halide species, which are used in the Regeneration of the anion of the resulting ionic liquid would yield interhalogen compounds.
  • a purification in the context of the present invention would de facto no longer possible: the pure halogen product would then be contaminated with an interhalogen compound.
  • the organic cation ⁇ comprises a molar mass of> 100 g / mol to ⁇ 800 g / mol and> 7 to ⁇ 85 non-hydrogen atoms.
  • Non-hydrogen atoms are all atoms of the cation other than hydrogen, ie C, N, O, P, etc.
  • the molar mass of the cation is> 150 g mol to ⁇ 600 g / mol and even more preferably> 250 g / mol to ⁇ 400 g / mol.
  • the number of non-hydrogen atoms is> 15 to ⁇ 60, and more preferably> 20 to ⁇ 40.
  • the contacting of the substance mixture takes place in the process according to the invention in a rectification column in which the ionic liquid is available in a sufficient amount (hold-up) and through which the substance mixture to be separated flows.
  • a rectification column in which the ionic liquid is available in a sufficient amount (hold-up) and through which the substance mixture to be separated flows.
  • This is preferably a packing column or a tray column and a column which, depending on the required local conditions in the column, is equipped in sections with either packing or trays.
  • both structured and non-structured packings with a suitable number of reaction and mass transfer stages are suitable, which can be determined, for example, according to a corresponding mathematical model.
  • sections of the tray column installations such as sieve trays, bubble-cap trays or valve trays, the number of which can likewise be determined with a corresponding mathematical model, are suitable.
  • certain column segments in particular soils, can also be equipped with internal heat exchange elements with which heat effects (for example dissipation of the reaction heat) can advantageously be controlled locally and selectively. Furthermore, side draws or lateral introductions of further feed streams can be provided. Due to the reaction of the halogen with ionic liquid to form polyhalide ions, it is also possible to speak of a reactive rectification.
  • the organic cation ⁇ has a thermochemical volume of> 100 ⁇ 3 to ⁇ 1000 ⁇ 3 .
  • the thermochemical volume can here according to the I. I. Donald B. Jenkins et al., Inorg. Chem. 38 (16) 1999, 3609-3620.
  • the thermochemical volume is in a range of> 1 15 ⁇ 3 to ⁇ 885 ⁇ 3, and more preferably from> 360 ⁇ 3 to ⁇ 520 ⁇ 3 .
  • thermochemical volume can also be obtained by means of calculation methods.
  • this variable can be calculated using the TURBOMOLE program package at TZVP-BP level.
  • thermochemical volume (calculated) of some cations is listed in the following table:
  • the organic cation Al + is selected from the group comprising: 1, 2,3-trimethylimidazolium, 1,3,4,5-tetramethylimidazolium, 1,3,4-dimethylimidazolium, 1,3,4-trimethylimidazolium, 1,3-dibutyl-2-methylimidazolium, 1,3-dibutylimidazolium, 1, 2-dimethylimidazolium, 1, 3-dimethylimidazolium, 1-benzyl-3-methylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1-butyl-2-ethyl-5-methylimidazolium, 1-butyl-2-ethylimidazolium, 1-butyl-2-methylimidazolium, 1-butyl-3,4,5-trimethyl-imidazolium, 1-butyl-3,4-dimethyl-imidazolium, 1-butyl-3-ethyl
  • Particularly preferred ionic liquids are trihexyltetradecylphosphonium chloride, 1-benzyl-3-methylimidazolium chloride and 1-methyl-3-oxide among the chlorides. octylimidazoliumchlorid. Due to its thermal stability and its comparatively low viscosity, trihexyltetradecylphosphonium chloride is very well suited.
  • the first ionic liquid Al n + X is present in step a) as a mixture with at least one further second ionic liquid A 2 m + X n, which is different from the first ionic liquid .
  • A2 + represents an organic cation
  • X represents an anion
  • m 1, 2 or 3
  • X has the same chemical meaning as in the halogen of formula X.
  • the advantage of an ionic liquid mixed with respect to the cations lies in particular in the possibility of further lowering the melting point. Particularly preferred combinations are those in which each ionic liquid chosen has high reactivity with the halogen per se.
  • the cations listed above can also be used as cation A2 m + .
  • Tetrabutylammonium chloride is a very good choice as an additive for admixture with trihexyltetradecylphosphonium chloride. Its addition, among other things, leads to an increase in the absorption rate and to improve the flowability.
  • Rectification a pressure of> 0.1 bar to ⁇ 30 bar and a temperature of> -50 ° C to ⁇ 200 ° C.
  • Preferred temperature and pressure ranges are> 0.5 bar to ⁇ 20 bar and a temperature of> 10 ° C to ⁇ 120 ° C.
  • an additional gas other than halogen X 2 is further introduced into the rectification column, preferably into the bottom region.
  • the partial pressure of gases dissolved in the ionic liquid can be reduced to expel them.
  • oxygen gas may be introduced to expel both bound halogen and dissolved C0 2 from the ionic liquid.
  • the latter furthermore comprises the steps: bl) removal of ionic liquid contacted with the halogen X 2 from the rectification column; b2) introducing the ionic liquid removed in step b1) into a first separating device which is set up to at least partially release the halogen X 2 ; b3) partially releasing the halogen X 2 from the ionic liquid; b4) Transfer the ionic liquid obtained in step b 3) into the rectification column.
  • the first thermal separator may, for example, be a thermal separator such as a thin film evaporator, short path evaporator or a falling film evaporator. It can also be a cascade of multiple flash levels at different temperature and pressure levels. The fact that the release of the halogen from the previously removed ionic liquid must be only partially, the halogen can be obtained in a high purity. The ionic liquid obtained thereafter may then be recycled to the rectification column. It is also possible that in step b4) only a partial flow is returned and another partial flow of the ionic liquid is freed in a second separator to a greater extent from the halogen.
  • this further comprises the
  • first and second thermal separation device as a
  • Thin film evaporator, short path evaporator or a falling film evaporator can be supported in the second or each subsequent separator, the residual expulsion of the halogen by introducing an additional gas. It is highly preferred that this gas further reacts with the recovered halogen in a subsequent synthesis.
  • this gas further reacts with the recovered halogen in a subsequent synthesis.
  • CO gas to expel Cl 2 gas, a gas mixture can be obtained, which can be implemented directly in a phosgene synthesis.
  • the halogen comprising substance mixture comprises CI 2 and O 2 .
  • a gas mixture can be separated from the Deacon process.
  • Preferred pressures here are> 5 bar to ⁇ 10 bar and preferred temperatures of> -10 ° C to ⁇ 150 ° C.
  • the ionic liquid Trihexyltetradecylphosphoniumchlorid, 1 - benzyl! -3-metbylimidazoliumchlorid and / or 1-methyl-3 -octylimidazoliumchlorid.
  • the halogen comprising substance mixture comprises Br 2 and methyl bromide.
  • Methyl bromide is an important building block for the production of active ingredients. After its synthesis, the residual bromine must be separated from the product.
  • the ionic liquid is tetradecyl (trihexyl) phosphonium bromide, I -
  • the substance mixture comprising halogens is contacted with a desiccant before contacting in step a).
  • a desiccant is particularly advantageous in connection with the separation of Br 2 from methyl bromide.
  • the drying agent dries the substance mixture comprising halogens so that the ionic liquid in the subsequent step of the process is not contaminated by water that is very difficult to separate again.
  • a preferred desiccant is concentrated sulfuric acid.
  • contacting with the desiccant and contacting in step a) are carried out in the same rectification column, preferably in two different sections of the column.
  • FIG. 1 is a diagram of a method according to the invention 2 shows another diagram of a method according to the invention;
  • FIG. 3 shows another diagram of a method according to the invention;
  • FIG. 4 shows a further diagram of a method according to the invention
  • rectification column 100 is followed by a stream 101 which contains a halogen X 2 such as, for example, Cl 2 gas and another compound from which the Cl 2 gas is to be separated off.
  • a halogen X 2 such as, for example, Cl 2 gas and another compound from which the Cl 2 gas is to be separated off.
  • the entry point of the material stream 101 is indicated in FIG. 1 as in the middle of the column, but depending on the task can also be displaced further towards the head or further to the bottom of the column 100.
  • the rectification devices within the column 100 which are not shown here, are flowed through with an ionic liquid selected according to the invention either in the form of thin films (packing) or in the form of the standing liquid (bottoms) in which the halogen is bound by reaction.
  • the freed from the halogen St Fstrom 102 is removed at the top of the column.
  • the ionic liquid containing the bound halogen is removed in the bottom of the column as stream 103 and fed to a thermal separation unit 104.
  • a release of the halogen from the ionic liquid takes place, wherein the halogen X 2 is removed as stream 105 at the top of Trennkoionne 104 and the ionic liquid can be fed as stream 106 after passing through the heat exchanger 107 again at the top of the rectification column 100.
  • the process according to FIG. 2 is particularly suitable for use in conjunction with a Deacon process in which Cl 2 gas is to be separated off from further gases such as O 2 , N 2 and CO 2 .
  • a rectification column 200 is flowed through in non-illustrated rectification devices with a suitable invention according to chloride-containing ionic liquid for chemical bonding of the chlorine gas.
  • the stream 201 contains Cl 2 and O 2 and other gases from the Deacon process and is introduced into the column 200. Furthermore, additional 0 2 gas is introduced with stream 202 at the lower end of the column.
  • the partial pressure of dissolved in the ionic liquid C0 2 can be additionally reduced by stripping, so that overall the C0 2 content in the ionic liquid is further reduced. Since C0 2 in the ionic liquid dissolves better than 0 2, is achieved for the same overall pressure within the column, a higher separation efficiency and a higher purity, based on compounds other than Cl 2, of leaving the column material stream 204 with the ionic liquid.
  • the 0 2 -containing stream 203 can be taken, which can be attributed to the upstream Deacon process.
  • the stream 204 at the bottom of the column, which contains Cl 2 bound in the ionic liquid, is transferred to a first thermal separator 205. For example, there may be a temperature of up to 150 ° C and a pressure of 100 mbar to 500 mbar.
  • Cl 2 gas is released with a high purity and can be removed as stream 206 at the top of the separator 205.
  • the separation of the Cl 2 gas from the ionic liquid in the first separator is not yet complete.
  • ionic liquid is removed with stream 207, in which residues of the Cl 2 gas are still bound.
  • a liquid partial stream 208 is branched off, which can be introduced via heat exchanger 213 in the central region of the rectification column 200.
  • the Cl 2 traces present in the liquid stream 208 do not interfere, since this stream is already strongly depleted in comparison to the local Cl 2 concentration in the column.
  • the remainder of the stream 207 which is generally smaller in quantity than that of the stream 208, is introduced into a second thermal separator 209.
  • I lierin for example, a
  • Temperature of up to 200 ° C prevail. An increase in the temperature here is energetically substantially more advantageous than in the case of 1, since not the entire outgoing stream from the bottom of the column must be brought to the final temperature here.
  • the prevailing pressure is lower than the pressure in the first separator 205 and can be reduced to 10 mbar or down to 1 mbar.
  • the separation of the Cl 2 is supported by additional introduction of 0 2 gas with stream 210.
  • the Cl 2 - and 0 2 -containing stream 211 is removed, which is also introduced into the central region of the rectification column 200.
  • the very clean ionic liquid obtained at the sump of the second separation device 209 is charged with material stream 212 via heat exchanger 214 to the top of the rectification column 200. Due to the preceding separation steps no contamination of the stream 203 with Cl 2 gas must be feared.
  • a rectification column 300 contains, in rectification devices (not shown), a suitable chloride-containing ionic liquid for binding the chlorine gas.
  • the stream 301 contains Cl 2 and O 2 and other gases from the Deacon process and is in the Column 300 registered. Furthermore, additional O gas is introduced with stream 302 at the lower end of the column.
  • the 0 2 -containing stream 303 can be taken, which can be returned to the upstream Deacon process.
  • the stream 304 at the bottom of the column, which contains Cl 2 bound in the ionic liquid, is transferred to a first thermal separator 305.
  • a first thermal separator 305 For example, there may be a temperature of 150 ° C and a pressure of 10 mbar.
  • Cl 2 gas is released with a high purity and can be removed as stream 306 at the top of the separator 305. If desired, this stream 306 can also be applied to the rectification column 300 again in a central region.
  • the separation of the Cl 2 gas from the ionic liquid in the first separator is not yet complete.
  • the stream 307 from the bottom of the first separator 305 is introduced into a second thermal separator 308. This may, for example, a temperature of 150 ° C prevail.
  • the prevailing pressure is less than the pressure in the first separator 305. Separation of the Cl 2 is assisted by additional introduction of CO gas with stream 309.
  • the Cl 2 and C () -containing stream 310 is taken, which can be supplied to a phosgene synthesis.
  • the purified ionic liquid obtained at the bottom of the second separator 308 is provided with
  • a method according to FIG. 4 is particularly suitable if drying is to be carried out before contacting a substance mixture containing halogens with an ionic liquid.
  • This process is illustrated by the example of Br 2 and methyl bromide.
  • a sulfuric acid stream 401 and a gas stream 402 containing Br 2 and methyl bromide are introduced into a rectification column 400 with rectification not shown in greater detail.
  • the drying by contacting with concentrated sulfuric acid takes place in the lower part of the column 400 and the separation of the Br 2 by contacting with ionic liquid according to the invention in the upper part.
  • the obtained in the upper part of the column 400 ionic liquid in which Br 2 is bound, is registered by a total liquid side removal with stream 409 in a thermal separator 410 and regenerated there. In this case separated Br 2 is removed at the top of this separator 410.
  • the bromine-free ionic liquid thus obtained is reintroduced into column 400 by means of stream 412 via heat exchanger 414.
  • 413 ionic liquid can be tracked with stream.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé pour séparer des halogènes de mélanges de substances, comprenant l'étape consistant à mettre en contact un mélange de substances comprenant des halogènes de la formule X2 où X = F, Cl, Br et/ou I avec un premier liquide ionique de la formule A1n+ Xn -, A1n+ représentant un cation organique, X- représentant un anion, n = 1, 2 ou 3 et X ayant la même signification chimique que dans l'halogène de la formule X2. Le cation organique A1+ présente une masse molaire de ≥ 100 g/mol à ≤ 800 g/mol et ≥ 7 à ≤ 85 atomes non hydrogène. Au moins l'étape a) est effectuée dans une colonne de rectification (100, 200, 300, 400).
PCT/EP2012/055332 2011-03-31 2012-03-26 Procédé pour séparer des halogènes de mélanges de substances WO2012130803A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011006491.5 2011-03-31
DE102011006491 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012130803A1 true WO2012130803A1 (fr) 2012-10-04

Family

ID=45878956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/055332 WO2012130803A1 (fr) 2011-03-31 2012-03-26 Procédé pour séparer des halogènes de mélanges de substances

Country Status (1)

Country Link
WO (1) WO2012130803A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412535A (zh) * 2013-08-01 2013-11-27 中国石油大学(北京) 精馏塔能量质量耦合系统的进料位置重构方法及装置
CN104826455A (zh) * 2015-04-21 2015-08-12 北京化工大学 一种离子液体用于气体干燥脱水的方法
CN106076078A (zh) * 2016-08-22 2016-11-09 苏州迈沃环保工程有限公司 用以调控气体湿度的离子液除湿方法与系统
EP3567004A1 (fr) 2018-05-07 2019-11-13 Covestro Deutschland AG Moyen de stockage et procédé de séparation, de stockage, de transport de chlore des gaz contenant du chlore
WO2019215037A1 (fr) 2018-05-07 2019-11-14 Covestro Deutschland Ag Support de stockage et procédé de séparation, de stockage et de transport de chlore à partir de gaz contenant du chlore
EP3670445A1 (fr) 2018-12-18 2020-06-24 Covestro Deutschland AG Moyen de stockage et procédé de séparation, de stockage et de transport de chlore à partir des gaz contenant du chlore
WO2020240561A1 (fr) * 2019-05-28 2020-12-03 Bromine Compounds Ltd. Halogénures d'ammonium quaternaire pour le traitement d'une contamination par halogène
EP3805150A1 (fr) * 2019-10-11 2021-04-14 Covestro Deutschland AG Procédé de libération du chlore gazeux des supports de stockage à base de chlorofibre au moyen des milieux de dégagement de chlore et utilisation dans des réactions chimiques
EP4011830A1 (fr) 2020-12-14 2022-06-15 Covestro Deutschland AG Synthèse de phosgène par mise en réaction d'un mélange gazeux contenant du chlore et du monoxyde de carbone pour obtenir un catalyseur organique contenant l'anion de chlore
EP4011829A1 (fr) 2020-12-14 2022-06-15 Covestro Deutschland AG Procédé de production de phosgène par mise en réaction des anions polychlore et du monoxyde de carbone
CN114729272A (zh) * 2019-11-22 2022-07-08 雪佛龙美国公司 从重油中萃取重多核芳烃
RU2815148C2 (ru) * 2019-05-28 2024-03-11 Бромин Компаундс Лтд. Галогениды четвертичного аммония для обработки загрязнений галогенами

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473850A1 (fr) * 1990-09-05 1992-03-11 Nippon Paint Co., Ltd. Méthode pour la récupération des halides d'hydrocarbure
WO2002074718A2 (fr) 2001-03-20 2002-09-26 Basf Aktiengesellschaft Liquides ioniques comme additifs selectifs pour la separation de melanges azeotropiques a plage d'ebullition etroite
DE10154052A1 (de) 2001-11-02 2003-07-10 Carl V Ossietzky Uni Oldenburg Einsatz ionischer Flüssigkeiten als selektive Lösungsmittel für die Trennung aromatischer Kohlenwasserstoffe von nichtaromatischen Kohlenwasserstoffen durch extraktive Rektifikation und Extraktion
WO2005016483A1 (fr) 2003-08-05 2005-02-24 Basf Aktiengesellschaft Procede de distillation pour separer des melanges azeotropes ou a ebullition etroite en utilisant des liquides ioniques
WO2006029788A1 (fr) 2004-09-13 2006-03-23 Basf Aktiengesellschaft Procédé pour séparer du chlorure d'hydrogène et du phosgène
EP1640654A1 (fr) 2004-09-23 2006-03-29 Air Products And Chemicals, Inc. Melange à base de liquide ionique pour livraison et stockage de gaz
US20060226072A1 (en) 2005-04-07 2006-10-12 Wyse Carrie L Fluid storage and purification method and system
WO2007110961A1 (fr) 2006-03-29 2007-10-04 Fujitsu Limited Composant a semiconducteur et son procede de fabrication
WO2011090967A1 (fr) * 2010-01-22 2011-07-28 Rutgers, The State University Of New Jersey Séquestration d'un gaz émis par une usine industrielle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473850A1 (fr) * 1990-09-05 1992-03-11 Nippon Paint Co., Ltd. Méthode pour la récupération des halides d'hydrocarbure
WO2002074718A2 (fr) 2001-03-20 2002-09-26 Basf Aktiengesellschaft Liquides ioniques comme additifs selectifs pour la separation de melanges azeotropiques a plage d'ebullition etroite
DE10154052A1 (de) 2001-11-02 2003-07-10 Carl V Ossietzky Uni Oldenburg Einsatz ionischer Flüssigkeiten als selektive Lösungsmittel für die Trennung aromatischer Kohlenwasserstoffe von nichtaromatischen Kohlenwasserstoffen durch extraktive Rektifikation und Extraktion
WO2005016483A1 (fr) 2003-08-05 2005-02-24 Basf Aktiengesellschaft Procede de distillation pour separer des melanges azeotropes ou a ebullition etroite en utilisant des liquides ioniques
WO2006029788A1 (fr) 2004-09-13 2006-03-23 Basf Aktiengesellschaft Procédé pour séparer du chlorure d'hydrogène et du phosgène
EP1640654A1 (fr) 2004-09-23 2006-03-29 Air Products And Chemicals, Inc. Melange à base de liquide ionique pour livraison et stockage de gaz
US20060226072A1 (en) 2005-04-07 2006-10-12 Wyse Carrie L Fluid storage and purification method and system
US20060226073A1 (en) 2005-04-07 2006-10-12 Wyse Carrie L Fluid storage and purification method and system
US20060226074A1 (en) 2005-04-07 2006-10-12 Wyse Carrie L Fluid storage and purification method and system
WO2007110961A1 (fr) 2006-03-29 2007-10-04 Fujitsu Limited Composant a semiconducteur et son procede de fabrication
WO2011090967A1 (fr) * 2010-01-22 2011-07-28 Rutgers, The State University Of New Jersey Séquestration d'un gaz émis par une usine industrielle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. DONALD; B. JENKINS ET AL., INORG. CHEM., vol. 38, no. 16, 1999, pages 3609 - 3620

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412535A (zh) * 2013-08-01 2013-11-27 中国石油大学(北京) 精馏塔能量质量耦合系统的进料位置重构方法及装置
CN104826455A (zh) * 2015-04-21 2015-08-12 北京化工大学 一种离子液体用于气体干燥脱水的方法
CN106076078A (zh) * 2016-08-22 2016-11-09 苏州迈沃环保工程有限公司 用以调控气体湿度的离子液除湿方法与系统
EP3567004A1 (fr) 2018-05-07 2019-11-13 Covestro Deutschland AG Moyen de stockage et procédé de séparation, de stockage, de transport de chlore des gaz contenant du chlore
WO2019215037A1 (fr) 2018-05-07 2019-11-14 Covestro Deutschland Ag Support de stockage et procédé de séparation, de stockage et de transport de chlore à partir de gaz contenant du chlore
US11905177B2 (en) 2018-05-07 2024-02-20 Covestro Intellectual Property Gmbh & Co. Kg Storage medium and method for separating, storing and transporting chlorine from chlorine-containing gases
CN112424114A (zh) * 2018-05-07 2021-02-26 科思创知识产权两合公司 用于从含氯气体中分离、存储和运输氯气的存储介质和方法
EP3670445A1 (fr) 2018-12-18 2020-06-24 Covestro Deutschland AG Moyen de stockage et procédé de séparation, de stockage et de transport de chlore à partir des gaz contenant du chlore
CN114007703A (zh) * 2019-05-28 2022-02-01 溴化合物有限公司 用于处理卤素污染的季铵卤化物
US11679293B2 (en) 2019-05-28 2023-06-20 Bromine Compounds Ltd. Quarternary ammonium halides for treating halogen contamination
WO2020240561A1 (fr) * 2019-05-28 2020-12-03 Bromine Compounds Ltd. Halogénures d'ammonium quaternaire pour le traitement d'une contamination par halogène
RU2815148C2 (ru) * 2019-05-28 2024-03-11 Бромин Компаундс Лтд. Галогениды четвертичного аммония для обработки загрязнений галогенами
CN114007703B (zh) * 2019-05-28 2024-03-22 溴化合物有限公司 用于处理卤素污染的季铵卤化物
WO2021069757A1 (fr) * 2019-10-11 2021-04-15 Covestro Intellectual Property Gmbh & Co. Kg Procédé de libération de chlore gazeux à partir de milieux de stockage à base de polychlorure au moyen d'agents de libération de chlore et leur utilisation dans des réactions chimiques
EP3805150A1 (fr) * 2019-10-11 2021-04-14 Covestro Deutschland AG Procédé de libération du chlore gazeux des supports de stockage à base de chlorofibre au moyen des milieux de dégagement de chlore et utilisation dans des réactions chimiques
CN114729272A (zh) * 2019-11-22 2022-07-08 雪佛龙美国公司 从重油中萃取重多核芳烃
CN114729272B (zh) * 2019-11-22 2023-08-11 雪佛龙美国公司 从重油中萃取重多核芳烃
EP4011830A1 (fr) 2020-12-14 2022-06-15 Covestro Deutschland AG Synthèse de phosgène par mise en réaction d'un mélange gazeux contenant du chlore et du monoxyde de carbone pour obtenir un catalyseur organique contenant l'anion de chlore
EP4011829A1 (fr) 2020-12-14 2022-06-15 Covestro Deutschland AG Procédé de production de phosgène par mise en réaction des anions polychlore et du monoxyde de carbone
WO2022128951A1 (fr) 2020-12-14 2022-06-23 Covestro Deutschland Ag Procédé de production de phosgène par réaction d'anions polychlore et de monoxyde de carbone
WO2022128950A1 (fr) 2020-12-14 2022-06-23 Covestro Deutschland Ag Synthèse de phosgène par réaction d'un mélange gazeux contenant du chlore et du monoxyde de carbone sur un catalyseur organique contenant des anions chlore

Similar Documents

Publication Publication Date Title
WO2012130803A1 (fr) Procédé pour séparer des halogènes de mélanges de substances
EP1789160B1 (fr) Procédé pour séparer du chlorure d'hydrogène et du phosgène
DE1493190C3 (de) Verfahren zur Trennung von Stoffgemischen
EP1833758B1 (fr) Procede pour separer du gaz
EP1866045B1 (fr) Procede de purification de liquides ioniques et/ou polymères par distillation
DE69505190T3 (de) Verfahren zur Herstellung von hochreiner Essigsäure
WO2012084691A1 (fr) Procédé de production d'acide formique par mise en réaction de dioxyde de carbone avec de l'hydrogène
DE1619817A1 (de) Loesungsmittelextraktionsverfahren
DE1592324C3 (de) Verfahren zur Reinigung eines wasserhaltigen, mit Schwefelwasserstoff verunreinigten Ammoniakgases
DE2453864C3 (de) Kontinuierliches Verfahren zur Auftrennung von Gemischen aus Zirkoniumtetrachlorid und Hafniumtetrachlorid
EP0019699A1 (fr) Procédé pour la récupération de chlorure d'hydrogène gazeux à partir d'acide chlorhydrique aqueux dilué
DE60320477T2 (de) Verfahren zur Erniedrigung oder Entfernung von NH3/HF Nebenprodukten bei der Hestellung von Stickstofftriflourid
DE2834252C3 (de) Verfahren zur Gewinnung von gasförmigem Chlorwasserstoff
DE10038320C1 (de) Verfahren und Vorrichtung zur Entfernung von sauren und/oder basischen Bestandteilen aus Kohlenwasserstoffen
DE4445529C1 (de) Verfahren zur Aufarbeitung von komplexen Amin-Hydrofluoriden
DE10154052A1 (de) Einsatz ionischer Flüssigkeiten als selektive Lösungsmittel für die Trennung aromatischer Kohlenwasserstoffe von nichtaromatischen Kohlenwasserstoffen durch extraktive Rektifikation und Extraktion
DE2100424B2 (de) Verfahren zur abtrennung von 2chlor-1,3-butadien
DE60117635T2 (de) Verfahren zur Aufkonzentrierung von Fluorverbindungen
EP0551838B1 (fr) Traitement d'une phase d'acide fluorhydrique des mélanges réactionnels
DE1944405C3 (de) Bimetallsalz-Komplexverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE1544123C3 (de) Verfahren zur Entfernung von sauren Gasen aus gasförmigen Mischungen
WO2000002815A2 (fr) Procede permettant d'appauvrir la teneur en bromure d'une solution aqueuse contenant du bromure a l'aide d'eau oxygenee
DE19940573A1 (de) Verfahren zur Aufarbeitung einer salzhaltigen Säurelösung und Anlage zur Durchführung des Verfahrens
DE10033961A1 (de) Verfahren zur Abtrennung leichter Olefine von Paraffinen
WO2023208412A1 (fr) Méthode d'obtention de xénon à l'aide d'un tamis moléculaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12710513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12710513

Country of ref document: EP

Kind code of ref document: A1